Science.gov

Sample records for fasl protein expression

  1. Correlation between Fas and FasL proteins expression in normal gastric mucosa and gastric cancer.

    PubMed

    Gryko, Mariusz; Guzińska-Ustymowicz, Katarzyna; Pryczynicz, Anna; Cepowicz, Dariusz; Kukliński, Adam; Czyżewska, Jolanta; Kemona, Andrzej; Kędra, Bogusław

    2011-01-01

    The study's objective was to assess the expressions of Fas and FasL proteins in gastric cancer in correlation with chosen clinicohistological parameters. Fas and FasL expression was analyzed in 68 patients with gastric cancer, using the immunohistochemical method. The expression of Fas was found to be lower in gastric cancer cells than in healthy mucosa, both in the lining epithelium and in glandular tubes (28% vs. 48% and 44%; p < 0.001). The expression of FasL was also markedly lower in cancer cells than in glandular tubes, yet higher than in the lining epithelium (51% vs. 73% and 14%; p < 0.01). Positive expressions of FasL and Fas were lower in less advanced gastric cancer cells (T1, T2), than in more advanced tumors (T3, T4), but only in the case of FasL was this difference statistically significant (p < 0.05). Our findings seem to confirm the theory of the impact of apoptotic disorders at the level of Fas receptor and FasL protein in the process of gastric cancer formation and growth, which is manifested in the varied expressions of these proteins in gastric cancer and in the normal lining and glandular epithelium of the stomach. However, the lack of significant differences in the expressions of Fas and FasL in correlation to other clinicohistological parameters indicates the existence of mechanisms that have a greater impact on the process of differentiation of gastric cancers. This in our opinion eliminates these proteins as prognostic factors.

  2. Clinical significance of Fas and FasL protein expression in gastric carcinoma and local lymph node tissues.

    PubMed

    Li, Qian; Peng, Jie; Li, Xin-Hua; Liu, Ting; Liang, Qing-Chun; Zhang, Gui-Ying

    2010-03-14

    To investigate the relation of Fas and Fas ligand (FasL) protein expression with carcinogenesis and metastasis of gastric carcinoma. Immunohistochemistry was used to detect Fas and FasL protein expression in 64 gastric carcinoma tissue samples and 20 normal gastric tissue samples. Relation between FasL and Fas expression, age and gender of gastric cancer patients, and pathological subtype and lymph node metastasis of gastric cancer was analyzed. The Fas expression level was significantly higher in normal gastric tissue samples than in gastric carcinoma tissue samples (85.0% vs 25.0%, P < 0.001), while the FasL expression level was significantly lower in normal gastric tissue samples than in gastric carcinoma tissue samples (30.0% vs 81.3%, P < 0.001). The Fas expression level was significantly higher in invasive lymph nodes than in non-invasive lymph nodes (82.9% vs 56.5%, P < 0.003) and in well-differentiated gastric carcinoma tissue samples than in poorly-differentiated gastric carcinoma tissue samples (50.0% vs 18.0%, P = 0.015). The FasL expression level was significantly lower in well-differentiated gastric carcinoma tissue samples than in poorly- differentiated gastric carcinoma tissue samples (42.9% vs 84.0%, P = 0.021). The Fas and FasL expression levels (25.0% and 81.3%) were significantly different in gastric carcinoma tissue samples (P < 0.001), but had a non-linear correlation (P = 0.575). Abnormal Fas and FasL expressions in gastric carcinoma and lymph node tissues are involved in carcinogenesis and metastasis of gastric cancer.

  3. AMP-activated protein kinase mediates T cell activation-induced expression of FasL and COX-2 via protein kinase C theta-dependent pathway in human Jurkat T leukemia cells.

    PubMed

    Lee, Jung Yeon; Choi, A-Young; Oh, Young Taek; Choe, Wonchae; Yeo, Eui-Ju; Ha, Joohun; Kang, Insug

    2012-06-01

    AMP-activated protein kinase (AMPK), an important regulator of energy homeostasis, is known to be activated during T cell activation. T cell activation by T cell receptor (TCR) engagement or its pharmacological mimics, PMA plus ionomycin (PMA/Io), induces immunomodulatory FasL and cyclooxygenase-2 (COX-2) expression. In this study, we examined the role and mechanisms of AMPK in PMA/Io-induced expression of FasL and COX-2 in Jurkat T human leukemic cells. Inhibition of AMPK by a pharmacological agent, compound C, or AMPKα1 siRNA suppressed expression of FasL and COX-2 mRNAs and proteins in PMA/Io-activated Jurkat cells. It also reduced secretion of FasL protein and prostaglandin E2, a main product of COX-2, in Jurkat cells and peripheral blood lymphocytes activated with PMA/Io or monoclonal anti-CD3 plus anti-CD28. Consistently, inhibition of AMPK blocked promoter activities of FasL and COX-2 in activated Jurkat cells. As protein kinase C theta (PKCθ) is a central molecule for TCR signaling, we examined any possible cross-talk between AMPK and PKCθ in activated T cells. Of particular importance, we found that inhibition of AMPK blocked phosphorylation and activation of PKCθ, suggesting that AMPK is an upstream kinase of PKCθ. Moreover, we showed that AMPK was directly associated with PKCθ and phosphorylated Thr538 of PKCθ in PMA/Io-stimulated Jurkat cells. We also showed that inhibition of PKCθ by rottlerin or dominant negative PKCθ reduced AMPK-mediated transcriptional activation of NF-AT and AP-1 in activated Jurkat cells. Taken together, these results suggest that AMPK regulates expression of FasL and COX-2 via the PKCθ and NF-AT and AP-1 pathways in activated Jurkat cells.

  4. A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients.

    PubMed

    Wu, Jianming; Metz, Christine; Xu, Xiulong; Abe, Riichiro; Gibson, Andrew W; Edberg, Jeffrey C; Cooke, Jennifer; Xie, Fenglong; Cooper, Glinda S; Kimberly, Robert P

    2003-01-01

    A single-nucleotide polymorphism (SNP), identified at nucleotide position -844 in the 5' promoter of the FasL gene, lies within a putative binding motif for CAAT/enhancer-binding protein beta (C/EBPbeta). Electrophoretic mobility shift and supershift assays confirmed that this element binds specifically to C/EBPbeta and demonstrated that the two alleles of this element have different affinities for C/EBPbeta. In luciferase reporter assays, the -844C genotype had twice the basal activity of the -844T construct, and basal expression of Fas ligand (FasL) on peripheral blood fibrocytes was also significantly higher in -844C than in -844T homozygous donors. FasL is located on human chromosome 1q23, a region that shows linkage to the systemic lupus autoimmune phenotype. Analysis of 211 African American systemic lupus erythematosus patients revealed enrichment of the -844C homozygous genotype in these systemic lupus erythematosus patients compared with 150 ethnically matched normal controls (p = 0.024). The -844C homozygous genotype may lead to the increased expression of FasL, to altered FasL-mediated signaling in lymphocytes, and to enhanced risk for autoimmunity. This functionally significant SNP demonstrates the potential importance of SNPs in regulatory regions and suggests that differences in the regulation of FasL expression may contribute to the development of the autoimmune phenotype.

  5. Pathological analysis, detection of antigens, FasL expression analysis and leucocytes survival analysis in tilapia (Oreochromis niloticus) after infection with green fluorescent protein labeled Streptococcus agalactiae.

    PubMed

    Wang, Jingyuan; Wu, Jinying; Yi, Liyuan; Hou, Zengxin; Li, Wensheng

    2017-03-01

    The pathogenesis of Streptococcus agalactiae infection in tilapia has not been fully described. To understand this, we investigated the clinic-pathological features of acute experimental septicemia in tilapia (Oreochromis niloticus) after receiving an intra-peritoneal injection with S. agalactiae THN-1901GFP. Immunohistochemistry and sections of pathological tissues were used to estimate the level of damage in the head-kidney, liver, spleen and trunk-kidney. The expression of FasL was analyzed by western blotting in these samples based on their damage levels. Leucocytes were isolated from the head-kidney and incubated with S. agalactiae THN-1901GFP. Then, phagocytosis, programmed cell death and the expression of FasL were analyzed. The infected tissues showed varying degrees of necrosis and histolysis. The serous membrane of the intestine was dissolved by S. agalactiae THN-1901GFP. Antigens of S. agalactiae THN-1901GFP accumulated in different parts of the infected organs. In the head-kidney and spleen, the expression of FasL was up-regulated in parallel with increased tissue damage. After being incubated with S. agalactiae THN-1901GFP, the phagocytic capacity and ability were both very high and the expression of FasL remained high in leucocytes. S. agalactiae THN-1901GFP was able to survive for a long period of time after being engulfed by phagocytic cells. These findings offer insight into the pathogenesis of S. agalactiae infection in tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Notexin upregulates Fas and FasL protein expression of human neuroblastoma SK-N-SH cells through p38 MAPK/ATF-2 and JNK/c-Jun pathways.

    PubMed

    Chen, Ku-Chung; Chang, Long-Sen

    2010-04-01

    Notechis scutatus scutatus notexin induced an increase in Fas and FasL protein expression of human neuroblastoma SK-N-SH cells in a dose- and time-dependent manner. Moreover, notexin treatment upregulated transcription of Fas/FasL mRNA. Downregulation of FADD blocked notexin-induced procaspase-8 degradation and cleavage of Bid and rescued viability of notexin-treated cells. Upon exposure to notexin, activation of JNK and p38 MAPK was observed in SK-N-SH cells. Notexin-induced upregulation of Fas and FasL was suppressed by SB202190 (p38 MAPK inhibitor) and S600125 (JNK inhibitor). Downregulation of p38alpha MAPK and JNK1 by siRNA proved that upregulation of Fas/FasL was related to p38alpha MAPK and JNK1 activation. Notexin treatment evoked p38alpha MAPK-mediated ATF-2 phosphorylation and JNK1-mediated c-Jun phosphorylation. Knockdown of c-Jun and ATF-2 by siRNA or overexpression of dominant-negative c-Jun and ATF-2 revealed that both c-Jun and ATF-2 were crucial for Fas/FasL upregulation. Taken together, our data indicate that notexin-induced upregulation of Fas and FasL is triggered by p38 MAPK/ATF-2 and JNK/c-Jun signaling pathways in SK-N-SH cells. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Ras signaling is involved in the expression of Fas-L in glioma.

    PubMed

    Yang, B C; Wang, Y S; Liu, H S; Lin, S J

    2000-04-01

    Fas-L expresses on a variety of tumors and is suspected to modify the dialog between tumor and the immune system. However, the cellular abnormality in tumor cells leading to an aberrant expression of Fas-L is unclear. In this study, we demonstrate the involvement of Ras signaling in the Fas-L expression in several ways. First, the activated Ha-rasval12 gene enhanced the Fas-L expression of primary human glial cells. Second, blocking the Ras signal pathway in glioma cells by lovastatin or the Ha-rasAsn17 dominant-negative mutant gene resulted in reduced Fas-L expression. Transfection of the Ha-rasAsn17 into glioma cells also inhibited the activation of NFKB, which is a downstream component of Ras signaling. Accordingly, the membrane-permeable NFKB competitor suppressed the Fas-L expression. Furthermore, the Fas-L expression coincided with the Ras activity in the murine 212 cells, in which the Ras activity could be induced by isopropyl 3-D-thiogalactoside. In summary, these results suggest that the enhanced Ras signaling with consequential NFKB activation, which is a frequent defect found in tumors, could mediate the Fas-L expression of tumors.

  8. Retrovirally transduced murine T lymphocytes expressing FasL mediate effective killing of prostate cancer cells

    PubMed Central

    Symes, JC; Siatskas, C; Fowler, DH; Medin, JA

    2010-01-01

    Adoptively transferred T cells possess anticancer activities partially mediated by T-cell FasL engagement of Fas tumor targets. However, antigen-induced T-cell activation and clonal expansion, which stimulates FasL activity, is often inefficient in tumors. As a gene therapy approach to overcome this obstacle, we have created oncoretroviral vectors to overexpress FasL or non-cleavable FasL (ncFasL) on murine T cells of a diverse T-cell receptor repertoire. Expression of c-FLIP was also engineered to prevent apoptosis of transduced cells. Retroviral transduction of murine T lymphocytes has historically been problematic, and we describe optimized T-cell transduction protocols involving CD3/CD28 co-stimulation of T cells, transduction on ice using concentrated oncoretrovirus, and culture with IL-15. Genetically modified T cells home to established prostate cancer tumors in vivo. Co-stimulated T cells expressing FasL, ncFasL and ncFasL/c-FLIP each mediated cytotoxicity in vitro against RM-1 and LNCaP prostate cancer cells. To evaluate the compatibility of this approach with current prostate cancer therapies, we exposed RM-1, LNCaP, and TRAMP-C1 cells to radiation, mitoxantrone, or docetaxel. Fas and H-2b expression were upregulated by these methods. We have developed a novel FasL-based immuno-gene therapy for prostate cancer that warrants further investigation given the apparent constitutive and inducible Fas pathway expression in this malignancy. PMID:19096446

  9. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine

    SciTech Connect

    Husain, Zaheed; Almeciga, Ingrid; Delgado, Julio C.; Clavijo, Olga P.; Castro, Januario E.; Belalcazar, Viviana; Pinto, Clara; Zuniga, Joaquin; Romero, Viviana; Yunis, Edmond J. . E-mail: edmond_yunis@dfci.harvard.edu

    2006-08-01

    Clozapine has been associated with a 1% incidence of agranulocytosis. The formation of an oxidized intermediate clozapine metabolite has been implicated in direct polymorphonuclear (PMN) toxicity. We utilized two separate systems to analyze the role of oxidized clozapine in inducing apoptosis in treated cells. Human PMN cells incubated with clozapine (0-10 {mu}M) in the presence of 0.1 mM H{sub 2}O{sub 2} demonstrated a progressive decrease of surface CD16 expression along with increased apoptosis. RT-PCR analysis showed decreased CD16 but increased FasL gene expression in clozapine-treated PMN cells. No change in constitutive Fas expression was observed in treated cells. In HL-60 cells induced to differentiate with retinoic acid (RA), a similar increase in FasL expression, but no associated changes in CD16 gene expression, was observed following clozapine treatments. Our results demonstrate increased FasL gene expression in oxidized clozapine-induced apoptotic neutrophils suggesting that apoptosis in granulocytes treated with clozapine involves Fas/FasL interaction that initiates a cascade of events leading to clozapine-induced agranulocytosis.

  10. A complex adenovirus vector that delivers FASL-GFP with combined prostate-specific and tetracycline-regulated expression.

    PubMed

    Rubinchik, S; Wang, D; Yu, H; Fan, F; Luo, M; Norris, J S; Dong, J Y

    2001-11-01

    Cell-type-restricted transgene expression delivered by adenovirus vectors is highly desirable for gene therapy of cancer, as it can limit cytotoxic gene expression to tumor cells. However, many tumor- and tissue-specific promoters are weaker than the constitutively active promoters and are thus less effective. To combine cell-type specificity with high-level regulated transgene expression, we have developed a complex adenoviral vector. We have placed the tetracycline transactivator gene under the control of a prostate-specific ARR2PB promoter, and a mouse Tnfsf6 (encoding FASL)-GFP fusion gene under the control of the tetracycline responsive promoter. We have incorporated both expression cassettes into a single construct. We show that FASL-GFP expression from this vector is essentially restricted to prostate cancer cells, in which it can be regulated by doxycycline. Higher levels of prostate-specific FASL-GFP expression were generated by this approach than by driving the FASL-GFP expression directly with ARR2PB. More FASL-GFP expression correlated with greater induction of apoptosis in prostate cancer LNCaP cells. Mouse studies confirmed that systemic delivery of both the prostate-specific and the prostate-specific/tet-regulated vectors was well tolerated at doses that were lethal for FASL-GFP vector with CMV promoter. This strategy should be able to improve the safety and efficacy of cancer gene therapy using other cytotoxic genes as well.

  11. Expression of ADAM10, Fas, FasL and Soluble FasL in Patients with Oral Squamous Cell Carcinoma (OSCC) and their Association with Clinical-Pathological Parameters.

    PubMed

    Zepeda-Nuño, José Sergio; Guerrero-Velázquez, Celia; Del Toro-Arreola, Susana; Vega-Magaña, Natali; Ángeles-Sánchez, Julián; Haramati, Jesse; Pereira-Suárez, Ana L; Bueno-Topete, Miriam R

    2017-04-01

    ADAM10 has been implicated in the progression of various solid tumors. ADAM10 regulates the cleavage of the FasL ectodomain from the plasma membrane of different cell types, generating the soluble FasL fragment (sFasL). Currently, there are few studies in oral squamous cell carcinoma (OSCC) that correlate levels of ADAM10 and FasL in the tumor microenvironment with clinical parameters of the disease. To determine the expression of ADAM10, Fas, FasL and sFasL in patients with OSCC and its association with TNM stage. Twenty-five patients with OSCC and 25 healthy controls were included. Biopsies of tumor tissue from patients with OSCC and buccal mucosa in controls were obtained. ADAM10, Fas, and FasL were analyzed by Western blotting. sFasL was quantified by ELISA. ADAM10 and Fas decreased significantly in OSCC compared with controls. Relatedly, within the OSCC group, Fas and ADAM10 decreased in accordance with tumor disease stage; in stages I/II, as well as in tumors of smaller diameter (T1-T2), ADAM10 showed higher levels when compared to patients with T3-T4 tumors and in stage III-IV. FasL in the tumor microenvironment and serum FasL showed no significant differences between both groups. Levels of complete FasL and cleaved FasL were positively correlated in controls; this correlation is preserved in patients with tumors in early stages (I-II), but is lost in later stage (III-IV). The dysregulation of ADAM10, Fas and FasL could be useful indicators of the progression and severity of OSCC.

  12. Expression of miR-98 in myocarditis and its influence on transcription of the FAS/FASL gene pair.

    PubMed

    Zhang, B Y; Zhao, Z; Jin, Z

    2016-06-03

    Myocarditis is a common cardiovascular disease and frequently occurs in children and teenagers. It is believed to be caused by both endogenous and exogenous factors, among which FAS/FASL gene pair-induced cell apoptosis is a major mechanism of myocardial cell injury. A previous study has detected low expression of microRNA (miR)-98 in myocarditis patients. Therefore, in this study we investigated the functional implications of miR-98 with respect to the disease. We carried out a case-control study including 50 myocarditis patients and 50 healthy individuals. Total RNA was extracted from peripheral blood plasma. Expression levels of miR-98 and the FAS/FASL gene pair were determined by real-time fluorescent quantitative polymerase chain reaction. The interaction between miR-98 and the FAS/FASL pair was visualized by dual-luciferase reporter assay. The expression of the FAS/FASL gene pair was further detected by transfecting with an miR-98 mimic or an miR-98 inhibitor. The content of miR-98 in the peripheral blood of the myocarditis patients was significantly lower than in the healthy individuals. However, the FAS/FASL genes were upregulated by 1.68-fold in the myocarditis patients. miR-98 was shown to interact with the 3'-untranslated region of the FAS/FASL gene pair. The inhibition/facilitation of miR-98 expression in myocardial cells can modulate apoptosis. miR-98 was downregulated in the peripheral blood of myocarditis patients. It may interact with the FAS/FASL gene pair to further modulate cell apoptosis.

  13. Intrahepatic mRNA Expression of FAS, FASL, and FOXP3 Genes Is Associated with the Pathophysiology of Chronic HCV Infection

    PubMed Central

    Amoras, Ednelza da Silva Graça; Gomes, Samara Tatielle Monteiro; Freitas, Felipe Bonfim; Santana, Bárbara Brasil; Ishak, Geraldo; Ferreira de Araújo, Marialva Tereza; Demachki, Sâmia; Conde, Simone Regina Souza da Silva; Ishak, Marluísa de Oliveira Guimarães; Ishak, Ricardo; Vallinoto, Antonio Carlos Rosário

    2016-01-01

    This study aimed to evaluate the relative mRNA expression of Fas receptor (FAS), Fas ligand (FASL), and forkhead box protein 3 (FOXP3) in liver biopsy specimens obtained from patients with viral and non-viral chronic hepatitis and correlate their expression with the fibrosis stage. A total of 51 liver biopsy specimens obtained from HBV (n = 6), HCV (n = 28), and non-viral hepatic disease (NVHD) (n = 9) patients and from individuals with normal liver histology (n = 8) (control—CT) were analyzed. Quantifications of the target genes were assessed using qPCR, and liver biopsies according to the METAVIR classification. The mRNA expression levels of FAS and FASL were lower in the CT group compared to the groups of patients. The increase in the mRNA expression of FAS and FASL was correlated with higher levels of inflammation and disease progression, followed by a decline in tissues with cirrhosis, and it was also associated with increased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Higher mRNA expression of FOXP3 was observed in the HCV and NVHD groups, with the peak observed among patients with cirrhosis. The increased FOXP3 mRNA expression was positively correlated with increased FAS and FASL mRNA expression and the AST and ALT levels in all patients. Conclusions: These results suggest that regardless of the cause, the course of chronic liver disease may be modulated by the analyzed genes and correlated with an increase in regulatory T cells during the liver damage followed by hepatocyte destruction by Fas/FasL system and subsequent non specific lymphocytic infiltrate accumulation. PMID:27243827

  14. Fas and FasL expression in the spinal cord following cord hemisection in the monkey.

    PubMed

    Jia, Liu; Yu, Zou; Hui, Li; Yu-Guang, Guan; Xin-Fu, Zhou; Chao, You; Yanbin, Xiyang; Xi, Zhan; Jun, Wang; Xin-Hua, Heng; Xin-Hua, Hen; Ting-Hua, Wang

    2011-03-01

    The changes of endogenous Fas/FasL in injured spinal cord, mostly in primates, are not well known. In this study, we investigated the temporal changes in the expression of Fas and FasL and explored their possible roles in the ventral horn of the spinal cord and associated precentral gyrus following T(11) spinal cord hemisection in the adult rhesus monkey. A significant functional improvement was seen with the time going on in monkeys subjected to cord hemisection. Apoptotic cells were also seen in the ventral horn of injured spinal cord with TUNEL staining, and a marked increase presents at 7 days post operation (dpo). Simultaneously, the number of Fas and FasL immunoreactive neurons in the spinal cords caudal and rostral to injury site and their intracellular optical density (OD) in the ipsilateral side of injury site at 7 dpo increased significantly more than that of control group and contralateral sides. This was followed by a decrease and returned to normal level at 60 dpo. No positive neurons were observed in precentral gyrus. The present results may provide some insights to understand the role of Fas/FasL in the spinal cord but not motor cortex with neuronal apoptosis and neuroplasticity in monkeys subjected to hemisection spinal cord injury.

  15. FasL expression in cardiomyocytes activates the ERK1/2 pathway, leading to dilated cardiomyopathy and advanced heart failure.

    PubMed

    Huby, Anne-Cecile; Turdi, Subat; James, Jeanne; Towbin, Jeffrey A; Purevjav, Enkhsaikhan

    2016-02-01

    Increase in the apoptotic molecule Fas ligand (FasL) in serum and cardiomyocytes has been shown to be associated with progressive dilated cardiomyopathy (DCM) and congestive heart failure (CHF) in humans. However, the underlying mechanism(s) of FasL-related deterioration of heart function remain obscure. The aim of the present study is to determine roles of myocardial FasL in the activation of alternative pathways such as extracellular-signal-regulated kinase 1/2 (ERK1/2), inflammation or fibrosis and to identify effective treatments of progressive DCM and advanced CHF. Transgenic mice with cardiomyocyte-specific overexpression of FasL were investigated and treated with an ERK1/2 inhibitor (U-0126), losartan (los), prednisolone (pred) or placebo. Morpho-histological and molecular studies were subsequently performed. FasL mice showed significantly higher mortality compared with wild-type (WT) littermates due to DCM and advanced CHF. Prominent perivascular and interstitial fibrosis, increased interleukin secretion and diffuse CD3-positive cell infiltration were evident in FasL hearts. Up-regulation of the short form of Fas-associated death domain (FADD)-like interleukin 1β-converting enzyme (FLICE) inhibitory protein (s-FLIP), RIP (receptor-interacting protein) and ERK1/2 and down-regulation of transforming growth factor beta 1 (TGFβ1) and nuclear factor-κB (NF-κB) was determined in the myocardium, whereas expression of ERK1/2, periostin (Postn) and osteopontin increased in cardiac fibroblasts. U-0126 and los increased CHF survival by 75% compared with pred and placebo groups. U-0126 had both anti-fibrotic and anti-apoptotic effects, whereas los reduced fibrosis only. Myocardial FasL expression in mice activates differential robust fibrotic, apoptotic and inflammatory responses via ERK1/2 in cardiomyocytes and cardiac fibroblasts inducing DCM and CHF. Blocking the ERK1/2 pathway prevented progression of FasL-induced DCM and CHF by reducing fibrosis, inflammation

  16. Palmitoylation of human FasL modulates its cell death-inducing function

    PubMed Central

    Guardiola-Serrano, F; Rossin, A; Cahuzac, N; Lückerath, K; Melzer, I; Mailfert, S; Marguet, D; Zörnig, M; Hueber, A-O

    2010-01-01

    Fas ligand (FasL) is a transmembrane protein that regulates cell death in Fas-bearing cells. FasL-mediated cell death is essential for immune system homeostasis and the elimination of viral or transformed cells. Because of its potent cytotoxic activity, FasL expression at the cell surface is tightly regulated, for example, via processing by ADAM10 and SPPL2a generating soluble FasL and the intracellular fragments APL (ADAM10-processed FasL form) and SPA (SPPL2a-processed APL). In this study, we report that FasL processing by ADAM10 counteracts Fas-mediated cell death and is strictly regulated by membrane localization, interactions and modifications of FasL. According to our observations, FasL processing occurs preferentially within cholesterol and sphingolipid-rich nanodomains (rafts) where efficient Fas–FasL contact occurs, Fas receptor and FasL interaction is also required for efficient FasL processing, and FasL palmitoylation, which occurs within its transmembrane domain, is critical for efficient FasL-mediated killing and FasL processing. PMID:21368861

  17. Induction of Tolerance to Cardiac Allografts Using Donor Splenocytes Engineered to Display on Their Surface an Exogenous FasL Protein1

    PubMed Central

    Yolcu, Esma S.; Gu, Xiao; Lacelle, Chantale; Zhao, Hong; Bandura-Morgan, Laura; Askenasy, Nadir; Shirwan, Haval

    2008-01-01

    The critical role played by FasL in immune homeostasis renders this molecule as an attractive target for immunomodulation to achieve tolerance to auto and transplantation antigens. Immunomodulation with genetically modified cells expressing FasL was shown to induce tolerance to alloantigens. However, genetic modification of primary cells in a rapid, efficient, and clinically applicable manner proved challenging. Therefore, we tested the efficacy of donor splenocytes rapidly and efficiently engineered to display on their surface a chimeric form of FasL protein (SA-FasL) for tolerance induction to cardiac allografts. Intraperitoneal injection of ACI rats with WF splenocytes displaying SA-FasL on their surface resulted in tolerance to donor, but not F344 third party, cardiac allografts. Tolerance was associated with apoptosis of donor reactive T effector cells and induction/expansion of CD4+CD25+FoxP3+ T regulatory (Treg) cells. Treg cells played a critical role in the observed tolerance as adoptive transfer of sorted Treg cells from long-term graft recipients into naïve unmanipulated ACI rats resulted in indefinite survival of secondary WF grafts. Immunomodulation with allogeneic cells rapidly and efficiently engineered to display on their surface SA-FasL protein provides an effective and clinically applicable means of cell-based therapy with potential application to regenerative medicine, transplantation, and autoimmunity. PMID:18606644

  18. Immune privilege and FasL: two ways to inactivate effector cytotoxic T lymphocytes by FasL-expressing cells

    PubMed Central

    Li, Jie-Hui; Rosen, Dalia; Sondel, Paul; Berke, Gideon

    2002-01-01

    The theory that Fas ligand (FasL)-expressing tumours are immune-privileged and can directly counterattack Fas-expressing effector T lymphocytes has recently been questioned and several alternative mechanisms have been proposed. To address this controversial issue, we analysed the impact of FasL-expressing tumours on in vivo-primed cytotoxic T lymphocytes (CTLs) and the mechanisms involved. CTLs were obtained from the peritoneal cavity (PEL) after in vivo priming with syngeneic or allogeneic murine tumour cells. We have found that PEL populations undergo Fas-based apoptotic cell death when co-cultured with FasL-expressing tumour cells and that PEL destruction of cognate targets in a 51Cr-release assay was markedly inhibited by the pre-exposure to either cognate or non-cognate tumour cells expressing FasL. Furthermore, cytocidal function of PEL was markedly inhibited by preincubation with FasL-negative tumour cells, if and only if they were the cognate targets of the CTL; this CTL inhibition involved FasL–Fas interactions. The killing function of ‘bystander’ PELs, reactive to a third-party target cell, was inhibited by co-cultivation with PELs mixed with their cognate target. This activation-induced CTL fratricide was not influenced by the expression of FasL on the cognate target cells. These studies demonstrate the existence of two distinct pathways whereby FasL-expressing cells inhibit in vivo-primed FasL- and Fas-expressing CTLs: first, by FasL-based direct tumour counterattack, and second, by FasL-mediated activation-induced cell death of the CTLs, which is consistent with the concept that FasL expression in vivo could play a role in inducing immune privilege. PMID:11918688

  19. Molecular cloning, functional identification and expressional analyses of FasL in Tilapia, Oreochromis niloticus.

    PubMed

    Ma, Tai-yang; Wu, Jin-ying; Gao, Xiao-ke; Wang, Jing-yuan; Zhan, Xu-liang; Li, Wen-sheng

    2014-10-01

    FasL is the most extensively studied apoptosis ligand. In 2000, tilapia FasL was identified using anti-human FasL monoclonal antibody by Evans's research group. Recently, a tilapia FasL-like protein of smaller molecule weight was predicted in Genbank (XM_003445156.2). Based on several clues drawn from previous studies, we cast doubt on the authenticity of the formerly identified tilapia FasL. Conversely, using reverse transcription polymerase chain reaction (RT-PCR), the existence of the predicted FasL-like was verified at the mRNA level (The Genbank accession number of the FasL mRNA sequence we cloned is KM008610). Through multiple alignments, this FasL-like protein was found to be highly similar to the FasL of the Japanese flounder. Moreover, we artificially expressed the functional region of the predicted protein and later confirmed its apoptosis-inducing activity using a methyl thiazolyl tetrazolium (MTT) assay, Annexin-V/Propidium iodide (PI) double staining, and DNA fragment detection. Supported by these evidences, we suggest that the predicted protein is the authentic tilapia FasL. To advance this research further, tilapia FasL mRNA and its protein across different tissues were quantified. High expression levels were identified in the tilapia immune system and sites where active cell turnover conservatively occurs. In this regard, FasL may assume an active role in the immune system and cell homeostasis maintenance in tilapia, similar to that shown in other species. In addition, because the distribution pattern of FasL mRNA did not synchronize with that of the protein, post-transcriptional expression regulation is suggested. Such regulation may be dominated by potential adenylate- and uridylate-rich elements (AREs) featuring AUUUA repeats found in the 3' untranslated region (UTR) of tilapia FasL mRNA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Candida albicans up-regulates the Fas-L expression in liver Natural Killer and Natural Killer T cells.

    PubMed

    Renna, María Sol; Figueredo, Carlos Mauricio; Rodríguez-Galán, María Cecilia; Icely, Paula Alejandra; Cejas, Hugo; Cano, Roxana; Correa, Silvia Graciela; Sotomayor, Claudia Elena

    2015-11-01

    After Candida albicans arrival to the liver, the local production of proinflammatory cytokines and the expanded intrahepatic lymphocytes (IHL) can be either beneficial or detrimental to the host. Herein we explored the balance between protective inflammatory reaction and liver damage, focusing our study on the contribution of TNF-α and Fas-Fas-L pathways in the hepatocellular apoptosis associated to C. albicans infection. A robust tissue reaction and a progressive increase of IL-1β, IL-6 and TNF-α were observed in infected animals. Blocking the biological activity of TNF-α did not modify the number of apoptotic cells observed in C. albicans infected animals. Fas-L molecule was up regulated on purified hepatic mononuclear cells and its expression progressed with the infection. In the IHL compartment, the absolute number of Fas-L+ NK and NKT cells increased on days 1 and 3 of the infection. C. albicans was also able to up regulate Fas-L expression in normal liver NK and NKT cells after in vitro contact. The innate receptor TLR2 was involved in this phenomenon. In the interplay between host factors and evasion strategies exploited by pathogens, the mechanism supported here could represent an additional way that allows this fungus to circumvent protective immune responses in the liver. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Mechanism of nuclear factor of activated T-cells mediated FasL expression in corticosterone -treated mouse Leydig tumor cells

    PubMed Central

    Chai, Wei-Ran; Chen, Yong; Wang, Qian; Gao, Hui-Bao

    2008-01-01

    Background Fas and FasL is important mediators of apoptosis. We have previously reported that the stress levels of corticosterone (CORT, glucocorticoid in rat) increase expression of Fas/FasL and activate Fas/FasL signal pathway in rat Leydig cells, which consequently leads to apoptosis. Moreover, our another study showed that nuclear factor of activated T-cells (NFAT) may play a potential role in up-regulation of FasL during CORT-treated rat Leydig cell. It is not clear yet how NFAT is involved in CORT-induced up-regulation of FasL. The aim of the present study is to investigate the molecular mechanisms of NFAT-mediated FasL expression in CORT-treated Leydig cells. Results Western blot analysis showed that NFAT2 expression is present in mouse Leydig tumor cell (mLTC-1). CORT-induced increase in FasL expression in mLTC-1 was ascertained by Western Blot analysis and CORT-induced increase in apoptotic frequency of mLTC-1 cells was detected by FACS with annexin-V labeling. Confocal imaging of NFAT2-GFP in mLTC-1 showed that high level of CORT stimulated NFAT translocation from the cytoplasm to the nucleus. RNA interference-mediated knockdown of NFAT2 significantly attenuated CORT-induced up-regulation of FasL expression in mLTC. These results corroborated our previous finding that NFAT2 is involved in CORT-induced FasL expression in rat Leydig cells and showed that mLTC-1 is a suitable model for investigating the mechanism of CORT-induced FasL expression. The analysis of reporter constructs revealed that the sequence between -201 and +71 of mouse FasL gene is essential for CORT-induced FasL expression. The mutation analysis demonstrated that CORT-induced FasL expression is mediated via an NFAT binding element located in the -201 to +71 region. Co-transfection studies with an NFAT2 expression vector and reporter construct containing -201 to +71 region of FasL gene showed that NFAT2 confer a strong inducible activity to the FasL promoter at its regulatory region. In

  2. Inhibition of methionine adenosyltransferase II induces FasL expression, Fas-DISC formation and caspase-8-dependent apoptotic death in T leukemic cells.

    PubMed

    Jani, Tanvi S; Gobejishvili, Leila; Hote, Prachi T; Barve, Aditya S; Joshi-Barve, Swati; Kharebava, Giorgi; Suttles, Jill; Chen, Theresa; McClain, Craig J; Barve, Shirish

    2009-03-01

    Methionine adenosyltransferase II (MAT II) is a key enzyme in cellular metabolism and catalyzes the formation of S-adenosylmethionine (SAMe) from L-methionine and ATP. Normal resting T lymphocytes have minimal MAT II activity, whereas activated proliferating T lymphocytes and transformed T leukemic cells show significantly enhanced MAT II activity. This work was carried out to examine the role of MAT II activity and SAMe biosynthesis in the survival of leukemic T cells. Inhibition of MAT II and the resultant decrease in SAMe levels enhanced expression of FasL mRNA and protein, and induced DISC (Death Inducing Signaling Complex) formation with FADD (Fas-associated Death Domain) and procaspase-8 recruitment, as well as concomitant increase in caspase-8 activation and decrease in c-FLIP(s) levels. Fas-initiated signaling induced by MAT II inhibition was observed to link to the mitochondrial pathway via Bid cleavage and to ultimately lead to increased caspase-3 activation and DNA fragmentation in these cells. Furthermore, blocking MAT 2A mRNA expression, which encodes the catalytic subunits of MAT II, using a small-interfering RNA approach enhanced FasL expression and cell death, validating the essential nature of MAT II activity in the survival of T leukemic cells.

  3. B‐cells with a FasL expressing regulatory phenotype are induced following successful anti‐tuberculosis treatment

    PubMed Central

    van Rensburg, Ilana C.; Kleynhans, Léanie; Keyser, Alana; Walzl, Gerhard

    2016-01-01

    Abstract Introduction Studies show that B‐cells, in addition to producing antibodies and antigen‐presentation, are able to produce cytokines as well. These include regulatory cytokines such as IL‐10 by regulatory B‐cells. Furthermore, a rare regulatory subset of B‐cells have the potential to express FasL, which is a death‐inducing ligand. This subset of B‐cells have a positive role during autoimmune disease, but has not yet been studied during tuberculosis. These FasL‐expressing B‐cells are induced by bacterial LPS and CpG, thus we hypothesized that this phenotype might be induced during tuberculosis as well. Methods B‐cells from participants with TB (at diagnosis and during treatment) and controls were collected, and analyzed by means of real‐time PCR and flow cytometry. In addition to this, BAL was collected from TB participants as well and analyzed by means of MAGPix (multi‐cytokine) technology. Results Gene expression analysis show that FASL transcript levels increase by the end of treatment. Similarly, phenotypic analysis show that there is a higher frequency of FasL‐expressing B‐cells by the end of treatment. Conclusion Collectively, these results indicate that these FasL‐expressing B‐cells are being induced during anti‐TB treatment, and thus may play a positive role. Further studies are required to elucidate this. PMID:28250925

  4. FasL, Fas, and death-inducing signaling complex (DISC) proteins are recruited to membrane rafts after spinal cord injury.

    PubMed

    Davis, Angela R; Lotocki, George; Marcillo, Alex E; Dietrich, W Dalton; Keane, Robert W

    2007-05-01

    The Fas/CD95 receptor-ligand system plays an essential role in apoptosis that contributes to secondary damage after spinal cord injury (SCI), but the mechanism regulating the efficiency of FasL/Fas signaling in the central nervous system (CNS) is unknown. Here, FasL/Fas signaling complexes in membrane rafts were investigated in the spinal cord of adult female Fischer rats subjected to moderate cervical SCI and sham operation controls. In sham-operated animals, a portion of FasL, but not Fas was present in membrane rafts. SCI resulted in FasL and Fas translocation into membrane raft microdomains where Fas associates with the adaptor proteins Fas-associated death domain (FADD), caspase-8, cellular FLIP long form (cFLIPL ), and caspase-3, forming a death-inducing signaling complex (DISC). Moreover, SCI induced expression of Fas in clusters around the nucleus in both neurons and astrocytes. The formation of the DISC signaling platform leads to rapid activation of initiator caspase-8 and effector caspase-3, and the modification of signaling intermediates such as FADD and cFLIP(L) . Thus, FasL/Fas-mediated signaling after SCI is similar to Fas expressing Type I cell apoptosis.

  5. Ganoderma lucidum polysaccharides counteract inhibition on CD71 and FasL expression by culture supernatant of B16F10 cells upon lymphocyte activation

    PubMed Central

    SUN, LI-XIN; LIN, ZHI-BIN; DUAN, XIN-SUO; LU, JIE; GE, ZHI-HUA; LI, MIN; XING, EN-HONG; LAN, TIAN-FEI; JIANG, MIAO-MIAO; YANG, NING; LI, WEI-DONG

    2013-01-01

    Immune responses to tumor-associated antigens are often detectable in tumor-bearing hosts, but they fail to eliminate malignant cells or prevent development of metastases. Tumor cells produce factors such as interleukin-10, transforming growth factor-β1 and vascular endothelial growth factor (VEGF) that suppress the function of immune cells or induce apoptosis of immune cells. Culture supernatant of tumor cells may contain these immunosuppressive factors which suppress lymphocyte activation. CD71 and FasL are two important molecules that are expressed upon lymphocyte activation. Counteraction against suppression CD71 and FasL expression upon lymphocyte activation may benefit tumor control. A potential component with this effect is Ganoderma lucidum polysaccharides (Gl-PS). In this study, Gl-PS was used on lymphocytes incubating with culture supernatant of B16F10 melanoma cells (B16F10-CS) in the presence of phytohemagglutinin. Following induction with phytohemagglutinin, B16F10-CS suppressed CD71 expression in lymphocytes (as detected by immunofluorescence and flow cytometry), proliferation in lymphocytes (as detected by MTT assay), and FasL expression in lymphocytes (as detected by immunocytochemistry and western blot analysis), while Gl-PS fully or partially counteracted these suppressions. Gl-PS showed counteractive effects against suppression induced by B16F10-CS on CD71 and FasL expression upon lymphocyte activation, suggesting the potential of Gl-PS to facilitate cancer immunotherapy. PMID:23596479

  6. BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL.

    PubMed

    Tang, Youfa; Jiang, Qing; Ou, Yanghui; Zhang, Fan; Qing, Kai; Sun, Yuanli; Lu, Wenjie; Zhu, Huifen; Gong, Feili; Lei, Ping; Shen, Guanxin

    2016-01-01

    Many studies have shown that B cells possess a regulatory function in mouse models of autoimmune diseases. Regulatory B cells can modulate immune response through many types of molecular mechanisms, including the production of IL-10 and the expression of PD-1 Ligand and Fas Ligand, but the microenvironmental factors and mechanisms that induce regulatory B cells have not been fully identified. BIP (binding immunoglobulin protein), a member of the heat shock protein 70 family, is a type of evolutionarily highly conserved protein. In this article, we have found that IL-10(+), PD-L1(hi) and FasL(hi) B cells are discrete cell populations, but enriched in CD19(hi) cells. BIP can induce IL-10-producing splenic B cells, IL-10 secretion and B cells highly expressing PD-L1 and FasL. CD40 signaling acts in synergy with BIP to induce regulatory B cells. BIP increased surface CD19 molecule expression intensity and IL-10(+), PD-L1(hi) and FasL(hi) B cells induced by BIP share the CD19(hi) phenotype. Furthermore, B cells treated with BIP and anti-CD40 can lead to suppression of T cell proliferation and the effect is partially IL-10-dependent and mainly BIP-induced. Taken together, our findings identify a novel function of BIP in the induction of regulatory B cells and add a new reason for the therapy of autoimmune disorders or other inflammatory conditions.

  7. Enhanced expression of Fas and FasL modulates apoptosis in the lungs of severe P. falciparum malaria patients with pulmonary edema

    PubMed Central

    Punsawad, Chuchard; Viriyavejakul, Parnpen; Setthapramote, Chayanee; Palipoch, Sarawoot

    2015-01-01

    Apoptosis mediated by Fas/FasL has been implicated in pulmonary disorders. However, little is known about the relationship between Fas and FasL in the process of lung injury during malaria infection. Paraffin-embedded lung tissues from malaria patients were divided into two groups: those with pulmonary edema (PE) and those without pulmonary edema (non-PE). Normal lung tissues were used as the control group. Cellular expression of Fas, FasL, and the markers of apoptotic caspases, including cleaved caspase-3 and cleaved caspase-8 in the lung tissues were investigated by the immunohistochemistry (IHC) method. Semi-quantitative analysis of IHC staining revealed that cellular expression of Fas, FasL, cleaved caspase-8, and cleaved caspase-3 were significantly increased in the lungs of patients with PE compared with the lungs of patients with non-PE and control groups (all P < 0.05). In addition, significant positive correlations were obtained between Fas and apoptosis (rs = 0.937, P < 0.001) and FasL and apoptosis (rs = 0.808, P < 0.001). Significant positive correlations were found between Fas and FasL expression (rs = 0.827, P < 0.001) and between cleaved caspase-8 and cleaved caspase-3 expression (rs = 0.823, P < 0.001), which suggests that Fas-dependent initiator and effector caspases, including cleaved caspase-8 and caspase-3, are necessary for inducing apoptosis in the lungs of patients with severe P. falciparum malaria. The Fas/FasL system and downstream activation of caspases are important mediators of apoptosis and may be involved in the pathogenesis of pulmonary edema in severe P. falciparum malaria patients. The proper regulation of the Fas/FasL pathway can be a potential treatment for pulmonary complications in falciparum malaria patients. PMID:26617708

  8. [Effects of diallyl disulfide on apoptosis of human leukemia K562 cells and expression of Fas, FasL and caspase-8].

    PubMed

    Xiao, Zheng-Xiang; Yin, Xiao-Cheng; Tan, Yan-Fang; Peng, Yan-Hui

    2011-01-01

    To study the effects of diallyl disulfide (DADS) on apoptosis of human leukemia K562 cells and possible mechanisms. The morphologic changes of leukemia K562 cells after DADS treatment were observed by Hoechst 33258 staining. Cell apoptosis rates after different concentrations and different durations of DADS treatment were determined by flow cytometry. Fas, FasL and caspase-8 mRNA expression was estimated by reverse transcription-polymerase chain reaction (RT-PCR) 48 hrs after DADS treatment. The characteristics of apoptosis in K562 cells induced by DADS were observed. After 24 hrs of DADS treatment, the apoptosis rate of K562 cells increased from (11.60 ± 0.83)% at the concentration of 10 mg/L to (37.94 ± 0.87)% at the concentration of 40 mg/L. The apoptosis rate of K562 cells increased after 40 mg/L DADS with the increasing time from (37.94 ± 0.87)% (24 hrs) to (47.02 ± 0.66)% (72 hrs). Expression of Fas and caspase-8 mRNA increased, while FasL mRNA expression decreased significantly 48 hrs after DADS treatment compared with the control group (P<0.05). DADS can induce apoptosis of human leukemia K562 cells in a time- and concentration-dependent manner, possibly through increasing Fas and caspase-8 expression and decreasing FasL expression.

  9. Acellular fraction of ovarian cancer ascites induce apoptosis by activating JNK and inducing BRCA1, Fas and FasL expression in ovarian cancer cells

    PubMed Central

    Cohen, Marie; Pierredon, Sandra; Wuillemin, Christine; Delie, Florence; Petignat, Patrick

    2014-01-01

    Acellular fraction of ascites might play an active role in tumor development. Nevertheless the mechanisms involved in the tumor-modulating properties are still controversial. Here, we demonstrate that malignant ascites from 8 patients with epithelial ovarian cancer did not influence proliferative or invasive properties of ovarian cancer cells, but promoted H2O2-induced apoptosis and increased sensitivity to paclitaxel. Malignant ascites induced BRCA1, Fas and FasL expression and phosphorylation of JNK, but not the activation of caspase pathway. Ascites-induced apoptosis of ovarian cancer cells was strongly inhibited by a JNK inhibitor suggesting a critical role of JNK pathway in ascite-induced apoptosis. The use of siRNA JNK confirmed the importance of JNK in ascites-induced Fas and FasL expression. These results demonstrate that malignant ascites induce apoptosis of ovarian cancer cells and encourage us to think about the clinical management of ovarian cancer patients with malignant ascites. PMID:25594018

  10. Pigment Epithelial-derived Factor (PEDF)-triggered Lung Cancer Cell Apoptosis Relies on p53 Protein-driven Fas Ligand (Fas-L) Up-regulation and Fas Protein Cell Surface Translocation*

    PubMed Central

    Li, Lei; Yao, Ya-Chao; Fang, Shu-Huan; Ma, Cai-Qi; Cen, Yi; Xu, Zu-Min; Dai, Zhi-Yu; Li, Cen; Li, Shuai; Zhang, Ting; Hong, Hong-Hai; Qi, Wei-Wei; Zhou, Ti; Li, Chao-Yang; Yang, Xia; Gao, Guo-Quan

    2014-01-01

    Pigment epithelium-derived factor (PEDF), a potent antiangiogenesis agent, has recently attracted attention for targeting tumor cells in several types of tumors. However, less is known about the apoptosis-inducing effect of PEDF on human lung cancer cells and the underlying molecular events. Here we report that PEDF has a growth-suppressive and proapoptotic effect on lung cancer xenografts. Accordingly, in vitro, PEDF apparently induced apoptosis in A549 and Calu-3 cells, predominantly via the Fas-L/Fas death signaling pathway. Interestingly, A549 and Calu-3 cells are insensitive to the Fas-L/Fas apoptosis pathway because of the low level of cell surface Fas. Our results revealed that, in addition to the enhancement of Fas-L expression, PEDF increased the sensitivity of A549 and Calu-3 cells to Fas-L-mediated apoptosis by triggering the translocation of Fas protein to the plasma membrane in a p53- and FAP-1-dependent manner. Similarly, the up-regulation of Fas-L by PEDF was also mediated by p53. Furthermore, peroxisome proliferator-activated receptor γ was determined to be the upstream regulator of p53. Together, these findings uncover a novel mechanism of tumor cell apoptosis induced by PEDF and provide a potential therapeutic strategy for tumors that are insensitive to Fas-L/Fas-dependent apoptosis because of a low level of cell surface Fas. PMID:25225287

  11. Pigment epithelial-derived factor (PEDF)-triggered lung cancer cell apoptosis relies on p53 protein-driven Fas ligand (Fas-L) up-regulation and Fas protein cell surface translocation.

    PubMed

    Li, Lei; Yao, Ya-Chao; Fang, Shu-Huan; Ma, Cai-Qi; Cen, Yi; Xu, Zu-Min; Dai, Zhi-Yu; Li, Cen; Li, Shuai; Zhang, Ting; Hong, Hong-Hai; Qi, Wei-Wei; Zhou, Ti; Li, Chao-Yang; Yang, Xia; Gao, Guo-Quan

    2014-10-31

    Pigment epithelium-derived factor (PEDF), a potent antiangiogenesis agent, has recently attracted attention for targeting tumor cells in several types of tumors. However, less is known about the apoptosis-inducing effect of PEDF on human lung cancer cells and the underlying molecular events. Here we report that PEDF has a growth-suppressive and proapoptotic effect on lung cancer xenografts. Accordingly, in vitro, PEDF apparently induced apoptosis in A549 and Calu-3 cells, predominantly via the Fas-L/Fas death signaling pathway. Interestingly, A549 and Calu-3 cells are insensitive to the Fas-L/Fas apoptosis pathway because of the low level of cell surface Fas. Our results revealed that, in addition to the enhancement of Fas-L expression, PEDF increased the sensitivity of A549 and Calu-3 cells to Fas-L-mediated apoptosis by triggering the translocation of Fas protein to the plasma membrane in a p53- and FAP-1-dependent manner. Similarly, the up-regulation of Fas-L by PEDF was also mediated by p53. Furthermore, peroxisome proliferator-activated receptor γ was determined to be the upstream regulator of p53. Together, these findings uncover a novel mechanism of tumor cell apoptosis induced by PEDF and provide a potential therapeutic strategy for tumors that are insensitive to Fas-L/Fas-dependent apoptosis because of a low level of cell surface Fas.

  12. Successful TB treatment induces B-cells expressing FASL and IL5RA mRNA.

    PubMed

    van Rensburg, Ilana C; Wagman, Chandre; Stanley, Kim; Beltran, Caroline; Ronacher, Katharina; Walzl, Gerhard; Loxton, Andre G

    2017-01-10

    Activated B-cells increase T-cell behaviour during autoimmune disease and other infections by means of cytokine production and antigen-presentation. Functional studies in experimental autoimmune encephalomyelitis (EAE) indicate that B-cell deficiencies, and a lack of IL10 and IL35 leads to a poor prognosis. We hypothesised that B-cells play a role during tuberculosis. We evaluated B-cell mRNA expression using real-time PCR from healthy community controls, individuals with other lung diseases and newly diagnosed untreated pulmonary TB patients at three different time points (diagnosis, month 2 and 6 of treatment).We show that FASLG, IL5RA, CD38 and IL4 expression was lower in B-cells from TB cases compared to healthy controls. The changes in expression levels of CD38 may be due to a reduced activation of B-cells from TB cases at diagnosis. By month 2 of treatment, there was a significant increase in the expression of APRIL and IL5RA in TB cases. Furthermore, after 6 months of treatment, APRIL, FASLG, IL5RA and CD19 were upregulated in B-cells from TB cases. The increase in the expression of APRIL and CD19 suggests that there may be restored activation of B-cells following anti-TB treatment. The upregulation of FASLG and IL5RA indicates that B-cells expressing regulatory genes may play an important role in the protective immunity against M.tb infection. Our results show that increased activation of B-cells is present following successful TB treatment, and that the expression of FASLG and IL5RA could potentially be utilised as a signature to monitor treatment response.

  13. Acrolein enhances epigenetic modifications, FasL expression and hepatocyte toxicity induced by anti-HIV drug Zidovudine.

    PubMed

    Ghare, Smita S; Donde, Hridgandh; Chen, Wei-Yang; Barker, David F; Gobejishvilli, Leila; McClain, Craig J; Barve, Shirish S; Joshi-Barve, Swati

    2016-09-01

    Zidovudine (AZT) remains the mainstay of antiretroviral therapy against HIV in resource-poor countries; however, its use is frequently associated with hepatotoxicity. Not all HIV patients on AZT develop hepatotoxicity, and the determining factors are unclear. Alcohol consumption and cigarette smoking are known risk factors for HIV hepatotoxicity, and both are significant sources of acrolein, a highly reactive and toxic aldehyde. This study examines the potential hepatotoxic interactions between acrolein and AZT. Our data demonstrate that acrolein markedly enhanced AZT-induced transcriptionally permissive histone modifications (H3K9Ac and H3K9Me3) allowing the recruitment of transcription factor NF-kB and RNA polymerase II at the FasL gene promoter, resulting in FasL upregulation and apoptosis in hepatocytes. Notably, the acrolein scavenger, hydralazine prevented these promoter-associated epigenetic changes and inhibited FasL upregulation and apoptosis induced by the combination of AZT and acrolein, as well as AZT alone. Our data strongly suggest that acrolein enhancement of promoter histone modifications and FasL upregulation are major pathogenic mechanisms driving AZT-induced hepatotoxicity. Moreover, these data also indicate the therapeutic potential of hydralazine in mitigating AZT hepatotoxicity.

  14. Cross-linking of B7-H1 on EBV-transformed B cells induces apoptosis through reactive oxygen species production, JNK signaling activation, and fasL expression.

    PubMed

    Kim, Yeong Seok; Park, Ga Bin; Lee, Hyun-Kyung; Song, Hyunkeun; Choi, In-Hak; Lee, Wang Jae; Hur, Dae Young

    2008-11-01

    B7-H1 is a newly identified member of the B7 family with important regulatory functions in cell-mediated immune responses, and it is expressed in human immune cells and several tumors. We first observed that expression of surface B7-H1 on B cells was increased during the immortalization process by EBV, which is strongly related to both inflammation and tumorigenesis. Cross-linking of B7-H1 on EBV-transformed B cells using anti-B7-H1 Ab (clone 130002) induced reactive oxygen species (ROS) generation, mitochondrial disruption, release of apoptotic proteins from mitochondria, and subsequent apoptosis. Inhibition of caspases and ROS generation recovered B7-H1-mediated apoptosis and proteolytic activities of caspase-8, -9, and -3. We observed that B7-H1 stimulation induced both transcription and translation of fasL. ZB4, an antagonistic anti-fas Ab, and NOK-1, an antagonistic anti-fasL Ab, effectively blocked apoptosis without exerting any influence on ROS generation. N-acetylcysteine (NAC) completely blocked the induction of fasL mRNA and protein. We found that B7-H1 stimulation activated the phosphorylation of JNK and c-jun and down-regulated ERK1/2 and p-Akt. NAC blocked the activation of JNK and down-regulation of ERK, but both z-VAD-fmk (N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone) and ZB4 did not inhibit JNK activation of B7-H1 stimulation. SP600125 blocked fasL induction and apoptosis but did not affect ROS generation after B7-H1 stimulation. Taken together, we concluded that B7-H1-mediated apoptosis on EBV-transformed B cells may be involved in the induction of fasL, which is evoked by ROS generation and JNK activation after cross-linking of B7-H1. These results provide a new concept for understanding reverse signaling through B7-H1 and another mechanism of tumor immunotherapy using anti-B7-H1.

  15. Dephosphorylation of autoantigenic ribosomal P proteins during Fas-L induced apoptosis: a possible trigger for the development of the autoimmune response in patients with systemic lupus erythematosus

    PubMed Central

    Zampieri, S; Degen, W; Ghiradello, A; Doria, A; van Venrooij, W J

    2001-01-01

    OBJECTIVES—Autoimmune diseases are characterised by the production of autoantibodies against various autoantigens. In the past few years data have been published on a possible role of apoptosis in the development of autoimmunity. These include the finding that several autoantigens become modified (for example, by cleavage) during apoptosis, and the observation that these modified antigens are translocated to the cell surface. When the normal clearance of apoptotic cells somehow is disturbed, such modified antigens might become exposed to the immune system. Because acidic ribosomal P (phospho-) proteins targeted by autoantibodies in systemic lupus erythematosus (SLE) are also concentrated at the surface of apoptotic cells, this study aimed at investigating what modifications occur on these antigens during apoptosis.
METHODS—Apoptosis in Jurkat cells was induced by Fas ligand (Fas-L), and the fate of autoantigenic P proteins was analysed in both normal and apoptotic total cell extracts.
RESULTS—The autoantigenic P proteins were not cleaved but dephosphorylated during Fas-L induced apoptosis. This dephosphorylation was prevented when caspase activity was inhibited.
CONCLUSIONS—As has been shown for other autoantigens targeted by autoantibodies in SLE, P proteins also are modified during apoptosis. P1 and P2 are completely dephosphorylated while P0 is partly dephosphorylated. Because the epitope targeted by autoantibodies normally is phosphorylated, it is possible that the apoptotic dephosphorylation of the antigen might be the trigger for the development of the autoimmune response against P proteins.

 PMID:11114288

  16. Apoptosis in the intestinal mucosa of patients with inflammatory bowel disease: evidence of altered expression of FasL and perforin cytotoxic pathways.

    PubMed

    Souza, Heitor S P; Tortori, Claudio J A; Castelo-Branco, Morgana T L; Carvalho, Ana Teresa P; Margallo, Victor S; Delgado, Carlos F S; Dines, Ilana; Elia, Celeste C S

    2005-05-01

    Abnormal apoptosis may result in the persistence of activated intestinal T-cells in inflammatory bowel disease (IBD). We investigated apoptosis in distinct mucosal compartments, and the expression of Fas/Fas ligand and perforin in the inflamed and non-inflamed intestinal mucosa of patients with IBD. Colon specimens from 15 patients with ulcerative colitis (UC) and inflamed and non-inflamed mucosa from 15 patients with Crohn's disease (CD) were analysed for densities and distribution of apoptotic cells determined by the terminal deoxynucleotidyltransferase-mediated dUDP-biotin nick-end labelling (TUNEL) method. Fas, FasL, and perforin-expressing cells were assessed by immunoperoxidase, and with anti-CD3, anti-CD20 and anti-CD68, by double immunofluorescence with confocal microscopy. Quantitative analysis was performed using a computer-assisted image analyser. Colonic lamina propria (LP) and epithelium from patients with UC showed higher rates of apoptosis than controls, but no difference was shown regarding patients with CD. In LP, co-expression of Fas was reduced with T-cells in inflamed CD mucosa, and with macrophages in all patients with IBD. No difference was found in the expression of Fas on B-cells. Rates of FasL-expressing cells in LP were higher in IBD than in controls, with no correlation with the rates of apoptosis. Rates of perforin-expressing cells in LP were greater in UC than in controls, and correlated to the rates of apoptosis. No difference was shown regarding the inflamed and non-inflamed CD mucosa. Rates of FasL and perforin-expressing intra-epithelial lymphocytes showed no difference among groups. Increased expression of FasL in IBD colonic LP not parallelled by Fas on T-cells and macrophages may indicate a reduced susceptibility to the Fas/FasL-mediated apoptosis of lymphoid cells. Expression of perforin is correlated to the tissue damage, and may represent the enhancement of a distinct cytotoxic pathway in UC.

  17. Sevoflurane induces neurotoxicity in young mice through FAS/FASL signaling.

    PubMed

    Song, Q; Ma, Y L; Song, J Q; Chen, Q; Xia, G S; Ma, J Y; Feng, F; Fei, X J; Wang, Q M

    2015-12-22

    Sevoflurane, the most widely used anesthetic in clinical practice, has been shown to induce apoptosis, inhibit neurogenesis, and cause learning and memory impairment in young mice. However, the underlying mechanism is still unknown. In this study, wild-type and the FAS- or FAS ligand (FASL)-knockout mice (age 7 days) were exposed to sevoflurane or pure oxygen. Western blotting was used to examine the expression of FAS protein. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and bromodeoxyuridine (BrdU) staining were employed to quantify the apoptotic cells and newborn cells in the hippocampus and Morris water maze (MWM) in order to evaluate learning and memory status. Sevoflurane significantly increased the expression of FAS protein in wild-type mice. Compared to FAS- and FASL-knockout mice treated with sevoflurane, sevoflurane-treated wild-type mice exhibited more TUNEL-positive hippocampal cells and less BrdU-positive hippocampal cells. The MWM showed that compared with FAS- and FASL-knockout mice treated with sevoflurane, sevoflurane treatment of wild-type mice significantly prolonged the escape latency and reduced platform crossing times. These data suggest that sevoflurane induces neurotoxicity in young mice through FAS-FASL signaling.

  18. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL.

    PubMed

    Wang, Peng; Zhuang, Liping; Zhang, Juan; Fan, Jie; Luo, Jianmin; Chen, Hao; Wang, Kun; Liu, Luming; Chen, Zhen; Meng, Zhiqiang

    2013-06-01

    miR-21 expression in cancer tissue has been reported to be associated with the clinical outcome and activity of gemcitabine in pancreatic cancer. However, resection is possible in only a minority of patients due to the advanced stages often present at the time of diagnosis, and safely obtaining sufficient quantities of pancreatic tumor tissue for molecular analysis is difficult at the unresectable stages. In this study, we investigated whether the serum level of miR-21 could be used as a predictor of chemosensitivity. We tested the levels of serum miR-21 in a cohort of 177 cases of advanced pancreatic cancer who received gemcitabine-based palliative chemotherapy. We found that a high level of miR-21 in the serum was significantly correlated with a shortened time-to-progression (TTP) and a lower overall survival (OS). The serum miR-21 level was an independent prognostic factor for both the TTP and the OS (HR 1.920; 95% CI, 1.274-2.903, p = 0.002 for TTP and HR 1.705; 95% CI, 1.147-2.535, p = 0.008 for OS). The results from a functional study showed that gemcitabine exposure down-regulated miR-21 expression and up-regulated FasL expression. The increased FasL expression following gemcitabine treatment induced cancer cell apoptosis, whereas the ectopic expression of miR-21 partially protected the cancer cells from gemcitabine-induced apoptosis. Additionally, we confirmed that FasL was a direct target of miR-21. Therefore, the serum level of miR-21 may serve as a predictor of chemosensitivity in advanced pancreatic cancer. Additionally, we identified a new mechanism of chemoresistance mediated by the effects of miR-21 on the FasL/Fas pathway.

  19. Systemic FasL and TRAIL Neutralisation Reduce Leishmaniasis Induced Skin Ulceration

    PubMed Central

    Lieke, Thorsten; Lemu, Befekadu; Meless, Hailu; Ruffin, Nicolas; Wolday, Dawit; Asseffa, Abraham; Yagita, Hideo; Britton, Sven; Akuffo, Hannah

    2010-01-01

    Cutaneous leishmaniasis (CL) is caused by Leishmania infection of dermal macrophages and is associated with chronic inflammation of the skin. L. aethiopica infection displays two clinical manifestations, firstly ulcerative disease, correlated to a relatively low parasite load in the skin, and secondly non-ulcerative disease in which massive parasite infiltration of the dermis occurs in the absence of ulceration of epidermis. Skin ulceration is linked to a vigorous local inflammatory response within the skin towards infected macrophages. Fas ligand (FasL) and Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expressing cells are present in dermis in ulcerative CL and both death ligands cause apoptosis of keratinocytes in the context of Leishmania infection. In the present report we show a differential expression of FasL and TRAIL in ulcerative and non-ulcerative disease caused by L. aethiopica. In vitro experiments confirmed direct FasL- and TRAIL-induced killing of human keratinocytes in the context of Leishmania-induced inflammatory microenvironment. Systemic neutralisation of FasL and TRAIL reduced ulceration in a model of murine Leishmania infection with no effect on parasitic loads or dissemination. Interestingly, FasL neutralisation reduced neutrophil infiltration into the skin during established infection, suggesting an additional proinflammatory role of FasL in addition to direct keratinocyte killing in the context of parasite-induced skin inflammation. FasL signalling resulting in recruitment of activated neutrophils into dermis may lead to destruction of the basal membrane and thus allow direct FasL mediated killing of exposed keratinocytes in vivo. Based on our results we suggest that therapeutic inhibition of FasL and TRAIL could limit skin pathology during CL. PMID:20967287

  20. Platelets induce apoptosis via membrane-bound FasL

    PubMed Central

    Schleicher, Rebecca I.; Reichenbach, Frank; Kraft, Peter; Kumar, Anil; Lescan, Mario; Todt, Franziska; Göbel, Kerstin; Hilgendorf, Ingo; Geisler, Tobias; Bauer, Axel; Olbrich, Marcus; Schaller, Martin; Wesselborg, Sebastian; O’Reilly, Lorraine; Meuth, Sven G.; Schulze-Osthoff, Klaus; Gawaz, Meinrad; Li, Xuri; Kleinschnitz, Christoph; Edlich, Frank

    2015-01-01

    After tissue injury, both wound sealing and apoptosis contribute to restoration of tissue integrity and functionality. Although the role of platelets (PLTs) for wound closure and induction of regenerative processes is well established, the knowledge about their contribution to apoptosis is incomplete. Here, we show that PLTs present the death receptor Fas ligand (FasL) on their surface after activation. Activated PLTs as well as the isolated membrane fraction of activated PLTs but not of resting PLTs induced apoptosis in a dose-dependent manner in primary murine neuronal cells, human neuroblastoma cells, and mouse embryonic fibroblasts. Membrane protein from PLTs lacking membrane-bound FasL (FasL△m/△m) failed to induce apoptosis. Bax/Bak-mediated mitochondrial apoptosis signaling in target cells was not required for PLT-induced cell death, but increased the apoptotic response to PLT-induced Fas signaling. In vivo, PLT depletion significantly reduced apoptosis in a stroke model and an inflammation-independent model of N-methyl-d-aspartic acid-induced retinal apoptosis. Furthermore, experiments using PLT-specific PF4Cre+ FasLfl/fl mice demonstrated a role of PLT-derived FasL for tissue apoptosis. Because apoptosis secondary to injury prevents inflammation, our findings describe a novel mechanism on how PLTs contribute to tissue homeostasis. PMID:26232171

  1. Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination.

    PubMed

    Svandova, E Budisova; Vesela, B; Lesot, H; Poliard, A; Matalova, E

    2017-04-01

    Elimination of the interdigital web is considered to be the classical model for assessing apoptosis. So far, most of the molecules described in the process have been connected to the intrinsic (mitochondrial) pathway. The extrinsic (receptor mediated) apoptotic pathway has been rather neglected, although it is important in development, immunomodulation and cancer therapy. This work aimed to investigate factors of the extrinsic apoptotic machinery during interdigital regression with a focus on three crucial initiators: Fas, Fas ligand and caspase-8. Immunofluorescent analysis of mouse forelimb histological sections revealed abundant expression of these molecules prior to digit separation. Subsequent PCR Array analyses indicated the expression of several markers engaged in the extrinsic pathway. Between embryonic days 11 and 13, statistically significant increases in the expression of Fas and caspase-8 were observed, along with other molecules involved in the extrinsic apoptotic pathway such as Dapk1, Traf3, Tnsf12, Tnfrsf1A and Ripk1. These results demonstrate for the first time the presence of extrinsic apoptotic components in mouse limb development and indicate novel candidates in the molecular network accompanying the regression of interdigital tissue during digitalisation.

  2. Protein expression-yeast.

    PubMed

    Nielsen, Klaus H

    2014-01-01

    Yeast is an excellent system for the expression of recombinant eukaryotic proteins. Both endogenous and heterologous proteins can be overexpressed in yeast (Phan et al., 2001; Ton and Rao, 2004). Because yeast is easy to manipulate genetically, a strain can be optimized for the expression of a specific protein. Many eukaryotic proteins contain posttranslational modifications that can be performed in yeast but not in bacterial expression systems. In comparison with mammalian cell culture expression systems, growing yeast is both faster and less expensive, and large-scale cultures can be performed using fermentation. While several different yeast expression systems exist, this chapter focuses on the budding yeast Saccharomyces cerevisiae and will briefly describe some options to consider when selecting vectors and tags to be used for protein expression. Throughout this chapter, the expression and purification of yeast eIF3 is shown as an example alongside a general scheme outline.

  3. Trophoblasts express Fas ligand: a proposed mechanism for immune privilege in placenta and maternal invasion.

    PubMed

    Uckan, D; Steele, A; Cherry; Wang, B Y; Chamizo, W; Koutsonikolis, A; Gilbert-Barness, E; Good, R A

    1997-08-01

    Cross-linking of Fas (CD95, APO-1) and Fas ligand (FasL; CD95L) induces apoptosis of Fas-bearing cells. Recent evidence suggests that FasL. expression plays an important role in maintenance of immune privilege in murine testis and eye and in tumour escape from immune rejection in colon cancer, melanoma and hepatocellular carcinoma. Bcl-2 is a membrane protein that suppresses apoptosis in response to a variety of stimuli. In this paper we describe abundant expression of FasL protein and mRNA transcripts within the immune privileged environment of the placenta by immunohistochemistry and reverse transcription in-situ polymerase chain reaction methods. The syncytiotrophoblast layer, the main site of feto-maternal interface, and extravillous trophoblasts, demonstrated consistent immunoreactivity for FasL in term placentae. Co-occurrence of Fas and Bcl-2 were detected with a similar pattern of distribution with FasL. The TUNEL method revealed evidence of apoptosis in the placental tissues. We speculate that abundant presence of FasL in the trophoblast contributes to immune privilege in this unique environment, perhaps by fostering apoptosis of activated Fas-expressing lymphocytes of maternal origin. An apoptotic process mediated by FasL may also play a role in placental invasion during implantation and underscores similarities between the trophoblast and neoplastic cells.

  4. FasL and TRAIL Induce Epidermal Apoptosis and Skin Ulceration Upon Exposure to Leishmania major

    PubMed Central

    Eidsmo, Liv; Fluur, Caroline; Rethi, Bence; Eriksson Ygberg, Sofia; Ruffin, Nicolas; De Milito, Angelo; Akuffo, Hannah; Chiodi, Francesca

    2007-01-01

    Receptor-mediated apoptosis is proposed as an important regulator of keratinocyte homeostasis in human epidermis. We have previously reported that Fas/FasL interactions in epidermis are altered during cutaneous leishmaniasis (CL) and that keratinocyte death through apoptosis may play a pathogenic role for skin ulceration. To further investigate the alterations of apoptosis during CL, a keratinocyte cell line (HaCaT) and primary human epidermal keratinocytes were incubated with supernatants from Leishmania major-infected peripheral blood mononuclear cells. An apoptosis-specific microarray was used to assess mRNA expression in HaCaT cells exposed to supernatants derived from L. major-infected cultures. Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression were significantly up-regulated, and apoptosis was detected in both HaCaT and human epidermal keratinocyte cells. The keratinocyte apoptosis was partly inhibited through blocking of Fas or FasL and even more efficiently through TRAIL neutralization. Up-regulation of Fas on keratinocytes in epidermis and the presence of FasL-expressing macrophages and T cells in dermis were previously reported by us. In this study, keratinocytes expressing TRAIL, as well as the proapoptotic receptor TRAIL-R2, were detected in skin biopsies from CL cases. We propose that activation of Fas and TRAIL apoptosis pathways, in the presence of inflammatory mediators at the site of infection, leads to tissue destruction and ulceration during CL. PMID:17200196

  5. Hypoxia, angiotensin-II, and norepinephrine mediated apoptosis is stimulus specific in canine failed cardiomyocytes: a role for p38 MAPK, Fas-L and cyclin D1.

    PubMed

    Sharov, Victor G; Todor, Anastassia; Suzuki, George; Morita, Hideaki; Tanhehco, Elaine J; Sabbah, Hani N

    2003-03-01

    Apoptosis may contribute to the myocardial dysfunction associated with heart failure (HF). Activation of the p38 MAPK cascade can induce apoptosis in non-cardiac cells through increased expression of Fas-L, or through decreased expression of cyclin D(1). We tested the hypothesis that hypoxia (HX), angiotensin-II (A-II) and norepinephrine (NEPI) can mediate apoptosis by activating p38 MAPK, and thus initiating stimulus specific changes in Fas-L and cyclin D(1) expression in failing cardiomyocytes. Cardiomyocytes isolated from ten dogs with HF induced by coronary microembolizations were subjected to HX or A-II or NEPI with and without a p38 MAPK inhibitor (SB 203580). TUNEL staining for DNA fragmentation and Western blots for p38 MAPK, Fas-L and cyclin D(1) detection were performed. HX-induced apoptosis was associated with increased Fas-L expression, A-II-induced apoptosis was associated with increased Fas-L and decreased cyclin D(1) expression, and NEPI-induced apoptosis was associated with decreased cyclin D(1) expression. Inhibition of p38 MAPK activity attenuated stress-induced apoptosis in all experiments and reversed changes in Fas-L and cyclin D(1) expression. HX, A-II and NEPI mediate apoptosis in failing cardiomyocytes via different effects on Fas-L and cyclin D(1) expression. Inhibition of p38 MAPK reversed these effects, suggesting that apoptosis induced by HX, A-II and NEPI involves activation of p38 MAPK upstream from Fas-L and cyclin D(1).

  6. FasL Gene -844T/C Mutation of Esophageal Cancer in South China and Its Clinical Significance

    PubMed Central

    Zhao, Hongguang; Zheng, Linfeng; Li, Xinru; Wang, Lifang

    2014-01-01

    In this study, we investigated the association between the FasL -844T/C polymorphism and the risk of developing esophageal squamous cell carcinoma (ESCC) in South China. For the investigation, we randomly selected 248 patients suffering from ESCC from Southern China along with 297 healthy individuals as the control group. The relationship between the FasL gene -844T/C SNP and ESCC was studied using PCR-RFLP and immunohistochemistry. The Fas -1377G/A SNP was also selected for investigation to detect whether it interferes with the functional effect of the FasL -844C/T polymorphism in ESCC development. A significant difference in the FasL -844T/C genotypes between the patients and the control group was observed (P<0.05), with those expressing the C allele having a significantly reduced risk of developing ESCC, however younger patients (<60 years) exhibited a more malignant pathological T grade if they were homozygous for the C allele. FasL -844 CC combined with the Fas -1377 G allele is a protective factor against ESCC. Having said this, even though the C allele has a protective effect prior to development of ESCC, once the host does develop the condition the tumour will develop faster and have a higher degree of malignancy than T carriers. PMID:24473454

  7. Tumor Endothelium FasL Establishes a Selective Immune Barrier Promoting Tolerance in Tumors

    PubMed Central

    Motz, Gregory T.; Santoro, Stephen P.; Wang, Li-Ping; Garrabrant, Tom; Lastra, Ricardo R.; Hagemann, Ian S.; Lal, Priti; Feldman, Michael D.; Benencia, Fabian; Coukos, George

    2014-01-01

    We describe a novel mechanism regulating the tumor endothelial barrier and T cell homing to tumors. Selective expression of the death mediator Fas ligand (FasL/CD95L) was detected in the vasculature of many human and mouse solid tumors but not in normal vasculature, and in these tumors it was associated with scarce CD8+ infiltration and predominance of FoxP3+ T regulatory (Treg) cells. Tumor-derived vascular endothelial growth factor A (VEGF-A), interleukin 10 (IL-10) and prostaglandin E2 (PGE2) cooperatively induced FasL expression on endothelial cells, which acquired the ability to kill effector CD8+ T cells, but not Treg cells, due to higher levels of cFLIP expression in Tregs. In the mouse, genetic or pharmacologic suppression of FasL produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells. Pharmacologic inhibition of VEGF and PGE2 attenuated tumor endothelial FasL expression, produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells, which was FasL-dependent, and led to CD8-dependent tumor growth suppression. Thus, tumor paracrine mechanisms establish a tumor endothelial death barrier, which plays a critical role in establishing immune tolerance and determining the fate of tumors. PMID:24793239

  8. Piceatannol induces Fas and FasL up-regulation in human leukemia U937 cells via Ca2+/p38alpha MAPK-mediated activation of c-Jun and ATF-2 pathways.

    PubMed

    Liu, Wen-Hsin; Chang, Long-Sen

    2010-09-01

    To verify whether piceatannol-induced death of leukemia cells was associated with Fas-mediated death pathway, the present study was conducted. Piceatannol-induced apoptotic death of human leukemia U937 cells was characterized by increase in intracellular Ca(2+) concentration ([Ca(2+)]i), ERK inactivation, p38 MPAK activation, degradation of procaspase-8 and production of t-Bid. Piceatannol treatment increased Fas and FasL protein expression, and up-regulated transcription of Fas and FasL mRNA. Down-regulation of FADD blocked piceatannol-induced procaspase-8 degradation and rescued viability of piceatannol-treated cells. Abolition of piceatannol-induced increase in [Ca(2+)]i abrogated p38 MAPK activation and up-regulation of Fas and FasL expression, but restored ERK activation and viability of piceatannol-treated cells. Suppression of p38alpha MAPK or transfection of constitutively active MEK1 abolished piceatannol-induced Fas and FasL up-regulation. Piceatannol treatment repressed ERK-mediated c-Fos phosphorylation but evoked p38alpha MAPK-mediated c-Jun and ATF-2 phosphorylation. Knockdown of c-Fos, c-Jun and ATF-2 by siRNA reflected that c-Fos attenuated the effect of c-Jun and ATF-2 on Fas/FasL up-regulation. Taken together, our data indicate that Fas/FasL up-regulation in piceatannol-treated U937 cells is elicited by Ca(2+)/p38alpha MAPK-mediated activation of c-Jun and ATF-2, and suggest that autocrine Fas-mediated apoptotic mechanism is involved in piceatannol-induced cell death. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Autoinduction of Protein Expression

    PubMed Central

    Fox, Brian G.; Blommel, Paul G.

    2017-01-01

    This unit contains protocols for the use of lactose-derived autoinduction in Escherichia coli. The protocols allow for reproducible expression trials to be undertaken with minimal user intervention. A basic protocol covers production of unlabeled proteins for functional studies. Alternate protocols for selenomethionine labeling for X-ray structural studies, and multi-well plate growth for screening and optimization are also included. PMID:19365792

  10. Loss of FAS/FASL signaling does not reduce apoptosis in Sharpin null mice.

    PubMed

    Potter, Christopher S; Silva, Kathleen A; Kennedy, Victoria E; Stearns, Timothy M; HogenEsch, Harm; Sundberg, John P

    2017-01-17

    Mice with mutations in SHANK-associated RH domain interactor (Sharpin) develop a hypereosinophilic auto-inflammatory disease known as chronic proliferative dermatitis. Affected mice have increased apoptosis in the keratinocytes of the skin, esophagus, and forestomach driven by extrinsic TNF receptor mediated apoptotic signaling pathways. FAS receptor signaling is an extrinsic apoptotic signaling mechanism frequently involved in inflammatory skin diseases. Compound mutations in Sharpin and Fas or Fasl were created to determine if these death domain proteins influenced the cutaneous phenotype in Sharpin null mice. Both Sharpin/Fas and Sharpin/Fasl compound mutant mice developed an auto-inflammatory phenotype similar to that seen in Sharpin null mice indicating that initiation of apoptosis by FAS signaling is likely not involved in the pathogenesis of this disease. This article is protected by copyright. All rights reserved.

  11. Protein expression in liposomes.

    PubMed

    Oberholzer, T; Nierhaus, K H; Luisi, P L

    1999-08-02

    Compartmentalization is one of the key steps in the evolution of cellular structures and, so far, only few attempts have been made to model this kind of "compartmentalized chemistry" using liposomes. The present work shows that even such complex reactions as the ribosomal synthesis of polypeptides can be carried out in liposomes. A method is described for incorporating into 1-palmitoyl-2-oleoyl-sn-3-phosphocholine (POPC) liposomes the ribosomal complex together with the other components necessary for protein expression. Synthesis of poly(Phe) in the liposomes is monitored by trichloroacetic acid of the (14)C-labelled products. Control experiments carried out in the absence of one of the ribosomal subunits show by contrast no significant polypeptide expression. This methodology opens up the possibility of using liposomes as minimal cell bioreactors with growing degree of synthetic complexity, which may be relevant for the field of origin of life as well as for biotechnological applications. Copyright 1999 Academic Press.

  12. In vivo Effects in Melanoma of ROCK Inhibition-Induced FasL Overexpression.

    PubMed

    Teiti, Iotefa; Florie, Bertrand; Pich, Christine; Gence, Rémi; Lajoie-Mazenc, Isabelle; Rochaix, Philippe; Favre, Gilles; Tilkin-Mariamé, Anne-Françoise

    2015-01-01

    Ectopic Fas-ligand (FasL) expression in tumor cells is responsible for both tumor escape through tumor counterattack of Fas-positive infiltrating lymphocytes and tumor rejection though inflammatory and immune responses. We have previously shown that RhoA GTPase and its effector ROCK negatively control FasL membrane expression in murine melanoma B16F10 cells. In this study, we found that B16F10 treatment with the ROCK inhibitor H1152 reduced melanoma development in vivo through FasL membrane overexpression. Although H1152 treatment did not reduce tumor growth in vitro, pretreatment of tumor cells with this inhibitor delayed tumor appearance, and slowed tumor growth in C57BL/6 immunocompetent mice. Thanks to the use of mice-bearing mutated Fas receptors (B6/lpr), we found that reduced tumor growth, observed in immunocompetent mice, was linked to FasL overexpression induced by H1152 treatment. Tumor growth analysis in immunosuppressed NUDE and IFN-γ-KO mice highlighted major roles for T lymphocytes and IFN-γ in the H1152-induced tumor growth reduction. Histological analyses of subcutaneous tumors, obtained from untreated versus H1152-treated B16F10 cells, showed that H1152 pretreatment induced a strong intratumoral infiltration of leukocytes. Cytofluorometric analysis showed that among these leukocytes, the number of activated CD8 lymphocytes was increased. Moreover, their antibody-induced depletion highlighted their main responsibility in tumor growth reduction. Subcutaneous tumor growth was also reduced by repeated intravenous injections of a clinical ROCK inhibitor, Fasudil. Finally, H1152-induced ROCK inhibition also reduced pulmonary metastasis implantation independently of T cell-mediated immune response. Altogether, our data suggest that ROCK inhibitors could become interesting pharmacological molecules for melanoma immunotherapy.

  13. Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin's lymphoma cells from autonomous Fas-mediated death.

    PubMed

    Dutton, A; O'Neil, J D; Milner, A E; Reynolds, G M; Starczynski, J; Crocker, J; Young, L S; Murray, P G

    2004-04-27

    Hodgkin's lymphoma (HL) is characterized by the presence of malignant so-called Hodgkin's/Reed-Sternberg (HRS) cells, which display resistance to certain apoptotic stimuli, including a lack of sensitivity to Fas-mediated cell death. However, the mechanisms responsible for their resistance to apoptosis inducers have not been elucidated. Here we confirm that both HL-derived cell lines and the HRS cells of primary HL tissues express Fas ligand (FasL) along with the inhibitory c-FLIP protein. Down-regulation of cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) through the use of specific small inhibitory RNAs (siRNAs) leads to reduced viability of the L428 and L591 HL-derived cell lines. To determine whether endogenous FasL was responsible for the reduction in cell viability observed after down-regulation of c-FLIP, L428 and L591 cells were treated with c-FLIP-specific siRNAs with and without siRNAs directed to FasL. Treatment of these cells with both c-FLIP- and FasL-specific siRNAs in combination restored cell viability to near control levels. Our results provide a mechanism whereby HRS cells are protected from autonomous FasL-mediated cell death while preserving their ability to evade immunosurveillance. Targeting c-FLIP could provide a novel approach to the treatment of HL.

  14. Down regulation of TRAIL and FasL on NK cells by Cyclosporin A in renal transplantation patients.

    PubMed

    Zhang, Yun; Cheng, Guang; Xu, Zhu-Wei; Li, Zhou-Li; Song, Chao-Jun; Li, Qi; Chen, Li-Hua; Yang, Kun; Yang, An-Gang; Jin, Bo-Quan

    2013-04-01

    TNF-related apoptosis-inducing ligand (TRAIL) and FasL can participate in cell mediated cytotoxicity via their death domain-mediated apoptotic signaling in the host-versus-graft disease occurred after renal transplantation. However, the effect of Cyclosporin A (CsA) commonly used as a drug to prevent and to treat renal transplant rejection, on these molecules have not been fully determined. In the present study, we found that with CsA administration, the expression of TRAIL and FasL predominantly on NK cells from renal transplantation patients was increased at day 5 after operation and went down to normal level on day 13. While, the levels of soluble TRAIL (sTRAIL) and sFasL in the serum increased within 25 days and went down to normal level three month later. In addition, we showed that a remarkable increase of TRAIL and FasL expression both on the surface of activated lymphocytes especially on NK cells and in the supernatants generated from mixed lymphocytes culture (MLC). Furthermore, the enhancement of these two molecules was greatly decreased by adding 500 ng/mL CsA at the beginning of MLC. We conclude that CsA may inhibit the transplant rejection partially by down-regulating the expression of TRAIL and FasL on NK cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Leptospira Protein Expression During Infection

    USDA-ARS?s Scientific Manuscript database

    We are characterizing protein expression in vivo during experimental leptospirosis using immunofluorescence microscopy. Coding regions for several proteins were identified through analysis of Leptospira interrogans serovar Copenhageni and L. borgpetersenii serovar Hardjo genomes. In addition, codi...

  16. Prenatal Exposure of Mice to Diethylstilbestrol Disrupts T-Cell Differentiation by Regulating Fas/Fas Ligand Expression through Estrogen Receptor Element and Nuclear Factor-κB Motifs

    PubMed Central

    Singh, Narendra P.; Singh, Udai P.; Nagarkatti, Prakash S.

    2012-01-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions. PMID:22888145

  17. Macrophage-inducing FasL on chondrocytes forms immune privilege in cartilage tissue engineering, enhancing in vivo regeneration.

    PubMed

    Fujihara, Yuko; Takato, Tsuyoshi; Hoshi, Kazuto

    2014-05-01

    To obtain stable outcomes in regenerative medicine, controlling inflammatory reactions is a requirement. Previously, auricular chondrocytes in tissue-engineered cartilage have been shown to express factors related to immune privilege including Fas ligand (FasL) in mice. Since elucidation of mechanism on immune privilege formed in cartilage regeneration may contribute to suppression of excessive inflammation, in this study, we investigated the function of FasL and induction of immune privilege in tissue-engineered cartilage using a mouse subcutaneous model. When cocultured, auricular chondrocytes of FasL-dysfunctional mice, C57BL/6JSlc-gld/gld (gld), induced less cell death and apoptosis of macrophage-like cells, RAW264, compared with chondrocytes of C57BL/6 mice (wild), suggesting that FasL on chondrocytes could induce the apoptosis of macrophages. Meanwhile, the viability of chondrocytes was hardly affected by cocultured RAW264, although the expression of type II collagen was decreased, indicating that macrophages could hamper the maturation of chondrocytes. Tissue-engineered cartilage containing gld chondrocytes exhibited greater infiltration of macrophages, with less accumulation of proteoglycan than did wild constructs. Analysis of the coculture medium identified G-CSF as an inducer of FasL on chondrocytes, and G-CSF-treated tissue-engineered cartilage showed less infiltration of macrophages, with increased formation of cartilage after transplantation. The interactions between chondrocytes and macrophages may increase G-CSF secretion in macrophages and induce FasL on chondrocytes, which in turn induce the apoptosis of macrophages and suppress tissue reactions, promoting the maturation of tissue-engineered cartilage. These findings provide scientific insight into the mechanism of autologous chondrocyte transplantation, which could be applied as a novel strategy for cartilage tissue engineering.

  18. Exposure to a metabolite of the environmental toxicant, trichloroethylene, attenuates CD4+ T cell activation-induced cell death by metalloproteinase-dependent FasL shedding.

    PubMed

    Blossom, Sarah J; Gilbert, Kathleen M

    2006-07-01

    Long-term exposure to the environmental contaminant trichloroethylene (TCE) in drinking water has been shown to promote autoimmune disease in association with the expansion of activated CD4+ T cells. The effects of TCE on CD4+ T cells were linked in the present study to the ability of TCE metabolite, trichloroacetaldehyde hydrate (TCAH), to inhibit activation-induced cell death (AICD) in CD4+ T cells. TCAH attenuated AICD in CD4+ T cells by decreasing FasL (CD178) expression but not by altering Fas (CD95) expression or by interfering with Fas-signaling events following direct engagement of the Fas receptor. The TCAH-induced decrease in FasL expression did not appear to be mediated at the transcriptional level but was instead due to increased shedding of FasL from the surface of the CD4+ T cells. The ability of TCAH to cleave FasL and thereby decrease AICD appeared to be mediated by metalloproteinases and correlated with a TCAH-induced increase in matrix metalloproteinase-7. Thus, this study presents the novel finding that the environmental contaminant TCE works via its metabolite TCAH to attenuate AICD by increasing metalloproteinase activity that cleaves FasL from CD4+ T cells. This represents a mechanism by which an environmental trigger inhibits AICD in CD4+ T cells and may thereby promote CD4+ T cell-mediated autoimmune disease.

  19. MiR-21 down-regulation suppresses cell growth, invasion and induces cell apoptosis by targeting FASL, TIMP3, and RECK genes in esophageal carcinoma.

    PubMed

    Wang, Na; Zhang, Chao-Qi; He, Jia-Huan; Duan, Xiao-Fei; Wang, Yuan-Yuan; Ji, Xiang; Zang, Wen-Qiao; Li, Min; Ma, Yun-Yun; Wang, Tao; Zhao, Guo-Qiang

    2013-07-01

    miR-21 is overexpressed in esophageal squamous cell carcinoma (ESCC) and is thought to be correlated with the development of the cancer. The target gene of miR-21 including FASL, TIMP3 and RECK is revealed by researchers. miR-21 may be involved in the tumorgenesis of ESCC by targeting FASL, TIMP3 and RECK. The purpose of this study was to explore the mechanism of miR-21 in the development of ESCC. miR-21 expression in ESCC and the matched non-malignant adjacent tissues (NMATs) was examined by qRT-PCR. Cell growth, cell apoptosis and cell invasion ability of EC9706 and EC-1 cells was examined after the cells were transfected with miR-21 inhibitor. The potential target genes of miR-21 including FASL, TIMP3 and RECK were examined by western blot and Luciferase reporter assay. miR-21 expression was increased significantly in ESCC tissues compared with NMAT. miR-21 down-regulation inhibits cell growth, cell invasion and induces cells to apoptosis. FASL, TIMP3 and RECK are direct targets of miR-21. miR-21 down-regulation inhibits cell growth, invasion and induces cells to apoptosis by targeting FASL, TIMP3 and RECK genes.

  20. Recombinant protein expression in Nicotiana.

    PubMed

    Matoba, Nobuyuki; Davis, Keith R; Palmer, Kenneth E

    2011-01-01

    Recombinant protein pharmaceuticals are now widely used in treatment of chronic diseases, and several recombinant protein subunit vaccines are approved for human and veterinary use. With growing demand for complex protein pharmaceuticals, such as monoclonal antibodies, manufacturing capacity is becoming limited. There is increasing need for safe, scalable, and economical alternatives to mammalian cell culture-based manufacturing systems, which require substantial capital investment for new manufacturing facilities. Since a seminal paper reporting immunoglobulin expression in transgenic plants was published in 1989, there have been many technological advances in plant expression systems to the present time where production of proteins in leaf tissues of nonfood crops such as Nicotiana species is considered a viable alternative. In particular, transient expression systems derived from recombinant plant viral vectors offer opportunities for rapid expression screening, construct optimization, and expression scale-up. Extraction of recombinant proteins from Nicotiana leaf tissues can be achieved by collection of secreted protein fractions, or from a total protein extract after grinding the leaves with buffer. After separation from solids, the major purification challenge is contamination with elements of the photosynthetic complex, which can be solved by application of a variety of facile and proven strategies. In conclusion, the technologies required for safe, efficient, scalable manufacture of recombinant proteins in Nicotiana leaf tissues have matured to the point where several products have already been tested in phase I clinical trials and will soon be followed by a rich pipeline of recombinant vaccines, microbicides, and therapeutic proteins.

  1. Fas ligand is not only expressed in immune privileged human organs but is also coexpressed with Fas in various epithelial tissues.

    PubMed Central

    Xerri, L; Devilard, E; Hassoun, J; Mawas, C; Birg, F

    1997-01-01

    AIMS: To confirm the recent data obtained in mice, showing that the Fas ligand (FasL) is involved in the phenomenon of "immune privilege" (the apparent defect of the immune system in specific anatomical sites) and to extend this finding to humans. METHODS: The expression of FasL was analysed in a panel of histologically normal human tissues by reverse transcriptase polymerase chain reaction and Western blotting. The tissues sampled were brain, breast, bone marrow, oesophagus, kidney, liver, lung, lymph node, ovary, pancreas, pituitary gland, prostate, spleen, stomach (antrum and fundus), striated muscle, testis, thyroid, and uterus. These were obtained from patients with various neoplastic and non-neoplastic disorders; placental tissue was obtained after normal obstetric delivery, and spontaneous or voluntary abortion. RESULTS: Strong FasL expression was detected in testis and placenta. FasL expression was also detectable, although it was seen to a lesser extent, in oesophagus, prostate, lung, and uterus, which also coexpressed variable amounts of Fas mRNA or protein or both. The other organs tested for FasL expression were all negative. CONCLUSIONS: FasL in humans is expressed predominantly in immune "sanctuaries" such as testis and placenta, suggesting that, similar to mice, this expression may contribute to the immune privileged status of these organs, by preventing dangerous inflammatory responses. The coexpression of FasL and Fas in particular epithelia suggests that the physiological cell turnover of some tissues may be regulated by the Fas-FasL apoptotic pathway. Images PMID:9231156

  2. D-cyclins Repress Apoptosis in Hematopoietic Cells by Controlling Death Receptor Fas and its Ligand FasL

    PubMed Central

    Choi, Yoon Jong; Saez, Borja; Anders, Lars; Hydbring, Per; Stefano, Joanna; Bacon, Nickolas A.; Cook, Colleen; Kalaszczynska, Ilona; Signoretti, Sabina; Young, Richard A.; Scadden, David T.; Sicinski, Piotr

    2014-01-01

    SUMMARY D-type cyclins (D1, D2 and D3) are components of the mammalian core cell cycle machinery and function to drive cell proliferation. Here we report that D-cyclins perform a rate-limiting anti-apoptotic function in vivo. We found that acute shutdown of all three D-cyclins in bone marrow of adult mice resulted in massive apoptosis of all hematopoietic cell types. We demonstrate that adult hematopoietic stem cells are particularly dependent on D-cyclins for survival, and they are especially sensitive to cyclin D loss. Surprisingly, we found that the anti-apoptotic function of D-cyclins also operates in quiescent hematopoietic stem and progenitor cells. Our analyses revealed that D-cyclins repress the expression of the death receptor Fas and its ligand, FasL. Acute ablation of D-cyclins upregulated these pro-apoptotic genes, and led to Fas- and caspase 8-dependent apoptosis. These results reveal an unexpected function of cell cycle proteins in controlling apoptosis in normal cell homeostasis. PMID:25087893

  3. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  4. Shock-induced neutrophil mediated priming for acute lung injury in mice: divergent effects of TLR-4 and TLR-4/FasL deficiency.

    PubMed

    Ayala, Alfred; Chung, Chun-Shiang; Lomas, Joanne L; Song, Grace Y; Doughty, Lesley A; Gregory, Stephen H; Cioffi, William G; LeBlanc, Brian W; Reichner, Jonathan; Simms, H Hank; Grutkoski, Patricia S

    2002-12-01

    Acute lung injury (ALI) leading to respiratory distress is a common sequela of shock/trauma, however, modeling this process in mice with a single shock or septic event is inconsistent. One explanation is that hemorrhage is often just a "priming insult," thus, secondary stimuli may be required to "trigger" ALI. To test this we carried out studies in which we assessed the capacity of hemorrhage alone or hemorrhage followed by septic challenge (CLP) to induce ALI. Lung edema, bronchoalveolar lavage interleukin (IL)-6, alveolar congestion, as well as lung IL-6, macrophage inflammatory protein (MIP)-2, and myeloperoxidase (MPO) activity were all increased in mice subjected to CLP at 24 but not 72 hours following hemorrhage. This was associated with a marked increase in the susceptibility of these mice to septic mortality. Peripheral blood neutrophils derived from 24 hours post-hemorrhage, but not Sham animals, exhibited an ex vivo decrease in apoptotic frequency and an increase in respiratory burst capacity, consistent with in vivo "priming." Subsequently, we observed that adoptive transfer of neutrophils from hemorrhaged but not sham-hemorrhage animals to neutropenic recipients reproduce ALI when subsequently septically challenged, implying that this priming was mediated by neutrophils. We also found marked general increases in lung IL-6, MIP-2, and MPO in mice deficient for toll-like receptor (TLR-4) or the combined lack of TLR-4/FasL. However, the TLR-4 defect markedly attenuated neutrophil influx into the lung while not altering the change in local cytokine/chemokine expression. Alternatively, the combined loss of FasL and TLR-4 did not inhibit the increase in MPO and exacerbated lung IL-6/MIP-2 levels even further.

  5. IFN Regulatory Factor 8 Sensitizes Soft Tissue Sarcoma Cells to Death Receptor-initiated Apoptosis via Repression of FLICE-like Protein Expression

    PubMed Central

    Yang, Dafeng; Wang, Suizhao; Brooks, Craig; Dong, Zheng; Schoenlein, Patricia; Kumar, Vijay; Ouyang, Xinshou; Xiong, Huabao; Lahat, Guy; Hayes-Jordan, Andrea; Lazar, Alexander; Pollock, Raphael; Lev, Dina; Liu, Kebin

    2008-01-01

    Interferon Regulatory Factor 8 (IRF8) has been shown to suppress tumor development at least partly through regulating apoptosis of tumor cells; however, the molecular mechanisms underlying IRF8 regulation of apoptosis are still not fully understood. Here, we demonstrated that disrupting IRF8 function resulted in inhibition of cytochrome C release, caspases 9 and 3 activation, and PARP cleavage in soft tissue sarcoma (STS) cells. Inhibition of the mitochondrion-dependent apoptosis signaling cascade is apparently due to blockage of caspase 8 and Bid activation. Analysis of signaling events upstream of caspsse 8 revealed that disrupting IRF8 function dramatically increases FLIP mRNA stability, resulting in increased IRF8 protein level. Furthermore, primary myeloid cells isolated from IRF8 null mice also exhibited increased FLIP protein level, suggesting that IRF8 might be a general repressor of FLIP. Nuclear IRF8 protein was absent in 92% (55/60) of human STS specimens, and 99% (59/60) human STS specimens exhibited FLIP expression, suggesting that the nuclear IRF8 protein level is inversely correlated with FLIP level in vivo. Silencing FLIP expression significantly increased human sarcoma cells to both FasL and TRAIL-induced apoptosis, and ectopic expression of IRF8 also significantly increased the sensitivity of these human sarcoma cells to FasL and TRAIL-induced apoptosis. Taken together, our data suggest that IRF8 mediates FLIP expression level to regulate apoptosis and targeting IRF8 expression is a potentially effective therapeutic strategy to sensitize apoptosis-resistant human STS to apoptosis, thereby possibly overcoming chemoresistance of STS, currently a major obstacle in human STS therapy. PMID:19155307

  6. Hepatocellular apoptosis during Candida albicans colonization: involvement of TNF-alpha and infiltrating Fas-L positive lymphocytes.

    PubMed

    Renna, María S; Correa, Silvia G; Porporatto, Carina; Figueredo, Carlos M; Aoki, María P; Paraje, María G; Sotomayor, Claudia E

    2006-12-01

    The liver constitutes the first barrier in the control of hematogenous dissemination of Candida albicans of intestinal origin. In rats infected with C. albicans, this organ limits the growth of the yeast and mounts an efficient inflammatory reaction. However, in rats infected and exposed to chronic varied stress, the hepatic inflammatory reaction is compromised and the outcoming of the infection is more severe. Although in both groups the fungal burden is associated with hepatotoxicity, steatosis, increment of hepatic enzymes and lipid peroxidation, stress-related differences are clearly evident. Herein, we evaluated in infected and infected-stressed hosts the involvement of apoptosis and pro-apoptotic signals in the hepatic injury during the acute step of C. albicans infection. We studied in situ apoptosis by 4',6-diamidino-2-phenylindole dihydrochloride and terminal deoxynucleotidyl transferase dUTP nick-end labeling reactions, the levels of local tumor necrosis factor (TNF)-alpha mRNA by reverse transcription-PCR and the Fas/Fas-L expression by immunohistochemistry and western blot. We also purified intrahepatic lymphocytes (IHLs) to evaluate the dynamic of recruitment following the infection and to characterize the in vivo and in vitro interaction of C. albicans with this subset evaluating the kinetic of Fas-L and Toll-like receptor-2 (TLR-2) expression. This work shows, for the first time, the occurrence of in situ apoptosis of hepatocytes as well as the kinetic of IHL recruitment early during the C. albicans infection. Moreover, our results demonstrate the ability of the fungus to up-regulate the Fas-L and TLR-2 expression in this subset. In the scenario of early liver injury, the recruited IHLs and the modulated expression of TNF-alpha, Fas-L and TLR-2 molecules could act coordinately in delivering death signals.

  7. Distinct patterns of mucosal apoptosis in H pylori-associated gastric ulcer are associated with altered FasL and perforin cytotoxic pathways

    PubMed Central

    Souza, Heitor SP; Neves, Marcelo S; Elia, Celeste CS; Tortori, Claudio JA; Dines, Ilana; Martinusso, Cesonia A; Madi, Kalil; Andrade, Leonardo; Castelo-Branco, Morgana TL

    2006-01-01

    AIM: To analyze the level of apoptosis in different mucosal compartments and the differential expression of Fas/Fas-ligand and perforin in H pylori-associated gastric ulcer. METHODS: Antral specimens from patients with H pylori-related active gastric ulcer (GU), H pylori-related gastritis, and non-infected controls were analysed for densities and distribution of apoptotic cells determined by the TdT-mediated dUDP-biotin nick-end-labelling method. GU patients were submitted to eradication therapy with follow-up biopsy after 60 d. Fas, FasL, and perforin-expressing cells were assessed by immunoperoxidase, and with anti-CD3, anti-CD20 and anti-CD68 by double immunofluorescence and confocal microscopy. Quantitative analysis was performed using a computer-assisted image analyser. RESULTS: H pylori-infected antrum showed greater surface epithelial apoptosis which decreased after eradication therapy. In the lamina propria, higher rates of mononuclear cell apoptosis were observed in H pylori-gastritis. Co-expression of Fas with T-cell and macrophage markers was reduced in GU. FasL- and perforin-expressing cells were increased in H pylori-infection and correlated with epithelial apoptosis. Perforin-expressing cells were also increased in GU compared with H pylori-gastritis. CONCLUSION: Epithelial apoptosis is increased in H pylori-infection and correlates to FasL- and perforin-expression by T cells. Expression of perforin is correlated with the tissue damage, and may represent the enhancement of a distinct cytotoxic pathway in GU. Increased expression of FasL not paralleled by Fas on T-cells and macrophages may indicate a reduced susceptibility to the Fas/FasL-mediated apoptosis of lymphoid cells in H pylori-infection. PMID:17036384

  8. Fas-FasL expression and myocardial cell apoptosis in patients with viral myocarditis.

    PubMed

    Huang, T F; Wu, X H; Wang, X; Lu, I J

    2016-06-20

    The aim of the current study was to investigate Fas and FasL expression and myocardial cell apoptosis in viral myocarditis patients. Human heart specimens were selected from patients who were autopsied between February 2012 and February 2015; of these, 25 patients were diagnosed with viral myocarditis. Another 15 cases with no diagnosis of myocarditis were selected for the control group. All tissue specimens were divided into two parts, one for reverse transcription-polymerase chain reaction analysis and the other for immunohistochemical and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses. In situ detection of apoptosis was performed by the TUNEL method, which revealed that myocardial cells from the viral myocarditis group exhibited significant apoptosis, whereas no apoptotic cells were observed in the control group. The number of cells staining positive for Fas and FasL protein in the viral myocarditis group was significantly higher than that in the control group (P < 0.05). There was also a correlation between Fas and FasL protein expression levels and scores (r = 0.92, P < 0.05). The mRNA expression of Fas and FasL was significantly higher in the viral myocarditis group than in the control group (P < 0.05). In conclusion, the Fas-FasL system may be involved in the pathogenesis of viral myocarditis. Furthermore, cytotoxic T lymphocytes may mediate cardiac muscle cells apoptosis via Fas-FasL signaling, and thus participate in the pathogenesis of viral myocarditis.

  9. FasL Mediates T-Cell Eradication of Tumor Cells Presenting Low Levels of Antigens | Center for Cancer Research

    Cancer.gov

    One approach to cancer immunotherapy, as opposed to therapeutic vaccination, is the transfusion of large numbers of tumor-specific killer T cells (cytotoxic T cells or CTLs) into patients. The body’s own defense killer T cells are a subgroup of T lymphocytes (a type of white blood cells) that are capable of inducing death in tumor cells. CTLs can cause the death of target cells either by releasing granules containing toxic molecules including perforin, or by producing a membrane protein called Fas ligand (FasL) which on interaction with the tumor cell results in cell death.

  10. Data Mining for Expressivity of Recombinant Protein Expression

    NASA Astrophysics Data System (ADS)

    Kira, Satoshi; Isoai, Atsushi; Yamamura, Masayuki

    We analyzed the expressivity of recombinant proteins by using data mining methods. The expression technique of recombinant protein is a key step towards elucidating the functions of genes discovered through genomic sequence projects. We have studied the productive efficiency of recombinant proteins in fission yeast, Schizosaccharomyces pombe (S.pombe), by mining the expression results. We gathered 57 proteins whose expression levels were known roughly in the host. Correlation analysis, principal component analysis and decision tree analysis were applied to these expression data. Analysis featuring codon usage and amino acid composition clarified that the amino acid composition affected to the expression levels of a recombinant protein strongly than the effect of codon usage. Furthermore, analysis of amino acid composition showed that protein solubility and the metabolism cost of amino acids correlated with a protein expressivity. Codon usage was often interesting in the field of recombinant expressions. However, our analysis found the weak correlation codon features with expressivities. These results indicated that ready-made indices of codon bias were irrelevant ones for modeling the expressivities of recombinant proteins. Our data driven approach was an easy and powerful method to improve recombinant protein expression, and this approach should be concentrated attention with the huge amount of expression data accumulating through the post-genome era.

  11. Expression of multiple proteins in transgenic plants

    DOEpatents

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  12. [Effect of shenmai injection and aminophylline on small airway smooth muscle cell apoptosis and related gene expression in rats with emphysema].

    PubMed

    Niu, Ru-ji; Fu, Juan; Liu, Hui-guo

    2002-01-01

    To investigate the effect of Shenmai Injection (SMI) and aminophylline on small airway smooth muscle cell (SASMC) apoptosis and the Fas/FasL expression in the papain induced emphysema model rats. Emphysema model in rat was established by a single intratracheal instillation of papain. Apoptosis and Fas/FasL expression of SASMC were examined by immunohistochemical SABC and TUNEL assay at 1, 3, 5, 7, 15 and 30 days after modelling, and the effect of SMI and aminophylline on them were observed. Fas, FasL expressions in normal SASMC were very low with a positive rate of (2.31 +/- 0.05)% and (1.28 +/- 0.47)% respectively. After papain instillation, the positive rates increased along with the prolonging of instillation time. SMI showed an inhibition on SASMC Fas and FasL expression but aminophylline didn't show. SASMC apoptosis was very low in normal rats with a rate of (0.87 +/- 0.32)%, it also raised after papain instillation and increased progressively along with the instillation time. SMI treatment could lower the apoptosis rate but aminophylline couldn't. Fas and FasL participated the SASMC apoptosis modulation in emphysema formation. SMI shows a definite treatment effect on emphysema by influencing the Fas and FasL protein expression and reducing SASMC apoptosis through inhibiting the release of inflammatory mediator.

  13. Protein structure protection commits gene expression patterns.

    PubMed

    Chen, Jianping; Liang, Han; Fernández, Ariel

    2008-01-01

    Gene co-expressions often determine module-defining spatial and temporal concurrences of proteins. Yet, little effort has been devoted to tracing coordinating signals for expression correlations to the three-dimensional structures of gene products. We performed a global structure-based analysis of the yeast and human proteomes and contrasted this information against their respective transcriptome organizations obtained from comprehensive microarray data. We show that protein vulnerability quantifies dosage sensitivity for metabolic adaptation phases and tissue-specific patterns of mRNA expression, determining the extent of co-expression similarity of binding partners. The role of protein intrinsic disorder in transcriptome organization is also delineated by interrelating vulnerability, disorder propensity and co-expression patterns. Extremely vulnerable human proteins are shown to be subject to severe post-transcriptional regulation of their expression through significant micro-RNA targeting, making mRNA levels poor surrogates for protein-expression levels. By contrast, in yeast the expression of extremely under-wrapped proteins is likely regulated through protein aggregation. Thus, the 85 most vulnerable proteins in yeast include the five confirmed prions, while in human, the genes encoding extremely vulnerable proteins are predicted to be targeted by microRNAs. Hence, in both vastly different organisms protein vulnerability emerges as a structure-encoded signal for post-transcriptional regulation. Vulnerability of protein structure and the concurrent need to maintain structural integrity are shown to quantify dosage sensitivity, compelling gene expression patterns across tissue types and temporal adaptation phases in a quantifiable manner. Extremely vulnerable proteins impose additional constraints on gene expression: They are subject to high levels of regulation at the post-transcriptional level.

  14. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  15. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    SciTech Connect

    Tu, Yihui; Xue, Huaming; Francis, Wendy; Davies, Andrew P.; Pallister, Ian; Kanamarlapudi, Venkateswarlu; Xia, Zhidao

    2013-11-08

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  16. Heterologous and cell free protein expression systems.

    PubMed

    Farrokhi, Naser; Hrmova, Maria; Burton, Rachel A; Fincher, Geoffrey B

    2009-01-01

    In recognition of the fact that a relatively small percentage of 'named' genes in databases have any experimental proof for their annotation, attention is shifting towards the more accurate assignment of functions to individual genes in a genome. The central objective will be to reduce our reliance on nucleotide or amino acid sequence similarities as a means to define the functions of genes and to annotate genome sequences. There are many unsolved technical difficulties associated with the purification of specific proteins from extracts of biological material, especially where the protein is present in low abundance, has multiple isoforms or is found in multiple post-translationally modified forms. The relative ease with which cDNAs can be cloned has led to the development of methods through which cDNAs from essentially any source can be expressed in a limited range of suitable host organisms, so that sufficient levels of the encoded proteins can be generated for functional analysis. Recently, these heterologous expression systems have been supplemented by more robust prokaryotic and eukaryotic cell-free protein synthesis systems. In this chapter, common host systems for heterologous expression are reviewed and the current status of cell-free expression systems will be presented. New approaches to overcoming the special problems encountered during the expression of membrane-associated proteins will also be addressed. Methodological considerations, including the characteristics of codon usage in the expressed DNA, peptide tags that facilitate subsequent purification of the expressed proteins and the role of post-translational modifications, are examined.

  17. Expression of clock proteins in developing tooth.

    PubMed

    Zheng, Li; Papagerakis, Silvana; Schnell, Santiago D; Hoogerwerf, Willemijntje A; Papagerakis, Petros

    2011-01-01

    Morphological and functional changes during ameloblast and odontoblast differentiation suggest that enamel and dentin formation is under circadian control. Circadian rhythms are endogenous self-sustained oscillations with periods of 24h that control diverse physiological and metabolic processes. Mammalian clock genes play a key role in synchronizing circadian functions in many organs. However, close to nothing is known on clock genes expression during tooth development. In this work, we investigated the expression of four clock genes during tooth development. Our results showed that circadian clock genes Bmal1, clock, per1, and per2 mRNAs were detected in teeth by RT-PCR. Immunohistochemistry showed that clock protein expression was first detected in teeth at the bell stage (E17), being expressed in EOE and dental papilla cells. At post-natal day four (PN4), all four clock proteins continued to be expressed in teeth but with different intensities, being strongly expressed within the nucleus of ameloblasts and odontoblasts and down-regulated in dental pulp cells. Interestingly, at PN21 incisor, expression of clock proteins was down-regulated in odontoblasts of the crown-analogue side but expression was persisting in root-analogue side odontoblasts. In contrast, both crown and root odontoblasts were strongly stained for all four clock proteins in first molars at PN21. Within the periodontal ligament (PDL) space, epithelial rests of Malassez (ERM) showed the strongest expression among other PDL cells. Our data suggests that clock genes might be involved in the regulation of ameloblast and odontoblast functions, such as enamel and dentin protein secretion and matrix mineralization. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Transient Protein Expression by Agroinfiltration in Lettuce.

    PubMed

    Chen, Qiang; Dent, Matthew; Hurtado, Jonathan; Stahnke, Jake; McNulty, Alyssa; Leuzinger, Kahlin; Lai, Huafang

    2016-01-01

    Current systems of recombinant protein production include bacterial, insect, and mammalian cell culture. However, these platforms are expensive to build and operate at commercial scales and/or have limited abilities to produce complex proteins. In recent years, plant-based expression systems have become top candidates for the production of recombinant proteins as they are highly scalable, robust, safe, and can produce complex proteins due to having a eukaryotic endomembrane system. Newly developed "deconstructed" viral vectors delivered via Agrobacterium tumefaciens (agroinfiltration) have enabled robust plant-based production of proteins with a wide range of applications. The leafy Lactuca sativa (lettuce) plant with its strong foundation in agriculture is an excellent host for pharmaceutical protein production. Here, we describe a method for agroinfiltration of lettuce that can rapidly produce high levels of recombinant proteins in a matter of days and has the potential to be scaled up to an agricultural level.

  19. Integral Membrane Protein Expression in Saccharomyces cerevisiae.

    PubMed

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Stroud, Robert M; Hays, Franklin A

    2016-01-01

    Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.

  20. Biotechnology Protein Expression and Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  1. Biotechnology Protein Expression and Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  2. FAS and FASL genetic polymorphisms impact on clinical outcome of malignant pleural mesothelioma

    PubMed Central

    El-Hamamsy, Manal; Ghali, Ramy R; Saad, Amr S; Shaheen, Sara M; Salem, Ahmed M

    2016-01-01

    Background FAS-670 A>G (rs1800682) and FASL-844 C>T (rs763110) polymorphisms have been previously correlated with clinical outcome of non-small cell lung cancer (NSCLC) and breast and bladder cancers. We investigated the influence of these polymorphisms on clinical outcome of malignant pleural mesothelioma (MPM) patients. Patients and methods In this cohort study (NCT02269878), 68 epithelioid MPM Egyptian patients treated with first-line platinum-based chemotherapy were recruited in the period between April 2014 and May 2015. The genotype analysis was performed using TaqMan® single-nucleotide polymorphism genotyping assay. The association between the selected polymorphisms and response rate, progression-free survival (PFS) and overall survival (OS) at 18 months was evaluated. Results The median age of patients was 55 years and 45.6% of them received platinum in combination with pemetrexed, while 54.4% received platinum in combination with gemcitabine. FASL-844 CC genotype was more common than expected in early-stage tumor (P=0.042). It was found that there was no association between the investigated polymorphisms and response rate or 18-month OS. However, the PFS rate at 18 months for FASL-844 CC genotype carriers was 45% versus 10.6% for FASL-844 CT/TT genotypes carriers (log-rank: 6.2; P=0.013). Also, the number of platinum-based cycles and tumor stage were found to be significant variables for PFS by univariate analysis (P≤0.001 and P=0.006, respectively). Stratified Cox regression showed that the carriers of FASL-844 CT/TT genotypes were still more susceptible to disease progression than carriers of FASL-844 CC genotype (adjusted HR =3.77, 95% CI: 1.34–10.62, P=0.012). Conclusion The results of this study suggest that FASL-844 C/T polymorphism could predict PFS in MPM patients receiving platinum-based chemotherapy; therefore, this should be further evaluated as a potential marker for the prediction of clinical outcome in patients with MPM. PMID:27853379

  3. ESPRESSO: a system for estimating protein expression and solubility in protein expression systems.

    PubMed

    Hirose, Shuichi; Noguchi, Tamotsu

    2013-05-01

    Recombinant protein technology is essential for conducting protein science and using proteins as materials in pharmaceutical or industrial applications. Although obtaining soluble proteins is still a major experimental obstacle, knowledge about protein expression/solubility under standard conditions may increase the efficiency and reduce the cost of proteomics studies. In this study, we present a computational approach to estimate the probability of protein expression and solubility for two different protein expression systems: in vivo Escherichia coli and wheat germ cell-free, from only the sequence information. It implements two kinds of methods: a sequence/predicted structural property-based method that uses both the sequence and predicted structural features, and a sequence pattern-based method that utilizes the occurrence frequencies of sequence patterns. In the benchmark test, the proposed methods obtained F-scores of around 70%, and outperformed publicly available servers. Applying the proposed methods to genomic data revealed that proteins associated with translation or transcription have a strong tendency to be expressed as soluble proteins by the in vivo E. coli expression system. The sequence pattern-based method also has the potential to indicate a candidate region for modification, to increase protein solubility. All methods are available for free at the ESPRESSO server (http://mbs.cbrc.jp/ESPRESSO). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Streamlined expressed protein ligation using split inteins.

    PubMed

    Vila-Perelló, Miquel; Liu, Zhihua; Shah, Neel H; Willis, John A; Idoyaga, Juliana; Muir, Tom W

    2013-01-09

    Chemically modified proteins are invaluable tools for studying the molecular details of biological processes, and they also hold great potential as new therapeutic agents. Several methods have been developed for the site-specific modification of proteins, one of the most widely used being expressed protein ligation (EPL) in which a recombinant α-thioester is ligated to an N-terminal Cys-containing peptide. Despite the widespread use of EPL, the generation and isolation of the required recombinant protein α-thioesters remain challenging. We describe here a new method for the preparation and purification of recombinant protein α-thioesters using engineered versions of naturally split DnaE inteins. This family of autoprocessing enzymes is closely related to the inteins currently used for protein α-thioester generation, but they feature faster kinetics and are split into two inactive polypeptides that need to associate to become active. Taking advantage of the strong affinity between the two split intein fragments, we devised a streamlined procedure for the purification and generation of protein α-thioesters from cell lysates and applied this strategy for the semisynthesis of a variety of proteins including an acetylated histone and a site-specifically modified monoclonal antibody.

  5. Matricellular protein CCN1 mediates doxorubicin-induced cardiomyopathy in mice.

    PubMed

    Hsu, Pei-Ling; Mo, Fan-E

    2016-06-14

    Doxorubicin (DOX) is an effective chemotherapeutic agent however its clinical use is limited by its cumulative cardiotoxicity. Matricellular protein CCN1 mediates work-overload-induced cardiac injury. We aimed to assess the role of CCN1 in DOX-associated cardiomyopathy. Here we discovered CCN1 expression in the myocardium 1 day after DOX treatment (15 mg/kg; i.p.) in mice. Whereas CCN1 synergizes with Fas ligand (FasL) to induce cardiomyocyte apoptosis, we found that FasL was also induced by DOX in the heart. To assess the function of CCN1 in vivo, knockin mice (Ccn1dm/dm) expressing an a6β1-binding defective CCN1 mutant were treated with a single dose of DOX (15 mg/kg; i.p.). Compared with wild-type mice, Ccn1dm/dm mice were resistant to DOX-induced cardiac injury and dysfunction 14 days after injection. Using rat cardiomyoblast H9c2 cells, we demonstrated that DOX induced reactive oxygen species accumulation to upregulate CCN1 and FasL expression. CCN1 mediated DOX cardiotoxicity by engaging integrin a6β1 to promote p38 mitogen-activated protein kinase activation and the release of mitochondrial Smac and HtrA2 to cytosol, thereby counteracting the inhibition of XIAP and facilitating apoptosis. In summary, CCN1 critically mediates DOX-induced cardiotoxicity. Disrupting CCN1/a6β1 engagement abolishes DOX-associated cardiomyopathy in mice.

  6. Expression and purification of membrane proteins.

    PubMed

    Kubicek, Jan; Block, Helena; Maertens, Barbara; Spriestersbach, Anne; Labahn, Jörg

    2014-01-01

    Approximately 30% of a genome encodes for membrane proteins. They are one of the most important classes of proteins in that they can receive, differentiate, and transmit intra- and intercellular signals. Some examples of classes of membrane proteins include cell-adhesion molecules, translocases, and receptors in signaling pathways. Defects in membrane proteins may be involved in a number of serious disorders such as neurodegenerative diseases (e.g., Alzheimer's) and diabetes. Furthermore, membrane proteins provide natural entry and anchoring points for the molecular agents of infectious diseases. Thus, membrane proteins constitute ~50% of known and novel drug targets. Progress in this area is slowed by the requirement to develop methods and procedures for expression and isolation that are tailored to characteristic properties of membrane proteins. A set of standard protocols for the isolation of the targets in quantities that allow for the characterization of their individual properties for further optimization is required. The standard protocols given below represent a workable starting point. If optimization of yields is desired, a variation of conditions as outlined in the theory section is recommended.

  7. Association of promoter polymorphisms of Fas -FasL genes with development of Chronic Myeloid Leukemia.

    PubMed

    Edathara, Prajitha Mohandas; Gorre, Manjula; Kagita, Sailaja; Vuree, Sugunakar; Cingeetham, Anuradha; Nanchari, Santhoshi Rani; Meka, Phanni Bhushann; Annamaneni, Sandhya; Digumarthi, Raghunadha Rao; Satti, Vishnupriya

    2016-04-01

    Chronic myeloid leukemia (CML) is a monoclonal myeloproliferative disorder of hematopoietic stem cells (HSCs), characterized by reciprocal translocation, leading to the formation of BCR-ABL oncogene with constitutive tyrosine kinase (TK) activity. This oncogene is known to deregulate different downstream pathways which ultimately lead to cell proliferation, defective DNA repair, and inhibition of apoptosis. Fas (Fas cell surface death receptor) is a member of tumor necrosis factor (TNF) superfamily which interacts with its ligand, FasL, to initiate apoptosis. Promoter polymorphisms in Fas-FasL genes are known to influence the apoptotic signaling. Hence, the present study has been aimed to find out the association of the promoter polymorphisms in Fas and FasL genes with the development and progression of CML. Blood samples from 772 subjects (386 controls and 386 cases) were collected and genotyped for Fas-FasL gene polymorphisms through PCR-RFLP method. The association between SNPs and clinical outcome was analyzed using statistical softwares like SPSS version 20, SNPSTATs, and Haploview 2.1. The study revealed a significant association of Fas -670 G>A and FasL -844 T>C polymorphisms with the development of CML while Fas -670 AG was associated with accelerated phase. Combined risk analysis by taking the risk genotypes in cases and controls revealed a significant increase in CML risk with increase in number of risk genotypes (one risk genotype-OR 1.99 (1.44-2.76), p < 0.0001; two risk genotypes-OR 3.33 (1.91-5.81), p < 0.0001). Kaplan-Meier survival analysis of Fas -670 A>G and FasL -844 T>C showed reduced event-free survival in patients carrying the variant genotypes, Fas -670 GG, 32.363 ± 6.33, and FasL -844 CC, 33.489 ± 5.83, respectively. Our findings revealed a significant association of Fas -670 GG, FasL -844 TC, and CC genotypes with increased risk of CML.

  8. Engineering Genes for Predictable Protein Expression

    PubMed Central

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2013-01-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering. PMID:22425659

  9. Engineering genes for predictable protein expression.

    PubMed

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2012-05-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering.

  10. PARP-1 protein expression in glioblastoma multiforme

    PubMed Central

    Galia, A.; Calogero, A.E.; Condorelli, R.A.; Fraggetta, F.; La Corte, C.; Ridolfo, F.; Bosco, P.; Castiglione, R.; Salemi, M.

    2012-01-01

    One of the most common type of primary brain tumors in adults is the glioblastoma multiforme (GBM) (World Health Organization grade IV astrocytoma). It is the most common malignant and aggressive form of glioma and it is among the most lethal ones. Poly (ADP-ribose) polymerase 1 (PARP-1) gene, located to 1q42, plays an important role for the efficient maintenance of genome integrity. PARP-1 protein is required for the apoptosis-inducing factor (AIF) translocation from the mitochondria to the nucleus. PARP-1 is proteolytically cleaved at the onset of apoptosis by caspase-3. Microarray analysis of PARP-1 gene expression in more than 8000 samples revealed that PARP-1 is more highly expressed in several types of cancer compared with the equivalent normal tissues. Overall, the most differences in PARP-1 gene expression have been observed in breast, ovarian, endometrial, lung, and skin cancers, and non-Hodgkin's lymphoma. We evaluated the expression of PARP-1 protein in normal brain tissues and primary GBM by immunohistochemistry. Positive nuclear PARP-1 staining was found in all samples with GBM, but not in normal neurons from controls (n=4) and GBM patients (n=27). No cytoplasmic staining was observed in any sample. In conclusion, PARP-1 gene is expressed in GBM. This finding may be envisioned as an attempt to trigger apoptosis in this tumor, as well as in many other malignancies. The presence of the protein exclusively at the nucleus further support the function played by this gene in genome integrity maintenance and apoptosis. Finally, PARP-1 staining may be used as GBM cell marker. PMID:22472897

  11. TNFα regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation

    PubMed Central

    Sata, Masataka; Walsh, Kenneth

    2010-01-01

    It is generally believed that the vascular endothelium serves as an inflammatory barrier by providing a nonadherent surface to leukocytes. Here, we report that Fas ligand (FasL) is expressed on vascular endothelial cells (ECs) and that it may function to actively inhibit leukocyte extravasation. TNFα downregulates FasL expression with an accompanying decrease in EC cytotoxicity toward co-cultured Fas-bearing cells. Local administration of TNFα to arteries downregulates endothelial FasL expression and induces mononuclear cell infiltration. Constitutive FasL expression markedly attenuates TNFα-induced cell infiltration and adherent mononuclear cells undergo apoptosis under these conditions. These findings suggest that endothelial FasL expression can negatively regulate leukocyte extravasation. PMID:9546786

  12. Association of FAS-670A/G and FASL-844C/T polymorphisms with idiopathic azoospermia in Western Iran.

    PubMed

    Asgari, Rezvan; Mansouri, Kamran; Bakhtiari, Mitra; Bidmeshkipour, Ali; Yari, Kheirollah; Shaveisi-Zadeh, Farhad; Vaisi-Raygani, Asad

    2017-09-06

    The FAS/FASL interaction plays a central role in up-regulation of apoptosis in testis. Studies indicated that the FAS-670A/G and FASL-844C/T polymorphisms are associated with the risk of idiopathic azoospermia in different ethnic groups. Therefore, the current study aims to investigate the association between FAS-670A/G and FASL-844C/T polymorphisms with male idiopathic infertility in Western Iran. The analysis of FAS-670A/G and FASL-844C/T polymorphisms were carried out using the PCR-RFLP approach, on 102 infertile men and 110 normal fertile men as control group. The results suggested that there were no significant difference in genotypic frequencies of FAS-670A/G polymorphism between infertile and control groups. On the other hand, significant result was observed for the frequency of FASL-844C/T polymorphism in infertile men in comparison to control group (P=0.02). Indeed, men with FASL-844TT and CT genotypes had an increased risk of idiopathic azoospermia in comparison to those with CC genotype (OR=2.02, 95% CI [1.05-3.88, P=0.03] and OR=1.44, 95% CI [0.46-4.49, P=0.53]), respectively. Our findings speculate that the FASL-844C/T polymorphism is associated with the risk of male infertility and this variation can be considered as a genetic risk factor for idiopathic azoospermia among Western Iranian men population. Summing up, these data indicated that the genetic variations in FAS/FASL system have a critical role in spermatogenesis defects and subsequent male infertility. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Regulation of Mutant p53 Protein Expression.

    PubMed

    Vijayakumaran, Reshma; Tan, Kah Hin; Miranda, Panimaya Jeffreena; Haupt, Sue; Haupt, Ygal

    2015-01-01

    For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be explained in mutant p53-expressing cells by the lack of an auto-regulatory loop with Mdm2 and other negative regulators, which are pivotal for wt p53 regulation. Further, additional protective mechanisms are acquired by mutant p53, largely mediated by the co-chaperones and their paralogs, the stress-induced heat shock proteins. Consequently, mutant p53 is accumulated in cancer cells in response to chronic stress and this accumulation is critical for its oncogenic gain of functions (GOF). Building on the extensive knowledge regarding wt p53, the regulation of mutant p53 is unraveling. In this review, we describe the current understanding on the major levels at which mutant p53 is regulated. These include the regulation of p53 protein levels by microRNA and by enzymes controlling p53 proteasomal degradation.

  14. Expression of Contractile Protein Isoforms in Microgravity

    NASA Technical Reports Server (NTRS)

    Anderson, Page A. W.

    1996-01-01

    The general objective of this experiment is to determine the effect of space flight parameters, including microgravity, on ontogenesis and embryogenesis of Japanese quail. Nine U.S. and two Russian investigators are cooperating in this study. Specific objectives of the participating scientists include assessing the gross and microscopic morphological and histological development of the embryo, as well as the temporal and spacial development of specific cells, tissues, and organs. Temporally regulated production of specific proteins is also being investigated. Our objective is to determine the effects of microgravity on developmentally programmed expression of Troponin T and I isoforms known to regulate cardiac and skeletal muscle contraction.

  15. Trypanosoma cruzi expresses diverse repetitive protein antigens.

    PubMed Central

    Hoft, D F; Kim, K S; Otsu, K; Moser, D R; Yost, W J; Blumin, J H; Donelson, J E; Kirchhoff, L V

    1989-01-01

    We screened a Trypanosoma cruzi cDNA expression library with human and rabbit anti-T. cruzi sera and identified cDNA clones that encode polypeptides containing tandemly arranged repeats which are 6 to 34 amino acids in length. The peptide repeats encoded by these cDNAs varied markedly in sequence, copy number, and location relative to the polyadenylation site of the mRNAs from which they were derived. The repeats were specific for T. cruzi, but in each case the sizes of the corresponding mRNAs and the total number of repeat copies encoded varied considerably among different isolates of the parasite. Expression of the peptide repeats was not stage specific. One of the peptide repeats occurred in a protein with an Mr of greater than 200,000 and one was in a protein of Mr 75,000 to 105,000. The frequent occurrence and diversity of these peptide repeats suggested that they may play a role in the ability of the parasite to evade immune destruction in its invertebrate and mammalian hosts, but the primary roles of these macromolecules may be unrelated to the host-parasite relationship. Images PMID:2659529

  16. Wheat germ systems for cell-free protein expression.

    PubMed

    Harbers, Matthias

    2014-08-25

    Cell-free protein expression plays an important role in biochemical research. However, only recent developments led to new methods to rapidly synthesize preparative amounts of protein that make cell-free protein expression an attractive alternative to cell-based methods. In particular the wheat germ system provides the highest translation efficiency among eukaryotic cell-free protein expression approaches and has a very high success rate for the expression of soluble proteins of good quality. As an open in vitro method, the wheat germ system is a preferable choice for many applications in protein research including options for protein labeling and the expression of difficult-to-express proteins like membrane proteins and multiple protein complexes. Here I describe wheat germ cell-free protein expression systems and give examples how they have been used in genome-wide expression studies, preparation of labeled proteins for structural genomics and protein mass spectroscopy, automated protein synthesis, and screening of enzymatic activities. Future directions for the use of cell-free expression methods are discussed.

  17. Quercetin and vitamin E attenuate Bonny Light crude oil-induced alterations in testicular apoptosis, stress proteins and steroidogenic acute regulatory protein in Wistar rats.

    PubMed

    Ebokaiwe, Azubuike P; Mathur, Premendu P; Farombi, Ebenezer O

    2016-10-01

    Studies have shown the reproductive effects of Bonny Light crude oil (BLCO) via the mechanism of oxidative stress and testicular apoptosis. We investigated the protective role of quercetin and vitamin E on BLCO-induced testicular apoptosis. Experimental rats were divided into four groups of four each. Animals were orally administered 2 ml/kg corn oil (control: group 1), BLCO-800 mg/kg body weight + 10 mg/kg quercetin (group 2), BLCO-800 mg/kg body weight + 50 mg/kg vitamin E (group 3) and BLCO-800 mg/kg body weight only (group 4) for 7 d. Protein levels of caspase 3, FasL, NF-kB, steroidogenic acute regulatory protein and stress response proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunofluorescence staining was used to quantify the expression of caspase 3, FasL and NF-kB. Apoptosis was quantified by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Administration of BLCO resulted in a significant increase in the levels of stress response proteins and apoptosis-related proteins by 50% and above after 7 d following BLCO exposure and a concomitant increase in expression of caspase 3, FasL and NF-kB expression by immunofluorescence staining. Apoptosis showed a significant increase in TUNEL positive cells. Co-administration with quercetin or vitamin E reversed BLCO-induced apoptosis and levels of stress protein, relative to control. These findings suggest that quercetin and vitamin E may confer protection against BLCO-induced testicular oxidative stress-related apoptosis.

  18. Green Fluorescent Protein as a Marker for Gene Expression

    NASA Astrophysics Data System (ADS)

    Chalfie, Martin; Tu, Yuan; Euskirchen, Ghia; Ward, William W.; Prasher, Douglas C.

    1994-02-01

    A complementary DNA for the Aequorea victoria green fluorescent protein (GFP) produces a fluorescent product when expressed in prokaryotic (Escherichia coli) or eukaryotic (Caenorhabditis elegans) cells. Because exogenous substrates and cofactors are not required for this fluorescence, GFP expression can be used to monitor gene expression and protein localization in living organisms.

  19. Glycogen synthase kinase-3 beta regulates Snail and β-catenin expression during Fas-induced epithelial-mesenchymal transition in gastrointestinal cancer.

    PubMed

    Zheng, Haoxuan; Li, Wenjing; Wang, Yadong; Liu, Zhizhong; Cai, Yidong; Xie, Tingting; Shi, Meng; Wang, Zhiqing; Jiang, Bo

    2013-08-01

    Fas signalling has been shown to induce the epithelial-mesenchymal transition (EMT) to promote gastrointestinal (GI) cancer metastasis, but its mechanism of action is still unknown. The effects of Fas-ligand (FasL) treatment and inhibition of Fas signalling on GI cancer cells were tested using invasion assay, immunofluorescence, immunoblot, Reverse Transcription Polymerase Chain Reaction (RT-PCR), quantitative Real-time PCR (qRT-PCR), immunoprecipitation and luciferase reporter assay. Immunohistochemistry was used to analyse the EMT-associated molecules in GI cancer specimens. FasL treatment inhibited E-cadherin transcription by upregulation of Snail in GI cancer cells. The nuclear expression and transcriptional activity of Snail and β-catenin were increased by inhibitory phosphorylation of glycogen synthase kinase-3 beta (GSK-3β) at Ser9 by FasL-induced extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signalling. Snail associated with β-catenin in the nucleus and, thus, increased β-catenin transcriptional activity. Evaluation of human GI cancer specimens showed that the expression of FasL, phospho-GSK-3β, Snail and β-catenin increase during GI cancer progression. An EMT phenotype was shown to correlate with an advanced cancer stage, and a non-EMT phenotype significantly correlated with a better prognosis. Collectively, these data indicate that GSK-3β regulates Snail and β-catenin expression during Fas-induced EMT in gastrointestinal cancer.

  20. Effects of immunosuppressive treatment on protein expression in rat kidney

    PubMed Central

    Kędzierska, Karolina; Sporniak-Tutak, Katarzyna; Sindrewicz, Krzysztof; Bober, Joanna; Domański, Leszek; Parafiniuk, Mirosław; Urasińska, Elżbieta; Ciechanowicz, Andrzej; Domański, Maciej; Smektała, Tomasz; Masiuk, Marek; Skrzypczak, Wiesław; Ożgo, Małgorzata; Kabat-Koperska, Joanna; Ciechanowski, Kazimierz

    2014-01-01

    The structural proteins of renal tubular epithelial cells may become a target for the toxic metabolites of immunosuppressants. These metabolites can modify the properties of the proteins, thereby affecting cell function, which is a possible explanation for the mechanism of immunosuppressive agents’ toxicity. In our study, we evaluated the effect of two immunosuppressive strategies on protein expression in the kidneys of Wistar rats. Fragments of the rat kidneys were homogenized after cooling in liquid nitrogen and then dissolved in lysis buffer. The protein concentration in the samples was determined using a protein assay kit, and the proteins were separated by two-dimensional electrophoresis. The obtained gels were then stained with Coomassie Brilliant Blue, and their images were analyzed to evaluate differences in protein expression. Identification of selected proteins was then performed using mass spectrometry. We found that the immunosuppressive drugs used in popular regimens induce a series of changes in protein expression in target organs. The expression of proteins involved in drug, glucose, amino acid, and lipid metabolism was pronounced. However, to a lesser extent, we also observed changes in nuclear, structural, and transport proteins’ synthesis. Very slight differences were observed between the group receiving cyclosporine, mycophenolate mofetil, and glucocorticoids (CMG) and the control group. In contrast, compared to the control group, animals receiving tacrolimus, mycophenolate mofetil, and glucocorticoids (TMG) exhibited higher expression of proteins responsible for renal drug metabolism and lower expression levels of cytoplasmic actin and the major urinary protein. In the TMG group, we observed higher expression of proteins responsible for drug metabolism and a decrease in the expression of respiratory chain enzymes (thioredoxin-2) and markers of distal renal tubular damage (heart fatty acid-binding protein) compared to expression in the CMG

  1. Over-expression of secreted proteins from mammalian cell lines

    PubMed Central

    Dalton, Annamarie C; Barton, William A

    2014-01-01

    Secreted mammalian proteins require the development of robust protein over-expression systems for crystallographic and biophysical studies of protein function. Due to complex disulfide bonds and distinct glycosylation patterns preventing folding and expression in prokaryotic expression hosts, many secreted proteins necessitate production in more complex eukaryotic expression systems. Here, we elaborate on the methods used to obtain high yields of purified secreted proteins from transiently or stably transfected mammalian cell lines. Among the issues discussed are the selection of appropriate expression vectors, choice of signal sequences for protein secretion, availability of fusion tags for enhancing protein stability and purification, choice of cell line, and the large-scale growth of cells in a variety of formats. PMID:24510886

  2. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast

    DOEpatents

    Mayfield, Stephen P

    2015-01-13

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery of proteins/peptides, especially gut active proteins, without purification is disclosed.

  3. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    DOEpatents

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  4. Strain engineering for improved expression of recombinant proteins in bacteria

    PubMed Central

    2011-01-01

    Protein expression in Escherichia coli represents the most facile approach for the preparation of non-glycosylated proteins for analytical and preparative purposes. So far, the optimization of recombinant expression has largely remained a matter of trial and error and has relied upon varying parameters, such as expression vector, media composition, growth temperature and chaperone co-expression. Recently several new approaches for the genome-scale engineering of E. coli to enhance recombinant protein expression have been developed. These methodologies now enable the generation of optimized E. coli expression strains in a manner analogous to metabolic engineering for the synthesis of low-molecular-weight compounds. In this review, we provide an overview of strain engineering approaches useful for enhancing the expression of hard-to-produce proteins, including heterologous membrane proteins. PMID:21569582

  5. Induction of tolerance to cardiac allografts using donor splenocytes engineered to display on their surface an exogenous fas ligand protein.

    PubMed

    Yolcu, Esma S; Gu, Xiao; Lacelle, Chantale; Zhao, Hong; Bandura-Morgan, Laura; Askenasy, Nadir; Shirwan, Haval

    2008-07-15

    The critical role played by Fas ligand (FasL) in immune homeostasis renders this molecule an attractive target for immunomodulation to achieve tolerance to auto- and transplantation Ags. Immunomodulation with genetically modified cells expressing FasL was shown to induce tolerance to alloantigens. However, genetic modification of primary cells in a rapid, efficient, and clinically applicable manner proved challenging. Therefore, we tested the efficacy of donor splenocytes rapidly and efficiently engineered to display on their surface a chimeric form of FasL protein (SA-FasL) for tolerance induction to cardiac allografts. The i.p. injection of ACI rats with Wistar-Furth rat splenocytes displaying SA-FasL on their surface resulted in tolerance to donor, but not F344 third-party cardiac allografts. Tolerance was associated with apoptosis of donor reactive T effector cells and induction/expansion of CD4(+)CD25(+)FoxP3(+) T regulatory (Treg) cells. Treg cells played a critical role in the observed tolerance as adoptive transfer of sorted Treg cells from long-term graft recipients into naive unmanipulated ACI rats resulted in indefinite survival of secondary Wistar-Furth grafts. Immunomodulation with allogeneic cells rapidly and efficiently engineered to display on their surface SA-FasL protein provides an effective and clinically applicable means of cell-based therapy with potential application to regenerative medicine, transplantation, and autoimmunity.

  6. Calreticulin: Roles in Cell-Surface Protein Expression

    PubMed Central

    Jiang, Yue; Dey, Sandeepa; Matsunami, Hiroaki

    2014-01-01

    In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins. PMID:25230046

  7. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector.

    PubMed

    Hayashi, Kokoro; Kojima, Chojiro

    2010-11-01

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in ¹H-¹⁵N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  8. Expression, Solubilization, and Purification of Bacterial Membrane Proteins.

    PubMed

    Jeffery, Constance J

    2016-02-02

    Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.

  9. Transforming Lepidopteran Insect Cells for Improved Protein Processing and Expression

    USDA-ARS?s Scientific Manuscript database

    The lepidopteran insect cells used with the baculovirus expression vector system (BEVS) are capable of synthesizing and accurately processing foreign proteins. However, proteins expressed in baculovirus-infected cells often fail to be completely processed, or are not processed in a manner that meet...

  10. Cell-free protein synthesis as a promising expression system for recombinant proteins.

    PubMed

    Ge, Xumeng; Xu, Jianfeng

    2012-01-01

    Cell-free protein synthesis (CFPS) has major advantages over traditional cell-based methods in the capability of high-throughput protein synthesis and special protein production. During recent decades, CFPS has become an alternative protein production platform for both fundamental and applied purposes. Using Renilla luciferase as model protein, we describe a typical process of CFPS in wheat germ extract system, including wheat germ extract preparation, expression vector construction, in vitro protein synthesis (transcription/translation), and target protein assay.

  11. Cell-free expression of G-protein-coupled receptors.

    PubMed

    Orbán, Erika; Proverbio, Davide; Haberstock, Stefan; Dötsch, Volker; Bernhard, Frank

    2015-01-01

    Cell-free expression has emerged as a new standard for the production of membrane proteins. The reduction of expression complexity in cell-free systems eliminates central bottlenecks and allows the reliable and efficient synthesis of many different types of membrane proteins. Furthermore, the open accessibility of cell-free reactions enables the co-translational solubilization of cell-free expressed membrane proteins in a large variety of supplied additives. Hydrophobic environments can therefore be adjusted according to the requirements of individual membrane protein targets. We present different approaches for the preparative scale cell-free production of G-protein-coupled receptors using the extracts of Escherichia coli cells. We exemplify expression conditions implementing detergents, nanodiscs, or liposomes. The generated protein samples could be directly used for further functional characterization.

  12. Maltose-Binding Protein (MBP), a Secretion-Enhancing Tag for Mammalian Protein Expression Systems.

    PubMed

    Reuten, Raphael; Nikodemus, Denise; Oliveira, Maria B; Patel, Trushar R; Brachvogel, Bent; Breloy, Isabelle; Stetefeld, Jörg; Koch, Manuel

    2016-01-01

    Recombinant proteins are commonly expressed in eukaryotic expression systems to ensure the formation of disulfide bridges and proper glycosylation. Although many proteins can be expressed easily, some proteins, sub-domains, and mutant protein versions can cause problems. Here, we investigated expression levels of recombinant extracellular, intracellular as well as transmembrane proteins tethered to different polypeptides in mammalian cell lines. Strikingly, fusion of proteins to the prokaryotic maltose-binding protein (MBP) generally enhanced protein production. MBP fusion proteins consistently exhibited the most robust increase in protein production in comparison to commonly used tags, e.g., the Fc, Glutathione S-transferase (GST), SlyD, and serum albumin (ser alb) tag. Moreover, proteins tethered to MBP revealed reduced numbers of dying cells upon transient transfection. In contrast to the Fc tag, MBP is a stable monomer and does not promote protein aggregation. Therefore, the MBP tag does not induce artificial dimerization of tethered proteins and provides a beneficial fusion tag for binding as well as cell adhesion studies. Using MBP we were able to secret a disease causing laminin β2 mutant protein (congenital nephrotic syndrome), which is normally retained in the endoplasmic reticulum. In summary, this study establishes MBP as a versatile expression tag for protein production in eukaryotic expression systems.

  13. A toolkit for graded expression of green fluorescent protein fusion proteins in mammalian cells.

    PubMed

    Nalaskowski, Marcus M; Ehm, Patrick; Giehler, Susanne; Mayr, Georg W

    2012-09-01

    Green fluorescent protein (GFP) and GFP-like proteins of different colors are important tools in cell biology. In many studies, the intracellular targeting of proteins has been determined by transiently expressing GFP fusion proteins and analyzing their intracellular localization by fluorescence microscopy. In most vectors, expression of GFP is driven by the enhancer/promoter cassette of the immediate early gene of human cytomegalovirus (hCMV). This cassette generates high levels of protein expression in most mammalian cell lines. Unfortunately, these nonphysiologically high protein levels have been repeatedly reported to artificially alter the intracellular targeting of proteins fused to GFP. To cope with this problem, we generated a multitude of attenuated GFP expression vectors by modifying the hCMV enhancer/promoter cassette. These modified vectors were transiently expressed, and the expression levels of enhanced green fluorescent protein (EGFP) alone and enhanced yellow fluorescent protein (EYFP) fused to another protein were determined by fluorescence microscopy and/or Western blotting. As shown in this study, we were able to (i) clearly reduce the expression of EGFP alone and (ii) reduce expression of an EYFP fusion protein down to the level of the endogenous protein, both in a graded manner.

  14. Nucleic Acid Programmable Protein Array: A Just-In-Time Multiplexed Protein Expression and Purification Platform

    PubMed Central

    Qiu, Ji; LaBaer, Joshua

    2012-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. PMID:21943897

  15. Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform.

    PubMed

    Qiu, Ji; LaBaer, Joshua

    2011-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally.

  16. Protein expression in Arabidopsis thaliana after chronic clinorotation

    NASA Technical Reports Server (NTRS)

    Piastuch, William C.; Brown, Christopher S.

    1994-01-01

    Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional sodium doedocyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.

  17. Protein expression in Arabidopsis thaliana after chronic clinorotation

    NASA Technical Reports Server (NTRS)

    Piastuch, W. C.; Brown, C. S.

    1995-01-01

    Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional SDS PAGE and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.

  18. Protein expression in Arabidopsis thaliana after chronic clinorotation

    NASA Technical Reports Server (NTRS)

    Piastuch, W. C.; Brown, C. S.

    1995-01-01

    Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional SDS PAGE and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.

  19. Engineering Cells to Improve Protein Expression

    PubMed Central

    Xiao, Su; Shiloach, Joseph; Betenbaugh, Michael J.

    2014-01-01

    Cellular engineering of bacteria, fungi, insect cells and mammalian cells is a promising methodology to improve recombinant protein production for structural, biochemical, and commercial applications. Increased understanding of the host organism biology has suggested engineering strategies targeting bottlenecks in transcription, translation, protein processing and secretory pathways, as well as cell growth and survival. A combination of metabolic engineering and synthetic biology has been used to improve the properties of cells for protein production, which has resulted in enhanced yields of multiple protein classes. PMID:24704806

  20. Engineering cells to improve protein expression.

    PubMed

    Xiao, Su; Shiloach, Joseph; Betenbaugh, Michael J

    2014-06-01

    Cellular engineering of bacteria, fungi, insect cells and mammalian cells is a promising methodology to improve recombinant protein production for structural, biochemical, and commercial applications. Increased understanding of the host organism biology has suggested engineering strategies targeting bottlenecks in transcription, translation, protein processing and secretory pathways, as well as cell growth and survival. A combination of metabolic engineering and synthetic biology has been used to improve the properties of cells for protein production, which has resulted in enhanced yields of multiple protein classes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Expression of heat shock protein genes in insect stress responses

    USDA-ARS?s Scientific Manuscript database

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  2. Emerging technology of in situ cell free expression protein microarrays.

    PubMed

    Nand, Amita; Gautam, Anju; Pérez, Javier Batista; Merino, Alejandro; Zhu, Jinsong

    2012-02-01

    Recently, in situ protein microarrays have been developed for large scale analysis and high throughput studies of proteins. In situ protein microarrays produce proteins directly on the solid surface from pre-arrayed DNA or RNA. The advances in in situ protein microarrays are exemplified by the ease of cDNA cloning and cell free protein expression. These technologies can evaluate, validate and monitor protein in a cost effective manner and address the issue of a high quality protein supply to use in the array. Here we review the importance of recently employed methods: PISA (protein in situ array), DAPA (DNA array to protein array), NAPPA (nucleic acid programmable protein array) and TUSTER microarrays and the role of these methods in proteomics.

  3. Evolution, diversification, and expression of KNOX proteins in plants

    PubMed Central

    Gao, Jie; Yang, Xue; Zhao, Wei; Lang, Tiange; Samuelsson, Tore

    2015-01-01

    The KNOX (KNOTTED1-like homeobox) transcription factors play a pivotal role in leaf and meristem development. The majority of these proteins are characterized by the KNOX1, KNOX2, ELK, and homeobox domains whereas the proteins of the KNATM family contain only the KNOX domains. We carried out an extensive inventory of these proteins and here report on a total of 394 KNOX proteins from 48 species. The land plant proteins fall into two classes (I and II) as previously shown where the class I family seems to be most closely related to the green algae homologs. The KNATM proteins are restricted to Eudicots and some species have multiple paralogs of this protein. Certain plants are characterized by a significant increase in the number of KNOX paralogs; one example is Glycine max. Through the analysis of public gene expression data we show that the class II proteins of this plant have a relatively broad expression specificity as compared to class I proteins, consistent with previous studies of other plants. In G. max, class I protein are mainly distributed in axis tissues and KNATM paralogs are overall poorly expressed; highest expression is in the early plumular axis. Overall, analysis of gene expression in G. max demonstrates clearly that the expansion in gene number is associated with functional diversification. PMID:26557129

  4. Major cancer protein amplifies global gene expression

    Cancer.gov

    Scientists may have discovered why a protein called MYC can provoke a variety of cancers. Like many proteins associated with cancer, MYC helps regulate cell growth. A new study carried out by researchers at the National Institutes of Health and colleagues

  5. Arachidonic acid induces Fas and FasL upregulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-Fos pathway and activation of p38 MAPK/ATF-2 pathway.

    PubMed

    Liu, Wen-Hsin; Chang, Long-Sen

    2009-12-15

    Arachidonic acid (AA)-induced apoptotic death of human leukemia U937 cells was characteristic of increase in intracellular Ca(2+) concentration ([Ca(2+)]i), ROS generation, ERK inactivation, p38 MPAK activation, degradation of procaspase-8 and production of truncated Bid (tBid). Moreover, AA treatment upregulated Fas/FasL protein expression and transcription of Fas/FasL mRNA. Downregulation of FADD blocked AA-induced procaspase-8 degradation and rescued viability of AA-treated cells. BAPTA-AM (Ca(2+) chelator) pretreatment abolished AA-induced ROS generation, while N-acetylcysteine (NAC, ROS scavenger) was unable to alter AA-elicited [Ca(2+)]i increase. Pretreatment with BAPTA-AM or NAC abrogated p38 MAPK activation and restored ERK activation. Suppression of p38 MAPK or transfection of constitutively active MEK1 abolished AA-induced Fas and FasL upregulation. AA treatment repressed ERK-mediated c-Fos phosphorylation but evoked p38 MAPK-mediated ATF-2 phosphorylation. Knockdown of c-Fos and ATF-2 by siRNA reflected that c-Fos counteracted the effect of ATF-2 on Fas/FasL upregulation. Taken together, our data indicate that Fas/FasL upregulation in AA-treated U937 cells is elicited by Ca(2+)/ROS-mediated suppression of ERK/c-Fos pathway and activation of p38 MAPK/ATF-2, and suggest that autocrine Fas-mediated apoptotoic mechanism is involved in AA-induced cell death.

  6. Tools for Co-expressing Multiple Proteins in Mammalian Cells

    PubMed Central

    Assur, Zahra; Hendrickson, Wayne A.; Mancia, Filippo

    2013-01-01

    Summary Structural and functional studies of many mammalian systems are critically dependent on abundant supplies of recombinant multi-protein complexes. Mammalian cells are often the most ideal, if not the only suitable host for such experiments. This is due to their intrinsic capability to generate functional mammalian proteins. This advantage is frequently countered by problems with yields in expression, time required to generate over-expressing lines, and elevated costs. Co-expression of multiple proteins adds another level of complexity to these experiments, as cells need to be screened and selected for expression of suitable levels of each component. Here we present an efficient fluorescence marking procedure for establishing stable cell lines that over-express two proteins in co-ordination, and we validate the method in the production of recombinant monoclonal antibody Fab fragments. This procedure may readily be expanded to systems of greater complexity, comprising more then two components. PMID:21987254

  7. Comparative Protein Profiling of Intraphagosomal Expressed Proteins of Mycobacterium bovis BCG.

    PubMed

    Singhal, Neelja; Kumar, Manish; Sharma, Divakar; Bisht, Deepa

    2016-01-01

    BCG, the only available vaccine against tuberculosis affords a variable protection which wanes with time. In this study we have analyzed and compared the proteins which are expressed differentially during broth-culture and intraphagosomal growth of M.bovis BCG. Eight proteins which showed increased expression during the intraphagosomal growth were identified by MALDI-TOF/MS. These were - a precursor of alanine and proline-rich secreted protein apa, isoforms of malate dehydrogenase, large subunit alpha (Alpha-ETF) of electron transfer flavoprotein, immunogenic protein MPB64 precursor, UPF0036 protein, and two proteins with unknown function. Based on these findings we speculate that higher expression of these proteins has a probable role in intracellular survival, adaptation and/or immunoprotective effect of BCG. Further, these proteins might also be used as gene expression markers for endosome trafficking events of BCG.

  8. Transient protein expression in three Pisum sativum (green pea) varieties.

    PubMed

    Green, Brian J; Fujiki, Masaaki; Mett, Valentina; Kaczmarczyk, Jon; Shamloul, Moneim; Musiychuk, Konstantin; Underkoffler, Susan; Yusibov, Vidadi; Mett, Vadim

    2009-02-01

    The expression of proteins in plants both transiently and via permanently transformed lines has been demonstrated by a number of groups. Transient plant expression systems, due to high expression levels and speed of production, show greater promise for the manufacturing of biopharmaceuticals when compared to permanent transformants. Expression vectors based on a tobacco mosaic virus (TMV) are the most commonly utilized and the primary plant used, Nicotiana benthamiana, has demonstrated the ability to express a wide range of proteins at levels amenable to purification. N. benthamiana has two limitations for its use; one is its relatively slow growth, and the other is its low biomass. To address these limitations we screened a number of legumes for transient protein expression. Using the alfalfa mosaic virus (AMV) and the cucumber mosaic virus (CMV) vectors, delivered via Agrobacterium, we were able to identify three Pisum sativum varieties that demonstrated protein expression transiently. Expression levels of 420 +/- 26.24 mg GFP/kgFW in the green pea variety speckled pea were achieved. We were also able to express three therapeutic proteins indicating promise for this system in the production of biopharmaceuticals.

  9. Mobile phone radiation might alter protein expression in human skin

    PubMed Central

    Karinen, Anu; Heinävaara, Sirpa; Nylund, Reetta; Leszczynski, Dariusz

    2008-01-01

    Background Earlier we have shown that the mobile phone radiation (radiofrequency modulated electromagnetic fields; RF-EMF) alters protein expression in human endothelial cell line. This does not mean that similar response will take place in human body exposed to this radiation. Therefore, in this pilot human volunteer study, using proteomics approach, we have examined whether a local exposure of human skin to RF-EMF will cause changes in protein expression in living people. Results Small area of forearm's skin in 10 female volunteers was exposed to RF-EMF (specific absorption rate SAR = 1.3 W/kg) and punch biopsies were collected from exposed and non-exposed areas of skin. Proteins extracted from biopsies were separated using 2-DE and protein expression changes were analyzed using PDQuest software. Analysis has identified 8 proteins that were statistically significantly affected (Anova and Wilcoxon tests). Two of the proteins were present in all 10 volunteers. This suggests that protein expression in human skin might be affected by the exposure to RF-EMF. The number of affected proteins was similar to the number of affected proteins observed in our earlier in vitro studies. Conclusion This is the first study showing that molecular level changes might take place in human volunteers in response to exposure to RF-EMF. Our study confirms that proteomics screening approach can identify protein targets of RF-EMF in human volunteers. PMID:18267023

  10. Impact of Chronic Alcohol Ingestion on Cardiac Muscle Protein Expression

    PubMed Central

    Fogle, Rachel L.; Lynch, Christopher J.; Palopoli, Mary; Deiter, Gina; Stanley, Bruce A.; Vary, Thomas C.

    2014-01-01

    Background Chronic alcohol abuse contributes not only to an increased risk of health-related complications, but also to a premature mortality in adults. Myocardial dysfunction, including the development of a syndrome referred to as alcoholic cardiomyopathy, appears to be a major contributing factor. One mechanism to account for the pathogenesis of alcoholic cardiomyopathy involves alterations in protein expression secondary to an inhibition of protein synthesis. However, the full extent to which myocardial proteins are affected by chronic alcohol consumption remains unresolved. Methods The purpose of this study was to examine the effect of chronic alcohol consumption on the expression of cardiac proteins. Male rats were maintained for 16 weeks on a 40% ethanol-containing diet in which alcohol was provided both in drinking water and agar blocks. Control animals were pair-fed to consume the same caloric intake. Heart homogenates from control- and ethanol-fed rats were labeled with the cleavable isotope coded affinity tags (ICAT™). Following the reaction with the ICAT™ reagent, we applied one-dimensional gel electrophoresis with in-gel trypsin digestion of proteins and subsequent MALDI-TOF-TOF mass spectrometric techniques for identification of peptides. Differences in the expression of cardiac proteins from control- and ethanol-fed rats were determined by mass spectrometry approaches. Results Initial proteomic analysis identified and quantified hundreds of cardiac proteins. Major decreases in the expression of specific myocardial proteins were observed. Proteins were grouped depending on their contribution to multiple activities of cardiac function and metabolism, including mitochondrial-, glycolytic-, myofibrillar-, membrane-associated, and plasma proteins. Another group contained identified proteins that could not be properly categorized under the aforementioned classification system. Conclusions Based on the changes in proteins, we speculate modulation of

  11. Exocyst Complex Protein Expression in the Human Placenta

    PubMed Central

    Gonzalez, I.M.; Ackerman, W.E.; Vandre, D.D.; Robinson, J.M.

    2014-01-01

    Introduction Protein production and secretion are essential to syncytiotrophoblast function and are associated with cytotrophoblast cell fusion and differentiation. Syncytiotrophoblast hormone secretion is a crucial determinant of maternal-fetal health, and can be misregulated in pathological pregnancies. Although, polarized secretion is a key component of placental function, the mechanisms underlying this process are poorly understood. Objective While the octameric exocyst complex is classically regarded as a master regulator of secretion in various mammalian systems, its expression in the placenta remained unexplored. We hypothesized that the syncytiotrophoblast would express all exocyst complex components and effector proteins requisite for vesicle-mediated secretion more abundantly than cytotrophoblasts in tissue specimens. Methods A two-tiered immunobiological approach was utilized to characterize exocyst and ancillary proteins in normal, term human placentas. Exocyst protein expression and localization was documented in tissue homogenates via immunoblotting and immunofluorescence labeling of placental sections. Results The eight exocyst proteins, EXOC1, 2, 3, 4, 5, 6, 7, and 8, were found in the human placenta. In addition, RAB11, an important exocyst complex modulator, was also expressed. Exocyst and Rab protein expression appeared to be regulated during trophoblast differentiation, as the syncytiotrophoblast expressed these proteins with little, if any, expression in cytotrophoblast cells. Additionally, exocyst proteins were localized at or near the syncytiotrophoblast apical membrane, the major site of placental secretion Discussion/Conclusion Our findings highlight exocyst protein expression as novel indicators of trophoblast differentiation. The exocyst’s regulated localization within the syncytiotrophoblast in conjunction with its well known functions suggests a possible role in placental polarized secretion PMID:24856041

  12. Exocyst complex protein expression in the human placenta.

    PubMed

    Gonzalez, I M; Ackerman, W E; Vandre, D D; Robinson, J M

    2014-07-01

    Protein production and secretion are essential to syncytiotrophoblast function and are associated with cytotrophoblast cell fusion and differentiation. Syncytiotrophoblast hormone secretion is a crucial determinant of maternal-fetal health, and can be misregulated in pathological pregnancies. Although, polarized secretion is a key component of placental function, the mechanisms underlying this process are poorly understood. While the octameric exocyst complex is classically regarded as a master regulator of secretion in various mammalian systems, its expression in the placenta remained unexplored. We hypothesized that the syncytiotrophoblast would express all exocyst complex components and effector proteins requisite for vesicle-mediated secretion more abundantly than cytotrophoblasts in tissue specimens. A two-tiered immunobiological approach was utilized to characterize exocyst and ancillary proteins in normal, term human placentas. Exocyst protein expression and localization was documented in tissue homogenates via immunoblotting and immunofluorescence labeling of placental sections. The eight exocyst proteins, EXOC1, 2, 3, 4, 5, 6, 7, and 8, were found in the human placenta. In addition, RAB11, an important exocyst complex modulator, was also expressed. Exocyst and Rab protein expression appeared to be regulated during trophoblast differentiation, as the syncytiotrophoblast expressed these proteins with little, if any, expression in cytotrophoblast cells. Additionally, exocyst proteins were localized at or near the syncytiotrophoblast apical membrane, the major site of placental secretion. Our findings highlight exocyst protein expression as novel indicators of trophoblast differentiation. The exocyst's regulated localization within the syncytiotrophoblast in conjunction with its well known functions suggests a possible role in placental polarized secretion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Human SUMO fusion systems enhance protein expression and solubility.

    PubMed

    Wang, Zhongyuan; Li, Haolong; Guan, Wei; Ling, Haili; Wang, Zhiyong; Mu, Tianyang; Shuler, Franklin D; Fang, Xuexun

    2010-10-01

    A major challenge associated with recombinant protein production in Escherichia coli is generation of large quantities of soluble, functional protein. Yeast SUMO (small ubiquitin-related modifier), has been shown to enhance heterologous protein expression and solubility as fusion tag, however, the effects of human SUMOs on protein expression have not been investigated. Here we describe the use of human SUMO1 and SUMO2 as a useful gene fusion technology. Human SUMO1 and SUMO2 fusion expression vectors were constructed and tested in His-tag and ubiquitin fusion expression systems. Two difficult-to-express model proteins, matrix metalloprotease-13 (MMP13) and enhanced green fluorescence protein (eGFP) were fused to the C-terminus of the human SUMO1 and SUMO2 expression vectors. These constructs were expressed in E. coli and evaluation of MMP13 and eGFP expression and solubility was conducted. We found that both SUMO1 and SUMO2 had the ability to enhance the solubility of MMP13 and eGFP, with the SUMO2 tag having a more significant effect. Since fusion tags produce varying quantities of soluble proteins, we assessed the effect of SUMO2 coupled with ubiquitin (Ub). SUMO2-ubiquitin and ubiquitin-SUMO2 fusion expression plasmids were constructed with eGFP as a passenger protein. Following expression in E. coli, both plasmids could improve eGFP expression and solubility similar to the SUMO2 fusion and better than the ubiquitin fusion. The sequential order of SUMO2 and ubiquitin had little effect on expression and solubility of eGFP. Purification of eGFP from the gene fusion product, SUMO2-ubiquitin-eGFP, involved cleavage by a deubiquitinase (Usp2-cc) and Ni-Sepharose column chromatography. The eGFP protein was purified to high homogeneity. In summary, human SUMO1 and SUMO2 are useful gene fusion technologies enhancing the expression, solubility and purification of model heterologous proteins. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Improving membrane protein expression by optimizing integration efficiency.

    PubMed

    Niesen, Michiel J M; Marshall, Stephen S; Miller, Thomas F; Clemons, William M

    2017-09-16

    The heterologous overexpression of integral membrane proteins in Escherichia coli often yields insufficient quantities of purifiable protein for applications of interest. The current study leverages a recently demonstrated link between co-translational membrane integration efficiency and protein expression levels to predict protein sequence modifications that improve expression. Membrane integration efficiencies, obtained using a coarse-grained simulation approach, robustly predicted effects on expression of the integral membrane protein TatC for a set of 140 sequence modifications, including loop-swap chimeras and single-residue mutations distributed throughout the protein sequence. Mutations that improve simulated integration efficiency were four-fold enriched with respect to improved experimentally observed expression levels. Furthermore, the effect of double mutations, on both simulated integration efficiency and experimentally observed expression levels were cumulative and largely independent, suggesting that multiple mutations can be introduced to yield higher levels of purifiable protein. This work provides a foundation for a general method for the rational overexpression of integral membrane proteins based on computationally simulated membrane integration efficiencies. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  15. Protein Production for Structural Genomics Using E. coli Expression

    PubMed Central

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Li, Hui; Zhou, Min; Joachimiak, Grazyna; Babnigg, Gyorgy; Joachimiak, Andrzej

    2014-01-01

    The goal of structural biology is to reveal details of the molecular structure of proteins in order to understand their function and mechanism. X-ray crystallography and NMR are the two best methods for atomic level structure determination. However, these methods require milligram quantities of proteins. In this chapter a reproducible methodology for large-scale protein production applicable to a diverse set of proteins is described. The approach is based on protein expression in E. coli as a fusion with a cleavable affinity tag that was tested on over 20,000 proteins. Specifically, a protocol for fermentation of large quantities of native proteins in disposable culture vessels is presented. A modified protocol that allows for the production of selenium-labeled proteins in defined media is also offered. Finally, a method for the purification of His6-tagged proteins on immobilized metal affinity chromatography columns that generates high-purity material is described in detail. PMID:24590711

  16. Predominant expression of Fas ligand mRNA in CD8+ T lymphocytes in patients with HTLV-1 associated myelopathy.

    PubMed

    Kawahigashi, N; Furukawa, Y; Saito, M; Usuku, K; Osame, M

    1998-10-01

    To determine if Fas ligand (FasL) mediated apoptosis is involved in the pathogenesis of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), we examined the expression of FasL mRNA in fresh uncultured peripheral blood mononuclear cells (PBMC) from 17 Japanese patients with HAM/TSP, four adult T-cell leukemia/lymphoma (ATL) patients, three asymptomatic HTLV-1 carriers and three normal individuals. Using competitive PCR with primers specific for FasL mRNA, we demonstrated that nine of 17 HAM/TSP and one of four ATL patients expressed significant levels of FasL mRNA, whereas asymptomatic carriers, normal controls and both HTLV-1 infected and uninfected T-cell lines did not. Cell separation analysis following PCR revealed that FasL mRNA was expressed in CD8 + T lymphocytes. FasL mRNA was preferentially expressed in patients with increased proviral load and longer duration of clinical illness. These results suggest that FasL mediated mechanisms contribute to the pathogenesis of HAM/TSP.

  17. Protein Expression Dynamics During Postnatal Mouse Brain Development

    PubMed Central

    Laeremans, Annelies; Van de Plas, Babs; Clerens, Stefan; Van den Bergh, Gert; Arckens, Lutgarde; Hu, Tjing-Tjing

    2013-01-01

    We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation. PMID:25157209

  18. Analysis of incomplete gene expression dataset through protein-protein interaction information.

    PubMed

    Massanet-Vila, Raimon; Padró, Teresa; Cardús, Anna; Badimon, Lina; Caminal, Pere; Perera, Alexandre

    2011-01-01

    This paper shows a graph based method to analyze proteomic expression data. The method allows the prediction of the expression of genes not measured by the gene expression technology based on the local connectivity properties of the measured differentially expressed gene set. The prediction of the expression jointly with the stability of this prediction as a function of the variation of the initial expressed set is computed. The method is able to correctly predict one third of the proteins with independence of variations on the selection of the initial set. The algorithm is validated through a Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometer (MALDI-TOF) protein expression experiment aiming the study of the protein expression patterns and post-translational modifications in human endothelial vascular cells exposed to atherosclerotic levels of Low Density Lipoproteins (LDL).

  19. Proteins and an Inflammatory Network Expressed in Colon Tumors

    PubMed Central

    Zhu, Wenhong; Fang, Changming; Gramatikoff, Kosi; Niemeyer, Christina C.; Smith, Jeffrey W.

    2011-01-01

    The adenomatous polyposis coli (APC) protein is crucial to homeostasis of normal intestinal epithelia because it suppresses the β-catenin/TCF pathway. Consequently, loss or mutation of the APC gene causes colorectal tumors in humans and mice. Here, we describe our use of Multidimensional Protein Identification Technology (MudPIT) to compare protein expression in colon tumors to that of adjacent healthy colon tissue from ApcMin/+ mice. Twenty-seven proteins were found to be up-regulated in colon tumors and twenty-five down-regulated. As an extension of the proteomic analysis, the differentially expressed proteins were used as “seeds” to search for co-expressed genes. This approach revealed a co-expression network of 45 genes that is up-regulated in colon tumors. Members of the network include the antibacterial peptide cathelicidin (CAMP), Toll-like receptors (TLRs), IL-8, and triggering receptor expressed on myeloid cells 1 (TREM1). The co-expression network is associated with innate immunity and inflammation, and there is significant concordance between its connectivity in humans versus mice (Friedman: p value = 0.0056). This study provides new insights into the proteins and networks that are likely to drive the onset and progression of colon cancer. PMID:21366352

  20. Expression of Yes-associated protein modulates Survivin expression in primary liver malignancies.

    PubMed

    Bai, Haibo; Gayyed, Mariana F; Lam-Himlin, Dora M; Klein, Alison P; Nayar, Suresh K; Xu, Yang; Khan, Mehtab; Argani, Pedram; Pan, Duojia; Anders, Robert A

    2012-09-01

    Hepatocellular carcinoma and intrahepatic cholangiocarcinoma account for 95% of primary liver cancer. For each of these malignancies, the outcome is dismal; incidence is rapidly increasing, and mechanistic understanding is limited. We observed abnormal proliferation of both biliary epithelium and hepatocytes in mice after genetic manipulation of Yes-associated protein, a transcription coactivator. Here, we comprehensively documented Yes-associated protein expression in the human liver and primary liver cancers. We showed that nuclear Yes-associated protein expression is significantly increased in human intrahepatic cholangiocarcinoma and hepatocellular carcinoma. We found that increased Yes-associated protein levels in hepatocellular carcinoma are due to multiple mechanisms including gene amplification and transcriptional and posttranscriptional regulation. Survivin, a member of the inhibitors-of-apoptosis protein family, has been reported as an independent prognostic factor for poor survival in both hepatocellular carcinoma and intrahepatic cholangiocarcinoma. We found that nuclear Yes-associated protein expression correlates significantly with nuclear Survivin expression for both intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Furthermore, using mice engineered to conditionally overexpress Yes-associated protein in the liver, we found that Survivin messenger RNA expression depends upon Yes-associated protein levels. Our findings suggested that Yes-associated protein contributes to primary liver tumorigenesis and likely mediates its oncogenic effects through modulating Survivin expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Performance benchmarking of four cell-free protein expression systems.

    PubMed

    Gagoski, Dejan; Polinkovsky, Mark E; Mureev, Sergey; Kunert, Anne; Johnston, Wayne; Gambin, Yann; Alexandrov, Kirill

    2016-02-01

    Over the last half century, a range of cell-free protein expression systems based on pro- and eukaryotic organisms have been developed and have found a range of applications, from structural biology to directed protein evolution. While it is generally accepted that significant differences in performance among systems exist, there is a paucity of systematic experimental studies supporting this notion. Here, we took advantage of the species-independent translation initiation sequence to express and characterize 87 N-terminally GFP-tagged human cytosolic proteins of different sizes in E. coli, wheat germ (WGE), HeLa, and Leishmania-based (LTE) cell-free systems. Using a combination of single-molecule fluorescence spectroscopy, SDS-PAGE, and Western blot analysis, we assessed the expression yields, the fraction of full-length translation product, and aggregation propensity for each of these systems. Our results demonstrate that the E. coli system has the highest expression yields. However, we observe that high expression levels are accompanied by production of truncated species-particularly pronounced in the case of proteins larger than 70 kDa. Furthermore, proteins produced in the E. coli system display high aggregation propensity, with only 10% of tested proteins being produced in predominantly monodispersed form. The WGE system was the most productive among eukaryotic systems tested. Finally, HeLa and LTE show comparable protein yields that are considerably lower than the ones achieved in the E. coli and WGE systems. The protein products produced in the HeLa system display slightly higher integrity, whereas the LTE-produced proteins have the lowest aggregation propensity among the systems analyzed. The high quality of HeLa- and LTE-produced proteins enable their analysis without purification and make them suitable for analysis of multi-domain eukaryotic proteins.

  2. GTP cyclohydrolase I expression, protein, and activity determine intracellular tetrahydrobiopterin levels, independent of GTP cyclohydrolase feedback regulatory protein expression.

    PubMed

    Tatham, Amy L; Crabtree, Mark J; Warrick, Nicholas; Cai, Shijie; Alp, Nicholas J; Channon, Keith M

    2009-05-15

    GTP cyclohydrolase I (GTPCH) is a key enzyme in the synthesis of tetrahydrobiopterin (BH4), a required cofactor for nitricoxide synthases and aromatic amino acid hydroxylases. Alterations of GTPCH activity and BH4 availability play an important role in human disease. GTPCH expression is regulated by inflammatory stimuli, in association with reduced expression of GTP cyclohydrolase feedback regulatory protein (GFRP). However, the relative importance of GTPCH expression versus GTPCH activity and the role of GFRP in relation to BH4 bioavailability remain uncertain. We investigated these relationships in a cell line with tet-regulated GTPCH expression and in the hph-1 mouse model of GTPCH deficiency. Doxycycline exposure resulted in a dose-dependent decrease in GTPCH protein and activity, with a strong correlation between GTPCH expression and BH4 levels (r(2) = 0.85, p < 0.0001). These changes in GTPCH and BH4 had no effect on GFRP expression or protein levels. GFRP overexpression and knockdown in tet-GCH cells did not alter GTPCH activity or BH4 levels, and GTPCH-specific knockdown in sEnd.1 endothelial cells had no effect on GFRP protein. In mouse liver we observed a graded reduction of GTPCH expression, protein, and activity, from wild type, heterozygote, to homozygote littermates, with a striking linear correlation between GTPCH expression and BH4 levels (r(2) = 0.82, p < 0.0001). Neither GFRP expression nor protein differed between wild type, heterozygote, nor homozygote mice, despite the substantial differences in BH4. We suggest that GTPCH expression is the primary regulator of BH4 levels, and changes in GTPCH or BH4 are not necessarily accompanied by changes in GFRP expression.

  3. Recombinant Brucella abortus gene expressing immunogenic protein

    SciTech Connect

    Mayfield, J.E.; Tabatabai, L.B.

    1991-06-11

    This patent describes a synthetic recombinant DNA molecule containing a DNA sequence. It comprises a gene of Brucella abortus encoding an immunogenic protein having a molecular weight of approximately 31,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis under denaturing conditions, the protein having an isoelectric point around 4.9, and containing a twenty-five amino acid sequence from its amino terminal end consisting of Gln-Ala-Pro-Thr-Phe-Phe-Arg-Ile-Gly-Thr-Gly-Gly-Thr-Ala-Gly-Thr-Tyr-Tyr-Pro-Ile-Gly-Gly-Leu-Ile-Ala, wherein Gln, Ala, Pro, Thr, Phe, Arg, Ile, Gly, Tyr, and Leu, respectively, represent glutamine, alanine, proline, threonine, phenylalanine, arginine, isolecuine, glycine, tyrosine, and leucine.

  4. Patterns of fluorescent protein expression in Scleractinian corals.

    PubMed

    Gruber, David F; Kao, Hung-Teh; Janoschka, Stephen; Tsai, Julia; Pieribone, Vincent A

    2008-10-01

    Biofluorescence exists in only a few classes of organisms, with Anthozoa possessing the majority of species known to express fluorescent proteins. Most species within the Anthozoan subgroup Scleractinia (reef-building corals) not only express green fluorescent proteins, they also localize the proteins in distinct anatomical patterns.We examined the distribution of biofluorescence in 33 coral species, representing 8 families, from study sites on Australia's Great Barrier Reef. For 28 of these species, we report the presence of biofluorescence for the first time. The dominant fluorescent emissions observed were green (480-520 nm) and red (580-600 nm). Fluorescent proteins were expressed in three distinct patterns (highlighted, uniform, and complementary) among specific anatomical structures of corals across a variety of families. We report no significant overlap between the distribution of fluorescent proteins and the distribution of zooxanthellae. Analysis of the patterns of fluorescent protein distribution provides evidence that the scheme in which fluorescent proteins are distributed among the anatomical structures of corals is nonrandom. This targeted expression of fluorescent proteins in corals produces contrast and may function as a signaling mechanism to organisms with sensitivity to specific wavelengths of light.

  5. A Statistical Study on Oscillatory Protein Expression

    NASA Astrophysics Data System (ADS)

    Yan, Shiwei

    Motivated by the experiments on the dynamics of a common network motif, p53 and Mdm2 feedback loop, by Lahav et al. [Nat. Genet 36, 147(2004)] in individual cells and Lev Bar-or et al. [Proc. Natl. Acad. Sci. USA 97, 11250(2000)] at the population of cells, we propose a statistical signal-response model with aiming to describe the different oscillatory behaviors for the activities of p53 and Mdm2 proteins both in individual and in population of cells in a unified way. At the cellular level, the activities of p53 and Mdm2 proteins are described by a group of nonlinear dynamical equations where the damage-derived signal is assumed to have the form with abrupt transition (”on” leftrightarrow ”off”) as soon as signal strength passes forth and back across a threshold. Each cell responses to the damage with different time duration within which the oscillations persist. For the case of population of cells, the activities of p53 and Mdm2 proteins will be the population average of the individual cells, which results damped oscillations, due to the averaging over the cell population with the different response time.

  6. Expression and Purification of Mini G Proteins from Escherichia coli.

    PubMed

    Carpenter, Byron; Tate, Christopher G

    2017-04-20

    Heterotrimeric G proteins modulate intracellular signalling by transducing information from cell surface G protein-coupled receptors (GPCRs) to cytoplasmic effector proteins. Structural and functional characterisation of GPCR-G protein complexes is important to fully decipher the mechanism of signal transduction. However, native G proteins are unstable and conformationally dynamic when coupled to a receptor. We therefore developed an engineered minimal G protein, mini-Gs, which formed a stable complex with GPCRs, and facilitated the crystallisation and structure determination of the human adenosine A2A receptor (A2AR) in its active conformation. Mini G proteins are potentially useful tools in a variety of applications, including characterising GPCR pharmacology, binding affinity and kinetic experiments, agonist drug discovery, and structure determination of GPCR-G protein complexes. Here, we describe a detailed protocol for the expression and purification of mini-Gs.

  7. Enhanced membrane protein expression by engineering increased intracellular membrane production

    PubMed Central

    2013-01-01

    Background Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of

  8. Climbazole increases expression of cornified envelope proteins in primary keratinocytes.

    PubMed

    Pople, J E; Moore, A E; Talbot, D C S; Barrett, K E; Jones, D A; Lim, F L

    2014-10-01

    Dandruff is a troubling consumer problem characterized by flaking and pruritus of the scalp and is considered a multifactorial condition with sebum, individual susceptibility and the fungus Malassezia all thought to play a part. The condition is commonly treated with shampoo products containing antifungal ingredients such as zinc pyrithione and climbazole. It is hypothesized that these ingredients may be delivering additional scalp skin benefits besides their antifungal activity helping to relieve dandruff effectively. The objective of this study was to evaluate the anti-dandruff ingredient climbazole for potential skin benefits using genomics and in vitro assays. Microarray analysis was performed to profile gene expression changes in climbazole-treated primary human keratinocyte cells. Results were independently validated using qPCR and analysis of protein expression using ELISA and immunocytochemistry. Microarray analysis of climbazole-treated keratinocytes showed statistically significant expression changes in genes associated with the gene ontology groups encompassing epidermal differentiation, keratinization, cholesterol biosynthesis and immune response. Upregulated genes included a number encoding cornified envelope proteins such as group 3 late-cornified envelope proteins, LCE3 and group 2 small-proline-rich proteins, SPRR2. Protein analysis studies of climbazole-treated primary keratinocytes using ELISA and immunocytochemistry were able to demonstrate that the increase in gene transcripts translated into increased protein expression of these cornified envelope markers. Climbazole treatment of primary keratinocytes results in an upregulation in expression of a number of genes including those encoding proteins involved in cornified envelope formation with further studies demonstrating this did translate into increased protein expression. A climbazole-driven increase in cornified envelope proteins may improve the scalp skin barrier, which is known to be weaker

  9. Clinicopathological significance of Fas and Fas ligand expressions in esophageal cancer

    PubMed Central

    Wu, Guang-Zhou; Pan, Chun-Xia; Jiang, Dong; Zhang, Qiang; Li, Yin; Zheng, Shi-Ying

    2015-01-01

    Esophageal carcinomas have recently been shown to express Fas ligand (FasL) and down-regulate Fas to escape from host immune surveillance. However, the prognostic importance of Fas/FasL and their correlation with clinicopathological characteristics are yet to be delineated in this highly malignant carcinoma. Specimens from 106 esophageal squamous cell carcinoma patients were used for immuno-histochemical evaluation of Fas, FasL, and CD8 expressions. Fifty-two (49%) and 34 (32%) patients were positive for FasL and Fas, respectively. There were no associations between FasL expression and clinicopathological characteristics except lymph vessel invasion. Strong FasL expression correlated with significant (P < 0.001) decrease in tumor nest CD81 cells. However, neither FasL nor CD81 had any impact on patient survival. Strong Fas expression was correlated with depth of invasion (40.3% in pT1, T2 versus 20.5% in pT3, T4; P5 0.0308), histological differentiation (45.7% in well versus 25.4% in nonwell; P < 0.05), and lymph node metastasis (22.6% in positive versus 45.5% in negative; P < 0.01). Fas expression was one of the independent favorable prognosticators for patients’ survival (risk ratio, 3.26; P < 0.01) in esophageal SCC. Fas expression was an independent prognosticator for recurrencefree survival, whereas FasL expression did not influence the survival in esophageal squamous cell carcinoma. Down-regulation of tumor Fas may be the hallmark of immune privilege for the tumor, thus causing the patients’ poorer outcome. Tumor FasL may counterattack the host immune cells to such an extent that the prognosis is not affected. PMID:26609492

  10. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression

    PubMed Central

    2012-01-01

    Background Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase. Results Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative bifurcating hydrogenase

  11. Recombinant protein expression in Escherichia coli: advances and challenges

    PubMed Central

    Rosano, Germán L.; Ceccarelli, Eduardo A.

    2014-01-01

    Escherichia coli is one of the organisms of choice for the production of recombinant proteins. Its use as a cell factory is well-established and it has become the most popular expression platform. For this reason, there are many molecular tools and protocols at hand for the high-level production of heterologous proteins, such as a vast catalog of expression plasmids, a great number of engineered strains and many cultivation strategies. We review the different approaches for the synthesis of recombinant proteins in E. coli and discuss recent progress in this ever-growing field. PMID:24860555

  12. Matricellular protein CCN1 mediates doxorubicin-induced cardiomyopathy in mice

    PubMed Central

    Hsu, Pei-Ling; Mo, Fan-E

    2016-01-01

    Doxorubicin (DOX) is an effective chemotherapeutic agent however its clinical use is limited by its cumulative cardiotoxicity. Matricellular protein CCN1 mediates work-overload-induced cardiac injury. We aimed to assess the role of CCN1 in DOX-associated cardiomyopathy. Here we discovered CCN1 expression in the myocardium 1 day after DOX treatment (15 mg/kg; i.p.) in mice. Whereas CCN1 synergizes with Fas ligand (FasL) to induce cardiomyocyte apoptosis, we found that FasL was also induced by DOX in the heart. To assess the function of CCN1 in vivo, knockin mice (Ccn1dm/dm) expressing an β6β1-binding defective CCN1 mutant were treated with a single dose of DOX (15 mg/kg; i.p.). Compared with wild-type mice, Ccn1dm/dm mice were resistant to DOX-induced cardiac injury and dysfunction 14 days after injection. Using rat cardiomyoblast H9c2 cells, we demonstrated that DOX induced reactive oxygen species accumulation to upregulate CCN1 and FasL expression. CCN1 mediated DOX cardiotoxicity by engaging integrin β6β1 to promote p38 mitogen-activated protein kinase activation and the release of mitochondrial Smac and HtrA2 to cytosol, thereby counteracting the inhibition of XIAP and facilitating apoptosis. In summary, CCN1 critically mediates DOX-induced cardiotoxicity. Disrupting CCN1/β6β1 engagement abolishes DOX-associated cardiomyopathy in mice. PMID:27167338

  13. Expression of rabies virus G protein in carrots (Daucus carota).

    PubMed

    Rojas-Anaya, Edith; Loza-Rubio, Elizabeth; Olivera-Flores, Maria Teresa; Gomez-Lim, Miguel

    2009-12-01

    Antigens derived from various pathogens can readily be synthesized at high levels in plants in their authentic forms. Such antigens administered orally can induce an immune response and, in some cases, result in protection against a subsequent challenge. We here report the expression of rabies virus G protein into carrots. The G gene was subcloned into the pUCpSSrabG vector and then used to transform carrot embryogenic cells by particle bombardment. The carrot cells were selected in liquid medium, a method previously unreported. The presence of the transgene was verified by PCR, and by RT-PCR. By western blot, G protein transgene was identified in 93.3% of adult carrot roots. The G protein was quantified by densitometric analysis (range 0.4-1.2%). The expressed protein was antigenic in mice. This confirms that the carrot is an adequate system for antigen expression.

  14. Vectors for the expression of tagged proteins in Drosophila.

    PubMed

    Parker, L; Gross, S; Alphey, L

    2001-12-01

    Regulated expression systems have been extremely useful in developmental studies, allowing the expression of specific proteins in defined spatial and temporal patterns. If these proteins are fused to an appropriate molecular tag, then they can be purified or visualized without the need to raise specific antibodies. If the tag is inherently fluorescent, then the proteins can even be visualized directly, in living tissue. We have constructed a series of P element-based transformation vectors for the most widely used expression system in Drosophila, GAL4/UAS. These vectors provide a series of useful tags for antibody detection, protein purification, and/or direct visualization, together with a convenient multiple cloning site into which the cDNA of interest can be inserted.

  15. Microfluidic chips for protein differential expression profiling.

    PubMed

    Armenta, Jenny M; Dawoud, Abdulilah A; Lazar, Iulia M

    2009-04-01

    Biomarker discovery and screening using novel proteomic technologies is an area that is attracting increased attention in the biomedical community. Early detection of abnormal physiological conditions will be highly beneficial for diagnosing various diseases and increasing survivability rates. Clearly, progress in this area will depend on the development of fast, reliable, and highly sensitive and specific sample bioanalysis methods. Microfluidics has emerged as a technology that could become essential in proteomics research as it enables the integration of all sample preparation, separation, and detection steps, with the added benefit of enhanced sample throughput. The combination of these advantages with the sensitivity and capability of MS detection to deliver precise structural information makes microfluidics-MS a very competitive technology for biomarker discovery. The integration of LC microchip devices with MS detection, and specifically their applicability to biomarker screening applications in MCF-7 breast cancer cellular extracts is reported in this manuscript. Loading approximately 0.1-1 microg of crude protein extract tryptic digest on the chip has typically resulted in the reliable identification of approximately 40-100 proteins. The potential of an LC-ESI-MS chip for comparative proteomic analysis of isotopically labeled MCF-7 breast cancer cell extracts is explored for the first time.

  16. Variation in Protein Intake Induces Variation in Spider Silk Expression

    PubMed Central

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  17. Differential Protein Expression in Congenital and Acquired Cholesteatomas

    PubMed Central

    Kim, Sung Huhn; Choi, Jae Young

    2015-01-01

    Congenital cholesteatomas are epithelial lesions that present as an epithelial pearl behind an intact eardrum. Congenital and acquired cholesteatomas progress quite differently from each other and progress patterns can provide clues about the unique origin and pathogenesis of the abnormality. However, the exact pathogenic mechanisms by which cholesteatomas develop remain unknown. In this study, key proteins that directly affect cholesteatoma pathogenesis are investigated with proteomics and immunohistochemistry. Congenital cholesteatoma matrices and retroauricular skin were harvested during surgery in 4 patients diagnosed with a congenital cholesteatoma. Tissue was also harvested from the retraction pocket in an additional 2 patients during middle ear surgery. We performed 2-dimensional (2D) electrophoresis to detect and analyze spots that are expressed only in congenital cholesteatoma and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) to separate proteins by molecular weight. Protein expression was confirmed by immunohistochemical staining. The image analysis of 2D electrophoresis showed that 4 congenital cholesteatoma samples had very similar protein expression patterns and that 127 spots were exclusively expressed in congenital cholesteatomas. Of these 127 spots, 10 major spots revealed the presence of titin, forkhead transcription activator homolog (FKH 5–3), plectin 1, keratin 10, and leucine zipper protein 5 by MALDI-TOF/MS analysis. Immunohistochemical staining showed that FKH 5–3 and titin were expressed in congenital cholesteatoma matrices, but not in acquired cholesteatomas. Our study shows that protein expression patterns are completely different in congenital cholesteatomas, acquired cholesteatomas, and skin. Moreover, non-epithelial proteins, including FKH 5–3 and titin, were unexpectedly expressed in congenital cholesteatoma tissue. Our data indicates that congenital cholesteatoma origins may differ

  18. Differential protein expression in Phalaenopsis under low temperature.

    PubMed

    Yuan, Xiu-Yun; Liang, Fang; Jiang, Su-Hua; Wan, Mo-Fei; Ma, Jie; Zhang, Xian-Yun; Cui, Bo

    2015-01-01

    A comparative proteomic analysis was carried out to explore the molecular mechanisms of responses to cold stress in Phalaenopsis after treated by low temperature (13/8 °C day/night) for 15 days. Differentially expressed proteins were examined using two-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-TOF/MS). Among 85 differentially expressed proteins, 73 distinct proteins were identified. Comparative analysis revealed that the identified proteins mainly participate in photosynthesis, protein synthesis, folding and degradation, respiration, defense response, amino acid metabolism, energy pathway, cytoskeleton, transcription regulation, signal transduction, and seed storage protein, while the functional classification of the remaining four proteins was not determined. These data suggested that the proteins might work cooperatively to establish a new homeostasis under cold stress; 37 % of the identified cold-responsive proteins were associated with various aspects of chloroplast physiology, and 56 % of them were predicted to be located in the chloroplasts, implying that the cold stress tolerance of Phalaenopsis was achieved, at least partly, by regulation of chloroplast function. Moreover, the protein destination control, which was mediated by chaperones and proteases, plays an important role in tolerance to cold stress.

  19. Global Analysis of Protein Expression of Inner Ear Hair Cells.

    PubMed

    Hickox, Ann E; Wong, Ann C Y; Pak, Kwang; Strojny, Chelsee; Ramirez, Miguel; Yates, John R; Ryan, Allen F; Savas, Jeffrey N

    2017-02-01

    The mammalian inner ear (IE) subserves auditory and vestibular sensations via highly specialized cells and proteins. Sensory receptor hair cells (HCs) are necessary for transducing mechanical inputs and stimulating sensory neurons by using a host of known and as yet unknown protein machinery. To understand the protein composition of these unique postmitotic cells, in which irreversible protein degradation or damage can lead to impaired hearing and balance, we analyzed IE samples by tandem mass spectrometry to generate an unbiased, shotgun-proteomics view of protein identities and abundances. By using Pou4f3/eGFP-transgenic mice in which HCs express GFP driven by Pou4f3, we FACS purified a population of HCs to analyze and compare the HC proteome with other IE subproteomes from sensory epithelia and whole IE. We show that the mammalian HC proteome comprises hundreds of uniquely or highly expressed proteins. Our global proteomic analysis of purified HCs extends the existing HC transcriptome, revealing previously undetected gene products and isoform-specific protein expression. Comparison of our proteomic data with mouse and human databases of genetic auditory/vestibular impairments confirms the critical role of the HC proteome for normal IE function, providing a cell-specific pool of candidates for novel, important HC genes. Several proteins identified exclusively in HCs by proteomics and verified by immunohistochemistry map to human genetic deafness loci, potentially representing new deafness genes.

  20. Prolonged morphine administration alters protein expression in the rat myocardium

    PubMed Central

    2011-01-01

    Background Morphine is used in clinical practice as a highly effective painkiller as well as the drug of choice for treatment of certain heart diseases. However, there is lack of information about its effect on protein expression in the heart. Therefore, here we aimed to identify the presumed alterations in rat myocardial protein levels after prolonged morphine treatment. Methods Morphine was administered to adult male Wistar rats in high doses (10 mg/kg per day) for 10 days. Proteins from the plasma membrane- and mitochondria-enriched fractions or cytosolic proteins isolated from left ventricles were run on 2D gel electrophoresis, scanned and quantified with specific software to reveal differentially expressed proteins. Results Nine proteins were found to show markedly altered expression levels in samples from morphine-treaded rats and these proteins were identified by mass spectrometric analysis. They belong to different cell pathways including signaling, cytoprotective, and structural elements. Conclusions The present identification of several important myocardial proteins altered by prolonged morphine treatment points to global effects of this drug on heart tissue. These findings represent an initial step toward a more complex view on the action of morphine on the heart. PMID:22129148

  1. FAS ligand expression in inflammatory infiltrate lymphoid cells as a prognostic marker in oral squamous cell carcinoma.

    PubMed

    Peterle, G T; Santos, M; Mendes, S O; Carvalho-Neto, P B; Maia, L L; Stur, E; Agostini, L P; Silva, C V M; Trivilin, L O; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-09-22

    Currently, the most important prognostic factor in oral squamous cell carcinoma (OSCC) is the presence of regional lymph node metastases, which correlates with a 50% reduction in life expectancy. We have previously observed that expression of hypoxia genes in the tumor inflammatory infiltrate is statistically related to prognosis in OSCC. FAS and FASL expression levels in OSCC have previously been related to patient survival. The present study analyzed the relationship between FASL expression in the inflammatory infiltrate lymphoid cells and clinical variables, tumor histology, and prognosis of OSCC. Strong FASL expression was significantly associated with lymph node metastases (P = 0.035) and disease-specific death (P = 0.014), but multivariate analysis did not confirm FASL expression as an independent death risk factor (OR = 2.78, 95%CI = 0.81-9.55). Disease-free and disease-specific survival were significantly correlated with FASL expression (P = 0.016 and P = 0.005, respectively). Multivariate analysis revealed that strong FASL expression is an independent marker for earlier disease relapse and disease-specific death, with approximately 2.5-fold increased risk compared with weak expression (HR = 2.24, 95%CI = 1.08-4.65 and HR = 2.49, 95%CI = 1.04-5.99, respectively). Our results suggest a potential role for this expression profile as a tumor prognostic marker in OSCC patients.

  2. Defective expression of apoptosis-related molecules in multiple sclerosis patients is normalized early after autologous haematopoietic stem cell transplantation.

    PubMed

    de Oliveira, G L V; Ferreira, A F; Gasparotto, E P L; Kashima, S; Covas, D T; Guerreiro, C T; Brum, D G; Barreira, A A; Voltarelli, J C; Simões, B P; Oliveira, M C; de Castro, F A; Malmegrim, K C R

    2017-03-01

    Defective apoptosis might be involved in the pathogenesis of multiple sclerosis (MS). We evaluated apoptosis-related molecules in MS patients before and after autologous haematopoietic stem cell transplantation (AHSCT) using BCNU, Etoposide, AraC and Melphalan (BEAM) or cyclophosphamide (CY)-based conditioning regimens. Patients were followed for clinical and immunological parameters for 2 years after AHSCT. At baseline, MS patients had decreased proapoptotic BAD, BAX and FASL and increased A1 gene expression when compared with healthy counterparts. In the BEAM group, BAK, BIK, BIMEL , FAS, FASL, A1, BCL2, BCLXL , CFLIPL and CIAP2 genes were up-regulated after AHSCT. With the exception of BIK, BIMEL and A1, all genes reached levels similar to controls at day + 720 post-transplantation. Furthermore, in these patients, we observed increased CD8(+) Fas(+) T cell frequencies after AHSCT when compared to baseline. In the CY group, we observed increased BAX, BCLW, CFLIPL and CIAP1 and decreased BIK and BID gene expressions after transplantation. At day + 720 post-AHSCT, the expression of BAX, FAS, FASL, BCL2, BCLXL and CIAP1 was similar to that of controls. Protein analyses showed increased Bcl-2 expression before transplantation. At 1 year post-AHSCT, expression of Bak, Bim, Bcl-2, Bcl-xL and cFlip-L was decreased when compared to baseline values. In summary, our findings suggest that normalization of apoptosis-related molecules is associated with the early therapeutic effects of AHSCT in MS patients. These mechanisms may be involved in the re-establishment of immune tolerance during the first 2 years post-transplantation.

  3. Analysis of protein composition and protein expression in the tear fluid of patients with congenital aniridia.

    PubMed

    Ihnatko, Robert; Edén, Ulla; Lagali, Neil; Dellby, Anette; Fagerholm, Per

    2013-12-06

    Aniridia is a rare congenital genetic disorder caused by haploinsuffiency of the PAX6 gene, the master gene for development of the eye. The expression of tear proteins in aniridia is unknown. To screen for proteins involved in the aniridia pathophysiology, the tear fluid of patients with diagnosed congenital aniridia was examined using two-dimensional electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two-dimensional map of tear proteins in aniridia has been established and 7 proteins were differentially expressed with P<0.01 between aniridia patients and control subjects. Five of them were more abundant in healthy subjects, particularly α-enolase, peroxiredoxin 6, cystatin S, gelsolin, apolipoprotein A-1 and two other proteins, zinc-α2-glycoprotein and lactoferrin were more expressed in the tears of aniridia patients. Moreover, immunoblot analysis revealed elevated levels of vascular endothelial growth factor (VEGF) in aniridia tears which is in concordance with clinical finding of pathological blood and lymph vessels in the central and peripheral cornea of aniridia patients. The proteins with different expression in patients' tears may be new candidate molecules involved in the pathophysiology of aniridia and thus may be helpful for development of novel treatment strategies for the symptomatic therapy of this vision threatening condition. This study is first to demonstrate protein composition and protein expression in aniridic tears and identifies proteins with different abundance in tear fluid from patients with congenital aniridia vs. healthy tears. © 2013 Elsevier B.V. All rights reserved.

  4. Enteral delivery of proteins enhances the expression of proteins involved in the cytoskeleton and protein biosynthesis in human duodenal mucosa.

    PubMed

    Goichon, Alexis; Bertrand, Julien; Chan, Philippe; Lecleire, Stéphane; Coquard, Aude; Cailleux, Anne-Françoise; Vaudry, David; Déchelotte, Pierre; Coëffier, Moïse

    2015-08-01

    Amino acids are well known to be key effectors of gut protein turnover. We recently reported that enteral delivery of proteins markedly stimulated global duodenal protein synthesis in carbohydrate-fed healthy humans, but specifically affected proteins remain unknown. We aimed to assess the influence of an enteral protein supply on the duodenal mucosal proteome in carbohydrate-fed humans. Six healthy volunteers received for 5 h, on 2 occasions and in random order, either an enteral infusion of maltodextrins alone (0.25 g · kg⁻¹ · h⁻¹) mimicking the fed state or maltodextrins with a protein powder (0.14 g proteins · kg⁻¹ · h⁻¹). Endoscopic duodenal biopsy specimens were then collected and frozen until analysis. A 2-dimensional polyacrylamide gel electrophoresis-based comparative proteomics analysis was then performed, and differentially expressed proteins (at least ±1.5-fold change; Student's t test, P < 0.05) were identified by mass spectrometry. Protein expression changes were confirmed by Western blot analysis. Thirty-two protein spots were differentially expressed after protein delivery compared with maltodextrins alone: 28 and 4 spots were up- or downregulated, respectively. Among the 22 identified proteins, 11 upregulated proteins were involved either in the cytoskeleton (ezrin, moesin, plastin 1, lamin B1, vimentin, and β-actin) or in protein biosynthesis (glutamyl-prolyl-transfer RNA synthetase, glutaminyl-transfer RNA synthetase, elongation factor 2, elongation factor 1δ, and eukaryotic translation and initiation factor 3 subunit f). Enteral delivery of proteins altered the duodenal mucosal proteome and mainly stimulated the expression of proteins involved in cytoskeleton and protein biosynthesis. These results suggest that protein supply may affect intestinal morphology by stimulating actin cytoskeleton remodeling. © 2015 American Society for Nutrition.

  5. Recent patents on alphavirus protein expression and vector production.

    PubMed

    Aranda, Alejandro; Ruiz-Guillen, Marta; Quetglas, Jose I; Bezunartea, Jaione; Casales, Erkuden; Smerdou, Cristian

    2011-12-01

    Alphaviruses contain a single-strand RNA genome that can be modified to express heterologous genes at high levels. Alphavirus vectors can be packaged within viral particles (VPs) or used as DNA/RNA layered systems. The broad tropism and high expression levels of alphavirus vectors have made them very attractive for applications like recombinant protein expression, vaccination or gene therapy. Expression mediated by alphavirus vectors is generally transient due to induction of apoptosis. However, during the last years several non-cytopathic mutations have been identified within the replicase sequence of different alphaviruses, allowing prolonged protein expression in culture cells. Some of these mutants, which have been patented, have allowed the generation of stable cell lines able to express recombinant proteins for extended periods of time in a constitutive or inducible manner. Production of alphavirus VPs usually requires cotransfection of cells with vector and helper RNAs providing viral structural proteins in trans. During this process full-length wild type (wt) genomes can be generated through recombination between different RNAs. Several new strategies to reduce wt virus generation during packaging, optimize VP production, increase packaging capacity, and provide VPs with specific targeting have been recently patented. Finally, hybrid vectors between alphavirus and other types of viruses have led to a number of patents with applications in vaccination, cancer therapy or retrovirus production.

  6. Expression and purification of GST-FHL2 fusion protein.

    PubMed

    Yu, H; Ma, Q; Lin, J; Sun, Y F; Zheng, F

    2013-12-06

    Escherichia coli is the most widely used host for the production of recombinant proteins. However, most eukaryotic proteins are typically obtained as insoluble, misfolded inclusion bodies that need solubilization and refolding. The interactions between human FHL2 protein and many types of proteins, including structural proteins, kinases, and several classes of transcription factor, have been found to have important roles in a variety of fundamental processes, including arrhythmia, hypertrophy, atherosclerosis, and angiogenesis. To achieve high-level expression of soluble recombinant human FHL2 protein in E. coli, we have constructed a recombinant expression plasmid, pGEX-4T-1-FHL2, in which we merged FHL2 cDNA with the glutathione S-transferase (GST) coding sequence downstream of the tac inducible promoter. Using this plasmid, we have achieved high expression of soluble FHL2 as a GST fusion protein in E. coli BL21. We have used the engineered plasmid (pGEX-4T-1-FHL2) and the modified E. coli strain to overcome the problem of removing the GST moiety while expressing soluble FHL2. Our results show that: 1) the recombinant plasmid was successfully constructed. Sequencing results showed that FHL2 and GST are in the same reading frame; 2) at 23°C, soluble GST-FHL2 fusion protein was highly expressed after induction with 0.1 mM IPTG; and 3) GST-FHL2 can be detected by Western blotting using mouse monoclonal anti-GST antibody. Our data are the first to show that high yields of soluble FHL2 tagged with GST can be achieved in E.coli.

  7. Enhanced Expression of Hedgehog Pathway Proteins in Oral Epithelial Dysplasia.

    PubMed

    Dias, Rosane Borges; Valverde, Ludmila de Faro; Sales, Caroline Brandi Schlaepfer; Guimarães, Vanessa Sousa Nazaré; Cabral, Márcia Grillo; de Aquino Xavier, Flávia Caló; Dos Santos, Jean Nunes; Ramos, Eduardo Antônio Gonçalves; Gurgel Rocha, Clarissa Araújo

    2016-09-01

    The aim of this study was to characterize the profile of the proteins involved in the Hedgehog signaling pathway to aid in the understanding of the pathogenesis of oral epithelial dysplasia (OED). The proteins SHH, PTCH1, HHIP, SUFU, GLI1, and cyclin D1 were evaluated by immunohistochemistry in 25 cases of OED, 4 of non-neoplasic oral mucosa, 8 of inflammatory fibrous hyperplasia and 5 of hyperkeratosis. SHH proteins were predominant in OED cases. Although PTCH1 protein was observed in all cases, this molecule was more highly expressed in OED. The inhibitor protein SUFU was present in OED and HHIP protein was overexpressed in OED. GLI1 proteins were predominantly found in the nuclei of epithelial cells in OED. Basal and suprabasal cells in the epithelial lining were positive for cyclin D1 only in OED. In conclusion, comparative analysis of the proteins involved in the Hedgehog pathway suggests that enhanced expression of these proteins can play an important role in the biological behavior of OED.

  8. Correlation of inducible nitric oxide synthase (iNOS) inhibition with TNF-α, caspase-1, FasL and TLR-3 in pathogenesis of rabies in mouse model.

    PubMed

    Madhu, B P; Singh, K P; Saminathan, M; Singh, R; Tiwari, A K; Manjunatha, V; Harish, C; Manjunathareddy, G B

    2016-02-01

    The role of inflammatory cytokines such as interleukin-1α/β (IL-1α/β), IL-6, IL-10, tumour necrosis factor-alpha (TNF-α), interferons, nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in pathogenesis of rabies is being actively pursued. Presently, levels of certain immune molecules in pathogenesis of rabies in mice have been investigated. CVS strain of rabies infection resulted in early increase in iNOS, TNF-α, caspase-1, Fas ligand (FasL) and toll-like receptor-3 (TLR-3) mRNA levels in brain, and nitric oxide levels in serum. The severity of clinical signs and microscopic lesions largely correlated with NO levels. Aminoguanidine (AG; iNOS inhibitor) decreased NO production with delay in development of clinical signs and increase in survival time. Prolonged survival time correlated with reduced viral load evident by real-time PCR, reduced fluorescent signals of rabies antigen in brain and reduced immunohistochemistry signals in neuronal cytoplasm. These parameters suggested that nitric oxide did influence the rabies virus replication. Inhibition of iNOS by AG administration led to decreased expression of TNF-α, caspase-1, FasL and TLR-3 mRNA levels suggesting that increase in NO levels in rabies virus infection possibly contributed to development of disease through inflammation, apoptosis and immune-evasive mechanisms.

  9. Cell Cycle Programs of Gene Expression Control Morphogenetic Protein Localization

    PubMed Central

    Lord, Matthew; Yang, Melody C.; Mischke, Michelle; Chant, John

    2000-01-01

    Genomic studies in yeast have revealed that one eighth of genes are cell cycle regulated in their expression. Almost without exception, the significance of cell cycle periodic gene expression has not been tested. Given that many such genes are critical to cellular morphogenesis, we wanted to examine the importance of periodic gene expression to this process. The expression profiles of two genes required for the axial pattern of cell division, BUD3 and BUD10/AXL2/SRO4, are strongly cell cycle regulated. BUD3 is expressed close to the onset of mitosis. BUD10 is expressed in late G1. Through promotor-swap experiments, the expression profile of each gene was altered and the consequences examined. We found that an S/G2 pulse of BUD3 expression controls the timing of Bud3p localization, but that this timing is not critical to Bud3p function. In contrast, a G1 pulse of BUD10 expression plays a direct role in Bud10p localization and function. Bud10p, a membrane protein, relies on the polarized secretory machinery specific to G1 to be delivered to its proper location. Such a secretion-based targeting mechanism for membrane proteins provides cells with flexibility in remodeling their architecture or evolving new forms. PMID:11134078

  10. Protein Co-Expression Network Analysis (ProCoNA)

    SciTech Connect

    Gibbs, David L.; Baratt, Arie; Baric, Ralph; Kawaoka, Yoshihiro; Smith, Richard D.; Orwoll, Eric S.; Katze, Michael G.; Mcweeney, Shannon K.

    2013-06-01

    Biological networks are important for elucidating disease etiology due to their ability to model complex high dimensional data and biological systems. Proteomics provides a critical data source for such models, but currently lacks robust de novo methods for network construction, which could bring important insights in systems biology. We have evaluated the construction of network models using methods derived from weighted gene co-expression network analysis (WGCNA). We show that approximately scale-free peptide networks, composed of statistically significant modules, are feasible and biologically meaningful using two mouse lung experiments and one human plasma experiment. Within each network, peptides derived from the same protein are shown to have a statistically higher topological overlap and concordance in abundance, which is potentially important for inferring protein abundance. The module representatives, called eigenpeptides, correlate significantly with biological phenotypes. Furthermore, within modules, we find significant enrichment for biological function and known interactions (gene ontology and protein-protein interactions). Biological networks are important tools in the analysis of complex systems. In this paper we evaluate the application of weighted co-expression network analysis to quantitative proteomics data. Protein co-expression networks allow novel approaches for biological interpretation, quality control, inference of protein abundance, a framework for potentially resolving degenerate peptide-protein mappings, and a biomarker signature discovery.

  11. Thyroid-Related Protein Expression in the Human Thymus

    PubMed Central

    Park, Do Joon; Jung, Kyeong Cheon

    2017-01-01

    Radioiodine whole body scan (WBS), related to sodium iodide symporter (NIS) function, is widely used to detect recurrence/metastasis in postoperative patients with thyroid cancer. However, the normal thymic uptake of radioiodine has occasionally been observed in young patients. We evaluated the expression of thyroid-related genes and proteins in the human thymus. Thymic tissues were obtained from 22 patients with thyroid cancer patients of all ages. The expression of NIS, thyroid-stimulating hormone receptor (TSHR), thyroperoxidase (TPO), and thyroglobulin (Tg) was investigated using immunohistochemistry and quantitative RT-PCR. NIS and TSHR were expressed in 18 (81.8%) and 19 samples (86.4%), respectively, whereas TPO was expressed in five samples (22.7%). Three thyroid-related proteins were localized to Hassall's corpuscles and thymocytes. In contrast, Tg was detected in a single patient (4.5%) localized to vascular endothelial cells. The expression of thyroid-related proteins was not increased in young thymic tissues compared to that in old thymic tissues. In conclusion, the expression of NIS and TSHR was detected in the majority of normal thymus samples, whereas that of TPO was detected less frequently, and that of Tg was detected rarely. The increased thymic uptake of radioiodine in young patients is not due to the increased expression of NIS. PMID:28386277

  12. Protein-directed ribosomal frameshifting temporally regulates gene expression

    PubMed Central

    Napthine, Sawsan; Ling, Roger; Finch, Leanne K.; Jones, Joshua D.; Bell, Susanne; Brierley, Ian; Firth, Andrew E.

    2017-01-01

    Programmed −1 ribosomal frameshifting is a mechanism of gene expression, whereby specific signals within messenger RNAs direct a proportion of translating ribosomes to shift −1 nt and continue translating in the new reading frame. Such frameshifting normally occurs at a set ratio and is utilized in the expression of many viral genes and a number of cellular genes. An open question is whether proteins might function as trans-acting switches to turn frameshifting on or off in response to cellular conditions. Here we show that frameshifting in a model RNA virus, encephalomyocarditis virus, is trans-activated by viral protein 2A. As a result, the frameshifting efficiency increases from 0 to 70% (one of the highest known in a mammalian system) over the course of infection, temporally regulating the expression levels of the viral structural and enzymatic proteins. PMID:28593994

  13. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment.

  14. GILT expression in B cells diminishes cathepsin S steady-state protein expression and activity

    PubMed Central

    Phipps-Yonas, Hannah; Semik, Vikki; Hastings, Karen Taraszka

    2013-01-01

    MHC class II-restricted Ag processing requires protein degradation in the endocytic pathway for the activation of CD4+ T cells. Gamma-interferon-inducible lysosomal thiol reductase (GILT) facilitates Ag processing by reducing protein disulfide bonds in this compartment. Lysosomal cysteine protease cathepsin S (CatS) contains disulfide bonds and mediates essential steps in MHC class II-restricted processing, including proteolysis of large polypeptides and cleavage of the invariant chain. We sought to determine whether GILT’s reductase activity regulates CatS expression and function. Confocal microscopy confirmed that GILT and CatS colocalized within lysosomes of B cells. GILT expression posttranscriptionally decreased the steady-state protein expression of CatS in primary B cells and B-cell lines. GILT did not substantially alter the expression of other lysosomal proteins, including H2-M, H2-O, or CatL. GILT’s reductase active site was necessary for diminished CatS protein levels, and GILT expression decreased the half-life of CatS, suggesting that GILT-mediated reduction of protein disulfide bonds enhances CatS degradation. GILT expression decreased the proteolysis of a CatS selective substrate. This study illustrates a physiologic mechanism that regulates CatS and has implications for fine tuning MHC class II-restricted Ag processing and for the development of CatS inhibitors, which are under investigation for the treatment of autoimmune disease. PMID:23012103

  15. Green fluorescent protein-based expression screening of membrane proteins in Escherichia coli.

    PubMed

    Bird, Louise E; Rada, Heather; Verma, Anil; Gasper, Raphael; Birch, James; Jennions, Matthew; Lӧwe, Jan; Moraes, Isabel; Owens, Raymond J

    2015-01-06

    The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation.

  16. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish.

    PubMed

    Horstick, Eric J; Jordan, Diana C; Bergeron, Sadie A; Tabor, Kathryn M; Serpe, Mihaela; Feldman, Benjamin; Burgess, Harold A

    2015-04-20

    Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3' untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.

  17. Global Analysis of Protein Expression of Inner Ear Hair Cells

    PubMed Central

    Wong, Ann C.Y.; Pak, Kwang; Strojny, Chelsee; Ramirez, Miguel

    2017-01-01

    The mammalian inner ear (IE) subserves auditory and vestibular sensations via highly specialized cells and proteins. Sensory receptor hair cells (HCs) are necessary for transducing mechanical inputs and stimulating sensory neurons by using a host of known and as yet unknown protein machinery. To understand the protein composition of these unique postmitotic cells, in which irreversible protein degradation or damage can lead to impaired hearing and balance, we analyzed IE samples by tandem mass spectrometry to generate an unbiased, shotgun-proteomics view of protein identities and abundances. By using Pou4f3/eGFP-transgenic mice in which HCs express GFP driven by Pou4f3, we FACS purified a population of HCs to analyze and compare the HC proteome with other IE subproteomes from sensory epithelia and whole IE. We show that the mammalian HC proteome comprises hundreds of uniquely or highly expressed proteins. Our global proteomic analysis of purified HCs extends the existing HC transcriptome, revealing previously undetected gene products and isoform-specific protein expression. Comparison of our proteomic data with mouse and human databases of genetic auditory/vestibular impairments confirms the critical role of the HC proteome for normal IE function, providing a cell-specific pool of candidates for novel, important HC genes. Several proteins identified exclusively in HCs by proteomics and verified by immunohistochemistry map to human genetic deafness loci, potentially representing new deafness genes. SIGNIFICANCE STATEMENT Hearing and balance rely on specialized sensory hair cells (HCs) in the inner ear (IE) to convey information about sound, acceleration, and orientation to the brain. Genetically and environmentally induced perturbations to HC proteins can result in deafness and severe imbalance. We used transgenic mice with GFP-expressing HCs, coupled with FACS sorting and tandem mass spectrometry, to define the most complete HC and IE proteome to date. We show that

  18. SPINK 1 Protein Expression and Prostate Cancer Progression

    PubMed Central

    Flavin, Richard; Pettersson, Andreas; Hendrickson, Whitney K.; Fiorentino, Michelangelo; Finn, Stephen; Kunz, Lauren; Judson, Gregory L.; Lis, Rosina; Bailey, Dyane; Fiore, Christopher; Nuttall, Elizabeth; Martin, Neil E.; Stack, Edward; Penney, Kathryn L.; Rider, Jennifer R.; Sinnott, Jennifer; Sweeney, Christopher; Sesso, Howard D.; Fall, Katja; Giovannucci, Edward; Kantoff, Philip; Stampfer, Meir; Loda, Massimo; Mucci, Lorelei A.

    2014-01-01

    Purpose SPINK1 over-expression has been described in prostate cancer and is linked with poor prognosis in many cancers. The objective of this study was to characterize the association between SPINK1 over-expression and prostate cancer specific survival. Experimental Design The study included 879 participants in the US Physicians’ Health Study and Health Professionals Follow–Up Study, diagnosed with prostate cancer (1983 – 2004) and treated by radical prostatectomy. Protein tumor expression of SPINK1 was evaluated by immunohistochemistry on tumor tissue microarrays. Results 74/879 (8%) prostate cancer tumors were SPINK1 positive. Immunohistochemical data was available for PTEN, p-Akt, pS6, stathmin, androgen receptor (AR) and ERG (as a measure of the TMPRSS2:ERG translocation). Compared to SPINK1 negative tumors, SPINK1 positive tumors showed higher PTEN and stathmin expression, and lower expression of AR (p<0.01). SPINK1 over-expression was seen in 47 of 427 (11%) ERG negative samples and in 19 of 427 (4%) ERG positive cases (p=0.0003). We found no significant associations between SPINK1 status and Gleason grade or tumor stage. There was no association between SPINK1 expression and biochemical recurrence (p=0.56). Moreover, there was no association between SPINK1 expression and prostate cancer mortality (there were 75 lethal cases of prostate cancer during a mean of 13.5 years follow-up [HR 0.71 (95% confidence interval 0.29–1.76)]). Conclusions Our results suggest that SPINK1 protein expression may not be a predictor of recurrence or lethal prostate cancer amongst men treated by radical prostatectomy. SPINK1 and ERG protein expression do not appear to be entirely mutually exclusive, as some previous studies have suggested. PMID:24687926

  19. Protein Expression of Proteasome Subunits in Elderly Patients with Schizophrenia

    PubMed Central

    Scott, Madeline R; Rubio, Maria D; Haroutunian, Vahram; Meador-Woodruff, James H

    2016-01-01

    The ubiquitin proteasome system (UPS) is a major regulator of protein processing, trafficking, and degradation. While protein ubiquitination is utilized for many cellular processes, one major function of this system is to target proteins to the proteasome for degradation. In schizophrenia, studies have found UPS transcript abnormalities in both blood and brain, and we have previously reported decreased protein expression of ubiquitin-associated proteins in brain. To test whether the proteasome is similarly dysregulated, we measured the protein expression of proteasome catalytic subunits as well as essential subunits from proteasome regulatory complexes in 14 pair-matched schizophrenia and comparison subjects in superior temporal cortex. We found decreased expression of Rpt1, Rpt3, and Rpt6, subunits of the 19S regulatory particle essential for ubiquitin-dependent degradation by the proteasome. Additionally, the α subunit of the 11S αβ regulatory particle, which enhances proteasomal degradation of small peptides and unfolded proteins, was also decreased. Haloperidol-treated rats did not have altered expression of these subunits, suggesting the changes we observed in schizophrenia are likely not due to chronic antipsychotic treatment. Interestingly, expression of the catalytic subunits of both the standard and immunoproteasome were unchanged, suggesting the abnormalities we observed may be specific to the complexed state of the proteasome. Aging has significant effects on the proteasome, and several subunits (20S β2, Rpn10, Rpn13, 11Sβ, and 11Sγ) were significantly correlated with subject age. These data provide further evidence of dysfunction of the ubiquitin-proteasome system in schizophrenia, and suggest that altered proteasome activity may be associated with the pathophysiology of this illness. PMID:26202105

  20. Enhancement of G Protein-Coupled Receptor Surface Expression

    PubMed Central

    Dunham, Jill H.; Hall, Randy A.

    2009-01-01

    G protein-coupled receptors (GPCRs) mediate physiological responses to a diverse array of stimuli and are the molecular targets for numerous therapeutic drugs. GPCRs primarily signal from the plasma membrane, but when expressed in heterologous cells many GPCRs exhibit poor trafficking to the cell surface. Multiple approaches have been taken to enhance GPCR surface expression in heterologous cells, including addition/deletion of receptor sequences, co-expression with interacting proteins, and treatment with pharmacological chaperones. In addition to allowing for enhanced surface expression of certain GPCRs in heterologous cells, these approaches have also shed light on the control of GPCR trafficking in vivo and in some cases have led to new therapeutic approaches for treating human diseases that result from defects in GPCR trafficking. PMID:19679364

  1. Expression, delivery and function of insecticidal proteins expressed by recombinant baculoviruses

    USDA-ARS?s Scientific Manuscript database

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal po...

  2. p53 and MDM2 protein expression in actinic cheilitis.

    PubMed

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.

  3. Argonaute Family Protein Expression in Normal Tissue and Cancer Entities

    PubMed Central

    Bruckmann, Astrid; Hauptmann, Judith; Deutzmann, Rainer; Meister, Gunter; Bosserhoff, Anja Katrin

    2016-01-01

    The members of the Argonaute (AGO) protein family are key players in miRNA-guided gene silencing. They enable the interaction between small RNAs and their respective target mRNA(s) and support the catalytic destruction of the gene transcript or recruit additional proteins for downstream gene silencing. The human AGO family consists of four AGO proteins (AGO1-AGO4), but only AGO2 harbors nuclease activity. In this study, we characterized the expression of the four AGO proteins in cancer cell lines and normal tissues with a new mass spectrometry approach called AGO-APP (AGO Affinity Purification by Peptides). In all analyzed normal tissues, AGO1 and AGO2 were most prominent, but marked tissue-specific differences were identified. Furthermore, considerable changes during development were observed by comparing fetal and adult tissues. We also identified decreased overall AGO expression in melanoma derived cell lines compared to other tumor cell lines and normal tissues, with the largest differences in AGO2 expression. The experiments described in this study suggest that reduced amounts of AGO proteins, as key players in miRNA processing, have impact on several cellular processes. Deregulated miRNA expression has been attributed to chromosomal aberrations, promoter regulation and it is known to have a major impact on tumor development and progression. Our findings will further increase our basic understanding of the molecular basis of miRNA processing and its relevance for disease. PMID:27518285

  4. Expression analysis of BRUCE protein in esophageal squamous cell carcinoma.

    PubMed

    Salehi, Somayeh; Jafarian, Amir Hossein; Forghanifard, Mohammad Mahdi

    2016-10-01

    Apoptosis is a form of cell death in response to diverse stressful physiological or pathological stimuli. One of the most important gene families involved in apoptosis is inhibitors of apoptosis. As a member of inhibitors of apoptosis, BRUCE can suppress apoptosis and promote cell division. Because esophageal squamous cell carcinoma (ESCC) cells, as well as other cancer cells, are immortal, our aim in this study was to analyze BRUCE protein expression in ESCC and evaluate its correlation with tumoral clinicopathologic features. Fifty ESCC specimens were examined for BRUCE protein expression using immunohistochemistry. A defined scoring method was applied. BRUCE protein was detected in 82% of tumors. Tumor progression stage and invasion depth correlated significantly with BRUCE protein expression (P=.019 and .005, respectively). Furthermore, association of BRUCE expression with tumor location was near significant (P=.058). The correlation of BRUCE overexpression in ESCC and disease aggressiveness may confirm the importance of BRUCE in ESCC progression and invasiveness. Therefore, BRUCE protein may be a molecular marker for aggressive ESCC and, thus, a potential therapeutic target to inhibit tumor cell progression and invasion. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Interfacial Polymerization for Colorimetric Labeling of Protein Expression in Cells

    PubMed Central

    Lilly, Jacob L.; Sheldon, Phillip R.; Hoversten, Liv J.; Romero, Gabriela; Balasubramaniam, Vivek; Berron, Brad J.

    2014-01-01

    Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric mode of amplification termed Polymer Dye Labeling. The basic concept involves an interfacial polymer grown at the site of protein expression and subsequent staining of this polymer with an appropriate dye. The dyes Evans Blue and eosin were initially investigated for colorimetric response in a microarray setting, where both specifically stained polymer films on glass. The process was translated to the staining of protein expression in human dermal fibroblast cells, and Polymer Dye Labeling was specific to regions consistent with desired protein expression. The labeling is stable for over 200 days in ambient conditions and is also compatible with modern mounting medium. PMID:25536421

  6. Patterns of soybean proline-rich protein gene expression.

    PubMed Central

    Wyatt, R E; Nagao, R T; Key, J L

    1992-01-01

    The expression patterns of three members of a gene family that encodes proline-rich proteins in soybean (SbPRPs) were examined using in situ hybridization experiments. In most instances, the expression of SbPRP genes was intense in a limited number of cell types of a particular organ. SbPRP1 RNA was localized in several cell types of soybean hypocotyls, including cells within the phloem and xylem. SbPRP1 expression increased within epidermal cells in the elongating and mature regions of the hypocotyl; expression was detected also in lignified cells surrounding the hilum of mature seeds. SbPRP2 RNA was present in cortical cells and in the vascular tissue of the hypocotyl, especially cells of the phloem. This gene was expressed also in the inner integuments of the mature seed coat. SbPRP3 RNA was localized specifically to the endodermoid layer of cells surrounding the stele in the elongating region of the hypocotyl, as well as in the epidermal cells of leaves and cotyledons. These data show that members of this gene family exhibit cell-specific expression. The members of the SbPRP gene family are expressed in different types of cells and in some cell types that also express the glycine-rich protein or hydroxyproline-rich glycoprotein classes of genes. PMID:1525563

  7. AB223. Expression of tight junction proteins in rat vagina

    PubMed Central

    Oh, Kyung Jin; Lee, Hyun-Suk; Chung, Ho Suck; Ahn, Kyu Youn; Park, Kwangsung

    2014-01-01

    Aim Tight junction plays a role in apical cell-to-cell adhesion and epithelial polarity. In this study, we investigated the expression of tight junction proteins, such as Claudin-1, zonula occludens (ZO)-1, junction adhesion molecule (JAM)-A, and occludin in rat vagina. Methods Female Sprague-dawley rats (230-240 g, n=20) were divided into two groups: control (n=10) and bilateral ovariectomy (n=10). The expression and cellular localization of claudin-1, ZO-1, JAM-A, and occludin were determined in each group by immunohistochemistry and Western blot. Results Immunolabeling of ZO-1 was mainly expressed in the capillaries and venules of the vagina. Claudin-1, JAM-A, and occludin were expressed in the epithelium of the vagina. The immunoreactivity and protein expression of claudin-1 was significantly decreased in the ovariectomy group compared with the control group. Conclusions Our results suggest that tight junction proteins may have an important role in the vagina. Further studies are needed to clarify the role of each tight junction protein on vaginal lubrication.

  8. Functional interaction between co-expressed MAGE-A proteins

    PubMed Central

    Laiseca, Julieta E.; Ladelfa, María F.; Cotignola, Javier; Peche, Leticia Y.; Pascucci, Franco A.; Castaño, Bryan A.; Galigniana, Mario D.; Schneider, Claudio

    2017-01-01

    MAGE-A (Melanoma Antigen Genes-A) are tumor-associated proteins with expression in a broad spectrum of human tumors and normal germ cells. MAGE-A gene expression and function are being increasingly investigated to better understand the mechanisms by which MAGE proteins collaborate in tumorigenesis and whether their detection could be useful for disease prognosis purposes. Alterations in epigenetic mechanisms involved in MAGE gene silencing cause their frequent co-expression in tumor cells. Here, we have analyzed the effect of MAGE-A gene co-expression and our results suggest that MageA6 can potentiate the androgen receptor (AR) co-activation function of MageA11. Database search confirmed that MageA11 and MageA6 are co-expressed in human prostate cancer samples. We demonstrate that MageA6 and MageA11 form a protein complex resulting in the stabilization of MageA11 and consequently the enhancement of AR activity. The mechanism involves association of the Mage A6-MHD domain to MageA11, prevention of MageA11 ubiquitinylation on lysines 240 and 245 and decreased proteasome-dependent degradation. We experimentally demonstrate here for the first time that two MAGE-A proteins can act together in a non-redundant way to potentiate a specific oncogenic function. Overall, our results highlight the complexity of the MAGE gene networking in regulating cancer cell behavior. PMID:28542476

  9. Functional interaction between co-expressed MAGE-A proteins.

    PubMed

    Laiseca, Julieta E; Ladelfa, María F; Cotignola, Javier; Peche, Leticia Y; Pascucci, Franco A; Castaño, Bryan A; Galigniana, Mario D; Schneider, Claudio; Monte, Martin

    2017-01-01

    MAGE-A (Melanoma Antigen Genes-A) are tumor-associated proteins with expression in a broad spectrum of human tumors and normal germ cells. MAGE-A gene expression and function are being increasingly investigated to better understand the mechanisms by which MAGE proteins collaborate in tumorigenesis and whether their detection could be useful for disease prognosis purposes. Alterations in epigenetic mechanisms involved in MAGE gene silencing cause their frequent co-expression in tumor cells. Here, we have analyzed the effect of MAGE-A gene co-expression and our results suggest that MageA6 can potentiate the androgen receptor (AR) co-activation function of MageA11. Database search confirmed that MageA11 and MageA6 are co-expressed in human prostate cancer samples. We demonstrate that MageA6 and MageA11 form a protein complex resulting in the stabilization of MageA11 and consequently the enhancement of AR activity. The mechanism involves association of the Mage A6-MHD domain to MageA11, prevention of MageA11 ubiquitinylation on lysines 240 and 245 and decreased proteasome-dependent degradation. We experimentally demonstrate here for the first time that two MAGE-A proteins can act together in a non-redundant way to potentiate a specific oncogenic function. Overall, our results highlight the complexity of the MAGE gene networking in regulating cancer cell behavior.

  10. Protein synthesis rate is the predominant regulator of protein expression during differentiation

    PubMed Central

    Kristensen, Anders R; Gsponer, Joerg; Foster, Leonard J

    2013-01-01

    External perturbations, by forcing cells to adapt to a new environment, often elicit large-scale changes in gene expression resulting in an altered proteome that improves the cell's fitness in the new conditions. Steady-state levels of a proteome depend on transcription, the levels of transcripts, translation and protein degradation but system-level contribution that each of these processes make to the final protein expression change has yet to be explored. We therefore applied a systems biology approach to characterize the regulation of protein expression during cellular differentiation using quantitative proteomics. As a general rule, it seems that protein expression during cellular differentiation is largely controlled by changes in the relative synthesis rate, whereas the relative degradation rate of the majority of proteins stays constant. In these data, we also observe that the proteins in defined sub-structures of larger protein complexes tend to have highly correlated synthesis and degradation rates but that this does not necessarily extend to the holo-complex. Finally, we provide strong evidence that the generally poor correlation observed between transcript and protein levels can fully be explained once the protein synthesis and degradation rates are taken into account. PMID:24045637

  11. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins

    PubMed Central

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-01-01

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions. PMID:28266541

  12. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins.

    PubMed

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-03-07

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions.

  13. Spatiotemporal expression profiling of proteins in rat sciatic nerve regeneration using reverse phase protein arrays

    PubMed Central

    2012-01-01

    Background Protein expression profiles throughout 28 days of peripheral nerve regeneration were characterized using an established rat sciatic nerve transection injury model. Reverse phase protein microarrays were used to identify the spatial and temporal expression profile of multiple proteins implicated in peripheral nerve regeneration including growth factors, extracellular matrix proteins, and proteins involved in adhesion and migration. This high-throughput approach enabled the simultaneous analysis of 3,360 samples on a nitrocellulose-coated slide. Results The extracellular matrix proteins collagen I and III, laminin gamma-1, fibronectin, nidogen and versican displayed an early increase in protein levels in the guide and proximal sections of the regenerating nerve with levels at or above the baseline expression of intact nerve by the end of the 28 day experimental course. The 28 day protein levels were also at or above baseline in the distal segment however an early increase was only noted for laminin, nidogen, and fibronectin. While the level of epidermal growth factor, ciliary neurotrophic factor and fibroblast growth factor-1 and -2 increased throughout the experimental course in the proximal and distal segments, nerve growth factor only increased in the distal segment and fibroblast growth factor-1 and -2 and nerve growth factor were the only proteins in that group to show an early increase in the guide contents. As expected, several proteins involved in cell adhesion and motility; namely focal adhesion kinase, N-cadherin and β-catenin increased earlier in the proximal and distal segments than in the guide contents reflecting the relatively acellular matrix of the early regenerate. Conclusions In this study we identified changes in expression of multiple proteins over time linked to regeneration of the rat sciatic nerve both demonstrating the utility of reverse phase protein arrays in nerve regeneration research and revealing a detailed, composite

  14. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts.

    PubMed

    Carmona-Rodríguez, Bruno; Alvarez-Pérez, Marco Antonio; Narayanan, A Sampath; Zeichner-David, Margarita; Reyes-Gasga, José; Molina-Guarneros, Juan; García-Hernández, Ana Lilia; Suárez-Franco, José Luis; Chavarría, Ivet Gil; Villarreal-Ramírez, Eduardo; Arzate, Higinio

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  15. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    SciTech Connect

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio . E-mail: harzate@servidor.unam.mx

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  16. Fe-S Proteins that Regulate Gene Expression

    PubMed Central

    Mettert, Erin L.; Kiley, Patricia J.

    2014-01-01

    Iron-sulfur (Fe-S) cluster containing proteins that regulate gene expression are present in most organisms. The innate chemistry of their Fe-S cofactors makes these regulatory proteins ideal for sensing environmental signals, such as gases (e.g. O2 and NO), levels of Fe and Fe-S clusters, reactive oxygen species, and redox cycling compounds, to subsequently mediate an adaptive response. Here we review the recent findings that have provided invaluable insight into the mechanism and function of these highly significant Fe-S regulatory proteins. PMID:25450978

  17. Expression of Aequorea green fluorescent protein in plant cells.

    PubMed

    Hu, W; Cheng, C L

    1995-08-07

    The coding region of the green fluorescent protein (GFP) from Aequorea victoria has been fused to the cauliflower mosaic virus 35S promoter and introduced into maize leaf protoplasts. Transient expression of GFP was observed. In addition, the coding region of GFP was fused to an Arabidopsis heat shock promoter and co-transformed with another construct in which GFP has been replaced with chloramphenicol acetyltransferase (CAT). The heat-induced expression of GFP in maize protoplasts parallels that of CAT. While GFP was expressed in both dark-grown and green maize leaf protoplasts, no green fluorescence was observed in similarly transformed Arabidopsis protoplasts.

  18. Identifying subcellular protein localization with fluorescent protein fusions after transient expression in onion epidermal cells.

    PubMed

    Nebenführ, Andreas

    2014-01-01

    Most biochemical functions of plant cells are carried out by proteins which act at very specific places within these cells, for example, within different organelles. Identifying the subcellular localization of proteins is therefore a useful tool to narrow down the possible functions that a novel or unknown protein may carry out. The discovery of genetically encoded fluorescent markers has made it possible to tag specific proteins and visualize them in vivo under a variety of conditions. This chapter describes a simple method to use transient expression of such fluorescently tagged proteins in onion epidermal cells to determine their subcellular localization relative to known markers.

  19. Fragile X mental retardation protein (FMRP) interacting proteins exhibit different expression patterns during development.

    PubMed

    Bonaccorso, C M; Spatuzza, M; Di Marco, B; Gloria, A; Barrancotto, G; Cupo, A; Musumeci, S A; D'Antoni, S; Bardoni, B; Catania, M V

    2015-05-01

    Fragile X syndrome is caused by the lack of expression of fragile X mental retardation protein (FMRP), an RNA-binding protein involved in mRNA transport and translation. FMRP is a component of mRNA ribonucleoprotein complexes and it can interact with a range of proteins either directly or indirectly, as demonstrated by two-hybrid selection and co-immunoprecipitation, respectively. Most of FMRP-interacting proteins are RNA-binding proteins such as FXR1P, FXR2P and 82-FIP. Interestingly, FMRP can also interact directly with the cytoplasmic proteins CYFIP1 and CYFIP2, which do not bind RNA and link FMRP to the RhoGTPase pathway. The interaction with these different proteins may modulate the functions of FMRP by influencing its affinity to RNA and by affecting the FMRP ability of cytoskeleton remodeling through Rho/Rac GTPases. To better define the relationship of FMRP with its interacting proteins during brain development, we have analyzed the expression pattern of FMRP and its interacting proteins in the cortex, striatum, hippocampus and cerebellum at different ages in wild type (WT) mice. FMRP and FXR2P were strongly expressed during the first week and gradually decreased thereafter, more rapidly in the cerebellum than in the cortex. FXR1P was also expressed early and showed a reduction at later stages of development with a similar developmental pattern in these two regions. CYFIP1 was expressed at all ages and peaked in the third post-natal week. In contrast, CYFIP2 and 82-FIP (only in forebrain regions) were moderately expressed at P3 and gradually increased after P7. In general, the expression pattern of each protein was similar in the regions examined, except for 82-FIP, which exhibited a strong expression at P3 and low levels at later developmental stages in the cerebellum. Our data indicate that FMRP and its interacting proteins have distinct developmental patterns of expression and suggest that FMRP may be preferentially associated to certain proteins in

  20. Using Green and Red Fluorescent Proteins to Teach Protein Expression, Purification, and Crystallization

    ERIC Educational Resources Information Center

    Wu, Yifeng; Zhou, Yangbin; Song, Jiaping; Hu, Xiaojian; Ding, Yu; Zhang, Zhihong

    2008-01-01

    We have designed a laboratory curriculum using the green and red fluorescent proteins (GFP and RFP) to visualize the cloning, expression, chromatography purification, crystallization, and protease-cleavage experiments of protein science. The EGFP and DsRed monomer (mDsRed)-coding sequences were amplified by PCR and cloned into pMAL (MBP-EGFP) or…

  1. Using Green and Red Fluorescent Proteins to Teach Protein Expression, Purification, and Crystallization

    ERIC Educational Resources Information Center

    Wu, Yifeng; Zhou, Yangbin; Song, Jiaping; Hu, Xiaojian; Ding, Yu; Zhang, Zhihong

    2008-01-01

    We have designed a laboratory curriculum using the green and red fluorescent proteins (GFP and RFP) to visualize the cloning, expression, chromatography purification, crystallization, and protease-cleavage experiments of protein science. The EGFP and DsRed monomer (mDsRed)-coding sequences were amplified by PCR and cloned into pMAL (MBP-EGFP) or…

  2. Salicylic acid enhances Staphylococcus aureus extracellular adhesin protein expression.

    PubMed

    Alvarez, Lucía P; Barbagelata, María S; Cheung, Ambrose L; Sordelli, Daniel O; Buzzola, Fernanda R

    2011-11-01

    One of the virulence factors required by Staphylococcus aureus at the early stages of infection is Eap, a secreted adhesin that binds many host proteins and is upregulated by the two-component regulatory system saeRS. The S. aureus Newman strain harbors a mutation in saeS that is thought to be responsible for the high level of Eap expression in this strain. This study was designed to ascertain whether salicylic acid (SAL) affects the expression of Eap and the internalization of S. aureus into epithelial cells. The strain Newman treated with SAL exhibited increased levels of eap transcription and protein expression. Furthermore, SAL treatment increased the eap promoter activity. SAL treatment enhanced Eap expression in the Newman and in other S. aureus strains that do not carry the mutation in saeS. Internalization of S. aureus eap and sae mutants into the MAC-T epithelial cells was significantly decreased compared with the wild-type counterparts. In conclusion, we demonstrated that a low concentration of SAL increased S. aureus Eap expression possibly due to enhancement of sae. SAL may create the conditions for S. aureus persistence in the host, not only by decreasing the capsular polysaccharide expression as shown before, but also by enhancing Eap expression.

  3. Cementum attachment protein/protein-tyrosine phosphotase-like member A is not expressed in teeth.

    PubMed

    Schild, Christof; Beyeler, Michael; Lang, Niklaus P; Trueb, Beat

    2009-02-01

    Cementum is a highly specialized connective tissue that covers tooth roots. The only cementum-specific protein described to date is the cementum attachment protein (CAP). A putative sequence for CAP was established from a cDNA clone isolated from a human cementifying fibroma cDNA library. This sequence overlaps with a phosphatase-like protein in muscle termed the protein-tyrosine phosphatase-like member A (PTPLA). To clarify the nature of CAP/PTPLA, we cloned the homologous rat protein and determined its sequence. The rat protein shared 94% sequence identity with the human protein. On Northern blots containing RNA from various rat tissues of different developmental stages, the cDNA hybridized to an mRNA expressed in heart and skeletal muscle but not in teeth. These results were confirmed by real-time PCR. Thus, the sequence deposited in public databanks under the name 'cementum attachment protein' does not represent genuine CAP.

  4. Controlling for Gene Expression Changes in Transcription Factor Protein Networks*

    PubMed Central

    Banks, Charles A. S.; Lee, Zachary T.; Boanca, Gina; Lakshminarasimhan, Mahadevan; Groppe, Brad D.; Wen, Zhihui; Hattem, Gaye L.; Seidel, Chris W.; Florens, Laurence; Washburn, Michael P.

    2014-01-01

    The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein–protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBβ, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions. PMID:24722732

  5. Secreted Proteins Defy the Expression Level-Evolutionary Rate Anticorrelation.

    PubMed

    Feyertag, Felix; Berninsone, Patricia M; Alvarez-Ponce, David

    2017-03-01

    The rates of evolution of the proteins of any organism vary across orders of magnitude. A primary factor influencing rates of protein evolution is expression. A strong negative correlation between expression levels and evolutionary rates (the so-called E-R anticorrelation) has been observed in virtually all studied organisms. This effect is currently attributed to the abundance-dependent fitness costs of misfolding and unspecific protein-protein interactions, among other factors. Secreted proteins are folded in the endoplasmic reticulum, a compartment where chaperones, folding catalysts, and stringent quality control mechanisms promote their correct folding and may reduce the fitness costs of misfolding. In addition, confinement of secreted proteins to the extracellular space may reduce misinteractions and their deleterious effects. We hypothesize that each of these factors (the secretory pathway quality control and extracellular location) may reduce the strength of the E-R anticorrelation. Indeed, here we show that among human proteins that are secreted to the extracellular space, rates of evolution do not correlate with protein abundances. This trend is robust to controlling for several potentially confounding factors and is also observed when analyzing protein abundance data for 6 human tissues. In addition, analysis of mRNA abundance data for 32 human tissues shows that the E-R correlation is always less negative, and sometimes nonsignificant, in secreted proteins. Similar observations were made in Caenorhabditis elegans and in Escherichia coli, and to a lesser extent in Drosophila melanogaster, Saccharomyces cerevisiae and Arabidopsis thaliana. Our observations contribute to understand the causes of the E-R anticorrelation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Selection of soluble protein expression constructs: the experimental determination of protein domain boundaries.

    PubMed

    Dyson, Michael R

    2010-08-01

    Proteins can contain multiple domains each of which is capable of possessing a separate independent function and three-dimensional structure. It is often useful to clone and express individual protein domains to study their biochemical properties and for structure determination. However, the annotated domain boundaries in databases such as Pfam or SMART are not always accurate. The present review summarizes various strategies for the experimental determination of protein domain boundaries.

  7. Expression Trend of Selected Ribosomal Protein Genes in Nasopharyngeal Carcinoma

    PubMed Central

    Ma, Xiang-Ru; Sim, Edmund Ui-Hang; Ling, Teck-Yee; Tiong, Thung-Sing; Subramaniam, Selva Kumar; Khoo, Alan Soo-Beng

    2012-01-01

    Background: Ribosomal proteins are traditionally associated with protein biosynthesis until recent studies that implicated their extraribosomal functions in human diseases and cancers. Our previous studies using GeneFishing™ DEG method and microarray revealed underexpression of three ribosomal protein genes, RPS26, RPS27, and RPL32 in cancer of the nasopharynx. Herein, we investigated the expression pattern and nucleotide sequence integrity of these genes in nasopharyngeal carcinoma to further delineate their involvement in tumourigenesis. The relationship of expression level with clinicopathologic factors was also statistically studied. Methods: Quantitative Polymerase Chain Reaction was performed on nasopharyngeal carcinoma and their paired normal tissues. Expression and sequence of these three genes were analysed. Results: All three ribosomal protein genes showed no significant difference in transcript expressions and no association could be established with clinicopathologic factors studied. No nucleotide aberrancy was detected in the coding regions of these genes. Conclusion: There is no early evidence to substantiate possible involvement of RPS26, RPS27, and RPL32 genes in NPC tumourigenesis. PMID:23613646

  8. Expression of Prokaryotic Integral Membrane Proteins in E. coli.

    PubMed

    Love, James D

    2017-01-01

    Production of prokaryotic membrane proteins for structural and functional studies in E. coli can be parallelized and miniaturized. All stages from cloning, expression, purification to detergent selection can be investigated using high-throughput techniques to rapidly and economically find tractable targets.

  9. Computational codon optimization of synthetic gene for protein expression

    PubMed Central

    2012-01-01

    Background The construction of customized nucleic acid sequences allows us to have greater flexibility in gene design for recombinant protein expression. Among the various parameters considered for such DNA sequence design, individual codon usage (ICU) has been implicated as one of the most crucial factors affecting mRNA translational efficiency. However, previous works have also reported the significant influence of codon pair usage, also known as codon context (CC), on the level of protein expression. Results In this study, we have developed novel computational procedures for evaluating the relative importance of optimizing ICU and CC for enhancing protein expression. By formulating appropriate mathematical expressions to quantify the ICU and CC fitness of a coding sequence, optimization procedures based on genetic algorithm were employed to maximize its ICU and/or CC fitness. Surprisingly, the in silico validation of the resultant optimized DNA sequences for Escherichia coli, Lactococcus lactis, Pichia pastoris and Saccharomyces cerevisiae suggests that CC is a more relevant design criterion than the commonly considered ICU. Conclusions The proposed CC optimization framework can complement and enhance the capabilities of current gene design tools, with potential applications to heterologous protein production and even vaccine development in synthetic biotechnology. PMID:23083100

  10. Expression and detection of LINE-1 ORF-encoded proteins.

    PubMed

    Dai, Lixin; LaCava, John; Taylor, Martin S; Boeke, Jef D

    2014-01-01

    LINE-1 (L1) elements are endogenous retrotransposons active in mammalian genomes. The L1 RNA is bicistronic, encoding two non-overlapping open reading frames, ORF1 and ORF2, whose protein products (ORF1p and ORF2p) bind the L1 RNA to form a ribonucleoprotein (RNP) complex that is presumed to be a critical retrotransposition intermediate. However, ORF2p is expressed at a significantly lower level than ORF1p; these differences are thought to be controlled at the level of translation, due to a low frequency ribosome reinitiation mechanism controlling ORF2 expression. As a result, while ORF1p is readily detectable, ORF2p has previously been very challenging to detect in vitro and in vivo. To address this, we recently tested several epitope tags fused to the N- or C-termini of the ORF proteins in an effort to enable robust detection and affinity purification from native (L1RP) and synthetic (ORFeus-Hs) L1 constructs. An analysis of tagged RNPs from both L1RP and ORFeus-Hs showed similar host-cell-derived protein interactors. Our observations also revealed that the tag sequences affected the retrotransposition competency of native and synthetic L1s differently although they encode identical ORF proteins. Unexpectedly, we observed apparently stochastic expression of ORF2p within seemingly homogenous L1-expressing cell populations.

  11. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs)

    PubMed Central

    Abraham, Nikita; Paul, Blessy; Ragnarsson, Lotten; Lewis, Richard J.

    2016-01-01

    Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP). AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli) expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies. PMID:27304486

  12. Essential complicity of perforin-granzyme and FAS-L mechanisms to achieve tumor rejection following treatment with anti-CD137 mAb

    PubMed Central

    2013-01-01

    Background Treatment with agonist anti-CD137 (4-1BB) immunostimulatory monoclonal antibodies elicits complete tumor regressions in a number of transplanted hematological and solid malignancies in mice. Rejection is mainly dependent on cytotoxic T lymphocytes (CTL) and IFNγ, although a role for NK cells and dendritic cells has been observed in some tumor models. Rejection of EG7-derived thymomas has been shown to be CTL-dependent but not NK-dependent. Findings In this therapeutic setting, we show that both the perforin-granzyme and FasL effector systems are readily expressed by CD8+ T lymphocytes infiltrating the EG7 lymphomas which are undergoing rejection. Using knock-out mice, we demonstrate that both effector cytolytic systems are involved in the execution of complete immune rejections against EG7 established tumors. In accordance, EG7 tumor cells were susceptible in vitro to both killing mechanisms acting in a synergistic fashion. Conclusions CD137-elicited rejection of EG7-derived tumors involves the interplay of at least two final effector cytolytic mechanisms that act in cooperation. PMID:24764534

  13. The expression of metabolism-related proteins in phyllodes tumors.

    PubMed

    Kwon, Ji Eun; Jung, Woo-Hee; Koo, Ja Seung

    2013-02-01

    The purpose of this study was to investigate the association between the expression of hypoxia-inducible factor (HIF)-1α, insulin-like growth factor (IGF)-1, glucose transporter 1 (Glut-1), carbonic anhydrase IX (CAIX), and monocarboxylate transporter (MCT)4, which are metabolism-related proteins in phyllodes tumors (PTs), and clinicopathologic factors and its implication. We used tissue microarrays to analyze 207 PTs and performed immunohistochemical staining against the glycolysis-related molecules HIF-1α, IGF-1, Glut-1, CAIX, and MCT4. We then compared the immunohistochemical results and clinicopathologic parameters. The expressions of HIF-1α, Glut-1, CAIX, and MCT4 in the stromal component of PTs increased (P = 0.019, P < 0.001, P = 0.045, and P < 0.001, respectively) with increasing tumor grade. According to univariate analysis, factors associated with shorter disease-free survival were Glut-1 expression (P = 0.001) and MCT4 expression (P < 0.001) in the stromal component, and the factors associated with shorter overall survival were IGF-1 expression (P = 0.012), Glut-1 expression (P < 0.001), CAIX expression (P = 0.039), and MCT4 expression (P < 0.001) in the stromal component. Our investigation of stromal expression of the metabolism-related proteins HIF-1α, IGF-1, Glut-1, CAIX, and MCT4 revealed that, as the PT grade increased, the stromal expression of HIF-1α, Glut-1, CAIX, and MCT4 significantly increased. This result suggested that increasing PT grade is associated with increased glycolysis in the stromal component.

  14. Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host

    PubMed Central

    Pochon, Nathalie; Dementin, Sébastien; Hivin, Patrick; Boutigny, Sylvain; Rioux, Jean-Baptiste; Salvi, Daniel; Seigneurin-Berny, Daphné; Richaud, Pierre; Joyard, Jacques; Pignol, David; Sabaty, Monique; Desnos, Thierry; Pebay-Peyroula, Eva; Darrouzet, Elisabeth; Vernet, Thierry; Rolland, Norbert

    2011-01-01

    Background Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. Methodology/Principal Findings The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Conclusions/Significance Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein. PMID:22216205

  15. Heterologous expression of membrane proteins: choosing the appropriate host.

    PubMed

    Bernaudat, Florent; Frelet-Barrand, Annie; Pochon, Nathalie; Dementin, Sébastien; Hivin, Patrick; Boutigny, Sylvain; Rioux, Jean-Baptiste; Salvi, Daniel; Seigneurin-Berny, Daphné; Richaud, Pierre; Joyard, Jacques; Pignol, David; Sabaty, Monique; Desnos, Thierry; Pebay-Peyroula, Eva; Darrouzet, Elisabeth; Vernet, Thierry; Rolland, Norbert

    2011-01-01

    Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein. © 2011 Bernaudat et al.

  16. Optimization of translation profiles enhances protein expression and solubility.

    PubMed

    Hess, Anne-Katrin; Saffert, Paul; Liebeton, Klaus; Ignatova, Zoya

    2015-01-01

    mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs) and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5'-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.

  17. A characterization of structural proteins expressed by Bombyx mori bidensovirus.

    PubMed

    Lü, Peng; Xing, Yali; Hu, Zhaoyang; Yang, Yanhua; Pan, Ye; Chen, Kangmin; Zhu, Feifei; Zhou, Yajing; Chen, Keping; Yao, Qin

    2017-03-01

    Bombyx mori bidensiovirus (BmBDV) is a species of Bidensovirus that has been was placed into a new genus within the new family Bidnaviridae by the International Committee on Taxonomy of Viruses. BmBDV causes fatal flacherie disease in silkworms, which causes large losses to the sericulture industry. BmBDV contains two sets of complementary linear single-stranded DNAs of approximately 6.5kb (viral DNA 1, VD1) and 6.0kb (viral DNA 2, VD2). VD1 and VD2 are encapsidated in separate icosahedral non-enveloped capsids, which are similar in size and shape. However, the strategies used to express BmBDV structural proteins remains unclear. In this work, a total of six structural proteins were separated by two-dimensional electrophoresis and shown to be encoded by the BmBDV VP gene via mass spectrometry. The transmission electron microscopy results showed that co-expression of the BmBDV VP and SP structural proteins in Spodoptera frugiperda sf9 cells resulted in the formation of 22-24nm virus-like particles. Furthermore, a mutation of the major structural protein-encoding VP gene, in which the second in-frame ATG codon was mutated to GCG, abrogated the production of several structural proteins, indicating that this strategy of expressing BmBDV VP is dependent on a leaky scanning translation mechanism.

  18. Optimization of Translation Profiles Enhances Protein Expression and Solubility

    PubMed Central

    Hess, Anne-Katrin; Saffert, Paul; Liebeton, Klaus; Ignatova, Zoya

    2015-01-01

    mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs) and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5’-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein. PMID:25965266

  19. Raman microscopy of bladder cancer cells expressing green fluorescent protein

    NASA Astrophysics Data System (ADS)

    Mandair, Gurjit S.; Han, Amy L.; Keller, Evan T.; Morris, Michael D.

    2016-11-01

    Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.

  20. Developmental expression of Drosophila Wiskott-Aldrich Syndrome family proteins

    PubMed Central

    Rodriguez-Mesa, Evelyn; Abreu-Blanco, Maria Teresa; Rosales-Nieves, Alicia E.; Parkhurst, Susan M.

    2012-01-01

    Background Wiskott-Aldrich Syndrome (WASP) family proteins participate in many cellular processes involving rearrangements of the actin cytoskeleton. To the date, four WASP subfamily members have been described in Drosophila: Wash, WASp, SCAR, and Whamy. Wash, WASp, and SCAR are essential during early Drosophila development where they function in orchestrating cytoplasmic events including membrane-cytoskeleton interactions. A mutant for Whamy has not yet been reported. Results We generated monoclonal antibodies that are specific to Drosophila Wash, WASp, SCAR, and Whamy, and use these to describe their spatial and temporal localization patterns. Consistent with the importance of WASP family proteins in flies, we find that Wash, WASp, SCAR, and Whamy are dynamically expressed throughout oogenesis and embryogenesis. For example, we find that Wash accumulates at the oocyte cortex. WASp is highly expressed in the PNS, while SCAR is the most abundantly expressed in the CNS. Whamy exhibits an asymmetric subcellular localization that overlaps with mitochondria and is highly expressed in muscle. Conclusion All four WASP family members show specific expression patterns, some of which reflect their previously known roles and others revealing new potential functions. The monoclonal antibodies developed offer valuable new tools to investigate how WASP family proteins regulate actin cytoskeleton dynamics. PMID:22275148

  1. Expression of glutamine metabolism-related proteins in thyroid cancer

    PubMed Central

    Kim, Hye Min; Lee, Yu Kyung; Koo, Ja Seung

    2016-01-01

    Purpose This study aimed to investigate the expression of glutamine metabolism-related protein in tumor and stromal compartments among the histologic subtypes of thyroid cancer. Results GLS1 and GDH expression in tumor and stromal compartments were the highest in AC than in other subtypes. Tumoral ASCT2 expression was higher in MC but lower in FC (p < 0.001). In PTC, tumoral GLS1 and tumoral GDH expression was higher in the conventional type than in the follicular variant (p = 0.043 and 0.001, respectively), and in PTC with BRAF V600E mutation than in PTC without BRAF V600E mutation (p<0.001). Stromal GDH positivity was the independent factor associated with short overall survival (hazard ratio: 21.48, 95% confidence interval: 2.178-211.8, p = 0.009). Methods We performed tissue microarrays with 557 thyroid cancer cases (papillary thyroid carcinoma [PTC]: 344, follicular carcinoma [FC]: 112, medullary carcinoma [MC]: 70, poorly differentiated carcinoma [PDC]: 23, and anaplastic carcinoma [AC]: 8) and 152 follicular adenoma (FA) cases. We performed immunohistochemical staining of glutaminolysis-related proteins (glutaminase 1 [GLS1], glutamate dehydrogenase [GDH], and amino acid transporter-2 [ASCT-2]). Conclusion Glutamine metabolism-related protein expression differed among the histologic subtypes of thyroid cancer. PMID:27447554

  2. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer

    SciTech Connect

    Raymond, Amy; Lovell, Scott; Lorimer, Don; Walchli, John; Mixon, Mark; Wallace, Ellen; Thompkins, Kaitlin; Archer, Kimberly; Burgin, Alex; Stewart, Lance

    2009-12-01

    With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript. In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer. A test set of proteins including a human kinase (P38{alpha}), viral polymerase (HCV NS5B), and bacterial structural protein (FtsZ) were expressed in both E. coli and a cell-free wheat germ translation system. We also compare the protein expression levels in E. coli for a set of 11 different proteins with greatly varied G:C content and codon bias. The results consistently demonstrate that protein yields from codon engineered Gene Composer designs are as good as or better than those achieved from the synonymous native genes. Moreover, structure guided N- and C-terminal deletion constructs designed with the aid of Gene Composer can lead to greater success in gene to structure work as exemplified by the X-ray crystallographic structure determination of FtsZ from Bacillus subtilis. These results validate the Gene Composer algorithms, and suggest that using a combination of synthetic gene and protein construct engineering tools can improve the economics of gene to structure research.

  3. The E4 protein; structure, function and patterns of expression

    SciTech Connect

    Doorbar, John

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup

  4. Easy mammalian expression and crystallography of maltose-binding protein-fused human proteins

    PubMed Central

    Bokhove, Marcel; Sadat Al Hosseini, Hamed; Saito, Takako; Dioguardi, Elisa; Gegenschatz-Schmid, Katharina; Nishimura, Kaoru; Raj, Isha; de Sanctis, Daniele; Han, Ling; Jovine, Luca

    2016-01-01

    We present a strategy to obtain milligrams of highly post-translationally modified eukaryotic proteins, transiently expressed in mammalian cells as rigid or cleavable fusions with a mammalianized version of bacterial maltose-binding protein (mMBP). This variant was engineered to combine mutations that enhance MBP solubility and affinity purification, as well as provide crystal-packing interactions for increased crystallizability. Using this cell type-independent approach, we could increase the expression of secreted and intracellular human proteins up to 200-fold. By molecular replacement with MBP, we readily determined five novel high-resolution structures of rigid fusions of targets that otherwise defied crystallization. PMID:26850170

  5. Dark proteins: effect of inclusion body formation on quantification of protein expression.

    PubMed

    Iafolla, Marco A J; Mazumder, Mostafizur; Sardana, Vandit; Velauthapillai, Tharsan; Pannu, Karanbir; McMillen, David R

    2008-09-01

    Plasmid-borne gene expression systems have found wide application in the emerging fields of systems biology and synthetic biology, where plasmids are used to implement simple network architectures, either to test systems biology hypotheses about issues such as gene expression noise or as a means of exerting artificial control over a cell's dynamics. In both these cases, fluorescent proteins are commonly applied as a means of monitoring the expression of genes in the living cell, and efforts have been made to quantify protein expression levels through fluorescence intensity calibration and by monitoring the partitioning of proteins among the two daughter cells after division; such quantification is important in formulating the predictive models desired in systems and synthetic biology research. A potential pitfall of using plasmid-based gene expression systems is that the high protein levels associated with expression from plasmids can lead to the formation of inclusion bodies, insoluble aggregates of misfolded, nonfunctional proteins that will not generate fluorescence output; proteins caught in these inclusion bodies are thus "dark" to fluorescence-based detection methods. If significant numbers of proteins are incorporated into inclusion bodies rather than becoming biologically active, quantitative results obtained by fluorescent measurements will be skewed; we investigate this phenomenon here. We have created two plasmid constructs with differing average copy numbers, both incorporating an unregulated promoter (P(LtetO-1) in the absence of TetR) expressing the GFP derivative enhanced green fluorescent protein (EGFP), and inserted them into Escherichia coli bacterial cells (a common model organism for work on the dynamics of prokaryotic gene expression). We extracted the inclusion bodies, denatured them, and refolded them to render them active, obtaining a measurement of the average number of EGFP per cell locked into these aggregates; at the same time, we used

  6. Methods and constructs for expression of foreign proteins in photosynthetic organisms

    DOEpatents

    Laible, Philip D.; Hanson, Deborah K.

    2002-01-01

    A method for expressing and purifying foreign proteins in photosynthetic organisms comprising the simultaneous expression of both the heterologous protein and a means for compartmentalizing or sequestering of the protein.

  7. Transient expression and cellular localization of recombinant proteins in cultured insect cells

    USDA-ARS?s Scientific Manuscript database

    Heterologous protein expression systems are used for production of recombinant proteins, interpretation of cellular trafficking/localization, and for the determination of biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for ...

  8. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly.

    PubMed

    Sawatsky, Bevan; Bente, Dennis A; Czub, Markus; von Messling, Veronika

    2016-05-01

    The amino-terminal cytoplasmic domains of paramyxovirus attachment glycoproteins include trafficking signals that influence protein processing and cell surface expression. To characterize the role of the cytoplasmic domain in protein expression, fusion support and particle assembly in more detail, we constructed chimeric Nipah virus (NiV) glycoprotein (G) and canine distemper virus (CDV) haemagglutinin (H) proteins carrying the respective heterologous cytoplasmic domain, as well as a series of mutants with progressive deletions in this domain. CDV H retained fusion function and was normally expressed on the cell surface with a heterologous cytoplasmic domain, while the expression and fusion support of NiV G was dramatically decreased when its cytoplasmic domain was replaced with that of CDV H. The cell surface expression and fusion support functions of CDV H were relatively insensitive to cytoplasmic domain deletions, while short deletions in the corresponding region of NiV G dramatically decreased both. In addition, the first 10 residues of the CDV H cytoplasmic domain strongly influence its incorporation into virus-like particles formed by the CDV matrix (M) protein, while the co-expression of NiV M with NiV G had no significant effect on incorporation of G into particles. The cytoplasmic domains of both the CDV H and NiV G proteins thus contribute differently to the virus life cycle.

  9. Grape seed extract inhibits VEGF expression via reducing HIF-1alpha protein expression.

    PubMed

    Lu, Jianming; Zhang, Keqiang; Chen, Shiuan; Wen, Wei

    2009-04-01

    Grape seed extract (GSE) is a widely consumed dietary supplement that has antitumor activity. Here, we have investigated the inhibitory effect of GSE on the expression of vascular endothelial growth factor (VEGF) and the mechanism underlying this action. We found that GSE inhibited VEGF messenger RNA (mRNA) and protein expression in U251 human glioma cells and MDA-MB-231 human breast cancer cells. GSE inhibited transcriptional activation of the VEGF gene through reducing protein but not mRNA expression of hypoxia-inducible factor (HIF) 1alpha. The inhibitory effect of GSE on HIF-1alpha expression was mainly through inhibiting HIF-1alpha protein synthesis rather than promoting protein degradation. Consistent with this result, GSE-suppressed phosphorylation of several important components involved in HIF-1alpha protein synthesis, such as Akt, S6 kinase and S6 protein. Furthermore, in the MDA-MB-231 tumor, we found that GSE treatment inhibited the expression of VEGF and HIF-1alpha and the phosphorylation of S6 kinase without altering the subcellular localization of HIF-1alpha, correlating with reduced vessel density and tumor size. Depletion of polyphenol with polyvinylpyrrolidone abolished the inhibitory activity of GSE, suggesting a water-soluble fraction of polyphenol in GSE is responsible for the inhibitory activity. Taken together, our results indicate that GSE inhibits VEGF expression by reducing HIF-1alpha protein synthesis through blocking Akt activation. This finding provides new insight into the mechanisms of anticancer activity of GSE and reveals a novel molecular mechanism underlying the antiangiogenic action of GSE.

  10. Grape seed extract inhibits VEGF expression via reducing HIF-1α protein expression

    PubMed Central

    Lu, Jianming; Zhang, Keqiang; Chen, Shiuan; Wen, Wei

    2009-01-01

    Grape seed extract (GSE) is a widely consumed dietary supplement that has antitumor activity. Here, we have investigated the inhibitory effect of GSE on the expression of vascular endothelial growth factor (VEGF) and the mechanism underlying this action. We found that GSE inhibited VEGF messenger RNA (mRNA) and protein expression in U251 human glioma cells and MDA-MB-231 human breast cancer cells. GSE inhibited transcriptional activation of the VEGF gene through reducing protein but not mRNA expression of hypoxia-inducible factor (HIF) 1α. The inhibitory effect of GSE on HIF-1α expression was mainly through inhibiting HIF-1α protein synthesis rather than promoting protein degradation. Consistent with this result, GSE-suppressed phosphorylation of several important components involved in HIF-1α protein synthesis, such as Akt, S6 kinase and S6 protein. Furthermore, in the MDA-MB-231 tumor, we found that GSE treatment inhibited the expression of VEGF and HIF-1α and the phosphorylation of S6 kinase without altering the subcellular localization of HIF-1α, correlating with reduced vessel density and tumor size. Depletion of polyphenol with polyvinylpyrrolidone abolished the inhibitory activity of GSE, suggesting a water-soluble fraction of polyphenol in GSE is responsible for the inhibitory activity. Taken together, our results indicate that GSE inhibits VEGF expression by reducing HIF-1α protein synthesis through blocking Akt activation. This finding provides new insight into the mechanisms of anticancer activity of GSE and reveals a novel molecular mechanism underlying the antiangiogenic action of GSE. PMID:19131542

  11. [Cloning, prokaryotic expression of cattle Ghrelin gene and biological activity detection of the expressed protein].

    PubMed

    Zhang, Ailing; Zhang, Li; Chen, Hong; Zhang, Liangzhi; Lan, Xianyong; Zhang, Chunlei; Zhang, Cunfang; Zhu, Zeyi

    2009-01-01

    The cDNA of cattle Ghrelin gene was amplified from abomasum fundic gland mRNA of Qinchuan Cattle by RT-PCR. PCR product was cloned into the T vector pGM-T to construct pGh-T1 for sequencing. Then the cDNA was subcloned into the prokaryotic expressing plasmid vector pET32a (+) and transformed into host Escherichia coli strain BL21 (DE3) for expression. The expression of pGh-32 mature Ghrelin protein was induced by IPTG and was identified by SDS-PAGE. The expression product was observed with soluble protein and inclusion body. Western blotting showed that the recombinant protein was recognized by his-antibody specifically. The protein was purified by Ni-NTA column and was used to inject rabbits to obtain polyclona antibody. ELISA result showed that the antibody titer was 1:12 800. The immunohistochemistry test between the hypothalamus arcuate nucleus and the antibody showed that fusion protein had biological activity. This will provide a basis for further study on the biological function of Ghrelin protein to growth and development and fat deposition of cattle.

  12. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    PubMed Central

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  13. Morphine Withdrawal Modifies Prion Protein Expression in Rat Hippocampus

    PubMed Central

    Mattei, Vincenzo; Martellucci, Stefano; Santilli, Francesca; Manganelli, Valeria; Garofalo, Tina; Candelise, Niccolò; Caruso, Alessandra; Sorice, Maurizio; Scaccianoce, Sergio

    2017-01-01

    The hippocampus is a vulnerable brain structure susceptible to damage during aging and chronic stress. Repeated exposure to opioids may alter the brain so that it functions normally when the drugs are present, thus, a prolonged withdrawal might lead to homeostatic changes headed for the restoration of the physiological state. Abuse of morphine may lead to Reacting Oxygen Species-induced neurodegeneration and apoptosis. It has been proposed that during morphine withdrawal, stress responses might be responsible, at least in part, for long-term changes of hippocampal plasticity. Since prion protein is involved in both, Reacting Oxygen Species mediated stress responses and synaptic plasticity, in this work we investigate the effect of opiate withdrawal in rats after morphine treatment. We hypothesize that stressful stimuli induced by opiate withdrawal, and the subsequent long-term homeostatic changes in hippocampal plasticity, might modulate the Prion protein expression. Our results indicate that abstinence from the opiate induced a time-dependent and region-specific modification in Prion protein content, indeed during morphine withdrawal a selective unbalance of hippocampal Prion Protein is observable. Moreover, Prion protein overexpression in hippocampal tissue seems to generate a dimeric structure of Prion protein and α-cleavage at the hydrophobic domain. Stress factors or toxic insults can induce cytosolic dimerization of Prion Protein through the hydrophobic domain, which in turn, it stimulates the α-cleavage and the production of neuroprotective Prion protein fragments. We speculate that this might be the mechanism by which stressful stimuli induced by opiate withdrawal and the subsequent long-term homeostatic changes in hippocampal plasticity, modulate the expression and the dynamics of Prion protein. PMID:28081197

  14. Expression and Localization of Plant Protein Disulfide Isomerase.

    PubMed Central

    Shorrosh, B. S.; Subramaniam, J.; Schubert, K. R.; Dixon, R. A.

    1993-01-01

    A cDNA clone encoding a putative protein disulfide isomerase (PDI, EC 5.3.4.1) from alfalfa (Medicago sativa L.) was expressed in Escherichia coli cells, and an antiserum was raised against the expressed PDI-active protein. The antiserum recognized a protein of approximately 60 kD in extracts from alfalfa, soybean, and tobacco roots and stems. Levels of this protein remained relatively constant on exposure of alfalfa cell suspension cultures to the protein glycosylation inhibitor tunicamycin, whereas a slightly lower molecular mass form, also detected by the antiserum, was induced by this treatment. A lower molecular mass form of PDI was also observed in roots of alfalfa seedlings during the first 5 weeks after germination. PDI levels increased in developing soybean seeds up to 17 d after fertilization and then declined. Tissue print immunoblots revealed highest levels of PDI protein in the cambial tissues of soybean stems and petioles and in epidermal, subepidermal, cortical, and pith tissues of stems of alfalfa and tobacco. Immunogold electron microscopy confirmed the localization of PDI to the endoplasmic reticulum in soybean root nodules. PMID:12231974

  15. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups

    PubMed Central

    2013-01-01

    Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways

  16. The Bright Fluorescent Protein mNeonGreen Facilitates Protein Expression Analysis In Vivo

    PubMed Central

    Hostettler, Lola; Grundy, Laura; Käser-Pébernard, Stéphanie; Wicky, Chantal; Schafer, William R.; Glauser, Dominique A.

    2017-01-01

    The Green Fluorescent Protein (GFP) has been tremendously useful in investigating cell architecture, protein localization, and protein function. Recent developments in transgenesis and genome editing methods now enable working with fewer transgene copies and, consequently, with physiological expression levels. However, lower signal intensity might become a limiting factor. The recently developed mNeonGreen protein is a brighter alternative to GFP in vitro. The goal of the present study was to determine how mNeonGreen performs in vivo in Caenorhabditis elegans—a model used extensively for fluorescence imaging in intact animals. We started with a side-by-side comparison between cytoplasmic forms of mNeonGreen and GFP expressed in the intestine, and in different neurons, of adult animals. While both proteins had similar photostability, mNeonGreen was systematically 3–5 times brighter than GFP. mNeonGreen was also used successfully to trace endogenous proteins, and label specific subcellular compartments such as the nucleus or the plasma membrane. To further demonstrate the utility of mNeonGreen, we tested transcriptional reporters for nine genes with unknown expression patterns. While mNeonGreen and GFP reporters gave overall similar expression patterns, low expression tissues were detected only with mNeonGreen. As a whole, our work establishes mNeonGreen as a brighter alternative to GFP for in vivo imaging in a multicellular organism. Furthermore, the present research illustrates the utility of mNeonGreen to tag proteins, mark subcellular regions, and describe new expression patterns, particularly in tissues with low expression. PMID:28108553

  17. Modular Protein Expression Toolbox (MoPET), a standardized assembly system for defined expression constructs and expression optimization libraries

    PubMed Central

    Birkenfeld, Jörg; Franz, Jürgen; Gritzan, Uwe; Linden, Lars; Trautwein, Mark

    2017-01-01

    The design and generation of an optimal expression construct is the first and essential step in in the characterization of a protein of interest. Besides evaluation and optimization of process parameters (e.g. selection of the best expression host or cell line and optimal induction conditions and time points), the design of the expression construct itself has a major impact. However, the path to this final expression construct is often not straight forward and includes multiple learning cycles accompanied by design variations and retesting of construct variants, since multiple, functional DNA sequences of the expression vector backbone, either coding or non-coding, can have a major impact on expression yields. To streamline the generation of defined expression constructs of otherwise difficult to express proteins, the Modular Protein Expression Toolbox (MoPET) has been developed. This cloning platform allows highly efficient DNA assembly of pre-defined, standardized functional DNA modules with a minimal cloning burden. Combining these features with a standardized cloning strategy facilitates the identification of optimized DNA expression constructs in shorter time. The MoPET system currently consists of 53 defined DNA modules divided into eight functional classes and can be flexibly expanded. However, already with the initial set of modules, 792,000 different constructs can be rationally designed and assembled. Furthermore, this starting set was used to generate small and mid-sized combinatorial expression optimization libraries. Applying this screening approach, variants with up to 60-fold expression improvement have been identified by MoPET variant library screening. PMID:28520717

  18. Tools to cope with difficult-to-express proteins.

    PubMed

    Saccardo, Paolo; Corchero, José Luís; Ferrer-Miralles, Neus

    2016-05-01

    The identification of DNA coding sequences contained in the genome of many organisms coupled to the use of high throughput approaches has fueled the field of recombinant protein production. Apart from basic research interests, the growing relevance of this field is highlighted by the global sales of the top ten biopharmaceuticals on the market, which exceeds the trillion USD in a steady increasing tendency. Therefore, the demand of biological compounds seems to have a long run on the market. One of the most popular expression systems is based on Escherichia coli cells which apart from being cost-effective counts with a large selection of resources. However, a significant percentage of the genes of interest are not efficiently expressed in this system, or the expressed proteins are accumulated within aggregates, degraded or lacking the desired biological activity, being finally discarded. In some instances, expressing the gene in a homologous expression system might alleviate those drawbacks but then the process usually increases in complexity and is not as cost-effective as the prokaryotic systems. An increasing toolbox is available to approach the production and purification of those difficult-to-express proteins, including different expression systems, promoters with different strengths, cultivation media and conditions, solubilization tags and chaperone coexpression, among others. However, in most cases, the process follows a non-integrative trial and error strategy with discrete success. This review is focused on the design of the whole process by using an integrative approach, taken into account the accumulated knowledge of the pivotal factors that affect any of the key processes, in an attempt to rationalize the efforts made in this appealing field.

  19. Expression of low molecular weight proteins in patients with leukaemia.

    PubMed

    Sheikh, N; Abid, R; Qureshi, A W; Basheer, T

    2012-06-01

    The current study is conducted to observe the differences in the level of low molecular weight proteins in the sera of patients with leukaemia in comparison to healthy subjects (control group). The sera of patients with leukaemia showed 15 peaks in the densitometric curve in comparison to the seven peaks of the controls. The peaks in the experimental samples that coincide with those in the control were of 134.14, 113.15, 76.06, 63.25, 48.07, 22.85 and 16.47 kDa molecular weights, respectively. Most of the new peaks appeared between the proteins of molecular weight 36-29 kDa in the experimental groups. Mean density of the 134.14 kDa protein band showed an increase in the protein in experimental groups I and II only whereas 113.15 and 22.85 kDa protein were increased in all experimental groups of patients with leukaemia. The expression of 76.06 and 63.25 kDa protein fraction was downregulated in the patients with leukaemia. A decline in the level of the protein of 48.07 kDa was observed in patients with leukaemia except in group I. Unlike the other protein fractions, the level of the protein of 16.47 kDa was significantly (p < 0.05) increased with a maximum density in group II. Intergroup experimental) comparison revealed an increasing pattern of 95.44 and 89.21 kDa with maximum level in group III sera. However the protein fractions of 38.07 and 34.94 kDa varied in the serum with maximum density in Group IV Protein fractions of 32.92 and 31.24 kDa were expressed in all age groups of patients with leukaemia with a maximum density in group III whereas the percentage densities of 14.42 and 13.56 kDa protein were quite different. This preliminary study will provide a basis to study the role of different proteins in patients with leukaemia.

  20. Expression Screening of Fusion Partners from an E. coli Genome for Soluble Expression of Recombinant Proteins in a Cell-Free Protein Synthesis System

    PubMed Central

    Kim, Dong-Myung

    2011-01-01

    While access to soluble recombinant proteins is essential for a number of proteome studies, preparation of purified functional proteins is often limited by the protein solubility. In this study, potent solubility-enhancing fusion partners were screened from the repertoire of endogenous E. coli proteins. Based on the presumed correlation between the intracellular abundance and folding efficiency of proteins, PCR-amplified ORFs of a series of highly abundant E. coli proteins were fused with aggregation-prone heterologous proteins and then directly expressed for quantitative estimation of the expression efficiency of soluble translation products. Through two-step screening procedures involving the expression of 552 fusion constructs targeted against a series of cytokine proteins, we were able to discover a number of endogenous E. coli proteins that dramatically enhanced the soluble expression of the target proteins. This strategy of cell-free expression screening can be extended to quantitative, global analysis of genomic resources for various purposes. PMID:22073212

  1. Expression of β-amyloid precursor protein in refractory epilepsy.

    PubMed

    Sima, Xiutian; Xu, Jianguo; Li, Jinmei; Zhong, Weiying; You, Chao

    2014-04-01

    β-amyloid precursor protein (β-APP), also known as Aβ peptide, has a key role in the pathogenesis of Alzheimer's disease, and is also likely to be involved in the development of refractory epilepsy. The mechanism behind the association between β-APP and refractory epilepsy remains to be elucidated. The aim of the present study was to examine the levels of APP mRNA and β-APP protein in patients with refractory epilepsy. Tissue samples were obtained from patients with chronic pharmacoresistant epilepsy who underwent surgery. Levels of APP mRNA and β-APP protein in epileptic temporal lobe and hippocampal tissue were assessed using quantitative polymerase chain reaction, immunohistochemistry and immunofluorescence. The expression levels of protein significantly increased in the temporal cortex and the hippocampus of the patients with epilepsy. β-APP may thus contribute to the pathogenesis of refractory epilepsy.

  2. Expression and serological reactivity of hemorrhagic enteritis virus hexon protein.

    PubMed

    Lobová, Dana; Celer, Vladimír

    2016-05-01

    The aim of this work was to express the recombinant hexon protein of the hemorrhagic enteritis virus, to establish the diagnostic value of this protein for serological detection of antibodies in turkey serum samples and to assess seroprevalence of the infection in the Czech Republic. The N' terminal part of the hexon protein was expressed in a bacterial expression system and used as an antigen in an ELISA test for the detection of hemorrhagic enteritis virus specific antibodies in turkey sera. Validation of the test was performed by comparison with a commercially available ELISA test. Serological reactivity was assessed on a panel of 126 turkey sera by a newly developed ELISA test. Serum samples were taken from turkey farms with the history of hemorrhagic enteritis virus infection, from farms with animals free of infection, and from turkey farms following vaccination. Both ELISA kits gave identical results (100 %) with the tested sera. ELISA based on the recombinant hexon protein thus proved useful and cheaper for detection of antibodies in turkey flocks infected with the hemorrhagic enteritis virus.

  3. Prion protein expression in bovine podocytes and extraglomerular mesangial cells.

    PubMed

    Amselgruber, W M; Steffl, M; Didier, A; Märtlbauer, E; Pfaff, E; Büttner, M

    2006-06-01

    The cellular form of the prion protein (PrP(c)) is thought to be a substrate for an abnormal isoform of the prion protein (PrP(sc)). One emerging hypothesis is that the proposed conversion phenomenon takes place at the site at which the infectious agent meets PrP(c). PrP(c) is abundant in the central nervous system, but little is known about the cell-type-specific distribution of PrP(c) in non-neuronal tissues of cattle. We have studied whether PrP(c), a protein found predominantly in neurons, also exists in bovine podocytes, since neurons and podocytes share a large number of similarities. We have therefore examined the expression of PrP(c) by immunohistochemistry, reverse transcription/polymerase chain reaction and enzyme-linked immunosorbent analysis. Immunostained serial sections and specific antibodies against PrP(c) have revealed that PrP(c) is selectively localized in podocytes and is particularly strongly expressed in extraglomerular mesangial cells but not in endothelial or intraglomerular mesangial cells. The selective expression of PrP(c) in podocytes is of special importance, as it suggests that these cells represent possible targets for peripheral infection with prions and demonstrates that PrP(c) can be added to the list of neuronal factors expressed in mammalian podocytes.

  4. Expression of Tyrosine Hydroxylase is Negatively Regulated Via Prion Protein.

    PubMed

    da Luz, Marcio Henrique Mello; Glezer, Isaias; Xavier, Andre Machado; da Silva, Marcelo Alberti Paiva; Pino, Jessica Monteiro Volejnik; Zamith, Thiago Panaro; Vieira, Taynara Fernanda; Antonio, Bruno Brito; Antunes, Hanna Karen Moreira; Martins, Vilma Regina; Lee, Kil Sun

    2016-07-01

    Cellular prion protein (PrP(C)) is a glycoprotein of the plasma membrane that plays pleiotropic functions by interacting with multiple signaling complexes at the cell surface. Recently, a number of studies have reported the involvement of PrP(C) in dopamine metabolism and signaling, including its interactions with tyrosine hydroxylase (TH) and dopamine receptors. However, the outcomes reported by independent studies are still debatable. Therefore in this study, we investigated the effects of PrP(C) on the TH expression during the differentiation of N2a cells with dibutyryl-cAMP, a well-known cAMP analog that activates TH transcription. Upon differentiation, TH was induced with concomitant reduction of PrP(C) at protein level, but not at mRNA level. shRNA-mediated PrP(C) reduction increased the basal level of TH at both mRNA and protein levels without dibutyryl-cAMP treatment. This phenotype was reversed by re-expression of PrP(C). PrP(C) knockdown also potentiated the effect of dibutyryl-cAMP on TH expression. Our findings suggest that PrP(C) has suppressive effects on TH expression. As a consequence, altered PrP(C) functions may affect the regulation of dopamine metabolism and related neurological disorders.

  5. Protein Phosphatase-1 Regulates Expression of Neuregulin-1

    PubMed Central

    Ammosova, Tatiana; Washington, Kareem; Rotimi, Jamie; Kumari, Namita; Smith, Kahli A.; Niu, Xiaomei; Jerebtsova, Marina; Nekhai, Sergei

    2016-01-01

    Protein phosphatase 1 (PP1), a cellular serine/threonine phosphatase, is targeted to cellular promoters by its major regulatory subunits, PP1 nuclear targeting subunit, nuclear inhibitor of PP1 (NIPP1) and RepoMan. PP1 is also targeted to RNA polymerase II (RNAPII) by NIPP1 where it can dephosphorylate RNAPII and cycle-dependent kinase 9 (CDK9). Here, we show that treatment of cells with a small molecule activator of PP1 increases the abundance of a neuregulin-1 (NRG-1)-derived peptide. NRG-1 mRNA and protein levels were increased in the cells stably or transiently expressing mutant NIPP1 (mNIPP1) that does not bind PP1, but not in the cells expressing NIPP1. Expression of mNIPP1 also activated the NRG-1 promoter in an NF-κB-dependent manner. Analysis of extracts from mNIPP1 expressing cells by glycerol gradient centrifugation showed a redistribution of PP1 and CDK9 between large and small molecular weight complexes, and increased CDK9 Thr-186 phosphorylation. This correlated with the increased CDK9 activity. Further, RNAPII co-precipitated with mNIPP1, and phosphorylation of RNAPII C-terminal domain (CTD) Ser-2 residues was greater in cells expressing mNIPP1. In mNIPP1 expressing cells, okadaic acid, a cell-permeable inhibitor of PP1, did not increase Ser-2 CTD phosphorylation inhibited by flavopiridol, in contrast to the NIPP1 expressing cells, suggesting that PP1 was no longer involved in RNAPII dephosphorylation. Finally, media conditioned with mNIPP1 cells induced the proliferation of wild type 84-31 cells, consistent with a role of neuregulin-1 as a growth promoting factor. Our study indicates that deregulation of PP1/NIPP1 holoenzyme activates NRG-1 expression through RNAPII and CDK9 phosphorylation in a NF-κB dependent manner. PMID:27918433

  6. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    SciTech Connect

    Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.

    2008-04-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress.

  7. Tissue-Specific Protein Expression in Plant Mitochondria.

    PubMed Central

    Conley, C. A.; Hanson, M. R.

    1994-01-01

    Although the physiological role of plant mitochondria is thought to vary in different tissues at progressive stages of development, there has been little documentation that the complement of mitochondrial proteins is altered in different plant organs. Because the phenomenon of cytoplasmic male sterility suggests an unusual function for mitochondria in floral buds, we examined the tissue-specific expression of mitochondrial proteins in petunia buds at several stages of development, using both fertile and cytoplasmic male sterile plants. On tissue prints of cryostat-sectioned buds, antibodies recognizing subunit A of the mitochondrial ATPase (ATPA) localized very differently from antibodies recognizing subunit II of the cytochrome oxidase (COXII), which indicated that mitochondria in the same tissue could differentially express mitochondrially encoded proteins. The petunia cytoplasmic male sterility-associated fused (pcf) gene encodes a protein that colocalized with ATPA and the nuclear-encoded mitochondrial alternative oxidase (AOA) in sporogenous tissues, where little COXII protein was found. These overlapping and differential localization patterns may provide clues to the molecular mechanism of cytoplasmic male sterility. PMID:12244222

  8. Eosinophil granule proteins expressed in ocular cicatricial pemphigoid

    PubMed Central

    Heiligenhaus, A.; Schaller, J.; Mauss, S.; Engelbrecht, S.; Dutt, J.; Foster, C; Steuhl, K.

    1998-01-01

    BACKGROUND—Blister formation and tissue damage in bullous pemphigoid have been attributed to the release of eosinophil granule proteins—namely, to eosinophil derived cationic protein (ECP) and major basic protein (MBP). In the present investigation these eosinophil granule proteins were studied in the conjunctiva of patients with ocular cicatricial pemphigoid (OCP).
METHODS—Conjunctival biopsy specimens obtained from patients with subacute (n=8) or chronic conjunctival disease (n=13) were analysed histologically and immunohistochemically using antibodies directed against EG1 (stored and secreted ECP), EG2 (secreted ECP), MBP, CD45 (common leucocyte antigen), CD3 (pan T cell marker), and HLA-DR (class II antigen).
RESULTS—Subepithelial mononuclear cells, mast cells, and neutrophils were detected in all specimens. The number of mononuclear cells, neutrophils, CD45+ cells, CD3+ cells, and the HLA-DR expression were significantly higher in the subacute than in the chronic disease group. Some eosinophils were found in specimens from five of eight patients with subacute OCP, but in none of the patients with chronic disease. The eosinophil granule proteins (ECP and MBP) were found in the epithelium and substantia propria in patients with subacute conjunctivitis.
CONCLUSIONS—Subepithelial cell infiltration in the conjunctiva greatly differs between subacute and chronic ocular cicatricial pemphigoid specimens. The findings suggest that eosinophil granule proteins may participate in tissue damage in acute phase of inflammation in OCP.

 Keywords: ocular cicatricial pemphigoid; conjunctivitis; eosinophil derived cationic protein; major basic protein PMID:9602632

  9. Somatostatin regulates tight junction proteins expression in colitis mice.

    PubMed

    Li, Xiao; Wang, Qian; Xu, Hua; Tao, Liping; Lu, Jing; Cai, Lin; Wang, Chunhui

    2014-01-01

    Tight junction plays a critical role in intestinal defence. The alteration and perturbation of tight junction proteins could induce intestine barrier damage, and lead to the malabsorption of electrolytes and water. Previous studies had showed that colonic infection and inflammation could lead to the alteration of tight junction function, and somatostatin could protect intestinal epithelia. Thus, this study could explore that whether somatostatin could regulate tight junction in colitis mice. Colitis mice with diarrhea were induced by Citrobacter rodentium (CR) and Dextran sulfate sodium (DSS). In CR infected model, cladudin-1 and claudin-3 expression significantly decreased compared with the control mice (P<0.05); after octreotide treatment, claudin-1 and claudin-3 expression significantly increased compared with untreated CR infected mice (P<0.05). In DSS colitis model, occludin and claudin-3 expression significantly decreased compared with the control mice (P<0.05); and octreotide treatment could only significantly upregulate claudin-3 expression compared with untreated DSS colitis mice (P<0.05). To testify our results in vivo, we repeated the models in caco-2 cells by exposed with enteropathogenic Escherichia coli (E. Coli) and Tumor necrosis factor α (TNF-α). The results in vitro were consistent with in vivo study. The results suggested that somatostatin play a role in intestinal barrier protection by modulating tight junction proteins expression.

  10. Somatostatin regulates tight junction proteins expression in colitis mice

    PubMed Central

    Li, Xiao; Wang, Qian; Xu, Hua; Tao, Liping; Lu, Jing; Cai, Lin; Wang, Chunhui

    2014-01-01

    Tight junction plays a critical role in intestinal defence. The alteration and perturbation of tight junction proteins could induce intestine barrier damage, and lead to the malabsorption of electrolytes and water. Previous studies had showed that colonic infection and inflammation could lead to the alteration of tight junction function, and somatostatin could protect intestinal epithelia. Thus, this study could explore that whether somatostatin could regulate tight junction in colitis mice. Colitis mice with diarrhea were induced by Citrobacter rodentium (CR) and Dextran sulfate sodium (DSS). In CR infected model, cladudin-1 and claudin-3 expression significantly decreased compared with the control mice (P < 0.05); after octreotide treatment, claudin-1 and claudin-3 expression significantly increased compared with untreated CR infected mice (P < 0.05). In DSS colitis model, occludin and claudin-3 expression significantly decreased compared with the control mice (P < 0.05); and octreotide treatment could only significantly upregulate claudin-3 expression compared with untreated DSS colitis mice (P < 0.05). To testify our results in vivo, we repeated the models in caco-2 cells by exposed with enteropathogenic Escherichia coli (E. Coli) and Tumor necrosis factor α (TNF-α). The results in vitro were consistent with in vivo study. The results suggested that somatostatin play a role in intestinal barrier protection by modulating tight junction proteins expression. PMID:24966923

  11. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  12. Protein profile changes during porcine oocyte aging and effects of caffeine on protein expression patterns.

    PubMed

    Jiang, Guang-Jian; Wang, Ke; Miao, De-Qiang; Guo, Lei; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan

    2011-01-01

    It has been shown that oocyte aging critically affects reproduction and development. By using proteomic tools, in the present study, changes in protein profiles during porcine oocyte aging and effects of caffeine on oocyte aging were investigated. By comparing control MII oocytes with aging MII oocytes, we identified 23 proteins that were up-regulated and 3 proteins that were down-regulated during the aging process. In caffeine-treated oocytes, 6 proteins were identified as up-regulated and 12 proteins were identified as down-regulated. A total of 38 differentially expressed proteins grouped into 5 regulation patterns were determined to relate to the aging and anti-aging process. By using the Gene Ontology system, we found that numerous functional gene products involved in metabolism, stress response, reactive oxygen species and cell cycle regulation were differentially expressed during the oocyte aging process, and most of these proteins are for the first time reported in our study, including 2 novel proteins. In addition, several proteins were found to be modified during oocyte aging. These data contribute new information that may be useful for future research on cellular aging and for improvement of oocyte quality.

  13. Stepwise optimization of a low-temperature Bacillus subtilis expression system for "difficult to express" proteins.

    PubMed

    Welsch, Norma; Homuth, Georg; Schweder, Thomas

    2015-08-01

    In order to improve the overproduction of "difficult to express" proteins, a low-temperature expression system for Bacillus subtilis based on the cold-inducible promoter of the desaturase-encoding des gene was constructed. Selected regulatory DNA sequence elements from B. subtilis genes known to be cold-inducible were fused to different model genes. It could be demonstrated that these regulatory elements are able to mediate increased heterologous gene expression, either by improved translation efficiency or by higher messenger RNA (mRNA) stability. In case of a cold-adapted β-galactosidase from Pseudoalteromonas haloplanktis TAE79A serving as the model, significantly higher expression was achieved by fusing its coding sequence to the so-called "downstream box" sequence of cspB encoding the major B. subtilis cold-shock protein. The combination of this fusion with a cspB 5'-UTR stem-loop structure resulted in further enhancement of the β-galactosidase expression. In addition, integration of the transcription terminator of the B. subtilis cold-inducible bkd operon downstream of the target genes caused a higher mRNA stability and enabled thus a further significant increase in expression. Finally, the fully optimized expression system was validated by overproducing a B. subtilis xylanase as well as an α-glucosidase from Saccharomyces cerevisiae, the latter known for tending to form inclusion bodies. These analyses verified the applicability of the engineered expression system for extracellular and intracellular protein synthesis in B. subtilis, thereby confirming the suitability of this host organism for the overproduction of critical, poorly soluble proteins.

  14. Epithelial membrane protein 1 expression in ovarian serous tumors.

    PubMed

    Demirag, Guzin Gonullu; Kefeli, Mehmet; Kemal, Yasemin; Yucel, Idris

    2016-03-01

    The present study aimed to analyze the clinical significance of epithelial membrane protein 1 (EMP1) expression in ovarian serous tumors. A total of 84 cases of ovarian serous tumor (50 patients with malignant ovarian serous tumors and 34 patients with borderline and benign serous tumors) were retrospectively analyzed. Differences in the expression levels of EMP1 between the malignant and non-malignant tumor groups were evaluated by immunohistochemical staining. In addition, the association between EMP1 expression and prognostic factors in malignant ovarian serous tumors was investigated. The expression levels of EMP1 were significantly reduced in all the 50 malignant ovarian serous tumors, compared with the 34 non-malignant ovarian serous tumors (P<0.000). Reduced expression of EMP1 was correlated with high grade (P=0.009) and stage (P<0.000) of malignant tumors. EMP1 expression was not observed to be correlated with any other investigated parameters, including surgery, type of operation and chemotherapy response (P>0.005). These results indicated that EMP1 may have a significant role as a negative regulator in ovarian serous tumors, and reduced EMP1 expression in serous tumors may be associated with increased disease severity.

  15. BMP-7 PROTEIN EXPRESSION IS DOWNREGULATED IN HUMAN DIABETIC NEPHROPATHY.

    PubMed

    Ivanac-Janković, Renata; Ćorić, Marijana; Furić-Čunko, Vesna; Lovičić, Vesna; Bašić-Jukić, Nikolina; Kes, Petar

    2015-06-01

    Bone morphogenetic protein-7 (BMP-7) is expressed in all parts of the normal kidney parenchyma, being highest in the epithelium of proximal tubules. It protects kidney against acute and chronic injury, inflammation and fibrosis. Diabetic nephropathy is the leading cause of chronic kidney disease, and is characterized by decreased expression of BMP-7. The aim of our study was to analyze whether the expression of BMP-7 is significantly changed in advanced stages of human diabetic nephropathy. Immunohistochemical analysis of the expression of BMP-7 was performed on archival material of 30 patients that underwent renal biopsy and had confirmed diagnosis of diabetic nephropathy. Results showed that BMP-7 was differently expressed in the cytoplasm of epithelial cells of proximal tubules and podocytes among all stages of diabetic nephropathy. At early stages of diabetic nephropathy, BMP-7 was strongly positive in proximal tubules and podocytes, while low expression was recorded in the majority of samples at advanced stages. In conclusion, increased expression of BMP-7 at initial stages of diabetic nephropathy with subsequent decrease at advanced stage highlights the role of BMP-7 in the protection of kidney structure and function. Further investigations should be focused on disturbances of BMP-7 receptors and signaling pathways in patients with diabetic nephropathy.

  16. Generation of transgenic dogs that conditionally express green fluorescent protein.

    PubMed

    Kim, Min Jung; Oh, Hyun Ju; Park, Jung Eun; Kim, Geon A; Hong, So Gun; Jang, Goo; Kwon, Mo Sun; Koo, Bon Chul; Kim, Teoan; Kang, Sung Keun; Ra, Jeong Chan; Ko, Chemyong; Lee, Byeong Chun

    2011-06-01

    We report the creation of a transgenic dog that conditionally expresses eGFP (enhanced green fluorescent protein) under the regulation of doxycycline. Briefly, fetal fibroblasts infected with a Tet-on eGFP vector were used for somatic cell nuclear transfer. Subsequently reconstructed oocytes were transferred to recipients. Three clones having transgenes were born and one dog was alive. The dog showed all features of inducible expression of eGFP upon doxycycline administration, and successful breeding resulted in eGFP-positive puppies, confirming stable insertion of the transgene into the genome. This inducible dog model will be useful for a variety of medical research studies.

  17. Autophagy and lysosomal related protein expression patterns in human glioblastoma.

    PubMed

    Giatromanolaki, Alexandra; Sivridis, Efthimios; Mitrakas, Achileas; Kalamida, Dimitra; Zois, Christos E; Haider, Syed; Piperidou, Charitomeni; Pappa, Aglaia; Gatter, Kevin C; Harris, Adrian L; Koukourakis, Michael I

    2014-01-01

    Glioblastoma cells are resistant to apoptotic stimuli with autophagic death prevailing under cytotoxic stress. Autophagy interfering agents may represent a new strategy to test in combination with chemo-radiation. We investigated the patterns of expression of autophagy related proteins (LC3A, LC3B, p62, Beclin 1, ULK1 and ULK2) in a series of patients treated with post-operative radiotherapy. Experiments with glioblastoma cell lines (T98 and U87) were also performed to assess autophagic response under conditions simulating the adverse intratumoral environment. Glioblastomas showed cytoplasmic overexpression of autophagic proteins in a varying extent, so that cases could be grouped into low and high expression groups. 10/23, 5/23, 13/23, 5/23, 8/23 and 9/23 cases examined showed extensive expression of LC3A, LC3B, Beclin 1, Ulk 1, Ulk 2 and p62, respectively. Lysosomal markers Cathepsin D and LAMP2a, as well as the lyososomal biogenesis transcription factor TFEB were frequently overexpressed in glioblastomas (10/23, 11/23, and 10/23 cases, respectively). TFEB was directly linked with PTEN, Cathepsin D, HIF1α, LC3B, Beclin 1 and p62 expression. PTEN was also significantly related with LC3B but not LC3A expression, in both immunohistochemistry and gene expression analysis. Confocal microscopy in T98 and U87 cell lines showed distinct identity of LC3A and LC3B autophagosomes. The previously reported stone-like structure (SLS) pattern of LC3 expression was related with prognosis. SLS were inducible in glioblastoma cell lines under exposure to acidic conditions and 2DG mediated glucose antagonism. The present study provides the basis for autophagic characterization of human glioblastoma for further translational studies and targeted therapy trials.

  18. Flunitrazepam rapidly reduces GABAA receptor subunit protein expression via a protein kinase C-dependent mechanism

    PubMed Central

    Johnston, Jonathan D; Price, Sally A; Bristow, David R

    1998-01-01

    Acute flunitrazepam (1 μM) exposure for 1 h reduced GABAA receptor α1 (22±4%, mean±s.e.mean) and β2/3 (21±4%) subunit protein levels in cultured rat cerebellar granule cells. This rapid decrease in subunit proteins was completely prevented by bisindolymaleimide 1 (1 μM), an inhibitor of protein kinase C, but not by N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide (H-89, 4.8 μM), an inhibitor of protein kinases A and G. These results suggest the existence of a benzodiazepine-induced mechanism to rapidly alter GABAA receptor protein expression, that appears to be dependent on protein kinase C activity. PMID:9723942

  19. [Effect of Shen-Mai injection and aminophylline on diaphragmatic muscle cell apoptosis and related gene expression in rats with chronic hypoxia].

    PubMed

    Zhao, Li-min; Xiong, Sheng-dao; Niu, Ru-ji; Xu, Yong-jian; Zhang, Zhen-xiang

    2003-10-01

    and the increase was associated with the time of hypoxia. Apoptosis rate was decreased by the administration of SMI, the rates of B group were (5.01 +/- 3.71)%, (9.37 +/- 3.12)%, (14.66 +/- 8.76)%, (18.16 +/- 7.02)%, respectively. Except for the first week, the differences of other weeks were all statistically significant when compared with A groups (all P < 0.05). But the effect of aminophylline was different, as compared to A group, only the apoptosis rate in hypoxia 4 w [(30.92 +/- 11.13)%] of C group being statistically significant different (P < 0.05). Fas and FasL participated in diaphragmatic muscle cell apoptosis in rats with chronic hypoxia. SMI showed a definite effect on the Fas and FasL protein expression and decreased diaphragmatic muscle cell apoptosis, which contributed to the therapeutic effect on diaphragmatic fatigue caused by hypoxia.

  20. Disposable bioreactors for inoculum production and protein expression.

    PubMed

    Eibl, Regine; Löffelholz, Christian; Eibl, Dieter

    2014-01-01

    Disposable bioreactors have been increasingly implemented over the past ten years. This relates to both R & D and commercial manufacture, in particular, in animal cell-based processes. Among the numerous disposable bioreactors which are available today, wave-mixed bag bioreactors and stirred bioreactors are predominant. Whereas wave-mixed bag bioreactors represent the system of choice for inoculum production, stirred systems are often preferred for protein expression. For this reason, the authors present protocols instructing the reader how to use the wave-mixed BIOSTAT CultiBag RM 20 L for inoculum production and the stirred UniVessel SU 2 L for recombinant protein production at benchtop scale. All methods described are based on a Chinese hamster ovary (CHO) suspension cell line expressing the human placental secreted alkaline phosphatase (SEAP).

  1. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins

    PubMed Central

    Serganov, Alexander; Patel, Dinshaw J.

    2015-01-01

    Although various functions of RNA are carried out in conjunction with proteins, some catalytic RNAs, or ribozymes, which contribute to a range of cellular processes, require little or no assistance from proteins. Furthermore, the discovery of metabolite-sensing riboswitches and other types of RNA sensors has revealed RNA-based mechanisms that cells use to regulate gene expression in response to internal and external changes. Structural studies have shown how these RNAs can carry out a range of functions. In addition, the contribution of ribozymes and riboswitches to gene expression is being revealed as far more widespread than was previously appreciated. These findings have implications for understanding how cellular functions might have evolved from RNA-based origins. PMID:17846637

  2. Expression data on liver metabolic pathway genes and proteins

    PubMed Central

    Raja Gopal Reddy, Mooli; Pavan Kumar, Chodisetti; Mahesh, Malleswarapu; Sravan Kumar, Manchiryala; Jeyakumar, Shanmugam M.

    2016-01-01

    Here, we present the expression data on various metabolic pathways of liver with special emphasize on lipid and carbohydrate metabolism and long chain polyunsaturated fatty acid (PUFA) synthesis, both at gene and protein levels. The data were obtained to understand the effect of vitamin A deficiency on the expression status (both gene and protein levels) of some of the key factors involved in lipogenesis, fatty acid oxidation, triglyceride secretion, long chain PUFA, resolvin D1 synthesis, glucose transport and glycogen synthesis of liver, using modern biology tools, such as quantitative real-time PCR (RT-PCR) and immunoblotting techniques. This data article provides the supporting evidence to the article “Vitamin A deficiency suppresses high fructose-induced triglyceride synthesis and elevates resolvin D1 levels” [1] and therefore, these data may be referred back, for comprehensive understanding and interpretations and for future studies. PMID:26909377

  3. Bacteriophage membrane protein P9 as a fusion partner for the efficient expression of membrane proteins in Escherichia coli.

    PubMed

    Jung, Yuna; Jung, Hyeim; Lim, Dongbin

    2015-12-01

    Despite their important roles and economic values, studies of membrane proteins have been hampered by the difficulties associated with obtaining sufficient amounts of protein. Here, we report a novel membrane protein expression system that uses the major envelope protein (P9) of phage φ6 as an N-terminal fusion partner. Phage membrane protein P9 facilitated the synthesis of target proteins and their integration into the Escherichia coli cell membrane. This system was used to produce various multi-pass transmembrane proteins, including G-protein-coupled receptors, transporters, and ion channels of human origin. Green fluorescent protein fusion was used to confirm the correct folding of the expressed proteins. Of the 14 membrane proteins tested, eight were highly expressed, three were moderately expressed, and three were barely expressed in E. coli. Seven of the eight highly expressed proteins could be purified after extraction with the mild detergent lauryldimethylamine-oxide. Although a few proteins have previously been developed as fusion partners to augment membrane protein production, we believe that the major envelope protein P9 described here is better suited to the efficient expression of eukaryotic transmembrane proteins in E. coli.

  4. Automated recombinant protein expression screening in Escherichia coli.

    PubMed

    Busso, Didier; Stierlé, Matthieu; Thierry, Jean-Claude; Moras, Dino

    2008-01-01

    To fit the requirements of structural genomics programs, new as well as classical methods have been adapted to automation. This chapter describes the automated procedure developed within the Structural Biology and Genomics Platform, Strasbourg for performing recombinant protein expression screening in Escherichia coli. The procedure consists of parallel competent cells transformation, cell plating, and liquid culture inoculation, implemented for up to 96 samples at a time.

  5. Expression of the sucrose binding protein from soybean: renaturation and stability of the recombinant protein.

    PubMed

    Rocha, Carolina S; Luz, Dirce F; Oliveira, Marli L; Baracat-Pereira, Maria C; Medrano, Francisco Javier; Fontes, Elizabeth P B

    2007-03-01

    The sucrose binding protein (SBP) belongs to the cupin family of proteins and is structurally related to vicilin-like storage proteins. In this investigation, a SBP isoform (GmSBP2/S64) was expressed in E. coli and large amounts of the protein accumulated in the insoluble fraction as inclusion bodies. The renatured protein was studied by circular dichroism (CD), intrinsic fluorescence, and binding of the hydrophobic probes ANS and Bis-ANS. The estimated content of secondary structure of the renatured protein was consistent with that obtained by theoretical modeling with a large predominance of beta-strand structure (42%) over the alpha-helix (9.9%). The fluorescence emission maximum of 303 nm for SBP2 indicated that the fluorescent tryptophan was completely buried within a highly hydrophobic environment. We also measured the equilibrium dissociation constant (K(d)) of sucrose binding by fluorescence titration using the refolded protein. The low sucrose binding affinity (K(d)=2.79+/-0.22 mM) of the renatured protein was similar to that of the native protein purified from soybean seeds. Collectively, these results indicate that the folded structure of the renatured protein was similar to the native SBP protein. As a member of the bicupin family of proteins, which includes highly stable seed storage proteins, SBP2 was fairly stable at high temperatures. Likewise, it remained folded to a similar extent in the presence or absence of 7.6M urea or 6.7 M GdmHCl. The high stability of the renatured protein may be a reminiscent property of SBP from its evolutionary relatedness to the seed storage proteins.

  6. Hippocampal expression of the calcium sensor protein visinin-like protein-1 in schizophrenia.

    PubMed

    Bernstein, Hans-Gert; Braunewell, Karl-Heinz; Spilker, Christina; Danos, Peter; Baumann, Bruno; Funke, Sieglinde; Diekmann, Silvia; Gundelfinger, Eckart D; Bogerts, Bernhard

    2002-03-25

    Hippocampal cytoarchitectural abnormalities may be part of the cerebral substrate of schizophrenia. Amongst the chemical components being abnormal in brains of schizophrenics are altered calcium concentrations and reduced expression of the neurotrophin receptor, trkB. We studied by immunohistochemical methods the distribution of visinin-like protein-1 (VILIP-1), which is a calcium sensor protein and at the same time a trkB mRNA binding protein, in hippocampi of nine schizophrenic patients and nine matched control subjects. In normal hippocampi VILIP-1 immunoreactivity was found in multiple pyramidal cells and interneurons. A portion of VILIP-1 immunoreactive interneurons co-express calretinin (60%) and parvalbumin (<10%). In schizophrenics fewer pyramidal cells but more interneurons were immunostained. Our data point to an involvement of the protein in the altered hippocampal circuitry in schizophrenia.

  7. Expression of 16 Nitrogenase Proteins within the Plant Mitochondrial Matrix

    PubMed Central

    Allen, Robert S.; Tilbrook, Kimberley; Warden, Andrew C.; Campbell, Peter C.; Rolland, Vivien; Singh, Surinder P.; Wood, Craig C.

    2017-01-01

    The industrial production and use of nitrogenous fertilizer involves significant environmental and economic costs. Strategies to reduce fertilizer dependency are required to address the world's increasing demand for sustainable food, fibers, and biofuels. Biological nitrogen fixation, a process unique to diazatrophic bacteria, is catalyzed by the nitrogenase complex, and reconstituting this function in plant cells is an ambitious biotechnological strategy to reduce fertilizer use. Here we establish that the full array of biosynthetic and catalytic nitrogenase (Nif) proteins from the diazotroph Klebsiella pneumoniae can be individually expressed as mitochondrial targeting peptide (MTP)-Nif fusions in Nicotiana benthamiana. We show that these are correctly targeted to the plant mitochondrial matrix, a subcellular location with biochemical and genetic characteristics potentially supportive of nitrogenase function. Although Nif proteins B, D, E, F, H, J, K, M, N, Q, S, U, V, X, Y, and Z were all detectable by Western blot analysis, the NifD catalytic component was the least abundant. To address this problem, a translational fusion between NifD and NifK was designed based on the crystal structure of the nitrogenase MoFe protein heterodimer. This fusion protein enabled equimolar NifD:NifK stoichiometry and improved NifD expression levels in plants. Finally, four MTP-Nif fusion proteins (B, S, H, Y) were successfully co-expressed, demonstrating that multiple components of nitrogenase can be targeted to plant mitochondria. These results establish the feasibility of reconstituting the complete componentry for nitrogenase in plant cells, within an intracellular environment that could support the conversion of nitrogen gas into ammonia. PMID:28316608

  8. Expression of 16 Nitrogenase Proteins within the Plant Mitochondrial Matrix.

    PubMed

    Allen, Robert S; Tilbrook, Kimberley; Warden, Andrew C; Campbell, Peter C; Rolland, Vivien; Singh, Surinder P; Wood, Craig C

    2017-01-01

    The industrial production and use of nitrogenous fertilizer involves significant environmental and economic costs. Strategies to reduce fertilizer dependency are required to address the world's increasing demand for sustainable food, fibers, and biofuels. Biological nitrogen fixation, a process unique to diazatrophic bacteria, is catalyzed by the nitrogenase complex, and reconstituting this function in plant cells is an ambitious biotechnological strategy to reduce fertilizer use. Here we establish that the full array of biosynthetic and catalytic nitrogenase (Nif) proteins from the diazotroph Klebsiella pneumoniae can be individually expressed as mitochondrial targeting peptide (MTP)-Nif fusions in Nicotiana benthamiana. We show that these are correctly targeted to the plant mitochondrial matrix, a subcellular location with biochemical and genetic characteristics potentially supportive of nitrogenase function. Although Nif proteins B, D, E, F, H, J, K, M, N, Q, S, U, V, X, Y, and Z were all detectable by Western blot analysis, the NifD catalytic component was the least abundant. To address this problem, a translational fusion between NifD and NifK was designed based on the crystal structure of the nitrogenase MoFe protein heterodimer. This fusion protein enabled equimolar NifD:NifK stoichiometry and improved NifD expression levels in plants. Finally, four MTP-Nif fusion proteins (B, S, H, Y) were successfully co-expressed, demonstrating that multiple components of nitrogenase can be targeted to plant mitochondria. These results establish the feasibility of reconstituting the complete componentry for nitrogenase in plant cells, within an intracellular environment that could support the conversion of nitrogen gas into ammonia.

  9. Crystal Structure of the Complex of Human FasL and Its Decoy Receptor DcR3.

    PubMed

    Liu, Weifeng; Ramagopal, Udupi; Cheng, Huiyong; Bonanno, Jeffrey B; Toro, Rafael; Bhosle, Rahul; Zhan, Chenyang; Almo, Steven C

    2016-11-01

    The apoptotic effect of FasL:Fas signaling is disrupted by DcR3, a unique secreted member of the tumor necrosis factor receptor superfamily, which also binds and neutralizes TL1A and LIGHT. DcR3 is highly elevated in patients with various tumors and contributes to mechanisms by which tumor cells to evade host immune surveillance. Here we report the crystal structure of FasL in complex with DcR3. Comparison of FasL:DcR3 structure with our earlier TL1A:DcR3 and LIGHT:DcR3 structures supports a paradigm involving the recognition of invariant main-chain and conserved side-chain functionalities, which is responsible for the recognition of multiple TNF ligands exhibited by DcR3. The FasL:DcR3 structure also provides insight into the FasL:Fas recognition surface. We demonstrate that the ability of recombinant FasL to induce Jurkat cell apoptosis is significantly enhanced by native glycosylation or by structure-inspired mutations, both of which result in reduced tendency to aggregate. All of these activities are efficiently inhibited by recombinant DcR3.

  10. Expression and subcellular localization of a novel nuclear acetylcholinesterase protein.

    PubMed

    Santos, Susana Constantino Rosa; Vala, Inês; Miguel, Cláudia; Barata, João T; Garção, Pedro; Agostinho, Paula; Mendes, Marta; Coelho, Ana V; Calado, Angelo; Oliveira, Catarina R; e Silva, João Martins; Saldanha, Carlota

    2007-08-31

    Acetylcholine is found in the nervous system and also in other cell types (endothelium, lymphocytes, and epithelial and blood cells), which are globally termed the non-neuronal cholinergic system. In this study we investigated the expression and subcellular localization of acetylcholinesterase (AChE) in endothelial cells. Our results show the expression of the 70-kDa AChE in both cytoplasmic and nuclear compartments. We also describe, for the first time, a nuclear and cytoskeleton-bound AChE isoform with approximately 55 kDa detected in endothelial cells. This novel isoform is decreased in response to vascular endothelial growth factor via the proteosomes pathway, and it is down-regulated in human leukemic T-cells as compared with normal T-cells, suggesting that the decreased expression of the 55-kDa AChE protein may contribute to an angiogenic response and associate with tumorigenesis. Importantly, we show that its nuclear expression is not endothelial cell-specific but also evidenced in non-neuronal and neuronal cells. Concerning neuronal cells, we can distinguish an exclusively nuclear expression in postnatal neurons in contrast to a cytoplasmic and nuclear expression in embryonic neurons, suggesting that the cell compartmentalization of this new AChE isoform is changed during the development of nervous system. Overall, our studies suggest that the 55-kDa AChE may be involved in different biological processes such as neural development, tumor progression, and angiogenesis.

  11. The E4 protein; structure, function and patterns of expression.

    PubMed

    Doorbar, John

    2013-10-01

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1^E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein's flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1^E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1^E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1^E4, these kinases regulate one of

  12. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.

    PubMed

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M

    2010-06-01

    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears.

  13. The expression and induction of heat shock proteins in molluscs.

    PubMed

    Liu, Dongwu; Chen, Zhiwei

    2013-05-01

    Living cells respond to stress stimuli by triggering rapid changes in the protein profiles, and the induction of heat shock proteins (HSPs) plays an important part in this process. HSPs, mainly acting as molecular chaperones, are constitutively expressed in cells and involved in protein folding, assembly, degradation, and intracellular localization. The overexpression of HSPs represents a ubiquitous molecular mechanism to cope with stress. Compared to vertebrates, molluscs have a biphasic life cycle where pelagic larvae go through settlement and metamorphosis. HSPs may play an important role in the survival strategy of molluscs during the biphasic life stages. Since aquatic environments are highly dynamic, molluscs may be subject to a variety of sources of stress and HSPs might play a more important role in the adaptation of these animals. Moreover, the mechanisms of stress tolerance in molluscs can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. The cDNA of HSPs has been cloned from some molluscs, and HSPs can be induced by heat stress, hypoxia, heavy metal contamination, and aestivation, etc. The expression of HSPs was detected in the neuroendocrine system, mollusc development, and reproductive process. Furthermore, the induction of HSPs is related with the phosphorylation of stress-activated p38 mitogen-activated protein kinase (p38 MAPK) and cJun-N-terminal kinases (JNKs) in molluscs.

  14. Phylogeny and expression of carbonic anhydrase-related proteins

    PubMed Central

    2010-01-01

    Background Carbonic anhydrases (CAs) are found in many organisms, in which they contribute to several important biological processes. The vertebrate α-CA family consists of 16 subfamilies, three of which (VIII, X and XI) consist of acatalytic proteins. These are named carbonic anhydrase related proteins (CARPs), and their inactivity is due to absence of one or more Zn-binding histidine residues. In this study, we analyzed and evaluated the distribution of genes encoding CARPs in different organisms using bioinformatic methods, and studied their expression in mouse tissues using immunohistochemistry and real-time quantitative PCR. Results We collected 84 sequences, of which 22 came from novel or improved gene models which we created from genome data. The distribution of CARP VIII covers vertebrates and deuterostomes, and CARP X appears to be universal in the animal kingdom. CA10-like genes have had a separate history of duplications in the tetrapod and fish lineages. Our phylogenetic analysis showed that duplication of CA10 into CA11 has occurred only in tetrapods (found in mammals, frogs, and lizards), whereas an independent duplication of CA10 was found in fishes. We suggest the name CA10b for the second fish isoform. Immunohistochemical analysis showed a high expression level of CARP VIII in the mouse cerebellum, cerebrum, and also moderate expression in the lung, liver, salivary gland, and stomach. These results also demonstrated low expression in the colon, kidney, and Langerhans islets. CARP X was moderately expressed in the cerebral capillaries and the lung and very weakly in the stomach and heart. Positive signals for CARP XI were observed in the cerebellum, cerebrum, liver, stomach, small intestine, colon, kidney, and testis. In addition, the results of real-time quantitative PCR confirmed a wide distribution for the Car8 and Car11 mRNAs, whereas the expression of the Car10 mRNA was restricted to the frontal cortex, parietal cortex, cerebellum, midbrain

  15. Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression

    PubMed Central

    Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro

    2016-01-01

    The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm’-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment. PMID:27231931

  16. Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression.

    PubMed

    Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro

    2016-05-24

    The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm'-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment.

  17. A novel Escherichia coli solubility enhancer protein for fusion expression of aggregation-prone heterologous proteins.

    PubMed

    Song, Jong-Am; Lee, Dae-Sung; Park, Jin-Seung; Han, Kyung-Yeon; Lee, Jeewon

    2011-07-10

    Through the proteome analysis of Escherichia coli BL21(DE3), we previously identified the stress-responsive protein, arsenate reductase (ArsC), that showed a high cytoplasmic solubility and a folding capacity even in the presence of stress-inducing reagents. In this study, we used ArsC as an N-terminal fusion partner to synthesize nine aggregation-prone proteins as water-soluble forms. As a result, solubility of the aggregation-prone proteins increased dramatically by the fusion of ArsC, due presumably to its tendency to facilitate the folding of target proteins. Also, we evaluated and confirmed the efficacy of ArsC-fusion expression in making the fusion-expressed target proteins have their own native function or structure. That is, the self-assembly function of human ferritin light chain, l-arginine-degrading function of arginine deiminase, and the correct secondary structure of human granulocyte colony stimulating factor were clearly observed through transmission electron microscope analysis, colorimetric enzyme activity assay, and circular dichroism, respectively. It is strongly suggested that ArsC can be in general an efficient fusion expression partner for the production of soluble and active heterologous proteins in E. coli. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Sweeping away protein aggregation with entropic bristles: Intrinsically disordered protein fusions enhance soluble expression

    PubMed Central

    Santner, Aaron A.; Croy, Carrie H.; Vasanwala, Farha H.; Uversky, Vladimir N.; Van, Ya-Yue J.; Dunker, A. Keith

    2014-01-01

    Intrinsically disordered, highly charged protein sequences act as entropic bristles (EBs), which, when translationally fused to partner proteins, serve as effective solubilizers by creating both large favorable surface area for water interactions and large excluded volumes around the partner. By extending away from the partner and sweeping out large molecules, EBs can enable the target protein to fold free from interference. Using both naturally-occurring and artificial polypeptides we demonstrate the successful implementation of intrinsically disordered fusions as protein solubilizers. The artificial fusions discussed herein have low sequence complexity and high net charge, but are diversified by means of distinctive amino acid compositions and lengths. Using 6xHis fusions as controls, soluble protein expression enhancements from 65% (EB60A) to 100% (EB250) were observed for a 20-protein portfolio. Additionally, these EBs were able to more effectively solubilize targets compared to frequently-used fusions such as maltose-binding-protein, glutathione S-transferase, thioredoxin, and N utilization substance A. Finally, although these EBs possess very distinct physio-chemical properties they did not perturb the structure, conformational stability nor function of the green fluorescent protein or the glutathione S-transferase protein. This work thus illustrates the successful de novo design of intrinsically-disordered fusions, and presents a promising technology and complementary resource for researchers attempting to solubilize recalcitrant proteins. PMID:22924672

  19. Sweeping away protein aggregation with entropic bristles: intrinsically disordered protein fusions enhance soluble expression.

    PubMed

    Santner, Aaron A; Croy, Carrie H; Vasanwala, Farha H; Uversky, Vladimir N; Van, Ya-Yue J; Dunker, A Keith

    2012-09-18

    Intrinsically disordered, highly charged protein sequences act as entropic bristles (EBs), which, when translationally fused to partner proteins, serve as effective solubilizers by creating both a large favorable surface area for water interactions and large excluded volumes around the partner. By extending away from the partner and sweeping out large molecules, EBs can allow the target protein to fold free from interference. Using both naturally occurring and artificial polypeptides, we demonstrate the successful implementation of intrinsically disordered fusions as protein solubilizers. The artificial fusions discussed herein have a low level of sequence complexity and a high net charge but are diversified by means of distinctive amino acid compositions and lengths. Using 6xHis fusions as controls, soluble protein expression enhancements from 65% (EB60A) to 100% (EB250) were observed for a 20-protein portfolio. Additionally, these EBs were able to more effectively solubilize targets compared to frequently used fusions such as maltose-binding protein, glutathione S-transferase, thioredoxin, and N utilization substance A. Finally, although these EBs possess very distinct physiochemical properties, they did not perturb the structure, conformational stability, or function of the green fluorescent protein or the glutathione S-transferase protein. This work thus illustrates the successful de novo design of intrinsically disordered fusions and presents a promising technology and complementary resource for researchers attempting to solubilize recalcitrant proteins.

  20. Amyloid Precursor Protein Expression Modulates Intestine Immune Phenotype

    PubMed Central

    Puig, Kendra L.; Swigost, Adam J.; Zhou, Xudong; Sens, MaryAnn; Combs, Colin K.

    2014-01-01

    Amyloid precursor protein (APP) is widely expressed across many tissue and cell types. Proteolytic processing of the protein gives rise to a plethora of protein fragments with varied biological activities. Although a large amount of data has been generated describing the metabolism of the protein in neurons, its role in regulating the phenotype of other cells remains unclear. Based upon prior work demonstrating that APP regulates the activation phenotype of monocytic lineage cells, we hypothesized that APP can regulate macrophage activation phenotype in tissues other than brain. Ileums of the small intestines from C57BL6/J wild type and APP−/− mice were compared as a representative tissue normally associated with abundant macrophage infiltration. APP−/− intestines demonstrated diminished CD68 immunoreactivity compared to wild type mice. This correlated with significantly less cycloxygenase-2 (cox-2), CD68, CD40, CD11c, and βIII-tubulin protein levels. Peritoneal macrophage from APP−/− mice demonstrated decreased in vitro migratory ability compared to wild type cells and diminished basal KC cytokine secretion. Whereas, APP−/− intestinal macrophage had an increase in basal KC cytokine secretion compared to wild type cells. Conversely, there was a significant decrease in multiple cytokine levels in APP−/− compared to wild type ileums. Finally, APP−/− mice demonstrated impaired absorption and increased motility compared to wild type mice. These data demonstrate the APP expression regulates immune cell secretions and phenotype and intestinal function. This data set describes a novel function for this protein or its metabolites that may be relevant not only for Alzheimer’s disease but a range of immune-related disorders. PMID:22124967

  1. Matrix Gla Protein expression pattern in the early avian embryo.

    PubMed

    Correia, Elizabeth; Conceição, Natércia; Cancela, M Leonor; Belo, José A

    2016-01-01

    MGP (Matrix Gla Protein) is an extracellular matrix vitamin K dependent protein previously identified as a physiological inhibitor of calcification and shown to be well conserved among vertebrates during evolution. MGP is involved in other mechanisms such as TGF-β and BMP activity, and a proposed modulator of cell-matrix interactions. MGP is expressed early in vertebrate development although its role has not been clarified. Previous work in the chicken embryo found MGP localization predominantly in the aorta and aortic valve base, but no data is available earlier in development. Here we examined MGP expression pattern using whole-mount in situ hybridization and histological sectioning during the initial stages of chick development. MGP was first detected at HH10 in the head and in the forming dorsal aorta. At the moment of the onset of blood circulation, MGP was expressed additionally in the venous plexus which will remodel into the vitelline arteries. By E2.25, it is clear that the vitelline arteries are MGP positive. MGP expression progresses centrifugally throughout the area vasculosa of the yolk sac. Between stages HH17 and HH19 MGP is seen in the dorsal aorta, heart, notochord, nephric duct, roof plate, vitelline arteries and in the yolk sac, beneath main arterial branches and in the vicinity of several vessels and venules. MGP expression persists in these areas at least until E4.5. These data suggest that MGP expression could be associated with cell migration and differentiation and to the onset of angiogenesis in the developing chick embryo. This data has biomedical relevance by pointing to the potential use of chick embryo explants to study molecules involved in artery calcification.

  2. Differential expression of proteins in renal cortex and medulla: a proteomic approach.

    PubMed

    Arthur, John M; Thongboonkerd, Visith; Scherzer, Janice A; Cai, Jian; Pierce, William M; Klein, Jon B

    2002-10-01

    Western blotting has previously been used to identify changes in protein expression in renal tissue. However, only a few proteins can be studied in each experiment by Western blot. We have used proteomic tools to construct protein maps of rat kidney cortex and medulla. Expression of proteins was determined by silver stain after two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Protein spots were excised and digested with trypsin. Peptide masses were identified by MALDI-TOF mass spectrometry. The Mascot search engine was used to analyze the peptide masses and identify the proteins. Seventy-two proteins were identified (54 unique proteins) out of approximately 1000 spots visualized on each gel. Most of the spots were expressed both in cortex and medulla. Of the identified proteins, three were expressed only in medulla and one only in cortex. Nine proteins were expressed in both regions but to a greater extent in cortex and three proteins were expressed more in medulla. Differential expression was confirmed for three proteins by Western blot. A large group of proteins and their relative expression levels from cortical and medullary portions of rat kidneys were found. Sixteen proteins are differentially expressed. Proteomics can be used to identify differential expression of proteins in the kidney on a large scale. Proteomics should be useful to detect changes in renal protein expression in response to a large range of physiological and pathophysiological stimuli.

  3. Heat-shock protein expression in canine corneal wound healing.

    PubMed

    Peterson, Cornelia W M; Carter, Renee T; Bentley, Ellison; Murphy, Christopher J; Chandler, Heather L

    2016-05-01

    Heat-shock proteins, particularly the 70-kDa member (Hsp70), have been implicated in facilitating wound healing in multiple tissues. Expression and localization of three HSPs were assessed in normal and wounded canine corneas to elucidate a role in epithelial healing. Paraffin-embedded normal corneas, acute and repeatedly abraded corneas, and keratectomies of spontaneous chronic corneal epithelial defects (SCCEDs) were subjected to routine immunohistochemistry for Hsp27, 47, and 70 expression. Ex vivo corneal defects were created and treated with anti-HSPs or IgG controls, and wound healing was monitored. Primary cultures of canine corneal stromal fibroblasts and corneal epithelial cells were treated with exogenous Hsp70, and an artificial wound was created in vitro to monitor restoration of the monolayer. Normal canine corneas exhibited constitutive expression of all HSPs evaluated. Inducible expression was demonstrated in acutely wounded tissues, and expression in the chronically abraded corneas was relocalized. All HSP expression was below the limits of detection in the epithelium of SCCED samples. Inhibition of HSPs in culture resulted in delayed wound healing when compared to controls. Hsp70-treated fibroblasts demonstrated significantly (P < 0.001) increased migration and proliferation compared to the vehicle control; however, there was no significant effect of exogenous Hsp70 on corneal epithelial cells. These findings suggest that HSPs are induced in the normal canine cornea during re-epithelialization. Hsp70 expression is likely important for inducing the cytoarchitectural remodeling, migration, and proliferation necessary early in the canine corneal healing response, and suppressed expression may contribute to the pathophysiology of nonhealing defects. © 2015 American College of Veterinary Ophthalmologists.

  4. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    PubMed

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments.

  5. Structure and Expression of a Novel Compact Myelin Protein - Small VCP-Interacting Protein (SVIP)

    PubMed Central

    Wu, Jiawen; Peng, Dungeng; Voehler, Markus; Sanders, Charles R.; Li, Jun

    2013-01-01

    SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCP were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes. PMID:24055875

  6. Preliminary identification of differentially expressed tear proteins in keratoconus

    PubMed Central

    Wasinger, Valerie C.; Pye, David C.; Willcox, Mark D. P.

    2013-01-01

    Purpose To examine the proteins differentially expressed in the tear film of people with keratoconus and normal subjects. Methods Unstimulated tears from people with keratoconus (KC) and controls (C) were collected using a capillary tube. Tear proteins from people with KC and controls were partitioned using a novel in-solution electrophoresis, Microflow 10 (ProteomeSep), and analyzed using linear ion trap quadrupole fourier transform mass spectrometry. Spectral counting was used to quantify the individual tear proteins. Results Elevated levels of cathepsin B (threefold) were evident in the tears of people with KC. Polymeric immunoglobulin receptor (ninefold), fibrinogen alpha chain (eightfold), cystatin S (twofold), and cystatin SN (twofold) were reduced in tears from people with KC. Keratin type-1 cytoskeletal-14 and keratin type-2 cytoskeletal-5 were present only in the tears of people with KC. Conclusions The protein changes in tears, that is, the decrease in protease inhibitors and increase in proteases, found in the present and other previously published studies reflect the pathological events involved in KC corneas. Further investigations into tear proteins may help elucidate the underlying molecular mechanisms of KC, which could result in better treatment options. PMID:24194634

  7. Expression of P53 protein after exposure to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Salazar, A. M.; Salvador, C.; Ruiz-Trejo, C.; Ostrosky, P.; Brandan, M. E.

    2001-10-01

    One of the most important tumor suppressor genes is p53 gene, which is involved in apoptotic cell death, cell differentiation and cell cycle arrest. The expression of p53 gene can be evaluated by determining the presence of P53 protein in cells using Western Blot assay with a chemiluminescent method. This technique has shown variabilities that are due to biological factors. Film developing process can influence the quality of the p53 bands obtained. We irradiated tumor cell lines and human peripheral lymphocytes with 137Cs and 60Co gamma rays to standardize irradiation conditions, to compare ionizing radiation with actinomycin D and to reduce the observed variability of P53 protein induction levels. We found that increasing radiation doses increase P53 protein induction while it decreases viability. We also conclude that ionizing radiation could serve as a positive control for Western Blot analysis of protein P53. In addition, our results show that the developing process may play an important role in the quality of P53 protein bands and data interpretation.

  8. Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins

    PubMed Central

    2013-01-01

    Background Plants are recognized as an efficient and inexpensive system to produce valuable recombinant proteins. Two different strategies have been commonly used for the expression of recombinant proteins in plants: transient expression mediated by Agrobacterium; or stable transformation of the plant genome. However, the use of plants as bioreactors still faces two main limitations: low accumulation levels of some recombinant proteins and lack of efficient purification methods. Elastin-like polypeptide (ELP), hydrophobin I (HFBI) and Zera® are three fusion partners found to increase the accumulation levels of recombinant proteins and induce the formation of protein bodies (PBs) in leaves when targeted to the endoplasmic reticulum (ER) in transient expression assays. In this study the effects of ELP and HFBI fusion tags on recombinant protein accumulation levels and PB formation was examined in stable transgenic Nicotiana tabacum. Results The accumulation of recombinant protein and PB formation was evaluated in two cultivars of Nicotiana tabacum transformed with green fluorescent protein (GFP) fused to ELP or HFBI, both targeted and retrieved to the ER. The ELP and HFBI tags increased the accumulation of the recombinant protein and induced the formation of PBs in leaves of stable transgenic plants from both cultivars. Furthermore, these tags induced the formation of PBs in a concentration-dependent manner, where a specific level of recombinant protein accumulation was required for PBs to appear. Moreover, agro-infiltration of plants accumulating low levels of recombinant protein with p19, a suppressor of post-transcriptional gene silencing (PTGS), increased accumulation levels in four independent transgenic lines, suggesting that PTGS might have caused the low accumulation levels in these plants. Conclusion The use of ELP and HFBI tags as fusion partners in stable transgenic plants of tobacco is feasible and promising. In a constitutive environment, these tags

  9. Engineering of bone marrow cells with fas-ligand protein-enhances donor-specific tolerance to solid organs.

    PubMed

    Askenasy, E M; Shushlav, Y; Sun, Z; Shirwan, H; Yolcu, E S; Askenasy, N

    2011-11-01

    Effective immunomodulation to induce tolerance to tissue/organ allografts is attained by infusion of donor lymphocytes endowed with killing capacity through ectopic expression of a short-lived Fas-ligand (FasL) protein. The same approach has proven effective in improving hematopoietic stem and progenitor cell engraftment. This study evaluates the possibility of substitution of immune cells for bone marrow cells (BMC) to induce FasL-mediated tolerance to solid organ grafts. Expression of FasL protein on BMC increased the survival of simultaneously grafted vascularized heterotopic cardiac grafts to 90%, as compared to 30% in recipients of naïve BMC. Similar results were obtained for skin allografts implanted into radiation chimeras at 1 week after bone marrow transplantation. Further reduction of preparative conditioning to busulfan resulted in acceptance of donor skin implanted at 2 weeks after transplantation of naïve and FasL-coated BMC, whereas third-party grafts were acutely rejected. The levels of donor chimerism were in the range of 0.7% to 12% at the time of skin grafting, with higher levels in recipients of FasL-coated BMC. It is concluded that FasL-mediated abrogation of alloimmune responses can be effectively attained with BMC. There is no threshold of donor chimerism, but tolerance to solid organs evolves during the process of donor-host mutual acceptance.

  10. The expression of cytoskeleton regulatory protein Mena in colorectal lesions.

    PubMed

    Gurzu, Simona; Jung, I; Prantner, I; Ember, I; Pávai, Z; Mezei, T

    2008-01-01

    The actin regulatory proteins Ena/VASP (Enabled/Vasodilator stimulated phosphoprotein) family is involved in the control of cell motility and adhesion. They are important in the actin-dependent processes where dynamic actin reorganization it is necessary. The deregulation of actin cycle could have an important role in the cells' malignant transformation, tumor invasion or metastasis. Recently studies revealed that the human orthologue of murine Mena is modulated during the breast carcinogenesis. In our study, we tried to observe the immunohistochemical expression of mammalian Ena (Mena) in the colorectal polyps and carcinomas. We analyzed 10 adenomatous polyps (five with dysplasia) and 36 adenocarcinomas. We used the indirect immunoperoxidase staining. BD Biosciences have provided the Mena antibody. We observed that Mena was not expressed in the normal colorectal mucosa neither in polyps without dysplasia, but its expression was very high in polyps with high dysplasia. In colorectal carcinomas, Mena marked the tumoral cells in 80% of cases. In 25% of positive cases, the intensity was 3+, in 60% 2+ and in the other 15% 1+. The Mena intensity was higher in the microsatellite stable tumors (MSS) and was correlated with vascular invasion, with intensity of angiogenesis marked with CD31 and CD105 and with c-erbB-2 and p53 expression. This is the first study in the literature about Mena expression in colorectal lesions.

  11. Protein expression in salivary glands of rats with streptozotocin diabetes

    PubMed Central

    Mednieks, Maija I; Szczepanski, Andrew; Clark, Brett; Hand, Arthur R

    2009-01-01

    Diabetes mellitus (DM) is a widespread disease with high morbidity and health care costs. An experimental animal model was employed, using morphological and biochemical methods, to investigate the effects of DM on the expression and compartmentation of salivary gland proteins. The distribution of proline-rich proteins (PRP), submandibular mucin (Muc10) and the regulatory (RI and RII) subunits of cyclic AMP-dependent protein kinase type I and type II was determined in the parotid and submandibular (SMG) glands of rats treated with streptozotocin. Quantitative immunocytochemistry of secretory granules in diabetic glands revealed decreases of 30% for PRP in both the parotid and SMG, and a 40% decrease in Muc10 in the SMG. Immunogold labelling showed that RII decreased in nuclei and the cytoplasm in diabetic acinar cells while labelling of secretory granules was similar in control and diabetic parotid. Electrophoresis and Western blotting of tissue extracts of two secretory proteins showed that the response to DM and insulin treatment was gland specific: PRP showed little change in the SMG, but decreased in the parotid in DM and was partially restored after insulin treatment. Photoaffinity labelling showed only RI present in the SMG and mainly RII in the parotid. The results of this and previous studies demonstrating highly specific changes in salivary protein expression indicate that the oral environment is significantly altered by DM, and that oral tissues and their function can be compromised. These findings may provide a basis for future studies to develop tests using saliva for diabetic status or progression in humans. PMID:19659899

  12. A Codon Deletion at the Beginning of Green Fluorescent Protein Genes Enhances Protein Expression.

    PubMed

    Rodríguez-Mejía, José-Luis; Roldán-Salgado, Abigail; Osuna, Joel; Merino, Enrique; Gaytán, Paul

    2017-01-01

    Recombinant protein expression is one of the key issues in protein engineering and biotechnology. Among the different models for assessing protein production and structure-function studies, green fluorescent protein (GFP) is one of the preferred models because of its importance as a reporter in cellular and molecular studies. In this research we analyze the effect of codon deletions near the amino terminus of different GFP proteins on fluorescence. Our study includes Gly4 deletions in the enhanced GFP (EGFP), the red-shifted GFP and the red-shifted EGFP. The Gly4 deletion mutants and their corresponding wild-type counterparts were transcribed under the control of the T7 or Trc promoters and their expression patterns were analyzed. Different fluorescent outcomes were observed depending on the type of fluorescent gene versions. In silico analysis of the RNA secondary structures near the ribosome binding site revealed a direct relationship between their minimum free energy and GFP production. Integrative analysis of these results, including SDS-PAGE analysis, led us to conclude that the fluorescence improvement of cells expressing different versions of GFPs with Gly4 deleted is due to an enhancement of the accessibility of the ribosome binding site by reducing the stability of the RNA secondary structures at their mRNA leader regions. © 2016 S. Karger AG, Basel.

  13. Prion Protein Expression Regulates Embryonic Stem Cell Pluripotency and Differentiation

    PubMed Central

    Miranda, Alberto; Pericuesta, Eva

    2011-01-01

    Cellular prion protein (PRNP) is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB) differentiation in mouse Prnp-null (KO) and WT embryonic stem cell (ESC) lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC) markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5) in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel) and SPRN (Shadoo), whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis. PMID:21483752

  14. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    PubMed

    Miranda, Alberto; Pericuesta, Eva; Ramírez, Miguel Ángel; Gutierrez-Adan, Alfonso

    2011-04-04

    Cellular prion protein (PRNP) is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB) differentiation in mouse Prnp-null (KO) and WT embryonic stem cell (ESC) lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC) markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5) in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel) and SPRN (Shadoo), whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  15. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases.

    PubMed

    Tuller, T; Atar, S; Ruppin, E; Gurevich, M; Achiron, A

    2013-03-01

    The aim of this study is to understand intracellular regulatory mechanisms in peripheral blood mononuclear cells (PBMCs), which are either common to many autoimmune diseases or specific to some of them. We incorporated large-scale data such as protein-protein interactions, gene expression and demographical information of hundreds of patients and healthy subjects, related to six autoimmune diseases with available large-scale gene expression measurements: multiple sclerosis (MS), systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (JRA), Crohn's disease (CD), ulcerative colitis (UC) and type 1 diabetes (T1D). These data were analyzed concurrently by statistical and systems biology approaches tailored for this purpose. We found that chemokines such as CXCL1-3, 5, 6 and the interleukin (IL) IL8 tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In addition, the anti-apoptotic gene BCL3, interferon-γ (IFNG), and the vitamin D receptor (VDR) gene physically interact with significantly many genes that tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In general, similar cellular processes tend to be differentially expressed in PBMC in the analyzed autoimmune diseases. Specifically, the cellular processes related to cell proliferation (for example, epidermal growth factor, platelet-derived growth factor, nuclear factor-κB, Wnt/β-catenin signaling, stress-activated protein kinase c-Jun NH2-terminal kinase), inflammatory response (for example, interleukins IL2 and IL6, the cytokine granulocyte-macrophage colony-stimulating factor and the B-cell receptor), general signaling cascades (for example, mitogen-activated protein kinase, extracellular signal-regulated kinase, p38 and TRK) and apoptosis are activated in most of the analyzed autoimmune diseases. However, our results suggest that in each of the analyzed diseases, apoptosis and chemotaxis are activated via

  16. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  17. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression.

    PubMed

    Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J

    2016-02-17

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.

  18. Heat shock protein 70-hom gene polymorphism and protein expression in multiple sclerosis.

    PubMed

    Boiocchi, C; Monti, M C; Osera, C; Mallucci, G; Pistono, C; Ferraro, O E; Nosari, G; Romani, A; Cuccia, M; Govoni, S; Pascale, A; Montomoli, C; Bergamaschi, R

    2016-09-15

    Immune-mediated and neurodegenerative mechanisms are involved in multiple sclerosis (MS). Growing evidences highlight the role of HSP70 genes in the susceptibility of some neurological diseases. In this explorative study we analyzed a polymorphism (i.e. HSP70-hom rs2227956) of the gene HSPA1L, which encodes for the protein hsp70-hom. We sequenced the polymorphism by polymerase chain reaction (PCR), in 191 MS patients and 365 healthy controls. The hsp70-hom protein expression was quantified by western blotting. We reported a strong association between rs2227956 polymorphism and MS risk, which is independent from the association with HSP70-2 rs1061581, and a significant link between hsp70-hom protein expression and MS severity.

  19. [Human bone morphogenetic protein-2: recombinant expression in E. coli].

    PubMed

    Ma, Q; Dang, G; Ma, D

    1998-04-01

    To explore the way of producing human bone morphogenetic protein-2(hBMP-2) for bone healing by using the gene engeneering techniques. hBMP-2 cDNA fragment, which consists of 3' end partial propeptide and mature peptide sequence, was inserted into the multiple cloning site of expression vector pkpL-3a via ligation. The recombinant plasmid pkpL-3a/hBMP-2 was transformed into E. coli pOp2136. By the method of restriction map, the positive expression clone was selected. SDS-PAGE analysis showed a new foreign protein band near 27,000 after induction. The yield of induced hBMP-2 accouned for 10% of the total bacterial proteins. The partial purified recombinant hBMP-2 was implanted into Wistar rat thigh. After 4 weeks, histological analysis showed that it induced the proliferation of mesenchymal type cells and formation of new cartilage and bone in the implantation area. The hBMP-2 produced by gene engeneering techniques has the biologic capacity of ectopic bone formation.

  20. Expression of autophagy-related proteins in phyllodes tumor

    PubMed Central

    Kim, Sang Kyum; Jung, Woo Hee; Koo, Ja Seung

    2013-01-01

    Phyllodes tumors (PTs) are classified as fibroepithelial tumors and their histologic grade is determined primarily by the features of the stromal component. In this study, we examined the expression profiles of autophagy-related proteins in the stromal component of PTs and analyzed their clinical implications. We selected 204 human PT samples which were excised and diagnosed at Severance Hospital from 2000 to 2008 and created tissue microarray (TMA) blocks. Immunohistochemical assays for autophagy-related proteins (beclin-1, LC3A, LC3B, and p62) were then performed on these samples. The surgical specimens from higher grade PTs less frequently displayed cytoplasmic expression of beclin-1, LC3A, LC3B, and p62 in the stromal component (p<0.001). In univariate analysis, the following profiles were associated with shorter disease-free survival and overall survival: nuclear beclin-1 positivity in the stromal component (p=0.013 and p=0.044, respectively), LC3A positivity in the stromal component (p<0.001 and p<0.001, respectively), and p62 positivity in the stromal component (p=0.012 and p=0.004, respectively). In conclusion, we determined that increased activity of autophagy-related proteins correlated with a higher histologic grade and poorer prognosis in PTs. These results lead us to conclude that the autophagy activity of the stromal cells plays a key role in the progression of PTs. PMID:24133593

  1. Expression of autophagy-related proteins in phyllodes tumor.

    PubMed

    Kim, Sang Kyum; Jung, Woo Hee; Koo, Ja Seung

    2013-01-01

    Phyllodes tumors (PTs) are classified as fibroepithelial tumors and their histologic grade is determined primarily by the features of the stromal component. In this study, we examined the expression profiles of autophagy-related proteins in the stromal component of PTs and analyzed their clinical implications. We selected 204 human PT samples which were excised and diagnosed at Severance Hospital from 2000 to 2008 and created tissue microarray (TMA) blocks. Immunohistochemical assays for autophagy-related proteins (beclin-1, LC3A, LC3B, and p62) were then performed on these samples. The surgical specimens from higher grade PTs less frequently displayed cytoplasmic expression of beclin-1, LC3A, LC3B, and p62 in the stromal component (p<0.001). In univariate analysis, the following profiles were associated with shorter disease-free survival and overall survival: nuclear beclin-1 positivity in the stromal component (p=0.013 and p=0.044, respectively), LC3A positivity in the stromal component (p<0.001 and p<0.001, respectively), and p62 positivity in the stromal component (p=0.012 and p=0.004, respectively). In conclusion, we determined that increased activity of autophagy-related proteins correlated with a higher histologic grade and poorer prognosis in PTs. These results lead us to conclude that the autophagy activity of the stromal cells plays a key role in the progression of PTs.

  2. Simvastatin enhances bone morphogenetic protein receptor type II expression

    SciTech Connect

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N. . E-mail: peterkao@stanford.edu

    2006-01-06

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function.

  3. Ribosomal protein S6 associates with alphavirus nonstructural protein 2 and mediates expression from alphavirus messages.

    PubMed

    Montgomery, Stephanie A; Berglund, Peter; Beard, Clayton W; Johnston, Robert E

    2006-08-01

    Although alphaviruses dramatically alter cellular function within hours of infection, interactions between alphaviruses and specific host cellular proteins are poorly understood. Although the alphavirus nonstructural protein 2 (nsP2) is an essential component of the viral replication complex, it also has critical auxiliary functions that determine the outcome of infection in the host. To gain a better understanding of nsP2 function, we sought to identify cellular proteins with which Venezuelan equine encephalitis virus nsP2 interacted. We demonstrate here that nsP2 associates with ribosomal protein S6 (RpS6) and that nsP2 is present in the ribosome-containing fractions of a polysome gradient, suggesting that nsP2 associates with RpS6 in the context of the whole ribosome. This result was noteworthy, since viral replicase proteins have seldom been described in direct association with components of the ribosome. The association of RpS6 with nsP2 was detected throughout the course of infection, and neither the synthesis of the viral structural proteins nor the presence of the other nonstructural proteins was required for RpS6 interaction with nsP2. nsP1 also was associated with RpS6, but other nonstructural proteins were not. RpS6 phosphorylation was dramatically diminished within hours after infection with alphaviruses. Furthermore, a reduction in the level of RpS6 protein expression led to diminished expression from alphavirus subgenomic messages, whereas no dramatic diminution in cellular translation was observed. Taken together, these data suggest that alphaviruses alter the ribosome during infection and that this alteration may contribute to differential translation of host and viral messages.

  4. Expression of mammalian DT-diaphorase in Escherichia coli: purification and characterization of the expressed protein.

    PubMed

    Ma, Q; Wang, R; Yang, C S; Lu, A Y

    1990-12-01

    A full-length cDNA clone, pKK-DTD4, complementary to rat liver cytosolic DT-diaphorase [NAD(P)H:quinone oxidoreductase (EC 1.6.99.2)] mRNA was expressed in Escherichia coli. The pKK-DTD4 cDNA was obtained by extending the 5'-end sequence of a rat liver DT-diaphorase cDNA clone, pDTD55, to include an ATG initiation codon and the NH2-terminal codons using polymerase chain reaction (PCR). Restriction sites for EcoRI and HindIII were incorporated at the 5'- and 3'-ends of the cDNA, respectively, by the PCR reaction. The resulting full-length cDNA was inserted into an expression vector, pKK2.7, at the EcoRI and HindIII restriction sites. E. coli strain AB1899 was transformed with the constructed expression plasmid, and DT-diaphorase was expressed under the control of the tac promotor. The expressed DT-diaphorase exhibited high activity of menadione reduction and was inhibited by dicumarol at a concentration of 10(-5)M. After purification by Cibacron Blue affinity chromatography, the expressed enzyme migrated as a single band on 12.5% sodium dodecyl sulfate-polyacrylamide gel with a molecular weight equivalent to that of the purified rat liver cytosolic DT-diaphorase. The purified expressed protein was recognized by polyclonal antibodies against rat liver DT-diaphorase on immunoblot analysis. It utilized either NADPH or NADH as electron donor at equal efficiency and displayed high activities in reduction of menadione, 1,4-benzoquinone, and 2,6-dichlorophenolindophenol which are typical substrates for DT-diaphorase. The expressed DT-diaphorase exhibited a typical flavoprotein spectrum with absorption peaks at 380 and 452 nm. Flavin content determination showed that it contained 2 mol of FAD per mole of the enzyme. Edman protein sequencing of the first 20 amino acid residues at the NH2 terminus of the expressed protein indicated that the expressed DT-diaphorase is not blocked at the NH2 terminus and has an alanine as the first amino acid. The remaining 19 amino acid

  5. Identification of Differentially Expressed Proteins and Phosphorylated Proteins in Rice Seedlings in Response to Strigolactone Treatment

    PubMed Central

    Chen, Fangyu; Jiang, Liangrong; Zheng, Jingsheng; Huang, Rongyu; Wang, Houcong; Hong, Zonglie; Huang, Yumin

    2014-01-01

    Strigolactones (SLs) are recently identified plant hormones that inhibit shoot branching and control various aspects of plant growth, development and interaction with parasites. Previous studies have shown that plant D10 protein is a carotenoid cleavage dioxygenase that functions in SL biosynthesis. In this work, we used an allelic SL-deficient d10 mutant XJC of rice (Oryza sativa L. spp. indica) to investigate proteins that were responsive to SL treatment. When grown in darkness, d10 mutant seedlings exhibited elongated mesocotyl that could be rescued by exogenous application of SLs. Soluble protein extracts were prepared from d10 mutant seedlings grown in darkness in the presence of GR24, a synthetic SL analog. Soluble proteins were separated on two-dimensional gels and subjected to proteomic analysis. Proteins that were expressed differentially and phosphoproteins whose phosphorylation status changed in response to GR24 treatment were identified. Eight proteins were found to be induced or down-regulated by GR24, and a different set of 8 phosphoproteins were shown to change their phosphorylation intensities in the dark-grown d10 seedlings in response to GR24 treatment. Analysis of these proteins revealed that they are important enzymes of the carbohydrate and amino acid metabolic pathways and key components of the cellular energy generation machinery. These proteins may represent potential targets of the SL signaling pathway. This study provides new insight into the complex and negative regulatory mechanism by which SLs control shoot branching and plant development. PMID:24699514

  6. Structure and expression of a novel compact myelin protein – Small VCP-interacting protein (SVIP)

    SciTech Connect

    Wu, Jiawen; Peng, Dungeng; Voehler, Markus; Sanders, Charles R.; Li, Jun

    2013-10-11

    Highlights: •SVIP (small p97/VCP-interacting protein) co-localizes with myelin basic protein (MBP) in compact myelin. •We determined that SVIP is an intrinsically disordered protein (IDP). •The helical content of SVIP increases dramatically during its interaction with negatively charged lipid membrane. •This study provides structural insight into interactions between SVIP and myelin membranes. -- Abstract: SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCP were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes.

  7. Transgenic expression of therapeutic proteins in Arabidopsis thaliana seed.

    PubMed

    Nykiforuk, Cory L; Boothe, Joseph G

    2012-01-01

    The production of therapeutic proteins in plant seed augments alternative production platforms such as microbial fermentation, cell-based systems, transgenic animals, and other recombinant plant production systems to meet increasing demands for the existing biologics, drugs under evaluation, and undiscovered therapeutics in the future. We have developed upstream purification technologies for oilseeds which are designed to cost-effectively purify therapeutic proteins amenable to conventional downstream manufacture. A very useful tool in these endeavors is the plant model system Arabidopsis thaliana. The current chapter describes the rationale and methods used to over-express potential therapeutic products in A. thaliana seed for evaluation and definitive insight into whether our production platform, Safflower, can be utilized for large-scale manufacture.

  8. Expression and putative role of mitochondrial transport proteins in cancer.

    PubMed

    Lytovchenko, Oleksandr; Kunji, Edmund R S

    2017-03-22

    Cancer cells undergo major changes in energy and biosynthetic metabolism. One of them is the Warburg effect, in which pyruvate is used for fermentation rather for oxidative phosphorylation. Another major one is their increased reliance on glutamine, which helps to replenish the pool of Krebs cycle metabolites used for other purposes, such as amino acid or lipid biosynthesis. Mitochondria are central to these alterations, as the biochemical pathways linking these processes run through these organelles. Two membranes, an outer and inner membrane, surround mitochondria, the latter being impermeable to most organic compounds. Therefore, a large number of transport proteins are needed to link the biochemical pathways of the cytosol and mitochondrial matrix. Since the transport steps are relatively slow, it is expected that many of these transport steps are altered when cells become cancerous. In this review, changes in expression and regulation of these transport proteins are discussed as well as the role of the transported substrates.

  9. Altered gravity downregulates aquaporin-1 protein expression in choroid plexus.

    PubMed

    Masseguin, C; Corcoran, M; Carcenac, C; Daunton, N G; Güell, A; Verkman, A S; Gabrion, J

    2000-03-01

    Aquaporin-1 (AQP1) is a water channel expressed abundantly at the apical pole of choroidal epithelial cells. The protein expression was quantified by immunocytochemistry and confocal microscopy in adult rats adapted to altered gravity. AQP1 expression was decreased by 64% at the apical pole of choroidal cells in rats dissected 5.5-8 h after a 14-day spaceflight. AQP1 was significantly overexpressed in rats readapted for 2 days to Earth's gravity after an 11-day flight (48% overshoot, when compared with the value measured in control rats). In a ground-based model that simulates some effects of weightlessness and alters choroidal structures and functions, apical AQP1 expression was reduced by 44% in choroid plexus from rats suspended head down for 14 days and by 69% in rats suspended for 28 days. Apical AQP1 was rapidly enhanced in choroid plexus of rats dissected 6 h after a 14-day suspension (57% overshoot, in comparison with control rats) and restored to the control level when rats were dissected 2 days after the end of a 14-day suspension. Decreases in the apical expression of choroidal AQP1 were also noted in rats adapted to hypergravity in the NASA 24-ft centrifuge: AQP1 expression was reduced by 47% and 85% in rats adapted for 14 days to 2 G and 3 G, respectively. AQP1 is downregulated in the apical membrane of choroidal cells in response to altered gravity and is rapidly restored after readaptation to normal gravity. This suggests that water transport, which is partly involved in the choroidal production of cerebrospinal fluid, might be decreased during spaceflight and after chronic hypergravity.

  10. Characterisation and protein expression profiling of annexins in colorectal cancer.

    PubMed

    Duncan, R; Carpenter, B; Main, L C; Telfer, C; Murray, G I

    2008-01-29

    The annexins are family of calcium-regulated phospholipid-binding proteins with diverse roles in cell biology. Individual annexins have been implicated in tumour development and progression, and in this investigation a range of annexins have been studied in colorectal cancer. Annexins A1, A2, A4 and A11 were identified by comparative proteomic analysis to be overexpressed in colorectal cancer. Annexins A1, A2, A4 and A11 were further studied by immunohistochemistry with a colorectal cancer tissue microarray containing primary and metastatic colorectal cancer and also normal colon. There was significant increase in expression in annexins A1 (P=0.01), A2 (P<0.001), A4 (P<0.001) and A11 (P<0.001) in primary tumours compared with normal colon. There was increasing expression of annexins A2 (P=0.001), A4 (P=0.03) and A11 (P=0.006) with increasing tumour stage. An annexin expression profile was identified by k-means cluster analysis, and the annexin profile was associated with tumour stage (P=0.01) and also patient survival. Patients in annexin cluster group 1 (low annexin expression) had a better survival (log rank=5.33, P=0.02) than patients in cluster group 2 (high annexins A4 and A11 expression). In conclusion, this study has shown that individual annexins are present in colorectal cancer, specific annexins are overexpressed in colorectal cancer and the annexin expression profile is associated with survival.

  11. Expression of S-100 protein in renal cell neoplasms.

    PubMed

    Lin, Fan; Yang, Wannian; Betten, Mark; Teh, Bin Tean; Yang, Ximing J

    2006-04-01

    Polyclonal antibody to S-100 protein has been routinely applied for initial screening of various types of tumors, including, melanocytic tumors and neurogenic tumors. S-100 protein has been shown to have a broad distribution in human tissues, including renal tubules. The potential utility of S-100 protein in renal cell neoplasms has not been extensively investigated. Using an EnVision-Horseradish Peroxidase (HRP; Dako, Carpinteria, Calif) kit, we evaluated the diagnostic value of S-100 protein on tissue microarray sections from 175 cases of renal epithelial neoplasm (145 primary renal neoplasms and 30 metastatic renal cell carcinomas) and 24 non-neoplastic renal tissues. Immunohistochemical stains for pancytokeratin, HMB-45, and Mart-1 were also performed. Western blot using the same antibody (anti-S-100 protein) was performed on 10 cases of renal cell neoplasm. The results demonstrated that nuclear and cytoplasmic staining pattern for S-100 protein was observed in 56 (69%) of 81 conventional (clear cell) renal cell carcinomas (RCCs), 10 (30%) of 33 papillary RCCs, 1 (6%) of 16 ChRCCs, and 13 (87%) of 15 oncocytomas. Among the 81 cases of CRCC, positivity for S-100 protein was seen in 41 (71%) of 58 and 15 (65%) of 23 cases with Furhman nuclear grade I/II and III/IV, respectively. Focal immunostaining was present in 22 (92%) of 24 normal renal tubules. Similar staining pattern was observed in 21 (70%) of 30 metastatic RCCs. Western blotting demonstrated the S-100 protein expression in both renal cell neoplasm and normal renal tissue. Overexpression of S-100 in oncocytomas compared with ChRCCs was confirmed by the data of Western blot and cDNA microarray analysis. Importantly, 14.8% (12/81) of clear cell RCC and 13.3% (4/30) of metastatic RCC revealed an immunostaining profile of pancytokeratin (-)/S-100 protein (+). These data indicate that caution should be taken in interpreting an unknown primary with S-100 positivity and cytokeratin negativity. In addition, it

  12. Expression and purification of recombinant human EGFL7 protein.

    PubMed

    Picuric, Srdjan; Friedrich, Matthias; Oess, Stefanie

    2009-11-01

    The secreted epidermal growth factor-like protein 7 (EGFL7) plays an important role in angiogenesis, especially in the recruitment of endothelial and smooth muscle cells to the site of the nascent vessel and their ordered assembly into functional vasculature. However, progress in the understanding of the underlying mechanisms is to date greatly hindered by the lack of recombinant EGFL7 protein in a stable, soluble, native state, thus preventing e.g. the characterization of the proposed functional receptor as well as investigation of additional biological effects of EGFL7. So far all attempts to produce sufficient amounts of recombinant EGFL7 protein by various groups have failed. In this study we describe a procedure for the expression and purification of human EGFL7 from Sf9 cells and for the first time provide means to isolate biologically functional EGFL7 protein in sufficient quantities for its further biological characterization. We believe that the availability of EGFL7 will greatly accelerate our understanding of the precise role of EGFL7 and the underlying molecular mechanisms of EGFL7 action in the fundamentally important process of angiogenesis.

  13. Plasmodium vivax merozoite surface protein 8 cloning, expression, and characterisation.

    PubMed

    Perez-Leal, Oscar; Sierra, Adriana Y; Barrero, Carlos A; Moncada, Camilo; Martinez, Pilar; Cortes, Jimena; Lopez, Yolanda; Torres, Elizabeth; Salazar, Luz M; Patarroyo, Manuel A

    2004-11-26

    Plasmodium vivax, one of the four parasite species causing malaria in humans, is the most widespread throughout the world, leading to nearly 80 million cases per year, mainly in Latin-America and Asia. An open reading frame encoding the Plasmodium falciparum merozoite surface protein 8 P. vivax homologue has been identified in the present study by screening the current data obtained from this parasite's partially sequenced genome. This new protein contains 487 amino-acids, two epidermal growth factor like domains, hydrophobic regions at the N- and C-termini compatible with a signal peptide, and a glycosylphosphatidylinositol anchor site, respectively. This gene's transcription and its encoded protein expression have been assessed, as well as its recognition by P. vivax-infected patients' sera. Based on this recognition, and a previous study showing that mice immunised with the Plasmodium yoelii homologous protein were protected, we consider the PvMSP8 a good candidate to be included in a multi-stage multi-antigen P. vivax vaccine.

  14. CFTR protein expression in primary and cultured epithelia.

    PubMed Central

    Zeitlin, P L; Crawford, I; Lu, L; Woel, S; Cohen, M E; Donowitz, M; Montrose, M H; Hamosh, A; Cutting, G R; Gruenert, D

    1992-01-01

    The gene responsible for the lethal disorder cystic fibrosis encodes a 1480-amino acid glycoprotein, CFTR. Using polyclonal antibodies directed against separate phosphorylation sites in the pre-nucleotide-binding fold (exon 9) and the R domain (exon 13), we have identified a 165-kDa protein in Xenopus laevis oocytes injected with recombinant CFTR cRNA transcribed from the full-length CFTR plasmid pBQ4.7. A protein of the same mobility was also detected with Western blotting techniques in whole cell extracts of cells that express CFTR mRNA (T84, FHTE, HT-29), including biopsied human nasal and bronchial tissue. Immunodetectable 165-kDa protein was concentrated in the apical membrane fraction of ileal villus tissue. We also report that the 165-kDa protein levels can be modulated pharmacologically, and these levels are appropriately correlated with second-messenger-regulated Cl- efflux. Thus, native or recombinant CFTR can be recognized by these anti-CFTR peptide polyclonal antibodies. Images PMID:1370353

  15. Functional polymorphisms in FAS and FASL contribute to risk of squamous cell carcinoma of the larynx and hypopharynx in a Chinese population.

    PubMed

    Wang, Jiwen; Gao, Jia; Li, Yingjie; Zhao, Xiaoxia; Gao, Wei; Peng, Li; Yan, Dangui; Liu, Lisheng; Li, Dongmei; Wei, Lili; Qi, Jun; Zhou, Changchun

    2013-07-25

    Accumulating evidences indicate that the functional FAS-1377G>A, -670A>G and FASL-844T>C polymorphisms affect the risk of several kinds of cancers. However, their roles in the development of larynx and hypopharynx squamous cell carcinoma (SCC) were still unknown in the Chinese. In the current study, we examined whether these functional genetic variants were associated with the risk of larynx and hypopharynx squamous SCC in a Han Chinese population. The FAS and FASL polymorphisms were genotyped in 300 patients with laryngeal and hypopharyngeal SCC and 300 control subjects by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Logistic regression analysis revealed that subjects carrying the FASL-844CT or TT genotype had a significantly decreased risk of developing laryngeal and hypopharyngeal SCC [odds ratio (OR)=0.69; 95% confidence interval (CI)=0.51-0.93; P=0.016; or, OR=0.41; 95% CI=0.20-0.86; P=0.009] compared with those carrying the CC genotype. Joint gene-smoking and gene-drinking effects were also observed, with the OR of CC genotype for smokers or drinkers were 5.15 (95%CI=3.24-8.97) or 12.52 (95%CI=7.31-22.47), respectively. Therefore, the FASL-844T>C polymorphism is associated with genetic susceptibility of developing laryngeal and hypopharyngeal SCC in a Han Chinese population.

  16. Brevibacillus expression system: host-vector system for efficient production of secretory proteins.

    PubMed

    Mizukami, Makoto; Hanagata, Hiroshi; Miyauchi, Akira

    2010-04-01

    Brevibacillus expression system is an effective bacterial expression system for secretory proteins. The host bacterium, Brevibacillus choshinensis, a gram-positive bacterium, has strong capacity to secrete a large amount of proteins (approximately 30 g/L), which mostly consist of cell wall protein. A host-vector system that utilizes such high expression capacity has been constructed for the production of secretory proteins and tested for various heterologous proteins, including cytokines, enzymes, antigens, and adjuvants.

  17. High-Throughput Protein Expression Using a Combination of Ligation-Independent Cloning (LIC) and Infrared Fluorescent Protein (IFP) Detection

    PubMed Central

    Dortay, Hakan; Akula, Usha Madhuri; Westphal, Christin; Sittig, Marie; Mueller-Roeber, Bernd

    2011-01-01

    Protein expression in heterologous hosts for functional studies is a cumbersome effort. Here, we report a superior platform for parallel protein expression in vivo and in vitro. The platform combines highly efficient ligation-independent cloning (LIC) with instantaneous detection of expressed proteins through N- or C-terminal fusions to infrared fluorescent protein (IFP). For each open reading frame, only two PCR fragments are generated (with three PCR primers) and inserted by LIC into ten expression vectors suitable for protein expression in microbial hosts, including Escherichia coli, Kluyveromyces lactis, Pichia pastoris, the protozoon Leishmania tarentolae, and an in vitro transcription/translation system. Accumulation of IFP-fusion proteins is detected by infrared imaging of living cells or crude protein extracts directly after SDS-PAGE without additional processing. We successfully employed the LIC-IFP platform for in vivo and in vitro expression of ten plant and fungal proteins, including transcription factors and enzymes. Using the IFP reporter, we additionally established facile methods for the visualisation of protein-protein interactions and the detection of DNA-transcription factor interactions in microtiter and gel-free format. We conclude that IFP represents an excellent reporter for high-throughput protein expression and analysis, which can be easily extended to numerous other expression hosts using the setup reported here. PMID:21541323

  18. Development of transgenic chickens expressing enhanced green fluorescent protein.

    PubMed

    Kwon, Mo Sun; Koo, Bon Chul; Choi, Bok Ruyl; Lee, Hoon Taek; Kim, Young Hye; Ryu, Wang-Shik; Shim, Hosup; Kim, Jin-Hoi; Kim, Nam-Hyung; Kim, Teoan

    2004-07-23

    In this work we demonstrated the successful production of transgenic chickens expressing the enhanced green fluorescence protein (EGFP) gene. Replication-defective recombinant retroviruses produced from vesicular stomatitis virus G glycoprotein pseudotyped retrovirus vector system were injected beneath the blastoderm of non-incubated chicken embryos (stage X). From 129 injected eggs, 13 chicks hatched after 21 days of incubation. All hatched chicks were found to express vector-encoded EGFP gene, which was under the control of the Rous sarcoma virus promoter and boosted post-transcriptionally by woodchuck hepatitis virus post-transcriptional regulatory element sequence. Green fluorescent signals, indicative of the EGFP gene expression, were detected in various body parts, including head, limb, eye, toe, and several internal organs. Genomic incorporation of the transgene was also proven by Southern blot assay. Our results show the exceptional versatile effectiveness of the EGFP gene as a marker in the gene expression-related studies which therefore would be very helpful in establishing a useful transgenic chicken model system for studies on embryo development and for efficient production of transgenic chickens as bioreactors.

  19. Increased heat shock protein expression after stress in Japanese quail.

    PubMed

    Hoekstra, K A; Iwama, G K; Nichols, C R; Godin, D V; Cheng, K M

    1998-12-01

    Heat shock proteins (HSPs) have been shown to provide information on the biological impact of environmental stress to organisms, yet none have investigated the HSP response to stress in birds. Japanese quail were exposed to seven different stressors (mild restraint, loud noise, inescapable irritation, cold temperature, isolation in darkness, and two stressful social situations) and expression of HSP30, 60, 70, and 90 in heart, liver, lung, kidney and gonads was examined. Tonic Immobility (TI) tests were also conducted to assess whether the stressors increased fear response. Increased expression of HSP70 was found in the myocardial tissue of birds exposed to loud noise, inescapable irritation, cold temperature, and isolation in darkness. Increased expression of other HSPs was not apparent in the heart or any of the other all tissues examined. Longer TI was observed only in birds exposed to the noise stress. Evidence is presented that a fairly wide range of stressors caused increased expression of HSP70 in the Japanese quail myocardial tissue and that HSPs may provide useful biomarkers for the study of environmental stress in birds.

  20. Differential regulation of dentin matrix protein 1 expression during odontogenesis.

    PubMed

    Lu, Yongbo; Zhang, Shubin; Xie, Yixia; Pi, Yuli; Feng, Jian Q

    2005-01-01

    Dentin matrix protein 1 (DMP1) is highly expressed in mineralized tooth and bone. Both in vitro and in vivo data show that DMP1 is critical for mineralization and tooth morphogenesis (growth and development). In this study, we studied Dmp1 gene regulation. The in vitro transient transfection assay identified two important DNA fragments, the 2.4- and 9.6-kb promoter regions. We next generated and analyzed transgenic mice bearing the beta-galactosidase (lacZ) reporter gene driven by the 2.4- or 9.6-kb promoter with the complete 4-kb intron 1. The 9.6-kb Dmp1-lacZ mice conferred a DMP1 expression pattern in odontoblasts identical to that in the endogenous Dmp1 gene. This is reflected by lacZ expression in Dmp1-lacZ knock-in mice during all stages of odontogenesis. In contrast, the 2.4-kb Dmp1-lacZ mice display activity in odontoblast cells only at the early stage of odontogenesis. Thus, we propose that different transcription factors regulate early or later cis-regulatory domains of the Dmp1 promoter, which gives rise to the unique spatial and temporal expression pattern of Dmp1 gene at different stages of tooth development. 2005 S. Karger AG, Basel

  1. Extracellular matrix protein expression is brain region dependent.

    PubMed

    Dauth, Stephanie; Grevesse, Thomas; Pantazopoulos, Harry; Campbell, Patrick H; Maoz, Ben M; Berretta, Sabina; Parker, Kevin Kit

    2016-05-01

    In the brain, extracellular matrix (ECM) components form networks that contribute to structural and functional diversity. Maladaptive remodeling of ECM networks has been reported in neurodegenerative and psychiatric disorders, suggesting that the brain microenvironment is a dynamic structure. A lack of quantitative information about ECM distribution in the brain hinders an understanding of region-specific ECM functions and the role of ECM in health and disease. We hypothesized that each ECM protein as well as specific ECM structures, such as perineuronal nets (PNNs) and interstitial matrix, are differentially distributed throughout the brain, contributing to the unique structure and function in the various regions of the brain. To test our hypothesis, we quantitatively analyzed the distribution, colocalization, and protein expression of aggrecan, brevican, and tenascin-R throughout the rat brain utilizing immunohistochemistry and mass spectrometry analysis and assessed the effect of aggrecan, brevican, and/or tenascin-R on neurite outgrowth in vitro. We focused on aggrecan, brevican, and tenascin-R as they are especially expressed in the mature brain, and have established roles in brain development, plasticity, and neurite outgrowth. The results revealed a differentiated distribution of all three proteins throughout the brain and indicated that their presence significantly reduces neurite outgrowth in a 3D in vitro environment. These results underline the importance of a unique and complex ECM distribution for brain physiology and suggest that encoding the distribution of distinct ECM proteins throughout the brain will aid in understanding their function in physiology and in turn assist in identifying their role in disease. J. Comp. Neurol. 524:1309-1336, 2016. © 2016 Wiley Periodicals, Inc.

  2. Expression of goose parvovirus whole VP3 protein and its epitopes in Escherichia coli cells.

    PubMed

    Tarasiuk, K; Woźniakowski, G; Holec-Gąsior, L

    2015-01-01

    The aim of this study was the expression of goose parvovirus capsid protein (VP3) and its epitopes in Escherichia coli cells. Expression of the whole VP3 protein provided an insufficient amount of protein. In contrast, the expression of two VP3 epitopes (VP3ep4, VP3ep6) in E. coli, resulted in very high expression levels. This may suggest that smaller parts of the GPV antigenic determinants are more efficiently expressed than the complete VP3 gene.

  3. Expressed Protein Ligation: A Resourceful Tool to Study Protein Structure and Function

    PubMed Central

    Berrade, Luis; Camarero, Julio A.

    2013-01-01

    This review outlines the use of expressed protein ligation (EPL) to study protein structure, function and stability. EPL is a chemoselective ligation method that allows the selective ligation of unprotected polypeptides from synthetic and recombinant origin for the production of semi-synthetic protein samples of well-defined and homogeneous chemical composition. This method has been extensively used for the site-specific introduction of biophysical probes, unnatural amino acids, and increasingly complex post-translational modifications. Since it was introduced 10 years ago, EPL applications have grown increasingly more sophisticated in order to address even more complex biological questions. In this review we highlight how this powerful technology combined with standard biochemical analysis techniques has been used to improve our ability to understand protein structure and function. PMID:19685006

  4. AR-v7 protein expression is regulated by protein kinase and phosphatase

    PubMed Central

    Li, Yinan; Xie, Ning; Gleave, Martin E.; Rennie, Paul S.; Dong, Xuesen

    2015-01-01

    Failure of androgen-targeted therapy and progression of castration-resistant prostate cancer (CRPC) are often attributed to sustained expression of the androgen receptor (AR) and its major splice variant, AR-v7. Although the new generation of anti-androgens such as enzalutamide effectively inhibits AR activity, accumulating pre-clinical and clinical evidence indicates that AR-v7 remains constitutively active in driving CRPC progression. However, molecular mechanisms which control AR-v7 protein expression remain unclear. We apply multiple prostate cancer cell models to demonstrate that enzalutamide induces differential activation of protein phosphatase-1 (PP-1) and Akt kinase depending on the gene context of cancer cells. The balance between PP-1 and Akt activation governs AR phosphorylation status and activation of the Mdm2 ubiquitin ligase. Mdm2 recognizes phosphorylated serine 213 of AR-v7, and induces AR-v7 ubiquitination and protein degradation. These findings highlight the decisive roles of PP-1 and Akt for AR-v7 protein expression and activities when AR is functionally blocked. PMID:26378044

  5. AR-v7 protein expression is regulated by protein kinase and phosphatase.

    PubMed

    Li, Yinan; Xie, Ning; Gleave, Martin E; Rennie, Paul S; Dong, Xuesen

    2015-10-20

    Failure of androgen-targeted therapy and progression of castration-resistant prostate cancer (CRPC) are often attributed to sustained expression of the androgen receptor (AR) and its major splice variant, AR-v7. Although the new generation of anti-androgens such as enzalutamide effectively inhibits AR activity, accumulating pre-clinical and clinical evidence indicates that AR-v7 remains constitutively active in driving CRPC progression. However, molecular mechanisms which control AR-v7 protein expression remain unclear. We apply multiple prostate cancer cell models to demonstrate that enzalutamide induces differential activation of protein phosphatase-1 (PP-1) and Akt kinase depending on the gene context of cancer cells. The balance between PP-1 and Akt activation governs AR phosphorylation status and activation of the Mdm2 ubiquitin ligase. Mdm2 recognizes phosphorylated serine 213 of AR-v7, and induces AR-v7 ubiquitination and protein degradation. These findings highlight the decisive roles of PP-1 and Akt for AR-v7 protein expression and activities when AR is functionally blocked.

  6. Antigenic assessment of a recombinant human CD90 protein expressed in prokaryotic expression system.

    PubMed

    Yousefi-Rad, Narges; Shokrgozar, Mohammad Ali; Behdani, Mahdi; Moradi-Kalbolandi, Shima; Motamedi-Rad, Mahdieh; Habibi-Anbouhi, Mahdi

    2015-12-01

    Cluster of Differentiation 90 (CD90, Thy-1) has been proposed as one of the most important biomarkers in several cancer cells including cancer stem cells (CSCs). CD90 is considered as a potential normal stem cell and CSCs biomarker and also has been identified in lung cancer stem cells, hepatocellular carcinoma cells and high-grade gliomas. Using eukaryotic host systems involves complex procedures and frequently results in low protein yields. The expression of recombinant proteins in Escherichia coli is comparatively easier than eukaryotic host cells. The potential of large scale production of recombinant protein has made this system an economic production platform. In this study we expressed the extra-membrane domain of human CD90 (exCD90) antigen (Gln15-Cys130) in E. coli expression host cells. The epitope integrity of purified recombinant antigen was confirmed by antibody-antigen interaction using 5E10 anti-CD90 monoclonal antibody and binding study through ELISA and florescent staining of CD90(+) cells in a flow cytometry experiment. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Expression and the antigenicity of recombinant coat proteins of tungro viruses expressed in Escherichia coli.

    PubMed

    Yee, Siew Fung; Chu, Chia Huay; Poili, Evenni; Sum, Magdline Sia Henry

    2017-02-01

    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes.

  8. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    NASA Technical Reports Server (NTRS)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  9. Thermostable tag (TST) protein expression system: engineering thermotolerant recombinant proteins and vaccines.

    PubMed

    Luke, Jeremy M; Carnes, Aaron E; Sun, Ping; Hodgson, Clague P; Waugh, David S; Williams, James A

    2011-02-10

    Methods to increase temperature stability of vaccines and adjuvants are needed to reduce dependence on cold chain storage. We report herein creation and application of pVEX expression vectors to improve vaccine and adjuvant manufacture and thermostability. Defined media fermentation yields of 6g/L thermostable toll-like receptor 5 agonist flagellin were obtained using an IPTG inducible pVEX-flagellin expression vector. Alternative pVEX vectors encoding Pyrococcus furiosus maltodextrin-binding protein (pfMBP) as a fusion partner improved Influenza hemagglutinin antigen vaccine solubility and thermostability. A pfMBP hemagglutinin HA2 domain fusion protein was a potent immunogen. Manufacturing processes that combined up to 5 g/L defined media fermentation yields with rapid, selective, thermostable pfMBP fusion protein purification were developed. The pVEX pfMBP-based thermostable tag (TST) platform is a generic protein engineering approach to enable high yield manufacture of thermostable recombinant protein vaccine components. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Growing functional modules from a seed protein via integration of protein interaction and gene expression data.

    PubMed

    Maraziotis, Ioannis A; Dimitrakopoulou, Konstantina; Bezerianos, Anastasios

    2007-10-23

    Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI) networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules) in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.

  11. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    SciTech Connect

    Yamakoshi, Takako; Makino, Teruhiko; Ur Rehman, Mati; Yoshihisa, Yoko; Sugimori, Michiya; Shimizu, Tadamichi

    2013-03-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain and a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes.

  12. Declining Physical Performance Associates with Serum FasL, miR-21, and miR-146a in Aging Sprinters

    PubMed Central

    Alen, Markku; Suominen, Harri; Kovanen, Vuokko; Korhonen, Marko T.

    2017-01-01

    Aging is associated with systemic inflammation and cellular apoptosis accelerating physiological dysfunctions. Whether physically active way of life affects these associations is unclear. This study measured the levels of serum inflammatory and apoptotic molecules, their change over 10 years, and their associations with physical performance in sprint-trained male athletes. HsCRP, cell counts, HGB, FasL, miR-21, and miR-146a were measured cross-sectionally (n = 67, 18–90 yrs) and serum FasL, miR-21, and miR-146a and their aging-related associations with physical performance were assessed over a 10-year follow-up (n = 49, 50–90 yrs). The cross-sectional study showed positive age correlations for neutrophils and negative for lymphocytes, red blood cells, HGB, FasL, and miR-146a. During the 10-year follow-up, FasL decreased (P = 0.017) and miR-21 (P < 0.001) and miR-146a (P = 0.005) levels increased. When combining the molecule levels, aging, and physical performance, FasL associated with countermovement jump and bench press (P < 0.001), miR-21 and miR-146a with knee flexion (P = 0.023; P < 0.001), and bench press (P = 0.004; P < 0.001) and miR-146a with sprint performance (P < 0.001). The studied serum molecules changed in an age-dependent manner and were associated with declining physical performance. They have potential as biomarkers of aging-related processes influencing the development of physiological dysfunctions. Further research is needed focusing on the origins and targets of circulating microRNAs to clarify their function in various tissues with aging. PMID:28127562

  13. Preferential expression and immunogenicity of HIV-1 Tat fusion protein expressed in tomato plant.

    PubMed

    Cueno, Marni E; Hibi, Yurina; Karamatsu, Katsuo; Yasutomi, Yasuhiro; Imai, Kenichi; Laurena, Antonio C; Okamoto, Takashi

    2010-10-01

    HIV-1 Tat plays a major role in viral replication and is essential for AIDS development making it an ideal vaccine target providing that both humoral and cellular immune responses are induced. Plant-based antigen production, due to its cheaper cost, appears ideal for vaccine production. In this study, we created a plant-optimized tat and mutant (Cys30Ala/Lys41Ala) tat (mtat) gene and ligated each into a pBI121 expression vector with a stop codon and a gusA gene positioned immediately downstream. The vector construct was bombarded into tomato leaf calli and allowed to develop. We thus generated recombinant tomato plants preferentially expressing a Tat-GUS fusion protein over a Tat-only protein. In addition, plants bombarded with either tat or mtat genes showed no phenotypic difference and produced 2-4 microg Tat-GUS fusion protein per milligram soluble plant protein. Furthermore, tomato extracts intradermally inoculated into mice were found to induce a humoral and, most importantly, cellular immunity.

  14. Cloning, expression, and assembly of sericin-like protein.

    PubMed

    Huang, Jia; Valluzzi, Regina; Bini, Elisabetta; Vernaglia, Brian; Kaplan, David L

    2003-11-14

    Recombinant sericin proteins of different molecular masses (17.4, 31.9, and 46.5 kDa), based on the 38-amino acid repetitive motif of native sericin, were cloned, expressed, and purified. The recombinant sericin self-assembled during dialysis (starting concentration of 2.5 mg/ml) forming twisted fibers. Circular dichroism and Fourier transform infrared spectroscopy studies demonstrated protein conformational transitions occurred from random coil to beta-sheets during the dialysis. Congo red-stained recombinant sericin fibrils exhibited apple-green birefringence, indicating long-range order in the array of beta-sheets. Biosynthetic sericin has a high content of polar amino acids (e.g. > 40 mol % serine), leading to a beta-sheet conformation formed by hydrogen bonding via polar zipper interactions. Analysis of recombinant sericin sequence using Mandel-Gutfreund's (Mandel-Gutfreund, Y., and Gregoret, L. M. (2002) J. Mol. Biol. 323, 453-461) definition of polar and non-polar amino acids showed that the hydrophobicity pattern resembles the most frequent pattern of amyloidogenic proteins, polar amino acid aggregates (PPPPP). Many beta-proteins and peptides are designed to study amyloidogenesis using a polar/non-polar alternating pattern (PNPNPN). Sericin-like proteins or peptides provide an alternative model in terms of hydrophobicity pattern with which to explore questions related to beta-sheet formation and amyloidogenesis. The glue-like property of sericin is attributed to the hydrogen bonding between serine residues of sericin with serine residues in the fibroin structural components of silk fiber.

  15. Generation of cloned transgenic cats expressing red fluorescence protein.

    PubMed

    Yin, Xi Jun; Lee, Hyo Sang; Yu, Xian Feng; Choi, Eugene; Koo, Bon Chul; Kwon, Mo Sun; Lee, Young S; Cho, Su Jin; Jin, Guang Zhen; Kim, Lyoung Hyo; Shin, Hyoung Doo; Kim, Teoan; Kim, Nam Hyung; Kong, Il Keun

    2008-03-01

    A method for engineering and producing genetically modified cats is important for generating biomedical models of human diseases. Here we describe the use of somatic cell nuclear transfer to produce cloned transgenic cats that systemically express red fluorescent protein. Immature oocytes were collected from superovulating cat ovaries. Donor fibroblasts were obtained from an ear skin biopsy of a white male Turkish Angora cat, cultured for one to two passages, and subjected to transduction with a retrovirus vector designed to transfer and express the red fluorescent protein (RFP) gene. A total of 176 RFP cloned embryos were transferred into 11 surrogate mothers (mean = 16 +/- 7.5 per recipient). Three surrogate mothers were successfully impregnated (27.3%) and delivered two liveborn and one stillborn kitten at 65 to 66 days of gestation. Analysis of nine feline-specific microsatellite loci confirmed that the cloned cats were genetically identical to the donor cat. Presence of the RFP gene in the transgenic cat genome was confirmed by PCR and Southern blot analyses. Whole-body red fluorescence was detected 60 days after birth in the liveborn transgenic (TG) cat but not in the surrogate mother cat. Red fluorescence was detected in tissue samples, including hair, muscle, brain, heart, liver, kidney, spleen, bronchus, lung, stomach, intestine, tongue, and even excrement of the stillborn TG cat. These results suggest that this nuclear transfer procedure using genetically modified somatic cells could be useful for the efficient production of transgenic cats.

  16. AGL15, a MADS domain protein expressed in developing embryos.

    PubMed Central

    Heck, G R; Perry, S E; Nichols, K W; Fernandez, D E

    1995-01-01

    To extend our knowledge of genes expressed during early embryogenesis, the differential display technique was used to identify and isolate mRNA sequences that accumulate preferentially in young Brassica napus embryos. One of these genes encodes a new member of the MADS domain family of regulatory proteins; it has been designated AGL15 (for AGAMOUS-like). AGL15 shows a novel pattern of expression that is distinct from those of previously characterized family members. RNA gel blot analyses and in situ hybridization techniques were used to demonstrate that AGL15 mRNA accumulated primarily in the embryo and was present in all embryonic tissues, beginning at least as early as late globular stage in B. napus. Genomic and cDNA clones corresponding to two AGL15 genes from B. napus and the homologous single-copy gene from Arabidopsis, which is located on chromosome 5, were isolated and analyzed. Antibodies prepared against overexpressed Brassica AGL15 lacking the conserved MADS domain were used to probe immunoblots, and AGL15-related proteins were found in embryos of a variety of angiosperms, including plants as distantly related as maize. Based on these data, we suggest that AGL15 is likely to be an important component of the regulatory circuitry directing seed-specific processes in the developing embryo. PMID:7549483

  17. Cell membrane modification for rapid display of proteins as a novel means of immunomodulation: FasL-decorated cells prevent islet graft rejection.

    PubMed

    Yolcu, Esma S; Askenasy, Nadir; Singh, Narendra P; Cherradi, Salah-Eddine Lamhamedi; Shirwan, Haval

    2002-12-01

    Long-term display of exogenous proteins on the cell surface may have important research and therapeutic implications. We report a novel method for the cell-surface display of proteins that involves generation of a chimeric protein with core streptavidin, biotinylation of cells, and "decoration" with the protein. A chimeric protein with the extracellular portions of FasL (SA-FasL) was efficiently displayed on the cell surface within 2 hr without detectable cellular toxicity. Biotin and SA-FasL persisted on the cell surface for weeks in vitro and in vivo. Immunomodulation with SA-FasL-decorated splenocytes effectively blocked alloreactive responses in naive and presensitized rodents and prevented the rejection of allogeneic pancreatic islets. This approach may serve as an alternative to gene transfer-based expression with broad research and therapeutic applications.

  18. Teicoplanin-resistant Staphylococcus aureus expresses a novel membrane protein and increases expression of penicillin-binding protein 2 complex.

    PubMed Central

    Shlaes, D M; Shlaes, J H; Vincent, S; Etter, L; Fey, P D; Goering, R V

    1993-01-01

    In the recent clinical trials of teicoplanin therapy of endocarditis caused by Staphylococcus aureus, at least one instance of the emergence of teicoplanin-resistant strains during therapy has been reported (G.W. Kaatz, S. M. Seo, N. J. Dorman, and S. A. Lerner, J. Infect. Dis 162:103-108, 1990). We have confirmed, using conventional electrophoresis of EcoRI-digested chromosomal DNA and pulsed-field gel electrophoresis of SmaI-digested chromosomal DNA, that the resistant strain (12873) (MIC, 16 micrograms/ml) is genetically very similar to the susceptible parent (12871) (MIC, 4 micrograms/ml). Kaatz et al. were able to select spontaneous teicoplanin-resistant mutants (10(-9)), suggesting that a single gene might be involved. We have shown that the mutation is highly stable during growth in the absence of teicoplanin. Using Tn551, we have selected insertion mutants of 12873 that become teicoplanin susceptible. We have examined a number of aspects of cell wall physiology in strains 12871 and 12873 and the teicoplanin-susceptible Tn551 mutants of 12873. 12873 was more susceptible to lysostaphin lysis than 12871 and the susceptible Tn551 derivatives of 12873. Autolysis in phosphate buffer (pH 7.5) and cell wall turnover rates were similar in 12871 and 12873. An analysis of membrane proteins revealed the expression of a ca. 35-kDa protein and increased expression of both polypeptides of penicillin-binding protein (PBP) 2 (PBP2) in 12873 relative to 12871 and the Tn551 mutants of 12873. This increased expression was not related to PBP2', since both strains were susceptible to oxacillin in 2% NaCl (MIC, < or = 0.25 microgram/ml) and cellular DNA from neither strain hybridized with a specific mec gene probe. Two independent Tn551 inserts have been mapped to a ca. 117-kb SmaI fragment of the chromosome. These data suggest the possibility that the mutation resulting in resistance to teicoplanin involves the regulation of expression of both polypeptides of PBP2 and a 35-k

  19. Ras protein expression as a marker for breast cancer

    PubMed Central

    CALAF, GLORIA M.; ABARCA-QUINONES, JORGE

    2016-01-01

    Breast cancer, the most common neoplasm in women of all ages, is the leading cause of cancer-related mortality in women worldwide. Markers to help to predict the risk of progression and ultimately provide non-surgical treatment options would be of great benefit. At present, there are no available molecular markers to predict the risk of carcinoma in situ progression to invasive cancer; therefore, all women diagnosed with this type of malignancy must undergo surgery. Breast cancer is a heterogeneous complex disease, and different patients respond differently to different treatments. In breast cancer, analysis using immunohistochemical markers remains an essential component of routine pathological examinations, and plays an import role in the management of the disease by providing diagnostic and prognostic strategies. The aim of the present study was to identify a marker that can be used as a prognostic tool for breast cancer. For this purpose, we firstly used an established breast cancer model. MCF-10F, a spontaneously immortalized breast epithelial cell line was transformed by exposure to estrogen and radiation. MCF-10F cells were exposed to low doses of high linear energy transfer (LET) α particles (150 keV/μm) of radiation, and subsequently cultured in the presence of 17β-estradiol. Three cell lines were used: i) MCF-10F cells as a control; ii) Alpha5 cells, a malignant and tumorigenic cell line; and iii) Tumor2 cells derived from Alpha5 cells injected into nude mice. Secondly, we also used normal, benign and malignant breast specimens obtained from biopsies. The results revealed that the MCF-10F cells were negative for c-Ha-Ras protein expression; however, the Alpha5 and Tumor2 cell lines were positive for c-Ha-Ras protein expression. The malignant breast samples were also strongly positive for c-Ha-Ras expression. The findings of our study indicate that c-Ha-Ras protein expression may be used as a marker to predict the progression of breast cancer; this

  20. Adenosine monophosphate activated protein kinase (AMPK), a mediator of estradiol-induced apoptosis in long-term estrogen deprived breast cancer cells.

    PubMed

    Chen, Haiyan; Wang, Ji-Ping; Santen, Richard J; Yue, Wei

    2015-06-01

    Estrogens stimulate growth of hormone-dependent breast cancer but paradoxically induce tumor regress under certain circumstances. We have shown that long-term estrogen deprivation (LTED) enhances the sensitivity of hormone dependent breast cancer cells to estradiol (E2) so that physiological concentrations of estradiol induce apoptosis in these cells. E2-induced apoptosis involve both intrinsic and extrinsic pathways but precise mechanisms remain unclear. We found that exposure of LTED MCF-7 cells to E2 activated AMP activated protein kinase (AMPK). In contrast, E2 inhibited AMPK activation in wild type MCF-7 cells where E2 prevents apoptosis. As a result of AMPK activation, the transcriptional activity of FoxO3, a downstream factor of AMPK, was up-regulated in E2 treatment of LTED. Increased activity of FoxO3 was demonstrated by up-regulation of three FoxO3 target genes, Bim, Fas ligand (FasL), and Gadd45α. Among them, Bim and FasL mediate intrinsic and extrinsic apoptosis respectively and Gadd45α causes cell cycle arrest at the G2/M phase. To further confirm the role of AMPK in apoptosis, we used AMPK activator AICAR in wild type MCF-7 cells and examined apoptosis, proliferation and expression of Bim, FasL, and Gadd45α. The effects of AICAR on these parameters recapitulated those observed in E2-treated LTED cells. Activation of AMPK by AICAR also increased expression of Bax in MCF-7 cells and its localization to mitochondria, which is a required process for apoptosis. These results reveal that AMPK is an important factor mediating E2-induced apoptosis in LTED cells, which is implicative of therapeutic potential for relapsing breast cancer after hormone therapy.

  1. Interleukin-5 Supports the Expansion of Fas Ligand-Expressing Killer B Cells that Induce Antigen-Specific Apoptosis of CD4+ T Cells and Secrete Interleukin-10

    PubMed Central

    Klinker, Matthew W.; Reed, Tamra J.; Fox, David A.; Lundy, Steven K.

    2013-01-01

    Beyond their critical role in humoral immunity, B lymphocytes can employ a variety of immunomodulatory mechanisms including expression of the apoptosis-inducing molecule Fas ligand (FasL; CD178). Here, we extensively characterized the surface phenotype of FasL+ killer B cells, showing they are enriched in the IgMhighCD5+CD1dhigh B cell subset previously reported to contain a higher frequency of B cells producing interleukin-10 (IL-10). A rare population of B cells expressing IL-10 was present among FasL+ B cells, but most FasL+ B cells did not produce IL-10. We also identify interleukin-5 (IL-5) as a novel inducer of killer B cell function. Constitutively FasL+ B cells expressed higher levels of the IL-5 receptor, and treating B cells with IL-5 and CD40L resulted in the expansion of a B cell population enriched for FasL+ cells. B cells stimulated with IL-5 and CD40L were potent inducers of apoptosis in activated primary CD4+ T cells, and this killing function was antigen-specific and dependent upon FasL. IL-5 also enhanced IL-10 secretion in B cells stimulated with CD40L. Taken together these findings elucidate the relationship of FasL+ B cells and IL-10-producing B cells and demonstrate that IL-5 can induce or enhance both killer B cell activity and IL-10 secretion in B cells. Finally, we found that the killer B cell activity induced by IL-5 was completely blocked by IL-4, suggesting the existence of a previously unknown antagonistic relationship between these type-2 cytokines in modulating the activity of killer B cells. Targeting this IL-5/IL-4 signaling axis may therefore represent a novel area of drug discovery in inflammatory disorders. PMID:23940537

  2. Protein Modulator of Multidrug Efflux Gene Expression in Pseudomonas aeruginosa▿

    PubMed Central

    Daigle, Denis M.; Cao, Lily; Fraud, Sebastien; Wilke, Mark S.; Pacey, Angela; Klinoski, Rachael; Strynadka, Natalie C.; Dean, Charles R.; Poole, Keith

    2007-01-01

    nalC multidrug-resistant mutants of Pseudomonas aeruginosa show enhanced expression of the mexAB-oprM multidrug efflux system as a direct result of the production of a ca. 6,100-Da protein, PA3719, in these mutants. Using a bacterial two-hybrid system, PA3719 was shown to interact in vivo with MexR, a repressor of mexAB-oprM expression. Isothermal titration calorimetry (ITC) studies confirmed a high-affinity interaction (equilibrium dissociation constant [KD], 158.0 ± 18.1 nM) of PA3719 with MexR in vitro. PA3719 binding to and formation of a complex with MexR obviated repressor binding to its operator, which overlaps the efflux operon promoter, suggesting that mexAB-oprM hyperexpression in nalC mutants results from PA3719 modulation of MexR repressor activity. Consistent with this, MexR repression of mexA transcription in an in vitro transcription assay was alleviated by PA3719. Mutations in MexR compromising its interaction with PA3719 in vivo were isolated and shown to be located internally and distributed throughout the protein, suggesting that they impacted PA3719 binding by altering MexR structure or conformation rather than by having residues interacting specifically with PA3719. Four of six mutant MexR proteins studied retained repressor activity even in a nalC strain producing PA3719. Again, this is consistent with a PA3719 interaction with MexR being necessary to obviate MexR repressor activity. The gene encoding PA3719 has thus been renamed armR (antirepressor for MexR). A representative “noninteracting” mutant MexR protein, MexRI104F, was purified, and ITC confirmed that it bound PA3719 with reduced affinity (5.4-fold reduced; KD, 853.2 ± 151.1 nM). Consistent with this, MexRI104F repressor activity, as assessed using the in vitro transcription assay, was only weakly compromised by PA3719. Finally, two mutations (L36P and W45A) in ArmR compromising its interaction with MexR have been isolated and mapped to a putative C-terminal α-helix of the

  3. Functions of BET proteins in erythroid gene expression.

    PubMed

    Stonestrom, Aaron J; Hsu, Sarah C; Jahn, Kristen S; Huang, Peng; Keller, Cheryl A; Giardine, Belinda M; Kadauke, Stephan; Campbell, Amy E; Evans, Perry; Hardison, Ross C; Blobel, Gerd A

    2015-04-30

    Inhibitors of bromodomain and extraterminal motif proteins (BETs) are being evaluated for the treatment of cancer and other diseases, yet much remains to be learned about how BET proteins function during normal physiology. We used genomic and genetic approaches to examine BET function in a hematopoietic maturation system driven by GATA1, an acetylated transcription factor previously shown to interact with BETs. We found that BRD2, BRD3, and BRD4 were variably recruited to GATA1-regulated genes, with BRD3 binding the greatest number of GATA1-occupied sites. Pharmacologic BET inhibition impaired GATA1-mediated transcriptional activation, but not repression, genome-wide. Mechanistically, BETs promoted chromatin occupancy of GATA1 and subsequently supported transcriptional activation. Using a combination of CRISPR-Cas9-mediated genomic engineering and shRNA approaches, we observed that depletion of either BRD2 or BRD4 alone blunted erythroid gene activation. Surprisingly, depletion of BRD3 only affected erythroid transcription in the context of BRD2 deficiency. Consistent with functional overlap among BET proteins, forced BRD3 expression substantially rescued defects caused by BRD2 deficiency. These results suggest that pharmacologic BET inhibition should be interpreted in the context of distinct steps in transcriptional activation and overlapping functions among BET family members.

  4. Prion protein expression and functional importance in skeletal muscle.

    PubMed

    Smith, Jeffrey D; Moylan, Jennifer S; Hardin, Brian J; Chambers, Melissa A; Estus, Steven; Telling, Glenn C; Reid, Michael B

    2011-11-01

    Skeletal muscle expresses prion protein (PrP) that buffers oxidant activity in neurons. We hypothesize that PrP deficiency would increase oxidant activity in skeletal muscle and alter redox-sensitive functions, including contraction and glucose uptake. We used real-time polymerase chain reaction and Western blot analysis to measure PrP mRNA and protein in human diaphragm, five murine muscles, and muscle-derived C2C12 cells. Effects of PrP deficiency were tested by comparing PrP-deficient mice versus wild-type mice and morpholino-knockdown versus vehicle-treated myotubes. Oxidant activity (dichlorofluorescin oxidation) and specific force were measured in murine diaphragm fiber bundles. PrP content differs among mouse muscles (gastrocnemius>extensor digitorum longus, EDL>tibialis anterior, TA; soleus>diaphragm) as does glycosylation (di-, mono-, nonglycosylated; gastrocnemius, EDL, TA=60%, 30%, 10%; soleus, 30%, 40%, 30%; diaphragm, 30%, 30%, 40%). PrP is predominantly di-glycosylated in human diaphragm. PrP deficiency decreases body weight (15%) and EDL mass (9%); increases cytosolic oxidant activity (fiber bundles, 36%; C2C12 myotubes, 7%); and depresses specific force (12%) in adult (8-12 mos) but not adolescent (2 mos) mice. This study is the first to directly assess a role of prion protein in skeletal muscle function. PrP content varies among murine skeletal muscles and is essential for maintaining normal redox homeostasis, muscle size, and contractile function in adult animals.

  5. Expression of Water Channel Proteins in Mesembryanthemum crystallinum1

    PubMed Central

    Kirch, Hans-Hubert; Vera-Estrella, Rosario; Golldack, Dortje; Quigley, Francoise; Michalowski, Christine B.; Barkla, Bronwyn J.; Bohnert, Hans J.

    2000-01-01

    We have characterized transcripts for nine major intrinsic proteins (MIPs), some of which function as water channels (aquaporins), from the ice plant Mesembryanthemum crystallinum. To determine the cellular distribution and expression of these MIPs, oligopeptide-based antibodies were generated against MIP-A, MIP-B, MIP-C, or MIP-F, which, according to sequence and functional characteristics, are located in the plasma membrane (PM) and tonoplast, respectively. MIPs were most abundant in cells involved in bulk water flow and solute flux. The tonoplast MIP-F was found in all cells, while signature cell types identified different PM-MIPs: MIP-A predominantly in phloem-associated cells, MIP-B in xylem parenchyma, and MIP-C in the epidermis and endodermis of immature roots. Membrane protein analysis confirmed MIP-F as tonoplast located. MIP-A and MIP-B were found in tonoplast fractions and also in fractions distinct from either the tonoplast or PM. MIP-C was most abundant but not exclusive to PM fractions, where it is expected based on its sequence signature. We suggest that within the cell, MIPs are mobile, which is similar to aquaporins cycling through animal endosomes. MIP cycling and the differential regulation of these proteins observed under conditions of salt stress may be fundamental for the control of tissue water flux. PMID:10806230

  6. Statins Inhibit Monocyte Chemotactic Protein 1 Expression in Endometriosis

    PubMed Central

    Cakmak, Hakan; Basar, Murat; Seval-Celik, Yasemin; Osteen, Kevin G.; Duleba, Antoni J.; Taylor, Hugh S.; Lockwood, Charles J.; Arici, Aydin

    2012-01-01

    Statins are potent inhibitors of the endogenous mevalonate pathway. Besides inhibiting cholesterol biosynthesis, statins may also demonstrate anti-inflammatory properties. Inflammation is implicated in the attachment and invasion of endometrial cells to the peritoneal surface and growth of ectopic endometrium by inducing proliferation and angiogenesis. In this study, the effect of statins on monocyte chemotactic protein 1 (MCP-1) expression in endometriotic implants in nude mouse model and in cultured endometriotic cells was evaluated. In mouse model, simvastatin decreased MCP-1 expression in a dose-dependent manner in endometriotic implants (P < .05). Similarly, both simvastatin and mevastatin revealed a dose-dependent inhibition of MCP-1 production in cultured endometriotic cells (P < .01). This inhibitory effect of the statins on MCP-1 production was reversed by the downstream substrates of the mevalonate pathway. Moreover, statins decreased MCP-1 messenger RNA expression in cultured endometriotic cells (P < .05). In conclusion, statins exert anti-inflammatory effect in endometriotic cells and could provide a potential treatment of endometriosis in the future. PMID:22267540

  7. SSAO/VAP-1 protein expression during mouse embryonic development.

    PubMed

    Valente, Tony; Solé, Montse; Unzeta, Mercedes

    2008-09-01

    SSAO/VAP-1 is a multifunctional enzyme depending on in which tissue it is expressed. SSAO/VAP-1 is present in almost all adult mammalian tissues, especially in highly vascularised ones and in adipocytes. SSAO/VAP-1 is an amine oxidase able to metabolise various endogenous or exogenous primary amines. Its catalytic activity can lead to cellular oxidative stress, which has been implicated in several pathologies (atherosclerosis, diabetes, and Alzheimer's disease). The aim of this work is to achieve a study of SSAO/VAP-1 protein expression during mouse embryogenesis. Our results show that SSAO/VAP-1 appears early in the development of the vascular system, adipose tissue, and smooth muscle cells. Moreover, its expression is strong in several epithelia of the sensory organs, as well as in the development of cartilage sites. Altogether, this suggests that SSAO/VAP-1 enzyme could be involved in the differentiation processes that take place during embryonic development, concretely in tissue vascularisation.

  8. Nuclear genes encoding plastid proteins expressed early in chloroplast development

    SciTech Connect

    Mullet, J.E.

    1991-01-01

    The overall objective of this grant was to characterize events which occur early in chloroplast biogenesis and to isolate nuclear genes encoding plastid proteins which are expressed during this developmental phase. In addition, the possible requirement of plastid transcription for the expression of the nuclear genes such as rbcS and cab was to be tested. The impetus for this research came from studies of chloroplast biogenesis in barley. We found that plastid DNA copy number was relatively high (120 copies/plastid vs 200 at maximal accumulation) in the meristematic region of the leaf base whereas plastid transcription activity was low in this plastid population. Later in chloroplast development transcription activity increased at least 5 fold per plastid or per template indicating that activation of plastid transcription occurred after most of the build up in plastid DNA per plastid. This suggested that activation of plastid DNA synthesis occurred early in chloroplast development and that nuclear genes involved in this activity must be regulated differently from genes such rbcS or cab which are expressed later in development. 3 refs., 7 figs.

  9. Production of Computationally Designed Small Soluble- and Membrane-Proteins: Cloning, Expression, and Purification.

    PubMed

    Tripathy, Barsa; Acharya, Rudresh

    2017-01-01

    This book chapter focuses on expression and purification of computationally designed small soluble proteins and membrane proteins that are ordinarily difficult to express in good amounts for experiments. Over-expression of such proteins can be achieved by using the solubility tag such as maltose binding protein (MBP), Thioredoxin (Trx), and Gultathione-S-transferase (GST) fused to the protein of interest. Here, we describe and provide the protocols for cloning, expression and purification of such proteins using the solubility tag.

  10. GPR37 Surface Expression Enhancement via N-Terminal Truncation or Protein-Protein Interactions1

    PubMed Central

    Dunham, Jill H.; Meyer, Rebecca C.; Garcia, Erin L.; Hall, Randy A.

    2009-01-01

    GPR37, also known as the parkin-associated endothelin-like receptor (Pael-R), is an orphan G protein-coupled receptor (GPCR) that exhibits poor plasma membrane expression when expressed in most cell types. We sought to find ways to enhance GPR37 trafficking to the cell surface in order to facilitate studies of GPR37 functional activity in heterologous cells. In truncation studies, we found that removing the GPR37 N-terminus (NT) dramatically enhanced the receptor’s plasma membrane insertion. Further studies on sequential NT truncations revealed that removal of the first 210 amino acids increased surface expression nearly as much as removal of the entire NT. In studies examining the effects of co-expression of GPR37 with a variety of other GPCRs, we observed significant increases in GPR37 surface expression when the receptor was co-expressed with the adenosine receptor A2AR or the dopamine receptor D2R. Co-immunoprecipitation experiments revealed that full-length GPR37 and, to a greater extent, the truncated GPR37 were capable of robustly associating with D2R, resulting in modestly-altered D2R affinity for both agonists and antagonists. In studies examining potential interactions of GPR37 with PDZ scaffolds, we observed a specific interaction between GPR37 and syntenin-1, which resulted in a dramatic increase in GPR37 surface expression in HEK-293 cells. These findings reveal three independent approaches – N-terminal truncation, co-expression with other receptors and co-expression with syntenin-1 – by which GPR37 surface trafficking in heterologous cells can be greatly enhanced to facilitate functional studies on this orphan receptor. PMID:19799451

  11. Real-time quantification of protein expression at the single-cell level via dynamic protein synthesis translocation reporters.

    PubMed

    Aymoz, Delphine; Wosika, Victoria; Durandau, Eric; Pelet, Serge

    2016-04-21

    Protein expression is a dynamic process, which can be rapidly induced by extracellular signals. It is widely appreciated that single cells can display large variations in the level of gene induction. However, the variability in the dynamics of this process in individual cells is difficult to quantify using standard fluorescent protein (FP) expression assays, due to the slow maturation of their fluorophore. Here we have developed expression reporters that accurately measure both the levels and dynamics of protein synthesis in live single cells with a temporal resolution under a minute. Our system relies on the quantification of the translocation of a constitutively expressed FP into the nucleus. As a proof of concept, we used these reporters to measure the transient protein synthesis arising from two promoters responding to the yeast hyper osmolarity glycerol mitogen-activated protein kinase pathway (pSTL1 and pGPD1). They display distinct expression dynamics giving rise to strikingly different instantaneous expression noise.

  12. Soluble expression and complex formation of proteins required for HCMV DNA replication using the SFV expression system.

    PubMed

    McCue, L A; Anders, D G

    1998-08-01

    Several of the viral proteins required for human cytomegalovirus (HCMV) DNA replication have been difficult to study due to their low abundance in infected cells and low solubility in bacterial or insect-cell expression systems. Therefore we used the Semliki Forest virus expression system to express these proteins in mammalian cells. All of the recombinant proteins were soluble, on the basis of ultracentrifugation properties and their ability to be immunoprecipitated from solution with specific antibodies. Pulse-chase analysis of the 86-kDa major immediate-early protein (IE86) revealed two expressed forms-a precursor and a product-indicating that this recombinant protein, like the native HCMV protein, is posttranslationally processed. The recombinant proteins (polymerase core and accessory as well as the IE86 and pUL84) formed stable complexes similar to those known to form in HCMV-infected cells. The recombinant DNA polymerase holoenzyme also exhibited enzyme activity that was phosphonoformic acid sensitive, as is the infected-cell DNA polymerase activity. This expression system offers many advantages for the expression and study of the HCMV replication proteins, including the expression of soluble, active proteins that are able to interact to form complexes. Additionally, the relative ease with which SFV recombinants can be made lends itself to the construction and evaluation of mutants.

  13. Expression-Enhanced Fluorescent Proteins Based on Enhanced Green Fluorescent Protein for Super-resolution Microscopy.

    PubMed

    Duwé, Sam; De Zitter, Elke; Gielen, Vincent; Moeyaert, Benjamien; Vandenberg, Wim; Grotjohann, Tim; Clays, Koen; Jakobs, Stefan; Van Meervelt, Luc; Dedecker, Peter

    2015-10-27

    "Smart fluorophores", such as reversibly switchable fluorescent proteins, are crucial for advanced fluorescence imaging. However, only a limited number of such labels is available, and many display reduced biological performance compared to more classical variants. We present the development of robustly photoswitchable variants of enhanced green fluorescent protein (EGFP), named rsGreens, that display up to 30-fold higher fluorescence in E. coli colonies grown at 37 °C and more than 4-fold higher fluorescence when expressed in HEK293T cells compared to their ancestor protein rsEGFP. This enhancement is not due to an intrinsic increase in the fluorescence brightness of the probes, but rather due to enhanced expression levels that allow many more probe molecules to be functional at any given time. We developed rsGreens displaying a range of photoswitching kinetics and show how these can be used for multimodal diffraction-unlimited fluorescence imaging such as pcSOFI and RESOLFT, achieving a spatial resolution of ∼70 nm. By determining the first ever crystal structures of a negative reversibly switchable FP derived from Aequorea victoria in both the "on"- and "off"-conformation we were able to confirm the presence of a cis-trans isomerization and provide further insights into the mechanisms underlying the photochromism. Our work demonstrates that genetically encoded "smart fluorophores" can be readily optimized for biological performance and provides a practical strategy for developing maturation- and stability-enhanced photochromic fluorescent proteins.

  14. Developmental expression of odorant-binding proteins and chemosensory proteins in the embryos of Locusta migratoria.

    PubMed

    Yu, Yanxue; Zhang, Shangan; Zhang, Long; Zhao, Xingbo

    2009-06-01

    We have investigated the development of chemosensilla and the secretion of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in the embryo of Locusta migratoria manilensis. We first report the changes of each sensillum in embryo just preceding hatch in detail and show that different sensilla have different developmental processes. Trichogen cells are first involved in forming the structure of pegs, and then, after retraction, they start secreting OBPs and CSPs in the sensillar lymph. The synthesis of LmigOBP1 starts during the embryogenesis about 0.5 h preceding hatching, specifically in sensilla trichodea and basiconica of the antenna. LmigOBP2, instead, was only found in the outer sensillum lymph (oSl) of sensilla chaetica of the antenna, while we could not detect LmigOBP3 in any type of sensilla of the antenna. The ontogenesis of CSPs in the embryos is similar to that of OBPs. Expression of CSPI homolog in Locusta migratoria is detected using the antiserum raised against SgreCSPI. CSPI is specifically expressed in the outer sensillum lymph of sensilla chaetica of the antenna, and anti-LmigCSPII dose not label any sensilla of the embryos. These data indicate that in locusts, OBPs and CSPs follow different temporal expression patterns, and also that OBPs are expressed in different types of sensilla.

  15. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm.

    PubMed

    Lobstein, Julie; Emrich, Charlie A; Jeans, Chris; Faulkner, Melinda; Riggs, Paul; Berkmen, Mehmet

    2012-05-08

    Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using SHuffle strains.

  16. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm

    PubMed Central

    2012-01-01

    Background Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. Results We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. Conclusions This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using SHuffle strains. PMID:22569138

  17. Cloning, expression, and antigenicity of 14 proteins from Campylobacter jejuni.

    PubMed

    Zhang, Maojun; Meng, Fanliang; Cao, Fangfang; Qiao, Bo; Liu, Guodong; Liu, Hongying; Zhou, Yizhuang; Dong, Haiyan; Gu, Yixin; Xiao, Di; Zhang, Yongchan; Zhang, Jianzhong

    2012-08-01

    Fourteen Campylobacter jejuni genes--porA, cadF, omp18, dnaK, flaC, peb1, peb2, peb3, peb4, ahpC, groEL, tuF, hipO, and Cj0069--were cloned and expressed in Escherichia coli BL21. The recombinant proteins were purified on histidine (His) and glutathione S-transferase (GST) trap columns using the ÄKTA Explorer 100 System. Recombinant proteins were visualized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The antigenicities of these recombinant proteins were assessed by Western blotting and enzyme-linked immunosorbent assays with anti-C. jejuni immune rabbit sera. Four recombinant proteins, including rGST-PorA, rHis-CadF, rGST-GroEL, and rGST-TuF, demonstrated reactions with both anti-serum and preimmune serum, while rHis-DnaK, rGST-FlaC, rGST-PEB2, rGST-PEB3, rGST-PEB4, and rGST-HipO showed variable antigenicity characteristics to the anti-sera derived from different C. jejuni strains. rHis-Omp18, rHis-PEB1, and rGST-AhpC demonstrated universal and specific antigenities with the entire anti-sera panel tested in this present study, while recombinant rGST-Cj0069 and rHis-DnaK did not react with any of the anti-C. jejuni sera tested. In conclusion, rGST-AhpC may be useful as a potential serodiagnostic antigen for C. jejuni infection.

  18. Bcl-2-related protein family gene expression during oligodendroglial differentiation.

    PubMed

    Itoh, Takayuki; Itoh, Aki; Pleasure, David

    2003-06-01

    Oligodendroglial lineage cells (OLC) vary in susceptibility to both necrosis and apoptosis depending on their developmental stages, which might be regulated by differential expression of Bcl-2-related genes. As an initial step to test this hypothesis, we examined the expression of 19 Bcl-2-related genes in purified cultures of rat oligodendroglial progenitors, immature and mature oligodendrocytes. All 'multidomain' anti-apoptotic members (Bcl-x, Bcl-2, Mcl-1, Bcl-w and Bcl2l10/Diva/Boo) except Bcl2a1/A1 are expressed in OLC. Semiquantitative and real-time RT-PCR revealed that Bcl-xL and Mcl-1 mRNAs are the dominant anti-apoptotic members and increase four- and twofold, respectively, with maturation. Bcl-2 mRNA is less abundant than Bcl-xL mRNA in progenitors and falls an additional 10-fold during differentiation. Bcl-w mRNA also increases, with significant changes in its splicing pattern, as OLC mature. Transfection studies demonstrated that Bcl-xL overexpression protects against kainate-induced excitotoxicity, whereas Bcl-2 overexpression does not. As for 'multidomain' pro-apoptotic members (Bax, Bad and Bok/Mtd), Bax and Bak are highly expressed throughout differentiation. Among 'BH3 domain-only' members examined (Bim, Biklk, DP5/Hrk, Bad, Bid, Noxa, Puma/Bbc3, Bmf, BNip3 and BNip3L), BNip3 and Bmf mRNAs increase markedly during differentiation. These results provide basic information to guide further studies on the roles for Bcl-2-related family proteins in OLC death.

  19. The C-terminal domain of the long form of cellular FLICE-inhibitory protein (c-FLIPL) inhibits the interaction of the caspase 8 prodomain with the receptor-interacting protein 1 (RIP1) death domain and regulates caspase 8-dependent nuclear factor κB (NF-κB) activation.

    PubMed

    Matsuda, Iyo; Matsuo, Kentaro; Matsushita, Yuka; Haruna, Yasushi; Niwa, Masamitsu; Kataoka, Takao

    2014-02-14

    Caspase 8 plays an essential role in the regulation of apoptotic and non-apoptotic signaling pathways. The long form of cellular FLICE-inhibitory protein (c-FLIPL) has been shown previously to regulate caspase 8-dependent nuclear factor κB (NF-κB) activation by receptor-interacting protein 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). In this study, the molecular mechanism by which c-FLIPL regulates caspase 8-dependent NF-κB activation was further explored in the human embryonic kidney cell line HEK 293 and variant cells barely expressing caspase 8. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone greatly diminished caspase 8-dependent NF-κB activation induced by Fas ligand (FasL) when c-FLIPL, but not its N-terminal fragment c-FLIP(p43), was expressed. The prodomain of caspase 8 was found to interact with the RIP1 death domain and to be sufficient to mediate NF-κB activation induced by FasL or c-FLIP(p43). The interaction of the RIP1 death domain with caspase 8 was inhibited by c-FLIPL but not c-FLIP(p43). Thus, these results reveal that the C-terminal domain of c-FLIPL specifically inhibits the interaction of the caspase 8 prodomain with the RIP1 death domain and, thereby, regulates caspase 8-dependent NF-κB activation.

  20. The C-terminal Domain of the Long Form of Cellular FLICE-inhibitory Protein (c-FLIPL) Inhibits the Interaction of the Caspase 8 Prodomain with the Receptor-interacting Protein 1 (RIP1) Death Domain and Regulates Caspase 8-dependent Nuclear Factor κB (NF-κB) Activation*

    PubMed Central

    Matsuda, Iyo; Matsuo, Kentaro; Matsushita, Yuka; Haruna, Yasushi; Niwa, Masamitsu; Kataoka, Takao

    2014-01-01

    Caspase 8 plays an essential role in the regulation of apoptotic and non-apoptotic signaling pathways. The long form of cellular FLICE-inhibitory protein (c-FLIPL) has been shown previously to regulate caspase 8-dependent nuclear factor κB (NF-κB) activation by receptor-interacting protein 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). In this study, the molecular mechanism by which c-FLIPL regulates caspase 8-dependent NF-κB activation was further explored in the human embryonic kidney cell line HEK 293 and variant cells barely expressing caspase 8. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone greatly diminished caspase 8-dependent NF-κB activation induced by Fas ligand (FasL) when c-FLIPL, but not its N-terminal fragment c-FLIP(p43), was expressed. The prodomain of caspase 8 was found to interact with the RIP1 death domain and to be sufficient to mediate NF-κB activation induced by FasL or c-FLIP(p43). The interaction of the RIP1 death domain with caspase 8 was inhibited by c-FLIPL but not c-FLIP(p43). Thus, these results reveal that the C-terminal domain of c-FLIPL specifically inhibits the interaction of the caspase 8 prodomain with the RIP1 death domain and, thereby, regulates caspase 8-dependent NF-κB activation. PMID:24398693

  1. Expression of Trans-Membrane Proteins in vitro Using a Cell Free System

    NASA Astrophysics Data System (ADS)

    Weisse, Natalie; Noireaux, Vincent; Chalmeau, Jerome

    2010-10-01

    Trans-membrane proteins represent a significant portion of the proteins expressed by cells. The expression of proteins in vitro, however, remains a challenge. Numerous expression approaches have been developed with cell free expression (CFE) being one of the most promising. CFE is based on a transcription-translation system that has been extracted from E. coli bacteria. Adding the desired DNA allows expression of a selected protein, and in the presence of phospholipids the expression of trans-membrane proteins becomes possible. In order to express trans-membrane proteins in a closed native environment, the cell free system (CFS) is encapsulated with a phospholipid bilayer, creating an artificial cell. To verify protein expression, AquaporinZ (AqpZ), a well-known trans-membrane protein tagged with a green fluorescent protein (eGFP), was used so the expressed proteins could be seen under a fluorescent microscope. These artificial cells will serve as an experimental platform for testing the viability of the expressed trans-membrane proteins. Results from the manipulation of these artificial cells by attaching them to the slide surface through streptavidin-biotin bonding will be presented.

  2. Recombinant protein production data after expression in the bacterium Escherichia coli

    PubMed Central

    Cantu-Bustos, J. Enrique; Cano del Villar, Kevin D.; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-01-01

    Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]). Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP) tagged with CusF, using Ag(I) metal affinity chromatography. PMID:27014739

  3. Recombinant protein production data after expression in the bacterium Escherichia coli.

    PubMed

    Cantu-Bustos, J Enrique; Cano Del Villar, Kevin D; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-06-01

    Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]). Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP) tagged with CusF, using Ag(I) metal affinity chromatography.

  4. Anatomical profiling of G protein-coupled receptor expression

    PubMed Central

    Regard, Jean B.; Sato, Isaac T.; Coughlin, Shaun R.

    2008-01-01

    Summary G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane signaling molecules and regulate a host of physiological and disease processes. To better understand the functions of GPCRs in vivo, we quantified transcript levels of 353 non-odorant GPCRs in 41 adult mouse tissues. Cluster analysis placed many GPCRs into anticipated anatomical and functional groups and predicted novel roles for less studied receptors. From one such prediction, we showed that the Gpr91 ligand succinate can regulate lipolysis in white adipose tissue suggesting that signaling by this citric acid cycle intermediate may regulate energy homeostasis. We also showed that pairwise analysis of GPCR expression across tissues may help predict drug side effects. This resource will aid studies to understand GPCR function in vivo and may assist in the identification of therapeutic targets. PMID:18984166

  5. Lytic Promoters Express Protein during Herpes Simplex Virus Latency

    PubMed Central

    Russell, Tiffany A.; Tscharke, David C.

    2016-01-01

    Herpes simplex virus (HSV) has provided the prototype for viral latency with previously well-defined acute or lytic and latent phases. More recently, the deep quiescence of HSV latency has been questioned with evidence that lytic genes can be transcribed in this state. However, to date the only evidence that these transcripts might be translated has come from immunological studies that show activated T cells persist in the nervous system during latency. Here we use a highly sensitive Cre-marking model to show that lytic and latent phases are less clearly defined in two significant ways. First, around half of the HSV spread leading to latently infected sites occurred beyond the initial acute infection and second, we show direct evidence that lytic promoters can drive protein expression during latency. PMID:27348812

  6. New examples of membrane protein expression and purification using the yeast based Pdr1-3 expression strategy.

    PubMed

    Gupta, Rakeshkumar P; Kueppers, Petra; Schmitt, Lutz

    2014-12-10

    Overexpression and purification of membrane proteins has been a bottleneck for their functional and structural study for a long time. Both homologous and heterologous expression of membrane proteins with suitable tags for purification presents unique challenges for cloning and expression. Saccharomyces cerevisiae is a potential host system with significant closeness to higher eukaryotes and provides opportunity for attempts to express membrane proteins. In the past, bakers yeast containing mutations within the transcriptional regulator Pdr1 has been used to overexpress various membrane proteins including for example the ABC transporters Pdr5 and Yor1, respectively. In this study we exploited this system and tried to express and purify 3 membrane proteins in yeast along with Pdr5 and Yor1 viz. Rsb1, Mdl1 and Drs2 by virtue of an N-terminal 14-histidine affinity tag. Out of these five, we could express all membrane proteins although at different levels. Satisfactory yields were obtained for three examples i.e. Pdr5, Yor1 and Drs2. Rsb1 expression was comparatively low and Mdl1 was rather unsatisfactory. Thus, we demonstrate here the application of this yeast based expression system that is suitable for cloning, expression and purification of a wide variety of membrane proteins.

  7. Mycobacterium tuberculosis Rv1096 protein: gene cloning, protein expression, and peptidoglycan deacetylase activity

    PubMed Central

    2014-01-01

    Background Many bacteria modulate and evade the immune defenses of their hosts through peptidoglycan (PG) deacetylation. The PG deacetylases from Streptococcus pneumonia, Listeria monocytogenes and Lactococcus lactis have been characterized. However, thus far, the PG deacetylase of Mycobacterium tuberculosis has not been identified. Results In this study, we cloned the Rv1096 gene from the M. tuberculosis H37Rv strain and expressed Rv1096 protein in both Escherichia coli and M. smegmatis. The results showed that the purified Rv1096 protein possessed metallo-dependent PG deacetylase activity, which increased in the presence of Co2+. The kinetic parameters of the PG deacetylase towards M. smegmatis PG as a substrate were as follows: Km, 0.910 ± 0.007 mM; Vmax, 0.514 ± 0.038 μMmin-1; and Kcat = 0.099 ± 0.007 (S-1). Additionally, the viability of M. smegmatis in the presence of over-expressed Rv1096 protein was 109-fold higher than that of wild-type M. smegmatis after lysozyme treatment. Additionally, light microscopy and scanning electron microscopy showed that in the presence of over-expressed Rv1096 protein, M. smegmatis kept its regular shape, with an undamaged cell wall and smooth surface. These results indicate that Rv1096 caused deacetylation of cell wall PG, leading to lysozyme resistance in M. smegmatis. Conclusion We have determined that M. tuberculosis Rv1096 is a PG deacetylase. The PG deacetylase activity of Rv1096 contributed to lysozyme resistance in M. smegmatis. Our findings suggest that deacetylation of cell wall PG may be involved in evasion of host immune defenses by M. tuberculosis. PMID:24975018

  8. RNA protein interactions governing expression of the most abundant protein in human body, type I collagen.

    PubMed

    Stefanovic, Branko

    2013-01-01

    Type I collagen is the most abundant protein in human body. The protein turns over slowly and its replacement synthesis is low. However, in wound healing or in pathological fibrosis the cells can increase production of type I collagen several hundred fold. This increase is predominantly due to posttranscriptional regulation, including increased half-life of collagen messenger RNAs (mRNAs) and their increased translatability. Type I collagen is composed of two α1 and one α2 polypeptides that fold into a triple helix. This stoichiometry is strictly regulated to prevent detrimental synthesis of α1 homotrimers. Collagen polypeptides are co-translationally modified and the rate of modifications is in dynamic equilibrium with the rate of folding, suggesting coordinated translation of collagen α1(I) and α2(I) polypeptides. Collagen α1(I) mRNA has in the 3' untranslated region (UTR) a C-rich sequence that binds protein αCP, this binding stabilizes the mRNA in collagen producing cells. In the 5' UTR both collagen mRNAs have a conserved stem-loop (5' SL) structure. The 5' SL is critical for high collagen expression, knock in mice with disruption of the 5' SL are resistant to liver fibrosis. the 5' SL binds protein LARP6 with strict sequence specificity and high affinity. LARP6 recruits RNA helicase A to facilitate translation initiation and associates collagen mRNAs with vimentin and nonmuscle myosin filaments. Binding to vimentin stabilizes collagen mRNAs, while nonmuscle myosin regulates coordinated translation of α1(I) and α2(I) mRNAs. When nonmuscle myosin filaments are disrupted the cells secrete only α1 homotrimers. Thus, the mechanism governing high collagen expression involves two RNA binding proteins and development of cytoskeletal filaments. Copyright © 2013 John Wiley & Sons, Ltd.

  9. [Prokaryotic soluble expression of protein D of Haemophilus influenzae type b].

    PubMed

    Yin, Meng-Meng; Su, Qiu-Dong; Gyo, Min-Zhuo; Cun, Yi-Na; Pu, Yuan-Qian; Jia, Zhi-Yuan; Yang, Jing-Ran; Tang, Yang; Liao, Guo-Yang; Yi, Yao; Bi, Sheng-Li; Li, Wei-Dong

    2013-04-01

    To express the recombinant D protein in prokaryotic expression system solubly and make preparation for producing D-carrier conjugate vaccine next step. The hpd gene fragment removed of signal peptide from genomic DNA of Hib CMCC was inserted into pET43. 1a. The recombinant plasmid was transformed to competent E. coli BL21 (DE3) for expression under induction of IPTG. The expressed recombination protein was precipitated with ammonium sulfate, purified by DEAE anion exchange column chromatography and identified for reactogenicity by Western Blot. The expressed recombination protein, in a soluble form, constained about 50% of total somatic protein and showed specific reaction with the HIB antisera after preliminary purification. The D protein recombined expression plasmid was constructed successfully and expressed D protein in prokaryotic cells in a solube form.

  10. Leptin responsiveness in mice that ectopically express agouti protein.

    PubMed

    Harris, Ruth B S; Mitchell, Tiffany D; Mynatt, Randall L

    Agouti protein is an endogenous antagonist of melanocortin receptors (MCR), including MCR3 and MCR4, which have been implicated as part of the hypothalamic mechanism that mediates leptin-induced hypophagia. In this experiment we examined the effects of peripheral and central leptin administration in male and female beta-actin promoter (BAPa) mice that express agouti protein ectopically and have a phenotype that includes obesity and diabetes which is exaggerated in males compared with females. Intraperitoneal infusion of 10 microg leptin/day for 13 days caused weight loss and a transient inhibition of food intake in wild-type mice, with a greater effect in males than females. Male BAPa mice were resistant to leptin infusion whereas female mice lost weight. All of the mice lost body weight following a single intracerebroventricular injection of leptin but the effect was greater in female BAPa mice than any other group. There also was a delayed suppression of food intake that was the same for wild-type and BAPa female mice, whereas food intake recovered faster in BAPa than wild-type males. The dissociation between food intake and body weight loss implies a significant effect of leptin on energy expenditure in BAPa mice. These results demonstrate that the effect of leptin on energy balance is not entirely dependent upon the melanocortin system.

  11. Multidrug resistance protein gene expression in Trichoplusia ni caterpillars.

    PubMed

    Simmons, Jason; D'Souza, Olivia; Rheault, Mark; Donly, Cam

    2013-02-01

    Many insect species exhibit pesticide-resistant phenotypes. One of the mechanisms capable of contributing to resistance is the overexpression of multidrug resistance (MDR) transporter proteins. Here we describe the cloning of three genes encoding MDR proteins from Trichoplusia ni: trnMDR1, trnMDR2 and trnMDR3. Real-time quantitative PCR (qPCR) detected trnMDR mRNA in the whole nervous system, midgut and Malpighian tubules of final instar T. ni caterpillars. To test whether these genes are upregulated in response to chemical challenge in this insect, qPCR was used to compare trnMDR mRNA levels in unchallenged insects with those of insects fed the synthetic pyrethroid, deltamethrin. Only limited increases were detected in a single gene, trnMDR2, which is the most weakly expressed of the three MDR genes, suggesting that increased multidrug resistance of this type is not a significant part of the response to deltamethrin exposure.

  12. Phorbol esters alter the expression of lymphocyte membrane proteins

    SciTech Connect

    Reder, A.T.; Antel, J.P.

    1986-03-01

    T cell activation via the T cell receptor (T3-Ti complex) by OKT3 results in modulation of the T3-Ti complex, but does not affect T4, T8, or T11 antigen expression. To study the effect of other T cell activators on these T cell membrane antigens, the authors incubated mononuclear cells for 0-3 days with lectins or pharmacologic agents and stained with monoclonal antibodies to their antigens. The median fluorescence intensity (MFI) was measured with a fluorescence activated cell sorter. Activation of PBL with Con A, PHA, calcium ionophore A23187, or with dbcAMP, isoproterenol, or theophyllin had minimal effects on the MFI of T3, T4, T8, or T11. Phorbol myristate acetate (PMA), a protein kinase C activator which stimulates PBL though an alternate pathway, caused a 90-100% reduction of T3 and T4 MFI, a 25% reduction in T8 MFI, and a 400% increase in T11 MFI after 2 days. Addition of A23187 slightly increased these effects. PMA induced a 2-3-fold increase in cell diameter concomitant with the alterations in membrane antigens. These data suggest that T cell activation through pathways not directly linked to the T cell antigen receptor can result in surface antigen expression different from that which follows activation via the T cell receptor.

  13. [Expression of c-myc protein on rats' brains after brain concussion].

    PubMed

    Fang, Wei-Hua; Wang, Dong-Liang; Wang, Feng

    2006-10-15

    To study the changes of expression of c-myc protein on rats' brains after brain concussion. sixty rats were randomly divided into brain concussion groups and control group. The expression of c-myc protein was microscopically observed by immunohistochemical method. No expression of c-myc protein in control group were observed. However, positive expression of c-myc protein in some neurons was seen at 20 min after brain concussion, and reach to the peak at 8h after brain concussion and then decreased gradually. These findings suggest that the detection of c-myc protein could be an index of diagnosis of brain concussion.

  14. Patagonfibrase modifies protein expression of tissue factor and protein disulfide isomerase in rat skin.

    PubMed

    Peichoto, María Elisa; Santoro, Marcelo Larami

    2016-09-01

    Patagonfibrase is a hemorrhagic metalloproteinase isolated from the venom of the South American rear-fanged snake Philodryas patagoniensis, and is an important contributor to local lesions inflicted by this species. The tissue factor (TF)-factor VIIa complex, besides triggering the coagulation cascade, has been demonstrated to be involved in inflammatory events. Our aim was to determine whether patagonfibrase affects the expression of TF and protein disulfide isomerase (PDI), an enzyme that controls TF biological activity, at the site of patagonfibrase injection, and thus if they may play a role in hemostatic and inflammatory events induced by snake venoms. Patagonfibrase (60 μg/kg) was administered s.c. to rats, and after 3 h blood was collected to evaluate hemostasis parameters, and skin fragments close to the site of injection were taken to assess TF and PDI expression. Patagonfibrase did not alter blood cell counts, plasma fibrinogen levels, or levels of TF activity in plasma. However, by semiquantitative Western blotting, patagonfibrase increased TF expression by 2-fold, and decreased PDI expression by 3-fold in skin samples. In agreement, by immunohistochemical analyses, prominent TF expression was observed in the subcutaneous tissue. Thus, patagonfibrase affects the local expression of TF and PDI without inducing any systemic hemostatic disturbance, although that they may be involved in the local inflammatory events induced by hemorrhagic metalloproteinases. Once antivenom therapy is not totally effective to treat the local injury induced by snake venoms, modulation of the activity and expression of TF and/or PDI might become a strategy for treating snake envenomation.

  15. Neuroendocrine secretory protein 7B2: structure, expression and functions.

    PubMed Central

    Mbikay, M; Seidah, N G; Chrétien, M

    2001-01-01

    7B2 is an acidic protein residing in the secretory granules of neuroendocrine cells. Its sequence has been elucidated in many phyla and species. It shows high similarity among mammals. A Pro-Pro-Asn-Pro-Cys-Pro polyproline motif is its most conserved feature, being carried by both vertebrate and invertebrate sequences. It is biosynthesized as a precursor protein that is cleaved into an N-terminal fragment and a C-terminal peptide. In neuroendocrine cells, 7B2 functions as a specific chaperone for the proprotein convertase (PC) 2. Through the sequence around its Pro-Pro-Asn-Pro-Cys-Pro motif, it binds to an inactive proPC2 and facilitates its transport from the endoplasmic reticulum to later compartments of the secretory pathway where the zymogen is proteolytically matured and activated. Its C-terminal peptide can inhibit PC2 in vitro and may contribute to keep the enzyme transiently inactive in vivo. The PC2-7B2 model defines a new neuroendocrine paradigm whereby proteolytic activation of prohormones and proneuropeptides in the secretory pathway is spatially and temporally regulated by the dynamics of interactions between converting enzymes and their binding proteins. Interestingly, unlike PC2-null mice, which are viable, 7B2-null mutants die early in life from Cushing's disease due to corticotropin ('ACTH') hypersecretion by the neurointermediate lobe, suggesting a possible involvement of 7B2 in secretory granule formation and in secretion regulation. The mechanism of this regulation is yet to be elucidated. 7B2 has been shown to be a good marker of several neuroendocrine cell dysfunctions in humans. The possibility that anomalies in its structure and expression could be aetiological causes of some of these dysfunctions warrants investigation. PMID:11439082

  16. Prion Protein Expression and Functional Importance in Skeletal Muscle

    PubMed Central

    Smith, Jeffrey D.; Moylan, Jennifer S.; Hardin, Brian J.; Chambers, Melissa A.; Estus, Steven; Telling, Glenn C.

    2011-01-01

    Abstract Skeletal muscle expresses prion protein (PrP) that buffers oxidant activity in neurons. Aims We hypothesize that PrP deficiency would increase oxidant activity in skeletal muscle and alter redox-sensitive functions, including contraction and glucose uptake. We used real-time polymerase chain reaction and Western blot analysis to measure PrP mRNA and protein in human diaphragm, five murine muscles, and muscle-derived C2C12 cells. Effects of PrP deficiency were tested by comparing PrP-deficient mice versus wild-type mice and morpholino-knockdown versus vehicle-treated myotubes. Oxidant activity (dichlorofluorescin oxidation) and specific force were measured in murine diaphragm fiber bundles. Results PrP content differs among mouse muscles (gastrocnemius>extensor digitorum longus, EDL>tibialis anterior, TA; soleus>diaphragm) as does glycosylation (di-, mono-, nonglycosylated; gastrocnemius, EDL, TA=60%, 30%, 10%; soleus, 30%, 40%, 30%; diaphragm, 30%, 30%, 40%). PrP is predominantly di-glycosylated in human diaphragm. PrP deficiency decreases body weight (15%) and EDL mass (9%); increases cytosolic oxidant activity (fiber bundles, 36%; C2C12 myotubes, 7%); and depresses specific force (12%) in adult (8–12 mos) but not adolescent (2 mos) mice. Innovation This study is the first to directly assess a role of prion protein in skeletal muscle function. Conclusions PrP content varies among murine skeletal muscles and is essential for maintaining normal redox homeostasis, muscle size, and contractile function in adult animals. Antioxid. Redox Signal. 15, 2465—2475. PMID:21453198

  17. [Bax protein expression in the carcinogenesis of human oral mucosa].

    PubMed

    Zeng, X; Chen, Q; Li, B; Tan, N

    2000-04-01

    . Blank controls were fabricated for each specimen by the omission of the primary antibody, which was replaced with PBS. In the process of oral carcinogenesis, each stage had Bax expression. The positive staining appeared in cytoplasm. In the normal oral mucosal specimens Bax expression was evident in the prickle layer, but not in the basal cell layers. Various degrees of Bax expression were seen in the diseased tissues. The staining pattern of hyperkeratotic lesions was similar to the normal oral mucosa, but Bax expression were also seen in the basal cell layer. In the mild, moderate, severe dysplasia and squamous cell carcinomas, Bax expression were seen in all layers, however, the intensity of staining were greater in mild and moderate dysplasia. The number of positive cells tended to increase gradually with the development of cell malignancy in the tissues of hyperkeratosis, mild and moderate dysplasia (P < 0.05). In the tissue of squamous cell carcinomas the number of positive cells had no marked difference comparing with the normal oral mucosa. The expression of Bax is involved in oral carcinogenesis and the compensative increase of Bax protein expression may be an early response.

  18. Independent Effects of Protein Core Size and Expression on Residue-Level Structure-Evolution Relationships

    PubMed Central

    Franzosa, Eric A.; Xia, Yu

    2012-01-01

    Recently, we demonstrated that yeast protein evolutionary rate at the level of individual amino acid residues scales linearly with degree of solvent accessibility. This residue-level structure-evolution relationship is sensitive to protein core size: surface residues from large-core proteins evolve much faster than those from small-core proteins, while buried residues are equally constrained independent of protein core size. In this work, we investigate the joint effects of protein core size and expression on the residue-level structure-evolution relationship. At the whole-protein level, protein expression is a much more dominant determinant of protein evolutionary rate than protein core size. In contrast, at the residue level, protein core size and expression both have major impacts on protein structure-evolution relationships. In addition, protein core size and expression influence residue-level structure-evolution relationships in qualitatively different ways. Protein core size preferentially affects the non-synonymous substitution rates of surface residues compared to buried residues, and has little influence on synonymous substitution rates. In comparison, protein expression uniformly affects all residues independent of degree of solvent accessibility, and affects both non-synonymous and synonymous substitution rates. Protein core size and expression exert largely independent effects on protein evolution at the residue level, and can combine to produce dramatic changes in the slope of the linear relationship between residue evolutionary rate and solvent accessibility. Our residue-level findings demonstrate that protein core size and expression are both important, yet qualitatively different, determinants of protein evolution. These results underscore the complementary nature of residue-level and whole-protein analysis of protein evolution. PMID:23056364

  19. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    PubMed

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Differential apoptosis gene expressions of rhabdomyosarcoma cells in response to enterovirus 71 infection

    PubMed Central

    2012-01-01

    Background Enterovirus 71 (EV71) infection can induce the apoptosis of infected cells. The aim of this study is to explore the effect of EV71 infection on apoptosis mechanisms in virus-infected human rhabdomyosarcoma (RD) cells. Methods The apoptosis of RD cells was examined using annexin V-FITC/PI by flow cytometry and cytokines were detected by ELISA. Cellular RNA was extracted and transcribed to cDNA. PCR array was employed to analyze the expressions of 84 apoptotic genes from EV71-infected RD cells at 8 and 20 h postinfection, respectively. In addition, the expressions of FasL, caspase, AKT2, JNK1/2, c-Jun and NF-κB proteins were detected by western blotting. Results Flow cytometry demonstrated that the apoptosis or death of EV71-infected RD cells was increased by 37.1% with a multiplicity of infection (MOI) of 5 at 20 h postinfection. The production of IL-4, IL-10 and TNF-α was enhanced by the subsequent EV71 infection. PCR array revealed significant changes in the expressions of apoptotic genes. Among 84 genes, 42 genes were down-regulated after EV71 infection at 8 h, whereas 32 genes were up-regulated at 20 h postinfection. Moreover, the ligands of TNF superfamily such as FasL, CD40L and TNF-α were significantly up-regulated and enhanced the expressions of apoptosis-related cysteine peptidases, including caspase-10, -8, -7 and -3. In addition, EV71 infection induces the phosphorylation of AKT2, JNK1/2, c-Jun and NF-κB at 20 h postinfection. Conclusion PCR array for the determination of apoptosis gene expressions is an informative assay in elucidating biological pathways. During the early stage of EV71 infection, the apoptotic process of RD cells is significantly delayed. EV71 infection can also induce the expressions of FasL, TNF-α and CD40L, which contribute to the apoptosis of RD cells. PMID:23191987

  1. Rift Valley fever virus structural and non-structural proteins: Recombinant protein expression and immunoreactivity against antisera from sheep

    USDA-ARS?s Scientific Manuscript database

    The Rift Valley fever virus (RVFV) encodes structural proteins, nucleoprotein (N), N-terminus glycoprotein (Gn), C-terminus glycoprotein (Gc) and L protein, 78-kDa and non-structural proteins NSm and NSs. Using the baculovirus system we expressed the full-length coding sequence of N, NSs, NSm, Gc an...

  2. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    PubMed

    Lee, Beom Seob; Kim, Soo Hyuk; Oh, Jaewon; Jin, Taewon; Choi, Eun Young; Park, Sungha; Lee, Sang-Hak; Chung, Ji Hyung; Kang, Seok-Min

    2014-01-01

    C-reactive protein (CRP) is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  3. Treatment of experimental glioma by administration of adenoviral vectors expressing Fas ligand.

    PubMed

    Ambar, B B; Frei, K; Malipiero, U; Morelli, A E; Castro, M G; Lowenstein, P R; Fontana, A

    1999-07-01

    Fas ligand (FasL) is a cytokine, produced by activated T cells and NK cells, that triggers apoptosis of Fas-positive target cells including human glioma cells. As shown here, in vitro infection of rat F98 and human LN18 glioma cell lines with recombinant adenovirus (rAd) expressing FasL cDNA under control of the cytomegalovirus promoter (rAd-CMV-FasL) induced striking cytotoxicity in Fas-positive glioma cell lines but not in the Fas-negative F98 glioma subline F98/ZH. The extent of FasL-mediated cytotoxic effects outranged the expectations based on expression of beta-galactosidase (beta-Gal) by F98 cells infected with a control virus expressing the lacZ gene (rAd-CMV-lacZ). The detection of FasL bioactivity in supernatants of infected cells provides evidence of a bystander mechanism involving the cytotoxic action of FasL on uninfected cells. In F98 tumor-bearing rats, infection with rAd-CMV-FasL increased the mean survival time by 50% compared with infection with rAd-CMV-lacZ or untreated controls. These data suggest that viral vector transduction of the FasL gene could be part of a successful glioma gene therapy.

  4. Fas ligand-expressing lymphocytes enhance alveolar macrophage apoptosis in the resolution of acute pulmonary inflammation

    PubMed Central

    Barthel, Lea; Bednarek, Joseph M.; Yunt, Zulma X.; Henson, Peter M.; Janssen, William J.

    2014-01-01

    Apoptosis of alveolar macrophages and their subsequent clearance by neighboring phagocytes are necessary steps in the resolution of acute pulmonary inflammation. We have recently identified that activation of the Fas death receptor on the cell surface of macrophages drives macrophage apoptosis. However, the source of the cognate ligand for Fas (FasL) responsible for induction of alveolar macrophage apoptosis is not defined. Given their known role in the resolution of inflammation and ability to induce macrophage apoptosis ex vivo, we hypothesized that T lymphocytes represented a critical source of FasL. To address this hypothesis, C57BL/6J and lymphocyte-deficient (Rag-1−/−) mice were exposed to intratracheal lipopolysaccharide to induce pulmonary inflammation. Furthermore, utilizing mice expressing nonfunctional FasL, we adoptively transferred donor lymphocytes into inflamed lymphocyte-deficient mice to characterize the effect of lymphocyte-derived FasL on alveolar macrophage apoptosis in the resolution of inflammation. Herein, evidence is presented that lymphocytes expressing FasL enhance alveolar macrophage apoptosis during the resolution of LPS-induced inflammation. Moreover, lymphocyte induction of alveolar macrophage apoptosis results in contraction of the alveolar macrophage pool, which occurs in a FasL-dependent manner. Specifically, FasL-expressing CD8+ T lymphocytes potently induce alveolar macrophage apoptosis and contraction of the alveolar macrophage pool. Together, these studies identify a novel role for CD8+ T lymphocytes in the resolution of acute pulmonary inflammation. PMID:24838751

  5. [Expression of Dengue virus type 2 nonstructural protein 3 and isolation of host proteins interacting with it].

    PubMed

    Weng, Daihui; Lei, Yingfeng; Dong, Yangchao; Han, Peijun; Ye, Chuantao; Yang, Jing; Wang, Yuan; Yin, Wen

    2015-12-01

    To construct the plasmid expressing the fusion protein of Dengue virus type 2 (DENV2) nonstructural protein 3 (NS3) with affinity tag, and isolate the cellular proteins interacting with NS3 protein using tandem affinity purification (TAP) assay. Primers for amplifying NS3 gene were designed according to the sequence of DENV2 genome and chemically synthesized. The NS3 fragments, after amplified by PCR with DENV2 cDNA as template, were digested and cloned into the mammalian eukaryotic expression vector pCI-SF with the tandem affinity tag (FLAG-StrepII). The recombinant pCI-NS3-SF was transiently transformed by Lipofectamine(TM) 2000 into HEK293T cells, and the expression of the fusion protein was confirmed by Western blotting. Cellular proteins that interacted with NS3 were isolated and purified by TAP assay. The eukaryotic expression vector expressing NS3 protein was successfully constructed. The host proteins interacting with NS3 protein were isolated by TAP system. TAP is an efficient method to isolate the cellular proteins interacting with DENV2 NS3.

  6. Differential dissolved protein expression throughout the life cycle of Giardia lamblia.

    PubMed

    Lingdan, Li; Pengtao, Gong; Wenchao, Li; Jianhua, Li; Ju, Yang; Chengwu, Liu; He, Li; Guocai, Zhang; Wenzhi, Ren; Yujiang, Chen; Xichen, Zhang

    2012-12-01

    Giardia lamblia (G. lamblia) has a simple life cycle that alternates between a cyst and a trophozoite, and this parasite is an important human and animal pathogen. To increase our understanding of the molecular basis of the G. lamblia encystment, we have analyzed the soluble proteins expressed by trophozoites and cysts extracted from feces by quantitative proteomic analysis. A total of 63 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ) labeling, and were categorized as cytoskeletal proteins, a cell-cycle-specific kinase, metabolic enzymes and stress resistance proteins. Importantly, we demonstrated that the expression of seven proteins differed significantly between trophozoites and cysts. In cysts, the expression of three proteins (one variable surface protein (VSP), ornithine carbamoyltransferase (OTC), β-tubulin) increased, whereas the expression of four proteins (14-3-3 protein, α-tubulin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), protein disulfide isomerase 2 (PDI-2)) decreased significantly when compared with the levels of these proteins in trophozoites. The mRNA expression patterns of four of these proteins (OTC, α-tubulin, GAPDH, VSP) were similar to the expression levels of the proteins. These seven proteins appear to play an important role in the completion of the life cycle of G. lamblia. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Mutations of the Wiskott-Aldrich Syndrome Protein affect protein expression and dictate the clinical phenotypes.

    PubMed

    Ochs, Hans D

    2009-01-01

    Mutations of the Wiskott-Aldrich Syndrome Protein (WASP) are responsible for classic Wiskott-Aldrich Syndrome (WAS), X-linked thrombocytopenia (XLT), and in rare instances congenital X-linked neutropenia (XLN). WASP is a regulator of actin polymerization in hematopoietic cells with well-defined functional domains that are involved in cell signaling and cell locomotion, immune synapse formation, and apoptosis. Mutations of WASP are located throughout the gene and either inhibit or disregulate normal WASP function. Analysis of a large patient population demonstrates a strong phenotype-genotype correlation. Classic WAS occurs when WASP is absent, XLT when mutated WASP is expressed and XLN when missense mutations occur in the Cdc42-binding site. However, because there are exceptions to this rule it is difficult to predict the long-term prognosis of a given affected boy solely based on the analysis of WASP expression.

  8. Expression and purification of toxic anti-breast cancer p28-NRC chimeric protein

    PubMed Central

    Soleimani, Meysam; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    Background: Chimeric proteins consisting of a targeting moiety and a cytotoxic moiety are now under intense research focus for targeted therapy of cancer. Here, we report cloning, expression, and purification of such a targeted chimeric protein made up of p28 peptide as both targeting and anticancer moiety fused to NRC peptide as a cytotoxic moiety. However, since the antimicrobial activity of the NRC peptide would intervene expression of the chimeric protein in Escherichia coli, we evaluated the effects of two fusion tags, that is, thioredoxin (Trx) and 6x-His tags, and various expression conditions, on the expression of p28-NRC chimeric protein. Materials and Methods: In order to express the chimeric protein with only 6x-His tag, pET28 expression plasmid was used. Cloning in pET32 expression plasmid was performed to add both Trx and 6x-His tags to the chimeric protein. Expression of the chimeric protein with both plasmids was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis following optimization of expression conditions and host strains. Results: Expression of the chimeric protein in pET28a was performed. However, expression yield of the chimeric protein was low. Optimization of culture conditions and host strains led to reasonable expression yield of the toxic chimeric protein in pET32a vector. In cases of both plasmids, approximately 10 kDa deviation of the apparent molecular weight from the theoretical one was seen in SDS-PAGE of purified chimeric proteins. Conclusions: The study leads to proper expression and purification yield of p28-NRC chimeric protein with Trx tag following optimizing culture conditions and host strains. PMID:27169101

  9. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers.

    PubMed

    Linhoff, Michael W; Laurén, Juha; Cassidy, Robert M; Dobie, Frederick A; Takahashi, Hideto; Nygaard, Haakon B; Airaksinen, Matti S; Strittmatter, Stephen M; Craig, Ann Marie

    2009-03-12

    Delineating the molecular basis of synapse development is crucial for understanding brain function. Cocultures of neurons with transfected fibroblasts have demonstrated the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the coculture assay using custom-made cDNA libraries. Reisolation of NGL-3/LRRC4B and neuroligin-2 accounts for a minority of positive clones, indicating that current understanding of mammalian synaptogenic proteins is incomplete. We identify LRRTM1 as a transmembrane protein that induces presynaptic differentiation in contacting axons. All four LRRTM family members exhibit synaptogenic activity, LRRTMs localize to excitatory synapses, and artificially induced clustering of LRRTMs mediates postsynaptic differentiation. We generate LRRTM1(-/-) mice and reveal altered distribution of the vesicular glutamate transporter VGLUT1, confirming an in vivo synaptic function. These results suggest a prevalence of LRR domain proteins in trans-synaptic signaling and provide a cellular basis for the reported linkage of LRRTM1 to handedness and schizophrenia.

  10. Statistical analysis of features associated with protein expression/solubility in an in vivo Escherichia coli expression system and a wheat germ cell-free expression system.

    PubMed

    Hirose, Shuichi; Kawamura, Yoshifumi; Yokota, Kiyonobu; Kuroita, Toshihiro; Natsume, Tohru; Komiya, Kazuo; Tsutsumi, Takeshi; Suwa, Yorimasa; Isogai, Takao; Goshima, Naoki; Noguchi, Tamotsu

    2011-07-01

    Recombinant protein technology is an important tool in many industrial and pharmacological applications. Although the success rate of obtaining soluble proteins is relatively low, knowledge of protein expression/solubility under 'standard' conditions may increase the efficiency and reduce the cost of proteomics studies. In this study, we conducted a genome-scale experiment to assess the overexpression and the solubility of human full-length cDNA in an in vivo Escherichia coli expression system and a wheat germ cell-free expression system. We evaluated the influences of sequence and structural features on protein expression/solubility in each system and estimated a minimal set of features associated with them. A comparison of the feature sets related to protein expression/solubility in the in vivo Escherichia coli expression system revealed that the structural information was strongly associated with protein expression, rather than protein solubility. Moreover, a significant difference was found in the number of features associated with protein solubility in the two expression systems.

  11. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    PubMed

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  12. Proteomic identification of abnormally expressed proteins in early-stage placenta derived from cloned cat embryos.

    PubMed

    Bang, Jae-Il; Lee, Hyo-Sang; Deb, Gautam Kumar; Ha, A-Na; Kwon, Young-Sang; Cho, Seong-Keun; Kim, Byeong-Woo; Cho, Kyu-Woan; Kong, Il-Keun

    2013-01-15

    It is unknown whether gene expression in cloned placenta during pre- and postimplantation is associated with early pregnancy failure in the cat. In this study, protein expression patterns were examined in early-stage (21-day-old) domestic cat placentas of fetuses derived from AI (CP; N = 4) and cloned embryo transfer (CEP; N = 2). Differentially expressed proteins were analyzed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrometry (MS). A total of 21 proteins were aberrantly expressed (P < 0.05) by >1.5-fold in CEP compared with CP. Compared with CP, 12 proteins were upregulated in CEP (peptidyl-prolyl cis-trans isomerase A, annexin A2, protein DJ-1, adenylate kinase isoenzyme 1, protein disulfide-isomerase A3, actin cytoplasmic 1, serum albumin, protein disulfide-isomerase A6, and triosephosphate isomerase), and nine proteins were downregulated (triosephosphate isomerase; heterogeneous nuclear ribonucleoprotein H; tropomyosin alpha-4; triosephosphate isomerase 1; 60 kDa heat shock protein, mitochondrial; serum albumin; calumenin; keratin type 1; and prohibitin). The identities of the differentially expressed proteins were validated by peptide mass fingerprinting using matrix-assisted laser desorption/ionization-TOF/TOF MS/MS. The abnormally expressed proteins identified in this study might be associated with impaired development and dysfunction of CEP during early pregnancy. Abnormal protein expression might also induce fetal loss and contribute to failure to maintain pregnancy to term.

  13. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions.

    PubMed

    Gez, Swetlana; Crossett, Ben; Christopherson, Richard I

    2007-09-01

    Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.

  14. Induction of Ski protein expression upon luteinization in rat granulosa cells without a change in its mRNA expression.

    PubMed

    Kim, Hyun; Yamanouchi, Keitaro; Matsuwaki, Takashi; Nishihara, Masugi

    2012-01-01

    The Ski protein is implicated in the proliferation/differentiation of a variety of cells. We previously reported that the Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. However, granulosa cells cannot only undergo apoptosis but can alternatively differentiate into luteal cells. It is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to determine the localization of the Ski protein in the rat ovary during luteinization to examine if Ski might play a role in this process. In order to examine the Ski protein expression during the progression of luteinization, follicular growth was induced in immature female rats by administration of equine chorionic gonadotropin, and luteinization was induced by human chorionic gonadotropin treatment to mimic the luteinizing hormone (LH) surge. While no Ski-positive granulosa cells were present in the preovulatory follicle, Ski protein expression was induced in response to the LH surge and was maintained after formation of the corpus luteum (CL). Although the Ski protein is absent from the granulosa cells of the preovulatory follicle, its mRNA (c-ski) was expressed, and the level of c-ski mRNA was unchanged even after the LH surge. The combined results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggested that its expression is regulated posttranscriptionally.

  15. The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting.

    PubMed

    Köhler, Claudia; Page, Damian R; Gagliardini, Valeria; Grossniklaus, Ueli

    2005-01-01

    The maternally expressed Arabidopsis thaliana Polycomb group protein MEDEA (MEA) controls expression of the MADS-box gene PHERES1 (PHE1). Here, we show that PHE1 is mainly paternally expressed but maternally repressed and that this maternal repression of PHE1 breaks down in seeds lacking maternal MEA activity. Because Polycomb group proteins control parental imprinting in mammals as well, the independent recruitment of similar protein machineries for the imprinting of genes is a notable example of convergent evolution.

  16. Expression of liver fatty acid binding protein in hepatocellular carcinoma☆

    PubMed Central

    Cho, Soo-Jin; Ferrell, Linda D.; Gill, Ryan M.

    2017-01-01

    Summary Loss of expression of liver fatty acid binding protein (LFABP) by immunohistochemistry has been shown to be characteristic of a subset of hepatocellular adenomas (HCAs) in which HNF1A is inactivated. Transformation to hepatocellular carcinoma is thought to be a very rare phenomenon in the HNF1A-inactivated variant of HCA. However, we recently observed 2 cases at our institution, 1 definite hepatocellular carcinoma and 1 possible hepatocellular carcinoma, with loss of LFABP staining, raising the possibility that LFABP down-regulation may be associated with hepatocellular carcinogenesis. Our aim was to evaluate hepatocellular carcinomas arising in various backgrounds and with varying degrees of differentiation for loss of LFABP staining. Twenty total cases of hepatocellular carcinoma were examined. Thirteen cases arose in a background of cirrhosis due to hepatitis C (n = 8) or steatohepatitis (n = 5); 7 cases arose in a noncirrhotic background, with 2 cases arising within HNF1A-inactivated variant HCA and 2 cases arising within inflammatory variant HCA. Complete loss of expression of LFABP was seen in 6 of 20 cases, including 2 cases of hepatocellular carcinoma arising within HNF1A-inactivated variant HCA. Thus, loss of staining for LFABP appears to be common in hepatocellular carcinoma and may be seen in well-differentiated hepatocellular carcinoma. Therefore, LFABP loss should not be interpreted as evidence for hepatocellular adenoma over carcinoma, when other features support a diagnosis of hepatocellular carcinoma. The findings raise consideration for a role of HNF1A inactivation in hepatocellular carcinogenesis, particularly in less differentiated tumors. PMID:26997447

  17. Expression of TRAIL and the death receptors DR4 and DR5 correlates with progression of degeneration in human intervertebral disks.

    PubMed

    Bertram, Helge; Nerlich, Andreas; Omlor, Georg; Geiger, Florian; Zimmermann, Gerald; Fellenberg, Joerg

    2009-07-01

    Intervertebral disks degenerate far earlier than other musculoskeletal tissues and apoptosis has been suggested to have a vital function in promoting the degeneration process that is strongly associated with back pain. However, the molecular mediators of apoptosis in the intervertebral disk are poorly understood. Fas/FasL, TRAIL/DR4, TRAIL/DR5 and TNF-alpha/TNFR1 are ligand/receptor pairs of the tumor necrosis factor/nerve growth factor family, which are able to induce apoptosis by trimerization of the receptor by its corresponding ligand. We investigated which of these molecules are expressed in intervertebral disks and whether their expression correlates to disk degeneration. Intervertebral disks from 28 donors (age 12-70 years) suffering from scoliosis, vertebrae fracture or disk degeneration were scored histologically for degeneration and analyzed for gene expression of FasL/Fas, TRAIL/DR4, TNF-alpha/TNFR1 and caspase 8. Protein expression of FasL and TRAIL was assessed by immunohistology and apoptotic cell death was quantified by poly(ADP-ribose) polymerase (PARP) p85 staining. Isolated disk cells were analyzed by flow cytometry for Fas, FasL, TRAIL, DR4 and DR5 expression. Gene expression of TRAIL (P=0.002) and caspase 8 (P=0.027) significantly correlated with degeneration. TRAIL expression further correlated with cellularity (P=0.04), muccoid matrix changes (P=0.009) and tears and cleft formation (P=0.019). FasL and TRAIL expression was confirmed by immunohistology and PARP cleavage was significantly associated with degeneration (P=0.027). Flow cytometry on isolated disk cells revealed correlations between DR4 and degeneration (P=0.014), DR4/DR5 double-positive cells and degeneration (P=0.019), as well as DR5 and changes in tissue granularity (P=0.03). This is the first study that shows that intervertebral disk cells express TRAIL, DR4 and DR5, which correlate to the degenerative state of the disk. Therefore, disk cells inherit the molecular machinery to

  18. An Approach to Heterologous Expression of Membrane Proteins. The Case of Bacteriorhodopsin.

    PubMed

    Bratanov, Dmitry; Balandin, Taras; Round, Ekaterina; Shevchenko, Vitaly; Gushchin, Ivan; Polovinkin, Vitaly; Borshchevskiy, Valentin; Gordeliy, Valentin

    2015-01-01

    Heterologous overexpression of functional membrane proteins is a major bottleneck of structural biology. Bacteriorhodopsin from Halobium salinarum (bR) is a striking example of the difficulties in membrane protein overexpression. We suggest a general approach with a finite number of steps which allows one to localize the underlying problem of poor expression of a membrane protein using bR as an example. Our approach is based on constructing chimeric proteins comprising parts of a protein of interest and complementary parts of a homologous protein demonstrating advantageous expression. This complementary protein approach allowed us to increase bR expression by two orders of magnitude through the introduction of two silent mutations into bR coding DNA. For the first time the high quality crystals of bR expressed in E. Coli were obtained using the produced protein. The crystals obtained with in meso nanovolume crystallization diffracted to 1.67 Å.

  19. An Approach to Heterologous Expression of Membrane Proteins. The Case of Bacteriorhodopsin

    PubMed Central

    Round, Ekaterina; Shevchenko, Vitaly; Gushchin, Ivan; Polovinkin, Vitaly; Borshchevskiy, Valentin; Gordeliy, Valentin

    2015-01-01

    Heterologous overexpression of functional membrane proteins is a major bottleneck of structural biology. Bacteriorhodopsin from Halobium salinarum (bR) is a striking example of the difficulties in membrane protein overexpression. We suggest a general approach with a finite number of steps which allows one to localize the underlying problem of poor expression of a membrane protein using bR as an example. Our approach is based on constructing chimeric proteins comprising parts of a protein of interest and complementary parts of a homologous protein demonstrating advantageous expression. This complementary protein approach allowed us to increase bR expression by two orders of magnitude through the introduction of two silent mutations into bR coding DNA. For the first time the high quality crystals of bR expressed in E. Coli were obtained using the produced protein. The crystals obtained with in meso nanovolume crystallization diffracted to 1.67 Å. PMID:26046789

  20. Cell-free protein expression in a microchannel array with passive pumping.

    PubMed

    Khnouf, Ruba; Beebe, David J; Fan, Z Hugh

    2009-01-07

    We report in vitro (cell-free) protein expression in a microfluidic device using passive pumping. The polystyrene device contains 192 microchannels, each of which is connected to two wells positioned in a 384-well microplate format. A larger droplet of an expression solution was placed at one well of each channel while a smaller droplet of a nutrient solution was at the other well. Protein expression took place in the larger droplet and we found the expression yield in the expression solution is enhanced due to the replenishment of the nutrient solution supplied by passive pumping via the channel. The pumping pressure was generated from the difference in the surface tension between two different sized droplets at the two wells. We demonstrated expression of luciferase in the device and the expression yield was measured using luminescence assay. Different experimental conditions were investigated to achieve maximum protein yield with the least amount of reagents. Protein expression yields were found to be dependent on the amount of the nutrient solution pumped, independent of the amount of the expression solution within the experimental conditions studied. A higher feeding frequency or delivery rate of the nutrient solution resulted in higher protein expression yield. The work demonstrated the feasibility of using the microchannel array for protein expression with the following advantages: (1) simultaneous production of the same protein with different conditions to optimize the expression process; (2) simultaneous production of different proteins for high-throughput protein expression with high yield; (3) low reagent cost due to the fact that it consumes 125-800 times less than the amount used in a protein expression instrument commercially available.

  1. Transformation of Drosophila cell lines: an alternative approach to exogenous protein expression.

    PubMed

    Cherbas, Lucy; Cherbas, Peter

    2007-01-01

    Techniques and experimental applications are described for exogenous protein expression in Drosophila cell lines. Ways in which the Drosophila cell lines and the baculovirus expression vector system differ in their applications are emphasized.

  2. [Prokaryotic expression, purification and antigenicity identification of recombinant human survivin protein].

    PubMed

    Yin, Xiaotao; Wang, Wei; Tian, Renli; Xu, Yuanji; Yan, Jinqi; Zhang, Wei; Gao, Jiangping; Yu, Jiyun

    2013-08-01

    To construct a prokaryotic expression plasmid pET28a-survivin, optimize the recombinant protein expression conditions in E.coli, and purify the survivin recombinant protein and identify its antigenicity. Survivin cDNA segment was amplified by PCR and cloned into prokaryotic expression vector pET28a(+) to construct the recombinant expression vector pET28a-survivin. The expression vector was transformed into BL21 (DE3) and the fusion protein survivin/His was induced by IPTG. The fusion protein was purified through Ni affinity chromatography. The antigenicity of the purified survivin protein was identified by Western blotting and ELISA. The recombinant expression vector was verified successfully by BamHI and HindIII. The fusion protein induced by IPTG was obtained with Mr; about 24 000. The purity of the purified protein reached 90% by SDS-PAGE analysis. And the antigenicity of the survivin protein was validated by Western blotting and ELISA. The prokaryotic expression plasmid pET28a-survivin was successfully constructed and the survivin protein was expressed and purified in E.coli. The antigenicity of the purified survivin protein was demonstrated desirable.

  3. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    SciTech Connect

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-08-15

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export.

  4. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    PubMed

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  5. Inducible expression of transmembrane proteins on bacterial magnetic particles in Magnetospirillum magneticum AMB-1.

    PubMed

    Yoshino, Tomoko; Shimojo, Akiko; Maeda, Yoshiaki; Matsunaga, Tadashi

    2010-02-01

    Bacterial magnetic particles (BacMPs) produced by the magnetotactic bacterium Magnetospirillum magneticum AMB-1 are used for a variety of biomedical applications. In particular, the lipid bilayer surrounding BacMPs has been reported to be amenable to the insertion of recombinant transmembrane proteins; however, the display of transmembrane proteins in BacMP membranes remains a technical challenge due to the cytotoxic effects of the proteins when they are overexpressed in bacterial cells. In this study, a tetracycline-inducible expression system was developed to display transmembrane proteins on BacMPs. The expression and localization of the target proteins were confirmed using luciferase and green fluorescent protein as reporter proteins. Gene expression was suppressed in the absence of anhydrotetracycline, and the level of protein expression could be controlled by modulating the concentration of the inducer molecule. This system was implemented to obtain the expression of the tetraspanin CD81. The truncated form of CD81 including the ligand binding site was successfully displayed at the surface of BacMPs by using Mms13 as an anchor protein and was shown to bind the hepatitis C virus envelope protein E2. These results suggest that the tetracycline-inducible expression system described here will be a useful tool for the expression and display of transmembrane proteins in the membranes of BacMPs.

  6. [The heterologous expression and purification of membrane protein from Mycobacterium tuberculosis].

    PubMed

    Liao, Dan; Xie, Jian-Ping; Wang, Hong-Hai

    2007-10-01

    Membrane proteins fulfill a wide range of central functions in the cell, but their structure determination remains one of the great challenges in structural biology. The heterologous overexpression is a demanding task. Here, we provide an overview of recent advance to heterologous expression and purification of membrane protein from Mycobacterium tuberculosis, whose membrane proteins represent the majority of the new potential drug targets in this bacillus, which is ranked as the number1 cause of infectious disease mortality in the world. A detailed structural and functional understanding of the membranes protein of Mycobacterium tuberculosis will be critical both for an understanding of the biology of infection and for the rational development of novel therapeutics. The procedures for functional expression followed by purification of membranes protein are reviewed here together with nonfunctional expression in inclusion bodies and subsequent refolding to produce functional proteins. The new expression systems, new approaches to soluble expression of recombinant proteins, new methods for membrane protein folding in vitro and new purification technology will provide a basis for choosing the best expression and purification protocol for a given membrane protein. The goal of this review is to aid researchers in the choice of a suitable expression system for their favourite proteins and make overproduction of functional membrane proteins becomes easier.

  7. Inducible Expression of Transmembrane Proteins on Bacterial Magnetic Particles in Magnetospirillum magneticum AMB-1▿

    PubMed Central

    Yoshino, Tomoko; Shimojo, Akiko; Maeda, Yoshiaki; Matsunaga, Tadashi

    2010-01-01

    Bacterial magnetic particles (BacMPs) produced by the magnetotactic bacterium Magnetospirillum magneticum AMB-1 are used for a variety of biomedical applications. In particular, the lipid bilayer surrounding BacMPs has been reported to be amenable to the insertion of recombinant transmembrane proteins; however, the display of transmembrane proteins in BacMP membranes remains a technical challenge due to the cytotoxic effects of the proteins when they are overexpressed in bacterial cells. In this study, a tetracycline-inducible expression system was developed to display transmembrane proteins on BacMPs. The expression and localization of the target proteins were confirmed using luciferase and green fluorescent protein as reporter proteins. Gene expression was suppressed in the absence of anhydrotetracycline, and the level of protein expression could be controlled by modulating the concentration of the inducer molecule. This system was implemented to obtain the expression of the tetraspanin CD81. The truncated form of CD81 including the ligand binding site was successfully displayed at the surface of BacMPs by using Mms13 as an anchor protein and was shown to bind the hepatitis C virus envelope protein E2. These results suggest that the tetracycline-inducible expression system described here will be a useful tool for the expression and display of transmembrane proteins in the membranes of BacMPs. PMID:20038711

  8. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    PubMed

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  9. Heat shock protein expression enhances heat tolerance of reptile embryos

    PubMed Central

    Gao, Jing; Zhang, Wen; Dang, Wei; Mou, Yi; Gao, Yuan; Sun, Bao-Jun; Du, Wei-Guo

    2014-01-01

    The role of heat shock proteins (HSPs) in heat tolerance has been demonstrated in cultured cells and animal tissues, but rarely in whole organisms because of methodological difficulties associated with gene manipulation. By comparing HSP70 expression patterns among representative species of reptiles and birds, and by determining the effect of HSP70 overexpression on embryonic development and hatchling traits, we have identified the role of HSP70 in the heat tolerance of amniote embryos. Consistent with their thermal environment, and high incubation temperatures and heat tolerance, the embryos of birds have higher onset and maximum temperatures for induced HSP70 than do reptiles, and turtles have higher onset and maximum temperatures than do lizards. Interestingly, the trade-off between benefits and costs of HSP70 overexpression occurred between life-history stages: when turtle embryos developed at extreme high temperatures, HSP70 overexpression generated benefits by enhancing embryo heat tolerance and hatching success, but subsequently imposed costs by decreasing heat tolerance of surviving hatchlings. Taken together, the correlative and causal links between HSP70 and heat tolerance provide, to our knowledge, the first unequivocal evidence that HSP70 promotes thermal tolerance of embryos in oviparous amniotes. PMID:25080340

  10. Helicobacter pylori infection and expression of DNA mismatch repair proteins

    PubMed Central

    Mirzaee, Vahid; Molaei, Mahsa; Shalmani, Hamid Mohaghegh; Zali, Mohammad Reza

    2008-01-01

    AIM: To determine the expression of DNA (MMR) proteins, including hMLH1 and hMSH2, in gastric epithelial cells in the patients with or without Helicobacter pylori (H pylori)-infected gastritis. METHODS: Fifty H pylori-positive patients and 50 H pylori-negative patients were enrolled in the study. During endoscopy of patients with non-ulcer dyspepsia, two antral and two corpus biopsies were taken for histological examination (Giemsa stain) and for immunohistochemical staining of hMLH1 and hMSH2. RESULTS: The percentage of epithelial cell nuclei that demonstrated positivity for hMLH1 staining was 84.14 ± 7.32% in H pylori-negative patients, while it was 73.34 ± 10.10% in H pylori-positive patients (P < 0.0001). No significant difference was seen between the two groups regarding the percentage of epithelial cell nuclei that demonstrated positivity for hMSH2 staining (81.16 ± 8.32% in H pylori-negative versus 78.24 ± 8.71% in H pylori-positive patients; P = 0.09). CONCLUSION: This study indicates that H pylori might promote development of gastric carcinoma at least in part through its ability to affect the DNA MMR system. PMID:19034977

  11. Heat shock protein expression enhances heat tolerance of reptile embryos.

    PubMed

    Gao, Jing; Zhang, Wen; Dang, Wei; Mou, Yi; Gao, Yuan; Sun, Bao-Jun; Du, Wei-Guo

    2014-09-22

    The role of heat shock proteins (HSPs) in heat tolerance has been demonstrated in cultured cells and animal tissues, but rarely in whole organisms because of methodological difficulties associated with gene manipulation. By comparing HSP70 expression patterns among representative species of reptiles and birds, and by determining the effect of HSP70 overexpression on embryonic development and hatchling traits, we have identified the role of HSP70 in the heat tolerance of amniote embryos. Consistent with their thermal environment, and high incubation temperatures and heat tolerance, the embryos of birds have higher onset and maximum temperatures for induced HSP70 than do reptiles, and turtles have higher onset and maximum temperatures than do lizards. Interestingly, the trade-off between benefits and costs of HSP70 overexpression occurred between life-history stages: when turtle embryos developed at extreme high temperatures, HSP70 overexpression generated benefits by enhancing embryo heat tolerance and hatching success, but subsequently imposed costs by decreasing heat tolerance of surviving hatchlings. Taken together, the correlative and causal links between HSP70 and heat tolerance provide, to our knowledge, the first unequivocal evidence that HSP70 promotes thermal tolerance of embryos in oviparous amniotes.

  12. A complete approach for recombinant protein expression training: From gene cloning to assessment of protein functionality*.

    PubMed

    Novo, M Teresa Marques; Soares-Costa, Andrea; de Souza, Antonia Q L; Figueira, Ana Carolina M; Molina, Gustavo C; Palacios, Carlos A; Kull, Claudia R; Monteiro, Izabel F; Baldan-Pineda, Paulo H; Henrique-Silva, Flavio

    2005-01-01

    A practical course was given to undergraduate biology students enrolled in the elective course "Introduction to Genetic Engineering" at the Federal University of São Carlos (UFSCar), São Paulo, Brazil. The goal of the course was to teach current molecular biology tools applied to a real research situation that could be reported by the students themselves. The purpose was to produce a plant recombinant protein and demonstrate a heretofore unreported biological activity. Cystatins, natural inhibitors of cysteine proteases, were proposed for these studies. Initially, the students searched for plant cystatin cDNA sequences in the NCBI databases and selected the Oryzacystatin I gene (ocI) from rice, Oriza sativa, as the target gene for this study. Total RNA was extracted from rice-germinating seeds and primers containing restriction sites for NdeI and EcoRI were designed based on the ocI cDNA sequence and then used to amplify the open reading frame (ORF). RT-PCR amplification provided a band of the expected size for ocI ORF (309 bp). The PCR product was cut with NdeI and EcoRI restriction enzymes and cloned directly in the pET28a expression vector digested with the same enzymes. A pET28-ocI recombinant clone was selected, checked by sequencing, and used to transform Escherichia coli BL21 (DE3) expression strain. After induction of the bacteria with isopropylthiogalactoside and cellular disruption, the His-tagged OCI protein, present mainly in the soluble fraction, was purified by affinity chromatography in a nickel column. The purified protein was successfully used to inhibit fungal growth (Trichoderma reesei). The results were discussed extensively and the students contributed to the writing of this article, of which they are co-authors.

  13. Protein kinase Cmu plays an essential role in hypertonicity-induced heat shock protein 70 expression.

    PubMed

    Lim, Yun Sook; Lee, Jae Seon; Huang, Tai Qin; Seo, Jeong Sun

    2008-12-31

    Heat shock protein 70 (HSP70), which evidences important functions as a molecular chaperone and anti-apoptotic molecule, is substantially induced in cells exposed to a variety of stresses, including hypertonic stress, heavy metals, heat shock, and oxidative stress, and prevents cellular damage under these conditions. However, the molecular mechanism underlying the induction of HSP70 in response to hypertonicity has been characterized to a far lesser extent. In this study, we have investigated the cellular signaling pathway of HSP70 induction under hypertonic conditions. Initially, we applied a variety of kinase inhibitors to NIH3T3 cells that had been exposed to hypertonicity. The induction of HSP70 was suppressed specifically by treatment with protein kinase C (PKC) inhibitors (Gö6976 and GF109203X). As hypertonicity dramatically increased the phosphorylation of PKCmu, we then evaluated the role of PKCmu in hypertonicity-induced HSP70 expression and cell viability. The depletion of PKCmu with siRNA or the inhibition of PKCmu activity with inhibitors resulted in a reduction in HSP70 induction and cell viability. Tonicity-responsive enhancer binding protein (TonEBP), a transcription factor for hypertonicity-induced HSP70 expression, was translocated rapidly into the nucleus and was modified gradually in the nucleus under hypertonic conditions. When we administered treatment with PKC inhibitors, the mobility shift of TonEBP was affected in the nucleus. However, PKCmu evidenced no subcellular co-localization with TonEBP during hypertonic exposure. From our results, we have concluded that PKCmu performs a critical function in hypertonicity-induced HSP70 induction, and finally cellular protection, via the indirect regulation of TonEBP modification.

  14. The major form of hepatitis C virus alternate reading frame protein is suppressed by core protein expression

    PubMed Central

    Wolf, Marie; Dimitrova, Maria; Baumert, Thomas F.; Schuster, Catherine

    2008-01-01

    Hepatitis C virus (HCV) is a human RNA virus encoding 10 proteins in a single open reading frame. In the +1 frame, an ‘alternate reading frame’ (ARF) overlaps with the core protein-encoding sequence and encodes the ARF protein (ARFP). Here, we investigated the molecular regulatory mechanisms of ARFP expression in HCV target cells. Chimeric HCV-luciferase reporter constructs derived from the infectious HCV prototype isolate H77 were transfected into hepatocyte-derived cell lines. Translation initiation was most efficient at the internal AUG codon at position 86/88, resulting in the synthesis of a truncated ARFP named 86/88ARFP. Interestingly, 86/88ARFP synthesis was markedly enhanced in constructs containing an inactivated core protein reading frame. This enhancement was reversed by co-expression of core protein in trans, demonstrating suppression of ARFP synthesis by HCV core protein. In conclusion, our results indicate that translation of ARFP occurs mainly by alternative internal initiation at position 86/88 and is regulated by HCV core protein expression. The suppression of ARFP translation by HCV core protein suggests that ARFP expression is inversely linked to the level of viral replication. These findings define key mechanisms regulating ARFP expression and set the stage for further studies addressing the function of ARFP within the viral life cycle. PMID:18400784

  15. Differential expression of hemolymph proteins between susceptible and insecticide-resistant Blattella germanica (Blattodea: Blattellidae).

    PubMed

    Zhang, F; Wang, X J; Huang, Y H; Zhao, Z G; Zhang, S S; Gong, X S; Xie, L; Kang, D M; Jing, X

    2014-08-01

    A proteomic approach combining two-dimensional polyacrylamide gel electrophoresis and tandem mass spectrometry was used to compare hemolymph expression profiles of a beta-cypermethrin-resistant Blattella germanica L. strain and a beta-cypermethrin-susceptible strain. Twenty-eight hemolymph proteins were differentially expressed in the resistant cockroach strain; 19 proteins were upregulated and 9 proteins were downregulated compared with the susceptible strain. Protein identification indicated that expression of putative cuticular protein, nitric oxide synthase, triosephosphate isomerase, alpha-amylase, ABC transporter, and Per a 3 allergen was elevated, and expression of arginine kinase and glycosidase was reduced. The differential expression of these proteins reflects the overall change in cellular structure and metabolism related to the resistance of pyrethroid insecticides.

  16. Glucose enhances collectrin protein expression in insulin-producing MIN6 {beta} cells

    SciTech Connect

    Saisho, Kenji; Fukuhara, Atsunori; Yasuda, Tomoko; Sato, Yoshifumi; Fukui, Kenji; Iwahashi, Hiromi; Imagawa, Akihisa; Hatta, Mitsutoki; Shimomura, Iichiro; Yamagata, Kazuya

    2009-11-06

    Collectrin is a novel target gene of hepatocyte nuclear factor-1{alpha} in pancreatic {beta}-cells and controls insulin exocytosis. Although glucose is known to stimulate the expression of genes of the insulin secretory pathway, there is no information on how glucose regulates collectrin expression. We investigated the effects of glucose on the expression of collectrin in MIN6 {beta}-cell line. Glucose, in a dose-dependent manner, increased collectrin protein levels without changing collectrin mRNA levels and protein stability, indicating that glucose stimulation of collectrin protein expression is primarily mediated at a translational level. Although mannose and pyruvate also increased collectrin protein expression level, neither 2-deoxyglucose, mitochondrial fuels leucine and glutamate, sulphonylurea nor Ca{sup 2+} channel blockers, mimicked the effects of glucose. These data indicate the involvement of mitochondrial TCA cycle intermediates, distal to pyruvate, in the regulation of collectrin protein expression in {beta}-cells.

  17. Mouse Lung Fibroblast Resistance to Fas-Mediated Apoptosis Is Dependent on the Baculoviral Inhibitor of Apoptosis Protein 4 and the Cellular FLICE-Inhibitory Protein

    PubMed Central

    Predescu, Sanda A.; Zhang, Jian; Bardita, Cristina; Patel, Monal; Godbole, Varun; Predescu, Dan N.

    2017-01-01

    A characteristic feature of idiopathic pulmonary fibrosis (IPF) is accumulation of apoptotic resistant fibroblasts/myofibroblasts in the fibroblastic foci. As caveolin (Cav)-null mice develop pulmonary fibrosis (PF), we hypothesized that the participating fibroblasts display an apoptosis-resistant phenotype. To test this hypothesis and identify the molecular mechanisms involved we isolated lung fibroblasts from Cav-null mice and examined the expression of several inhibitors of apoptosis (IAPs), of c-FLIP, of Bcl-2 proteins and of the death receptor CD95/Fas. We found significant increase in XIAP and c-FLIP constitutive protein expression with no alteration of Bcl-2 and lower levels of CD95/Fas. The isolated fibroblasts were then treated with the CD95/Fas ligand (FasL) to induce apoptosis. While the morphological and biochemical alterations induced by FasL were similar in wild-type (wt) and Cav-null mouse lung fibroblasts, the time course and the extent of the alterations were greater in the Cav-null fibroblasts. Several salient features of Cav-null fibroblasts response such as loss of membrane potential, fragmentation of the mitochondrial continuum concurrent with caspase-8 activation, and subsequent Bid cleavage, prior to caspase-3 activation were detected. Furthermore, M30 antigen formation, phosphatidylserine expression and DNA fragmentation were caspase-3 dependent. SiRNA-mediated silencing of XIAP and c-FLIP, individually or combined, enhanced the sensitivity of lung fibroblasts to FasL-induced apoptosis. Pharmacological inhibition of Bcl-2 had no effect. Together our findings support a mechanism in which CD95/Fas engagement activates caspase-8, inducing mitochondrial apoptosis through Bid cleavage. XIAP and c-FLIP fine tune this process in a cell-type specific manner. PMID:28352235

  18. FGFR Family Members Protein Expression as Prognostic Markers in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma.

    PubMed

    Koole, Koos; Clausen, Martijn J A M; van Es, Robert J J; van Kempen, Pauline M W; Melchers, Lieuwe J; Koole, Ron; Langendijk, Johannes A; van Diest, Paul J; Roodenburg, Jan L N; Schuuring, Ed; Willems, Stefan M

    2016-08-01

    Fibroblast growth factor receptor family member proteins (FGFR1-4) have been identified as promising novel therapeutic targets and prognostic markers in a wide spectrum of solid tumors. The present study investigates the expression and prognostic value of four FGFR family member proteins in a large multicenter oral cavity squamous cell carcinoma (OCSCC) and oropharyngeal squamous cell carcinoma (OPSCC) cohort. Protein expression of FGFR1-4 was determined by immunohistochemistry on tissue microarrays containing 951 formalin-fixed paraffin embedded OCSCC and OPSCC tissues from the University Medical Center Utrecht and University Medical Center Groningen. Protein expression was correlated to overall survival using Cox regression models, and bootstrapping was performed as internal validation. FGFR proteins were highly expressed in 39-64 % of OCSCC and 63-79 % of OPSCC. Seventy-three percent (299/412) of OCSCC and 85 % (305/357) of OPSCC highly co-expressed two or more FGFR family member proteins. FGFR1 protein was more frequently highly expressed in human papillomavirus (HPV)-negative OPSCC than HPV-positive OPSCC (82 vs. 65 %; p = 0.008). Furthermore, protein expression of FGFR family members was not related to overall survival in OCSCC or OPSCC (p > 0.05). FGFR family members are frequently highly expressed in OCSCC and OPSCC. These FGFR family member proteins are therefore potential targets for novel therapies that are urgently required to improve survival of OCSCC and OPSCC patients.

  19. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli

    PubMed Central

    Sørensen, Hans Peter; Mortensen, Kim Kusk

    2005-01-01

    Pure, soluble and functional proteins are of high demand in modern biotechnology. Natural protein sources rarely meet the requirements for quantity, ease of isolation or price and hence recombinant technology is often the method of choice. Recombinant cell factories are constantly employed for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible molecular tools available. In spite of all these qualities, expression of recombinant proteins with E. coli as the host often results in insoluble and/or nonfunctional proteins. Here we review new approaches to overcome these obstacles by strategies that focus on either controlled expression of target protein in an unmodified form or by applying modifications using expressivity and solubility tags. PMID:15629064

  20. p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability

    PubMed Central

    Yan, Wensheng; Chen, Xinbin

    2016-01-01

    p73, a p53 family tumor suppressor, is regulated by multiple mechanisms, including transcription and mRNA and protein stability. However, whether p73 expression is regulated via mRNA translation has not been explored. To test this, we examined whether ribosomal protein 26 (RPL26) plays a role in p73 expression. Here, we showed that p73 expression is controlled by RPL26 via protein stability and mRNA translation. To examine whether MDM2 mediates RPL26 to regulate p73 protein stability, we generated multiple MDM2-knockout cell lines by CRISPR-cas9. We found that in the absence of MDM2, the half-life of p73 protein is markedly increased. Interestingly, we also found that RPL26 is still capable of regulating p73 expression, albeit to a lesser extent, in MDM2-KO cells compared to that in isogenic control cells, suggesting that RPL26 regulates p73 expression via multiple mechanisms. Indeed, we found that RPL26 is necessary for efficient assembly of polysomes on p73 mRNA and de novo synthesis of p73 protein. Consistently, we found that RPL26 directly binds to p73 3′ untranslated region (3′UTR) and that RPL26 is necessary for efficient expression of an eGFP reporter that carries p73 3′UTR. We also found that RPL26 interacts with cap-binding protein eIF4E and enhances the association of eIF4E with p73 mRNA, leading to increased p73 mRNA translation. Finally, we showed that knockdown of RPL26 promotes, whereas ectopic expression of RPL26 inhibits, cell growth in a TAp73-dependent manner. Together, our data indicate that RPL26 regulates p73 expression via two distinct mechanisms: protein stability and mRNA translation. PMID:27825141

  1. [Cloning and prokaryotic expression of transcriptional co-activator gene of Clonorchis sinensis and functional analysis of the expressed protein].

    PubMed

    Zhang, Yong-li; Yu, Xin-bing; Wu, De; Wu, Zhong-dao; Bi, Hui-xiang

    2005-02-28

    To construct prokaryotic recombinant plasmids of transcriptional co-activator (TC) gene of Clonorchis sinensis, express and purify the recombinant protein and analyze its biological function. A pair of primers was designed according to the known sequence of TC gene. The TC gene fragment was amplified by PCR. After purification and digestion with BamH I and Sal I, the TC gene was connected to the prokaryotic expression vectors, pGEX-4T-1 and pET30a(+). By cloning target gene into these vectors, pGEX-4T-1 and pET30a(+), prokaryotic recombinant plasmids of TC gene were constructed and transferred into E. coli BL21. The positive expressed recombinants were detected by SDS-PAGE and Western blotting. Immobilized metal (Ni2+) chelation affinity chromatography was used to purify His-TC produced by the expression of the recombinant protein pET30a(+)-TC. The recombinant plasmids, pGEX-4T-1-TC and pET30a(+)-TC, were constructed successfully. SDS-PAGE testified that the molecular weight of the recombinant protein was correct. Western blot analysis of GST-TC recombinant protein testified that the recombinant protein could be recognized by immunized rabbit serum, which means the protein is GST-immune active and the clone can express recombinant Clonorchis sinensis antigen. After affinity chromatography of the pET-TC protein, there was only one protein band with expected size on the SDS-PAGE gel. The TC gene was screened from cDNA library of adult Clonorchis sinensis, cloned, expressed and purified. The purified protein of TC gene will be of importance for further research on the biological function of the gene.

  2. Bortezomib Improves Adoptive T-cell Therapy by Sensitizing Cancer Cells to FasL Cytotoxicity.

    PubMed

    Shanker, Anil; Pellom, Samuel T; Dudimah, Duafalia F; Thounaojam, Menaka C; de Kluyver, Rachel L; Brooks, Alan D; Yagita, Hideo; McVicar, Daniel W; Murphy, William J; Longo, Dan L; Sayers, Thomas J

    2015-12-15

    Cancer immunotherapy shows great promise but many patients fail to show objective responses, including in cancers that can respond well, such as melanoma and renal adenocarcinoma. The proteasome inhibitor bortezomib sensitizes solid tumors to apoptosis in response to TNF-family death ligands. Because T cells provide multiple death ligands at the tumor site, we investigated the effects of bortezomib on T-cell responses in immunotherapy models involving low-avidity antigens. Bortezomib did not affect lymphocyte or tissue-resident CD11c(+)CD8(+) dendritic cell counts in tumor-bearing mice, did not inhibit dendritic cell expression of costimulatory molecules, and did not decrease MHC class I/II-associated antigen presentation to cognate T cells. Rather, bortezomib activated NF-κB p65 in CD8(+) T cells, stabilizing expression of T-cell receptor CD3ζ and IL2 receptor-α, while maintaining IFNγ secretion to improve FasL-mediated tumor lysis. Notably, bortezomib increased tumor cell surface expression of Fas in mice as well as human melanoma tissue from a responsive patient. In renal tumor-bearing immunodeficient Rag2(-/-) mice, bortezomib treatment after adoptive T-cell immunotherapy reduced lung metastases and enhanced host survival. Our findings highlight the potential of proteasome inhibitors to enhance antitumor T-cell function in the context of cancer immunotherapy. ©2015 American Association for Cancer Research.

  3. Dietary protein-related changes in hepatic transcription correspond to modifications in hepatic protein expression in growing pigs.

    PubMed

    Junghans, Peter; Kaehne, Thilo; Beyer, Manfred; Metges, Cornelia C; Schwerin, Manfred

    2004-01-01

    In a previous investigation we showed by expression profiling based on transcription analysis using differential display RT-PCR (DDRT-PCR) and real-time RT-PCR that a soy protein diet (SPI) significantly changes the hepatic transcription pattern compared with a casein diet (CAS). The present study was conducted to determine whether the transcriptional modulation is translated into protein expression. The hepatic mRNA abundance of four genes (EP24.16, LC3, NPAP60L, RFC2) that showed diet-related expression in previous DDRT-PCR experiments was analyzed by real-time RT-PCR. Two pigs that showed the most prominent SPI-related changes of transcription and two casein-fed pigs were selected and their hepatic protein pattern was studied comparatively by two-dimensional gel electrophoresis and peptide mass fingerprinting. The two-dimensional protein gel electrophoresis revealed a predominant SPI-associated upregulation of protein expression that corresponded to the results of the mRNA study. Of 380 diet-related protein spots displayed, 215 appeared exclusively or enlarged in the two SPI pigs; 10 of 39 diet-related expressed protein spots extracted could be identified by peptide mass fingerprinting and database search. Compared with the transcriptomics approach, the proteomics approach led in part to the identification of the same diet-associated expressed molecules (plasminogen, trypsin, phospholipase A2, glutathione-S-transferase alpha, retinal binding protein) or at least molecules belonging to the same metabolic pathways (protein and amino acid metabolism, oxidative stress response, lipid metabolism). The present results at the proteome level confirm SPI-related increased oxidative stress response and significant effects on protein biosynthesis already observed at the transcriptome level.

  4. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis

    PubMed Central

    Piya, Sarbottam; Shrestha, Sandesh K.; Binder, Brad; Stewart, C. Neal; Hewezi, Tarek

    2014-01-01

    The phytohormone auxin regulates nearly all aspects of plant growth and development. Based on the current model in Arabidopsis thaliana, Auxin/indole-3-acetic acid (Aux/IAA) proteins repress auxin-inducible genes by inhibiting auxin response transcription factors (ARFs). Experimental evidence suggests that heterodimerization between Aux/IAA and ARF proteins are related to their unique biological functions. The objective of this study was to generate the Aux/IAA-ARF protein-protein interaction map using full length sequences and locate the interacting protein pairs to specific gene co-expression networks in order to define tissue-specific responses of the Aux/IAA-ARF interactome. Pairwise interactions between 19 ARFs and 29 Aux/IAAs resulted in the identification of 213 specific interactions of which 79 interactions were previously unknown. The incorporation of co-expression profiles with protein-protein interaction data revealed a strong correlation of gene co-expression for 70% of the ARF-Aux/IAA interacting pairs in at least one tissue/organ, indicative of the biological significance of these interactions. Importantly, ARF4-8 and 19, which were found to interact with almost all Aux-Aux/IAA showed broad co-expression relationships with Aux/IAA genes, thus, formed the central hubs of the co-expression network. Our analyses provide new insights into the biological significance of ARF-Aux/IAA associations in the morphogenesis and development of various plant tissues and organs. PMID:25566309

  5. Uncovering Suitable Reference Proteins for Expression Studies in Human Adipose Tissue with Relevance to Obesity

    PubMed Central

    Pérez-Pérez, Rafael; López, Juan A.; García-Santos, Eva; Camafeita, Emilio; Gómez-Serrano, María; Ortega-Delgado, Francisco J.; Ricart, Wifredo; Fernández-Real, José M.; Peral, Belén

    2012-01-01

    Background Protein expression studies based on the two major intra-abdominal human fat depots, the subcutaneous and the omental fat, can shed light into the mechanisms involved in obesity and its co-morbidities. Here we address, for the first time, the identification and validation of reference proteins for data standardization, which are essential for accurate comparison of protein levels in expression studies based on fat from obese and non-obese individuals. Methodology and Findings To uncover adipose tissue proteins equally expressed either in omental and subcutaneous fat depots (study 1) or in omental fat from non-obese and obese individuals (study 2), we have reanalyzed our previously published data based on two-dimensional fluorescence difference gel electrophoresis. Twenty-four proteins (12 in study 1 and 12 in study 2) with similar expression levels in all conditions tested were selected and identified by mass spectrometry. Immunoblotting analysis was used to confirm in adipose tissue the expression pattern of the potential reference proteins and three proteins were validated: PARK7, ENOA and FAA. Western Blot analysis was also used to test customary loading control proteins. ENOA, PARK7 and the customary loading control protein Beta-actin showed steady expression profiles in fat from non-obese and obese individuals, whilst FAA maintained steady expression levels across paired omental and subcutaneous fat samples. Conclusions ENOA, PARK7 and Beta-actin are proper reference standards in obesity studies based on omental fat, whilst FAA is the best loading control for the comparative analysis of omental and subcutaneous adipose tissues either in obese and non-obese subjects. Neither customary loading control proteins GAPDH and TBB5 nor CALX are adequate standards in differential expression studies on adipose tissue. The use of the proposed reference proteins will facilitate the adequate analysis of proteins differentially expressed in the context of obesity

  6. Teaching Molecular Biology to Undergraduate Biology Students: An Illustration of Protein Expression and Purification

    ERIC Educational Resources Information Center

    Sommer, Cesar Adolfo; Silva, Flavio Henrique; Novo, Maria Teresa Marques

    2004-01-01

    Practical classes on protein expression and purification were given to undergraduate biology students enrolled in the elective course "Introduction to Genetic Engineering." The heterologous expression of the green fluorescent protein (GFP)* of "Aequorea victoria" is an interesting system for didactic purposes because it can be viewed easily during…

  7. Maternal low protein diet and postnatal high fat diet increases adipose imprinted gene expression

    USDA-ARS?s Scientific Manuscript database

    Maternal and postnatal diet can alter Igf2 gene expression and DNA methylation. To test whether maternal low protein and postnatal high fat (HF) diet result in alteration in Igf2 expression and obesity, we fed obese-prone Sprague-Dawley rats 8% (LP) or 20% (NP) protein for 3 wk prior to breeding and...

  8. Teaching Molecular Biology to Undergraduate Biology Students: An Illustration of Protein Expression and Purification

    ERIC Educational Resources Information Center

    Sommer, Cesar Adolfo; Silva, Flavio Henrique; Novo, Maria Teresa Marques

    2004-01-01

    Practical classes on protein expression and purification were given to undergraduate biology students enrolled in the elective course "Introduction to Genetic Engineering." The heterologous expression of the green fluorescent protein (GFP)* of "Aequorea victoria" is an interesting system for didactic purposes because it can be viewed easily during…

  9. Protein expression pattern of human MIER1 alpha, a novel estrogen receptor binding protein

    PubMed Central

    McCarthy, Patti L.; Paterno, Gary D.; Gillespie, Laura L.

    2014-01-01

    MIER1 is a transcriptional regulator that exists as several isoforms. Of particular interest is the MIER1α isoform, which contains in its unique C-terminus an LXXLL motif for interaction with nuclear hormone receptors. Indeed, MIER1α has been shown to interact with ERα and inhibit estrogen-stimulated growth of breast carcinoma cells. Moreover, the subcellular localization of MIER1α changes dramatically, from nuclear to cytoplasmic, during progression to invasive breast carcinoma. While human MIER1 RNA and protein expression pattern data have been posted on several websites, none of these studies use probes or antibodies that distinguish between the α and β isoforms. We report here the first immunohistochemical study of the MIER1α protein expression pattern in human tissues. Our analysis revealed intense staining of specific cell types within virtually every endocrine and reproductive tissue except for the thyroid gland. In particular, we detected intense staining of ovarian follicles and germinal epithelium, ductal epithelial cells of the breast, pancreatic islet cells, all areas of the anterior pituitary and all zones of the adrenal cortex; moderate staining of germ cells and Leydig cells within the testis, patches of chromaffin cells in the adrenal medulla and weak staining of the fibromuscular stroma within the prostate. Immunoreactivity was limited to the cytoplasm in all positive cells except for oocytes and germinal epithelial cells in which the nucleus was also stained and in ductal epithelial cells of the breast in which staining was exclusively nuclear. In general, non-endocrine tissues were negative, however a few exceptions were noted. These included hepatocytes, myocardial fibers and neurons in all regions of the brain examined, with the exception of the thalamus. Neuronal staining was restricted to the cell bodies and dendrites, as most axons were negative. These data suggest that human MIER1α functions specifically in endocrine tissues and in

  10. Differential Analysis of Protein Expression in RNA-Binding-Protein Transgenic and Parental Rice Seeds Cultivated under Salt Stress

    PubMed Central

    2015-01-01

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in protein expression under salt stress, NT and RBP rice were cultured with or without 200 mM sodium chloride. Only two protein spots differed between NT and RBP rice seeds cultured under normal conditions, one of which was identified as a putative abscisic acid-induced protein. In NT rice seeds, 91 spots significantly differed between normal and salt-stress conditions. Two allergenic proteins of NT rice seeds, RAG1 and RAG2, were induced by high salt. In contrast, RBP rice seeds yielded seven spots and no allergen spots with significant differences in protein expression between normal and salt-stress conditions. Therefore, expression of fewer proteins was altered in RBP rice seeds by high salt than those in NT rice seeds. PMID:24410502

  11. Expression of mammalian membrane proteins in mammalian cells using Semliki Forest virus vectors.

    PubMed

    Lundstrom, Kenneth

    2010-01-01

    One of the major bottlenecks in drug screening and structural biology on membrane proteins has for a long time been the expression of recombinant protein in sufficient quality and quantity. The expression has been evaluated in all existing expression systems, from cell-free translation and bacterial systems to expression in animal cells. In contrast to soluble proteins, the expression levels have been relatively low due to the following reasons: The topology of membrane proteins requires special, posttranslational processing, folding, and insertion into membranes, which often are mammalian cell specific. Despite these strict demands, functional membrane proteins (G protein-coupled receptors, ion channels, and transporters) have been successfully expressed in bacterial, yeast, and insect cells. A general drawback observed in prokaryotic cells is that accumulation of foreign protein in membranes is toxic and results in growth arrest and therefore low yields of recombinant protein.In this chapter, the focus is on expression of recombinant mammalian membrane proteins in mammalian host cells, particularly applying Semliki Forest virus (SFV) vectors. Replication-deficient SFV vectors are rapidly generated at high titers in BHK-21 (Baby Hamster Kidney) cells, which then are applied for a broad range of mammalian and nonmammalian cells. The SFV system has provided high expression levels of topologically different proteins, especially for membrane proteins. Robust ligand-binding assays and functional coupling to G proteins and electrophysiological recordings have made the SFV system an attractive tool in drug discovery. Furthermore, the high susceptibility of SFV vectors to primary neurons has allowed various applications in neuroscience. Establishment of large-scale production in mammalian adherent and suspension cultures has allowed production of hundreds of milligrams of membrane proteins that has allowed their submission to serious structural biology approaches. In this

  12. Various expression-augmenting DNA elements benefit from STAR-Select, a novel high stringency selection system for protein expression.

    PubMed

    Otte, Arie P; Kwaks, Ted H J; van Blokland, Rik J M; Sewalt, Richard G A B; Verhees, John; Klaren, Vincent N A; Siersma, Tjalling K; Korse, Hans W M; Teunissen, Nannette C; Botschuijver, Sara; van Mer, Charl; Man, Sue Y

    2007-01-01

    The creation of highly productive mammalian cell lines often requires the screening of large numbers of clones, and even then expression levels are often low. Previously, we identified DNA elements, anti-repressor or STAR elements, that increase protein expression levels. These positive effects of STAR elements are most apparent when stable clones are established under high selection stringency. We therefore developed a very high selection system, STAR-Select, that allows the formation of few but highly productive clones. Here we compare the influence of STAR and other expression-augmenting DNA elements on protein expression levels in CHO-K1 cells. The comparison is done in the context of the often-used cotransfection selection procedure and in the context of the STAR-Select system. We show that STAR elements, as well as MAR elements induce the highest protein expression levels with both selection systems. Furthermore, in trans cotransfection of multiple copies of STAR and MAR elements also results in higher protein expression levels. However, highest expression levels are achieved with the STAR-Select selection system, when STAR elements or MARs are incorporated in a single construct. Our results also show that the novel STAR-Select selection system, which was developed in the context of STAR elements, is also very beneficial for the use of MAR elements.

  13. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  14. Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression.

    PubMed

    Vink, Elizabeth I; Zheng, Yueting; Yeasmin, Rukhsana; Stamminger, Thomas; Krug, Laurie T; Hearing, Patrick

    2015-05-13

    The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation.