Versatile synchronized real-time MEG hardware controller for large-scale fast data acquisition.
Sun, Limin; Han, Menglai; Pratt, Kevin; Paulson, Douglas; Dinh, Christoph; Esch, Lorenz; Okada, Yoshio; Hämäläinen, Matti
2017-05-01
Versatile controllers for accurate, fast, and real-time synchronized acquisition of large-scale data are useful in many areas of science, engineering, and technology. Here, we describe the development of a controller software based on a technique called queued state machine for controlling the data acquisition (DAQ) hardware, continuously acquiring a large amount of data synchronized across a large number of channels (>400) at a fast rate (up to 20 kHz/channel) in real time, and interfacing with applications for real-time data analysis and display of electrophysiological data. This DAQ controller was developed specifically for a 384-channel pediatric whole-head magnetoencephalography (MEG) system, but its architecture is useful for wide applications. This controller running in a LabVIEW environment interfaces with microprocessors in the MEG sensor electronics to control their real-time operation. It also interfaces with a real-time MEG analysis software via transmission control protocol/internet protocol, to control the synchronous acquisition and transfer of the data in real time from >400 channels to acquisition and analysis workstations. The successful implementation of this controller for an MEG system with a large number of channels demonstrates the feasibility of employing the present architecture in several other applications.
Versatile synchronized real-time MEG hardware controller for large-scale fast data acquisition
NASA Astrophysics Data System (ADS)
Sun, Limin; Han, Menglai; Pratt, Kevin; Paulson, Douglas; Dinh, Christoph; Esch, Lorenz; Okada, Yoshio; Hämäläinen, Matti
2017-05-01
Versatile controllers for accurate, fast, and real-time synchronized acquisition of large-scale data are useful in many areas of science, engineering, and technology. Here, we describe the development of a controller software based on a technique called queued state machine for controlling the data acquisition (DAQ) hardware, continuously acquiring a large amount of data synchronized across a large number of channels (>400) at a fast rate (up to 20 kHz/channel) in real time, and interfacing with applications for real-time data analysis and display of electrophysiological data. This DAQ controller was developed specifically for a 384-channel pediatric whole-head magnetoencephalography (MEG) system, but its architecture is useful for wide applications. This controller running in a LabVIEW environment interfaces with microprocessors in the MEG sensor electronics to control their real-time operation. It also interfaces with a real-time MEG analysis software via transmission control protocol/internet protocol, to control the synchronous acquisition and transfer of the data in real time from >400 channels to acquisition and analysis workstations. The successful implementation of this controller for an MEG system with a large number of channels demonstrates the feasibility of employing the present architecture in several other applications.
The Block V Receiver fast acquisition algorithm for the Galileo S-band mission
NASA Technical Reports Server (NTRS)
Aung, M.; Hurd, W. J.; Buu, C. M.; Berner, J. B.; Stephens, S. A.; Gevargiz, J. M.
1994-01-01
A fast acquisition algorithm for the Galileo suppressed carrier, subcarrier, and data symbol signals under low data rate, signal-to-noise ratio (SNR) and high carrier phase-noise conditions has been developed. The algorithm employs a two-arm fast Fourier transform (FFT) method utilizing both the in-phase and quadrature-phase channels of the carrier. The use of both channels results in an improved SNR in the FFT acquisition, enabling the use of a shorter FFT period over which the carrier instability is expected to be less significant. The use of a two-arm FFT also enables subcarrier and symbol acquisition before carrier acquisition. With the subcarrier and symbol loops locked first, the carrier can be acquired from an even shorter FFT period. Two-arm tracking loops are employed to lock the subcarrier and symbol loops parameter modification to achieve the final (high) loop SNR in the shortest time possible. The fast acquisition algorithm is implemented in the Block V Receiver (BVR). This article describes the complete algorithm design, the extensive computer simulation work done for verification of the design and the analysis, implementation issues in the BVR, and the acquisition times of the algorithm. In the expected case of the Galileo spacecraft at Jupiter orbit insertion PD/No equals 14.6 dB-Hz, R(sym) equals 16 symbols per sec, and the predicted acquisition time of the algorithm (to attain a 0.2-dB degradation from each loop to the output symbol SNR) is 38 sec.
Real-Time Capabilities of a Digital Analyzer for Mixed-Field Assay Using Scintillation Detectors
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Lavietes, A.; Plenteda, R.; Cave, F. D.; Parker, H.; Jones, A.; Astromskas, V.
2017-03-01
Scintillation detectors offer a single-step detection method for fast neutrons and necessitate real-time acquisition, whereas this is redundant in two-stage thermal detection systems using helium-3 and lithium-6, where the fast neutrons need to be thermalized prior to detection. The relative affordability of scintillation detectors and the associated fast digital acquisition systems have enabled entirely new measurement setups that can consist of sizeable detector arrays. These detectors in most cases rely on photomultiplier tubes, which have significant tolerances and result in variations in detector response functions. The detector tolerances and other environmental instabilities must be accounted for in measurements that depend on matched detector performance. This paper presents recent advances made to a high-speed FPGA-based digitizer. The technology described offers a complete solution for fast-neutron scintillation detectors by integrating multichannel high-speed data acquisition technology with dedicated detector high-voltage supplies. This configuration has significant advantages for large detector arrays that require uniform detector responses. We report on bespoke control software and firmware techniques that exploit real-time functionality to reduce setup and acquisition time, increase repeatability, and reduce statistical uncertainties.
Accelerated dynamic EPR imaging using fast acquisition and compressive recovery
NASA Astrophysics Data System (ADS)
Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.
2016-12-01
Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.
Navigator GPS Receiver for Fast Acquisition and Weak Signal Space Applications
NASA Technical Reports Server (NTRS)
Winternitz, Luke; Moreau, Michael; Boegner, Gregory J.; Sirotzky, Steve
2004-01-01
NASA Goddard Space Flight Center (GSFC) is developing a new space-borne GPS receiver that can operate effectively in the full range of Earth orbiting missions from Low Earth Orbit (LEO) to geostationary and beyond. Navigator is designed to be a fully space flight qualified GPS receiver optimized for fast signal acquisition and weak signal tracking. The fast acquisition capabilities provide exceptional time to first fix performance (TIFF) with no a priori receiver state or GPS almanac information, even in the presence of high Doppler shifts present in LEO (or near perigee in highly eccentric orbits). The fast acquisition capability also makes it feasible to implement extended correlation intervals and therefore significantly reduce Navigator s acquisition threshold. This greatly improves GPS observability when the receiver is above the GPS constellation (and satellites must be tracked from the opposite side of the Earth) by providing at least 10 dB of increased acquisition sensitivity. Fast acquisition and weak signal tracking algorithms have been implemented and validated on a hardware development board. A fully functional version of the receiver, employing most of the flight parts, with integrated navigation software is expected by mid 2005. An ultimate goal of this project is to license the Navigator design to an industry partner who will then market the receiver as a commercial product.
Chen, Zhiyu; Reyes, Levy A.; Johnson, David H.; Velayutham, Murugesan; Yang, Changjun; Samouilov, Alexandre; Zweier, Jay L.
2012-01-01
In vivo or ex vivo electron paramagnetic resonance imaging (EPRI) is a powerful technique for determining the spatial distribution of free radicals and other paramagnetic species in living organs and tissues. However, applications of EPRI have been limited by long projection acquisition times and the consequent fact that rapid gated EPRI was not possible. Hence in vivo EPRI typically provided only time-averaged information. In order to achieve direct gated EPRI, a fast EPR acquisition scheme was developed to decrease EPR projection acquisition time down to 10 – 20 ms, along with corresponding software and instrumentation to achieve fast gated EPRI of the isolated beating heart with submillimeter spatial resolution in as little as 2 to 3 minutes. Reconstructed images display temporal and spatial variations of the free radical distribution, anatomical structure, and contractile function within the rat heart during the cardiac cycle. PMID:22473660
Fast Tracking School Site Acquisition: A Perspective of an Eminent Domain Attorney.
ERIC Educational Resources Information Center
Behrens, Jerry
This paper discusses key issues in fast-tracking the acquisition of school sites in California. Discussion addresses: (1) assembling an experienced team; (2) whether the property owner is a willing or unwilling seller; (3) level of community support or opposition to the site; (4) timing and commencement of California Environmental Quality Act…
Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.
Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L
2016-12-01
Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques. Copyright © 2016 Elsevier Inc. All rights reserved.
Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.
The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is criticalmore » to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.« less
Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Reeder, Scott B.
2017-01-01
Purpose To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. Theory and Methods A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Results Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. Conclusion A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. PMID:27403613
The JET diagnostic fast central acquisition and trigger system (abstract)
NASA Astrophysics Data System (ADS)
Edwards, A. W.; Blackler, K.
1995-01-01
Most plasma physics diagnostics sample at a fixed frequency that is normally matched to available memory limits. This technique is not appropriate for long pulse machines such as JET where sampling frequencies of hundreds of kHz are required to diagnose very fast events. As a result of work using real-time event selection within the previous JET soft x-ray diagnostic, a single data acquisition and event triggering system for all suitable fast diagnostics, the fast central acquisition and trigger system (Fast CATS), has been developed for JET. The front-end analog-to-digital conversion (ADC) part samples all channels at 250 kHz, with a 100 kHz pass band and a stop band of 125 kHz. The back-end data collection system is based around Texas Instruments TMS320C40 microprocessors. Within this system, two levels of trigger algorithms are able to evaluate data. The first level typically analyzes data on a per diagnostic and individual channel basis. The second level looks at the data from one or more diagnostics in a window around the time of interest flagged by the first level system. Selection criteria defined by the diagnosticians are then imposed on the results from the second level to decide whether that data should be kept. The use of such a system involving intelligent real time trigger algorithms and fast data analysis will improve both the quantity and quality of JET diagnostic data, while providing valuable input to the design of data acquisition systems for very long pulse machines such as ITER. This paper will give an overview of the various elements of this new system. In addition, first results from this system following the restart of JET operation will be presented.
MetaSensing's FastGBSAR: ground based radar for deformation monitoring
NASA Astrophysics Data System (ADS)
Rödelsperger, Sabine; Meta, Adriano
2014-10-01
The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early Warning system, to determine the state and danger of a slope or structure. In this paper, the technical principles of the instrument are described and case studies of different monitoring tasks are presented.
Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Reeder, Scott B
2017-06-01
To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. Magn Reson Med 77:2303-2309, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Oldrini, Guillaume; Fedida, Benjamin; Poujol, Julie; Felblinger, Jacques; Trop, Isabelle; Henrot, Philippe; Darai, Emile; Thomassin-Naggara, Isabelle
2017-10-01
To evaluate the added value of ULTRAFAST-MR sequence to an abbreviated FAST protocol in comparison with FULL protocol to distinguish benign from malignant lesions in a population of women, regardless of breast MR imaging indication. From March 10th to September 22th, 2014, we retrospectively included a total of 70 consecutive patients with 106 histologically proven lesions (58 malignant and 48 benign) who underwent breast MR imaging for preoperative breast staging (n=38), high-risk screening (n=7), problem solving (n=18), and nipple discharge (n=4) with 12 time resolved imaging of contrast kinetics (TRICKS) acquisitions during contrast inflow interleaved in a regular high-resolution dynamic MRI protocol (FULL protocol). Two readers scored MR exams as either positive or negative and described significant lesions according to Bi-RADS lexicon with a TRICKS images (ULTRAFAST), an abbreviated protocol (FAST) and all images (FULL protocol). Sensitivity, specificity, positive and negative predictive values, and accuracy were calculated for each protocol and compared with McNemar's test. For all readers, the combined FAST-ULTRAFAST protocol significantly improved the reading with a specificity of 83.3% and 70.8% in comparison with FAST protocol or FULL protocol, respectively, without change in sensitivity. By adding ULTRAFAST protocol to FAST protocol, readers 1 and 2 were able to correctly change the diagnosis in 22.9% (11/48) and 10.4% (5/48) of benign lesions, without missing any malignancy, respectively. Both interpretation and image acquisition times for combined FAST-ULTRAFAST protocol and FAST protocol were shorter compared to FULL protocol (p<0.001). Compared to FULL protocol, adding ULTRAFAST to FAST protocol improves specificity, mainly in correctly reclassifying benign masses and reducing interpretation and acquisition time, without decreasing sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Damewood, Sara; Jeanmonod, Donald; Cadigan, Beth
2011-04-01
This study compared the effectiveness of a multimedia ultrasound (US) simulator to normal human models during the practical portion of a course designed to teach the skills of both image acquisition and image interpretation for the Focused Assessment with Sonography for Trauma (FAST) exam. This was a prospective, blinded, controlled education study using medical students as an US-naïve population. After a standardized didactic lecture on the FAST exam, trainees were separated into two groups to practice image acquisition on either a multimedia simulator or a normal human model. Four outcome measures were then assessed: image interpretation of prerecorded FAST exams, adequacy of image acquisition on a standardized normal patient, perceived confidence of image adequacy, and time to image acquisition. Ninety-two students were enrolled and separated into two groups, a multimedia simulator group (n = 44), and a human model group (n = 48). Bonferroni adjustment factor determined the level of significance to be p = 0.0125. There was no difference between those trained on the multimedia simulator and those trained on a human model in image interpretation (median 80 of 100 points, interquartile range [IQR] 71-87, vs. median 78, IQR 62-86; p = 0.16), image acquisition (median 18 of 24 points, IQR 12-18 points, vs. median 16, IQR 14-20; p = 0.95), trainee's confidence in obtaining images on a 1-10 visual analog scale (median 5, IQR 4.1-6.5, vs. median 5, IQR 3.7-6.0; p = 0.36), or time to acquire images (median 3.8 minutes, IQR 2.7-5.4 minutes, vs. median = 4.5 minutes, IQR = 3.4-5.9 minutes; p = 0.044). There was no difference in teaching the skills of image acquisition and interpretation to novice FAST examiners using the multimedia simulator or normal human models. These data suggest that practical image acquisition skills learned during simulated training can be directly applied to human models. © 2011 by the Society for Academic Emergency Medicine.
A digital acquisition and elaboration system for nuclear fast pulse detection
NASA Astrophysics Data System (ADS)
Esposito, B.; Riva, M.; Marocco, D.; Kaschuck, Y.
2007-03-01
A new digital acquisition and elaboration system has been developed and assembled in ENEA-Frascati for the direct sampling of fast pulses from nuclear detectors such as scintillators and diamond detectors. The system is capable of performing the digital sampling of the pulses (200 MSamples/s, 14-bit) and the simultaneous (compressed) data transfer for further storage and software elaboration. The design (FPGA-based) is oriented to real-time applications and has been developed in order to allow acquisition with no loss of pulses and data storage for long-time intervals (tens of s at MHz pulse count rates) without the need of large on-board memory. A dedicated pulse analysis software, written in LabVIEWTM, performs the treatment of the acquired pulses, including pulse recognition, pile-up rejection, baseline removal, pulse shape particle separation and pulse height spectra analysis. The acquisition and pre-elaboration programs have been fully integrated with the analysis software.
Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhiyong; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian 361005; Smith, Pieter E. S.
Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. Bymore » porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.« less
Fast neutron imaging device and method
Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.
2014-02-11
A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.
NASA Astrophysics Data System (ADS)
Epstein, A.; Briquet-Laugier, F.; Sheldon, S.; Boulin, C.
2000-04-01
Most of the X-ray multi-wire gas detectors used at the EMBL Hamburg outstation for time-resolved studies of biological samples are readout, using the delay line method. The main disadvantage of such readout systems is their event rate limitation introduced by the delay line and the required time to digital conversion step. They also lack the possibility to deal with multiple events. To overcome these limitations, a new approach for the complete readout system was introduced. The new linear detection system is based on the wire per wire approach where each individual wire is associated to preamplifier/discriminator/counter electronics channel. High-density, front-end electronics were designed around a fast current sensitive preamplifier. An eight-channel board was designed to include the preamplifiers-discriminators and the differential ECL drivers output stages. The detector front-end consists of 25 boards directly mounted inside the detector assembly. To achieve a time framing resolution as short as 10 /spl mu/s, very fast histogramming is required. The only way to implement this for a high number of channels (200 in our case) is by using a distributed system. The digital part of the system consists of a crate controller, up to 16 acquisition boards (capable of handling fast histogramming for up to 32-channels each) and an optical-link board (based on the Cypress "Hot-Link" chip set). Both the crate controller and the acquisition boards are based on a standard RISC microcontroller (IDT R3081) plug-in board. At present, a dedicated CAMAC module which we developed is used to interface the digital front-end acquisition crate to the host via the optical link.
NASA Technical Reports Server (NTRS)
Bechtel, R. D.; Mateos, M. A.; Lincoln, K. A.
1988-01-01
Briefly described are the essential features of a computer program designed to interface a personal computer with the fast, digital data acquisition system of a time-of-flight mass spectrometer. The instrumentation was developed to provide a time-resolved analysis of individual vapor pulses produced by the incidence of a pulsed laser beam on an ablative material. The high repetition rate spectrometer coupled to a fast transient recorder captures complete mass spectra every 20 to 35 microsecs, thereby providing the time resolution needed for the study of this sort of transient event. The program enables the computer to record the large amount of data generated by the system in short time intervals, and it provides the operator the immediate option of presenting the spectral data in several different formats. Furthermore, the system does this with a high degree of automation, including the tasks of mass labeling the spectra and logging pertinent instrumental parameters.
78 FR 24201 - Graco, Inc.; Analysis of Agreement Containing Consent Order To Aid Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
.... (``GlasCraft''). The Commission Complaint (``Complaint'') alleges that, at the time of the acquisitions... supply of fast-set equipment might later be interrupted as a result of litigation. To reduce that barrier... be restored. IV. The Consent Agreement Since the acquisitions were completed some time ago, it is not...
Fast Data Acquisition For Mass Spectrometer
NASA Technical Reports Server (NTRS)
Lincoln, K. A.; Bechtel, R. D.
1988-01-01
New equipment has speed and capacity to process time-of-flight data. System relies on fast, compact waveform digitizer with 32-k memory coupled to personal computer. With digitizer, system captures all mass peaks on each 25- to 35-microseconds cycle of spectrometer.
Fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, R.
1986-01-01
A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.
NASA Astrophysics Data System (ADS)
Clairet, F.; Bottereau, C.; Medvedeva, A.; Molina, D.; Conway, G. D.; Silva, A.; Stroth, U.; ASDEX Upgrade Team; Tore Supra Team; Eurofusion Mst1 Team
2017-11-01
Frequency swept reflectometry has reached the symbolic value of 1 μs sweeping time; this performance has been made possible, thanks to an improved control of the ramp voltage driving the frequency source. In parallel, the memory depth of the acquisition system has been upgraded and can provide up to 200 000 signals during a plasma discharge. Additional improvements regarding the trigger delay determination of the acquisition and the voltage ramp linearity required by this ultra-fast technique have been set. While this diagnostic is traditionally dedicated to the plasma electron density profile measurement, such a fast sweeping rate can provide the study of fast plasma events and turbulence with unprecedented time and radial resolution from the edge to the core. Experimental results obtained on ASDEX Upgrade plasmas are presented to demonstrate the performances of the diagnostic.
NASA Astrophysics Data System (ADS)
Yang, C.; Zheng, W.; Zhang, M.; Yuan, T.; Zhuang, G.; Pan, Y.
2016-06-01
Measurement and control of the plasma in real-time are critical for advanced Tokamak operation. It requires high speed real-time data acquisition and processing. ITER has designed the Fast Plant System Controllers (FPSC) for these purposes. At J-TEXT Tokamak, a real-time data acquisition and processing framework has been designed and implemented using standard ITER FPSC technologies. The main hardware components of this framework are an Industrial Personal Computer (IPC) with a real-time system and FlexRIO devices based on FPGA. With FlexRIO devices, data can be processed by FPGA in real-time before they are passed to the CPU. The software elements are based on a real-time framework which runs under Red Hat Enterprise Linux MRG-R and uses Experimental Physics and Industrial Control System (EPICS) for monitoring and configuring. That makes the framework accord with ITER FPSC standard technology. With this framework, any kind of data acquisition and processing FlexRIO FPGA program can be configured with a FPSC. An application using the framework has been implemented for the polarimeter-interferometer diagnostic system on J-TEXT. The application is able to extract phase-shift information from the intermediate frequency signal produced by the polarimeter-interferometer diagnostic system and calculate plasma density profile in real-time. Different algorithms implementations on the FlexRIO FPGA are compared in the paper.
Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.
Lin, Fa-Hsuan; Tsai, Shang-Yueh; Otazo, Ricardo; Caprihan, Arvind; Wald, Lawrence L; Belliveau, John W; Posse, Stefan
2007-02-01
Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements. Copyright (c) 2007 Wiley-Liss, Inc.
An improved fast acquisition phase frequency detector for high speed phase-locked loops
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wang, Zongmin; Zhang, Tieliang; Peng, Xinmang
2018-04-01
Phase-locked loops (PLL) have been widely applied in many high-speed designs, such as microprocessors or communication systems. In this paper, an improved fast acquisition phase frequency detector for high speed phase-locked loops is proposed. An improved structure based on dynamic latch is used to eliminate the non-ideal effect such as dead zone and blind zone. And frequency dividers are utilized to vastly extend the phase difference detection range and enhance the operation frequency of the PLL. Proposed PFD has been implemented in 65nm CMOS technology, which occupies an area of 0.0016mm2 and consumes 1.5mW only. Simulation results demonstrate that maximum operation frequency can be up to 5GHz. In addition, the acquisition time of PLL using proposed PFD is 1.0us which is 2.6 times faster than that of the PLL using latch-based PFD without divider.
Accelerating acquisition strategies for low-frequency conductivity imaging using MREIT
NASA Astrophysics Data System (ADS)
Song, Yizhuang; Seo, Jin Keun; Chauhan, Munish; Indahlastari, Aprinda; Ashok Kumar, Neeta; Sadleir, Rosalind
2018-02-01
We sought to improve efficiency of magnetic resonance electrical impedance tomography data acquisition so that fast conductivity changes or electric field variations could be monitored. Undersampling of k-space was used to decrease acquisition times in spin-echo-based sequences by a factor of two. Full MREIT data were reconstructed using continuity assumptions and preliminary scans gathered without current. We found that phase data were reconstructed faithfully from undersampled data. Conductivity reconstructions of phantom data were also possible. Therefore, undersampled k-space methods can potentially be used to accelerate MREIT acquisition. This method could be an advantage in imaging real-time conductivity changes with MREIT.
Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.
Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S
2018-04-01
It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P < 0.003). No significant difference was observed in relation to other features (P = 0.11). An average of 21% decrease in scan time was achieved using the proposed method. Wave-encoded variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.
The Effect of Concomitant Fields in Fast Spin Echo Acquisition on Asymmetric MRI Gradient Systems
Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Huston, John; Shu, Yunhong; Gray, Erin M.; Foo, Thomas K.F.; Bernstein, Matt A.
2017-01-01
Purpose To investigate the effect of the asymmetric gradient concomitant fields (CF) with zeroth and first-order spatial dependence on fast/turbo spin-echo acquisitions, and to demonstrate the effectiveness of their real-time compensation. Methods After briefly reviewing the CF produced by asymmetric gradients, the effects of the additional zeroth and first-order CFs on these systems are investigated using extended-phase graph simulations. Phantom and in vivo experiments are performed to corroborate the simulation. Experiments are performed before and after the real-time compensations using frequency tracking and gradient pre-emphasis to demonstrate their effectiveness in correcting the additional CFs. The interaction between the CFs and prescan-based correction to compensate for eddy currents is also investigated. Results It is demonstrated that, unlike the second-order CFs on conventional gradients, the additional zeroth/first-order CFs on asymmetric gradients cause substantial signal loss and dark banding in fast spin-echo acquisitions within a typical brain-scan field of view. They can confound the prescan correction for eddy currents and degrade image quality. Performing real-time compensation successfully eliminates the artifacts. Conclusions We demonstrate that the zeroth/first-order CFs specific to asymmetric gradients can cause substantial artifacts, including signal loss and dark bands for brain imaging. These effects can be corrected using real-time compensation. PMID:28643408
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false General. 13.401 Section 13.401 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.401 General. (a) The fast...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false General. 13.401 Section 13.401 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.401 General. (a) The fast...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false General. 13.401 Section 13.401 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.401 General. (a) The fast...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false General. 13.401 Section 13.401 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.401 General. (a) The fast...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false General. 13.401 Section 13.401 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.401 General. (a) The fast...
fastSIM: a practical implementation of fast structured illumination microscopy.
Lu-Walther, Hui-Wen; Kielhorn, Martin; Förster, Ronny; Jost, Aurélie; Wicker, Kai; Heintzmann, Rainer
2015-01-16
A significant improvement in acquisition speed of structured illumination microscopy (SIM) opens a new field of applications to this already well-established super-resolution method towards 3D scanning real-time imaging of living cells. We demonstrate a method of increased acquisition speed on a two-beam SIM fluorescence microscope with a lateral resolution of ~100 nm at a maximum raw data acquisition rate of 162 frames per second (fps) with a region of interest of 16.5 × 16.5 µm 2 , free of mechanically moving components. We use a programmable spatial light modulator (ferroelectric LCOS) which promises precise and rapid control of the excitation pattern in the sample plane. A passive Fourier filter and a segmented azimuthally patterned polarizer are used to perform structured illumination with maximum contrast. Furthermore, the free running mode in a modern sCMOS camera helps to achieve faster data acquisition.
fastSIM: a practical implementation of fast structured illumination microscopy
NASA Astrophysics Data System (ADS)
Lu-Walther, Hui-Wen; Kielhorn, Martin; Förster, Ronny; Jost, Aurélie; Wicker, Kai; Heintzmann, Rainer
2015-03-01
A significant improvement in acquisition speed of structured illumination microscopy (SIM) opens a new field of applications to this already well-established super-resolution method towards 3D scanning real-time imaging of living cells. We demonstrate a method of increased acquisition speed on a two-beam SIM fluorescence microscope with a lateral resolution of ~100 nm at a maximum raw data acquisition rate of 162 frames per second (fps) with a region of interest of 16.5 × 16.5 µm2, free of mechanically moving components. We use a programmable spatial light modulator (ferroelectric LCOS) which promises precise and rapid control of the excitation pattern in the sample plane. A passive Fourier filter and a segmented azimuthally patterned polarizer are used to perform structured illumination with maximum contrast. Furthermore, the free running mode in a modern sCMOS camera helps to achieve faster data acquisition.
Fast REDOR with CPMG multiple-echo acquisition
NASA Astrophysics Data System (ADS)
Hung, Ivan; Gan, Zhehong
2014-01-01
Rotational-Echo Double Resonance (REDOR) is a widely used experiment for distance measurements in solids. The conventional REDOR experiment measures the signal dephasing from hetero-nuclear recoupling under magic-angle spinning (MAS) in a point by point manner. A modified Carr-Purcell Meiboom-Gill (CPMG) multiple-echo scheme is introduced for fast REDOR measurement. REDOR curves are measured from the CPMG echo amplitude modulation under dipolar recoupling. The real time CPMG-REDOR experiment can speed up the measurement by an order of magnitude. The effects from hetero-nuclear recoupling, the Bloch-Siegert shift and echo truncation to the signal acquisition are discussed and demonstrated.
NASA Astrophysics Data System (ADS)
Martucci, Giovanni; Simeonov, Valentin; Renaud, Ludovic; Haefele, Alexander
2018-04-01
RAman Lidar for Meteorological Observations (RALMO) is operated at MeteoSwiss and provides continuous measurements of water vapor and temperature since 2010. While the water vapor has been acquired by a Licel acquisition system since 2008, the temperature channels have been migrated to a Fastcom P7888 acquisition system, since August 2015. We present a characterization of this new acquisition system, namely its dead-time, desaturation, temporal stability of the Pure Rotational Raman signals and the retrieval of the PRR-temperature.
Parallel MR imaging: a user's guide.
Glockner, James F; Hu, Houchun H; Stanley, David W; Angelos, Lisa; King, Kevin
2005-01-01
Parallel imaging is a recently developed family of techniques that take advantage of the spatial information inherent in phased-array radiofrequency coils to reduce acquisition times in magnetic resonance imaging. In parallel imaging, the number of sampled k-space lines is reduced, often by a factor of two or greater, thereby significantly shortening the acquisition time. Parallel imaging techniques have only recently become commercially available, and the wide range of clinical applications is just beginning to be explored. The potential clinical applications primarily involve reduction in acquisition time, improved spatial resolution, or a combination of the two. Improvements in image quality can be achieved by reducing the echo train lengths of fast spin-echo and single-shot fast spin-echo sequences. Parallel imaging is particularly attractive for cardiac and vascular applications and will likely prove valuable as 3-T body and cardiovascular imaging becomes part of standard clinical practice. Limitations of parallel imaging include reduced signal-to-noise ratio and reconstruction artifacts. It is important to consider these limitations when deciding when to use these techniques. (c) RSNA, 2005.
Banjak, Hussein; Grenier, Thomas; Epicier, Thierry; Koneti, Siddardha; Roiban, Lucian; Gay, Anne-Sophie; Magnin, Isabelle; Peyrin, Françoise; Maxim, Voichita
2018-06-01
Fast tomography in Environmental Transmission Electron Microscopy (ETEM) is of a great interest for in situ experiments where it allows to observe 3D real-time evolution of nanomaterials under operating conditions. In this context, we are working on speeding up the acquisition step to a few seconds mainly with applications on nanocatalysts. In order to accomplish such rapid acquisitions of the required tilt series of projections, a modern 4K high-speed camera is used, that can capture up to 100 images per second in a 2K binning mode. However, due to the fast rotation of the sample during the tilt procedure, noise and blur effects may occur in many projections which in turn would lead to poor quality reconstructions. Blurred projections make classical reconstruction algorithms inappropriate and require the use of prior information. In this work, a regularized algebraic reconstruction algorithm named SIRT-FISTA-TV is proposed. The performance of this algorithm using blurred data is studied by means of a numerical blur introduced into simulated images series to mimic possible mechanical instabilities/drifts during fast acquisitions. We also present reconstruction results from noisy data to show the robustness of the algorithm to noise. Finally, we show reconstructions with experimental datasets and we demonstrate the interest of fast tomography with an ultra-fast acquisition performed under environmental conditions, i.e. gas and temperature, in the ETEM. Compared to classically used SIRT and SART approaches, our proposed SIRT-FISTA-TV reconstruction algorithm provides higher quality tomograms allowing easier segmentation of the reconstructed volume for a better final processing and analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Czermak, A.; Zalewska, A.; Dulny, B.; Sowicki, B.; Jastrząb, M.; Nowak, L.
2004-07-01
The needs for real time monitoring of the hadrontherapy beam intensity and profile as well as requirements for the fast dosimetry using Monolithic Active Pixel Sensors (MAPS) forced the SUCIMA collaboration to the design of the unique Data Acquisition System (DAQ SUCIMA Imager). The DAQ system has been developed on one of the most advanced XILINX Field Programmable Gate Array chip - VERTEX II. The dedicated multifunctional electronic board for the detector's analogue signals capture, their parallel digital processing and final data compression as well as transmission through the high speed USB 2.0 port has been prototyped and tested.
Marjanovic, Josip; Weiger, Markus; Reber, Jonas; Brunner, David O; Dietrich, Benjamin E; Wilm, Bertram J; Froidevaux, Romain; Pruessmann, Klaas P
2018-02-01
For magnetic resonance imaging of tissues with very short transverse relaxation times, radio-frequency excitation must be immediately followed by data acquisition with fast spatial encoding. In zero-echo-time (ZTE) imaging, excitation is performed while the readout gradient is already on, causing data loss due to an initial dead time. One major dead time contribution is the settling time of the filters involved in signal down-conversion. In this paper, a multi-rate acquisition scheme is proposed to minimize dead time due to filtering. Short filters and high output bandwidth are used initially to minimize settling time. With increasing time since the signal onset, longer filters with better frequency selectivity enable stronger signal decimation. In this way, significant dead time reduction is accomplished at only a slight increase in the overall amount of output data. Multi-rate acquisition was implemented with a two-stage filter cascade in a digital receiver based on a field-programmable gate array. In ZTE imaging in a phantom and in vivo, dead time reduction by multi-rate acquisition is shown to improve image quality and expand the feasible bandwidth while increasing the amount of data collected by only a few percent.
A system for the automated data-acquisition of fast transient signals in excitable membranes.
Bustamante, J O
1988-01-01
This paper provides a description of a system for the acquisition of fast transient currents flowing across excitable membranes. The front end of the system consists of a CAMAC crate with plug-in modules. The modules provide control of CAMAC operations, analog to digital conversion, electronic memory storage and timing of events. The signals are transferred under direct memory access to an IBM PC microcomputer through a special-purpose interface. Voltage levels from a digital to analog board in the microcomputer are passed through multiplexers to produce the desired voltage pulse patterns to elicit the transmembrane currents. The dead time between consecutive excitatory voltage pulses is limited only by the computer data bus and the software characteristics. The dead time between data transfers can be reduced to the order of milliseconds, which is sufficient for most experiments with transmembrane ionic currents.
Workshop on data acquisition and trigger system simulations for high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-12-31
This report discusses the following topics: DAQSIM: A data acquisition system simulation tool; Front end and DCC Simulations for the SDC Straw Tube System; Simulation of Non-Blocklng Data Acquisition Architectures; Simulation Studies of the SDC Data Collection Chip; Correlation Studies of the Data Collection Circuit & The Design of a Queue for this Circuit; Fast Data Compression & Transmission from a Silicon Strip Wafer; Simulation of SCI Protocols in Modsim; Visual Design with vVHDL; Stochastic Simulation of Asynchronous Buffers; SDC Trigger Simulations; Trigger Rates, DAQ & Online Processing at the SSC; Planned Enhancements to MODSEM II & SIMOBJECT -- anmore » Overview -- R.; DAGAR -- A synthesis system; Proposed Silicon Compiler for Physics Applications; Timed -- LOTOS in a PROLOG Environment: an Algebraic language for Simulation; Modeling and Simulation of an Event Builder for High Energy Physics Data Acquisition Systems; A Verilog Simulation for the CDF DAQ; Simulation to Design with Verilog; The DZero Data Acquisition System: Model and Measurements; DZero Trigger Level 1.5 Modeling; Strategies Optimizing Data Load in the DZero Triggers; Simulation of the DZero Level 2 Data Acquisition System; A Fast Method for Calculating DZero Level 1 Jet Trigger Properties and Physics Input to DAQ Studies.« less
NASA Astrophysics Data System (ADS)
Kramer, J. L. A. M.; Ullings, A. H.; Vis, R. D.
1993-05-01
A real-time data acquisition system for microprobe analysis has been developed at the Free University of Amsterdam. The system is composed of two parts: a front-end real-time and a back-end monitoring system. The front-end consists of a VMEbus based system which reads out a CAMAC crate. The back-end is implemented on a Sun work station running the UNIX operating system. This separation allows the integration of a minimal, and consequently very fast, real-time executive within the sophisticated possibilities of advanced UNIX work stations.
NASA Astrophysics Data System (ADS)
Di Sieno, L.; Contini, D.; Dalla Mora, A.; Torricelli, A.; Spinelli, L.; Cubeddu, R.; Tosi, A.; Boso, G.; Pifferi, A.
2013-06-01
In this article, we show experimental results of time-resolved optical spectroscopy performed with small distance between launching and detecting fibers. It was already demonstrated that depth discrimination is independent of source-detector separation and that measurements at small source detector distance provide better contrast and spatial resolution. The main disadvantage is represent by the huge increase in early photons (scarcely diffused by tissue) peak that can saturate the dynamic range of most detectors, hiding information carried by late photons. Thanks to a fast-gated Single- Photon Avalanche Diode (SPAD) module, we are able to reject the peak of early photons and to obtain high-dynamic range acquisitions. We exploit fast-gated SPAD module to perform for the first time functional near-infrared spectroscopy (fNIRS) at small source-detector distance for in vivo measurements and we demonstrate the possibility to detect non-invasively the dynamics of oxygenated and deoxygenated haemoglobin occurring in the motor cortex during a motor task. We also show the improvement in terms of signal amplitude and Signal-to-Noise Ratio (SNR) obtained exploiting fast-gated SPAD performances with respect to "non-gated" measurements.
RTSPM: real-time Linux control software for scanning probe microscopy.
Chandrasekhar, V; Mehta, M M
2013-01-01
Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.
Acquisition of the novel name--nameless category (N3C) principle.
Mervis, C B; Bertrand, J
1994-12-01
Toddlers' acquisition of the Novel Name-Nameless Category (N3C) principle was examined to investigate the developmental lexical principles framework and the applicability of the specificity hypothesis to relations involving lexical principles. In Study 1, we assessed the ability of 32 children between the ages of 16 and 20 months to use the N3C principle (operationally defined as the ability to fast map). As predicted, only some of the children could fast map. This finding provided evidence for a crucial tenet of the developmental lexical principles framework: Some lexical principles are not available at the start of language acquisition. Children who had acquired the N3C principle also had significantly larger vocabularies and were significantly more likely to demonstrate 2-category exhaustive sorting abilities than children who had not acquired the principle. The 2 groups of children did not differ in either age or object permanence abilities. The 16 children who could not fast map were followed longitudinally until they attained a vocabulary spurt; at that time, their ability to fast map was retested (Study 2). Results provided a longitudinal replication of the findings of Study 1. Implications of these findings for both the developmental lexical principles framework and the specificity hypothesis are discussed.
Flexible mini gamma camera reconstructions of extended sources using step and shoot and list mode.
Gardiazabal, José; Matthies, Philipp; Vogel, Jakob; Frisch, Benjamin; Navab, Nassir; Ziegler, Sibylle; Lasser, Tobias
2016-12-01
Hand- and robot-guided mini gamma cameras have been introduced for the acquisition of single-photon emission computed tomography (SPECT) images. Less cumbersome than whole-body scanners, they allow for a fast acquisition of the radioactivity distribution, for example, to differentiate cancerous from hormonally hyperactive lesions inside the thyroid. This work compares acquisition protocols and reconstruction algorithms in an attempt to identify the most suitable approach for fast acquisition and efficient image reconstruction, suitable for localization of extended sources, such as lesions inside the thyroid. Our setup consists of a mini gamma camera with precise tracking information provided by a robotic arm, which also provides reproducible positioning for our experiments. Based on a realistic phantom of the thyroid including hot and cold nodules as well as background radioactivity, the authors compare "step and shoot" (SAS) and continuous data (CD) acquisition protocols in combination with two different statistical reconstruction methods: maximum-likelihood expectation-maximization (ML-EM) for time-integrated count values and list-mode expectation-maximization (LM-EM) for individually detected gamma rays. In addition, the authors simulate lower uptake values by statistically subsampling the experimental data in order to study the behavior of their approach without changing other aspects of the acquired data. All compared methods yield suitable results, resolving the hot nodules and the cold nodule from the background. However, the CD acquisition is twice as fast as the SAS acquisition, while yielding better coverage of the thyroid phantom, resulting in qualitatively more accurate reconstructions of the isthmus between the lobes. For CD acquisitions, the LM-EM reconstruction method is preferable, as it yields comparable image quality to ML-EM at significantly higher speeds, on average by an order of magnitude. This work identifies CD acquisition protocols combined with LM-EM reconstruction as a prime candidate for the wider introduction of SPECT imaging with flexible mini gamma cameras in the clinical practice.
Li, Quanfeng; Lu, Qingyou
2011-05-01
We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).
The new millennium program: Fast-track procurements
NASA Astrophysics Data System (ADS)
Metzger, Robert M.
1996-11-01
The National Aeronautics and Space Administration's (NASA's) New Millennium Program (NMP) has embarked on a technology flight-validation demonstration program to enable the kinds of missions that NASA envisions for the 21st century. Embedded in this program is the concept of rapid mission development supported by a fast-track procurement process. This process begins with the decision to initiate a procurement very early in the program along with the formation of a technical acquisition team. A close working relationship among the team members is essential to avoiding delays and developing a clear acquisition plan. The request for proposal (RFP) that is subsequently issued seeks a company with proven capabilities, so that the time allotted for responses from proposers and the length of proposals they submit can be shortened. The fast-track procurement process has been demonstrated during selection of NMP's industrial partners and has been proven to work.
Zhou, Iris Yuwen; Fuss, Taylor L; Igarashi, Takahiro; Jiang, Weiping; Zhou, Xin; Cheng, Leo L; Sun, Phillip Zhe
2016-11-01
Chemical exchange saturation transfer (CEST) provides sensitive magnetic resonance (MR) contrast for probing dilute compounds via exchangeable protons, serving as an emerging molecular imaging methodology. CEST Z-spectrum is often acquired by sweeping radiofrequency saturation around bulk water resonance, offset by offset, to detect CEST effects at characteristic chemical shift offsets, which requires prolonged acquisition time. Herein, combining high-resolution magic angle spinning (HRMAS) with concurrent application of gradient and rf saturation to achieve fast Z-spectral acquisition, we demonstrated the feasibility of fast quantitative HRMAS CEST Z-spectroscopy. The concept was validated with phantoms, which showed excellent agreement with results obtained from conventional HRMAS MR spectroscopy (MRS). We further utilized the HRMAS Z-spectroscopy for fast ex vivo quantification of ischemic injury with rodent brain tissues after ischemic stroke. This method allows rapid and quantitative CEST characterization of biological tissues and shows potential for a host of biomedical applications.
A CAMAC display module for fast bit-mapped graphics
NASA Astrophysics Data System (ADS)
Abdel-Aal, R. E.
1992-10-01
In many data acquisition and analysis facilities for nuclear physics research, utilities for the display of two-dimensional (2D) images and spectra on graphics terminals suffer from low speed, poor resolution, and limited accuracy. Development of CAMAC bit-mapped graphics modules for this purpose has been discouraged in the past by the large device count needed and the long times required to load the image data from the host computer into the CAMAC hardware; particularly since many such facilities have been designed to support fast DMA block transfers only for data acquisition into the host. This paper describes the design and implementation of a prototype CAMAC graphics display module with a resolution of 256×256 pixels at eight colours for which all components can be easily accommodated in a single-width package. Employed is a hardware technique which reduces the number of programmed CAMAC data transfer operations needed for writing 2D images into the display memory by approximately an order of magnitude, with attendant improvements in the display speed and CPU time consumption. Hardware and software details are given together with sample results. Information on the performance of the module in a typical VAX/MBD data acquisition environment is presented, including data on the mutual effects of simultaneous data acquisition traffic. Suggestions are made for further improvements in performance.
Development of induction current acquisition device based on ARM
NASA Astrophysics Data System (ADS)
Ji, Yanju; Liu, Xiyang; Huang, Wanyu; Yao, Jiang; Yuan, Guiyang; Hui, Luan; Guan, Shanshan
2018-03-01
We design an induction current acquisition device based on ARM in order to realize high resolution and high sampling rate of acquisition for the induction current in wire-loop. Considering its characteristics of fast attenuation and small signal amplitude, we use the method of multi-path fusion for noise suppression. In the paper, the design is carried out from three aspects of analog circuit and device selection, independent power supply structure and the electromagnetic interference suppression of high frequency. DMA and ping-pong buffer, as a new data transmission technology, solves real time storage problem of massive data. The performance parameters of ARM acquisition device are tested. The comparison test of ARM acquisition device and cRIO acquisition device is performed at different time constants. The results show that it has 120dB dynamic range, 47kHz bandwidth, 96kHz sampling rate, 5μV the smallest resolution, and its average error value is not more than 4%, which proves the high accuracy and stability of the device.
Open-loop frequency acquisition for suppressed-carrier biphase signals using one-pole arm filters
NASA Technical Reports Server (NTRS)
Shah, B.; Holmes, J. K.
1991-01-01
Open loop frequency acquisition performance is discussed for suppressed carrier binary phase shift keyed signals in terms of the probability of detecting the carrier frequency offset when the arms of the Costas loop detector have one pole filters. The approach, which does not require symbol timing, uses fast Fourier transforms (FFTs) to detect the carrier frequency offset. The detection probability, which depends on both the 3 dB arm filter bandwidth and the received symbol signal to noise ratio, is derived and is shown to be independent of symbol timing. It is shown that the performance of this technique is slightly better that other open loop acquisition techniques which use integrators in the arms and whose detection performance varies with symbol timing.
Concrete thawing studied by single-point ramped imaging.
Prado, P J; Balcom, B J; Beyea, S D; Armstrong, R L; Bremner, T W
1997-12-01
A series of two-dimensional images of proton distribution in a hardened concrete sample has been obtained during the thawing process (from -50 degrees C up to 11 degrees C). The SPRITE sequence is optimal for this study given the characteristic short relaxation times of water in this porous media (T2* < 200 micros and T1 < 3.6 ms). The relaxation parameters of the sample were determined in order to optimize the time efficiency of the sequence, permitting a 4-scan 64 x 64 acquisition in under 3 min. The image acquisition is fast on the time scale of the temperature evolution of the specimen. The frozen water distribution is quantified through a position based study of the image contrast. A multiple point acquisition method is presented and the signal sensitivity improvement is discussed.
Fast multi-dimensional NMR by minimal sampling
NASA Astrophysics Data System (ADS)
Kupče, Ēriks; Freeman, Ray
2008-03-01
A new scheme is proposed for very fast acquisition of three-dimensional NMR spectra based on minimal sampling, instead of the customary step-wise exploration of all of evolution space. The method relies on prior experiments to determine accurate values for the evolving frequencies and intensities from the two-dimensional 'first planes' recorded by setting t1 = 0 or t2 = 0. With this prior knowledge, the entire three-dimensional spectrum can be reconstructed by an additional measurement of the response at a single location (t1∗,t2∗) where t1∗ and t2∗ are fixed values of the evolution times. A key feature is the ability to resolve problems of overlap in the acquisition dimension. Applied to a small protein, agitoxin, the three-dimensional HNCO spectrum is obtained 35 times faster than systematic Cartesian sampling of the evolution domain. The extension to multi-dimensional spectroscopy is outlined.
Giacomelli, L; Zimbal, A; Reginatto, M; Tittelmeier, K
2011-01-01
A compact NE213 liquid scintillation neutron spectrometer with a new digital data acquisition (DAQ) system is now in operation at the Physikalisch-Technische Bundesanstalt (PTB). With the DAQ system, developed by ENEA Frascati, neutron spectrometry with high count rates in the order of 5×10(5) s(-1) is possible, roughly an order of magnitude higher than with an analog acquisition system. To validate the DAQ system, a new data analysis code was developed and tests were done using measurements with 14-MeV neutrons made at the PTB accelerator. Additional analysis was carried out to optimize the two-gate method used for neutron and gamma (n-γ) discrimination. The best results were obtained with gates of 35 ns and 80 ns. This indicates that the fast and medium decay time components of the NE213 light emission are the ones that are relevant for n-γ discrimination with the digital acquisition system. This differs from what is normally implemented in the analog pulse shape discrimination modules, namely, the fast and long decay emissions of the scintillating light.
Development of fast parallel multi-technique scanning X-ray imaging at Synchrotron Soleil
NASA Astrophysics Data System (ADS)
Medjoubi, K.; Leclercq, N.; Langlois, F.; Buteau, A.; Lé, S.; Poirier, S.; Mercère, P.; Kewish, C. M.; Somogyi, A.
2013-10-01
A fast multimodal scanning X-ray imaging scheme is prototyped at Soleil Synchrotron. It permits the simultaneous acquisition of complementary information on the sample structure, composition and chemistry by measuring transmission, differential phase contrast, small-angle scattering, and X-ray fluorescence by dedicated detectors with ms dwell time per pixel. The results of the proof of principle experiments are presented in this paper.
Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO
NASA Technical Reports Server (NTRS)
Wintemitz, Luke; Boegner, Greg; Sirotzky, Steve
2004-01-01
A report discusses the technical background and design of the Navigator Global Positioning System (GPS) receiver -- . a radiation-hardened receiver intended for use aboard spacecraft. Navigator is capable of weak signal acquisition and tracking as well as much faster acquisition of strong or weak signals with no a priori knowledge or external aiding. Weak-signal acquisition and tracking enables GPS use in high Earth orbits (HEO), and fast acquisition allows for the receiver to remain without power until needed in any orbit. Signal acquisition and signal tracking are, respectively, the processes of finding and demodulating a signal. Acquisition is the more computationally difficult process. Previous GPS receivers employ the method of sequentially searching the two-dimensional signal parameter space (code phase and Doppler). Navigator exploits properties of the Fourier transform in a massively parallel search for the GPS signal. This method results in far faster acquisition times [in the lab, 12 GPS satellites have been acquired with no a priori knowledge in a Low-Earth-Orbit (LEO) scenario in less than one second]. Modeling has shown that Navigator will be capable of acquiring signals down to 25 dB-Hz, appropriate for HEO missions. Navigator is built using the radiation-hardened ColdFire microprocessor and housing the most computationally intense functions in dedicated field-programmable gate arrays. The high performance of the algorithm and of the receiver as a whole are made possible by optimizing computational efficiency and carefully weighing tradeoffs among the sampling rate, data format, and data-path bit width.
ERIC Educational Resources Information Center
McDonnell, John
1987-01-01
Two teaching strategies (constant time delay and increasing prompt hierarchy assistance) were compared in teaching four severely handicapped high school students to purchase snack items at a convenience store and fast food restaurant. Results indicated the time delay procedure was more effective. (DB)
Tsai, Shang-Yueh; Posse, Stefan; Lin, Yi-Ru; Ko, Cheng-Wen; Otazo, Ricardo; Chung, Hsiao-Wen; Lin, Fa-Hsuan
2007-05-01
Metabolite T2 is necessary for accurate quantification of the absolute concentration of metabolites using long-echo-time (TE) acquisition schemes. However, lengthy data acquisition times pose a major challenge to mapping metabolite T2. In this study we used proton echo-planar spectroscopic imaging (PEPSI) at 3T to obtain fast T2 maps of three major cerebral metabolites: N-acetyl-aspartate (NAA), creatine (Cre), and choline (Cho). We showed that PEPSI spectra matched T2 values obtained using single-voxel spectroscopy (SVS). Data acquisition for 2D metabolite maps with a voxel volume of 0.95 ml (32 x 32 image matrix) can be completed in 25 min using five TEs and eight averages. A sufficient spectral signal-to-noise ratio (SNR) for T2 estimation was validated by high Pearson's correlation coefficients between logarithmic MR signals and TEs (R2 = 0.98, 0.97, and 0.95 for NAA, Cre, and Cho, respectively). In agreement with previous studies, we found that the T2 values of NAA, but not Cre and Cho, were significantly different between gray matter (GM) and white matter (WM; P < 0.001). The difference between the T2 estimates of the PEPSI and SVS scans was less than 9%. Consistent spatial distributions of T2 were found in six healthy subjects, and disagreement among subjects was less than 10%. In summary, the PEPSI technique is a robust method to obtain fast mapping of metabolite T2. (c) 2007 Wiley-Liss, Inc.
Cooper, Justin T; Harris, Joel M
2014-08-05
The development of techniques to probe interfacial molecular transport is important for understanding and optimizing surface-based analytical methods including surface-enhanced spectroscopies, biological assays, and chemical separations. Single-molecule-fluorescence imaging and tracking has been used to measure lateral diffusion rates of fluorescent molecules at surfaces, but the technique is limited to the study of slower diffusion, where molecules must remain relatively stationary during acquisition of an image in order to build up sufficient intensity in a spot to detect and localize the molecule. Although faster time resolution can be achieved by fluorescence-correlation spectroscopy (FCS), where intensity fluctuations in a small spot are related to the motions of molecules on the surface, long-lived adsorption events arising from surface inhomogeneity can overwhelm the correlation measurement and mask the surface diffusion of the moving population. Here, we exploit a combination of these two techniques, imaging-FCS, for measurement of fast interfacial transport at a model chromatographic surface. This is accomplished by rapid imaging of the surface using an electron-multiplied-charged-coupled-device (CCD) camera, while limiting the acquisition to a small area on the camera to allow fast framing rates. The total intensity from the sampled region is autocorrelated to determine surface diffusion rates of molecules with millisecond time resolution. The technique allows electronic control over the acquisition region, which can be used to avoid strong adsorption sites and thus minimize their contribution to the measured autocorrelation decay and to vary the acquisition area to resolve surface diffusion from adsorption and desorption kinetics. As proof of concept, imaging-FCS was used to measure surface diffusion rates, interfacial populations, and adsorption-desorption rates of 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine (DiI) on planar C18- and C1-modified surfaces.
Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien
2018-01-01
To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Hybrid cardiac imaging with MR-CAT scan: a feasibility study.
Hillenbrand, C; Sandstede, J; Pabst, T; Hahn, D; Haase, A; Jakob, P M
2000-06-01
We demonstrate the feasibility of a new versatile hybrid imaging concept, the combined acquisition technique (CAT), for cardiac imaging. The cardiac CAT approach, which combines new methodology with existing technology, essentially integrates fast low-angle shot (FLASH) and echoplanar imaging (EPI) modules in a sequential fashion, whereby each acquisition module is employed with independently optimized imaging parameters. One important CAT sequence optimization feature is the ability to use different bandwidths for different acquisition modules. Twelve healthy subjects were imaged using three cardiac CAT acquisition strategies: a) CAT was used to reduce breath-hold duration times while maintaining constant spatial resolution; b) CAT was used to increase spatial resolution in a given breath-hold time; and c) single-heart beat CAT imaging was performed. The results obtained demonstrate the feasibility of cardiac imaging using the CAT approach and the potential of this technique to accelerate the imaging process with almost conserved image quality. Copyright 2000 Wiley-Liss, Inc.
Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility
NASA Astrophysics Data System (ADS)
Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico
2013-10-01
The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.
Sparse-sampling with time-encoded (TICO) stimulated Raman scattering for fast image acquisition
NASA Astrophysics Data System (ADS)
Hakert, Hubertus; Eibl, Matthias; Karpf, Sebastian; Huber, Robert
2017-07-01
Modern biomedical imaging modalities aim to provide researchers a multimodal contrast for a deeper insight into a specimen under investigation. A very promising technique is stimulated Raman scattering (SRS) microscopy, which can unveil the chemical composition of a sample with a very high specificity. Although the signal intensities are enhanced manifold to achieve a faster acquisition of images if compared to standard Raman microscopy, there is a trade-off between specificity and acquisition speed. Commonly used SRS concepts either probe only very few Raman transitions as the tuning of the applied laser sources is complicated or record whole spectra with a spectrometer based setup. While the first approach is fast, it reduces the specificity and the spectrometer approach records whole spectra -with energy differences where no Raman information is present-, which limits the acquisition speed. Therefore, we present a new approach based on the TICO-Raman concept, which we call sparse-sampling. The TICO-sparse-sampling setup is fully electronically controllable and allows probing of only the characteristic peaks of a Raman spectrum instead of always acquiring a whole spectrum. By reducing the spectral points to the relevant peaks, the acquisition time can be greatly reduced compared to a uniformly, equidistantly sampled Raman spectrum while the specificity and the signal to noise ratio (SNR) are maintained. Furthermore, all laser sources are completely fiber based. The synchronized detection enables a full resolution of the Raman signal, whereas the analogue and digital balancing allows shot noise limited detection. First imaging results with polystyrene (PS) and polymethylmethacrylate (PMMA) beads confirm the advantages of TICO sparse-sampling. We achieved a pixel dwell time as low as 35 μs for an image differentiating both species. The mechanical properties of the applied voice coil stage for scanning the sample currently limits even faster acquisition.
Fast neutron flux analyzer with real-time digital pulse shape discrimination
NASA Astrophysics Data System (ADS)
Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.
2016-08-01
Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.
Regularization techniques on least squares non-uniform fast Fourier transform.
Gibiino, Fabio; Positano, Vincenzo; Landini, Luigi; Santarelli, Maria Filomena
2013-05-01
Non-Cartesian acquisition strategies are widely used in MRI to dramatically reduce the acquisition time while at the same time preserving the image quality. Among non-Cartesian reconstruction methods, the least squares non-uniform fast Fourier transform (LS_NUFFT) is a gridding method based on a local data interpolation kernel that minimizes the worst-case approximation error. The interpolator is chosen using a pseudoinverse matrix. As the size of the interpolation kernel increases, the inversion problem may become ill-conditioned. Regularization methods can be adopted to solve this issue. In this study, we compared three regularization methods applied to LS_NUFFT. We used truncated singular value decomposition (TSVD), Tikhonov regularization and L₁-regularization. Reconstruction performance was evaluated using the direct summation method as reference on both simulated and experimental data. We also evaluated the processing time required to calculate the interpolator. First, we defined the value of the interpolator size after which regularization is needed. Above this value, TSVD obtained the best reconstruction. However, for large interpolator size, the processing time becomes an important constraint, so an appropriate compromise between processing time and reconstruction quality should be adopted. Copyright © 2013 John Wiley & Sons, Ltd.
Specifications and implementation of the RT MHD control system for the EC launcher of FTU
NASA Astrophysics Data System (ADS)
Galperti, C.; Alessi, E.; Boncagni, L.; Bruschi, A.; Granucci, G.; Grosso, A.; Iannone, F.; Marchetto, C.; Nowak, S.; Panella, M.; Sozzi, C.; Tilia, B.
2012-09-01
To perform real time plasma control experiments using EC heating waves by using the new fast launcher installed on FTU a dedicated data acquisition and elaboration system has been designed recently. A prototypical version of the acquisition/control system has been recently developed and will be tested on FTU machine in its next experimental campaign. The open-source framework MARTe (Multi-threaded Application Real-Time executor) on Linux/RTAI real-time operating system has been chosen as software platform to realize the control system. Standard open-architecture industrial PCs, based either on VME bus and CompactPCI bus equipped with standard input/output cards are the chosen hardware platform.
NASA Technical Reports Server (NTRS)
Lincoln, K. A.
1980-01-01
Mass spectra are produced in most mass spectrometers by sweeping some parameter within the instrument as the sampled gases flow into the ion source. It is evident that any fluctuation in the gas during the sweep (mass scan) of the instrument causes the output spectrum to be skewed in its mass peak intensities. The time of flight mass spectrometer (TOFMS) with its fast, repetitive mode of operation produces spectra without skewing or varying instrument parameters and because all ion species are ejected from the ion source simultaneously, the spectra are inherently not skewed despite rapidly changing gas pressure or composition in the source. Methods of exploiting this feature by utilizing fast digital data acquisition systems, such as transient recorders and signal averagers which are commercially available are described. Applications of this technique are presented including TOFMS sampling of vapors produced by both pulsed and continuous laser heating of materials.
In vivo Proton Electron Double Resonance Imaging of Mice with Fast Spin Echo Pulse Sequence
Sun, Ziqi; Li, Haihong; Petryakov, Sergey; Samouilov, Alex; Zweier, Jay L.
2011-01-01
Purpose To develop and evaluate a 2D fast spin echo (FSE) pulse sequence for enhancing temporal resolution and reducing tissue heating for in vivo proton electron double resonance imaging (PEDRI) of mice. Materials and Methods A four-compartment phantom containing 2 mM TEMPONE was imaged at 20.1 mT using 2D FSE-PEDRI and regular gradient echo (GRE)-PEDRI pulse sequences. Control mice were infused with TEMPONE over ∼1 min followed by time-course imaging using the 2D FSE-PEDRI sequence at intervals of 10 – 30 s between image acquisitions. The average signal intensity from the time-course images was analyzed using a first-order kinetics model. Results Phantom experiments demonstrated that EPR power deposition can be greatly reduced using the FSE-PEDRI pulse sequence compared to the conventional gradient echo pulse sequence. High temporal resolution was achieved at ∼4 s per image acquisition using the FSE-PEDRI sequence with a good image SNR in the range of 233-266 in the phantom study. The TEMPONE half-life measured in vivo was ∼72 s. Conclusion Thus, the FSE-PEDRI pulse sequence enables fast in vivo functional imaging of free radical probes in small animals greatly reducing EPR irradiation time with decreased power deposition and provides increased temporal resolution. PMID:22147559
Scanning lidar fluorosensor for remote diagnostic of surfaces
NASA Astrophysics Data System (ADS)
Caneve, Luisa; Colao, Francesco; Fantoni, Roberta; Fiorani, Luca
2013-08-01
Scanning hyperspectral systems based on laser induced fluorescence (LIF) have been developed and realized at the ENEA allowing to obtain information of analytical and qualitative interest on different materials by the study of the emission of fluorescence. This technique, for a surface analysis, is fast, remote, not invasive and specific. A new compact setup capable of fast 2D monochromatic images acquisition on up to 90 different spectral channels in the visible/UV range will be presented. It has been recently built with the aim to increase the performances in terms of space resolution, time resolved capabilities and data acquisition speed. Major achievements have been reached by a critical review of the optical design. The results recently obtained with in-situ measurements of interest for applications in the field of cultural heritage will be shown. 2001 Elsevier Science. All rights reserved
Hardware Timestamping for an Image Acquisition System Based on FlexRIO and IEEE 1588 v2 Standard
NASA Astrophysics Data System (ADS)
Esquembri, S.; Sanz, D.; Barrera, E.; Ruiz, M.; Bustos, A.; Vega, J.; Castro, R.
2016-02-01
Current fusion devices usually implement distributed acquisition systems for the multiple diagnostics of their experiments. However, each diagnostic is composed by hundreds or even thousands of signals, including images from the vessel interior. These signals and images must be correctly timestamped, because all the information will be analyzed to identify plasma behavior using temporal correlations. For acquisition devices without synchronization mechanisms the timestamp is given by another device with timing capabilities when signaled by the first device. Later, each data should be related with its timestamp, usually via software. This critical action is unfeasible for software applications when sampling rates are high. In order to solve this problem this paper presents the implementation of an image acquisition system with real-time hardware timestamping mechanism. This is synchronized with a master clock using the IEEE 1588 v2 Precision Time Protocol (PTP). Synchronization, image acquisition and processing, and timestamping mechanisms are implemented using Field Programmable Gate Array (FPGA) and a timing card -PTP v2 synchronized. The system has been validated using a camera simulator streaming videos from fusion databases. The developed architecture is fully compatible with ITER Fast Controllers and has been integrated with EPICS to control and monitor the whole system.
Target-locking acquisition with real-time confocal (TARC) microscopy.
Lu, Peter J; Sims, Peter A; Oki, Hidekazu; Macarthur, James B; Weitz, David A
2007-07-09
We present a real-time target-locking confocal microscope that follows an object moving along an arbitrary path, even as it simultaneously changes its shape, size and orientation. This Target-locking Acquisition with Realtime Confocal (TARC) microscopy system integrates fast image processing and rapid image acquisition using a Nipkow spinning-disk confocal microscope. The system acquires a 3D stack of images, performs a full structural analysis to locate a feature of interest, moves the sample in response, and then collects the next 3D image stack. In this way, data collection is dynamically adjusted to keep a moving object centered in the field of view. We demonstrate the system's capabilities by target-locking freely-diffusing clusters of attractive colloidal particles, and activelytransported quantum dots (QDs) endocytosed into live cells free to move in three dimensions, for several hours. During this time, both the colloidal clusters and live cells move distances several times the length of the imaging volume.
Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography
NASA Astrophysics Data System (ADS)
Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea
2013-09-01
Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.
NASA Technical Reports Server (NTRS)
Booker, Mattie
1992-01-01
The Flight Dynamics Facility (FDF) of the Flight Dynamics Division (FDD), of the Goddard Space Flight Center provides acquisition data to tracking stations and orbit and attitude services to scientists and mission support personnel. The following paper explains how a method was determined that found spacecraft entry and exit times of the aurora zone.
Optoelectronic date acquisition system based on FPGA
NASA Astrophysics Data System (ADS)
Li, Xin; Liu, Chunyang; Song, De; Tong, Zhiguo; Liu, Xiangqing
2015-11-01
An optoelectronic date acquisition system is designed based on FPGA. FPGA chip that is EP1C3T144C8 of Cyclone devices from Altera corporation is used as the centre of logic control, XTP2046 chip is used as A/D converter, host computer that communicates with the date acquisition system through RS-232 serial communication interface are used as display device and photo resistance is used as photo sensor. We use Verilog HDL to write logic control code about FPGA. It is proved that timing sequence is correct through the simulation of ModelSim. Test results indicate that this system meets the design requirement, has fast response and stable operation by actual hardware circuit test.
Fast exposure time decision in multi-exposure HDR imaging
NASA Astrophysics Data System (ADS)
Piao, Yongjie; Jin, Guang
2012-10-01
Currently available imaging and display system exists the problem of insufficient dynamic range, and the system cannot restore all the information for an high dynamic range (HDR) scene. The number of low dynamic range(LDR) image samples and fastness of exposure time decision impacts the real-time performance of the system dramatically. In order to realize a real-time HDR video acquisition system, this paper proposed a fast and robust method for exposure time selection in under and over exposure area which is based on system response function. The method utilized the monotony of the imaging system. According to this characteristic the exposure time is adjusted to an initial value to make the median value of the image equals to the middle value of the system output range; then adjust the exposure time to make the pixel value on two sides of histogram be the middle value of the system output range. Thus three low dynamic range images are acquired. Experiments show that the proposed method for adjusting the initial exposure time can converge in two iterations which is more fast and stable than average gray control method. As to the exposure time adjusting in under and over exposed area, the proposed method can use the dynamic range of the system more efficiently than fixed exposure time method.
48 CFR 213.402 - Conditions for use.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Conditions for use. 213.402 Section 213.402 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment...
48 CFR 213.402 - Conditions for use.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Conditions for use. 213.402 Section 213.402 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment...
48 CFR 213.402 - Conditions for use.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Conditions for use. 213.402 Section 213.402 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment...
48 CFR 213.402 - Conditions for use.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Conditions for use. 213.402 Section 213.402 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment...
48 CFR 213.402 - Conditions for use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Conditions for use. 213.402 Section 213.402 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment...
Low-dose x-ray tomography through a deep convolutional neural network
Yang, Xiaogang; De Andrade, Vincent; Scullin, William; ...
2018-02-07
Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less
Low-dose x-ray tomography through a deep convolutional neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaogang; De Andrade, Vincent; Scullin, William
Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less
NASA Astrophysics Data System (ADS)
Cajgfinger, Thomas; Chabanat, Eric; Dominjon, Agnes; Doan, Quang T.; Guerin, Cyrille; Houles, Julien; Barbier, Remi
2011-03-01
Nano-biophotonics applications will benefit from new fluorescent microscopy methods based essentially on super-resolution techniques (beyond the diffraction limit) on large biological structures (membranes) with fast frame rate (1000 Hz). This trend tends to push the photon detectors to the single-photon counting regime and the camera acquisition system to real time dynamic multiple-target tracing. The LUSIPHER prototype presented in this paper aims to give a different approach than those of Electron Multiplied CCD (EMCCD) technology and try to answer to the stringent demands of the new nano-biophotonics imaging techniques. The electron bombarded CMOS (ebCMOS) device has the potential to respond to this challenge, thanks to the linear gain of the accelerating high voltage of the photo-cathode, to the possible ultra fast frame rate of CMOS sensors and to the single-photon sensitivity. We produced a camera system based on a 640 kPixels ebCMOS with its acquisition system. The proof of concept for single-photon based tracking for multiple single-emitters is the main result of this paper.
NASA Technical Reports Server (NTRS)
Qin, J. X.; Shiota, T.; Thomas, J. D.
2000-01-01
Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.
Qin, J X; Shiota, T; Thomas, J D
2000-11-01
Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.
Faster, More Reproducible DESI-MS for Biological Tissue Imaging
NASA Astrophysics Data System (ADS)
Tillner, Jocelyn; Wu, Vincen; Jones, Emrys A.; Pringle, Steven D.; Karancsi, Tamas; Dannhorn, Andreas; Veselkov, Kirill; McKenzie, James S.; Takats, Zoltan
2017-10-01
A new, more robust sprayer for desorption electrospray ionization (DESI) mass spectrometry imaging is presented. The main source of variability in DESI is thought to be the uncontrolled variability of various geometric parameters of the sprayer, primarily the position of the solvent capillary, or more specifically, its positioning within the gas capillary or nozzle. If the solvent capillary is off-center, the sprayer becomes asymmetrical, making the geometry difficult to control and compromising reproducibility. If the stiffness, tip quality, and positioning of the capillary are improved, sprayer reproducibility can be improved by an order of magnitude. The quality of the improved sprayer and its potential for high spatial resolution imaging are demonstrated on human colorectal tissue samples by acquisition of images at pixel sizes of 100, 50, and 20 μm, which corresponds to a lateral resolution of 40-60 μm, similar to the best values published in the literature. The high sensitivity of the sprayer also allows combination with a fast scanning quadrupole time-of-flight mass spectrometer. This provides up to 30 times faster DESI acquisition, reducing the overall acquisition time for a 10 mm × 10 mm rat brain sample to approximately 1 h. Although some spectral information is lost with increasing analysis speed, the resulting data can still be used to classify tissue types on the basis of a previously constructed model. This is particularly interesting for clinical applications, where fast, reliable diagnosis is required. [Figure not available: see fulltext.
Tagliafico, A; Succio, G; Neumaier, C E; Baio, G; Serafini, G; Ghidara, M; Calabrese, M; Martinoli, C
2012-01-01
Objective The purpose of our study was to determine whether a three-dimensional (3D) isotropic resolution fast spin echo sequence (FSE-cube) has similar image quality and diagnostic performance to a routine MRI protocol for brachial plexus evaluation in volunteers and symptomatic patients at 3.0 T. Institutional review board approval and written informed consent were guaranteed. Methods In this prospective study FSE-cube was added to the standard brachial plexus examination protocol in eight patients (mean age, 50.2 years) with brachial plexus pathologies and in six volunteers (mean age, 54 years). Nerve visibility, tissue contrast, edge sharpness, image blurring, motion artefact and acquisition time were calculated for FSE-cube sequences and for the standard protocol on a standardised five-point scale. The visibility of brachial plexus nerve and surrounding tissues at four levels (roots, interscalene area, costoclavicular space and axillary level) was assessed. Results Image quality and nerve visibility did not significantly differ between FSE-cube and the standard protocol (p>0.05). Acquisition time was statistically and clinically significantly shorter with FSE-cube (p<0.05). Pathological findings were seen equally well with FSE-cube and the standard protocol. Conclusion 3D FSE-cube provided similar image quality in a shorter acquisition time and enabled excellent visualisation of brachial plexus anatomy and pathology in any orientation, regardless of the original scanning plane. PMID:21343321
Multi-Compartment T2 Relaxometry Using a Spatially Constrained Multi-Gaussian Model
Raj, Ashish; Pandya, Sneha; Shen, Xiaobo; LoCastro, Eve; Nguyen, Thanh D.; Gauthier, Susan A.
2014-01-01
The brain’s myelin content can be mapped by T2-relaxometry, which resolves multiple differentially relaxing T2 pools from multi-echo MRI. Unfortunately, the conventional fitting procedure is a hard and numerically ill-posed problem. Consequently, the T2 distributions and myelin maps become very sensitive to noise and are frequently difficult to interpret diagnostically. Although regularization can improve stability, it is generally not adequate, particularly at relatively low signal to noise ratio (SNR) of around 100–200. The purpose of this study was to obtain a fitting algorithm which is able to overcome these difficulties and generate usable myelin maps from noisy acquisitions in a realistic scan time. To this end, we restrict the T2 distribution to only 3 distinct resolvable tissue compartments, modeled as Gaussians: myelin water, intra/extra-cellular water and a slow relaxing cerebrospinal fluid compartment. We also impose spatial smoothness expectation that volume fractions and T2 relaxation times of tissue compartments change smoothly within coherent brain regions. The method greatly improves robustness to noise, reduces spatial variations, improves definition of white matter fibers, and enhances detection of demyelinating lesions. Due to efficient design, the additional spatial aspect does not cause an increase in processing time. The proposed method was applied to fast spiral acquisitions on which conventional fitting gives uninterpretable results. While these fast acquisitions suffer from noise and inhomogeneity artifacts, our preliminary results indicate the potential of spatially constrained 3-pool T2 relaxometry. PMID:24896833
NASA Astrophysics Data System (ADS)
Starosta, K.; Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T.; Crawford, H.; Mantica, P.; Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W. K.
2009-11-01
A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a γ ray in a SeGA detector from implementation of γ-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.
NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator
NASA Astrophysics Data System (ADS)
Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian
2018-04-01
The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.
Silicon photonic integrated circuit for fast and precise dual-comb distance metrology.
Weimann, C; Lauermann, M; Hoeller, F; Freude, W; Koos, C
2017-11-27
We demonstrate an optical distance sensor integrated on a silicon photonic chip with a footprint of well below 1 mm 2 . The integrated system comprises a heterodyne receiver structure with tunable power splitting ratio and on-chip photodetectors. The functionality of the device is demonstrated in a synthetic-wavelength interferometry experiment using frequency combs as optical sources. We obtain accurate and fast distance measurements with an unambiguity range of 3.75 mm, a root-mean-square error of 3.4 µm and acquisition times of 14 µs.
The SAFIR experiment: Concept, status and perspectives
NASA Astrophysics Data System (ADS)
Becker, Robert; Buck, Alfred; Casella, Chiara; Dissertori, Günther; Fischer, Jannis; Howard, Alexander; Ito, Mikiko; Khateri, Parisa; Lustermann, Werner; Oliver, Josep F.; Röser, Ulf; Warnock, Geoffrey; Weber, Bruno
2017-02-01
The SAFIR development represents a novel Positron Emission Tomography (PET) detector, conceived for preclinical fast acquisitions inside the bore of a Magnetic Resonance Imaging (MRI) scanner. The goal is hybrid and simultaneous PET/MRI dynamic studies at unprecedented temporal resolutions of a few seconds. The detector relies on matrices of scintillating LSO-based crystals coupled one-to-one with SiPM arrays and readout by fast ASICs with excellent timing resolution and high rate capabilities. The paper describes the detector concept and the initial results in terms of simulations and characterisation measurements.
Real-time plasma control based on the ISTTOK tomography diagnostica)
NASA Astrophysics Data System (ADS)
Carvalho, P. J.; Carvalho, B. B.; Neto, A.; Coelho, R.; Fernandes, H.; Sousa, J.; Varandas, C.; Chávez-Alarcón, E.; Herrera-Velázquez, J. J. E.
2008-10-01
The presently available processing power in generic processing units (GPUs) combined with state-of-the-art programmable logic devices benefits the implementation of complex, real-time driven, data processing algorithms for plasma diagnostics. A tomographic reconstruction diagnostic has been developed for the ISTTOK tokamak, based on three linear pinhole cameras each with ten lines of sight. The plasma emissivity in a poloidal cross section is computed locally on a submillisecond time scale, using a Fourier-Bessel algorithm, allowing the use of the output signals for active plasma position control. The data acquisition and reconstruction (DAR) system is based on ATCA technology and consists of one acquisition board with integrated field programmable gate array (FPGA) capabilities and a dual-core Pentium module running real-time application interface (RTAI) Linux. In this paper, the DAR real-time firmware/software implementation is presented, based on (i) front-end digital processing in the FPGA; (ii) a device driver specially developed for the board which enables streaming data acquisition to the host GPU; and (iii) a fast reconstruction algorithm running in Linux RTAI. This system behaves as a module of the central ISTTOK control and data acquisition system (FIRESIGNAL). Preliminary results of the above experimental setup are presented and a performance benchmarking against the magnetic coil diagnostic is shown.
Parallel multispot smFRET analysis using an 8-pixel SPAD array
NASA Astrophysics Data System (ADS)
Ingargiola, A.; Colyer, R. A.; Kim, D.; Panzeri, F.; Lin, R.; Gulinatti, A.; Rech, I.; Ghioni, M.; Weiss, S.; Michalet, X.
2012-02-01
Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for extracting distance information between two fluorophores (a donor and acceptor dye) on a nanometer scale. This method is commonly used to monitor binding interactions or intra- and intermolecular conformations in biomolecules freely diffusing through a focal volume or immobilized on a surface. The diffusing geometry has the advantage to not interfere with the molecules and to give access to fast time scales. However, separating photon bursts from individual molecules requires low sample concentrations. This results in long acquisition time (several minutes to an hour) to obtain sufficient statistics. It also prevents studying dynamic phenomena happening on time scales larger than the burst duration and smaller than the acquisition time. Parallelization of acquisition overcomes this limit by increasing the acquisition rate using the same low concentrations required for individual molecule burst identification. In this work we present a new two-color smFRET approach using multispot excitation and detection. The donor excitation pattern is composed of 4 spots arranged in a linear pattern. The fluorescent emission of donor and acceptor dyes is then collected and refocused on two separate areas of a custom 8-pixel SPAD array. We report smFRET measurements performed on various DNA samples synthesized with various distances between the donor and acceptor fluorophores. We demonstrate that our approach provides identical FRET efficiency values to a conventional single-spot acquisition approach, but with a reduced acquisition time. Our work thus opens the way to high-throughput smFRET analysis on freely diffusing molecules.
Kulikova, Sofya; Hertz-Pannier, Lucie; Dehaene-Lambertz, Ghislaine
2016-01-01
The volume fraction of water related to myelin (fmy) is a promising MRI index for in vivo assessment of brain myelination, that can be derived from multi-component analysis of T1 and T2 relaxometry signals. However, existing quantification methods require rather long acquisition and/or post-processing times, making implementation difficult both in research studies on healthy unsedated children and in clinical examinations. The goal of this work was to propose a novel strategy for fmy quantification within acceptable acquisition and post-processing times. Our approach is based on a 3-compartment model (myelin-related water, intra/extra-cellular water and unrestricted water), and uses calibrated values of inherent relaxation times (T1c and T2c) for each compartment c. Calibration was first performed on adult relaxometry datasets (N = 3) acquired with large numbers of inversion times (TI) and echo times (TE), using an original combination of a region contraction approach and a non-negative least-square (NNLS) algorithm. This strategy was compared with voxel-wise fitting, and showed robust estimation of T1c and T2c. The accuracy of fmy calculations depending on multiple factors was investigated using simulated data. In the testing stage, our strategy enabled fast fmy mapping, based on relaxometry datasets acquired with reduced TI and TE numbers (acquisition <6 min), and analyzed with NNLS algorithm (post-processing <5min). In adults (N = 13, mean age 22.4±1.6 years), fmy maps showed variability across white matter regions, in agreement with previous studies. In healthy infants (N = 18, aged 3 to 34 weeks), asynchronous changes in fmy values were demonstrated across bundles, confirming the well-known progression of myelination. PMID:27736872
48 CFR 52.213-1 - Fast Payment Procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Fast Payment Procedure. 52....213-1 Fast Payment Procedure. As prescribed in 13.404, insert the following clause: Fast Payment... contract, order, or blanket purchase agreement; and (ii) Display prominently on the invoice “FAST PAY...
48 CFR 52.213-1 - Fast Payment Procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Fast Payment Procedure. 52....213-1 Fast Payment Procedure. As prescribed in 13.404, insert the following clause: Fast Payment... contract, order, or blanket purchase agreement; and (ii) Display prominently on the invoice “FAST PAY...
48 CFR 52.213-1 - Fast Payment Procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Fast Payment Procedure. 52....213-1 Fast Payment Procedure. As prescribed in 13.404, insert the following clause: Fast Payment... contract, order, or blanket purchase agreement; and (ii) Display prominently on the invoice “FAST PAY...
48 CFR 52.213-1 - Fast Payment Procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Fast Payment Procedure. 52....213-1 Fast Payment Procedure. As prescribed in 13.404, insert the following clause: Fast Payment... contract, order, or blanket purchase agreement; and (ii) Display prominently on the invoice “FAST PAY...
48 CFR 52.213-1 - Fast Payment Procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Fast Payment Procedure. 52....213-1 Fast Payment Procedure. As prescribed in 13.404, insert the following clause: Fast Payment... contract, order, or blanket purchase agreement; and (ii) Display prominently on the invoice “FAST PAY...
Rapid Material Appearance Acquisition Using Consumer Hardware
Filip, Jiří; Vávra, Radomír; Krupička, Mikuláš
2014-01-01
A photo-realistic representation of material appearance can be achieved by means of bidirectional texture function (BTF) capturing a material’s appearance for varying illumination, viewing directions, and spatial pixel coordinates. BTF captures many non-local effects in material structure such as inter-reflections, occlusions, shadowing, or scattering. The acquisition of BTF data is usually time and resource-intensive due to the high dimensionality of BTF data. This results in expensive, complex measurement setups and/or excessively long measurement times. We propose an approximate BTF acquisition setup based on a simple, affordable mechanical gantry containing a consumer camera and two LED lights. It captures a very limited subset of material surface images by shooting several video sequences. A psychophysical study comparing captured and reconstructed data with the reference BTFs of seven tested materials revealed that results of our method show a promising visual quality. Speed of the setup has been demonstrated on measurement of human skin and measurement and modeling of a glue dessication time-varying process. As it allows for fast, inexpensive, acquisition of approximate BTFs, this method can be beneficial to visualization applications demanding less accuracy, where BTF utilization has previously been limited. PMID:25340451
Hirata, Kenichiro; Nakaura, Takeshi; Okuaki, Tomoyuki; Tsuda, Noriko; Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki
2018-01-01
We compared the efficacy of three-dimensional (3D) isotropic T2-weighted fast spin-echo imaging using a 3D hybrid profile order technique with a single-breath-hold (3D-Hybrid BH) with a two-dimensional (2D) T2-weighted fast spin-echo conventional respiratory-gated (2D-Conventional RG) technique for visualising small liver lesions. This study was approved by our institutional review board. The requirement to obtain written informed consent was waived. Fifty patients with small (≤15mm) hepatocellular carcinomas (HCC) (n=26), or benign cysts (n=24), had undergone hepatic MRI including both 2D-Conventional RG and 3D-Hybrid BH. We calculated the signal-to-noise ratio (SNR) and tumour-to-liver contrast (TLC). The diagnostic performance of the two protocols was analysed. The image acquisition time was 89% shorter with the 3D-Hybrid BH than with 2D-Conventional RG. There was no significant difference in the SNR between the two protocols. The area under the curve (AUC) of the TLC was significantly higher on 3D-Hybrid BH than on 2D-Conventional RG. The 3D-Hybrid BH sequence significantly improved diagnostic performance for small liver lesions with a shorter image acquisition time without sacrificing accuracy. Copyright © 2017. Published by Elsevier B.V.
Fast X-Ray Fluorescence Microtomography of Hydrated Biological Samples
Lombi, Enzo; de Jonge, Martin D.; Donner, Erica; Kopittke, Peter M.; Howard, Daryl L.; Kirkham, Robin; Ryan, Chris G.; Paterson, David
2011-01-01
Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and metalloid distribution in radiation-sensitive, biological samples. PMID:21674049
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, T.; Jensen, R.; Christensen, M. K.
2012-07-15
We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detectionmore » by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.« less
NASA Astrophysics Data System (ADS)
Andersen, T.; Jensen, R.; Christensen, M. K.; Pedersen, T.; Hansen, O.; Chorkendorff, I.
2012-07-01
We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH3.
Andersen, T; Jensen, R; Christensen, M K; Pedersen, T; Hansen, O; Chorkendorff, I
2012-07-01
We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH(3).
Quick acquisition and recognition method for the beacon in deep space optical communications.
Wang, Qiang; Liu, Yuefei; Ma, Jing; Tan, Liying; Yu, Siyuan; Li, Changjiang
2016-12-01
In deep space optical communications, it is very difficult to acquire the beacon given the long communication distance. Acquisition efficiency is essential for establishing and holding the optical communication link. Here we proposed a quick acquisition and recognition method for the beacon in deep optical communications based on the characteristics of the deep optical link. To identify the beacon from the background light efficiently, we utilized the maximum similarity between the collecting image and the reference image for accurate recognition and acquisition of the beacon in the area of uncertainty. First, the collecting image and the reference image were processed by Fourier-Mellin. Second, image sampling and image matching were applied for the accurate positioning of the beacon. Finally, the field programmable gate array (FPGA)-based system was used to verify and realize this method. The experimental results showed that the acquisition time for the beacon was as fast as 8.1s. Future application of this method in the system design of deep optical communication will be beneficial.
The use of integrated focal plane array technologies in laser microsatellite networks
NASA Astrophysics Data System (ADS)
Arnon, Shlomi
2004-10-01
Clustering micro satellites in cooperative fly formation constellations leads to high-performance space systems. The only way to achieve high-speed communication between the satellites is by a laser beam with a narrow divergence angle. In order to make the communication successful three types of focal plane detector arrays are required in the communication terminal: acquisition, tracking and communication detector arrays. The acquisition detector array is used to acquire the neighbor satellite using a wide field-of-view telescope. The tracking detector provides fast, real time and accurate direction location of the neighbor satellite. Based on the information from the acquisition and tracking detectors the receiver and transmitter maintain line of sight. The development of large, fast and very sensitive focal plane detector arrays makes it possible to implement the acquisition, tracking and communication with only one focal plane detector array. By doing so it is possible to reduce dramatically the size, weight, and cost of the optics and electronics which leads to lightweight communication terminals. As a result, the satellites are smaller and lighter, which reduces the space mission cost and increases the booster efficiency. In this paper we will present an overview of the concept of integrated focal plane arrays for laser satellite communication. We also present simulation results based on real system parameters and compare different implementation options.
Non-invasive detection of cocaine dissolved in beverages using displaced Raman spectroscopy.
Eliasson, C; Macleod, N A; Matousek, P
2008-01-21
We demonstrate the potential of Raman spectroscopy to detect cocaine concealed inside transparent glass bottles containing alcoholic beverages. A clear Raman signature of cocaine with good signal-to-noise was obtained from a approximately 300 g solution of adulterated cocaine (purity 75%) in a 0.7 L authentic brown bottle of rum with 1 s acquisition time. The detection limit was estimated to be of the order of 9 g of pure cocaine per 0.7 L (approximately 0.04 moles L(-1)) with 1 s acquisition time. The technique holds great promise for the fast, non-invasive, detection of concealed illicit compounds inside beverages using portable Raman instruments, thus permitting drug trafficking to be combated more effectively.
Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors
NASA Astrophysics Data System (ADS)
Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie
2016-10-01
A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.
Digital-only PLL with adaptive search step
NASA Astrophysics Data System (ADS)
Lin, Ming-Lang; Huang, Shu-Chuan; Liu, Jie-Cherng
2014-06-01
In this paper, an all-digital phase-locked loop (PLL) with adaptively controlled up/down counter serves as the loop filter is presented, and it is implemented on a field-programmable gate array. The detailed circuit of the adaptive up/down counter implementing the adaptive search algorithm is also given, in which the search step for frequency acquisition is adaptively scaled down in half until it is reduced to zero. The phase jitter of the proposed PLL can be lowered, yet keeping with fast lock-in time. Thus, the dilemma between the low phase jitter and fast lock-in time of the traditional PLL can be resolved. Simulation results and circuit implementation show that the locked count, phase jitter and lock-in time of the proposed PLL are consistent with the theoretical predictions.
NASA Technical Reports Server (NTRS)
Pedings, Marc
2007-01-01
RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.
Zhao, Hongbo; Chen, Yuying; Feng, Wenquan; Zhuang, Chen
2018-05-25
Inter-satellite links are an important component of the new generation of satellite navigation systems, characterized by low signal-to-noise ratio (SNR), complex electromagnetic interference and the short time slot of each satellite, which brings difficulties to the acquisition stage. The inter-satellite link in both Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) adopt the long code spread spectrum system. However, long code acquisition is a difficult and time-consuming task due to the long code period. Traditional folding methods such as extended replica folding acquisition search technique (XFAST) and direct average are largely restricted because of code Doppler and additional SNR loss caused by replica folding. The dual folding method (DF-XFAST) and dual-channel method have been proposed to achieve long code acquisition in low SNR and high dynamic situations, respectively, but the former is easily affected by code Doppler and the latter is not fast enough. Considering the environment of inter-satellite links and the problems of existing algorithms, this paper proposes a new long code acquisition algorithm named dual-channel acquisition method based on the extended replica folding algorithm (DC-XFAST). This method employs dual channels for verification. Each channel contains an incoming signal block. Local code samples are folded and zero-padded to the length of the incoming signal block. After a circular FFT operation, the correlation results contain two peaks of the same magnitude and specified relative position. The detection process is eased through finding the two largest values. The verification takes all the full and partial peaks into account. Numerical results reveal that the DC-XFAST method can improve acquisition performance while acquisition speed is guaranteed. The method has a significantly higher acquisition probability than folding methods XFAST and DF-XFAST. Moreover, with the advantage of higher detection probability and lower false alarm probability, it has a lower mean acquisition time than traditional XFAST, DF-XFAST and zero-padding.
Fast, low-dose patient localization on TomoTherapy via topogram registration.
Moore, Kevin L; Palaniswaamy, Geethpriya; White, Benjamin; Goddu, S Murty; Low, Daniel A
2010-08-01
To investigate a protocol which efficiently localizes TomoTherapy patients with a scout imaging (topogram) mode that can be used with or instead of 3D megavoltage computed tomography (MVCT) imaging. The process presented here is twofold: (a) The acquisition of the topogram using the TomoTherapy MV imaging system and (b) the generation of a digitally reconstructed topogram (DRT) derived from a standard kV CT simulation data set. The unique geometric characteristics of the current TomoTherapy imaging system were explored both theoretically and by acquiring topograms of anthropomorphic phantoms and comparing these images to DRT images. The performance of the MV topogram imaging system in terms of image quality, dose incurred to the patient, and acquisition time was investigated using ionization chamber and radiographic film measurements. The time required to acquire a clinically usable topogram, limited by the maximum couch speed of 4.0 cm s(-1), was 12.5 s for a 50 cm long field. The patient dose was less than 1% of that delivered by a helical MVCT scan. Further refinements within the current TomoTherapy system, most notably decreasing the imaging beam repetition rate during MV topogram acquisition, would further reduce the topogram dose to less than 25 microGy per scan without compromising image quality. Topogram localization on TomoTherapy is a fast and low-dose alternative to 3D MVCT localization. A protocol designed that exclusively utilized MV topograms would result in a 30-fold reduction in imaging time and a 100-fold reduction in dose from localization scans using the current TomoTherapy workflow.
Litwiller, Daniel V.; Saranathan, Manojkumar; Vasanawala, Shreyas S.
2017-01-01
Purpose To assess image quality and speed improvements for single-shot fast spin-echo (SSFSE) with variable refocusing flip angles and full-Fourier acquisition (vrfSSFSE) pelvic imaging via a prospective trial performed in the context of uterine leiomyoma evaluation. Materials and Methods Institutional review board approval and informed consent were obtained. vrfSSFSE and conventional SSFSE sagittal and coronal oblique acquisitions were performed in 54 consecutive female patients referred for 3-T magnetic resonance (MR) evaluation of known or suspected uterine leiomyomas. Two radiologists who were blinded to the image acquisition technique semiquantitatively scored images on a scale from −2 to 2 for noise, image contrast, sharpness, artifacts, and perceived ability to evaluate uterine, ovarian, and musculoskeletal structures. The null hypothesis of no significant difference between pulse sequences was assessed with a Wilcoxon signed rank test by using a Holm-Bonferroni correction for multiple comparisons. Results Because of reductions in specific absorption rate, vrfSSFSE imaging demonstrated significantly increased speed (more than twofold, P < .0001), with mean repetition times compared with conventional SSFSE imaging decreasing from 1358 to 613 msec for sagittal acquisitions and from 1494 to 621 msec for coronal oblique acquisitions. Almost all assessed image quality and perceived diagnostic capability parameters were significantly improved with vrfSSFSE imaging. These improvements included noise, sharpness, and ability to evaluate the junctional zone, myometrium, and musculoskeletal structures for both sagittal acquisitions (mean values of 0.56, 0.63, 0.42, 0.56, and 0.80, respectively; all P values < .0001) and coronal oblique acquisitions (mean values of 0.81, 1.09, 0.65, 0.93, and 1.12, respectively; all P values < .0001). For evaluation of artifacts, there was an insufficient number of cases with differences to allow statistical testing. Conclusion Compared with conventional SSFSE acquisition, vrfSSFSE acquisition increases 3-T imaging speed via reduced specific absorption rate and leads to significant improvements in perceived image quality and perceived diagnostic capability when evaluating pelvic structures. © RSNA, 2016 Online supplemental material is available for this article. PMID:27564132
Registration of surface structures using airborne focused ultrasound.
Sundström, N; Börjesson, P O; Holmer, N G; Olsson, L; Persson, H W
1991-01-01
A low-cost measuring system, based on a personal computer combined with standard equipment for complex measurements and signal processing, has been assembled. Such a system increases the possibilities for small hospitals and clinics to finance advanced measuring equipment. A description of equipment developed for airborne ultrasound together with a personal computer-based system for fast data acquisition and processing is given. Two air-adapted ultrasound transducers with high lateral resolution have been developed. Furthermore, a few results for fast and accurate estimation of signal arrival time are presented. The theoretical estimation models developed are applied to skin surface profile registrations.
The ROSPHERE γ-ray spectroscopy array
NASA Astrophysics Data System (ADS)
Bucurescu, D.; Căta-Danil, I.; Ciocan, G.; Costache, C.; Deleanu, D.; Dima, R.; Filipescu, D.; Florea, N.; Ghiţă, D. G.; Glodariu, T.; Ivaşcu, M.; Lică, R.; Mărginean, N.; Mărginean, R.; Mihai, C.; Negret, A.; Niţă, C. R.; Olăcel, A.; Pascu, S.; Sava, T.; Stroe, L.; Şerban, A.; Şuvăilă, R.; Toma, S.; Zamfir, N. V.; Căta-Danil, G.; Gheorghe, I.; Mitu, I. O.; Suliman, G.; Ur, C. A.; Braunroth, T.; Dewald, A.; Fransen, C.; Bruce, A. M.; Podolyák, Zs.; Regan, P. H.; Roberts, O. J.
2016-11-01
The ROmanian array for SPectroscopy in HEavy ion REactions (ROSPHERE) has been designed as a multi-detector setup dedicated to γ-ray spectroscopy studies at the Bucharest 9 MV Tandem accelerator. Consisting of up to 25 detectors (either Compton suppressed HPGe detectors or fast LaBr3(Ce) scintillator detectors) together with a state of the art plunger device, ROSPHERE is a powerful tool for lifetime measurements using the Recoil Distance Doppler Shift (RDDS) and the in-beam Fast Electronic Scintillation Timing (FEST) methods. The array's geometry, detectors, electronics and data acquisition system are described. Selected results from the first experimental campaigns are also presented.
Michiels, Steven; Poels, Kenneth; Crijns, Wouter; Delombaerde, Laurence; De Roover, Robin; Vanstraelen, Bianca; Haustermans, Karin; Nuyts, Sandra; Depuydt, Tom
2018-05-05
Linac improvements in gantry speed, leaf speed and dose rate may increase the time-efficiency of volumetric modulated arc therapy (VMAT) delivery. The plan quality achievable with faster VMAT however remains to be investigated. In this study, a fast-rotating O-ring linac with fast-moving leaves is compared with a C-arm linac in terms of plan quality and delivery time for VMAT of head-and-neck cancer (HNC). For 30 patients with HNC, treatment planning was performed using dual-arc (HA2) and triple-arc (HA3) VMAT on a Halcyon fast-rotating O-ring linac and using dual-arc VMAT on a TrueBeam C-arm linac (TB2). Target coverage metrics and complication probabilities were compared. Plan delivery was verified using 3%/3 mm gamma-index analysis of helical diode array measurements. Volumetric image acquisition and plan delivery times were compared. All studied VMAT-techniques fulfilled the target coverage objectives. D 2% to the boost volume was higher for HA2 (median 103.7%, 1st-3rd quartile [103.5%;104.0%]) and HA3 (103.2% [103.0%;103.7%)] than for TB2 (102.6% [102.3%;103.0%)], resulting in an increased boost target dose heterogeneity for HA2 and HA3. Complication probabilities were comparable between HA2 and TB2, while HA3 showed a xerostomia probability reduction (0.8% [0.2%;1.8%]) and dysphagia probability reduction (1.0% [0.2%;1.8%]) compared with TB2. Gamma-index agreement scores were never below 93.0% for HA2, HA3 and TB2. Volumetric imaging and plan delivery time was shorter for HA2 (1 m 24 s ± 1 s) and HA3 (1 m 54 s ± 1 s) than for TB2 (2 m 47 s ± 1 s). For VMAT of HNC, the fast-rotating O-ring linac at least maintains the plan quality of two arcs on a C-arm linac while reducing the image acquisition and plan delivery time. Copyright © 2018 Elsevier B.V. All rights reserved.
Fault detection of gearbox using time-frequency method
NASA Astrophysics Data System (ADS)
Widodo, A.; Satrijo, Dj.; Prahasto, T.; Haryanto, I.
2017-04-01
This research deals with fault detection and diagnosis of gearbox by using vibration signature. In this work, fault detection and diagnosis are approached by employing time-frequency method, and then the results are compared with cepstrum analysis. Experimental work has been conducted for data acquisition of vibration signal thru self-designed gearbox test rig. This test-rig is able to demonstrate normal and faulty gearbox i.e., wears and tooth breakage. Three accelerometers were used for vibration signal acquisition from gearbox, and optical tachometer was used for shaft rotation speed measurement. The results show that frequency domain analysis using fast-fourier transform was less sensitive to wears and tooth breakage condition. However, the method of short-time fourier transform was able to monitor the faults in gearbox. Wavelet Transform (WT) method also showed good performance in gearbox fault detection using vibration signal after employing time synchronous averaging (TSA).
Probabilistic Motor Sequence Yields Greater Offline and Less Online Learning than Fixed Sequence
Du, Yue; Prashad, Shikha; Schoenbrun, Ilana; Clark, Jane E.
2016-01-01
It is well acknowledged that motor sequences can be learned quickly through online learning. Subsequently, the initial acquisition of a motor sequence is boosted or consolidated by offline learning. However, little is known whether offline learning can drive the fast learning of motor sequences (i.e., initial sequence learning in the first training session). To examine offline learning in the fast learning stage, we asked four groups of young adults to perform the serial reaction time (SRT) task with either a fixed or probabilistic sequence and with or without preliminary knowledge (PK) of the presence of a sequence. The sequence and PK were manipulated to emphasize either procedural (probabilistic sequence; no preliminary knowledge (NPK)) or declarative (fixed sequence; with PK) memory that were found to either facilitate or inhibit offline learning. In the SRT task, there were six learning blocks with a 2 min break between each consecutive block. Throughout the session, stimuli followed the same fixed or probabilistic pattern except in Block 5, in which stimuli appeared in a random order. We found that PK facilitated the learning of a fixed sequence, but not a probabilistic sequence. In addition to overall learning measured by the mean reaction time (RT), we examined the progressive changes in RT within and between blocks (i.e., online and offline learning, respectively). It was found that the two groups who performed the fixed sequence, regardless of PK, showed greater online learning than the other two groups who performed the probabilistic sequence. The groups who performed the probabilistic sequence, regardless of PK, did not display online learning, as indicated by a decline in performance within the learning blocks. However, they did demonstrate remarkably greater offline improvement in RT, which suggests that they are learning the probabilistic sequence offline. These results suggest that in the SRT task, the fast acquisition of a motor sequence is driven by concurrent online and offline learning. In addition, as the acquisition of a probabilistic sequence requires greater procedural memory compared to the acquisition of a fixed sequence, our results suggest that offline learning is more likely to take place in a procedural sequence learning task. PMID:26973502
Probabilistic Motor Sequence Yields Greater Offline and Less Online Learning than Fixed Sequence.
Du, Yue; Prashad, Shikha; Schoenbrun, Ilana; Clark, Jane E
2016-01-01
It is well acknowledged that motor sequences can be learned quickly through online learning. Subsequently, the initial acquisition of a motor sequence is boosted or consolidated by offline learning. However, little is known whether offline learning can drive the fast learning of motor sequences (i.e., initial sequence learning in the first training session). To examine offline learning in the fast learning stage, we asked four groups of young adults to perform the serial reaction time (SRT) task with either a fixed or probabilistic sequence and with or without preliminary knowledge (PK) of the presence of a sequence. The sequence and PK were manipulated to emphasize either procedural (probabilistic sequence; no preliminary knowledge (NPK)) or declarative (fixed sequence; with PK) memory that were found to either facilitate or inhibit offline learning. In the SRT task, there were six learning blocks with a 2 min break between each consecutive block. Throughout the session, stimuli followed the same fixed or probabilistic pattern except in Block 5, in which stimuli appeared in a random order. We found that PK facilitated the learning of a fixed sequence, but not a probabilistic sequence. In addition to overall learning measured by the mean reaction time (RT), we examined the progressive changes in RT within and between blocks (i.e., online and offline learning, respectively). It was found that the two groups who performed the fixed sequence, regardless of PK, showed greater online learning than the other two groups who performed the probabilistic sequence. The groups who performed the probabilistic sequence, regardless of PK, did not display online learning, as indicated by a decline in performance within the learning blocks. However, they did demonstrate remarkably greater offline improvement in RT, which suggests that they are learning the probabilistic sequence offline. These results suggest that in the SRT task, the fast acquisition of a motor sequence is driven by concurrent online and offline learning. In addition, as the acquisition of a probabilistic sequence requires greater procedural memory compared to the acquisition of a fixed sequence, our results suggest that offline learning is more likely to take place in a procedural sequence learning task.
Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera
NASA Astrophysics Data System (ADS)
Trichopoulos, Georgios C.; Sertel, Kubilay
2015-07-01
We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.
Flexible software platform for fast-scan cyclic voltammetry data acquisition and analysis.
Bucher, Elizabeth S; Brooks, Kenneth; Verber, Matthew D; Keithley, Richard B; Owesson-White, Catarina; Carroll, Susan; Takmakov, Pavel; McKinney, Collin J; Wightman, R Mark
2013-11-05
Over the last several decades, fast-scan cyclic voltammetry (FSCV) has proved to be a valuable analytical tool for the real-time measurement of neurotransmitter dynamics in vitro and in vivo. Indeed, FSCV has found application in a wide variety of disciplines including electrochemistry, neurobiology, and behavioral psychology. The maturation of FSCV as an in vivo technique led users to pose increasingly complex questions that require a more sophisticated experimental design. To accommodate recent and future advances in FSCV application, our lab has developed High Definition Cyclic Voltammetry (HDCV). HDCV is an electrochemical software suite that includes data acquisition and analysis programs. The data collection program delivers greater experimental flexibility and better user feedback through live displays. It supports experiments involving multiple electrodes with customized waveforms. It is compatible with transistor-transistor logic-based systems that are used for monitoring animal behavior, and it enables simultaneous recording of electrochemical and electrophysiological data. HDCV analysis streamlines data processing with superior filtering options, seamlessly manages behavioral events, and integrates chemometric processing. Furthermore, analysis is capable of handling single files collected over extended periods of time, allowing the user to consider biological events on both subsecond and multiminute time scales. Here we describe and demonstrate the utility of HDCV for in vivo experiments.
Lange, Nicholas D; Thomas, Rick P; Buttaccio, Daniel R; Illingworth, David A; Davelaar, Eddy J
2013-02-01
Although temporal dynamics are inherent aspects of diagnostic tasks, few studies have investigated how various aspects of time course influence hypothesis generation. An experiment is reported that demonstrates that working memory dynamics operating during serial data acquisition bias hypothesis generation. The presentation rate (and order) of a sequence of serially presented symptoms was manipulated to be either fast (180 ms per symptom) or slow (1,500 ms per symptom) in a simulated medical diagnosis task. When the presentation rate was slow, participants chose the disease hypothesis consistent with the symptoms appearing later in the sequence. When the presentation rate was fast, however, participants chose the disease hypothesis consistent with the symptoms appearing earlier in the sequence, therefore representing a novel primacy effect. We predicted and account for this effect through competitive working memory dynamics governing information acquisition and the contribution of maintained information to the retrieval of hypotheses from long-term memory.
Treadmill performance of mice with cerebellar lesions: 1. Purkinje cell degeneration mutant mice.
Le Marec, N; Lalonde, R
1998-02-01
The purpose of this study was to evaluate the sensorimotor skills of a spontaneous mouse mutant, Purkinje cell degeneration (PCD), marked by selective cerebellar cortical atrophy on a treadmill activated at 1 of 2 speeds and at 1 of 3 slopes, requiring forward movements to avoid footshocks. There was no difference in latencies before falling from the belt between PCD mutants and controls during acquisition. However, PCD mutants were impaired on the fast treadmill during retention, implicating the cerebellum in the memory of a motor skill. During acquisition of the slow treadmill task at the 2 lowest slopes of inclination, PCD mutants spent more time walking than controls, an indication of a decreased ability of coordinating whole body movements. The same pattern of higher walking time on the slow treadmill in PCD mutants was evident during retention. These results indicate that the cerebellar cortex is involved in the acquisition and the retention of a task requiring equilibrium.
Direct-Y: Fast Acquisition of the GPS PPS Signal
NASA Technical Reports Server (NTRS)
Namoos, Omar M.; DiEsposti, Raymond S.
1996-01-01
The NAVSTAR Global Positioning System (GPS) provides positioning and time information to military users via the Precise Positioning Service (PPS) which typically allows users a significant margin of precision over the commercially available Standard Positioning Service (SPS), Military sets that rely on first acquiring the SPS Coarse Acquisition (C/A) code, read from the data message the handover word (HOW) that provides the time-of-signal transmission needed to acquire and lock onto the PPS Y-code. Under extreme battlefield conditions, the use of GPS would be denied to the warfighter who cannot pick up the un-encrypted C/A code. Studies are underway at the GPS Joint Program Office (JPO) at the Space and Missile Center, Los Angeles Air Force Base that are aimed at developing the capability to directly acquire Y-code without first acquiring C/A code. This paper briefly outlines efforts to develop 'direct-Y' acquisition, and various approaches to solving this problem. The potential ramifications of direct-Y to military users are also discussed.
Particle displacement tracking applied to air flows
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.
Developing a Low-Cost System for 3d Data Acquisition
NASA Astrophysics Data System (ADS)
Kossieris, S.; Kourounioti, O.; Agrafiotis, P.; Georgopoulos, A.
2017-11-01
In this paper, a developed low-cost system is described, which aims to facilitate 3D documentation fast and reliably by acquiring the necessary data in outdoor environment for the 3D documentation of façades especially in the case of very narrow streets. In particular, it provides a viable solution for buildings up to 8-10m high and streets as narrow as 2m or even less. In cases like that, it is practically impossible or highly time-consuming to acquire images in a conventional way. This practice would lead to a huge number of images and long processing times. The developed system was tested in the narrow streets of a medieval village on the Greek island of Chios. There, in order to by-pass the problem of short taking distances, it was thought to use high definition action cameras together with a 360˚ camera, which are usually provided with very wide-angle lenses and are capable of acquiring images, of high definition, are rather cheap and, most importantly, extremely light. Results suggest that the system can perform fast 3D data acquisition adequate for deliverables of high quality.
Connolly, Kiah; Beier, Lancelot; Langdorf, Mark I; Anderson, Craig L; Fox, John C
2015-01-01
Our objective was to evaluate the effectiveness of hands-on training at a bedside ultrasound (US) symposium ("Ultrafest") to improve both clinical knowledge and image acquisition skills of medical students. Primary outcome measure was improvement in multiple choice questions on pulmonary or Focused Assessment with Sonography in Trauma (FAST) US knowledge. Secondary outcome was improvement in image acquisition for either pulmonary or FAST. Prospective cohort study of 48 volunteers at "Ultrafest," a free symposium where students received five contact training hours. Students were evaluated before and after training for proficiency in either pulmonary US or FAST. Proficiency was assessed by clinical knowledge through written multiple-choice exam, and clinical skills through accuracy of image acquisition. We used paired sample t-tests with students as their own controls. Pulmonary knowledge scores increased by a mean of 10.1 points (95% CI [8.9-11.3], p<0.00005), from 8.4 to a posttest average of 18.5/21 possible points. The FAST knowledge scores increased by a mean of 7.5 points (95% CI [6.3-8.7] p<0.00005), from 8.1 to a posttest average of 15.6/21. We analyzed clinical skills data on 32 students. The mean score was 1.7 pretest and 4.7 posttest of 12 possible points. Mean improvement was 3.0 points (p<0.00005) overall, 3.3 (p=0.0001) for FAST, and 2.6 (p=0.003) for the pulmonary US exam. This study suggests that a symposium on US can improve clinical knowledge, but is limited in achieving image acquisition for pulmonary and FAST US assessments. US training external to official medical school curriculum may augment students' education.
Pressure scanning choices - Rotary vs electronic
NASA Astrophysics Data System (ADS)
Pemberton, Addison
The choices available for present-day pressure scanning applications are described. Typical pressure scanning applications include wind tunnels, flight testing, turbine engine testing, process control, and laboratory/bench testing. The Scanivalve concept is discussed and it is noted that their use eliminates the cost of multiple individual pressure transducers and their signal conditioners as well as associated wiring for each pressure to be measured. However, they are limited to a maximum acquisition speed of 20 ports/sec/scanner. The advantages of electronic pressure scanners include in-situ calibration on demand, fast data acquisition speed, and high reliability. On the other hand, they are three times more expensive than rotary Scanivalves.
Noninvasive photoacoustic detecting intraocular foreign bodies with an annular transducer array.
Yang, Diwu; Zeng, Lvming; Pan, Changning; Zhao, Xuehui; Ji, Xuanrong
2013-01-14
We present a fast photoacoustic imaging system based on an annular transducer array for detection of intraocular foreign bodies. An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experimental models of intraocular metal and glass foreign bodies were constructed on ex vivo pig's eyes and clear photoacoustic images of intraocular foreign bodies were obtained. Experimental results demonstrate the photoacoustic imaging system holds the potential for in clinic detecting the intraocular foreign bodies.
O'Dell, Luke A; Schurko, Robert W
2009-05-20
A new approach for the acquisition of static, wideline (14)N NMR powder patterns is outlined. The method involves the use of frequency-swept pulses which serve two simultaneous functions: (1) broad-band excitation of magnetization and (2) signal enhancement via population transfer. The signal enhancement mechanism is described using numerical simulations and confirmed experimentally. This approach, which we call DEISM (Direct Enhancement of Integer Spin Magnetization), allows high-quality (14)N spectra to be acquired at intermediate field strengths in an uncomplicated way and in a fraction of the time required for previously reported methods.
NASA Technical Reports Server (NTRS)
Lincoln, K. A.; Bechtel, R. D.
1986-01-01
Recent advances in commercially available data acquisition electronics embodying high speed A/D conversion coupled to increased memory storage have now made practical (at least within time intervals of a third of a millisecond or more) the capturing of all of the data generated by a high repetition rate time-of-flight mass spectrometer producing complete spectra every 25 to 35 microseconds. Such a system was assembled and interfaced with a personal computer for control and management of data. The applications are described for recording time-resolved spectra of individual vapor plumes induced from the pulsed-laser heating of material. Each laser pulse triggers the system to generate automatically a 3-dimensional (3-D) presentation of the time-resolved spectra with m/z labeling of the major mass peaks, plus an intensity versus time display of both the laser pulse and the resulting vapor pulse. The software also permits storing of data and its presentation in various additional forms.
NASA Astrophysics Data System (ADS)
Hoek, M.; Cardinali, M.; Corell, O.; Dickescheid, M.; Ferretti B., M. I.; Lauth, W.; Schlimme, B. S.; Sfienti, C.; Thiel, M.
2017-12-01
A prototype detector, called FLASH (Fast Light Acquiring Start Hodoscope), was built to provide precise Time-of-Flight (TOF) measurements and reference timestamps for detector setups at external beam lines. Radiator bars, made of synthetic fused silica, were coupled to a fast MCP-PMT with 64 channels and read out with custom electronics using Time-over-Threshold (TOT) for signal characterization. The TRB3 system, a high-precision TDC implemented in an FPGA, was used as data acquisition system. The performance of a system consisting of two FLASH units was investigated at a dedicated test experiment at the Mainz Microtron (MAMI) accelerator using its 855 MeV electron beam. The TOT measurement enabled time walk corrections and an overall TOF resolution of ∼70 ps could be achieved which translates into a resolution of ∼50 ps per FLASH unit. The intrinsic resolution of the frontend electronics including the TDC was measured to be less than 25 ps.
A data acquisition system for coincidence imaging using a conventional dual head gamma camera
NASA Astrophysics Data System (ADS)
Lewellen, T. K.; Miyaoka, R. S.; Jansen, F.; Kaplan, M. S.
1997-06-01
A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz.
Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells.
Okuno, Masanari; Hamaguchi, Hiro-o
2010-12-15
We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.
Zhu, He; Rubin, Denis; He, Qiuhong
2011-01-01
The Selective Multiple-Quantum Coherence Transfer (Sel-MQC) method has been applied to image polyunsaturated fatty acids (PUFA) distributions in human breast tissues in vivo for cancer detection, with complete suppression of the unwanted lipid and water signals in a single scan. The Cartesian k-space mapping of PUFA in vivo using the Sel-MQC CSI technique, however, requires excessive MR scan time. In this article, we report a fast Spiral-SelMQC sequence employing a rapid spiral k-space sampling scheme. The Spiral-SelMQC images of PUFA distribution in human breast were acquired using two-interleaved spirals on a 3T GE Signa MRI scanner. Approximately 160-fold reduction of acquisition time was observed as compared to the corresponding Sel-MQC CSI method with an equivalent number of scans, permitting acquisition of high-resolution PUFA images in minutes. The reconstructed Spiral-SelMQC PUFA images of human breast tissues achieved a sub-millimeter resolution of 0.54×0.54 or 0.63×0.63mm2/pixel for FOV = 14 or 16cm, respectively. The Spiral-SelMQC parameters for PUFA detection were optimized in 2D Sel-MQC experiments to suppress monounsaturated fatty acids (MUFA) and other lipid signals. The fast in vivo Spiral-SelMQC imaging method will be applied to study human breast cancer and other human diseases in extracranial organs. PMID:22028250
Real-Time Data Streaming and Storing Structure for the LHD's Fusion Plasma Experiments
NASA Astrophysics Data System (ADS)
Nakanishi, Hideya; Ohsuna, Masaki; Kojima, Mamoru; Imazu, Setsuo; Nonomura, Miki; Emoto, Masahiko; Yoshida, Masanobu; Iwata, Chie; Ida, Katsumi
2016-02-01
The LHD data acquisition and archiving system, i.e., LABCOM system, has been fully equipped with high-speed real-time acquisition, streaming, and storage capabilities. To deal with more than 100 MB/s continuously generated data at each data acquisition (DAQ) node, DAQ tasks have been implemented as multitasking and multithreaded ones in which the shared memory plays the most important role for inter-process fast and massive data handling. By introducing a 10-second time chunk named “subshot,” endless data streams can be stored into a consecutive series of fixed length data blocks so that they will soon become readable by other processes even while the write process is continuing. Real-time device and environmental monitoring are also implemented in the same way with further sparse resampling. The central data storage has been separated into two layers to be capable of receiving multiple 100 MB/s inflows in parallel. For the frontend layer, high-speed SSD arrays are used as the GlusterFS distributed filesystem which can provide max. 2 GB/s throughput. Those design optimizations would be informative for implementing the next-generation data archiving system in big physics, such as ITER.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
... Management System (FAAAMS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice and request for... Acquisition Management System establishes policies and internal procedures for FAA acquisition. The... Acquisition Management System (FAAAMS). Form Numbers: 85 forms available at http://fast.faa.gov/Procurement...
48 CFR 13.402 - Conditions for use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.402 Conditions for use. If the conditions in paragraphs (a) through (f) of this section are present, the fast payment... purchase. The conditions for use of the fast payment procedure are as follows: (a) Individual purchasing...
48 CFR 13.402 - Conditions for use.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.402 Conditions for use. If the conditions in paragraphs (a) through (f) of this section are present, the fast payment... purchase. The conditions for use of the fast payment procedure are as follows: (a) Individual purchasing...
48 CFR 13.402 - Conditions for use.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.402 Conditions for use. If the conditions in paragraphs (a) through (f) of this section are present, the fast payment... purchase. The conditions for use of the fast payment procedure are as follows: (a) Individual purchasing...
48 CFR 13.402 - Conditions for use.
Code of Federal Regulations, 2012 CFR
2012-10-01
... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.402 Conditions for use. If the conditions in paragraphs (a) through (f) of this section are present, the fast payment... purchase. The conditions for use of the fast payment procedure are as follows: (a) Individual purchasing...
48 CFR 13.404 - Contract clause.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.404 Contract clause. The contracting officer shall insert the clause at 52.213-1, Fast Payment Procedure, in solicitations and contracts when the conditions in 13.402 are applicable and it is intended that the fast payment...
48 CFR 13.404 - Contract clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.404 Contract clause. The contracting officer shall insert the clause at 52.213-1, Fast Payment Procedure, in solicitations and contracts when the conditions in 13.402 are applicable and it is intended that the fast payment...
48 CFR 13.404 - Contract clause.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.404 Contract clause. The contracting officer shall insert the clause at 52.213-1, Fast Payment Procedure, in solicitations and contracts when the conditions in 13.402 are applicable and it is intended that the fast payment...
48 CFR 13.402 - Conditions for use.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.402 Conditions for use. If the conditions in paragraphs (a) through (f) of this section are present, the fast payment... purchase. The conditions for use of the fast payment procedure are as follows: (a) Individual purchasing...
48 CFR 13.404 - Contract clause.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.404 Contract clause. The contracting officer shall insert the clause at 52.213-1, Fast Payment Procedure, in solicitations and contracts when the conditions in 13.402 are applicable and it is intended that the fast payment...
48 CFR 13.404 - Contract clause.
Code of Federal Regulations, 2012 CFR
2012-10-01
... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.404 Contract clause. The contracting officer shall insert the clause at 52.213-1, Fast Payment Procedure, in solicitations and contracts when the conditions in 13.402 are applicable and it is intended that the fast payment...
Li, Bo; Li, Hao; Dong, Li; Huang, Guofu
2017-11-01
In this study, we sought to investigate the feasibility of fast carotid artery MR angiography (MRA) by combining three-dimensional time-of-flight (3D TOF) with compressed sensing method (CS-3D TOF). A pseudo-sequential phase encoding order was developed for CS-3D TOF to generate hyper-intense vessel and suppress background tissues in under-sampled 3D k-space. Seven healthy volunteers and one patient with carotid artery stenosis were recruited for this study. Five sequential CS-3D TOF scans were implemented at 1, 2, 3, 4 and 5-fold acceleration factors for carotid artery MRA. Blood signal-to-tissue ratio (BTR) values for fully-sampled and under-sampled acquisitions were calculated and compared in seven subjects. Blood area (BA) was measured and compared between fully sampled acquisition and each under-sampled one. There were no significant differences between the fully-sampled dataset and each under-sampled in BTR comparisons (P>0.05 for all comparisons). The carotid vessel BAs measured from the images of CS-3D TOF sequences with 2, 3, 4 and 5-fold acceleration scans were all highly correlated with that of the fully-sampled acquisition. The contrast between blood vessels and background tissues of the images at 2 to 5-fold acceleration is comparable to that of fully sampled images. The images at 2× to 5× exhibit the comparable lumen definition to the corresponding images at 1×. By combining the pseudo-sequential phase encoding order, CS reconstruction, and 3D TOF sequence, this technique provides excellent visualizations for carotid vessel and calcifications in a short scan time. It has the potential to be integrated into current multiple blood contrast imaging protocol. Copyright © 2017. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Liao, Min-Ju; Johnson, Walter W.
2004-01-01
The present study investigated the effects of droplines on target acquisition performance on a 3-D perspective display in which participants were required to move a cursor into a target cube as quickly as possible. Participants' performance and coordination strategies were characterized using both Fitts' law and acquisition patterns of the 3 viewer-centered target display dimensions (azimuth, elevation, and range). Participants' movement trajectories were recorded and used to determine movement times for acquisitions of the entire target and of each of its display dimensions. The goodness of fit of the data to a modified Fitts function varied widely among participants, and the presence of droplines did not have observable impacts on the goodness of fit. However, droplines helped participants navigate via straighter paths and particularly benefited range dimension acquisition. A general preference for visually overlapping the target with the cursor prior to capturing the target was found. Potential applications of this research include the design of interactive 3-D perspective displays in which fast and accurate selection and manipulation of content residing at multiple ranges may be a challenge.
Engineering Design of ITER Prototype Fast Plant System Controller
NASA Astrophysics Data System (ADS)
Goncalves, B.; Sousa, J.; Carvalho, B.; Rodrigues, A. P.; Correia, M.; Batista, A.; Vega, J.; Ruiz, M.; Lopez, J. M.; Rojo, R. Castro; Wallander, A.; Utzel, N.; Neto, A.; Alves, D.; Valcarcel, D.
2011-08-01
The ITER control, data access and communication (CODAC) design team identified the need for two types of plant systems. A slow control plant system is based on industrial automation technology with maximum sampling rates below 100 Hz, and a fast control plant system is based on embedded technology with higher sampling rates and more stringent real-time requirements than that required for slow controllers. The latter is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and, if necessary, high performance networks. Two prototypes of a fast plant system controller specialized for data acquisition and constrained by ITER technological choices are being built using two different form factors. This prototyping activity contributes to the Plant Control Design Handbook effort of standardization, specifically regarding fast controller characteristics. Envisaging a general purpose fast controller design, diagnostic use cases with specific requirements were analyzed and will be presented along with the interface with CODAC and sensors. The requirements and constraints that real-time plasma control imposes on the design were also taken into consideration. Functional specifications and technology neutral architecture, together with its implications on the engineering design, were considered. The detailed engineering design compliant with ITER standards was performed and will be discussed in detail. Emphasis will be given to the integration of the controller in the standard CODAC environment. Requirements for the EPICS IOC providing the interface to the outside world, the prototype decisions on form factor, real-time operating system, and high-performance networks will also be discussed, as well as the requirements for data streaming to CODAC for visualization and archiving.
GPU applications for data processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladymyrov, Mykhailo, E-mail: mykhailo.vladymyrov@cern.ch; Aleksandrov, Andrey; INFN sezione di Napoli, I-80125 Napoli
2015-12-31
Modern experiments that use nuclear photoemulsion imply fast and efficient data acquisition from the emulsion can be performed. The new approaches in developing scanning systems require real-time processing of large amount of data. Methods that use Graphical Processing Unit (GPU) computing power for emulsion data processing are presented here. It is shown how the GPU-accelerated emulsion processing helped us to rise the scanning speed by factor of nine.
DOT National Transportation Integrated Search
2016-11-01
The Federal Motor Carrier Safety Administration (FMCSA) established the FAST DASH program to perform efficient independent evaluations of promising safety technologies aimed at commercial vehicle operations. In this second FAST DASH safety technology...
48 CFR 13.403 - Preparation and execution of orders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13... the fast payment procedure shall include the following: (a) A requirement that the supplies be shipped...
48 CFR 13.403 - Preparation and execution of orders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13... the fast payment procedure shall include the following: (a) A requirement that the supplies be shipped...
48 CFR 13.403 - Preparation and execution of orders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13... the fast payment procedure shall include the following: (a) A requirement that the supplies be shipped...
48 CFR 13.403 - Preparation and execution of orders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13... the fast payment procedure shall include the following: (a) A requirement that the supplies be shipped...
48 CFR 13.403 - Preparation and execution of orders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13... the fast payment procedure shall include the following: (a) A requirement that the supplies be shipped...
Brunstein, Maia; Wicker, Kai; Hérault, Karine; Heintzmann, Rainer; Oheim, Martin
2013-11-04
Most structured illumination microscopes use a physical or synthetic grating that is projected into the sample plane to generate a periodic illumination pattern. Albeit simple and cost-effective, this arrangement hampers fast or multi-color acquisition, which is a critical requirement for time-lapse imaging of cellular and sub-cellular dynamics. In this study, we designed and implemented an interferometric approach allowing large-field, fast, dual-color imaging at an isotropic 100-nm resolution based on a sub-diffraction fringe pattern generated by the interference of two colliding evanescent waves. Our all-mirror-based system generates illumination pat-terns of arbitrary orientation and period, limited only by the illumination aperture (NA = 1.45), the response time of a fast, piezo-driven tip-tilt mirror (10 ms) and the available fluorescence signal. At low µW laser powers suitable for long-period observation of life cells and with a camera exposure time of 20 ms, our system permits the acquisition of super-resolved 50 µm by 50 µm images at 3.3 Hz. The possibility it offers for rapidly adjusting the pattern between images is particularly advantageous for experiments that require multi-scale and multi-color information. We demonstrate the performance of our instrument by imaging mitochondrial dynamics in cultured cortical astrocytes. As an illustration of dual-color excitation dual-color detection, we also resolve interaction sites between near-membrane mitochondria and the endoplasmic reticulum. Our TIRF-SIM microscope provides a versatile, compact and cost-effective arrangement for super-resolution imaging, allowing the investigation of co-localization and dynamic interactions between organelles--important questions in both cell biology and neurophysiology.
DOT National Transportation Integrated Search
2016-11-01
The Federal Motor Carrier Safety Administration (FMCSA) established the FAST DASH program to perform efficient independent evaluations of promising safety technologies aimed at commercial vehicle operations. In this third FAST DASH safety technology ...
Fast CT-PRESS-based spiral chemical shift imaging at 3 Tesla.
Mayer, Dirk; Kim, Dong-Hyun; Adalsteinsson, Elfar; Spielman, Daniel M
2006-05-01
A new sequence is presented that combines constant-time point-resolved spectroscopy (CT-PRESS) with fast spiral chemical shift imaging. It allows the acquisition of multivoxel spectra without line splitting with a minimum total measurement time of less than 5 min for a field of view of 24 cm and a nominal 1.5x1.5-cm2 in-plane resolution. Measurements were performed with 17 CS encoding steps in t1 (Deltat1=12.8 ms) and an average echo time of 151 ms, which was determined by simulating the CT-PRESS experiment for the spin systems of glutamate (Glu) and myo-inositol (mI). Signals from N-acetyl-aspartate, total creatine, choline-containing compounds (Cho), Glu, and mI were detected in a healthy volunteer with no or only minor baseline distortions within 14 min on a 3 T MR scanner. Copyright (c) 2006 Wiley-Liss, Inc.
A digitally implemented preambleless demodulator for maritime and mobile data communications
NASA Astrophysics Data System (ADS)
Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.
The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.
T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging.
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian; Lai, Peng; Alley, Marcus T; Vasanawala, Shreyas S; Lustig, Michael
2017-01-01
A new acquisition and reconstruction method called T 2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T 2 Shuffling reduces blurring and recovers many images at multiple T 2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T 2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. The proposed T 2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ferry, Barbara; Duchamp-Viret, Patricia
2014-03-14
To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor-malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA performance. The present results suggest that fasting-induced central OXA release influenced COA learning by increasing not only olfactory sensitivity, but also the memory processes underlying the odor-malaise association.
Ferry, Barbara; Duchamp-Viret, Patricia
2014-01-01
To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor–malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA performance. The present results suggest that fasting-induced central OXA release influenced COA learning by increasing not only olfactory sensitivity, but also the memory processes underlying the odor–malaise association. PMID:24634353
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez, M., E-mail: marcos.martinez@externos.ciemat.es; Zurro, B.; Baciero, A.
2016-11-15
A systematic study of scintillation materials was undertaken to improve the time resolution of the fast ion diagnostic currently installed at TJ-II stellarator. It was found that YAP:Ce (formula YAlO{sub 3}:Ce, Yttrium Aluminum Perovskite doped with Cerium) ionoluminescence offers better sensitivity and time response compared to the standard detector material, SrGa{sub 2}S{sub 4}:Eu (TG-Green), currently used in TJ-II. A comparison between both materials was carried out by irradiating them with H{sup +} ions of up to 40 keV using a dedicated laboratory setup. It is found that for the low energy ions of interest at TJ-II, YAP:Ce offers 20 timesmore » higher sensitivity than TG-Green and much faster decay time, 27 ns versus 540 ns. It is expected that the use of YAP:Ce in combination with a faster data acquisition and an ion counting software as part of the TJ-II ion luminescent probe will provide 20 times faster data on ion loss.« less
System 2020 - Strategic Initiative
2010-08-26
needs fast, flexible and adaptable capabilities (and tools that enable the development of these...S2020 (and enabling acquisition improvements) System Design and Development Speed Sequential single-‐step... development time as a function of SLOC up to 1250 KSLOC.
Imaging for understanding speech communication: Advances and challenges
NASA Astrophysics Data System (ADS)
Narayanan, Shrikanth
2005-04-01
Research in speech communication has relied on a variety of instrumentation methods to illuminate details of speech production and perception. One longstanding challenge has been the ability to examine real-time changes in the shaping of the vocal tract; a goal that has been furthered by imaging techniques such as ultrasound, movement tracking, and magnetic resonance imaging. The spatial and temporal resolution afforded by these techniques, however, has limited the scope of the investigations that could be carried out. In this talk, we focus on some recent advances in magnetic resonance imaging that allow us to perform near real-time investigations on the dynamics of vocal tract shaping during speech. Examples include Demolin et al. (2000) (4-5 images/second, ultra-fast turbo spin echo) and Mady et al. (2001,2002) (8 images/second, T1 fast gradient echo). A recent study by Narayanan et al. (2004) that used a spiral readout scheme to accelerate image acquisition has allowed for image reconstruction rates of 24 images/second. While these developments offer exciting prospects, a number of challenges lie ahead, including: (1) improving image acquisition protocols, hardware for enhancing signal-to-noise ratio, and optimizing spatial sampling; (2) acquiring quality synchronized audio; and (3) analyzing and modeling image data including cross-modality registration. [Work supported by NIH and NSF.
X-ray cone-beam computed tomography: principles, applications, challenges and solutions
NASA Astrophysics Data System (ADS)
Noo, Frederic
2010-03-01
In the nineties, x-ray computed tomography, commonly referred to as CT, seemed to be on the track to become old technology, bound to be replaced by more sophisticated techniques such as magnetic resonance imaging, due in particular to the harmful effects of x-ray radiation exposure. Yet, the new century brought with it new technology that allowed a complete change in trends and re-affirmed CT as an essential tool in radiology. For instance, the popularity of CT in 2007 was such that approximately 68.7 million CT examinations were performed in the United States, which was nearly 2.5 times the number of magnetic resonance (MRI) examinations. More than that, CT has expanded beyond its conventional diagnostic role; CT is now used routinely in interventional radiology and also in radiation therapy treatment. The technology advances that allowed the revival of CT are those that made fast, accurate cone-beam data acquisition possible. Nowadays, cone-beam data acquisition allows scanning large volumes with isotropic sub-millimeter spatial resolution in a very fast time, which can be as short as 500ms for cardiac imaging. The principles of cone-beam imaging will be first reviewed. Then a discussion of its applications will be given. Old and new challenges will be presented along the way with current solutions.
Kawada, Y; Yamada, T; Unno, Y; Yunoki, A; Sato, Y; Hino, Y
2012-09-01
A simple but versatile data acquisition system for software coincidence experiments is described, in which any time stamping and live time controller are not provided. Signals from β- and γ-channels are fed to separately two fast ADCs (16 bits, 25 MHz clock maximum) via variable delay circuits and pulse-height stretchers, and also to pulse-height discriminators. The discriminating level was set to just above the electronic noise. Two ADCs were controlled with a common clock signal, and triggered simultaneously by the logic OR pulses from both discriminators. Paired digital signals for each sampling were sent to buffer memories connected to main PC with a FIFO (First-In, First-Out) pipe via USB. After data acquisition in list mode, various processing including pulse-height analyses was performed using MS-Excel (version 2007 and later). The usefulness of this system was demonstrated for 4πβ(PS)-4πγ coincidence measurements of (60)Co, (134)Cs and (152)Eu. Possibilities of other extended applications will be touched upon. Copyright © 2012 Elsevier Ltd. All rights reserved.
The MROI fast tip-tilt correction and target acquisition system
NASA Astrophysics Data System (ADS)
Young, John; Buscher, David; Fisher, Martin; Haniff, Christopher; Rea, Alexander; Seneta, Eugene B.; Sun, Xiaowei; Wilson, Donald; Farris, Allen; Olivares, Andres; Selina, Robert
2012-07-01
The fast tip-tilt correction system for the Magdalena Ridge Observatory Interferometer (MROI) is being designed and fabricated by the University of Cambridge. The design of the system is currently at an advanced stage and the performance of its critical subsystems has been verified in the laboratory. The system has been designed to meet a demanding set of specifications including satisfying all performance requirements in ambient temperatures down to -5 °C, maintaining the stability of the tip-tilt fiducial over a 5 °C temperature change without recourse to an optical reference, and a target acquisition mode with a 60” field-of-view. We describe the important technical features of the system, which uses an Andor electron-multiplying CCD camera protected by a thermal enclosure, a transmissive optical system with mounts incorporating passive thermal compensation, and custom control software running under Xenomai real-time Linux. We also report results from laboratory tests that demonstrate (a) the high stability of the custom optic mounts and (b) the low readout and compute latencies that will allow us to achieve a 40 Hz closed-loop bandwidth on bright targets.
Software for embedded processors: Problems and solutions
NASA Astrophysics Data System (ADS)
Bogaerts, J. A. C.
1990-08-01
Data Acquistion systems in HEP experiments use a wide spectrum of computers to cope with two major problems: high event rates and a large data volume. They do this by using special fast trigger processors at the source to reduce the event rate by several orders of magnitude. The next stage of a data acquisition system consists of a network of fast but conventional microprocessors which are embedded in high speed bus systems where data is still further reduced, filtered and merged. In the final stage complete events are farmed out to a another collection of processors, which reconstruct the events and perhaps achieve a further event rejection by a small factor, prior to recording onto magnetic tape. Detectors are monitored by analyzing a fraction of the data. This may be done for individual detectors at an early state of the data acquisition or it may be delayed till the complete events are available. A network of workstations is used for monitoring, displays and run control. Software for trigger processors must have a simple structure. Rejection algorithms are carefully optimized, and overheads introduced by system software cannot be tolerated. The embedded microprocessors have to co-operate, and need to be synchronized with the preceding and following stages. Real time kernels are typically used to solve synchronization and communication problems. Applications are usually coded in C, which is reasonably efficient and allows direct control over low level hardware functions. Event reconstruction software is very similar or even identical to offline software, predominantly written in FORTRAN. With the advent of powerful RISC processors, and with manufacturers tending to adopt open bus architectures, there is a move towards commercial processors and hence the introduction of the UNIX operating system. Building and controlling such a heterogeneous data acquisition system puts a heavy strain on the software. Communications is now as important as CPU capacity and I/O bandwidth, the traditional key parameters of a HEP data acquisition system. Software engineering and real time system simulation tools are becoming indispensible for the design of future data acquisition systems.
NASA Astrophysics Data System (ADS)
Lin, Qingyang; Andrew, Matthew; Thompson, William; Blunt, Martin J.; Bijeljic, Branko
2018-05-01
Non-invasive laboratory-based X-ray microtomography has been widely applied in many industrial and research disciplines. However, the main barrier to the use of laboratory systems compared to a synchrotron beamline is its much longer image acquisition time (hours per scan compared to seconds to minutes at a synchrotron), which results in limited application for dynamic in situ processes. Therefore, the majority of existing laboratory X-ray microtomography is limited to static imaging; relatively fast imaging (tens of minutes per scan) can only be achieved by sacrificing imaging quality, e.g. reducing exposure time or number of projections. To alleviate this barrier, we introduce an optimized implementation of a well-known iterative reconstruction algorithm that allows users to reconstruct tomographic images with reasonable image quality, but requires lower X-ray signal counts and fewer projections than conventional methods. Quantitative analysis and comparison between the iterative and the conventional filtered back-projection reconstruction algorithm was performed using a sandstone rock sample with and without liquid phases in the pore space. Overall, by implementing the iterative reconstruction algorithm, the required image acquisition time for samples such as this, with sparse object structure, can be reduced by a factor of up to 4 without measurable loss of sharpness or signal to noise ratio.
Study on ultra-fast single photon counting spectrometer based on PCI
NASA Astrophysics Data System (ADS)
Zhang, Xi-feng
2010-10-01
The time-correlated single photon counting spectrometer developed uses PCI bus technology. We developed the ultrafast data acquisition card based on PCI, replace multi-channel analyzer primary. The system theory and design of the spectrometer are presented in detail, and the process of operation is introduced with the integration of the system. Many standard samples have been measured and the data have been analyzed and contrasted. Experimental results show that the spectrometer, s sensitive is single photon counting, and fluorescence life-span and time resolution is picosecond level. And the instrument could measure time-resolved spectroscopy.
Frank, Lawrence R.; Jung, Youngkyoo; Inati, Souheil; Tyszka, J. Michael; Wong, Eric C.
2009-01-01
We present an acquisition and reconstruction method designed to acquire high resolution 3D fast spin echo diffusion tensor images while mitigating the major sources of artifacts in DTI - field distortions, eddy currents and motion. The resulting images, being 3D, are of high SNR, and being fast spin echoes, exhibit greatly reduced field distortions. This sequence utilizes variable density spiral acquisition gradients, which allow for the implementation of a self-navigation scheme by which both eddy current and motion artifacts are removed. The result is that high resolution 3D DTI images are produced without the need for eddy current compensating gradients or B0 field correction. In addition, a novel method for fast and accurate reconstruction of the non-Cartesian data is employed. Results are demonstrated in the brains of normal human volunteers. PMID:19778618
3D palmprint data fast acquisition and recognition
NASA Astrophysics Data System (ADS)
Wang, Xiaoxu; Huang, Shujun; Gao, Nan; Zhang, Zonghua
2014-11-01
This paper presents a fast 3D (Three-Dimension) palmprint capturing system and develops an efficient 3D palmprint feature extraction and recognition method. In order to fast acquire accurate 3D shape and texture of palmprint, a DLP projector triggers a CCD camera to realize synchronization. By generating and projecting green fringe pattern images onto the measured palm surface, 3D palmprint data are calculated from the fringe pattern images. The periodic feature vector can be derived from the calculated 3D palmprint data, so undistorted 3D biometrics is obtained. Using the obtained 3D palmprint data, feature matching test have been carried out by Gabor filter, competition rules and the mean curvature. Experimental results on capturing 3D palmprint show that the proposed acquisition method can fast get 3D shape information of palmprint. Some initial experiments on recognition show the proposed method is efficient by using 3D palmprint data.
NASA Astrophysics Data System (ADS)
Yoon, Soweon; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie
2009-03-01
Although iris recognition is one of the most accurate biometric technologies, it has not yet been widely used in practical applications. This is mainly due to user inconvenience during the image acquisition phase. Specifically, users try to adjust their eye position within small capture volume at a close distance from the system. To overcome these problems, we propose a novel iris image acquisition system that provides users with unconstrained environments: a large operating range, enabling movement from standing posture, and capturing good-quality iris images in an acceptable time. The proposed system has the following three contributions compared with previous works: (1) the capture volume is significantly increased by using a pan-tilt-zoom (PTZ) camera guided by a light stripe projection, (2) the iris location in the large capture volume is found fast due to 1-D vertical face searching from the user's horizontal position obtained by the light stripe projection, and (3) zooming and focusing on the user's irises at a distance are accurate and fast using the estimated 3-D position of a face by the light stripe projection and the PTZ camera. Experimental results show that the proposed system can capture good-quality iris images in 2.479 s on average at a distance of 1.5 to 3 m, while allowing a limited amount of movement by the user.
GPU real-time processing in NA62 trigger system
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.
2017-01-01
A commercial Graphics Processing Unit (GPU) is used to build a fast Level 0 (L0) trigger system tested parasitically with the TDAQ (Trigger and Data Acquisition systems) of the NA62 experiment at CERN. In particular, the parallel computing power of the GPU is exploited to perform real-time fitting in the Ring Imaging CHerenkov (RICH) detector. Direct GPU communication using a FPGA-based board has been used to reduce the data transmission latency. The performance of the system for multi-ring reconstrunction obtained during the NA62 physics run will be presented.
Model verifies design of mobile data modem
NASA Technical Reports Server (NTRS)
Davarian, F.; Sumida, J.
1986-01-01
It has been proposed to use differential minimum shift keying (DMSK) modems in spacecraft-based mobile communications systems. For an employment of these modems, it is necessary that the transmitted carrier frequency be known prior to signal detection. In addition, the time needed by the receiver to lock onto the carrier frequency must be minimized. The present article is concerned with a DMSK modem developed for the Mobile Satellite Service. This device demonstrated fast acquisition time and good performance in the presence of fading. However, certain problems arose in initial attempts to study the acquisition behavior of the AFC loop through breadboard techniques. The development of a software model of the AFC loop is discussed, taking into account two cases which were plotted using the model. Attention is given to a demonstration of the viability of the modem by an approach involving modeling and analysis of the frequency synchronizer.
3D fluorescence anisotropy imaging using selective plane illumination microscopy.
Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico
2015-08-24
Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein.
Real time processor for array speckle interferometry
NASA Astrophysics Data System (ADS)
Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos
1989-02-01
The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.
Real time processor for array speckle interferometry
NASA Technical Reports Server (NTRS)
Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos
1989-01-01
The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenyang; Cheung, Yam; Sawant, Amit
2016-05-15
Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparsemore » regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.« less
Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan
2016-05-01
To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.
Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan
2016-01-01
Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications. PMID:27147347
Validation of a highly integrated SiPM readout system with a TOF-PET demonstrator
NASA Astrophysics Data System (ADS)
Niknejad, T.; Setayeshi, S.; Tavernier, S.; Bugalho, R.; Ferramacho, L.; Di Francesco, A.; Leong, C.; Rolo, M. D.; Shamshirsaz, M.; Silva, J. C.; Silva, R.; Silveira, M.; Zorraquino, C.; Varela, J.
2016-12-01
We have developed a highly integrated, fast and compact readout electronics for Silicon Photomultiplier (SiPM) based Time of Flight Positron Emission Tomography (TOF-PET) scanners. The readout is based on the use of TOP-PET Application Specific Integrated Circuit (PETsys TOFPET1 ASIC) with 64 channels, each with its amplifier, discriminator, Time to Digital Converter (TDC) and amplitude determination using Time Over Threshold (TOT). The ASIC has 25 ps r.m.s. intrinsic time resolution and fully digital output. The system is optimised for high rates, good timing, low power consumption and low cost. For validating the readout electronics, we have built a technical PET scanner, hereafter called ``demonstrator'', with 2'048 SiPM channels. The PET demonstrator has 16 compact Detector Modules (DM). Each DM has two ASICs reading 128 SiPM pixels in one-to-one coupling to 128 Lutetium Yttrium Orthosilicate (LYSO) crystals measuring 3.1 × 3.1 × 15 mm3 each. The data acquisition system for the demonstrator has two Front End Boards type D (FEB/D), each collecting the data of 1'024 channels (8 DMs), and transmitting assembled data frames through a serial link (4.8 Gbps), to a single Data Acquisition (DAQ) board plugged into the Peripheral Component Interconnect Express (PCIe) bus of the data acquisition PC. Results obtained with this PET demonstrator are presented.
Performance of the NOνA Data Acquisition and Trigger Systems for the full 14 kT Far Detector
NASA Astrophysics Data System (ADS)
Norman, A.; Davies, G. S.; Ding, P. F.; Dukes, E. C.; Duyan, H.; Frank, M. J.; R. C. Group; Habig, A.; Henderson, W.; Niner, E.; Mina, R.; Moren, A.; Mualem, L.; Oksuzian, Y.; Rebel, B.; Shanahan, P.; Sheshukov, A.; Tamsett, M.; Tomsen, K.; Vinton, L.; Wang, Z.; Zamorano, B.; Zirnstien, J.
2015-12-01
The NOvA experiment uses a continuous, free-running, dead-timeless data acquisition system to collect data from the 14 kT far detector. The DAQ system readouts the more than 344,000 detector channels and assembles the information into an raw unfiltered high bandwidth data stream. The NOvA trigger systems operate in parallel to the readout and asynchronously to the primary DAQ readout/event building chain. The data driven triggering systems for NOvA are unique in that they examine long contiguous time windows of the high resolution readout data and enable the detector to be sensitive to a wide range of physics interactions from those with fast, nanosecond scale signals up to processes with long delayed coincidences between hits which occur at the tens of milliseconds time scale. The trigger system is able to achieve a true 100% live time for the detector, making it sensitive to both beam spill related and off-spill physics.
Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods
Smith, David S.; Gore, John C.; Yankeelov, Thomas E.; Welch, E. Brian
2012-01-01
Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 40962 or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 10242 and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images. PMID:22481908
Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods.
Smith, David S; Gore, John C; Yankeelov, Thomas E; Welch, E Brian
2012-01-01
Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 4096(2) or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 1024(2) and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images.
100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy.
Kanal, Florian; Keiber, Sabine; Eck, Reiner; Brixner, Tobias
2014-07-14
Shot-to-shot broadband detection is common in ultrafast pump-probe spectroscopy. Taking advantage of the intensity correlation of subsequent laser pulses improves the signal-to-noise ratio. Finite data readout times of CCD chips in the employed spectrometer and the maximum available speed of mechanical pump-beam choppers typically limit this approach to lasers with repetition rates of a few kHz. For high-repetition (≥ 100 kHz) systems, one typically averages over a larger number of laser shots leading to inferior signal-to-noise ratios or longer measurement times. Here we demonstrate broadband shot-to-shot detection in transient absorption spectroscopy with a 100-kHz femtosecond laser system. This is made possible using a home-built high-speed chopper with external laser synchronization and a fast CCD line camera. Shot-to-shot detection can reduce the data acquisition time by two orders of magnitude compared to few-kHz lasers while keeping the same signal-to-noise ratio.
Ultra High Strain Rate Nanoindentation Testing.
Sudharshan Phani, Pardhasaradhi; Oliver, Warren Carl
2017-06-17
Strain rate dependence of indentation hardness has been widely used to study time-dependent plasticity. However, the currently available techniques limit the range of strain rates that can be achieved during indentation testing. Recent advances in electronics have enabled nanomechanical measurements with very low noise levels (sub nanometer) at fast time constants (20 µs) and high data acquisition rates (100 KHz). These capabilities open the doors for a wide range of ultra-fast nanomechanical testing, for instance, indentation testing at very high strain rates. With an accurate dynamic model and an instrument with fast time constants, step load tests can be performed which enable access to indentation strain rates approaching ballistic levels (i.e., 4000 1/s). A novel indentation based testing technique involving a combination of step load and constant load and hold tests that enables measurement of strain rate dependence of hardness spanning over seven orders of magnitude in strain rate is presented. A simple analysis is used to calculate the equivalent uniaxial response from indentation data and compared to the conventional uniaxial data for commercial purity aluminum. Excellent agreement is found between the indentation and uniaxial data over several orders of magnitude of strain rate.
Sparse imaging for fast electron microscopy
NASA Astrophysics Data System (ADS)
Anderson, Hyrum S.; Ilic-Helms, Jovana; Rohrer, Brandon; Wheeler, Jason; Larson, Kurt
2013-02-01
Scanning electron microscopes (SEMs) are used in neuroscience and materials science to image centimeters of sample area at nanometer scales. Since imaging rates are in large part SNR-limited, large collections can lead to weeks of around-the-clock imaging time. To increase data collection speed, we propose and demonstrate on an operational SEM a fast method to sparsely sample and reconstruct smooth images. To accurately localize the electron probe position at fast scan rates, we model the dynamics of the scan coils, and use the model to rapidly and accurately visit a randomly selected subset of pixel locations. Images are reconstructed from the undersampled data by compressed sensing inversion using image smoothness as a prior. We report image fidelity as a function of acquisition speed by comparing traditional raster to sparse imaging modes. Our approach is equally applicable to other domains of nanometer microscopy in which the time to position a probe is a limiting factor (e.g., atomic force microscopy), or in which excessive electron doses might otherwise alter the sample being observed (e.g., scanning transmission electron microscopy).
SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.
Lee, Hyunyeol; Park, Jaeseok
2013-07-01
Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.
2013-07-01
High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.
ERIC Educational Resources Information Center
Chung, Gregory K. W. K.; Gyllenhammer, Ruth G.; Baker, Eva L.
2011-01-01
In this study, we compared the effects of simulator-based virtual ultrasound scanning practice to classroom-based hands-on ultrasound scanning practice on participants' knowledge of FAST window quadrants and interpretation, and on participants' performance on live patient FAST exams. Twenty-five novice participants were randomly assigned to the…
Chauhan, Munish; Jeong, Woo Chul; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2013-08-27
Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive method for visualizing the internal conductivity and/or current density of an electrically conductive object by externally injected currents. The injected current through a pair of surface electrodes induces a magnetic flux density distribution inside the imaging object, which results in additional magnetic flux density. To measure the magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels out the systematic artifacts accumulated in phase signals and also reduces the random noise effect by doubling the measured magnetic flux density signal. For practical applications of in vivo MREIT, it is essential to reduce the scan duration maintaining spatial-resolution and sufficient contrast. In this paper, we optimize the magnetic flux density by using a fast gradient multi-echo MR pulse sequence. To recover the one component of magnetic flux density Bz, we use a coupled partial Fourier acquisitions in the interleaved sense. To prove the proposed algorithm, we performed numerical simulations using a two-dimensional finite-element model. For a real experiment, we designed a phantom filled with a calibrated saline solution and located a rubber balloon inside the phantom. The rubber balloon was inflated by injecting the same saline solution during the MREIT imaging. We used the multi-echo fast low angle shot (FLASH) MR pulse sequence for MRI scan, which allows the reduction of measuring time without a substantial loss in image quality. Under the assumption of a priori phase artifact map from a reference scan, we rigorously investigated the convergence ratio of the proposed method, which was closely related with the number of measured phase encode set and the frequency range of the background field inhomogeneity. In the phantom experiment with a partial Fourier acquisition, the total scan time was less than 6 seconds to measure the magnetic flux density Bz data with 128×128 spacial matrix size, where it required 10.24 seconds to fill the complete k-space region. Numerical simulation and experimental results demonstrated that the proposed method reduces the scanning time and provides the recovered Bz data comparable to what we obtained by measuring complete k-space data.
Real Time Conference 2014 Overview
NASA Astrophysics Data System (ADS)
Nomachi, Masaharu
2015-06-01
This article presents an overview of the 19th Real Time Conference held last May 26-30, 2014, at the Nara Prefectural New Public Hall, Nara, Japan, organized by the Research Center for Nuclear Physics of the Osaka University. The program included many invited talks and oral sessions offering an extensive overview on the following topics: real-time system architectures, intelligent signal processing, fast data transfer links and networks, trigger systems, data acquisition, processing-farms, control, monitoring and test systems, emerging real-time technologies, new standards, real-time safety and security, and some feedback on experiences. In parallel to the oral and poster presentations, industrial exhibits by companies, workshops and short courses also ran through the week.
Confocal multispot microscope for fast and deep imaging in semicleared tissues
NASA Astrophysics Data System (ADS)
Adam, Marie-Pierre; Müllenbroich, Marie Caroline; Di Giovanna, Antonino Paolo; Alfieri, Domenico; Silvestri, Ludovico; Sacconi, Leonardo; Pavone, Francesco Saverio
2018-02-01
Although perfectly transparent specimens are imaged faster with light-sheet microscopy, less transparent samples are often imaged with two-photon microscopy leveraging its robustness to scattering; however, at the price of increased acquisition times. Clearing methods that are capable of rendering strongly scattering samples such as brain tissue perfectly transparent specimens are often complex, costly, and time intensive, even though for many applications a slightly lower level of tissue transparency is sufficient and easily achieved with simpler and faster methods. Here, we present a microscope type that has been geared toward the imaging of semicleared tissue by combining multispot two-photon excitation with rolling shutter wide-field detection to image deep and fast inside semicleared mouse brain. We present a theoretical and experimental evaluation of the point spread function and contrast as a function of shutter size. Finally, we demonstrate microscope performance in fixed brain slices by imaging dendritic spines up to 400-μm deep.
Real-time broadband terahertz spectroscopic imaging by using a high-sensitivity terahertz camera
NASA Astrophysics Data System (ADS)
Kanda, Natsuki; Konishi, Kuniaki; Nemoto, Natsuki; Midorikawa, Katsumi; Kuwata-Gonokami, Makoto
2017-02-01
Terahertz (THz) imaging has a strong potential for applications because many molecules have fingerprint spectra in this frequency region. Spectroscopic imaging in the THz region is a promising technique to fully exploit this characteristic. However, the performance of conventional techniques is restricted by the requirement of multidimensional scanning, which implies an image data acquisition time of several minutes. In this study, we propose and demonstrate a novel broadband THz spectroscopic imaging method that enables real-time image acquisition using a high-sensitivity THz camera. By exploiting the two-dimensionality of the detector, a broadband multi-channel spectrometer near 1 THz was constructed with a reflection type diffraction grating and a high-power THz source. To demonstrate the advantages of the developed technique, we performed molecule-specific imaging and high-speed acquisition of two-dimensional (2D) images. Two different sugar molecules (lactose and D-fructose) were identified with fingerprint spectra, and their distributions in one-dimensional space were obtained at a fast video rate (15 frames per second). Combined with the one-dimensional (1D) mechanical scanning of the sample, two-dimensional molecule-specific images can be obtained only in a few seconds. Our method can be applied in various important fields such as security and biomedicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krempasky, J.; Flechsig, U.; Korhonen, T.
Synchronous monochromator and insertion device energy scans were implemented at the Surfaces/Interfaces:Microscopy (SIM) beamline in order to provide the users fast X-ray magnetic dichroism studies (XMCD). A simple software control scheme is proposed based on a fast monochromator run-time energy readback which quickly updates the insertion device requested energy during an on-the-fly X-ray absorption scan (XAS). In this scheme the Plain Grating Monochromator (PGM) motion control, being much slower compared with the insertion device (APPLE-II type undulator), acts as a 'master' controlling the undulator 'slave' energy position. This master-slave software implementation exploits EPICS distributed device control over computer network andmore » allows for a quasi-synchronous motion control combined with data acquisition needed for the XAS or XMCD experiment.« less
Electronic hardware design of electrical capacitance tomography systems.
Saied, I; Meribout, M
2016-06-28
Electrical tomography techniques for process imaging are very prominent for industrial applications, such as the oil and gas industry and chemical refineries, owing to their ability to provide the flow regime of a flowing fluid within a relatively high throughput. Among the various techniques, electrical capacitance tomography (ECT) is gaining popularity due to its non-invasive nature and its capability to differentiate between different phases based on their permittivity distribution. In recent years, several hardware designs have been provided for ECT systems that have improved its resolution of measurements to be around attofarads (aF, 10(-18) F), or the number of channels, that is required to be large for some applications that require a significant amount of data. In terms of image acquisition time, some recent systems could achieve a throughput of a few hundred frames per second, while data processing time could be achieved in only a few milliseconds per frame. This paper outlines the concept and main features of the most recent front-end and back-end electronic circuits dedicated for ECT systems. In this paper, multiple-excitation capacitance polling, a front-end electronic technique, shows promising results for ECT systems to acquire fast data acquisition speeds. A highly parallel field-programmable gate array (FPGA) based architecture for a fast reconstruction algorithm is also described. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).
Fast optical transillumination tomography with large-size projection acquisition.
Huang, Hsuan-Ming; Xia, Jinjun; Haidekker, Mark A
2008-10-01
Techniques such as optical coherence tomography and diffuse optical tomography have been shown to effectively image highly scattering samples such as tissue. An additional modality has received much less attention: Optical transillumination (OT) tomography, a modality that promises very high acquisition speed for volumetric scans. With the motivation to image tissue-engineered blood vessels for possible biomechanical testing, we have developed a fast OT device using a collimated, noncoherent beam with a large diameter together with a large-size CMOS camera that has the ability to acquire 3D projections in a single revolution of the sample. In addition, we used accelerated iterative reconstruction techniques to improve image reconstruction speed, while at the same time obtaining better image quality than through filtered backprojection. The device was tested using ink-filled polytetrafluorethylene tubes to determine geometric reconstruction accuracy and recovery of absorbance. Even in the presence of minor refractive index mismatch, the weighted error of the measured radius was <5% in all cases, and a high linear correlation of ink absorbance determined with a photospectrometer of R(2) = 0.99 was found, although the OT device systematically underestimated absorbance. Reconstruction time was improved from several hours (standard arithmetic reconstruction) to 90 s per slice with our optimized algorithm. Composed of only a light source, two spatial filters, a sample bath, and a CMOS camera, this device was extremely simple and cost-efficient to build.
Steinseifer, Isabell K; Philips, Bart W J; Gagoski, Borjan; Weiland, Elisabeth; Scheenen, Tom W J; Heerschap, Arend
2017-03-01
Cartesian k-space sampling in three-dimensional magnetic resonance spectroscopic imaging (MRSI) of the prostate limits the selection of voxel size and acquisition time. Therefore, large prostates are often scanned at reduced spatial resolutions to stay within clinically acceptable measurement times. Here we present a semilocalized adiabatic selective refocusing (sLASER) sequence with gradient-modulated offset-independent adiabatic (GOIA) refocusing pulses and spiral k-space acquisition (GOIA-sLASER-Spiral) for fast prostate MRSI with enhanced resolution and extended matrix sizes. MR was performed at 3 tesla with an endorectal receive coil. GOIA-sLASER-Spiral at an echo time (TE) of 90 ms was compared to a point-resolved spectroscopy sequence (PRESS) with weighted, elliptical phase encoding at an TE of 145 ms using simulations and measurements of phantoms and patients (n = 9). GOIA-sLASER-Spiral acquisition allows prostate MR spectra to be obtained in ∼5 min with a quality comparable to those acquired with a common Cartesian PRESS protocol in ∼9 min, or at an enhanced spatial resolution showing more precise tissue allocation of metabolites. Extended field of views (FOVs) and matrix sizes for large prostates are possible without compromising spatial resolution or measurement time. The flexibility of spiral sampling enables prostate MRSI with a wide range of resolutions and FOVs without undesirable increases in acquisition times, as in Cartesian encoding. This approach is suitable for routine clinical exams of prostate metabolites. Magn Reson Med 77:928-935, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Taruttis, Adrian; Herzog, Eva; Razansky, Daniel; Ntziachristos, Vasilis
2011-03-01
Multispectral Optoacoustic Tomography (MSOT) is an emerging technique for high resolution macroscopic imaging with optical and molecular contrast. We present cardiovascular imaging results from a multi-element real-time MSOT system recently developed for studies on small animals. Anatomical features relevant to cardiovascular disease, such as the carotid arteries, the aorta and the heart, are imaged in mice. The system's fast acquisition time, in tens of microseconds, allows images free of motion artifacts from heartbeat and respiration. Additionally, we present in-vivo detection of optical imaging agents, gold nanorods, at high spatial and temporal resolution, paving the way for molecular imaging applications.
Cosmic Ray Energetics and Mass (CREAM)
NASA Technical Reports Server (NTRS)
Coutu, Stephane
2005-01-01
The CREAM instrument was flown on a Long Duration Balloon in Antarctica in December 2004 and January 2005, achieving a flight duration record of nearly 42 days. It detected and recorded cosmic ray primary particles ranging in type from hydrogen to iron nuclei and in energy from 1 TeV to several hundred TeV. With the data collected we will have the world's best measurement of the energy spectra and mass composition of nuclei in the primary cosmic ray flux at these energies, close to the astrophysical knee . The instrument utilized a thin calorimeter, a transition radiation detector and a timing charge detector, which also provided time-of-flight information. The responsibilities of our group have been with the timing charge detector (TCD), and with the data acquisition electronics and ground station support equipment. The TCD utilized fast scintillators to measure the charge of the primary cosmic ray before any interactions could take place within the calorimeter. The data acquisition electronics handled the output of the various detectors, in a fashion fully integrated with the payload bus. A space-qualified flight computer controlled the acquisition, and was used for preliminary trigger information processing and decision making. Ground support equipment was used to monitor the health of the payload, acquire and archive the data transmitted to the ground, and to provide real-time control of the instrument in flight.
Anti-aliasing techniques in photon-counting depth imaging using GHz clock rates
NASA Astrophysics Data System (ADS)
Krichel, Nils J.; McCarthy, Aongus; Collins, Robert J.; Buller, Gerald S.
2010-04-01
Single-photon detection technologies in conjunction with low laser illumination powers allow for the eye-safe acquisition of time-of-flight range information on non-cooperative target surfaces. We previously presented a photon-counting depth imaging system designed for the rapid acquisition of three-dimensional target models by steering a single scanning pixel across the field angle of interest. To minimise the per-pixel dwelling times required to obtain sufficient photon statistics for accurate distance resolution, periodic illumination at multi- MHz repetition rates was applied. Modern time-correlated single-photon counting (TCSPC) hardware allowed for depth measurements with sub-mm precision. Resolving the absolute target range with a fast periodic signal is only possible at sufficiently short distances: if the round-trip time towards an object is extended beyond the timespan between two trigger pulses, the return signal cannot be assigned to an unambiguous range value. Whereas constructing a precise depth image based on relative results may still be possible, problems emerge for large or unknown pixel-by-pixel separations or in applications with a wide range of possible scene distances. We introduce a technique to avoid range ambiguity effects in time-of-flight depth imaging systems at high average pulse rates. A long pseudo-random bitstream is used to trigger the illuminating laser. A cyclic, fast-Fourier supported analysis algorithm is used to search for the pattern within return photon events. We demonstrate this approach at base clock rates of up to 2 GHz with varying pattern lengths, allowing for unambiguous distances of several kilometers. Scans at long stand-off distances and of scenes with large pixel-to-pixel range differences are presented. Numerical simulations are performed to investigate the relative merits of the technique.
The DISTO data acquisition system at SATURNE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balestra, F.; Bedfer, Y.; Bertini, R.
1998-06-01
The DISTO collaboration has built a large-acceptance magnetic spectrometer designed to provide broad kinematic coverage of multiparticle final states produced in pp scattering. The spectrometer has been installed in the polarized proton beam of the Saturne accelerator in Saclay to study polarization observables in the {rvec p}p {yields} pK{sup +}{rvec Y} (Y = {Lambda}, {Sigma}{sup 0} or Y{sup *}) reaction and vector meson production ({psi}, {omega} and {rho}) in pp collisions. The data acquisition system is based on a VME 68030 CPU running the OS/9 operating system, housed in a single VME crate together with the CAMAC interface, the triplemore » port ECL memories, and four RISC R3000 CPU. The digitization of signals from the detectors is made by PCOS III and FERA front-end electronics. Data of several events belonging to a single Saturne extraction are stored in VME triple-port ECL memories using a hardwired fast sequencer. The buffer, optionally filtered by the RISC R3000 CPU, is recorded on a DLT cassette by DAQ CPU using the on-board SCSI interface during the acceleration cycle. Two UNIX workstations are connected to the VME CPUs through a fast parallel bus and the Local Area Network. They analyze a subset of events for on-line monitoring. The data acquisition system is able to read and record 3,500 ev/burst in the present configuration with a dead time of 15%.« less
Chen, Shuo; Ning, Jia; Zhao, Xihai; Wang, Jinnan; Zhou, Zechen; Yuan, Chun; Chen, Huijun
2017-02-01
To propose a fast simultaneous noncontrast angiography and intraplaque hemorrhage (fSNAP) sequence for carotid artery imaging. The proposed fSNAP sequence uses a low-resolution reference acquisition for phase-sensitive reconstruction to speed up the scan, and an inversion recovery acquisition with arbitrary k-space filling order to generate similar contrast to conventional SNAP. Four healthy volunteers and eight patients were recruited to test the performance of fSNAP in vivo. The lumen area quantification, muscle-blood CNR, IPH-blood CNR, lumen SNR, and standard deviation and intraplaque hemorrhage (IPH) detection accuracy were compared between fSNAP and SNAP. By using a low-resolution reference acquisition with 1/4 matrix size of the full-resolution reference scan, the scan time of fSNAP was 37.5% less than that of SNAP. A high agreement of lumen area measurement (ICC = 0.97, 95% CI: 0.96-0.99) and IPH detection (Kappa = 1) were found between fSNAP and SNAP. Also, no significant difference was found for muscle-blood CNR (P = 0.25), IPH-blood CNR (P = 0.35), lumen SNR (P = 0.60), and standard deviation (P = 0.46) between the two techniques. The feasibility of fSNAP was validated. fSNAP can improve the imaging efficiency with similar performance to SNAP on carotid artery imaging. Magn Reson Med 77:753-758, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
High-frame-rate imaging of biological samples with optoacoustic micro-tomography
NASA Astrophysics Data System (ADS)
Deán-Ben, X. Luís.; López-Schier, Hernán.; Razansky, Daniel
2018-02-01
Optical microscopy remains a major workhorse in biological discovery despite the fact that light scattering limits its applicability to depths of ˜ 1 mm in scattering tissues. Optoacoustic imaging has been shown to overcome this barrier by resolving optical absorption with microscopic resolution in significantly deeper regions. Yet, the time domain is paramount for the observation of biological dynamics in living systems that exhibit fast motion. Commonly, acquisition of microscopy data involves raster scanning across the imaged volume, which significantly limits temporal resolution in 3D. To overcome these limitations, we have devised a fast optoacoustic micro-tomography (OMT) approach based on simultaneous acquisition of 3D image data with a high-density hemispherical ultrasound array having effective detection bandwidth around 25 MHz. We performed experiments by imaging tissue-mimicking phantoms and zebrafish larvae, demonstrating that OMT can provide nearly cellular resolution and imaging speed of 100 volumetric frames per second. As opposed to other optical microscopy techniques, OMT is a hybrid method that resolves optical absorption contrast acoustically using unfocused light excitation. Thus, no penetration barriers are imposed by light scattering in deep tissues, suggesting it as a powerful approach for multi-scale functional and molecular imaging applications.
Note: Fully integrated time-to-amplitude converter in Si-Ge technology.
Crotti, M; Rech, I; Ghioni, M
2010-10-01
Over the past years an always growing interest has arisen about the measurement technique of time-correlated single photon counting TCSPC), since it allows the analysis of extremely fast and weak light waveforms with a picoseconds resolution. Consequently, many applications exploiting TCSPC have been developed in several fields such as medicine and chemistry. Moreover, the development of multianode PMT and of single photon avalanche diode arrays led to the realization of acquisition systems with several parallel channels to employ the TCSPC technique in even more applications. Since TCSPC basically consists of the measurement of the arrival time of a photon, the most important part of an acquisition chain is the time measurement block, which must have high resolution and low differential nonlinearity, and in order to realize multidimensional systems, it has to be integrated to reduce both cost and area. In this paper we present a fully integrated time-to-amplitude converter, built in 0.35 μm Si-Ge technology, characterized by a good time resolution (60 ps), low differential nonlinearity (better than 3% peak to peak), high counting rate (16 MHz), low and constant power dissipation (40 mW), and low area occupation (1.38×1.28 mm(2)).
Hubert: Software for efficient analysis of in-situ nuclear forward scattering experiments
NASA Astrophysics Data System (ADS)
Vrba, Vlastimil; Procházka, Vít; Smrčka, David; Miglierini, Marcel
2016-10-01
Combination of short data acquisition time and local investigation of a solid state through hyperfine parameters makes nuclear forward scattering (NFS) a unique experimental technique for investigation of fast processes. However, the total number of acquired NFS time spectra may be very high. Therefore an efficient way of the data evaluation is needed. In this paper we report the development of Hubert software package as a response to the rapidly developing field of in-situ NFS experiments. Hubert offers several useful features for data files processing and could significantly shorten the evaluation time by using a simple connection between the neighboring time spectra through their input and output parameter values.
Marchand, Jérémy; Martineau, Estelle; Guitton, Yann; Dervilly-Pinel, Gaud; Giraudeau, Patrick
2017-02-01
Multi-dimensional NMR is an appealing approach for dealing with the challenging complexity of biological samples in metabolomics. This article describes how spectroscopists have recently challenged their imagination in order to make 2D NMR a powerful tool for quantitative metabolomics, based on innovative pulse sequences combined with meticulous analytical chemistry approaches. Clever time-saving strategies have also been explored to make 2D NMR a high-throughput tool for metabolomics, relying on alternative data acquisition schemes such as ultrafast NMR. Currently, much work is aimed at drastically boosting the NMR sensitivity thanks to hyperpolarisation techniques, which have been used in combination with fast acquisition methods and could greatly expand the application potential of NMR metabolomics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of fluorescence spectroscopy for on-line bioprocess monitoring and control
NASA Astrophysics Data System (ADS)
Boehl, Daniela; Solle, D.; Toussaint, Hans J.; Menge, M.; Renemann, G.; Lindemann, Carsten; Hitzmann, Bernd; Scheper, Thomas-Helmut
2001-02-01
12 Modern bioprocess control requires fast data acquisition and in-time evaluation of bioprocess variables. On-line fluorescence spectroscopy for data acquisition and the use of chemometric methods accomplish these requirements. The presented investigations were performed with fluorescence spectrometers with wide ranges of excitation and emission wavelength. By detection of several biogenic fluorophors (amino acids, coenzymes and vitamins) a large amount of information about the state of the bioprocess are obtained. For the evaluation of the process variables partial least squares regression is used. This technique was applied to several bioprocesses: the production of ergotamine by Claviceps purpurea, the production of t-PA (tissue plasminogen activator) by animal cells and brewing processes. The main point of monitoring the brewing processes was to determine the process variables cell count and extract concentration.
Electronic system for data acquisition to study radiation effects on operating MOSFET transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves de Oliveira, Juliano; Assis de Melo, Marco Antônio; Guazzelli da Silveira, Marcilei A.
In this work we present the development of an acquisition system for characterizing transistors under X-ray radiation. The system is able to carry out the acquisition and to storage characteristic transistor curves. To test the acquisition system we have submitted polarized P channel MOS transistors under continuous 10-keV X-ray doses up to 1500 krad. The characterization system can operate in the saturation region or in the linear region in order to observe the behavior of the currents or voltages involved during the irradiation process. Initial tests consisted of placing the device under test (DUT) in front of the X-ray beammore » direction, while its drain current was constantly monitored through the prototype generated in this work, the data are stored continuously and system behavior was monitored during the test. In order to observe the behavior of the DUT during the radiation tests, we used an acquisition system that consists of an ultra-low consumption16-bit Texas Instruments MSP430 microprocessor. Preliminary results indicate linear behavior of the voltage as a function of the exposure time and fast recovery. These features may be favorable to use this device as a radiation dosimeter to monitor low rate X-ray.« less
The new classic data acquisition system for NPOI
NASA Astrophysics Data System (ADS)
Sun, B.; Jorgensen, A. M.; Landavazo, M.; Hutter, D. J.; van Belle, G. T.; Mozurkewich, David; Armstrong, J. T.; Schmitt, H. R.; Baines, E. K.; Restaino, S. R.
2014-07-01
The New Classic data acquisition system is an important portion of a new project of stellar surface imaging with the NPOI, funded by the National Science Foundation, and enables the data acquisition necessary for the project. The NPOI can simultaneously deliver beams from 6 telescopes to the beam combining facility, and in the Classic beam combiner these are combined 4 at a time on 3 separate spectrographs with all 15 possible baselines observed. The Classic data acquisition system is limited to 16 of 32 wavelength channels on two spectrographs and limited to 30 s integrations followed by a pause to ush data. Classic also has some limitations in its fringe-tracking capability. These factors, and the fact that Classic incorporates 1990s technology which cannot be easily replaced are motivation for upgrading the data acquisition system. The New Classic data acquisition system is based around modern electronics, including a high-end Stratix FPGA, a 200 MB/s Direct Memory Access card, and a fast modern Linux computer. These allow for continuous recording of all 96 channels across three spectrographs, increasing the total amount of data recorded by a an estimated order of magnitude. The additional computing power on the data acquisition system also allows for the implementation of more sophisticated fringe-tracking algorithms which are needed for the Stellar Surface Imaging project. In this paper we describe the New Classic system design and implementation, describe the background and motivation for the system as well as show some initial results from using it.
ERIC Educational Resources Information Center
Mervis, Carolyn B.; Bertrand, Jacquelyn
1995-01-01
Acquisition of the novel name-nameless category (N3C) principle by 22 toddlers with Down syndrome was studied. Results indicated that the ability to fast map a new word to a category is not available at the start of lexical acquisition. Children who used the N3C principle had larger productive vocabularies than others and had begun to acquire new…
Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru
2013-09-01
We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5 cm-1 in the Raman spectral region around 2850 cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850 cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.
Optical delay encoding for fast timing and detector signal multiplexing in PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford
2015-08-15
Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less
Zhang, Xiaodong; Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard
2014-04-01
Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease.
Taylor, Brian A.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason
2009-01-01
The authors investigated the performance of the iterative Steiglitz–McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (≤16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer–Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR)≥5 for echo train lengths (ETLs)≥4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and∕or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with ≥4 echoes and for T2* (<1.0%) with ≥7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire ≤16 echoes for one- and two-peak systems. Preliminary ex vivo and in vivo experiments corroborated the results from simulation experiments and further indicate the potential of this technique for MR-guided interventional procedures with high spatiotemporal resolution ∼1.6×1.6×4 mm3 in ≤5 s. PMID:19378736
Ultrafast photon counting applied to resonant scanning STED microscopy.
Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong
2015-01-01
To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubart, Philippe; Hautot, Felix; Morichi, Massimo
Good management of dismantling and decontamination (D and D) operations and activities is requiring safety, time saving and perfect radiological knowledge of the contaminated environment as well as optimization for personnel dose and minimization of waste volume. In the same time, Fukushima accident has imposed a stretch to the nuclear measurement operational approach requiring in such emergency situation: fast deployment and intervention, quick analysis and fast scenario definition. AREVA, as return of experience from his activities carried out at Fukushima and D and D sites has developed a novel multi-sensor solution as part of his D and D research, approachmore » and method, a system with real-time 3D photo-realistic spatial radiation distribution cartography of contaminated premises. The system may be hand-held or mounted on a mobile device (robot, drone, e.g). In this paper, we will present our current development based on a SLAM technology (Simultaneous Localization And Mapping) and integrated sensors and detectors allowing simultaneous topographic and radiological (dose rate and/or spectroscopy) data acquisitions. This enabling technology permits 3D gamma activity cartography in real-time. (authors)« less
Cao, Xu; Zhang, Bin; Liu, Fei; Wang, Xin; Bai, Jing
2011-12-01
Limited-projection fluorescence molecular tomography (FMT) can greatly reduce the acquisition time, which is suitable for resolving fast biology processes in vivo but suffers from severe ill-posedness because of the reconstruction using only limited projections. To overcome the severe ill-posedness, we report a reconstruction method based on the projected restarted conjugate gradient normal residual. The reconstruction results of two phantom experiments demonstrate that the proposed method is feasible for limited-projection FMT. © 2011 Optical Society of America
Method for conducting nonlinear electrochemical impedance spectroscopy
Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.
2015-06-02
A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.
Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook
2012-03-01
Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.
Anisotropic field-of-view shapes for improved PROPELLER imaging☆
Larson, Peder E.Z.; Lustig, Michael S.; Nishimura, Dwight G.
2010-01-01
The Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) method for magnetic resonance imaging data acquisition and reconstruction has the highly desirable property of being able to correct for motion during the scan, making it especially useful for imaging pediatric or uncooperative patients and diffusion imaging. This method nominally supports a circular field of view (FOV), but tailoring the FOV for noncircular shapes results in more efficient, shorter scans. This article presents new algorithms for tailoring PROPELLER acquisitions to the desired FOV shape and size that are flexible and precise. The FOV design also allows for rotational motion which provides better motion correction and reduced aliasing artifacts. Some possible FOV shapes demonstrated are ellipses, ovals and rectangles, and any convex, pi-symmetric shape can be designed. Standard PROPELLER reconstruction is used with minor modifications, and results with simulated motion presented confirm the effectiveness of the motion correction with these modified FOV shapes. These new acquisition design algorithms are simple and fast enough to be computed for each individual scan. Also presented are algorithms for further scan time reductions in PROPELLER echo-planar imaging (EPI) acquisitions by varying the sample spacing in two directions within each blade. PMID:18818039
Data acquisition for the new muon g-2 experiment at Fermilab
Gohn, Wesley
2015-12-23
A new measurement of the anomalous magnetic moment of the muon, a μ ≡ (g - 2)/2, will be performed at the Fermi National Accelerator Laboratory. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.3-3.6 standard deviation discrepancy with the Standard Model predictions for a μ. The new measurement will accumulate 21 times those statistics, measuring a μ to 140 ppb and reducing the uncertainty by a factor of 4. The data acquisition system for this experiment must have the ability to record deadtime-free records from 700 μs muon spills at a rawmore » data rate of 18 GB per second. Data will be collected using 1296 channels of μTCA-based 800 MSPS, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording and processing of detector signals during the spill. The system will be controlled using the MIDAS data acquisition software package. Lastly, the described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.« less
Data Acquisition for the New Muon g-2 Experiment at Fermilab
NASA Astrophysics Data System (ADS)
Gohn, Wesley
2015-12-01
A new measurement of the anomalous magnetic moment of the muon,aμ≡ (g - 2)/2, will be performed at the Fermi National Accelerator Laboratory. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.3-3.6 standard deviation discrepancy with the Standard Model predictions for aμ. The new measurement will accumulate 21 times those statistics, measuring aμ to 140 ppb and reducing the uncertainty by a factor of 4. The data acquisition system for this experiment must have the ability to record deadtime-free records from 700 μs muon spills at a raw data rate of 18 GB per second. Data will be collected using 1296 channels of μTCA-based 800 MHz, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording and processing of detector signals during the spill. The system will be controlled using the MIDAS data acquisition software package. The described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodek-Wuerz, Roman; Martin, Jean-Baptiste; Wilhelm, Kai
Percutaneous vertebroplasty (PVP) is carried out under fluoroscopic control in most centers. The exclusion of implant leakage and the assessment of implant distribution might be difficult to assess based on two-dimensional radiographic projection images only. We evaluated the feasibility of performing a follow-up examination after PVP with rotational acquisitions and volumetric reconstructions in the angio suite. Twenty consecutive patients underwent standard PVP procedures under fluoroscopic control. Immediate postprocedure evaluation of the implant distribution in the angio suite (BV 3000; Philips, The Netherlands) was performed using rotational acquisitions (typical parameters for the image acquisition included a 17-cm field-of-view, 200 acquired imagesmore » for a total angular range of 180{sup o}). Postprocessing of acquired volumetric datasets included multiplanar reconstruction (MPR), maximum intensity projection (MIP), and volume rendering technique (VRT) images that were displayed as two-dimensional slabs or as entire three-dimensional volumes. Image evaluation included lesion and implant assessment with special attention given to implant leakage. Findings from rotational acquisitions were compared to findings from postinterventional CT. The time to perform and to postprocess the rotational acquisitions was in all cases less then 10 min. Assessment of implant distribution after PVP using rotational image acquisition methods and volumetric reconstructions was possible in all patients. Cement distribution and potential leakage sites were visualized best on MIP images presented as slabs. From a total of 33 detected leakages with CT, 30 could be correctly detected by rotational image acquisition. Rotational image acquisitions and volumetric reconstruction methods provided a fast method to control radiographically the result of PVP in our cases.« less
Fast 3D magnetic resonance fingerprinting for a whole-brain coverage.
Ma, Dan; Jiang, Yun; Chen, Yong; McGivney, Debra; Mehta, Bhairav; Gulani, Vikas; Griswold, Mark
2018-04-01
The purpose of this study was to accelerate the acquisition and reconstruction time of 3D magnetic resonance fingerprinting scans. A 3D magnetic resonance fingerprinting scan was accelerated by using a single-shot spiral trajectory with an undersampling factor of 48 in the x-y plane, and an interleaved sampling pattern with an undersampling factor of 3 through plane. Further acceleration came from reducing the waiting time between neighboring partitions. The reconstruction time was accelerated by applying singular value decomposition compression in k-space. Finally, a 3D premeasured B 1 map was used to correct for the B 1 inhomogeneity. The T 1 and T 2 values of the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI phantom showed a good agreement with the standard values, with an average concordance correlation coefficient of 0.99, and coefficient of variation of 7% in the repeatability scans. The results from in vivo scans also showed high image quality in both transverse and coronal views. This study applied a fast acquisition scheme for a fully quantitative 3D magnetic resonance fingerprinting scan with a total acceleration factor of 144 as compared with the Nyquist rate, such that 3D T 1 , T 2 , and proton density maps can be acquired with whole-brain coverage at clinical resolution in less than 5 min. Magn Reson Med 79:2190-2197, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Simultaneous Quantitative MRI Mapping of T1, T2* and Magnetic Susceptibility with Multi-Echo MP2RAGE
Kober, Tobias; Möller, Harald E.; Schäfer, Andreas
2017-01-01
The knowledge of relaxation times is essential for understanding the biophysical mechanisms underlying contrast in magnetic resonance imaging. Quantitative experiments, while offering major advantages in terms of reproducibility, may benefit from simultaneous acquisitions. In this work, we demonstrate the possibility of simultaneously recording relaxation-time and susceptibility maps with a prototype Multi-Echo (ME) Magnetization-Prepared 2 RApid Gradient Echoes (MP2RAGE) sequence. T1 maps can be obtained using the MP2RAGE sequence, which is relatively insensitive to inhomogeneities of the radio-frequency transmit field, B1+. As an extension, multiple gradient echoes can be acquired in each of the MP2RAGE readout blocks, which permits the calculation of T2* and susceptibility maps. We used computer simulations to explore the effects of the parameters on the precision and accuracy of the mapping. In vivo parameter maps up to 0.6 mm nominal resolution were acquired at 7 T in 19 healthy volunteers. Voxel-by-voxel correlations and the test-retest reproducibility were used to assess the reliability of the results. When using optimized paramenters, T1 maps obtained with ME-MP2RAGE and standard MP2RAGE showed excellent agreement for the whole range of values found in brain tissues. Simultaneously obtained T2* and susceptibility maps were of comparable quality as Fast Low-Angle SHot (FLASH) results. The acquisition times were more favorable for the ME-MP2RAGE (≈ 19 min) sequence as opposed to the sum of MP2RAGE (≈ 12 min) and FLASH (≈ 10 min) acquisitions. Without relevant sacrifice in accuracy, precision or flexibility, the multi-echo version may yield advantages in terms of reduced acquisition time and intrinsic co-registration, provided that an appropriate optimization of the acquisition parameters is performed. PMID:28081157
Manoliu, Andrei; Ho, Michael; Nanz, Daniel; Piccirelli, Marco; Dappa, Evelyn; Klarhöfer, Markus; Del Grande, Filippo; Kuhn, Felix Pierre
2016-08-01
The aim of this study was to compare the quality of recently emerged advanced diffusion tensor imaging (DTI) techniques with conventional single-shot echo-planar imaging (EPI) in a functional assessment of lumbar nerve roots. The institutional review board approved the study including 12 healthy volunteers. Diffusion tensor imaging was performed at 3 T (MAGNETOM Skyra; Siemens Healthcare) with b-values of 0 and 700 s/mm and an isotropic spatial resolution for subsequent multiplanar reformatting. The nerve roots L2 to S1 were imaged in coronal orientation with readout-segmented EPI (rs-DTI) and selective-excitation EPI (sTX-DTI) with an acquisition time of 5 minutes each, and in axial orientation with single-shot EPI (ss-DTI) with an acquisition time of 12 minutes (scan parameters as in recent literature). Two independent readers qualitatively and quantitatively assessed image quality. The interobserver reliability ranged from "substantial" to "almost perfect" for all examined parameter and all 3 sequences (κ = 0.70-0.94). Overall image quality was rated higher, and artifact levels were scored lower for rs-DTI and sTX-DTI than for ss-DTI (P = 0.007-0.027), while fractional anisotropy and signal-to-noise ratio values were similar for all sequences (P ≥ 0.306 and P ≥ 0.100, respectively). Contrast-to-noise ratios were significantly higher for rs-DTI and ss-DTI than for sTX-DTI (P = 0.004-0.013). Despite shorter acquisition times, rs-DTI and sTX-DTI produced images of higher quality with smaller geometrical distortions than the current standard of reference, ss-DTI. Thus, DTI acquisitions in the coronal plane, requiring fewer slices for full coverage of exiting nerve roots, may allow for functional neurography in scan times suitable for routine clinical practice.
Naval Air Systems Command Needs to Improve Management of Waiver Requests (REDACTED)
2015-05-15
Acquisition Category ID5 major defense acquisition program that had its final production decision on January 3, 2014. The Navy designed the P -8A...submarines, was the primary reason the Navy invested in the P -8A aircraft. The anti-surface warfare mission provides maritime superiority 5 Acquisition ...frigates (small, fast military ships) at 110 nautical miles, which was one of the critical technical parameters. Also, the P -8A aircraft that was
Mueller-Lisse, U G; Thoma, M; Faber, S; Heuck, A F; Muschter, R; Schneede, P; Weninger, E; Hofstetter, A G; Reiser, M F
1999-02-01
To determine if hypointense lesions clearly outline on T2-weighted fast spin-echo (SE) magnetic resonance (MR) images obtained during coagulative interstitial laser-induced thermotherapy (LITT) of a prostate with benign hyperplasia. In six patients with benign prostatic hyperplasia (BPH), 12 LITT treatments were followed online with repetitive axial T2-weighted fast SE imaging (repetition time, 3,700 msec; echo time, 138 msec; acquisition time, 19 seconds). Development, time course, correlation with interstitial tissue temperature, and diameters of hypointense lesions around the laser diffusor tip were investigated. Lesion diameters on T2-weighted images acquired during LITT were compared with diameters of final lesions on T2-weighted images and unperfused lesions on enhanced T1-weighted SE images obtained at the end of therapy. Hypointense lesions developed within 20-40 seconds of LITT. Average correlation coefficients between interstitial temperature development and signal intensity development were 0.92 during LITT and 0.90 after LITT. Regression slopes were significantly steeper during LITT (0.67% signal intensity change per degree Celsius) than after LITT (0.47% per degree Celsius; P = .038). Lesions remained visible after LITT for all procedures. Average maximum diameters of lesions were 1-3 mm larger during LITT than after LITT (P = .0006-.019). Repetitive T2-weighted fast SE MR imaging during interstitial coagulative LITT of BPH demonstrates the development of permanent hypointense prostate lesions. However, posttherapeutic lesion diameters tend to be overestimated during LITT.
Fast energy spectrum and transverse beam profile monitoring and feedback systems for the SLC linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soderstrom, E.J.; Abrams, G.S.; Weinstein, A.J.
Fast energy spectrum and transverse beam profile monitoring systems have been tested at the SLC. The signals for each system are derived from digitizations of images on phosphor screens. Individual beam bunch images are digitized in the case of the transverse profile system and synchrotron radiation images produced by wiggler magnets for the energy spectrum. Measurements are taken at two-second intervals. Feedback elements have been installed for future use and consist of rf phase shifters to control energy spectrum and dipole correctors to control the beam launch into the linac affecting the transverse beam profile. Details of these systems, includingmore » hardware, timing, data acquisition, data reduction, measurement accuracy, and operational experience will be presented. 9 refs.« less
3D Fast Spin Echo T2-weighted Contrast for Imaging the Female Cervix
NASA Astrophysics Data System (ADS)
Vargas Sanchez, Andrea Fernanda
Magnetic Resonance Imaging (MRI) with T2-weighted contrast is the preferred modality for treatment planning and monitoring of cervical cancer. Current clinical protocols image the volume of interest multiple times with two dimensional (2D) T2-weighted MRI techniques. It is of interest to replace these multiple 2D acquisitions with a single three dimensional (3D) MRI acquisition to save time. However, at present the image contrast of standard 3D MRI does not distinguish cervical healthy tissue from cancerous tissue. The purpose of this thesis is to better understand the underlying factors that govern the contrast of 3D MRI and exploit this understanding via sequence modifications to improve the contrast. Numerical simulations are developed to predict observed contrast alterations and to propose an improvement. Improvements of image contrast are shown in simulation and with healthy volunteers. Reported results are only preliminary but a promising start to establish definitively 3D MRI for cervical cancer applications.
EIGER detector: application in macromolecular crystallography.
Casanas, Arnau; Warshamanage, Rangana; Finke, Aaron D; Panepucci, Ezequiel; Olieric, Vincent; Nöll, Anne; Tampé, Robert; Brandstetter, Stefan; Förster, Andreas; Mueller, Marcus; Schulze-Briese, Clemens; Bunk, Oliver; Wang, Meitian
2016-09-01
The development of single-photon-counting detectors, such as the PILATUS, has been a major recent breakthrough in macromolecular crystallography, enabling noise-free detection and novel data-acquisition modes. The new EIGER detector features a pixel size of 75 × 75 µm, frame rates of up to 3000 Hz and a dead time as low as 3.8 µs. An EIGER 1M and EIGER 16M were tested on Swiss Light Source beamlines X10SA and X06SA for their application in macromolecular crystallography. The combination of fast frame rates and a very short dead time allows high-quality data acquisition in a shorter time. The ultrafine ϕ-slicing data-collection method is introduced and validated and its application in finding the optimal rotation angle, a suitable rotation speed and a sufficient X-ray dose are presented. An improvement of the data quality up to slicing at one tenth of the mosaicity has been observed, which is much finer than expected based on previous findings. The influence of key data-collection parameters on data quality is discussed.
Schmidt, Holger; Böttcher, Christoph; Trampczynska, Aleksandra; Clemens, Stephan
2011-01-01
Nicotianamine (NA) is an important metal chelator, implicated in the intra- and intercellular trafficking of several transition metal ions in plants. To decipher its roles in physiological processes such as micronutrient acquisition, distribution or storage, fast and sensitive analytical techniques for quantification of this non-proteinogenic amino acid will be required. The use of a recombinant Schizosaccharomyces pombe strain expressing a nicotianamine synthase (NAS) gene allowed for the production of [(15)N(3)]-NA, which was enriched from cell extracts through cation exchange and used for stable isotope dilution analysis of NA. Such an approach should be widely applicable to important bioanalytes that are difficult to synthesize. The analytical procedure comprises mild aqueous extraction and rapid Fmoc derivatization, followed by fast separation using ultra-performance liquid chromatography (UPLC) and sensitive detection by positive ion electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) with a chromatographic cycle time of only 8 min. Derivatization was optimized with respect to incubation time and species suitable for quantification. The limit of detection was 0.14 to 0.23 pmol in biological matrices with the response being linear up to 42 pmol. Recovery rates were between 83% and 104% in various biological matrices including fission yeast cells, fungal mycelium, plant leaves and roots.
NASA Astrophysics Data System (ADS)
Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.
2017-09-01
The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.
SU-G-BRA-01: A Real-Time Tumor Localization and Guidance Platform for Radiotherapy Using US and MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bednarz, B; Culberson, W; Bassetti, M
Purpose: To develop and validate a real-time motion management platform for radiotherapy that directly tracks tumor motion using ultrasound and MRI. This will be a cost-effective and non-invasive real-time platform combining the excellent temporal resolution of ultrasound with the excellent soft-tissue contrast of MRI. Methods: A 4D planar ultrasound acquisition during the treatment that is coupled to a pre-treatment calibration training image set consisting of a simultaneous 4D ultrasound and 4D MRI acquisition. The image sets will be rapidly matched using advanced image and signal processing algorithms, allowing the display of virtual MR images of the tumor/organ motion in real-timemore » from an ultrasound acquisition. Results: The completion of this work will result in several innovations including: a (2D) patch-like, MR and LINAC compatible 4D planar ultrasound transducer that is electronically steerable for hands-free operation to provide real-time virtual MR and ultrasound imaging for motion management during radiation therapy; a multi- modal tumor localization strategy that uses ultrasound and MRI; and fast and accurate image processing algorithms that provide real-time information about the motion and location of tumor or related soft-tissue structures within the patient. Conclusion: If successful, the proposed approach will provide real-time guidance for radiation therapy without degrading image or treatment plan quality. The approach would be equally suitable for image-guided proton beam or heavy ion-beam therapy. This work is partially funded by NIH grant R01CA190298.« less
Implementation of High Speed Distributed Data Acquisition System
NASA Astrophysics Data System (ADS)
Raju, Anju P.; Sekhar, Ambika
2012-09-01
This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high accuracy, high speed, real time monitoring.
2008-01-01
Increment 2 will provide unprecedented network connectivity for Brigade Combat Teams while they quickly traverse the battlefield during fast moving... fast . As you know, just working with the Directorate of Information Management with your computer, you need constant patches, up- grades, updates...designed for fast acquisition and requisition. The modem will reacquire bursts within a second for short duration or intermittent blockages. Should the user
Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications
NASA Astrophysics Data System (ADS)
Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.
2016-04-01
Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.
Ridgeway, William K; Millar, David P; Williamson, James R
2013-01-01
Fluorescence Correlation Spectroscopy (FCS) is widely used to quantitate reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. PMID:23525193
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Yuan, Renliang; Zuo, Jian Min
Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less
Lee, Seung Hyun; Lee, Young Han; Song, Ho-Taek; Suh, Jin-Suck
2017-10-01
To evaluate the feasibility of 3D fast spin-echo (FSE) imaging with compressed sensing (CS) for the assessment of shoulder. Twenty-nine patients who underwent shoulder MRI including image sets of axial 3D-FSE sequence without CS and with CS, using an acceleration factor of 1.5, were included. Quantitative assessment was performed by calculating the root mean square error (RMSE) and structural similarity index (SSIM). Two musculoskeletal radiologists compared image quality of 3D-FSE sequences without CS and with CS, and scored the qualitative agreement between sequences, using a five-point scale. Diagnostic agreement for pathologic shoulder lesions between the two sequences was evaluated. The acquisition time of 3D-FSE MRI was reduced using CS (3min 23s vs. 2min 22s). Quantitative evaluations showed a significant correlation between the two sequences (r=0.872-0.993, p<0.05) and SSIM was in an acceptable range (0.940-0.993; mean±standard deviation, 0.968±0.018). Qualitative image quality showed good to excellent agreement between 3D-FSE images without CS and with CS. Diagnostic agreement for pathologic shoulder lesions between the two sequences was very good (κ=0.915-1). The 3D-FSE sequence with CS is feasible in evaluating the shoulder joint with reduced scan time compared to 3D-FSE without CS. Copyright © 2017 Elsevier Inc. All rights reserved.
Lu, Ping; Yuan, Renliang; Zuo, Jian Min
2017-02-23
Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less
Full information acquisition in scanning probe microscopy and spectroscopy
Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas
2017-04-04
Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.
Rieger, Benedikt; Akçakaya, Mehmet; Pariente, José C; Llufriu, Sara; Martinez-Heras, Eloy; Weingärtner, Sebastian; Schad, Lothar R
2018-04-27
Magnetic resonance fingerprinting (MRF) is a promising method for fast simultaneous quantification of multiple tissue parameters. The objective of this study is to improve the coverage of MRF based on echo-planar imaging (MRF-EPI) by using a slice-interleaved acquisition scheme. For this, the MRF-EPI is modified to acquire several slices in a randomized interleaved manner, increasing the effective repetition time of the spoiled gradient echo readout acquisition in each slice. Per-slice matching of the signal-trace to a precomputed dictionary allows the generation of T 1 and T 2 * maps with integrated B 1 + correction. Subsequent compensation for the coil sensitivity profile and normalization to the cerebrospinal fluid additionally allows for quantitative proton density (PD) mapping. Numerical simulations are performed to optimize the number of interleaved slices. Quantification accuracy is validated in phantom scans and feasibility is demonstrated in-vivo. Numerical simulations suggest the acquisition of four slices as a trade-off between quantification precision and scan-time. Phantom results indicate good agreement with reference measurements (Difference T 1 : -2.4 ± 1.1%, T 2 *: -0.5 ± 2.5%, PD: -0.5 ± 7.2%). In-vivo whole-brain coverage of T 1 , T 2 * and PD with 32 slices was acquired within 3:36 minutes, resulting in parameter maps of high visual quality and comparable performance with single-slice MRF-EPI at 4-fold scan-time reduction.
Fast data acquisition with the CDF event builder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinervo, P.K.; Ragan, K.J.; Booth, A.W.
1989-02-01
The CDF (Collider Detector at Fermilab) Event Builder is an intelligent Fastbus device that performs parallel read out of a set of Fastbus slaves on multiple cable segments, formats the data, and writes the reformatted data to a Fastbus slave module. The authors review the properties of this device, and summarize its performance in the CDF data acquisition system.
Computer-intensive simulation of solid-state NMR experiments using SIMPSON.
Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas
2014-09-01
Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Egli, R.; Zhao, X.
2015-04-01
We present a general theory for the acquisition of natural remanent magnetizations (NRM) in sediment under the influence of (a) magnetic torques, (b) randomizing torques, and (c) torques resulting from interaction forces. Dynamic equilibrium between (a) and (b) in the water column and at the sediment-water interface generates a detrital remanent magnetization (DRM), while much stronger randomizing torques may be provided by bioturbation inside the mixed layer. These generate a so-called mixed remanent magnetization (MRM), which is stabilized by mechanical interaction forces. During the time required to cross the surface mixed layer, DRM is lost and MRM is acquired at a rate that depends on bioturbation intensity. Both processes are governed by a MRM lock-in function. The final NRM intensity is controlled mainly by a single parameter γ that is defined as the product of rotational diffusion and mixed-layer thickness, divided by sedimentation rate. This parameter defines three regimes: (1) slow mixing (γ < 0.2) leading to DRM preservation and insignificant MRM acquisition, (2) fast mixing (γ > 10) with MRM acquisition and full DRM randomization, and (3) intermediate mixing. Because the acquisition efficiency of DRM is larger than that of MRM, NRM intensity is particularly sensitive to γ in case of mixed regimes, generating variable NRM acquisition efficiencies. This model explains (1) lock-in delays that can be matched with empirical reconstructions from paleomagnetic records, (2) the existence of small lock-in depths that lead to DRM preservation, (3) specific NRM acquisition efficiencies of magnetofossil-rich sediments, and (4) some relative paleointensity artifacts.
Three-dimensional through-time radial GRAPPA for renal MR angiography.
Wright, Katherine L; Lee, Gregory R; Ehses, Philipp; Griswold, Mark A; Gulani, Vikas; Seiberlich, Nicole
2014-10-01
To achieve high temporal and spatial resolution for contrast-enhanced time-resolved MR angiography exams (trMRAs), fast imaging techniques such as non-Cartesian parallel imaging must be used. In this study, the three-dimensional (3D) through-time radial generalized autocalibrating partially parallel acquisition (GRAPPA) method is used to reconstruct highly accelerated stack-of-stars data for time-resolved renal MRAs. Through-time radial GRAPPA has been recently introduced as a method for non-Cartesian GRAPPA weight calibration, and a similar concept can also be used in 3D acquisitions. By combining different sources of calibration information, acquisition time can be reduced. Here, different GRAPPA weight calibration schemes are explored in simulation, and the results are applied to reconstruct undersampled stack-of-stars data. Simulations demonstrate that an accurate and efficient approach to 3D calibration is to combine a small number of central partitions with as many temporal repetitions as exam time permits. These findings were used to reconstruct renal trMRA data with an in-plane acceleration factor as high as 12.6 with respect to the Nyquist sampling criterion, where the lowest root mean squared error value of 16.4% was achieved when using a calibration scheme with 8 partitions, 16 repetitions, and a 4 projection × 8 read point segment size. 3D through-time radial GRAPPA can be used to successfully reconstruct highly accelerated non-Cartesian data. By using in-plane radial undersampling, a trMRA can be acquired with a temporal footprint less than 4s/frame with a spatial resolution of approximately 1.5 mm × 1.5 mm × 3 mm. © 2014 Wiley Periodicals, Inc.
Ting, Samuel T; Ahmad, Rizwan; Jin, Ning; Craft, Jason; Serafim da Silveira, Juliana; Xue, Hui; Simonetti, Orlando P
2017-04-01
Sparsity-promoting regularizers can enable stable recovery of highly undersampled magnetic resonance imaging (MRI), promising to improve the clinical utility of challenging applications. However, lengthy computation time limits the clinical use of these methods, especially for dynamic MRI with its large corpus of spatiotemporal data. Here, we present a holistic framework that utilizes the balanced sparse model for compressive sensing and parallel computing to reduce the computation time of cardiac MRI recovery methods. We propose a fast, iterative soft-thresholding method to solve the resulting ℓ1-regularized least squares problem. In addition, our approach utilizes a parallel computing environment that is fully integrated with the MRI acquisition software. The methodology is applied to two formulations of the multichannel MRI problem: image-based recovery and k-space-based recovery. Using measured MRI data, we show that, for a 224 × 144 image series with 48 frames, the proposed k-space-based approach achieves a mean reconstruction time of 2.35 min, a 24-fold improvement compared a reconstruction time of 55.5 min for the nonlinear conjugate gradient method, and the proposed image-based approach achieves a mean reconstruction time of 13.8 s. Our approach can be utilized to achieve fast reconstruction of large MRI datasets, thereby increasing the clinical utility of reconstruction techniques based on compressed sensing. Magn Reson Med 77:1505-1515, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena
2014-06-01
We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.
Tamura, Niina; Castles, Anne; Nation, Kate
2017-06-01
Children learn new words via their everyday reading experience but little is known about how this learning happens. We addressed this by focusing on the conditions needed for new words to become familiar to children, drawing a distinction between lexical configuration (the acquisition of word knowledge) and lexical engagement (the emergence of interactive processes between newly learned words and existing words). In Experiment 1, 9-11-year-olds saw unfamiliar words in one of two storybook conditions, differing in degree of focus on the new words but matched for frequency of exposure. Children showed good learning of the novel words in terms of both configuration (form and meaning) and engagement (lexical competition). A frequency manipulation under incidental learning conditions in Experiment 2 revealed different time-courses of learning: a fast lexical configuration process, indexed by explicit knowledge, and a slower lexicalization process, indexed by lexical competition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Design and DSP implementation of star image acquisition and star point fast acquiring and tracking
NASA Astrophysics Data System (ADS)
Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang
2006-02-01
Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.
The Control Unit of KM3NeT data acquisition
NASA Astrophysics Data System (ADS)
Bozza, Cristiano
2016-04-01
The KM3NeT Collaboration is building a new generation of neutrino telescopes in the Mediterranean Sea. With the telescopes, scientists will search for cosmic neutrinos to study highly energetic objects in the Universe, while one neutrino detector will be dedicated to measure the properties of the high-energy neutrino particles themselves. Control of the KM3NeT data acquisition processes is handled by the KM3NeT Control Unit, which has been designed to maximise the detector live time. The Control Unit features software programs with different roles, following the philosophy of having no single point of failure. While all programs are interconnected, each one can also work alone for most of the time in case other services are unavailable. All services run on the Common Language Runtime, which ensures portability, flexibility and automatic memory management. Each service has an embedded Web server, providing a user interface as well as programmatic access to data and functions. Data to and from detector components for monitoring and management purposes are transmitted using a custom designed protocol. The Control Unit is interfaced to one or more Message Dispatchers to control the data acquisition chain. A Data Base Interface provides fast and fault-tolerant connection to a remote Data Base.
A novel multi-cell silicon drift detector for Low Energy X-Ray Fluorescence (LEXRF) spectroscopy
NASA Astrophysics Data System (ADS)
Bufon, J.; Ahangarianabhari, M.; Bellutti, P.; Bertuccio, G.; Carrato, S.; Cautero, G.; Fabiani, S.; Giacomini, G.; Gianoncelli, A.; Giuressi, D.; Grassi, M.; Malcovati, P.; Menk, R. H.; Picciotto, A.; Piemonte, C.; Rashevskaya, I.; Rachevski, A.; Stolfa, A.; Vacchi, A.; Zampa, G.; Zampa, N.
2014-12-01
The TwinMic spectromicroscope at Elettra is a multipurpose experimental station for full-field and scanning imaging modes and simultaneous acquisition of X-ray fluorescence. The actual LEXRF detection setup consists of eight single-cell Silicon Drift Detectors (SDD) in an annular configuration. Although they provide good performances in terms of both energy resolution and low-energy photon detection efficiency, they cover just about 4% of the whole photoemission solid angle. This is the main limitation of the present detection system, since large part of the emitted photons is lost and consequently a high acquisition time is required. In order to increase the solid angle, a new LEXRF detection system is being developed within a large collaboration of several institutes. The system, composed of 4 trapezoidal multi-cell silicon drift detectors, covers up to 40% of the photoemission hemisphere, so that this geometry provides a 10 times improvement over the present configuration. First measurements in the laboratory and on the TwinMic beamline have been performed in order to characterize a single trapezoidal detector, configured and controlled by means of two multichannel ASICs, which provide preamplification, shaping and peak-stretching, connected to acquisition electronics based on fast ADCs and FPGA and working under vacuum.
Nute, Jessica L; Jacobsen, Megan C; Stefan, Wolfgang; Wei, Wei; Cody, Dianna D
2018-04-01
A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. A streamlined scan protocol was developed to further investigate the effects of CTDIvol and rotation time while limiting data collection to the DEQC body phantom. Further data collection will be pursued to determine baseline values and statistically based failure thresholds for the validation of long-term DECT scanner performance. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Acconcia, Giulia; Cominelli, Alessandro; Peronio, Pietro; Rech, Ivan; Ghioni, Massimo
2017-05-01
The analysis of optical signals by means of Single Photon Avalanche Diodes (SPADs) has been subject to a widespread interest in recent years. The development of multichannel high-performance Time Correlated Single Photon Counting (TCSPC) acquisition systems has undergone a fast trend. Concerning the detector performance, best in class results have been obtained resorting to custom technologies leading also to a strong dependence of the detector timing jitter from the threshold used to determine the onset of the photogenerated current flow. In this scenario, the avalanche current pick-up circuit plays a key role in determining the timing performance of the TCSPC acquisition system, especially with a large array of SPAD detectors because of electrical crosstalk issues. We developed a new current pick-up circuit based on a transimpedance amplifier structure able to extract the timing information from a 50-μm-diameter custom technology SPAD with a state-of-art timing jitter as low as 32ps and suitable to be exploited with SPAD arrays. In this paper we discuss the key features of this structure and we present a new version of the pick-up circuit that also provides quenching capabilities in order to minimize the number of interconnections required, an aspect that becomes more and more crucial in densely integrated systems.
Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations
Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F.; ...
2016-03-04
Chemical imaging at the atomic-scale provides a useful real-space approach to chemically investigate solid crystal structures, and has been recently demonstrated in aberration corrected scanning transmission electron microscopy (STEM). Atomic-scale chemical imaging by STEM using energy-dispersive X-ray spectroscopy (EDS) offers easy data interpretation with a one-to-one correspondence between image and structure but has a severe shortcoming due to the poor efficiency of X-ray generation and collection. As a result, it requires a long acquisition time of typical > few 100 seconds, limiting its potential applications. Here we describe the development of an atomic-scale STEM EDS chemical imaging technique that cutsmore » the acquisition time to one or a few seconds, efficiently reducing the acquisition time by more than 100 times. This method was demonstrated using LaAlO 3 (LAO) as a model crystal. Applying this method to the study of phase transformation induced by electron-beam radiation in a layered lithium transition-metal (TM) oxide, i.e., Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO), a cathode materials for lithium-ion batteries, we obtained a time-series of the atomic-scale chemical imaging, showing the transformation progressing by preferably jumping of Ni atoms from the TM layers into the Li-layers. The new capability offers an opportunity for temporal, atomic-scale chemical mapping of crystal structures for the investigation of materials susceptible to electron irradiation as well as phase transformation and dynamics at the atomic-scale.« less
A Versatile High Speed 250 MHz Pulse Imager for Biomedical Applications
Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.
2009-01-01
A versatile 250 MHz pulse electron paramagnetic resonance (EPR) instrument for imaging of small animals is presented. Flexible design of the imager hardware and software makes it possible to use virtually any pulse EPR imaging modality. A fast pulse generation and data acquisition system based on general purpose PCI boards performs measurements with minimal additional delays. Careful design of receiver protection circuitry allowed us to achieve very high sensitivity of the instrument. In this article we demonstrate the ability of the instrument to obtain three dimensional images using the electron spin echo (ESE) and single point imaging (SPI) methods. In a phantom that contains a 1 mM solution of narrow line (16 μT, peak-to-peak) paramagnetic spin probe we achieved an acquisition time of 32 seconds per image with a fast 3D ESE imaging protocol. Using an 18 minute 3D phase relaxation (T2e) ESE imaging protocol in a homogeneous sample a spatial resolution of 1.4 mm and a standard deviation of T2e of 8.5% were achieved. When applied to in vivo imaging this precision of T2e determination would be equivalent to 2 torr resolution of oxygen partial pressure in animal tissues. PMID:19924261
Multiple systems for motor skill learning.
Clark, Dav; Ivry, Richard B
2010-07-01
Motor learning is a ubiquitous feature of human competence. This review focuses on two particular classes of model tasks for studying skill acquisition. The serial reaction time (SRT) task is used to probe how people learn sequences of actions, while adaptation in the context of visuomotor or force field perturbations serves to illustrate how preexisting movements are recalibrated in novel environments. These tasks highlight important issues regarding the representational changes that occur during the course of motor learning. One important theme is that distinct mechanisms vary in their information processing costs during learning and performance. Fast learning processes may require few trials to produce large changes in performance but impose demands on cognitive resources. Slower processes are limited in their ability to integrate complex information but minimally demanding in terms of attention or processing resources. The representations derived from fast systems may be accessible to conscious processing and provide a relatively greater measure of flexibility, while the representations derived from slower systems are more inflexible and automatic in their behavior. In exploring these issues, we focus on how multiple neural systems may interact and compete during the acquisition and consolidation of new behaviors. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: Psychology > Motor Skill and Performance. Copyright © 2010 John Wiley & Sons, Ltd.
SFM Technique and Focus Stacking for Digital Documentation of Archaeological Artifacts
NASA Astrophysics Data System (ADS)
Clini, P.; Frapiccini, N.; Mengoni, M.; Nespeca, R.; Ruggeri, L.
2016-06-01
Digital documentation and high-quality 3D representation are always more requested in many disciplines and areas due to the large amount of technologies and data available for fast, detailed and quick documentation. This work aims to investigate the area of medium and small sized artefacts and presents a fast and low cost acquisition system that guarantees the creation of 3D models with an high level of detail, making the digitalization of cultural heritage a simply and fast procedure. The 3D models of the artefacts are created with the photogrammetric technique Structure From Motion that makes it possible to obtain, in addition to three-dimensional models, high-definition images for a deepened study and understanding of the artefacts. For the survey of small objects (only few centimetres) it is used a macro lens and the focus stacking, a photographic technique that consists in capturing a stack of images at different focus planes for each camera pose so that is possible to obtain a final image with a higher depth of field. The acquisition with focus stacking technique has been finally validated with an acquisition with laser triangulation scanner Minolta that demonstrates the validity compatible with the allowable error in relation to the expected precision.
Neurologic 3D MR Spectroscopic Imaging with Low-Power Adiabatic Pulses and Fast Spiral Acquisition
Gagoski, Borjan A.; Sorensen, A. Gregory
2012-01-01
Purpose: To improve clinical three-dimensional (3D) MR spectroscopic imaging with more accurate localization and faster acquisition schemes. Materials and Methods: Institutional review board approval and patient informed consent were obtained. Data were acquired with a 3-T MR imager and a 32-channel head coil in phantoms, five healthy volunteers, and five patients with glioblastoma. Excitation was performed with localized adiabatic spin-echo refocusing (LASER) by using adiabatic gradient-offset independent adiabaticity wideband uniform rate and smooth truncation (GOIA-W[16,4]) pulses with 3.5-msec duration, 20-kHz bandwidth, 0.81-kHz amplitude, and 45-msec echo time. Interleaved constant-density spirals simultaneously encoded one frequency and two spatial dimensions. Conventional phase encoding (PE) (1-cm3 voxels) was performed after LASER excitation and was the reference standard. Spectra acquired with spiral encoding at similar and higher spatial resolution and with shorter imaging time were compared with those acquired with PE. Metabolite levels were fitted with software, and Bland-Altman analysis was performed. Results: Clinical 3D MR spectroscopic images were acquired four times faster with spiral protocols than with the elliptical PE protocol at low spatial resolution (1 cm3). Higher-spatial-resolution images (0.39 cm3) were acquired twice as fast with spiral protocols compared with the low-spatial-resolution elliptical PE protocol. A minimum signal-to-noise ratio (SNR) of 5 was obtained with spiral protocols under these conditions and was considered clinically adequate to reliably distinguish metabolites from noise. The apparent SNR loss was not linear with decreasing voxel sizes because of longer local T2* times. Improvement of spectral line width from 4.8 Hz to 3.5 Hz was observed at high spatial resolution. The Bland-Altman agreement between spiral and PE data is characterized by narrow 95% confidence intervals for their differences (0.12, 0.18 of their means). GOIA-W(16,4) pulses minimize chemical-shift displacement error to 2.1%, reduce nonuniformity of excitation to 5%, and eliminate the need for outer volume suppression. Conclusion: The proposed adiabatic spiral 3D MR spectroscopic imaging sequence can be performed in a standard clinical MR environment. Improvements in image quality and imaging time could enable more routine acquisition of spectroscopic data than is possible with current pulse sequences. © RSNA, 2011 PMID:22187628
Lingala, Sajan Goud; Zhu, Yinghua; Lim, Yongwan; Toutios, Asterios; Ji, Yunhua; Lo, Wei-Ching; Seiberlich, Nicole; Narayanan, Shrikanth; Nayak, Krishna S
2017-12-01
To evaluate the feasibility of through-time spiral generalized autocalibrating partial parallel acquisition (GRAPPA) for low-latency accelerated real-time MRI of speech. Through-time spiral GRAPPA (spiral GRAPPA), a fast linear reconstruction method, is applied to spiral (k-t) data acquired from an eight-channel custom upper-airway coil. Fully sampled data were retrospectively down-sampled to evaluate spiral GRAPPA at undersampling factors R = 2 to 6. Pseudo-golden-angle spiral acquisitions were used for prospective studies. Three subjects were imaged while performing a range of speech tasks that involved rapid articulator movements, including fluent speech and beat-boxing. Spiral GRAPPA was compared with view sharing, and a parallel imaging and compressed sensing (PI-CS) method. Spiral GRAPPA captured spatiotemporal dynamics of vocal tract articulators at undersampling factors ≤4. Spiral GRAPPA at 18 ms/frame and 2.4 mm 2 /pixel outperformed view sharing in depicting rapidly moving articulators. Spiral GRAPPA and PI-CS provided equivalent temporal fidelity. Reconstruction latency per frame was 14 ms for view sharing and 116 ms for spiral GRAPPA, using a single processor. Spiral GRAPPA kept up with the MRI data rate of 18ms/frame with eight processors. PI-CS required 17 minutes to reconstruct 5 seconds of dynamic data. Spiral GRAPPA enabled 4-fold accelerated real-time MRI of speech with a low reconstruction latency. This approach is applicable to wide range of speech RT-MRI experiments that benefit from real-time feedback while visualizing rapid articulator movement. Magn Reson Med 78:2275-2282, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
WRATS Integrated Data Acquisition System
NASA Technical Reports Server (NTRS)
Piatak, David J.
2008-01-01
The Wing and Rotor Aeroelastic Test System (WRATS) data acquisition system (DAS) is a 64-channel data acquisition display and analysis system specifically designed for use with the WRATS 1/5-scale V-22 tiltrotor model of the Bell Osprey. It is the primary data acquisition system for experimental aeroelastic testing of the WRATS model for the purpose of characterizing the aeromechanical and aeroelastic stability of prototype tiltrotor configurations. The WRATS DAS was also used during aeroelastic testing of Bell Helicopter Textron s Quad-Tiltrotor (QTR) design concept, a test which received international attention. The LabVIEW-based design is portable and capable of powering and conditioning over 64 channels of dynamic data at sampling rates up to 1,000 Hz. The system includes a 60-second circular data archive, an integrated model swashplate excitation system, a moving block damping application for calculation of whirl flutter mode subcritical damping, a loads and safety monitor, a pilot-control console display, data analysis capabilities, and instrumentation calibration functions. Three networked computers running custom-designed LabVIEW software acquire data through National Instruments data acquisition hardware. The aeroelastic model (see figure) was tested with the DAS at two facilities at NASA Langley, the Transonic Dynamics Tunnel (TDT) and the Rotorcraft Hover Test Facility (RHTF). Because of the need for seamless transition between testing at these facilities, DAS is portable. The software is capable of harmonic analysis of periodic time history data, Fast Fourier Transform calculations, power spectral density calculations, and on-line calibration of test instrumentation. DAS has a circular buffer archive to ensure critical data is not lost in event of model failure/incident, as well as a sample-and-hold capability for phase-correct time history data.
English Learner (EL) Students Who Are Black. Fast Facts
ERIC Educational Resources Information Center
Office of English Language Acquisition, US Department of Education, 2016
2016-01-01
The Office of English Language Acquisition (OELA) has synthesized key data on English learners (ELs) into two-page PDF sheets, by topic, with graphics, plus key contacts. This Fast Facts covers data in the following categories: (1) States, Including D.C., with the Highest Concentration of ELs Who Are Black; (2) States, Including D.C., with the…
Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School
ERIC Educational Resources Information Center
Bogacz, Bogdan F.; Pedziwiatr, Antoni T.
2014-01-01
A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…
NASA Astrophysics Data System (ADS)
Cominelli, A.; Acconcia, G.; Peronio, P.; Rech, I.; Ghioni, M.
2017-05-01
In recent years, the Time-Correlated Single Photon Counting (TCSPC) technique has gained a prominent role in many fields, where the analysis of extremely fast and faint luminous signals is required. In the life science, for instance, the estimation of fluorescence time-constants with picosecond accuracy has been leading to a deeper insight into many biological processes. Although the many advantages provided by TCSPC-based techniques, their intrinsically repetitive nature leads to a relatively long acquisition time, especially when time-resolved images are obtained by means of a single detector, along with a scanning point system. In the last decade, TCSPC acquisition systems have been subjected to a fast trend towards the parallelization of many independent channels, in order to speed up the measure. On one hand, some high-performance multi-module systems have been already made commercially available, but high area and power consumption of each module have limited the number of channels to only some units. On the other hand, many compact systems based on Single Photon Avalanche Diodes (SPAD) have been proposed in literature, featuring thousands of independent acquisition chains on a single chip. The integration of both detectors and conversion electronic in the same pixel area, though, has imposed tight constraints on power dissipation and area occupation of the electronics, resulting in a tradeoff with performance, both in terms of differential nonlinearity and timing jitter. Furthermore, in the ideal case of simultaneous readout of a huge number of channels, the overall data rate can be as high as 100 Gbit/s, which is nowadays too high to be easily processed in real time by a PC. Typical adopted solutions involve an arbitrary dwell time, followed by a sequential readout of the converters, thus limiting the maximum operating frequency of each channel and impairing the measurement speed, which still lies well below the limit imposed by the saturation of the transfer rate towards the elaboration unit. We developed a novel readout architecture, starting from a completely different perspective: considering the maximum data rate we can manage with a PC, a limited set of conversion data is selected and transferred to the elaboration unit during each excitation period, in order to take full advantage of the bus bandwidth toward the PC. In particular, we introduce a smart routing logic, able to dynamically connect a large number of SPAD detectors to a limited set of high-performance external acquisition chains, paving the way for a more efficient use of resources and allowing us to effectively break the tradeoff between integration and performance, which affects the solutions proposed so far. The routing electronic features a pixelated architecture, while 3D-stacking techniques are exploited to connect each SPAD to its dedicated electronic, leading to a minimization of the overall number of interconnections crossing the integrated system, which is one of the main issues in high-density arrays.
Zobiak, Bernd; Failla, Antonio Virgilio
2018-03-01
Understanding the cellular processes that occur between the cytosol and the plasma membrane is an important task for biological research. Till now, however, it was not possible to combine fast and high-resolution imaging of both the isolated plasma membrane and the surrounding intracellular volume. Here, we demonstrate the combination of fast high-resolution spinning disk (SD) and total internal reflection fluorescence (TIRF) microscopy for specific imaging of the plasma membrane. A customised SD-TIRF microscope was used with specific design of the light paths that allowed, for the first time, live SD-TIRF experiments at high acquisition rates. A series of experiments is shown to demonstrate the feasibility and performance of our setup. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Fast photoacoustic imaging system based on 320-element linear transducer array.
Yin, Bangzheng; Xing, Da; Wang, Yi; Zeng, Yaguang; Tan, Yi; Chen, Qun
2004-04-07
A fast photoacoustic (PA) imaging system, based on a 320-transducer linear array, was developed and tested on a tissue phantom. To reconstruct a test tomographic image, 64 time-domain PA signals were acquired from a tissue phantom with embedded light-absorption targets. A signal acquisition was accomplished by utilizing 11 phase-controlled sub-arrays, each consisting of four transducers. The results show that the system can rapidly map the optical absorption of a tissue phantom and effectively detect the embedded light-absorbing target. By utilizing the multi-element linear transducer array and phase-controlled imaging algorithm, we thus can acquire PA tomography more efficiently, compared to other existing technology and algorithms. The methodology and equipment thus provide a rapid and reliable approach to PA imaging that may have potential applications in noninvasive imaging and clinic diagnosis.
Healthcare M&A: critical issues in today's fast-paced market.
Ralph, Ron
2015-09-01
In an accelerating market for healthcare mergers and acquisitions, parties to a potential deal should consider the following factors when assessing risk and reward: Economic, business, and cultural forces. Funding issues and financing structures. Potential complications during due diligence. The critical importance of effective postmerger integration. The numerous regulatory, tax, and accounting issues that can affect an acquisition.
Failure to Learn from Feedback underlies Word Learning Difficulties in Toddlers at Risk for Autism
ERIC Educational Resources Information Center
Bedford, R.; Gliga, T.; Frame, K.; Hudry, K.; Chandler, S.; Johnson, M. H.; Charman, T.
2013-01-01
Children's assignment of novel words to nameless objects, over objects whose names they know (mutual exclusivity; ME) has been described as a driving force for vocabulary acquisition. Despite their ability to use ME to fast-map words (Preissler & Carey, 2005), children with autism show impaired language acquisition. We aimed to address…
Planning & Priority Setting for Basic Research
2010-05-05
Integrated into numerous commercial codes in aerospace, automotive , semiconductor, and chemical industries Fast Multipole Methods (ONR 31) Applications... Use knowledge (even failures) to reduce risk in acquisition Provide the basis for future Navy and arine Corps syste s Ensure research...relevancy to Naval S&T strategy Transition pro ising Basic Research to applications Use kno ledge (even failures) to reduce risk in acquisition Maintain
ERIC Educational Resources Information Center
Laine, Matti; Polonyi, Tünde; Abari, Kálmán
2014-01-01
In literates, reading is a fundamental channel for acquiring new vocabulary both in the mother tongue and in foreign languages. By using an artificial language learning task, we examined the acquisition of novel written words and their embedded regularities (an orthographic surface feature and a syllabic feature) in three groups of university…
Fracture characterization from near-offset VSP inversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, S.; MacBeth, C.; Queen, J.
1997-01-01
A global optimization method incorporating a ray-tracing scheme is used to invert observations of shear-wave splitting from two near-offset VSPs recorded at the Conoco Borehole Test Facility, Kay County, Oklahoma. Inversion results suggest that the seismic anisotropy is due to a non-vertical fracture system. This interpretation is constrained by the VSP acquisition geometry for which two sources are employed along near diametrically opposite azimuths about the well heads. A correlation is noted between the time-delay variations between the fast and slow split shear waves and the sandstone formations.
2014-09-30
and on blue and humpback whales in Iceland. • To evaluate the reliability and quality of CTD data collected in arctic ice covered waters by slow...swimming bowhead whales and from the open ocean by fast swimming blue and humpback whales . APPROACH Diving ocean predators can act as “real-time...2014: Deployment of tags on bowhead whales in Disko Bay. June-July 2015: Deployment of tags on blue and humpback whales in Iceland. April-December
On-board multicarrier demodulator for mobile applications using DSP implementation
NASA Astrophysics Data System (ADS)
Yim, W. H.; Kwan, C. C. D.; Coakley, F. P.; Evans, B. G.
1990-11-01
This paper describes the design and implementation of an on-board multicarrier demodulator using commercial digital signal processors. This is for use in a mobile satellite communication system employing an up-link SCPC/FDMA scheme. Channels are separated by a flexible multistage digital filter bank followed by a channel multiplexed digital demodulator array. The cross/dot product design approach of error detector leads to a new QPSK frequency control algorithm that allows fast acquisition without special preamble pattern. Timing correction is performed digitally using an extended stack of polyphase sub-filters.
Wang, Z I; Dell'Osso, L F
2008-06-01
Our purpose was to perform a systematic study of the post-four-muscle-tenotomy procedure changes in target acquisition time by comparing predictions from the behavioral ocular motor system (OMS) model and data from infantile nystagmus syndrome (INS) patients. We studied five INS patients who underwent only tenotomy at the enthesis and reattachment at the original insertion of each (previously unoperated) horizontal rectus muscle for their INS treatment. We measured their pre- and post-tenotomy target acquisition changes using data from infrared reflection and high-speed digital video. Three key aspects were calculated and analyzed: the saccadic latency (Ls), the time to target acquisition after the target jump (Lt) and the normalized stimulus time within the cycle. Analyses were performed in MATLAB environment (The MathWorks, Natick, MA) using OMLAB software (OMtools, available from http://www.omlab.org). Model simulations were performed in MATLAB Simulink environment. The model simulation suggested an Lt reduction due to an overall foveation-quality improvement. Consistent with that prediction, improvement in Lt, ranging from approximately 200 ms to approximately 500 ms (average approximately 280 ms), was documented in all five patients post-tenotomy. The Lt improvement was not a result of a reduced Ls. INS patients acquired step-target stimuli faster post-tenotomy. This target acquisition improvement may be due to the elevated foveation quality resulting in less inherent variation in the input to the OMS. A refined behavioral OMS model, with "fast" and "slow" motor neuron pathways and a more physiological plant, successfully predicted this improved visual behavior and again demonstrated its utility in guiding ocular motor research.
Telgen, Sebastian; Parvin, Darius; Diedrichsen, Jörn
2014-10-08
Motor learning tasks are often classified into adaptation tasks, which involve the recalibration of an existing control policy (the mapping that determines both feedforward and feedback commands), and skill-learning tasks, requiring the acquisition of new control policies. We show here that this distinction also applies to two different visuomotor transformations during reaching in humans: Mirror-reversal (left-right reversal over a mid-sagittal axis) of visual feedback versus rotation of visual feedback around the movement origin. During mirror-reversal learning, correct movement initiation (feedforward commands) and online corrections (feedback responses) were only generated at longer latencies. The earliest responses were directed into a nonmirrored direction, even after two training sessions. In contrast, for visual rotation learning, no dependency of directional error on reaction time emerged, and fast feedback responses to visual displacements of the cursor were immediately adapted. These results suggest that the motor system acquires a new control policy for mirror reversal, which initially requires extra processing time, while it recalibrates an existing control policy for visual rotations, exploiting established fast computational processes. Importantly, memory for visual rotation decayed between sessions, whereas memory for mirror reversals showed offline gains, leading to better performance at the beginning of the second session than in the end of the first. With shifts in time-accuracy tradeoff and offline gains, mirror-reversal learning shares common features with other skill-learning tasks. We suggest that different neuronal mechanisms underlie the recalibration of an existing versus acquisition of a new control policy and that offline gains between sessions are a characteristic of latter. Copyright © 2014 the authors 0270-6474/14/3413768-12$15.00/0.
Reliable data storage system design and implementation for acoustic logging while drilling
NASA Astrophysics Data System (ADS)
Hao, Xiaolong; Ju, Xiaodong; Wu, Xiling; Lu, Junqiang; Men, Baiyong; Yao, Yongchao; Liu, Dong
2016-12-01
Owing to the limitations of real-time transmission, reliable downhole data storage and fast ground reading have become key technologies in developing tools for acoustic logging while drilling (LWD). In order to improve the reliability of the downhole storage system in conditions of high temperature, intensive shake and periodic power supply, improvements were made in terms of hardware and software. In hardware, we integrated the storage system and data acquisition control module into one circuit board, to reduce the complexity of the storage process, by adopting the controller combination of digital signal processor and field programmable gate array. In software, we developed a systematic management strategy for reliable storage. Multiple-backup independent storage was employed to increase the data redundancy. A traditional error checking and correction (ECC) algorithm was improved and we embedded the calculated ECC code into all management data and waveform data. A real-time storage algorithm for arbitrary length data was designed to actively preserve the storage scene and ensure the independence of the stored data. The recovery procedure of management data was optimized to realize reliable self-recovery. A new bad block management idea of static block replacement and dynamic page mark was proposed to make the period of data acquisition and storage more balanced. In addition, we developed a portable ground data reading module based on a new reliable high speed bus to Ethernet interface to achieve fast reading of the logging data. Experiments have shown that this system can work stably below 155 °C with a periodic power supply. The effective ground data reading rate reaches 1.375 Mbps with 99.7% one-time success rate at room temperature. This work has high practical application significance in improving the reliability and field efficiency of acoustic LWD tools.
Rapid weather information dissemination in Florida
NASA Technical Reports Server (NTRS)
Martsolf, J. D.; Heinemann, P. H.; Gerber, J. F.; Crosby, F. L.; Smith, D. L.
1984-01-01
The development of the Florida Agricultural Services and Technology (FAST) plan to provide ports for users to call for weather information is described. FAST is based on the Satellite Frost Forecast System, which makes a broad base of weather data available to its users. The methods used for acquisition and dissemination of data from various networks under the FAST plan are examined. The system provides color coded IR or thermal maps, precipitation maps, and textural forecast information. A diagram of the system is provided.
NASA Astrophysics Data System (ADS)
Sasaya, Tenta; Sunaguchi, Naoki; Seo, Seung-Jum; Hyodo, Kazuyuki; Zeniya, Tsutomu; Kim, Jong-Ki; Yuasa, Tetsuya
2018-04-01
Gold nanoparticles (GNPs) have recently attracted attention in nanomedicine as novel contrast agents for cancer imaging. A decisive tomographic imaging technique has not yet been established to depict the 3-D distribution of GNPs in an object. An imaging technique known as pinhole-based X-ray fluorescence computed tomography (XFCT) is a promising method that can be used to reconstruct the distribution of GNPs from the X-ray fluorescence emitted by GNPs. We address the acceleration of data acquisition in pinhole-based XFCT for preclinical use using a multiple pinhole scheme. In this scheme, multiple projections are simultaneously acquired through a multi-pinhole collimator with a 2-D detector and full-field volumetric beam to enhance the signal-to-noise ratio of the projections; this enables fast data acquisition. To demonstrate the efficacy of this method, we performed an imaging experiment using a physical phantom with an actual multi-pinhole XFCT system that was constructed using the beamline AR-NE7A at KEK. The preliminary study showed that the multi-pinhole XFCT achieved a data acquisition time of 20 min at a theoretical detection limit of approximately 0.1 Au mg/ml and at a spatial resolution of 0.4 mm.
Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.
Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min
2016-04-13
Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena.
Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System
NASA Technical Reports Server (NTRS)
Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)
2000-01-01
The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.
User's guide to noise data acquisition and analysis programs for HP9845: Nicolet analyzers
NASA Technical Reports Server (NTRS)
Mcgary, M. C.
1982-01-01
A software interface package was written for use with a desktop computer and two models of single channel Fast Fourier analyzers. This software features a portable measurement and analysis system with several options. Two types of interface hardware can alternately be used in conjunction with the software. Either an IEEE-488 Bus interface or a 16-bit parallel system may be used. Two types of storage medium, either tape cartridge or floppy disc can be used with the software. Five types of data may be stored, plotted, and/or printed. The data types include time histories, narrow band power spectra, and narrow band, one-third octave band, or octave band sound pressure level. The data acquisition programming includes a front panel remote control option for the FFT analyzers. Data analysis options include choice of line type and pen color for plotting.
Generation of chemical movies: FT-IR spectroscopic imaging of segmented flows.
Chan, K L Andrew; Niu, X; deMello, A J; Kazarian, S G
2011-05-01
We have previously demonstrated that FT-IR spectroscopic imaging can be used as a powerful, label-free detection method for studying laminar flows. However, to date, the speed of image acquisition has been too slow for the efficient detection of moving droplets within segmented flow systems. In this paper, we demonstrate the extraction of fast FT-IR images with acquisition times of 50 ms. This approach allows efficient interrogation of segmented flow systems where aqueous droplets move at a speed of 2.5 mm/s. Consecutive FT-IR images separated by 120 ms intervals allow the generation of chemical movies at eight frames per second. The technique has been applied to the study of microfluidic systems containing moving droplets of water in oil and droplets of protein solution in oil. The presented work demonstrates the feasibility of the use of FT-IR imaging to study dynamic systems with subsecond temporal resolution.
Ultrafast optical ranging using microresonator soliton frequency combs
NASA Astrophysics Data System (ADS)
Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M. H. P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; Freude, W.; Kippenberg, T. J.; Koos, C.
2018-02-01
Light detection and ranging is widely used in science and industry. Over the past decade, optical frequency combs were shown to offer advantages in optical ranging, enabling fast distance acquisition with high accuracy. Driven by emerging high-volume applications such as industrial sensing, drone navigation, or autonomous driving, there is now a growing demand for compact ranging systems. Here, we show that soliton Kerr comb generation in integrated silicon nitride microresonators provides a route to high-performance chip-scale ranging systems. We demonstrate dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for in-flight sampling of gun projectiles moving at 150 meters per second. Combining integrated soliton-comb ranging systems with chip-scale nanophotonic phased arrays could enable compact ultrafast ranging systems for emerging mass applications.
Design of Control Software for a High-Speed Coherent Doppler Lidar System for CO2 Measurement
NASA Technical Reports Server (NTRS)
Vanvalkenburg, Randal L.; Beyon, Jeffrey Y.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Kavaya, Michael J.
2010-01-01
The design of the software for a 2-micron coherent high-speed Doppler lidar system for CO2 measurement at NASA Langley Research Center is discussed in this paper. The specific strategy and design topology to meet the requirements of the system are reviewed. In order to attain the high-speed digitization of the different types of signals to be sampled on multiple channels, a carefully planned design of the control software is imperative. Samples of digitized data from each channel and their roles in data analysis post processing are also presented. Several challenges of extremely-fast, high volume data acquisition are discussed. The software must check the validity of each lidar return as well as other monitoring channel data in real-time. For such high-speed data acquisition systems, the software is a key component that enables the entire scope of CO2 measurement studies using commercially available system components.
Rapid mapping of polarization switching through complete information acquisition
NASA Astrophysics Data System (ADS)
Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen
2016-12-01
Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these phenomena. Classical piezoresponse force microscopy and spectroscopy, although providing necessary spatial resolution, are fundamentally limited in data acquisition rates and energy resolution. This limitation stems from their two-tiered measurement protocol that combines slow (~1 s) switching and fast (~10 kHz-1 MHz) detection waveforms. Here we develop an approach for rapid probing of ferroelectric switching using direct strain detection of material response to probe bias. This approach, facilitated by high-sensitivity electronics and adaptive filtering, enables spectroscopic imaging at a rate 3,504 times faster the current state of the art, achieving high-veracity imaging of polarization dynamics in complex microstructures.
Modernization of the Slovenian National Seismic Network
NASA Astrophysics Data System (ADS)
Vidrih, R.; Godec, M.; Gosar, A.; Sincic, P.; Tasic, I.; Zivcic, M.
2003-04-01
The Environmental Agency of the Republic of Slovenia, the Seismology Office is responsible for the fast and reliable information about earthquakes, originating in the area of Slovenia and nearby. In the year 2000 the project Modernization of the Slovenian National Seismic Network started. The purpose of a modernized seismic network is to enable fast and accurate automatic location of earthquakes, to determine earthquake parameters and to collect data of local, regional and global earthquakes. The modernized network will be finished in the year 2004 and will consist of 25 Q730 remote broadband data loggers based seismic station subsystems transmitting in real-time data to the Data Center in Ljubljana, where the Seismology Office is located. The remote broadband station subsystems include 16 surface broadband seismometers CMG-40T, 5 broadband seismometers CMG-40T with strong motion accelerographs EpiSensor, 4 borehole broadband seismometers CMG-40T, all with accurate timing provided by GPS receivers. The seismic network will cover the entire Slovenian territory, involving an area of 20,256 km2. The network is planned in this way; more seismic stations will be around bigger urban centres and in regions with greater vulnerability (NW Slovenia, Krsko Brezice region). By the end of the year 2002, three old seismic stations were modernized and ten new seismic stations were built. All seismic stations transmit data to UNIX-based computers running Antelope system software. The data is transmitted in real time using TCP/IP protocols over the Goverment Wide Area Network . Real-time data is also exchanged with seismic networks in the neighbouring countries, where the data are collected from the seismic stations, close to the Slovenian border. A typical seismic station consists of the seismic shaft with the sensor and the data acquisition system and, the service shaft with communication equipment (modem, router) and power supply with a battery box. which provides energy in case of mains failure. The data acquisition systems are recording continuous time-series sampled at 200 sps, 20 sps and 1sps.
A Possible Application of Coherent Light Scattering on Biological Fluids
NASA Astrophysics Data System (ADS)
Chicea, Dan; Chicea, Liana Maria
2007-04-01
Human urine from both healthy patients and patients with different diseases was used as scattering medium in a coherent light scattering experiment. The time variation of the light intensity in the far field speckle image was acquired using a data acquisition system on a PC and a time series resulted for each sample. The autocorrelation function for each sample was calculated and the autocorrelation time was determined. The same samples were analyzed in a medical laboratory using the standard procedure. We found so far that the autocorrelation time is differently modified by the presence of pus, albumin, urobilin and sediments. The results suggest a fast procedure that can be used as laboratory test to detect the presence not of each individual component in suspensions but of big conglomerates as albumin, cylinders, oxalate crystals.
A Neurocomputational Account of Taxonomic Responding and Fast Mapping in Early Word Learning
ERIC Educational Resources Information Center
Mayor, Julien; Plunkett, Kim
2010-01-01
We present a neurocomputational model with self-organizing maps that accounts for the emergence of taxonomic responding and fast mapping in early word learning, as well as a rapid increase in the rate of acquisition of words observed in late infancy. The quality and efficiency of generalization of word-object associations is directly related to…
NASA Astrophysics Data System (ADS)
Egli, Ramon; Zhao, Xiangyu
2015-04-01
We present a general theory on the acquisition of natural remanent magnetizations (NRM) in sediment under the influence of (a) magnetic torques, (b) randomizing torques (e.g. from bioturbation), and (c) torques resulting from interaction forces between remanence carriers and other particles. Dynamic equilibrium between (a) and (b) in the water column and sediment-water interface produce a detrital remanent magnetization (DRM), while much stronger randomizing forces occur in the mixed layer of sediment due to bioturbation forces. These generate a so-called mixing remanent magnetization (MRM), which is stabilized by interaction forces. During the time required to cross the mixed layer, DRM is lost and MRM is acquired at a rate that depends on bioturbation intensity. Both processes are governed by the same MRM lock-in function. The final NRM intensity is controlled mainly by a single parameter defined as the product of rotational diffusion constant and mixed layer thickness, divided by the sedimentation rate. This parameter defines three regimes: (1) slow mixing, leading to DRM preservation and insignificant MRM acquisition, (2) fast mixing with MRM acquisition and full randomization of the original DRM, and (3) intermediate mixing. Because the acquisition efficiency of DRM is expectedly larger than that of a MRM, MRM is particularly sensitive to the mixing rate in case of intermediate regimes, and generates variable NRM acquisition efficiencies. Our model explains (1) lock-in delays that can be matched with empirical reconstructions from paleomagnetic records, (2) the existence of small lock-in depths leading to DRM preservation, (3) NRM acquisition efficiencies of magnetofossil-rich sediments, and (4) relative paleointensity artifacts reported in some recent studies.
Ultra-high speed digital micro-mirror device based ptychographic iterative engine method
Sun, Aihui; He, Xiaoliang; Kong, Yan; Cui, Haoyang; Song, Xiaojun; Xue, Liang; Wang, Shouyu; Liu, Cheng
2017-01-01
To reduce the long data acquisition time of the common mechanical scanning based Ptychographic Iterative Engine (PIE) technique, the digital micro-mirror device (DMD) is used to form the fast scanning illumination on the sample. Since the transverse mechanical scanning in the common PIE is replaced by the on/off switching of the micro-mirrors, the data acquisition time can be reduced from more than 15 minutes to less than 20 seconds for recording 12 × 10 diffraction patterns to cover the same field of 147.08 mm2. Furthermore, since the precision of DMD fabricated with the optical lithography is always higher than 10 nm (1 μm for the mechanical translation stage), the time consuming position-error-correction procedure is not required in the iterative reconstruction. These two improvements fundamentally speed up both the data acquisition and the reconstruction procedures in PIE, and relax its requirements on the stability of the imaging system, therefore remarkably improve its applicability for many practices. It is demonstrated experimentally with both USAF resolution target and biological sample that, the spatial resolution of 5.52 μm and the field of view of 147.08 mm2 can be reached with the DMD based PIE method. In a word, by using the DMD to replace the translation stage, we can effectively overcome the main shortcomings of common PIE related to the mechanical scanning, while keeping its advantages on both the high resolution and large field of view. PMID:28717560
ERIC Educational Resources Information Center
Stockel, Tino; Weigelt, Matthias; Krug, Jurgen
2011-01-01
The purpose of this study was to investigate order-of-practice effects for the acquisition of a complex basketball skill in a bilateral transfer paradigm. The task required participants to dribble as fast as possible in slalom-like movements across six javelins and return to the initial position. Fifty-two right-handed school children (M age =…
Adaptive AFM scan speed control for high aspect ratio fast structure tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Ahmad; Schuh, Andreas; Rangelow, Ivo W.
2014-10-15
Improved imaging rates in Atomic Force Microscopes (AFM) are of high interest for disciplines such as life sciences and failure analysis of semiconductor wafers, where the sample topology shows high aspect ratios. Also, fast imaging is necessary to cover a large surface under investigation in reasonable times. Since AFMs are composed of mechanical components, they are associated with comparably low resonance frequencies that undermine the effort to increase the acquisition rates. In particular, high and steep structures are difficult to follow, which causes the cantilever to temporarily loose contact to or crash into the sample. Here, we report on amore » novel approach that does not affect the scanner dynamics, but adapts the lateral scanning speed of the scanner. The controller monitors the control error signal and, only when necessary, decreases the scan speed to allow the z-piezo more time to react to changes in the sample's topography. In this case, the overall imaging rate can be significantly increased, because a general scan speed trade-off decision is not needed and smooth areas are scanned fast. In contrast to methods trying to increase the z-piezo bandwidth, our method is a comparably simple approach that can be easily adapted to standard systems.« less
Algorithms development for the GEM-based detection system
NASA Astrophysics Data System (ADS)
Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.
2016-09-01
The measurement system based on GEM - Gas Electron Multiplier detector - is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an Xray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals and cluster charge values corresponding to the energy spectra.
Regridding reconstruction algorithm for real-time tomographic imaging
Marone, F.; Stampanoni, M.
2012-01-01
Sub-second temporal-resolution tomographic microscopy is becoming a reality at third-generation synchrotron sources. Efficient data handling and post-processing is, however, difficult when the data rates are close to 10 GB s−1. This bottleneck still hinders exploitation of the full potential inherent in the ultrafast acquisition speed. In this paper the fast reconstruction algorithm gridrec, highly optimized for conventional CPU technology, is presented. It is shown that gridrec is a valuable alternative to standard filtered back-projection routines, despite being based on the Fourier transform method. In fact, the regridding procedure used for resampling the Fourier space from polar to Cartesian coordinates couples excellent performance with negligible accuracy degradation. The stronger dependence of the observed signal-to-noise ratio for gridrec reconstructions on the number of angular views makes the presented algorithm even superior to filtered back-projection when the tomographic problem is well sampled. Gridrec not only guarantees high-quality results but it provides up to 20-fold performance increase, making real-time monitoring of the sub-second acquisition process a reality. PMID:23093766
Gapped pulses for frequency-swept MRI
NASA Astrophysics Data System (ADS)
Idiyatullin, Djaudat; Corum, Curt; Moeller, Steen; Garwood, Michael
2008-08-01
A recently introduced method called SWIFT (SWeep Imaging with Fourier Transform) is a fundamentally different approach to MRI which is particularly well suited to imaging objects with extremely fast spin-spin relaxation rates. The method exploits a frequency-swept excitation pulse and virtually simultaneous signal acquisition in a time-shared mode. Correlation of the spin system response with the excitation pulse function is used to extract the signals of interest. With SWIFT, image quality is highly dependent on producing uniform and broadband spin excitation. These requirements are satisfied by using frequency-modulated pulses belonging to the hyperbolic secant family (HS n pulses). This article describes the experimental steps needed to properly implement HS n pulses in SWIFT. In addition, properties of HS n pulses in the rapid passage, linear region are investigated, followed by an analysis of the pulses after inserting the "gaps" needed for time-shared excitation and acquisition. Finally, compact expressions are presented to estimate the amplitude and flip angle of the HS n pulses, as well as the relative energy deposited by the SWIFT sequence.
High-speed Continuous-wave Stimulated Brillouin Scattering Spectrometer for Material Analysis.
Remer, Itay; Cohen, Lear; Bilenca, Alberto
2017-09-22
Recent years have witnessed a significant increase in the use of spontaneous Brillouin spectrometers for non-contact analysis of soft matter, such as aqueous solutions and biomaterials, with fast acquisition times. Here, we discuss the assembly and operation of a Brillouin spectrometer that uses stimulated Brillouin scattering (SBS) to measure stimulated Brillouin gain (SBG) spectra of water and lipid emulsion-based tissue-like samples in transmission mode with <10 MHz spectral-resolution and <35 MHz Brillouin-shift measurement precision at <100 ms. The spectrometer consists of two nearly counter-propagating continuous-wave (CW) narrow-linewidth lasers at 780 nm whose frequency detuning is scanned through the material Brillouin shift. By using an ultra-narrowband hot rubidium-85 vapor notch filter and a phase-sensitive detector, the signal-to-noise-ratio of the SBG signal is significantly enhanced compared to that obtained with existing CW-SBS spectrometers. This improvement enables measurement of SBG spectra with up to 100-fold faster acquisition times, thereby facilitating high spectral-resolution and high-precision Brillouin analysis of soft materials at high speed.
Posse, Stefan
2011-01-01
The rapid development of fMRI was paralleled early on by the adaptation of MR spectroscopic imaging (MRSI) methods to quantify water relaxation changes during brain activation. This review describes the evolution of multi-echo acquisition from high-speed MRSI to multi-echo EPI and beyond. It highlights milestones in the development of multi-echo acquisition methods, such as the discovery of considerable gains in fMRI sensitivity when combining echo images, advances in quantification of the BOLD effect using analytical biophysical modeling and interleaved multi-region shimming. The review conveys the insight gained from combining fMRI and MRSI methods and concludes with recent trends in ultra-fast fMRI, which will significantly increase temporal resolution of multi-echo acquisition. PMID:22056458
Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier
2015-11-01
Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years. Copyright © 2015 John Wiley & Sons, Ltd.
Beauregard, Jean-Mathieu; Croteau, Etienne; Ahmed, Naseem; van Lier, Johan E; Bénard, François
2009-01-01
4-Fluoro-11beta-methoxy-16alpha-18F-fluoroestradiol (4FMFES) is a newly developed radiolabeled estradiol analog for PET imaging of estrogen receptors (ERs) that shows improved target-to-background ratios, compared with 16alpha-18F-fluoroestradiol (FES), in small-animal models. The aim of this study was to assess the biodistribution, dosimetry, and safety of 4FMFES in healthy women. Ten healthy subjects (6 pre- and 4 postmenopausal women) who had fasted were injected with 66-201 MBq of 4FMFES at a high effective specific activity (median, 251 GBq/micromol). During a 2-h period, each subject underwent 4 serial rapid PET acquisitions and 2 low-dose CT acquisitions on a PET/CT camera. Volumes of interest were drawn over source organs for each PET acquisition, allowing the calculation of time-activity curves, residence times, and radiation dosimetry estimates. Serial blood samples were obtained to measure blood and plasma activity clearance. 4FMFES safety was assessed by blood and urine analyses and vital-sign monitoring. A 4FMFES injection was well tolerated in all subjects. The liver showed high uptake, and the hepatobiliary excretion was massive. Little urinary excretion occurred. Uterus uptake was visualized in all subjects and remained relatively constant over time (maximum and mean standardized uptake values at 60 min were 5.34+/-3.32 and 2.68+/-1.89, respectively). Background activity was low and decreased over time, resulting in an increasing uterus-to-background ratio (12.1+/-2.2 at 60 min). The critical organ was the gallbladder (0.80+/-0.51 mGy/MBq), followed by the upper large intestine (0.13+/-0.04 mGy/MBq), small intestine (0.12+/-0.04 mGy/MBq), and liver (0095+/-0.019 mGy/MBq). For a typical 4FMFES dose of 185 MBq, the effective dose was calculated at 4.82+/-0.70 mSv. 4FMFES is considered safe for use in humans, and its effective dose remains well within acceptable limits. The absorbed dose to the gallbladder was relatively high and could potentially be reduced by injecting 4FMFES in patients who had not fasted. 4FMFES showed a significant, potentially estrogen receptor-mediated uterus uptake in both pre- and postmenopausal subjects.
Tests of PMT signal read-out of liquid argon scintillation with a new fast waveform digitizer
NASA Astrophysics Data System (ADS)
Acciarri, R.; Canci, N.; Cavanna, F.; Cortopassi, A.; D'Incecco, M.; Mini, G.; Pietropaolo, F.; Romboli, A.; Segreto, E.; Szelc, A. M.
2012-07-01
The CAEN V1751 is a new generation of Waveform Digitizer recently introduced by CAEN SpA. It features 8 Channels per board, 10 bit, 1 GS/s using Flash ADCs Waveform Digitizers (or 4 channels at 2 GS/s in Dual Edge Sampling mode) with threshold and Auto-Trigger capabilities. This provides a good basis for data acquisition in Dark Matter searches using PMTs to detect scintillation light in liquid argon, as it matches the requirements for measuring the fast scintillation component. The board was tested by operating it in real experimental conditions and by comparing it with a state of the art digital oscilloscope. We find that the sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the scintillation light in argon (characteristic time of about 6-7 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.
Cardiovascular magnetic resonance physics for clinicians: part I.
Ridgway, John P
2010-11-30
There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained.
Cardiovascular magnetic resonance physics for clinicians: part I
2010-01-01
There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained. PMID:21118531
Compression strategies for LiDAR waveform cube
NASA Astrophysics Data System (ADS)
Jóźków, Grzegorz; Toth, Charles; Quirk, Mihaela; Grejner-Brzezinska, Dorota
2015-01-01
Full-waveform LiDAR data (FWD) provide a wealth of information about the shape and materials of the surveyed areas. Unlike discrete data that retains only a few strong returns, FWD generally keeps the whole signal, at all times, regardless of the signal intensity. Hence, FWD will have an increasingly well-deserved role in mapping and beyond, in the much desired classification in the raw data format. Full-waveform systems currently perform only the recording of the waveform data at the acquisition stage; the return extraction is mostly deferred to post-processing. Although the full waveform preserves most of the details of the real data, it presents a serious practical challenge for a wide use: much larger datasets compared to those from the classical discrete return systems. Atop the need for more storage space, the acquisition speed of the FWD may also limit the pulse rate on most systems that cannot store data fast enough, and thus, reduces the perceived system performance. This work introduces a waveform cube model to compress waveforms in selected subsets of the cube, aimed at achieving decreased storage while maintaining the maximum pulse rate of FWD systems. In our experiments, the waveform cube is compressed using classical methods for 2D imagery that are further tested to assess the feasibility of the proposed solution. The spatial distribution of airborne waveform data is irregular; however, the manner of the FWD acquisition allows the organization of the waveforms in a regular 3D structure similar to familiar multi-component imagery, as those of hyper-spectral cubes or 3D volumetric tomography scans. This study presents the performance analysis of several lossy compression methods applied to the LiDAR waveform cube, including JPEG-1, JPEG-2000, and PCA-based techniques. Wide ranges of tests performed on real airborne datasets have demonstrated the benefits of the JPEG-2000 Standard where high compression rates incur fairly small data degradation. In addition, the JPEG-2000 Standard-compliant compression implementation can be fast and, thus, used in real-time systems, as compressed data sequences can be formed progressively during the waveform data collection. We conclude from our experiments that 2D image compression strategies are feasible and efficient approaches, thus they might be applied during the acquisition of the FWD sensors.
Diet-consumer nitrogen isotope fractionation for prolonged fasting arthropods.
Mizota, Chitoshi; Yamanaka, Toshiro
2011-12-01
Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ(15)N (per mil deviation of (15)N/(14)N, relative to atmospheric nitrogen=0 ‰) values (diet-consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ(15)N= ~ +2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet-consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet-consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes.
Fast multiview three-dimensional reconstruction method using cost volume filtering
NASA Astrophysics Data System (ADS)
Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.
2014-03-01
As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.
Jo, Javier A.; Fang, Qiyin; Marcu, Laura
2007-01-01
We report a new deconvolution method for fluorescence lifetime imaging microscopy (FLIM) based on the Laguerre expansion technique. The performance of this method was tested on synthetic and real FLIM images. The following interesting properties of this technique were demonstrated. 1) The fluorescence intensity decay can be estimated simultaneously for all pixels, without a priori assumption of the decay functional form. 2) The computation speed is extremely fast, performing at least two orders of magnitude faster than current algorithms. 3) The estimated maps of Laguerre expansion coefficients provide a new domain for representing FLIM information. 4) The number of images required for the analysis is relatively small, allowing reduction of the acquisition time. These findings indicate that the developed Laguerre expansion technique for FLIM analysis represents a robust and extremely fast deconvolution method that enables practical applications of FLIM in medicine, biology, biochemistry, and chemistry. PMID:19444338
Designing a SCADA system simulator for fast breeder reactor
NASA Astrophysics Data System (ADS)
Nugraha, E.; Abdullah, A. G.; Hakim, D. L.
2016-04-01
SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.
SAR and scan-time optimized 3D whole-brain double inversion recovery imaging at 7T.
Pracht, Eberhard D; Feiweier, Thorsten; Ehses, Philipp; Brenner, Daniel; Roebroeck, Alard; Weber, Bernd; Stöcker, Tony
2018-05-01
The aim of this project was to implement an ultra-high field (UHF) optimized double inversion recovery (DIR) sequence for gray matter (GM) imaging, enabling whole brain coverage in short acquisition times ( ≈5 min, image resolution 1 mm 3 ). A 3D variable flip angle DIR turbo spin echo (TSE) sequence was optimized for UHF application. We implemented an improved, fast, and specific absorption rate (SAR) efficient TSE imaging module, utilizing improved reordering. The DIR preparation was tailored to UHF application. Additionally, fat artifacts were minimized by employing water excitation instead of fat saturation. GM images, covering the whole brain, were acquired in 7 min scan time at 1 mm isotropic resolution. SAR issues were overcome by using a dedicated flip angle calculation considering SAR and SNR efficiency. Furthermore, UHF related artifacts were minimized. The suggested sequence is suitable to generate GM images with whole-brain coverage at UHF. Due to the short total acquisition times and overall robustness, this approach can potentially enable DIR application in a routine setting and enhance lesion detection in neurological diseases. Magn Reson Med 79:2620-2628, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Nishi, Ryuji; Cao, Meng; Kanaji, Atsuko; Nishida, Tomoki; Yoshida, Kiyokazu; Isakozawa, Shigeto
2014-11-01
The ultra-high voltage electron microscope (UHVEM) H-3000 with the world highest acceleration voltage of 3 MV can observe remarkable three dimensional microstructures of microns-thick samples[1]. Acquiring a tilt series of electron tomography is laborious work and thus an automatic technique is highly desired. We proposed the Auto-Focus system using image Sharpness (AFS)[2,3] for UHVEM tomography tilt series acquisition. In the method, five images with different defocus values are firstly acquired and the image sharpness are calculated. The sharpness are then fitted to a quasi-Gaussian function to decide the best focus value[3]. Defocused images acquired by the slow scan CCD (SS-CCD) camera (Hitachi F486BK) are of high quality but one minute is taken for acquisition of five defocused images.In this study, we introduce a high-definition video camera (HD video camera; Hamamatsu Photonics K. K. C9721S) for fast acquisition of images[4]. It is an analog camera but the camera image is captured by a PC and the effective image resolution is 1280×1023 pixels. This resolution is lower than that of the SS-CCD camera of 4096×4096 pixels. However, the HD video camera captures one image for only 1/30 second. In exchange for the faster acquisition the S/N of images are low. To improve the S/N, 22 captured frames are integrated so that each image sharpness is enough to become lower fitting error. As countermeasure against low resolution, we selected a large defocus step, which is typically five times of the manual defocus step, to discriminate different defocused images.By using HD video camera for autofocus process, the time consumption for each autofocus procedure was reduced to about six seconds. It took one second for correction of an image position and the total correction time was seven seconds, which was shorter by one order than that using SS-CCD camera. When we used SS-CCD camera for final image capture, it took 30 seconds to record one tilt image. We can obtain a tilt series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)
1997-01-01
Topics Considered Include: NASA's Shared Experiences Program; Core Issues for the Future of the Agency; National Space Policy Strategic Management; ISO 9000 and NASA; New Acquisition Initiatives; Full Cost Initiative; PM Career Development; PM Project Database; NASA Fast Track Studies; Fast Track Projects; Earned Value Concept; Value-Added Metrics; Saturn Corporation Lessons Learned; Project Manager Credibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Söngen, Hagen, E-mail: soengen@uni-mainz.de; Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz; Nalbach, Martin
2016-06-15
We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated by visualizing themore » hydration structure above the calcite (10.4) surface in water.« less
Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System
Röcker, Carlheinz; Nagy, Julia; Michaelis, Jens
2017-01-01
Single-molecule Förster Resonance Energy Transfer (smFRET) can be used to obtain structural information on biomolecular complexes in real-time. Thereby, multiple smFRET measurements are used to localize an unknown dye position inside a protein complex by means of trilateration. In order to obtain quantitative information, the Nano-Positioning System (NPS) uses probabilistic data analysis to combine structural information from X-ray crystallography with single-molecule fluorescence data to calculate not only the most probable position but the complete three-dimensional probability distribution, termed posterior, which indicates the experimental uncertainty. The concept was generalized for the analysis of smFRET networks containing numerous dye molecules. The latest version of NPS, Fast-NPS, features a new algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering that allows for the analysis of large smFRET networks in a comparably short time. Moreover, Fast-NPS allows the calculation of the posterior by choosing one of five different models for each dye, that account for the different spatial and orientational behavior exhibited by the dye molecules due to their local environment. Here we present a detailed protocol for obtaining smFRET data and applying the Fast-NPS. We provide detailed instructions for the acquisition of the three input parameters of Fast-NPS: the smFRET values, as well as the quantum yield and anisotropy of the dye molecules. Recently, the NPS has been used to elucidate the architecture of an archaeal open promotor complex. This data is used to demonstrate the influence of the five different dye models on the posterior distribution. PMID:28287526
Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System.
Dörfler, Thilo; Eilert, Tobias; Röcker, Carlheinz; Nagy, Julia; Michaelis, Jens
2017-02-09
Single-molecule Förster Resonance Energy Transfer (smFRET) can be used to obtain structural information on biomolecular complexes in real-time. Thereby, multiple smFRET measurements are used to localize an unknown dye position inside a protein complex by means of trilateration. In order to obtain quantitative information, the Nano-Positioning System (NPS) uses probabilistic data analysis to combine structural information from X-ray crystallography with single-molecule fluorescence data to calculate not only the most probable position but the complete three-dimensional probability distribution, termed posterior, which indicates the experimental uncertainty. The concept was generalized for the analysis of smFRET networks containing numerous dye molecules. The latest version of NPS, Fast-NPS, features a new algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering that allows for the analysis of large smFRET networks in a comparably short time. Moreover, Fast-NPS allows the calculation of the posterior by choosing one of five different models for each dye, that account for the different spatial and orientational behavior exhibited by the dye molecules due to their local environment. Here we present a detailed protocol for obtaining smFRET data and applying the Fast-NPS. We provide detailed instructions for the acquisition of the three input parameters of Fast-NPS: the smFRET values, as well as the quantum yield and anisotropy of the dye molecules. Recently, the NPS has been used to elucidate the architecture of an archaeal open promotor complex. This data is used to demonstrate the influence of the five different dye models on the posterior distribution.
a Study on Automatic Uav Image Mosaic Method for Paroxysmal Disaster
NASA Astrophysics Data System (ADS)
Li, M.; Li, D.; Fan, D.
2012-07-01
As everyone knows, some paroxysmal disasters, such as flood, can do a great damage in short time. Timely, accurate, and fast acquisition of sufficient disaster information is the prerequisite facing with disaster emergency. Due to UAV's superiority in acquiring disaster data, UAV, a rising remote sensed data has gradually become the first choice for departments of disaster prevention and mitigation to collect the disaster information at first hand. In this paper, a novel and fast strategy is proposed for registering and mosaicing UAV data. Firstly, the original images will not be zoomed in to be 2 times larger ones at the initial course of SIFT operator, and the total number of the pyramid octaves in scale space is reduced to speed up the matching process; sequentially, RANSAC(Random Sample Consensus) is used to eliminate the mismatching tie points. Then, bundle adjustment is introduced to solve all of the camera geometrical calibration parameters jointly. Finally, the best seamline searching strategy based on dynamic schedule is applied to solve the dodging problem arose by aeroplane's side-looking. Beside, a weighted fusion estimation algorithm is employed to eliminate the "fusion ghost" phenomenon.
NASA Astrophysics Data System (ADS)
Gebhardt, Pierre; Wehner, Jakob; Weissler, Bjoern; Frach, Thomas; Marsden, Paul K.; Schulz, Volkmar
2015-06-01
Devices aiming at combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) to enable simultaneous PET/MR image acquisition have to fulfill demanding requirements to avoid mutual magneticas well as electromagnetic-field-related interferences which lead to image quality degradation. Particularly Radio-Frequency (RF)-field-related interferences between PET and MRI may lead to MRI SNR reduction, thereby deteriorating MR image quality. RF shielding of PET electronics is therefore commonly applied to reduce RF emission and lower the potential coupling into MRI RF coil(s). However, shields introduce eddy-current-induced MRI field distortions and should thus be minimized or ideally omitted. Although the MRI noise floor increase caused by a PET system might be acceptable for many MRI applications, some MRI protocols, such as fast or high-resolution MRI scans, typically suffer from low SNR and might need more attention regarding RF silence to preserve the intrinsic MRI SNR. For such cases, we propose RESCUE, an MRI-synchronously-gated PET data acquisition technique: By interrupting the PET acquisition during MR signal receive phases, PET-related RF emission may be minimized, leading to MRI SNR preservation. Our PET insert Hyperion IID using Philips Digital Photon Counting (DPC) sensors serves as the platform to demonstrate RESCUE. To make the DPC sensor suitable for RESCUE to be applied for many MRI sequences with acquisition time windows in the range of a few milliseconds, we present in this paper a new technique which enables rapid DPC sensor operation interruption by dramatically lowering the overhead time to interrupt and restart the sensor operation. Procedures to enter and leave gated PET data acquisition may imply sensitivity losses which add to the ones occurring during MRI RF acquisition. For the case of our PET insert, the new DPC quick-interruption technique yields a PET sensitivity loss reduction by a factor of 78 when compared to the loss introduced with the standard start/stop procedure. For instance, PET sensitivity losses related to overhead time are 2.9% in addition to the loss related to PET gating being equal to the MRI RF acquisition duty cycle (14.7%) for an exemplary T1-weighted 3D-FFE MRI sequence. MRI SNR measurement results obtained with one Singles Detection Module (SDM) using no RF shield demonstrate a noise floor reduction by a factor of 2.1, getting close to the noise floor level of the SNR reference scan (SDM off-powered) when RESCUE was active.
Measuring Fast Calcium Fluxes in Cardiomyocytes
Golebiewska, Urszula; Scarlata, Suzanne
2011-01-01
Cardiomyocytes have multiple Ca2+ fluxes of varying duration that work together to optimize function 1,2. Changes in Ca2+ activity in response to extracellular agents is predominantly regulated by the phospholipase Cβ- Gαq pathway localized on the plasma membrane which is stimulated by agents such as acetylcholine 3,4. We have recently found that plasma membrane protein domains called caveolae5,6 can entrap activated Gαq7. This entrapment has the effect of stabilizing the activated state of Gαq and resulting in prolonged Ca2+ signals in cardiomyocytes and other cell types8. We uncovered this surprising result by measuring dynamic calcium responses on a fast scale in living cardiomyocytes. Briefly, cells are loaded with a fluorescent Ca2+ indicator. In our studies, we used Ca2+ Green (Invitrogen, Inc.) which exhibits an increase in fluorescence emission intensity upon binding of calcium ions. The fluorescence intensity is then recorded for using a line-scan mode of a laser scanning confocal microscope. This method allows rapid acquisition of the time course of fluorescence intensity in pixels along a selected line, producing several hundreds of time traces on the microsecond time scale. These very fast traces are transferred into excel and then into Sigmaplot for analysis, and are compared to traces obtained for electronic noise, free dye, and other controls. To dissect Ca2+ responses of different flux rates, we performed a histogram analysis that binned pixel intensities with time. Binning allows us to group over 500 traces of scans and visualize the compiled results spatially and temporally on a single plot. Thus, the slow Ca2+ waves that are difficult to discern when the scans are overlaid due to different peak placement and noise, can be readily seen in the binned histograms. Very fast fluxes in the time scale of the measurement show a narrow distribution of intensities in the very short time bins whereas longer Ca2+ waves show binned data with a broad distribution over longer time bins. These different time distributions allow us to dissect the timing of Ca2+fluxes in the cells, and to determine their impact on various cellular events. PMID:22143396
Measuring fast calcium fluxes in cardiomyocytes.
Golebiewska, Urszula; Scarlata, Suzanne
2011-11-29
Cardiomyocytes have multiple Ca(2+) fluxes of varying duration that work together to optimize function (1,2). Changes in Ca(2+) activity in response to extracellular agents is predominantly regulated by the phospholipase Cβ- Gα(q;) pathway localized on the plasma membrane which is stimulated by agents such as acetylcholine (3,4). We have recently found that plasma membrane protein domains called caveolae(5,6) can entrap activated Gα(q;)(7). This entrapment has the effect of stabilizing the activated state of Gα(q;) and resulting in prolonged Ca(2+) signals in cardiomyocytes and other cell types(8). We uncovered this surprising result by measuring dynamic calcium responses on a fast scale in living cardiomyocytes. Briefly, cells are loaded with a fluorescent Ca(2+) indicator. In our studies, we used Ca(2+) Green (Invitrogen, Inc.) which exhibits an increase in fluorescence emission intensity upon binding of calcium ions. The fluorescence intensity is then recorded for using a line-scan mode of a laser scanning confocal microscope. This method allows rapid acquisition of the time course of fluorescence intensity in pixels along a selected line, producing several hundreds of time traces on the microsecond time scale. These very fast traces are transferred into excel and then into Sigmaplot for analysis, and are compared to traces obtained for electronic noise, free dye, and other controls. To dissect Ca(2+) responses of different flux rates, we performed a histogram analysis that binned pixel intensities with time. Binning allows us to group over 500 traces of scans and visualize the compiled results spatially and temporally on a single plot. Thus, the slow Ca(2+) waves that are difficult to discern when the scans are overlaid due to different peak placement and noise, can be readily seen in the binned histograms. Very fast fluxes in the time scale of the measurement show a narrow distribution of intensities in the very short time bins whereas longer Ca(2+) waves show binned data with a broad distribution over longer time bins. These different time distributions allow us to dissect the timing of Ca(2+)fluxes in the cells, and to determine their impact on various cellular events.
a Fast Segmentation Algorithm for C-V Model Based on Exponential Image Sequence Generation
NASA Astrophysics Data System (ADS)
Hu, J.; Lu, L.; Xu, J.; Zhang, J.
2017-09-01
For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1) the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2) the initial value of SDF (Signal Distance Function) and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3) the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.
Würthwein, Thomas; Brinkmann, Maximilian; Hellwig, Tim; Fallnich, Carsten
2017-11-21
We present the simultaneous detection of the spectrum and the complete polarization state of a multiplex coherent anti-Stokes Raman scattering signal with a fast division-of-amplitude spectro-polarimeter. The spectro-polarimeter is based on a commercial imaging spectrograph, a birefringent wedge prism, and a segmented polarizer. Compared to the standard rotating-retarder fixed-analyzer spectro-polarimeter, only a single measurement is required and an up to 21-fold reduced acquisition time is shown. The measured Stokes parameters allow us to differentiate between vibrational symmetries and to determine the depolarization ratio ρ by data post-processing.
An efficient implementation of Forward-Backward Least-Mean-Square Adaptive Line Enhancers
NASA Technical Reports Server (NTRS)
Yeh, H.-G.; Nguyen, T. M.
1995-01-01
An efficient implementation of the forward-backward least-mean-square (FBLMS) adaptive line enhancer is presented in this article. Without changing the characteristics of the FBLMS adaptive line enhancer, the proposed implementation technique reduces multiplications by 25% and additions by 12.5% in two successive time samples in comparison with those operations of direct implementation in both prediction and weight control. The proposed FBLMS architecture and algorithm can be applied to digital receivers for enhancing signal-to-noise ratio to allow fast carrier acquisition and tracking in both stationary and nonstationary environments.
Using flow information to support 3D vessel reconstruction from rotational angiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waechter, Irina; Bredno, Joerg; Weese, Juergen
2008-07-15
For the assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) morphologic and hemodynamic information about the vessel system. Rotational angiography is routinely used to image the 3D vascular geometry and we have shown previously that rotational subtraction angiography has the potential to also give quantitative information about blood flow. Flow information can be determined when the angiographic sequence shows inflow and possibly outflow of contrast agent. However, a standard volume reconstruction assumes that the vessel tree is uniformly filled with contrast agent during the whole acquisition. If this is not the case, the reconstruction exhibits artifacts. Here,more » we show how flow information can be used to support the reconstruction of the 3D vessel centerline and radii in this case. Our method uses the fast marching algorithm to determine the order in which voxels are analyzed. For every voxel, the rotational time intensity curve (R-TIC) is determined from the image intensities at the projection points of the current voxel. Next, the bolus arrival time of the contrast agent at the voxel is estimated from the R-TIC. Then, a measure of the intensity and duration of the enhancement is determined, from which a speed value is calculated that steers the propagation of the fast marching algorithm. The results of the fast marching algorithm are used to determine the 3D centerline by backtracking. The 3D radius is reconstructed from 2D radius estimates on the projection images. The proposed method was tested on computer simulated rotational angiography sequences with systematically varied x-ray acquisition, blood flow, and contrast agent injection parameters and on datasets from an experimental setup using an anthropomorphic cerebrovascular phantom. For the computer simulation, the mean absolute error of the 3D centerline and 3D radius estimation was 0.42 and 0.25 mm, respectively. For the experimental datasets, the mean absolute error of the 3D centerline was 0.45 mm. Under pulsatile and nonpulsatile conditions, flow information can be used to enable a 3D vessel reconstruction from rotational angiography with inflow and possibly outflow of contrast agent. We found that the most important parameter for the quality of the reconstruction of centerline and radii is the range through which the x-ray system rotates in the time span of the injection. Good results were obtained if this range was at least 135 deg. . As a standard c-arm can rotate 205 deg., typically one third of the acquisition can show inflow or outflow of contrast agent, which is required for the quantification of blood flow from rotational angiography.« less
Compartmentalized Low-Rank Recovery for High-Resolution Lipid Unsuppressed MRSI
Bhattacharya, Ipshita; Jacob, Mathews
2017-01-01
Purpose To introduce a novel algorithm for the recovery of high-resolution magnetic resonance spectroscopic imaging (MRSI) data with minimal lipid leakage artifacts, from dual-density spiral acquisition. Methods The reconstruction of MRSI data from dual-density spiral data is formulated as a compartmental low-rank recovery problem. The MRSI dataset is modeled as the sum of metabolite and lipid signals, each of which is support limited to the brain and extracranial regions, respectively, in addition to being orthogonal to each other. The reconstruction problem is formulated as an optimization problem, which is solved using iterative reweighted nuclear norm minimization. Results The comparisons of the scheme against dual-resolution reconstruction algorithm on numerical phantom and in vivo datasets demonstrate the ability of the scheme to provide higher spatial resolution and lower lipid leakage artifacts. The experiments demonstrate the ability of the scheme to recover the metabolite maps, from lipid unsuppressed datasets with echo time (TE)=55 ms. Conclusion The proposed reconstruction method and data acquisition strategy provide an efficient way to achieve high-resolution metabolite maps without lipid suppression. This algorithm would be beneficial for fast metabolic mapping and extension to multislice acquisitions. PMID:27851875
Data acquisition instrument for EEG based on embedded system
NASA Astrophysics Data System (ADS)
Toresano, La Ode Husein Z.; Wijaya, Sastra Kusuma; Prawito, Sudarmaji, Arief; Syakura, Abdan; Badri, Cholid
2017-02-01
An electroencephalogram (EEG) is a device for measuring and recording the electrical activity of brain. The EEG data of signal can be used as a source of analysis for human brain function. The purpose of this study was to design a portable multichannel EEG based on embedded system and ADS1299. The ADS1299 is an analog front-end to be used as an Analog to Digital Converter (ADC) to convert analog signal of electrical activity of brain, a filter of electrical signal to reduce the noise on low-frequency band and a data communication to the microcontroller. The system has been tested to capture brain signal within a range of 1-20 Hz using the NETECH EEG simulator 330. The developed system was relatively high accuracy of more than 82.5%. The EEG Instrument has been successfully implemented to acquire the brain signal activity using a PC (Personal Computer) connection for displaying the recorded data. The final result of data acquisition has been processed using OpenBCI GUI (Graphical User Interface) based through real-time process for 8-channel signal acquisition, brain-mapping and power spectral decomposition signal using the standard FFT (Fast Fourier Transform) algorithm.
TDAS: The Thermal Expert System (TEXSYS) data acquisition system
NASA Technical Reports Server (NTRS)
Hack, Edmund C.; Healey, Kathleen J.
1987-01-01
As part of the NASA Systems Autonomy Demonstration Project, a thermal expert system (TEXSYS) is being developed. TEXSYS combines a fast real time control system, a sophisticated human interface for the user and several distinct artificial intelligence techniques in one system. TEXSYS is to provide real time control, operations advice and fault detection, isolation and recovery capabilities for the space station Thermal Test Bed (TTB). TEXSYS will be integrated with the TTB and act as an intelligent assistant to thermal engineers conducting TTB tests and experiments. The results are presented from connecting the real time controller to the knowledge based system thereby creating an integrated system. Special attention will be paid to the problem of filtering and interpreting the raw, real time data and placing the important values into the knowledge base of the expert system.
Closed-loop control of renal perfusion pressure in physiological experiments.
Campos-Delgado, D U; Bonilla, I; Rodríguez-Martínez, M; Sánchez-Briones, M E; Ruiz-Hernández, E
2013-07-01
This paper presents the design, experimental modeling, and control of a pump-driven renal perfusion pressure (RPP)-regulatory system to implement precise and relatively fast RPP regulation in rats. The mechatronic system is a simple, low-cost, and reliable device to automate the RPP regulation process based on flow-mediated occlusion. Hence, the regulated signal is the RPP measured in the left femoral artery of the rat, and the manipulated variable is the voltage applied to a dc motor that controls the occlusion of the aorta. The control system is implemented in a PC through the LabView software, and a data acquisition board NI USB-6210. A simple first-order linear system is proposed to approximate the dynamics in the experiment. The parameters of the model are chosen to minimize the error between the predicted and experimental output averaged from eight input/output datasets at different RPP operating conditions. A closed-loop servocontrol system based on a pole-placement PD controller plus dead-zone compensation was proposed for this purpose. First, the feedback structure was validated in simulation by considering parameter uncertainty, and constant and time-varying references. Several experimental tests were also conducted to validate in real time the closed-loop performance for stepwise and fast switching references, and the results show the effectiveness of the proposed automatic system to regulate the RPP in the rat, in a precise, accurate (mean error less than 2 mmHg) and relatively fast mode (10-15 s of response time).
NASA Astrophysics Data System (ADS)
Ridgeway, William K.; Millar, David P.; Williamson, James R.
2013-04-01
Fluorescence Correlation Spectroscopy (FCS) is widely used to quantify reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. Catalogue identifier: AEOP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 50189 No. of bytes in distributed program, including test data, etc.: 6135283 Distribution format: tar.gz Programming language: C/Assembly. Computer: Any with GCC and library support. Operating system: Linux and OS X (data acq. for Linux only due to library availability), not tested on Windows. RAM: ≥512 MB. Classification: 16.4. External routines: NIDAQmx (National Instruments), Gnu Scientific Library, GTK+, PLplot (optional) Nature of problem: Fluorescence Triple Correlation Spectroscopy required three things: data acquisition at faster speeds than were possible without expensive custom hardware, triple-correlation routines that could process 1/2 TB data sets rapidly, and fitting routines capable of handling several to a hundred fit parameters and 14,000 + data points, each with error estimates. Solution method: A novel data acquisition concept mixed signal processing with off-the-shelf hardware and data-parallel processing using 128-bit registers found in desktop CPUs. Correlation algorithms used fractal data structures and multithreading to reduce data analysis times. Global fitting was implemented with robust minimization routines and provides feedback that allows the user to critically inspect initial guesses and fits. Restrictions: Data acquisition only requires a National Instruments data acquisition card (it was tested on Linux using card PCIe-6251) and a simple home-built circuit. Unusual features: Hand-coded ×86-64 assembly for data acquisition loops (platform-independent C code also provided). Additional comments: A complete collection of tools to perform Fluorescence Triple Correlation Spectroscopy-from data acquisition to two-tau correlation of large data sets, to model fitting. Running time: 1-5 h of data analysis per hour of data collected. Varies depending on data-acquisition length, time resolution, data density and number of cores used for correlation integrals.
Achille, Cristiana; Adami, Andrea; Chiarini, Silvia; Cremonesi, Stefano; Fassi, Francesco; Fregonese, Luigi; Taffurelli, Laura
2015-01-01
This paper examines the survey of tall buildings in an emergency context like in the case of post-seismic events. The after-earthquake survey has to guarantee time-savings, high precision and security during the operational stages. The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle (UAV) systems in order to provide fast and low cost operations. The suggested methods integrate new technologies with commonly used technologies like TLS and topographic acquisition. The value of the photogrammetric application is demonstrated by a test case, based on the comparison of acquisition, calibration and 3D modeling results in case of use of a laser scanner, metric camera and amateur reflex camera. The test would help us to demonstrate the efficiency of image based methods in the acquisition of complex architecture. The case study is Santa Barbara Bell tower in Mantua. The applied survey solution allows a complete 3D database of the complex architectural structure to be obtained for the extraction of all the information needed for significant intervention. This demonstrates the applicability of the photogrammetry using UAV for the survey of vertical structures, complex buildings and difficult accessible architectural parts, providing high precision results. PMID:26134108
Vena Cava 3D Contrast-Enhanced MR Venography: A Pictorial Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin Jiang; Zhou Kangrong; Chen Zuwang
Three-dimensional contrast-enhanced magnetic resonance venography (CE MRV) is a sensitive and accurate method for diagnosing vena cava pathologies. The commonly used indirect approach involves a nondiluted gadolinium contrast agent injected into an upper limb vein or, occasionally, a pedal vein for assessment of the superior or inferior vena cava. In our studies, a coronal 3D fast multi-planar spoiled gradient-echo acquisition was used. A pre-contrast scan was obtained to ensure correct coverage of the region of interest. We initiated contrast-enhanced acquisition 15 sec after the start of contrast agent injection and performed the procedure twice. The image sets were obtained duringmore » two 20-30-sec breath hold, with a breathing rest of 5-6 sec, to obtain the first-pass and delayed arteriovenous phases. For patients with Budd-Chiari syndrome, a third acquisition coinciding with late venous phase was collected to visualize the hepatic veins, which was carried out by one additional acquisition after a 5-6-sec breathing time. This review describes the clinical application of 3D CE MRV in vena cava congenital anomalies, superior and inferior vena cava syndrome, Budd-Chiari syndrome, peripheral vein thrombosis extending to the vena cava, pre-operational evaluation in portosystemic shunting and post-surgical follow-up, and road-mapping for the placement and evaluation of complications of central venous devices.« less
Achille, Cristiana; Adami, Andrea; Chiarini, Silvia; Cremonesi, Stefano; Fassi, Francesco; Fregonese, Luigi; Taffurelli, Laura
2015-06-30
This paper examines the survey of tall buildings in an emergency context like in the case of post-seismic events. The after-earthquake survey has to guarantee time-savings, high precision and security during the operational stages. The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle (UAV) systems in order to provide fast and low cost operations. The suggested methods integrate new technologies with commonly used technologies like TLS and topographic acquisition. The value of the photogrammetric application is demonstrated by a test case, based on the comparison of acquisition, calibration and 3D modeling results in case of use of a laser scanner, metric camera and amateur reflex camera. The test would help us to demonstrate the efficiency of image based methods in the acquisition of complex architecture. The case study is Santa Barbara Bell tower in Mantua. The applied survey solution allows a complete 3D database of the complex architectural structure to be obtained for the extraction of all the information needed for significant intervention. This demonstrates the applicability of the photogrammetry using UAV for the survey of vertical structures, complex buildings and difficult accessible architectural parts, providing high precision results.
Guo, Jianming; Shang, Er-Xin; Duan, Jin-Ao; Tang, Yuping; Qian, Dawei; Su, Shulan
2010-02-01
In drug metabolism research, the setting up of a complex series of mass spectrometry experiments and the subsequent analysis of the large amounts of data produced are often time-consuming. In this paper, we describe a strategy using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOFMS) with automated data analysis software (MetaboLynx) for fast analysis of the metabolic profile of flavonoids in Abelmoschus manihot. Rat plasma and urine samples collected 1 h and 0-12 h after oral administration of Abelmoschus manihot were analyzed by UPLC/QTOFMS within 15 min. The post-acquisition data were processed using MetaboLynx. With key parameters carefully set, MetaboLynx is able to show the presence of a wide range of metabolites with only a limited requirement for manual intervention and data interpretation time. A total of 16 and 38 metabolites were identified in plasma and urine compared with blank samples. The results indicated that methylation and glucuronidation after deglycosylation were the major metabolic pathways of flavonoid glycosides in Abelmoschus manihot. The present study provided important information about the metabolism of flavonoid glycosides in Abelmoschus manihot which will be helpful for fully understanding the mechanism of action of this herb. Furthermore, this work demonstrated the potential of the UPLC/QTOFMS approach using MetaboLynx for fast and automated identification of metabolites from Chinese herbal medicines. Copyright (c) 2010 John Wiley & Sons, Ltd.
8-Channel acquisition system for Time-Correlated Single-Photon Counting.
Antonioli, S; Miari, L; Cuccato, A; Crotti, M; Rech, I; Ghioni, M
2013-06-01
Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D∕A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.
Cyber: A Flexible Deterrent Option
2013-02-14
to come on when they throw a switch and other electrical appliances throughout the house to work without any commercial power interruption. For...power plants this means maintaining the electrical grid and the supervisory control and data acquisition (SCADA) systems at a reliable rate of “99.99999...on the grid.”36 The researchers “simply instructed it to make rapid changes in the electricity cycles that powered the equipment: fast, slow, fast
History of the KC-10A Aircraft Acquisition
1988-04-01
in other research reports or educational pursuits contingent upon the following stipulations: - Reproduction rights do not extend to any copyrighted...MAC, AFLC, and others) would create data for flight, maintenance, and technical data manuals, and evaluate human engineering factors. This testing...productio); ond deli.erme:; ra.. a fa:st rate and the acquisition program began to phase out.. The, total fleot gjrew to 52 aircraft, and del ivf , ics of th:ý
Coarse Resolution SAR Imagery to Support Flood Inundation Models in Near Real Time
NASA Astrophysics Data System (ADS)
Di Baldassarre, Giuliano; Schumann, Guy; Brandimarte, Luigia; Bates, Paul
2009-11-01
In recent years, the availability of new emerging data (e.g. remote sensing, intelligent wireless sensors, etc) has led to a sudden shift from a data-sparse to a data-rich environment for hydrological and hydraulic modelling. Furthermore, the increased socioeconomic relevance of river flood studies has motivated the development of complex methodologies for the simulation of the hydraulic behaviour of river systems. In this context, this study aims at assessing the capability of coarse resolution SAR (Synthetic Aperture Radar) imagery to support and quickly validate flood inundation models in near real time. A hydraulic model of a 98km reach of the River Po (Italy), previously calibrated on a high-magnitude flood event with extensive and high quality field data, is tested using a SAR flood image, acquired and processed in near real time, during the June 2008 low-magnitude event. Specifically, the image is an acquisition by the ENVISAT-ASAR sensor in wide swath mode and has been provided through ESA (European Space Agency) Fast Registration system at no cost 24 hours after the acquisition. The study shows that the SAR image enables validation and improvement of the model in a time shorter than the flood travel time. This increases the reliability of model predictions (e.g. water elevation and inundation width along the river reach) and, consequently, assists flood management authorities in undertaking the necessary prevention activities.
NASA Astrophysics Data System (ADS)
Li, H.; Wong, Wai-Hoi; Zhang, N.; Wang, J.; Uribe, J.; Baghaei, H.; Yokoyama, S.
1999-06-01
Electronics for a prototype high-resolution PET camera with eight position-sensitive detector modules has been developed. Each module has 16 BGO (Bi/sub 4/Ge/sub 3/O/sub 12/) blocks (each block is composed of 49 crystals). The design goals are component and space reduction. The electronics is composed of five parts: front-end analog processing, digital position decoding, fast timing, coincidence processing and master data acquisition. The front-end analog circuit is a zone-based structure (each zone has 3/spl times/3 PMTs). Nine ADCs digitize integration signals of an active zone identified by eight trigger clusters; each cluster is composed of six photomultiplier tubes (PMTs). A trigger corresponding to a gamma ray is sent to a fast timing board to obtain a time-mark, and the nine digitized signals are passed to the position decoding board, where a real block (four PMTs) can be picked out from the zone for position decoding. Lookup tables are used for energy discrimination and to identify the gamma-hit crystal location. The coincidence board opens a 70-ns initial timing window, followed by two 20-ns true/accidental time-mark lookup table windows. The data output from the coincidence board can be acquired either in sinogram mode or in list mode with a Motorola/IRONICS VME-based system.
Ramirez-Ambrosi, M; Abad-Garcia, B; Viloria-Bernal, M; Garmon-Lobato, S; Berrueta, L A; Gallo, B
2013-11-05
A new, rapid, selective and sensitive ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (UHPLC-DAD-ESI-Q-ToF-MS) strategy using automatic and simultaneous acquisition of exact mass at high and low collision energy, MS(E), has been developed to obtain polyphenolic profile of apples, apple pomace and apple juice from Asturian cider apples in a single run injection of 22 min. MS(E) spectral data acquisition overcomes chromatographic co-elution problems, performing simultaneous collection of precursor ions as well as other ions produced as a result of their fragmentation, which allows resolving complex spectra from mixtures of precursor ions in an unsupervised way and eases their interpretation. Using this technique, 52 phenolic compounds of five different classes were readily characterized in these apple extracts in both positive and negative ionization modes. The spectral data for phenolic compounds obtained using this acquisition mode are comparable to those obtained by conventional LC-MS/MS as exemplified in this work. Among the 52 phenolic compounds identified in this work, 2 dihydrochalcones and 3 flavonols have been tentatively identified for the first time in apple products. Moreover, 2 flavanols, 4 dihydrochalcones, 9 hydroxycinnamic acids and 4 flavonols had not been previously reported in apple by ToF analysis to our knowledge. Copyright © 2013 Elsevier B.V. All rights reserved.
Serial data acquisition for the X-ray plasma diagnostics with selected GEM detector structures
NASA Astrophysics Data System (ADS)
Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Zabolotny, W.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zienkiewicz, P.
2015-10-01
The measurement system based on GEM—Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement tokamak plasmas. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. The required data processing have two steps: 1—processing in the time domain, i.e. events selections for bunches of coinciding clusters, 2—processing in the planar space domain, i.e. cluster identification for the given detector structure. So, it is the software part of the project between the electronic hardware and physics applications. The whole project is original and it was developed by the paper authors. The previous version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures for the new data acquisition system. The fast and accurate mode of data acquisition implemented in the hardware in real time can be applied for the dynamic plasma diagnostics. Several detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Final data processing is presented by histograms for selected range of position, time interval and cluster charge values. Exemplary radiation source properties are measured by the basic cumulative characteristics: the cluster position distribution and cluster charge value distribution corresponding to the energy spectra. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics
Kottner, Sören; Ebert, Lars C; Ampanozi, Garyfalia; Braun, Marcel; Thali, Michael J; Gascho, Dominic
2017-03-01
Injuries such as bite marks or boot prints can leave distinct patterns on the body's surface and can be used for 3D reconstructions. Although various systems for 3D surface imaging have been introduced in the forensic field, most techniques are both cost-intensive and time-consuming. In this article, we present the VirtoScan, a mobile, multi-camera rig based on close-range photogrammetry. The system can be integrated into automated PMCT scanning procedures or used manually together with lifting carts, autopsy tables and examination couch. The VirtoScan is based on a moveable frame that carries 7 digital single-lens reflex cameras. A remote control is attached to each camera and allows the simultaneous triggering of the shutter release of all cameras. Data acquisition in combination with the PMCT scanning procedures took 3:34 min for the 3D surface documentation of one side of the body compared to 20:20 min of acquisition time when using our in-house standard. A surface model comparison between the high resolution output from our in-house standard and a high resolution model from the multi-camera rig showed a mean surface deviation of 0.36 mm for the whole body scan and 0.13 mm for a second comparison of a detailed section of the scan. The use of the multi-camera rig reduces the acquisition time for whole-body surface documentations in medico-legal examinations and provides a low-cost 3D surface scanning alternative for forensic investigations.
High-Resolution Time-Lapse Monitoring of Unsaturated Flow using Automated GPR Data Collection
NASA Astrophysics Data System (ADS)
Mangel, A. R.; Moysey, S. M.; Lytle, B. A.; Bradford, J. H.
2015-12-01
High-resolution ground-penetrating radar (GPR) data provide the detailed information required to image subsurface structures. Recent advances in GPR monitoring now also make it possible to study transient hydrologic processes, but high-speed data acquisition is critical for this application. We therefore highlight the capabilities of our automated system to acquire time-lapse, high-resolution multifold GPR data during infiltration of water into soils. The system design allows for fast acquisition of constant-offset (COP) and common-midpoint profiles (CMP) to monitor unsaturated flow at multiple locations. Qualitative interpretation of the unprocessed COPs can provide substantial information regarding the hydrologic response of the system, such as the complexities of patterns associated with the wetting of the soil and geophysical evidence of non-uniform propagation of a wetting front. While we find that unprocessed images are informative, we show that the spatial variability of velocity introduced by infiltration events can complicate the images and that migration of the data is an effective tool to improve interpretability of the time-lapse images. The ability of the system to collect high density CMP data also introduces the potential for improving the velocity model along with the image via reflection tomography in the post-migrated domain. We show that for both simulated and empirical time-lapse GPR profiles we can resolve a propagating wetting front in the soil that is in good agreement with the response of in-situ soil moisture measurements. The data from these experiments illustrate the importance of high-speed, high-resolution GPR data acquisition for obtaining insight about the dynamics of hydrologic events. Continuing research is aimed at improving the quantitative analysis of surface-based GPR monitoring data for identifying preferential flow in soils.
NASA Astrophysics Data System (ADS)
Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.
2016-11-01
The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.
Czarski, T; Chernyshova, M; Malinowski, K; Pozniak, K T; Kasprowicz, G; Kolasinski, P; Krawczyk, R; Wojenski, A; Zabolotny, W
2016-11-01
The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.
Wave-particle interactions on the FAST satellite
NASA Technical Reports Server (NTRS)
Temerin, M. A.; Carlson, C. W.; Cattell, C. A.; Ergun, R. E.; Mcfadden, J. P.
1990-01-01
NASA's Fast Auroral Snapshot, or 'FAST' satellite, scheduled for launch in 1993, will investigate the plasma physics of the low altitude auroral zone from a 3500-km apogee polar orbit. FAST will give attention to wave, double-layer, and soliton production processes due to electrons and ions, as well as to wave-wave interactions, and the acceleration of electrons and ions by waves and electric fields. FAST will employ an intelligent data-handling system capacle of data acquisition at rates of up to 1 Mb/sec, in addition to a 1-Gbit solid-state memory. The data need be gathered for only a few minutes during passes through the auroral zone, since the most interesting auroral phenomena occur in such narrow regions as auroral arcs, electrostatic shocks, and superthermal electron bursts.
Low-dose 4D cardiac imaging in small animals using dual source micro-CT
NASA Astrophysics Data System (ADS)
Holbrook, M.; Clark, D. P.; Badea, C. T.
2018-01-01
Micro-CT is widely used in preclinical studies, generating substantial interest in extending its capabilities in functional imaging applications such as blood perfusion and cardiac function. However, imaging cardiac structure and function in mice is challenging due to their small size and rapid heart rate. To overcome these challenges, we propose and compare improvements on two strategies for cardiac gating in dual-source, preclinical micro-CT: fast prospective gating (PG) and uncorrelated retrospective gating (RG). These sampling strategies combined with a sophisticated iterative image reconstruction algorithm provide faster acquisitions and high image quality in low-dose 4D (i.e. 3D + Time) cardiac micro-CT. Fast PG is performed under continuous subject rotation which results in interleaved projection angles between cardiac phases. Thus, fast PG provides a well-sampled temporal average image for use as a prior in iterative reconstruction. Uncorrelated RG incorporates random delays during sampling to prevent correlations between heart rate and sampling rate. We have performed both simulations and animal studies to validate these new sampling protocols. Sampling times for 1000 projections using fast PG and RG were 2 and 3 min, respectively, and the total dose was 170 mGy each. Reconstructions were performed using a 4D iterative reconstruction technique based on the split Bregman method. To examine undersampling robustness, subsets of 500 and 250 projections were also used for reconstruction. Both sampling strategies in conjunction with our iterative reconstruction method are capable of resolving cardiac phases and provide high image quality. In general, for equal numbers of projections, fast PG shows fewer errors than RG and is more robust to undersampling. Our results indicate that only 1000-projection based reconstruction with fast PG satisfies a 5% error criterion in left ventricular volume estimation. These methods promise low-dose imaging with a wide range of preclinical applications in cardiac imaging.
NASA Astrophysics Data System (ADS)
Leprince, S.; Ayoub, F.; Avouac, J.
2011-12-01
We have developed a suite of algorithms for precise Co-registration of Optically Sensed Images and Correlation (COSI-Corr) which were implemented in a software package first released to the academic community in 2007. Its capability for accurate surface deformation measurement has proved useful for a wide variety of applications. We present the fundamental principles of COSI-Corr, which are the key ingredients to achieve sub-pixel registration and sub-pixel measurement accuracy, and we show how they can be applied to various types of images to extract 2D, 3D, or even 4D deformation fields of a given surface. Examples are drawn from recent collaborative studies and include: (1) The study of the Icelandic Krafla rifting crisis that occurred from 1975 to 1984 where we used a combination of archived airborne photographs, declassified spy satellite imagery, and modern satellite acquisitions to propose a detailed 2D displacement field of the ground; (2) The estimation of glacial velocities from fast New Zealand glaciers using successive ASTER acquisitions; (3) The derivation of sand dunes migration rates; (4) The estimation of ocean swell velocity taking advantage of the short time delay between the acquisition of different spectral bands on the SPOT 5 satellite; (5) The derivation of the full 3D ground displacement field induced by the 2010 Mw 7.2 El Mayor-Cucapah Earthquake, as recorded from pre- and post-event lidar acquisitions; (6) And, the estimation of 2D in plane deformation of mechanical samples under stress in the lab. Finally, we conclude by highlighting the potential future and implication of applying such correlation techniques on a large scale to provide global monitoring of our environment.
Zhang, Shu; Liu, Zheng; Grant, Aaron; Keupp, Jochen; Lenkinski, Robert E; Vinogradov, Elena
2017-02-01
Chemical exchange saturation transfer (CEST) is a novel contrast mechanism and it is gaining increasing popularity as many promising applications have been proposed and investigated. Fast and quantitative CEST imaging techniques are further needed in order to increase the applicability of CEST for clinical use as well as to derive quantitative physiological and biological information. Steady-state methods for fast CEST imaging have been reported recently. Here, we observe that an extreme case of these methods is a balanced steady-state free precession (bSSFP) sequence. The bSSFP in itself is sensitive to the exchange processes; hence, no additional saturation or preparation is needed for CEST-like data acquisition. The bSSFP experiment can be regarded as observation during saturation, without separate saturation and acquisition modules as used in standard CEST and similar experiments. One of the differences from standard CEST methods is that the bSSFP spectrum is an XY-spectrum not a Z-spectrum. As the first proof-of-principle step, we have implemented the steady-state bSSFP sequence for chemical exchange detection (bSSFPX) and verified its feasibility in phantom studies. These studies have shown that bSSFPX can achieve exchange-mediated contrast comparable to the standard CEST experiment. Therefore, the bSSFPX method has a potential for fast and quantitative CEST data acquisition. Copyright © 2016 Elsevier Inc. All rights reserved.
Schätzlein, Martina Palomino; Becker, Johanna; Schulze-Sünninghausen, David; Pineda-Lucena, Antonio; Herance, José Raul; Luy, Burkhard
2018-04-01
Isotope labeling enables the use of 13 C-based metabolomics techniques with strongly improved resolution for a better identification of relevant metabolites and tracing of metabolic fluxes in cell and animal models, as required in fluxomics studies. However, even at high NMR-active isotope abundance, the acquisition of one-dimensional 13 C and classical two-dimensional 1 H, 13 C-HSQC experiments remains time consuming. With the aim to provide a shorter, more efficient alternative, herein we explored the ALSOFAST-HSQC experiment with its rapid acquisition scheme for the analysis of 13 C-labeled metabolites in complex biological mixtures. As an initial step, the parameters of the pulse sequence were optimized to take into account the specific characteristics of the complex samples. We then applied the fast two-dimensional experiment to study the effect of different kinds of antioxidant gold nanoparticles on a HeLa cancer cell model grown on 13 C glucose-enriched medium. As a result, 1 H, 13 C-2D correlations could be obtained in a couple of seconds to few minutes, allowing a simple and reliable identification of various 13 C-enriched metabolites and the determination of specific variations between the different sample groups. Thus, it was possible to monitor glucose metabolism in the cell model and study the antioxidant effect of the coated gold nanoparticles in detail. Finally, with an experiment time of only half an hour, highly resolved 1 H, 13 C-HSQC spectra using the ALSOFAST-HSQC pulse sequence were acquired, revealing the isotope-position-patterns of the corresponding 13 C-nuclei from carbon multiplets. Graphical abstract Fast NMR applied to metabolomics and fluxomics studies with gold nanoparticles.
Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David
2018-06-01
Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.
Experimental considerations for fast kurtosis imaging.
Hansen, Brian; Lund, Torben E; Sangill, Ryan; Stubbe, Ebbe; Finsterbusch, Jürgen; Jespersen, Sune Nørhøj
2016-11-01
The clinical use of kurtosis imaging is impeded by long acquisitions and postprocessing. Recently, estimation of mean kurtosis tensor W¯ and mean diffusivity ( D¯) was made possible from 13 distinct diffusion weighted MRI acquisitions (the 1-3-9 protocol) with simple postprocessing. Here, we analyze the effects of noise and nonideal diffusion encoding, and propose a new correction strategy. We also present a 1-9-9 protocol with increased robustness to experimental imperfections and minimal additional scan time. This refinement does not affect computation time and also provides a fast estimate of fractional anisotropy (FA). 1-3-9/1-9-9 data are acquired in rat and human brains, and estimates of D¯, FA, W¯ from human brains are compared with traditional estimates from an extensive diffusion kurtosis imaging data set. Simulations are used to evaluate the influence of noise and diffusion encodings deviating from the scheme, and the performance of the correction strategy. Optimal b-values are determined from simulations and data. Accuracy and precision in D¯ and W¯ are comparable to nonlinear least squares estimation, and is improved with the 1-9-9 protocol. The compensation strategy vastly improves parameter estimation in nonideal data. The framework offers a robust and compact method for estimating several diffusion metrics. The protocol is easily implemented. Magn Reson Med 76:1455-1468, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line.
Audier, Xavier; Balla, Naveen; Rigneault, Hervé
2017-01-15
We demonstrate femtosecond pump-probe transient absorption spectroscopy using a programmable dispersive filter as an ultra-fast delay line. Combined with fast synchronous detection, this delay line allows for recording of 6 ps decay traces at 34 kHz. With such acquisition speed, we perform single point pump-probe spectroscopy on bulk samples in 80 μs and hyperspectral pump-probe imaging over a field of view of 100 μm in less than a second. The usability of the method is illustrated in a showcase experiment to image and discriminate between two pigments in a mixture.
Strohm, Cornelius; Perrin, Florian; Dominguez, Marie-Christine; Headspith, Jon; van der Linden, Peter; Mathon, Olivier
2011-01-01
Using a fast silicon strip detector, a multi-frame acquisition scheme was implemented to perform energy-dispersive X-ray magnetic circular dichroism at the iron K-edge in pulsed high magnetic fields. The acquisition scheme makes use of the entire field pulse. The quality of the signal obtained from samples of ferrimagnetic erbium iron garnet allows for quantitative evaluation of the signal amplitude. Below the compensation point, two successive field-induced phase transitions and the reversal of the net magnetization of the iron sublattices in the intermediate phase were observed. PMID:21335909
High-speed, multi-channel detector readout electronics for fast radiation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennig, Wolfgang
2012-06-22
In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps,more » MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications.The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the SHARC DSP has been booted with preliminary code. All new ICs and circuitry on the prototype are working properly, however some of the planned firmware and software functions have not yet been completely implemented and debugged. Overall, due to the unanticipated complexity of the PCI Express interface, some aspects of the project could not be completed with the time and funds available in Phase II. These aspects will be completed in self-funded Phase III.« less
Antonietti, Alberto; Casellato, Claudia; D'Angelo, Egidio; Pedrocchi, Alessandra
The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.
Serial data acquisition for GEM-2D detector
NASA Astrophysics Data System (ADS)
Kolasinski, Piotr; Pozniak, Krzysztof T.; Czarski, Tomasz; Linczuk, Maciej; Byszuk, Adrian; Chernyshova, Maryna; Juszczyk, Bartlomiej; Kasprowicz, Grzegorz; Wojenski, Andrzej; Zabolotny, Wojciech; Zienkiewicz, Pawel; Mazon, Didier; Malard, Philippe; Herrmann, Albrecht; Vezinet, Didier
2014-11-01
This article debates about data fast acquisition and histogramming method for the X-ray GEM detector. The whole process of histogramming is performed by FPGA chips (Spartan-6 series from Xilinx). The results of the histogramming process are stored in an internal FPGA memory and then sent to PC. In PC data is merged and processed by MATLAB. The structure of firmware functionality implemented in the FPGAs is described. Examples of test measurements and results are presented.
The design and performance of the ZEUS Central Tracking Detector z-by-timing system
NASA Astrophysics Data System (ADS)
Bailey, D. S.; Foster, B.; Heath, G. P.; Morgado, C. J. S.; Harnew, N.; Khatri, T.; Lancaster, M.; McArthur, I. C.; McFall, J. D.; Nash, J.; Shield, P. D.; Topp-Jorgensen, S.; Wilson, F. F.; Carter, R. C.; Jeffs, M. D.; Milborrow, R.; Morrissey, M. C.; Phillips, D. A.; Quinton, S. P. H.; Westlake, G.; White, D. J.; Lane, J. B.; Nixon, G.; Postranecky, M.
1997-02-01
The ZEUS Central Tracking Detector utilizes a time difference measurement to provide a fast determination of the z coordinate of each hit. The z-by-timing measurement is achieved by using a Time-to-Amplitude Converter which has an intrinsic timing resolution of 36 ps, has pipelined readout, and has a multihit capability of 48 ns. In order to maintain the required sub-nanosecond timing accuracy, the technique incorporates an automated self-calibration system. The readout of the z-by-timing data utilizes a fully customized timing control system which runs synchronously with the HERA beam-crossing clock, and a data acquisition system implemented on a network of Transputers. Three dimensional space-points provided by the z-by-timing system are used as input to all three levels of the ZEUS trigger and for offline track reconstruction. The average z resolution is determined to be 4.4 cm for multi-track events from positron-proton collisions in the ZEUS detector.
CAMAC throughput of a new RISC-based data acquisition computer at the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Vanderlaan, J. F.; Cummings, J. W.
1993-10-01
The amount of experimental data acquired per plasma discharge at DIII-D has continued to grow. The largest shot size in May 1991 was 49 Mbyte; in May 1992, 66 Mbyte; and in April 1993, 80 Mbyte. The increasing load has prompted the installation of a new Motorola 88100-based MODCOMP computer to supplement the existing core of three older MODCOMP data acquisition CPU's. New Kinetic Systems CAMAC serial highway driver hardware runs on the 88100 VME bus. The new operating system is MODCOMP REAL/IX version of AT&T System V UNIX with real-time extensions and networking capabilities; future plans call for installation of additional computers of this type for tokamak and neutral beam control functions. Experiences with the CAMAC hardware and software will be chronicled, including observation of data throughput. The Enhanced Serial Highway crate controller is advertised as twice as fast as the previous crate controller, and computer I/O speeds are expected to also increase data rates.
Rapid mapping of polarization switching through complete information acquisition
Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.; ...
2016-12-02
Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these phenomena. Classical piezoresponse force microscopy and spectroscopy, although providing necessary spatial resolution, are fundamentally limited in data acquisition rates and energy resolution. This limitation stems from their two-tiered measurement protocol that combines slow (~1 s) switching and fast (~10 kHz–1 MHz) detection waveforms. Here we develop an approach for rapidmore » probing of ferroelectric switching using direct strain detection of material response to probe bias. This approach, facilitated by high-sensitivity electronics and adaptive filtering, enables spectroscopic imaging at a rate 3,504 times faster the current state of the art, achieving high-veracity imaging of polarization dynamics in complex microstructures.« less
Fast and Accurate Metadata Authoring Using Ontology-Based Recommendations.
Martínez-Romero, Marcos; O'Connor, Martin J; Shankar, Ravi D; Panahiazar, Maryam; Willrett, Debra; Egyedi, Attila L; Gevaert, Olivier; Graybeal, John; Musen, Mark A
2017-01-01
In biomedicine, high-quality metadata are crucial for finding experimental datasets, for understanding how experiments were performed, and for reproducing those experiments. Despite the recent focus on metadata, the quality of metadata available in public repositories continues to be extremely poor. A key difficulty is that the typical metadata acquisition process is time-consuming and error prone, with weak or nonexistent support for linking metadata to ontologies. There is a pressing need for methods and tools to speed up the metadata acquisition process and to increase the quality of metadata that are entered. In this paper, we describe a methodology and set of associated tools that we developed to address this challenge. A core component of this approach is a value recommendation framework that uses analysis of previously entered metadata and ontology-based metadata specifications to help users rapidly and accurately enter their metadata. We performed an initial evaluation of this approach using metadata from a public metadata repository.
Fast and Accurate Metadata Authoring Using Ontology-Based Recommendations
Martínez-Romero, Marcos; O’Connor, Martin J.; Shankar, Ravi D.; Panahiazar, Maryam; Willrett, Debra; Egyedi, Attila L.; Gevaert, Olivier; Graybeal, John; Musen, Mark A.
2017-01-01
In biomedicine, high-quality metadata are crucial for finding experimental datasets, for understanding how experiments were performed, and for reproducing those experiments. Despite the recent focus on metadata, the quality of metadata available in public repositories continues to be extremely poor. A key difficulty is that the typical metadata acquisition process is time-consuming and error prone, with weak or nonexistent support for linking metadata to ontologies. There is a pressing need for methods and tools to speed up the metadata acquisition process and to increase the quality of metadata that are entered. In this paper, we describe a methodology and set of associated tools that we developed to address this challenge. A core component of this approach is a value recommendation framework that uses analysis of previously entered metadata and ontology-based metadata specifications to help users rapidly and accurately enter their metadata. We performed an initial evaluation of this approach using metadata from a public metadata repository. PMID:29854196
GMR microfluidic biosensor for low concentration detection of Nanomag-D beads
NASA Astrophysics Data System (ADS)
Devkota, J.; Kokkinis, G.; Jamalieh, M.; Phan, M. H.; Srikanth, H.; Cardoso, S.; Cardoso, F. A.; Giouroudi, I.
2015-06-01
This paper presents a novel microfluidic biosensor for in-vitro detection of biomolecules labeled by magnetic biomarkers (Nanomag-D beads) suspended in a static fluid in combination with giant magnetoresistance (GMR) sensors. While previous studies were focused mainly on exploring the MR change for biosensing of bacteria labeled with magnetic microparticles, we show that our biosensor can be used for the detection of much smaller pathogens in the range of a few hundred nanometers e.g., viruses labeled with Nanomag-D beads (MNPs). For the measurements we also used a novel method for signal acquisition and demodulation. Expensive function generators, data acquisition devices and lock-in amplifiers are substituted by a generic PC sound card and an algorithm combining the Fast Fourier Transform (FFT) of the signal with a peak detection routine. This way, costs are drastically reduced, portability is enabled, detection hands-on time is reduced, and sample throughput can be increased using automation and efficient data evaluation with the appropriate software.
NASA Astrophysics Data System (ADS)
Alidoost, F.; Arefi, H.
2017-11-01
Nowadays, Unmanned Aerial System (UAS)-based photogrammetry offers an affordable, fast and effective approach to real-time acquisition of high resolution geospatial information and automatic 3D modelling of objects for numerous applications such as topography mapping, 3D city modelling, orthophoto generation, and cultural heritages preservation. In this paper, the capability of four different state-of-the-art software packages as 3DSurvey, Agisoft Photoscan, Pix4Dmapper Pro and SURE is examined to generate high density point cloud as well as a Digital Surface Model (DSM) over a historical site. The main steps of this study are including: image acquisition, point cloud generation, and accuracy assessment. The overlapping images are first captured using a quadcopter and next are processed by different software to generate point clouds and DSMs. In order to evaluate the accuracy and quality of point clouds and DSMs, both visual and geometric assessments are carry out and the comparison results are reported.
Rapid mapping of polarization switching through complete information acquisition
Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen
2016-01-01
Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these phenomena. Classical piezoresponse force microscopy and spectroscopy, although providing necessary spatial resolution, are fundamentally limited in data acquisition rates and energy resolution. This limitation stems from their two-tiered measurement protocol that combines slow (∼1 s) switching and fast (∼10 kHz–1 MHz) detection waveforms. Here we develop an approach for rapid probing of ferroelectric switching using direct strain detection of material response to probe bias. This approach, facilitated by high-sensitivity electronics and adaptive filtering, enables spectroscopic imaging at a rate 3,504 times faster the current state of the art, achieving high-veracity imaging of polarization dynamics in complex microstructures. PMID:27910941
NASA Astrophysics Data System (ADS)
Deng, Peng; Kavehrad, Mohsen; Lou, Yan
2017-01-01
Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.
Fast blood flow monitoring in deep tissues with real-time software correlators
Wang, Detian; Parthasarathy, Ashwin B.; Baker, Wesley B.; Gannon, Kimberly; Kavuri, Venki; Ko, Tiffany; Schenkel, Steven; Li, Zhe; Li, Zeren; Mullen, Michael T.; Detre, John A.; Yodh, Arjun G.
2016-01-01
We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 – 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance. PMID:27231588
Bergmeister, Konstantin D; Gröger, Marion; Aman, Martin; Willensdorfer, Anna; Manzano-Szalai, Krisztina; Salminger, Stefan; Aszmann, Oskar C
2016-08-01
Skeletal muscle consists of different fiber types which adapt to exercise, aging, disease, or trauma. Here we present a protocol for fast staining, automatic acquisition, and quantification of fiber populations with ImageJ. Biceps and lumbrical muscles were harvested from Sprague-Dawley rats. Quadruple immunohistochemical staining was performed on single sections using antibodies against myosin heavy chains and secondary fluorescent antibodies. Slides were scanned automatically with a slide scanner. Manual and automatic analyses were performed and compared statistically. The protocol provided rapid and reliable staining for automated image acquisition. Analyses between manual and automatic data indicated Pearson correlation coefficients for biceps of 0.645-0.841 and 0.564-0.673 for lumbrical muscles. Relative fiber populations were accurate to a degree of ± 4%. This protocol provides a reliable tool for quantification of muscle fiber populations. Using freely available software, it decreases the required time to analyze whole muscle sections. Muscle Nerve 54: 292-299, 2016. © 2016 Wiley Periodicals, Inc.
Paddock, Michael T; Bailitz, John; Horowitz, Russ; Khishfe, Basem; Cosby, Karen; Sergel, Michelle J
2015-03-01
Pre-hospital focused assessment with sonography in trauma (FAST) has been effectively used to improve patient care in multiple mass casualty events throughout the world. Although requisite FAST knowledge may now be learned remotely by disaster response team members, traditional live instructor and model hands-on FAST skills training remains logistically challenging. The objective of this pilot study was to compare the effectiveness of a novel portable ultrasound (US) simulator with traditional FAST skills training for a deployed mixed provider disaster response team. We randomized participants into one of three training groups stratified by provider role: Group A. Traditional Skills Training, Group B. US Simulator Skills Training, and Group C. Traditional Skills Training Plus US Simulator Skills Training. After skills training, we measured participants' FAST image acquisition and interpretation skills using a standardized direct observation tool (SDOT) with healthy models and review of FAST patient images. Pre- and post-course US and FAST knowledge were also assessed using a previously validated multiple-choice evaluation. We used the ANOVA procedure to determine the statistical significance of differences between the means of each group's skills scores. Paired sample t-tests were used to determine the statistical significance of pre- and post-course mean knowledge scores within groups. We enrolled 36 participants, 12 randomized to each training group. Randomization resulted in similar distribution of participants between training groups with respect to provider role, age, sex, and prior US training. For the FAST SDOT image acquisition and interpretation mean skills scores, there was no statistically significant difference between training groups. For US and FAST mean knowledge scores, there was a statistically significant improvement between pre- and post-course scores within each group, but again there was not a statistically significant difference between training groups. This pilot study of a deployed mixed-provider disaster response team suggests that a novel portable US simulator may provide equivalent skills training in comparison to traditional live instructor and model training. Further studies with a larger sample size and other measures of short- and long-term clinical performance are warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peronio, P.; Acconcia, G.; Rech, I.
Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach basedmore » on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.« less
Campbell-Washburn, Adrienne E; Xue, Hui; Lederman, Robert J; Faranesh, Anthony Z; Hansen, Michael S
2016-06-01
MRI-guided interventions demand high frame rate imaging, making fast imaging techniques such as spiral imaging and echo planar imaging (EPI) appealing. In this study, we implemented a real-time distortion correction framework to enable the use of these fast acquisitions for interventional MRI. Distortions caused by gradient waveform inaccuracies were corrected using the gradient impulse response function (GIRF), which was measured by standard equipment and saved as a calibration file on the host computer. This file was used at runtime to calculate the predicted k-space trajectories for image reconstruction. Additionally, the off-resonance reconstruction frequency was modified in real time to interactively deblur spiral images. Real-time distortion correction for arbitrary image orientations was achieved in phantoms and healthy human volunteers. The GIRF-predicted k-space trajectories matched measured k-space trajectories closely for spiral imaging. Spiral and EPI image distortion was visibly improved using the GIRF-predicted trajectories. The GIRF calibration file showed no systematic drift in 4 months and was demonstrated to correct distortions after 30 min of continuous scanning despite gradient heating. Interactive off-resonance reconstruction was used to sharpen anatomical boundaries during continuous imaging. This real-time distortion correction framework will enable the use of these high frame rate imaging methods for MRI-guided interventions. Magn Reson Med 75:2278-2285, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Campbell-Washburn, Adrienne E; Xue, Hui; Lederman, Robert J; Faranesh, Anthony Z; Hansen, Michael S
2015-01-01
Purpose MRI-guided interventions demand high frame-rate imaging, making fast imaging techniques such as spiral imaging and echo planar imaging (EPI) appealing. In this study, we implemented a real-time distortion correction framework to enable the use of these fast acquisitions for interventional MRI. Methods Distortions caused by gradient waveform inaccuracies were corrected using the gradient impulse response function (GIRF), which was measured by standard equipment and saved as a calibration file on the host computer. This file was used at runtime to calculate the predicted k-space trajectories for image reconstruction. Additionally, the off-resonance reconstruction frequency was modified in real-time to interactively de-blur spiral images. Results Real-time distortion correction for arbitrary image orientations was achieved in phantoms and healthy human volunteers. The GIRF predicted k-space trajectories matched measured k-space trajectories closely for spiral imaging. Spiral and EPI image distortion was visibly improved using the GIRF predicted trajectories. The GIRF calibration file showed no systematic drift in 4 months and was demonstrated to correct distortions after 30 minutes of continuous scanning despite gradient heating. Interactive off-resonance reconstruction was used to sharpen anatomical boundaries during continuous imaging. Conclusions This real-time distortion correction framework will enable the use of these high frame-rate imaging methods for MRI-guided interventions. PMID:26114951
Electronics design of the RPC system for the OPERA muon spectrometer
NASA Astrophysics Data System (ADS)
Acquafredda, R.; Ambrosio, M.; Balsamo, E.; Barichello, G.; Bergnoli, A.; Consiglio, L.; Corradi, G.; dal Corso, F.; Felici, G.; Manea, C.; Masone, V.; Parascandolo, P.; Sorrentino, G.
2004-09-01
The present document describes the front-end electronics of the RPC system that instruments the magnet muon spectrometer of the OPERA experiment. The main task of the OPERA spectrometer is to provide particle tracking information for muon identification and simplify the matching between the Precision Trackers. As no trigger has been foreseen for the experiment, the spectrometer electronics must be self-triggered with single-plane readout capability. Moreover, precision time information must be added within each event frame for off-line reconstruction. The read-out electronics is made of three different stages: the Front-End Boards (FEBs) system, the Controller Boards (CBs) system and the Trigger Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST-OR output of the input signals is also available for trigger plane signal generation. FEB signals are acquired by the CB system that provides the zero suppression and manages the communication to the DAQ and Slow Control. A Trigger Board allows to operate in both self-trigger mode (the FEB's FAST-OR signal starts the plane acquisition) or in external-trigger mode (different conditions can be set on the FAST-OR signals generated from different planes).
High-speed three-dimensional measurements with a fringe projection-based optical sensor
NASA Astrophysics Data System (ADS)
Bräuer-Burchardt, Christian; Breitbarth, Andreas; Kühmstedt, Peter; Notni, Gunther
2014-11-01
An optical three-dimensional (3-D) sensor based on a fringe projection technique that realizes the acquisition of the surface geometry of small objects was developed for highly resolved and ultrafast measurements. It realizes a data acquisition rate up to 60 high-resolution 3-D datasets per second. The high measurement velocity was achieved by consequent fringe code reduction and parallel data processing. The reduction of the length of the fringe image sequence was obtained by omission of the Gray code sequence using the geometric restrictions of the measurement objects and the geometric constraints of the sensor arrangement. The sensor covers three different measurement fields between 20 mm×20 mm and 40 mm×40 mm with a spatial resolution between 10 and 20 μm, respectively. In order to obtain a robust and fast recalibration of the sensor after change of the measurement field, a calibration procedure based on single shot analysis of a special test object was applied which works with low effort and time. The sensor may be used, e.g., for quality inspection of conductor boards or plugs in real-time industrial applications.
Bauman, Grzegorz; Puderbach, Michael; Deimling, Michael; Jellus, Vladimir; Chefd'hotel, Christophe; Dinkel, Julien; Hintze, Christian; Kauczor, Hans-Ulrich; Schad, Lothar R
2009-09-01
Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow-up of pulmonary diseases. In this work a new method of non-contrast-enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two-dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole-body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion- and ventilation-weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non-contrast-enhanced perfusion and ventilation data.
Aqueye+: a new ultrafast single photon counter for optical high time resolution astrophysics
NASA Astrophysics Data System (ADS)
Zampieri, L.; Naletto, G.; Barbieri, C.; Verroi, E.; Barbieri, M.; Ceribella, G.; D'Alessandro, M.; Farisato, G.; Di Paola, A.; Zoccarato, P.
2015-05-01
Aqueye+ is a new ultrafast optical single photon counter, based on single photon avalanche photodiodes (SPAD) and a 4- fold split-pupil concept. It is a completely revisited version of its predecessor, Aqueye, successfully mounted at the 182 cm Copernicus telescope in Asiago. Here we will present the new technological features implemented on Aqueye+, namely a state of the art timing system, a dedicated and optimized optical train, a high sensitivity and high frame rate field camera and remote control, which will give Aqueye plus much superior performances with respect to its predecessor, unparalleled by any other existing fast photometer. The instrument will host also an optical vorticity module to achieve high performance astronomical coronography and a real time acquisition of atmospheric seeing unit. The present paper describes the instrument and its first performances.
Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao
2016-07-15
We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilizedmore » interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.« less
Time stretch and its applications
NASA Astrophysics Data System (ADS)
Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram
2017-06-01
Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.
Xiaofeng Yang; Guanghao Sun; Ishibashi, Koichiro
2017-07-01
The non-contact measurement of the respiration rate (RR) and heart rate (HR) using a Doppler radar has attracted more attention in the field of home healthcare monitoring, due to the extremely low burden on patients, unconsciousness and unconstraint. Most of the previous studies have performed the frequency-domain analysis of radar signals to detect the respiration and heartbeat frequency. However, these procedures required long period time (approximately 30 s) windows to obtain a high-resolution spectrum. In this study, we propose a time-domain peak detection algorithm for the fast acquisition of the RR and HR within a breathing cycle (approximately 5 s), including inhalation and exhalation. Signal pre-processing using an analog band-pass filter (BPF) that extracts respiration and heartbeat signals was performed. Thereafter, the HR and RR were calculated using a peak position detection method, which was carried out via LABVIEW. To evaluate the measurement accuracy, we measured the HR and RR of seven subjects in the laboratory. As a reference of HR and RR, the persons wore contact sensors i.e., an electrocardiograph (ECG) and a respiration band. The time domain peak-detection algorithm, based on the Doppler radar, exhibited a significant correlation coefficient of HR of 0.92 and a correlation coefficient of RR of 0.99, between the ECG and respiration band, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matenine, D; Cote, G; Mascolo-Fortin, J
2016-06-15
Purpose: Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersections between the photons’ trajectories and the object, also called ray-tracing or system matrix computation. This work evaluates different ways to store the system matrix, aiming to reconstruct dense image grids in reasonable time. Methods: We propose an optimized implementation of the Siddon’s algorithm using graphics processing units (GPUs) with a novel data storage scheme. The algorithm computes a part of the system matrix on demand, typically, for one projection angle. The proposed method was enhanced with accelerating options: storage of larger subsets of themore » system matrix, systematic reuse of data via geometric symmetries, an arithmetic-rich parallel code and code configuration via machine learning. It was tested on geometries mimicking a cone beam CT acquisition of a human head. To realistically assess the execution time, the ray-tracing routines were integrated into a regularized Poisson-based reconstruction algorithm. The proposed scheme was also compared to a different approach, where the system matrix is fully pre-computed and loaded at reconstruction time. Results: Fast ray-tracing of realistic acquisition geometries, which often lack spatial symmetry properties, was enabled via the proposed method. Ray-tracing interleaved with projection and backprojection operations required significant additional time. In most cases, ray-tracing was shown to use about 66 % of the total reconstruction time. In absolute terms, tracing times varied from 3.6 s to 7.5 min, depending on the problem size. The presence of geometrical symmetries allowed for non-negligible ray-tracing and reconstruction time reduction. Arithmetic-rich parallel code and machine learning permitted a modest reconstruction time reduction, in the order of 1 %. Conclusion: Partial system matrix storage permitted the reconstruction of higher 3D image grid sizes and larger projection datasets at the cost of additional time, when compared to the fully pre-computed approach. This work was supported in part by the Fonds de recherche du Quebec - Nature et technologies (FRQ-NT). The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council of Canada (Grant No. 432290).« less
Observation of Air Shower in Uijeongbu Area using the COREA Prototype Detector System
NASA Astrophysics Data System (ADS)
Cho, Wooram; Shin, Jae-ik; Kwon, Youngjoon; Yang, Jongmann; Nam, Shinwoo; Park, Il H.; Cheon, ByungGu; Kim, Hang Bae; Bhang, Hyoung Chan; Park, Cheolyoung; Kim, Gyhyuk; Choi, Wooseok; Hwang, MyungJin; Shin, Gwangsik
2018-06-01
We report the study of high energy cosmic rays in Uijeongbu area using a cosmic-ray detector array system. The array consists of three detector stations, each of which contains a set of three scintillators and PMTs, a GPS antenna along with data acquisition system. To identify air shower signals originating from a single cosmic ray, time coincidence information is used. We devised a method for estimating the energy range of air shower data detected by an array of only three detectors, using air shower simulation and citing already known energy spectrum. Also, Fast Fourier Transform(FFT) was applied to study isotropy.
Impact of view reduction in CT on radiation dose for patients
NASA Astrophysics Data System (ADS)
Parcero, E.; Flores, L.; Sánchez, M. G.; Vidal, V.; Verdú, G.
2017-08-01
Iterative methods have become a hot topic of research in computed tomography (CT) imaging because of their capacity to resolve the reconstruction problem from a limited number of projections. This allows the reduction of radiation exposure on patients during the data acquisition. The reconstruction time and the high radiation dose imposed on patients are the two major drawbacks in CT. To solve them effectively we adapted the method for sparse linear equations and sparse least squares (LSQR) with soft threshold filtering (STF) and the fast iterative shrinkage-thresholding algorithm (FISTA) to computed tomography reconstruction. The feasibility of the proposed methods is demonstrated numerically.
Quantitative flow and velocity measurements of pulsatile blood flow with 4D-DSA
NASA Astrophysics Data System (ADS)
Shaughnessy, Gabe; Hoffman, Carson; Schafer, Sebastian; Mistretta, Charles A.; Strother, Charles M.
2017-03-01
Time resolved 3D angiographic data from 4D DSA provides a unique environment to explore physical properties of blood flow. Utilizing the pulsatility of the contrast waveform, the Fourier components can be used to track the waveform motion through vessels. Areas of strong pulsatility are determined through the FFT power spectrum. Using this method, we find an accuracy from 4D-DSA flow measurements within 7.6% and 6.8% RMSE of ICA PCVIPR and phantom flow probe validation measurements, respectively. The availability of velocity and flow information with fast acquisition could provide a more quantitative approach to treatment planning and evaluation in interventional radiology.
NASA Astrophysics Data System (ADS)
Iltis, A.; Snoussi, H.; Magalhaes, L. Rodrigues de; Hmissi, M. Z.; Zafiarifety, C. Tata; Tadonkeng, G. Zeufack; Morel, C.
2018-01-01
During nuclear decommissioning or waste management operations, a camera that could make an image of the contamination field and identify and quantify the contaminants would be a great progress. Compton cameras have been proposed, but their limited efficiency for high energy gamma rays and their cost have severely limited their application. Our objective is to promote a Compton camera for the energy range (200 keV - 2 MeV) that uses fast scintillating crystals and a new concept for locating scintillation event: Temporal Imaging. Temporal Imaging uses monolithic plates of fast scintillators and measures photons time of arrival distribution in order to locate each gamma ray with a high precision in space (X,Y,Z), time (T) and energy (E). This provides a native estimation of the depth of interaction (Z) of every detected gamma ray. This also allows a time correction for the propagation time of scintillation photons inside the crystal, therefore resulting in excellent time resolution. The high temporal resolution of the system makes it possible to veto quite efficiently background by using narrow time coincidence (< 300 ps). It is also possible to reconstruct the direction of propagation of the photons inside the detector using timing constraints. The sensitivity of our system is better than 1 nSv/h in a 60 s acquisition with a 22Na source. The project TEMPORAL is funded by the ANDRA/PAI under the grant No. RTSCNADAA160019.
NASA Technical Reports Server (NTRS)
Gangopadhyay, A. K.; Lee, G. W.; Kelton, K. F.; Rogers, J. R.; Goldman, A. I.; Robinson, D. S.; Rathz, T. J.; Hyers, R. W.
2005-01-01
Determinations of the phase formation sequence, the crystal structures and the thermodynamic properties of materials at high temperatures are difficult because of contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic (EML), aerodynamic, and acoustic levitation, are most suitable these studies. An adaptation of ESL for in-situ structural studies of a wide range of materials, including metals, semiconductors, insulators using high energy (125 keV) synchrotron x-rays is described here. This beamline ESL (BESL) allows the in-situ determination of the atomic structures of equilibrium solid and liquid phases, including undercooled liquids, as well as real-time studies of solid-solid and liquid-solid phase transformations. The use of image plate (MAR345) or GE-Angio detectors enables fast (30 ms - 1s) acquisition of complete diffraction patterns over a wide q-range (4 - 140/mm). The wide temperature range (300 - 2500 K), containerless processing under high vacuum (10(exp -7) - 10(exp -8) torr), and fast data acquisition, make BESL particularly suitable for phase diagram studies of high temperature materials. An additional, critically important, feature of BESL is the ability to also make simultaneous measurement of a host of thermo-physical properties, including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension; all on the same sample and simultaneous with the structural measurements.
NASA Astrophysics Data System (ADS)
Nakanishi, Hideya; Imazu, Setsuo; Ohsuna, Masaki; Kojima, Mamoru; Nonomura, Miki; Shoji, Mamoru; Emoto, Masahiko; Yoshida, Masanobu; Iwata, Chie; Miyake, Hitoshi; Nagayama, Yoshio; Kawahata, Kazuo
To deal with endless data streams acquired in LHD steady-state experiments, the LHD data acquisition system was designed with a simple concept that divides a long pulse into a consecutive series of 10-s “subshots”. Latest digitizers applying high-speed PCI-Express technology, however, output nonstop gigabyte per second data streams whose subshot intervals would be extremely long if 10-s rule was applied. These digitizers need shorter subshot intervals, less than 10-s long. In contrast, steady-state fusion plants need uninterrupted monitoring of the environment and device soundness. They adopt longer subshot lengths of either 10 min or 1 day. To cope with both uninterrupted monitoring and ultra-fast diagnostics, the ability to vary the subshot length according to the type of operation is required. In this study, a design modification that enables variable subshot lengths was implemented and its practical effectiveness in LHD was verified.
Experimental Measurements at the MASURCA Facility
NASA Astrophysics Data System (ADS)
Assal, W.; Bosq, J. C.; Mellier, F.
2012-12-01
Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning “mock-up facility for fast breeder reactor studies at CADARACHE”) is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems ...). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented.
NASA Astrophysics Data System (ADS)
Zhu, Boqin
2015-08-01
The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.
Testing of a sCVD diamond detection system in the CROCUS reactor
NASA Astrophysics Data System (ADS)
Hursin, M.; Weiss, C.; Frajtag, P.; Lamirand, V.; Perret, G.; Kavrigin, P.; Pautz, A.; Griesmayer, E.
2018-05-01
The paper describes the testing of the NEUTON detection system into CROCUS, the zero-power reactor of the École Polytechnique Fédérale de Lausanne (EPFL). NEUTON is composed of a 4 mm × 4 mm sCVD diamond detector with a 6Li converter and the associated acquisition electronics. It is developed by CIVIDEC Instrumentation GmbH. The use of a diamond detector with converter in the mixed radiation field of a nuclear reactor is challenging because these detectors are sensitive to gamma-rays, fast neutrons and thermal neutrons through conversion in 6Li . In NEUTON, the rejection of gamma-rays is achieved in real time, via the analysis of the signal pulse shape from the detector. To do so, a few signal characteristics (amplitude, area and FWHM) are recorded in the integrated Field Programmable Gate Arrays (FPGA) of the system. This treatment does not induce any dead time. Measurements in CROCUS demonstrated for the first time the capability of a system like NEUTON to detect and separate fast neutrons, thermal neutrons, and gamma-rays. The system response was shown to be linear with respect to the reactor power (up to 35W) and its thermal sensitivity was found to be (3.5± 0.2)× 10^{-5} cps/nv.
Quantitative ultra-fast MRI of HPMC swelling and dissolution.
Chen, Ya Ying; Hughes, L P; Gladden, L F; Mantle, M D
2010-08-01
For the first time quantitative Rapid Acquisition with Relaxation Enhancement (RARE) based ultra-fast two-dimensional magnetic resonance imaging has been used to follow the dissolution of hydroxypropylmethyl cellulose (HPMC) in water. Quantitative maps of absolute water concentration, spin-spin relaxation times and water self-diffusion coefficient are obtained at a spatial resolution of 469 microm in less than 3 min each. These maps allow the dynamic development of the medium release rate HPMC/water system to be followed. It is demonstrated that the evolution of the gel layer and, in particular, the gradient in water concentration across it, is significantly different when comparing the quantitative RARE sequence with a standard (nonquantitative) implementation of RARE. The total gel thickness in the axial direction grows faster than that in the radial direction and that the dry core initially expands anisotropically. Additionally, while HPMC absorbs a large amount of water during the dissolution process, the concentration gradient of water within the gel layer is relatively small. For the first time MRI evidence is presented for a transition swollen glassy layer which resides between the outer edge of the dry tablet core and the inner edge of the gel layer. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Pradhan, Mr; Taylor, Fc; Agrawal, S; Prabhakaran, D; Ebrahim, S
2013-12-01
Food habits and choices in India are shifting due to many factors: changing food markets, fast urbanization, food price inflation, uncertain food production and unequal distribution during the past decade. This study aims to explore food acquisition and intra-household consumption patterns in urban low and middle income (LMI) households in Delhi. Twenty households were randomly selected from the Center for Cardio-metabolic Risk Reduction in South Asia (CARRS) surveillance study. Data were derived from 20 questionnaires administered to women responsible for food preparation, four key-informant-interviews, and 20 in-depth interviews with household heads during September-November 2011. STATA and ATLAS.ti software were used for data analysis. Half of the households spent at least two-thirds of their income on food. The major expenditures were on vegetables (22% of total food expenditure), milk and milk products (16%), and cereal and related products (15%). Income, food prices, food preferences, and seasonal variation influenced food expenditure. Adults usually ate two to three times a day while children ate more frequently. Eating sequence was based on the work pattern within the household and cultural beliefs. Contrary to previous evidence, there was no gender bias in intra-household food distribution. Women considered food acquisition, preparation and distribution part of their self-worth and played a major role in food related issues in the household. Women's key roles in food acquisition, preparation and intra household food consumption should be considered in formulating food policies and programs.
The OPERA muon spectrometer tracking electronics
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Barichello, G.; Brugnera, R.; Carrara, E.; Consiglio, L.; Corradi, A.; Dal Corso, F.; Dusini, S.; Felici, G.; Garfagnini, A.; Manea, C.; Masone, V.; Paoloni, A.; Paoluzzi, G.; Papalino, G.; Parascandolo, P.; Sorrentino, G.; Spinetti, M.; Stanco, L.; Terranova, F.; Votano, L.
2004-11-01
The document describes the front-end electronics that instrument the spectrometer of the OPERA experiment. The spectrometer is made of two separate modules. Each module consists of 22 RPC planes equipped with horizontal and vertical strips readout for a total amount of about 25,000 digital channels. The front end electronics is self-triggered and has single plane readout capability. It is made of three different stages: the Front End Boards (FEBs) system, the Controller Boards (CBs) system and the Timing Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST OR output of the input signals is also available for trigger plane signal generation. FEBs discriminated signals are acquired by the CBs system that manages also the communication to the experiment DAQ and Slow Control interface. A Trigger Board allows to operate in both self-trigger (the FEB FAST OR signal starts the plane acquisition) or external-trigger (different conditions can be set on the OR signals generated from different planes) modes.
NASA Astrophysics Data System (ADS)
Labrecque, S.; Sylvestre, J.-P.; Marcet, S.; Mangiarini, F.; Verhaegen, M.; De Koninck, P.; Blais-Ouellette, S.
2015-03-01
In the past decade, the efficacy of existing therapies and the discovery of innovative treatments for Central Nervous System (CNS) diseases have been limited by the lack of appropriate methods to investigate complex molecular processes at the synaptic level. In order to better understand the fundamental mechanisms that regulate diseases of the CNS, a fast fluorescence hyperspectral imaging platform was designed to track simultaneously various neurotransmitter receptors trafficking in and out of synapses. With this hyperspectral imaging platform, it was possible to image simultaneously five different synaptic proteins, including subtypes of glutamate receptors (mGluR, NMDAR, AMPAR), postsynaptic density proteins, and signaling proteins. This new imaging platform allows fast simultaneous acquisitions of at least five fluorescent markers in living neurons with a high spatial resolution. This technique provides an effective method to observe several synaptic proteins at the same time, thus study how drugs for CNS impact the spatial dynamics of these proteins.
a Framework for Voxel-Based Global Scale Modeling of Urban Environments
NASA Astrophysics Data System (ADS)
Gehrung, Joachim; Hebel, Marcus; Arens, Michael; Stilla, Uwe
2016-10-01
The generation of 3D city models is a very active field of research. Modeling environments as point clouds may be fast, but has disadvantages. These are easily solvable by using volumetric representations, especially when considering selective data acquisition, change detection and fast changing environments. Therefore, this paper proposes a framework for the volumetric modeling and visualization of large scale urban environments. Beside an architecture and the right mix of algorithms for the task, two compression strategies for volumetric models as well as a data quality based approach for the import of range measurements are proposed. The capabilities of the framework are shown on a mobile laser scanning dataset of the Technical University of Munich. Furthermore the loss of the compression techniques is evaluated and their memory consumption is compared to that of raw point clouds. The presented results show that generation, storage and real-time rendering of even large urban models are feasible, even with off-the-shelf hardware.
Guo, Jing; Ng, Waichiu; Yuan, Jie; Li, Suwen; Chan, Mansun
2016-06-01
Microelectrode array (MEA) can be used in the study of neurodegenerative diseases by monitoring the chemical neurotransmitter release and the electrical potential simultaneously at the cellular level. Currently, the MEA technology is migrating to more electrodes and higher electrode density, which raises power and area constraints on the design of acquisition IC. In this paper, we report the design of a 200-channel dual-mode acquisition IC with highly efficient usage of power and area. Under the constraints of target noise and fast settling, the current channel design saves power by including a novel current buffer biased in discrete time (DT) before the TIA (transimpedance amplifier). The 200 channels are sampled at 20 kS/s and quantized by column-wise SAR ADCs. The prototype IC was fabricated in a 0.18 μm CMOS process. Silicon measurements show the current channel has 21.6 pArms noise with cyclic voltammetry (CV) and 0.48 pArms noise with constant amperometry (CA) while consuming 12.1 μW . The voltage channel has 4.07 μVrms noise in the bandwidth of 100 kHz and 0.2% nonlinearity while consuming 9.1 μW. Each channel occupies 0.03 mm(2) area, which is among the smallest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czarski, T., E-mail: tomasz.czarski@ifpilm.pl; Chernyshova, M.; Malinowski, K.
2016-11-15
The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals,more » and cluster charge values corresponding to the energy spectra.« less
Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT.
Kullmann, Paul H M; Wheeler, Diek W; Beacom, Joshua; Horn, John P
2004-01-01
The dynamic-clamp method provides a powerful electrophysiological tool for creating virtual ionic conductances in living cells and studying their influence on membrane potential. Here we describe G-clamp, a new way to implement a dynamic clamp using the real-time version of the Lab-VIEW programming environment together with a Windows host, an embedded microprocessor that runs a real-time operating system and a multifunction data-acquisition board. The software includes descriptions of a fast voltage-dependent sodium conductance, delayed rectifier, M-type and A-type potassium conductances, and a leak conductance. The system can also read synaptic conductance waveforms from preassembled data files. These virtual conductances can be reliably implemented at speeds < or =43 kHz while simultaneously saving two channels of data with 16-bit precision. G-clamp also includes utilities for measuring current-voltage relations, synaptic strength, and synaptic gain. Taking an approach built on a commercially available software/hardware platform has resulted in a system that is easy to assemble and upgrade. In addition, the graphical programming structure of LabVIEW should make it relatively easy for others to adapt G-clamp for new experimental applications.
Large field of view, fast and low dose multimodal phase-contrast imaging at high x-ray energy.
Astolfo, Alberto; Endrizzi, Marco; Vittoria, Fabio A; Diemoz, Paul C; Price, Benjamin; Haig, Ian; Olivo, Alessandro
2017-05-19
X-ray phase contrast imaging (XPCI) is an innovative imaging technique which extends the contrast capabilities of 'conventional' absorption based x-ray systems. However, so far all XPCI implementations have suffered from one or more of the following limitations: low x-ray energies, small field of view (FOV) and long acquisition times. Those limitations relegated XPCI to a 'research-only' technique with an uncertain future in terms of large scale, high impact applications. We recently succeeded in designing, realizing and testing an XPCI system, which achieves significant steps toward simultaneously overcoming these limitations. Our system combines, for the first time, large FOV, high energy and fast scanning. Importantly, it is capable of providing high image quality at low x-ray doses, compatible with or even below those currently used in medical imaging. This extends the use of XPCI to areas which were unpractical or even inaccessible to previous XPCI solutions. We expect this will enable a long overdue translation into application fields such as security screening, industrial inspections and large FOV medical radiography - all with the inherent advantages of the XPCI multimodality.
Meyer, Golo M J; Weber, Armin A; Maurer, Hans H
2014-05-01
Diagnosis and prognosis of poisonings should be confirmed by comprehensive screening and reliable quantification of xenobiotics, for example by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS). The turnaround time should be short enough to have an impact on clinical decisions. In emergency toxicology, quantification using full-scan acquisition is preferable because this allows screening and quantification of expected and unexpected drugs in one run. Therefore, a multi-analyte full-scan GC-MS approach was developed and validated with liquid-liquid extraction and one-point calibration for quantification of 40 drugs relevant to emergency toxicology. Validation showed that 36 drugs could be determined quickly, accurately, and reliably in the range of upper therapeutic to toxic concentrations. Daily one-point calibration with calibrators stored for up to four weeks reduced workload and turn-around time to less than 1 h. In summary, the multi-analyte approach with simple liquid-liquid extraction, GC-MS identification, and quantification over fast one-point calibration could successfully be applied to proficiency tests and real case samples. Copyright © 2013 John Wiley & Sons, Ltd.
A single camera photogrammetry system for multi-angle fast localization of EEG electrodes.
Qian, Shuo; Sheng, Yang
2011-11-01
Photogrammetry has become an effective method for the determination of electroencephalography (EEG) electrode positions in three dimensions (3D). Capturing multi-angle images of the electrodes on the head is a fundamental objective in the design of photogrammetry system for EEG localization. Methods in previous studies are all based on the use of either a rotating camera or multiple cameras, which are time-consuming or not cost-effective. This study aims to present a novel photogrammetry system that can realize simultaneous acquisition of multi-angle head images in a single camera position. Aligning two planar mirrors with the angle of 51.4°, seven views of the head with 25 electrodes are captured simultaneously by the digital camera placed in front of them. A complete set of algorithms for electrode recognition, matching, and 3D reconstruction is developed. It is found that the elapsed time of the whole localization procedure is about 3 min, and camera calibration computation takes about 1 min, after the measurement of calibration points. The positioning accuracy with the maximum error of 1.19 mm is acceptable. Experimental results demonstrate that the proposed system provides a fast and cost-effective method for the EEG positioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majtenyi, Nicholas; Juma, Hanif; Klein, Ran
Dynamic contrast-enhanced (DCE)-MRI is a technique for obtaining tissue hemodynamic information (e.g. tumours). Despite widespread clinical application of DCE-MRI, the technique suffers from a lack of standardization and accuracy, especially with respect to the concentration-versus-time of gadolinium (Gd) in feeding arteries (the input function, IF). MR phase has a linear quantitative relationship with Gd concentration ([Gd]), making it ideal for measuring the first-pass of the IF, but is not considered accurate in the steady-state washout. Modified Look-Locker Inversion Recovery (MOLLI) is a fast and accurate method to measure T1 and has been validated to quantify typical [Gd] ranges experienced inmore » the washout of the IF. Two different methods to measure the IF for DCE-MRI were compared: 1) conventional phase-versus-time (“Phase-only”) and 2) phase-versus-time combined with pre- and post-DCE MOLLI T1 measurements (“Phase+MOLLI”). The IF obtained from Phase+MOLLI was calculated from MOLLI T1 values and known relaxivity, then added to the Phase-only acquisition with the washout IF subtracted. A significant difference was observed between IF values for [Gd] between the Phase-only and Phase+MOLLI acquisitions (P = 0.03). To ensure the IFs from MOLLI T1s were accurate, it was compared to [Gd] obtained from “gold-standard” inversion recovery (IR). MOLLI showed excellent agreement with IR when imaged in static phantoms (r{sup 2} = 0.997, P = 0.001). The Phase+MOLLI IF was more accurate than the Phase-only IF in measuring the washout. The Phase+MOLLI acquisition may therefore provide a DCE-MRI reference standard that could lead to better clinical diagnoses.« less
The FAQUIRE Approach: FAst, QUantitative, hIghly Resolved and sEnsitivity Enhanced 1H, 13C Data.
Farjon, Jonathan; Milande, Clément; Martineau, Estelle; Akoka, Serge; Giraudeau, Patrick
2018-02-06
The targeted analysis of metabolites in complex mixtures is a challenging issue. NMR is one of the major tools in this field, but there is a strong need for more sensitive, better-resolved, and faster quantitative methods. In this framework, we introduce the concept of FAst, QUantitative, hIghly Resolved and sEnsitivity enhanced (FAQUIRE) NMR to push forward the limits of metabolite NMR analysis. 2D 1 H, 13 C 2D quantitative maps are promising alternatives for enhancing the spectral resolution but are highly time-consuming because of (i) the intrinsic nature of 2D, (ii) the longer recycling times required for quantitative conditions, and (iii) the higher number of scans needed to reduce the level of detection/quantification to access low concentrated metabolites. To reach this aim, speeding up the recently developed QUantItative Perfected and pUre shifted HSQC (QUIPU HSQC) is an interesting attempt to develop the FAQUIRE concept. Thanks to the combination of spectral aliasing, nonuniform sampling, and variable repetition time, the acquisition time of 2D quantitative maps is reduced by a factor 6 to 9, while conserving a high spectral resolution thanks to a pure shift approach. The analytical potential of the new Quick QUIPU HSQC (Q QUIPU HSQC) is evaluated on a model metabolite sample, and its potential is shown on breast-cell extracts embedding metabolites at millimolar to submillimolar concentrations.
Anderson, William W.; Fitzjohn, Stephen M.; Collingridge, Graham L.
2012-01-01
WinLTP is a data acquisition program for studying long-term potentiation (LTP) and other aspects of synaptic function. Earlier versions of WinLTP (J. Neurosci. Methods, 162:346–356, 2007) provided automated electrical stimulation and data acquisition capable of running nearly an entire synaptic plasticity experiment, with the primary exception that perfusion solutions had to be changed manually. This automated stimulation and acquisition was done by using ‘Sweep’, ‘Loop’ and ‘Delay’ events to build scripts using the ‘Protocol Builder’. However, this did not allow automatic changing of many solutions while running multiple slice experiments, or solution changing when this had to be performed rapidly and with accurate timing during patch-clamp experiments. We report here the addition of automated perfusion control to WinLTP. First, perfusion change between sweeps is enabled by adding the ‘Perfuse’ event to Protocol Builder scripting and is used in slice experiments. Second, fast perfusion changes during as well as between sweeps is enabled by using the Perfuse event in the protocol scripts to control changes between sweeps, and also by changing digital or analog output during a sweep and is used for single cell single-line perfusion patch-clamp experiments. The addition of stepper control of tube placement allows dual- or triple-line perfusion patch-clamp experiments for up to 48 solutions. The ability to automate perfusion changes and fully integrate them with the already automated stimulation and data acquisition goes a long way toward complete automation of multi-slice extracellularly recorded and single cell patch-clamp experiments. PMID:22524994
Schmid, Albrecht Ingo; Meyerspeer, Martin; Robinson, Simon Daniel; Goluch, Sigrun; Wolzt, Michael; Fiedler, Georg Bernd; Bogner, Wolfgang; Laistler, Elmar; Krššák, Martin; Moser, Ewald; Trattnig, Siegfried; Valkovič, Ladislav
2016-06-01
Simultaneous acquisition of spatially resolved (31) P-MRI data for evaluation of muscle specific energy metabolism, i.e., PCr and pH kinetics. A three-dimensional (3D) gradient-echo sequence for multiple frequency-selective excitations of the PCr and Pi signals in an interleaved sampling scheme was developed and tested at 7 Tesla (T). The pH values were derived from the chemical shift-induced phase difference between the resonances. The achieved spatial resolution was ∼2 mL with image acquisition time below 6 s. Ten healthy volunteers were studied performing plantar flexions during the delay between (31) P-MRI acquisitions, yielding a temporal resolution of 9-10 s. Signal from anatomically matched regions of interest had sufficient signal-to-noise ratio to allow single-acquisition PCr and pH quantification. The Pi signal was clearly detected in voxels of actively exercising muscles. The PCr depletions were in gastrocnemius 42 ± 14% (medialis), 48 ± 17% (lateralis) and in soleus 20 ± 11%. The end exercise pH values were 6.74 ± 0.18 and 6.65 ± 0.27 for gastrocnemius medialis and lateralis, respectively, and 6.96 ± 0.12 for soleus muscle. Simultaneous acquisition of PCr and Pi images with high temporal resolution, suitable for measuring PCr and pH kinetics in exercise-recovery experiments, was demonstrated at 7T. This study presents a fast alternative to MRS for quantifying energy metabolism of posterior muscle groups of the lower leg. Magn Reson Med 75:2324-2331, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F
2011-04-01
To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition. Copyright © 2011 Wiley-Liss, Inc.
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F.
2011-01-01
Purpose To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Materials and Methods Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in-vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Results Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. Conclusion The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast 3D MRI data acquisition. PMID:21448967
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus
2011-11-01
The preventive application of automated latent fingerprint acquisition devices can enhance the Homeland Defence, e.g. by improving the border security. Here, contact-less optical acquisition techniques for the capture of traces are subject to research; chromatic white light sensors allow for multi-mode operation using coarse or detailed scans. The presence of potential fingerprints could be detected using fast coarse scans. Those Regions-of- Interest can be acquired afterwards with high-resolution detailed scans to allow for a verification or identification of individuals. An acquisition and analysis of fingerprint traces on different objects that are imported or pass borders might be a great enhancement for security. Additionally, if suspicious objects require a further investigation, an initial securing of potential fingerprints could be very useful. In this paper we show current research results for the coarse detection of fingerprints to prepare the detailed acquisition from various surface materials that are relevant for preventive applications.
Lockie, Sarah H; McAuley, Clare V; Rawlinson, Sasha; Guiney, Natalie; Andrews, Zane B
2017-01-01
Most studies that measure food intake in mice do so in the home cage environment. This necessarily means that mice do not engage in food seeking before consumption, a behavior that is ubiquitous in free-living animals. We modified and validated several commonly used anxiety tests to include a palatable food reward within the anxiogenic zone. This allowed us to assess risk-taking behavior in food seeking in mice in response to different metabolic stimuli. We modified the open field test and the light/dark box by placing palatable peanut butter chips within a designated food zone inside the anxiogenic zone of each apparatus. We then assessed parameters of the interaction with the food reward. Fasted mice or mice treated with ghrelin showed increased consumption and increased time spent in the food zone immediately around the food reward compared to ad libitum fed mice or mice treated with saline. However, fasted mice treated with IP glucose before exposure to the behavioral arena showed reduced time in the food zone compared to fasted controls, indicating that acute metabolic signals can modify the assessment of safety in food seeking in a risky environment. The tests described in this study will be useful in assessing risk processing and incentive salience of food reward, which are intrinsic components of food acquisition outside of the laboratory environment, in a range of genetic and pharmacological models.
NASA Astrophysics Data System (ADS)
Foster, B.; Heath, G. P.; Llewellyn, T. J.; Gingrich, D. M.; Harnew, N.; Hallam-Baker, P. M.; Khatri, T.; McArthur, I. C.; Morawitz, P.; Nash, J.; Shield, P. D.; Topp-Jorgensen, S.; Wilson, F. F.; Allen, D. B.; Carter, R. C.; Jeffs, M. D.; Morrissey, M. C.; Quinton, S. P. H.; Lane, J. B.; Postranecky, M.
1993-05-01
The Central Tracking Detector of the ZEUS experiment employs a time difference technique to measure the z coordinate of each hit. The method provides fast, three-dimensional space point measurements which are used as input to all levels of the ZEUS trigger. Such a tracking trigger is essential in order to discriminate against events with vertices lying outside the nominal electron-proton interaction region. Since the beam crossing interval of the HERA collider is 96 ns, all data must be pipelined through the front-end readout electronics. Subsequent data aquisition employs a novel technique which utilizes a network of approximately 120 INMOS transputers to process the data in parallel. The z-by-timing method and its data aquisition have been employed successfully in recording and reconstructing tracks from electron-proton interactions in ZEUS.
Kynetic resazurin assay (KRA) for bacterial quantification of foodborne pathogens
NASA Astrophysics Data System (ADS)
Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar
2012-03-01
Fast detection of bacterial concentrations is important for the food industry and for healthcare. Early detection of infections and appropriate treatment is essential since, the delay of treatments for bacterial infections tends to be associated with higher mortality rates. In the food industry and in healthcare, standard procedures require the count of colony-forming units in order to quantify bacterial concentrations, however, this method is time consuming and reports require three days to be completed. An alternative is metabolic-colorimetric assays which provide time efficient in vitro bacterial concentrations. A colorimetric assay based on Resazurin was developed as a time kinetic assay (KRA) suitable for bacterial concentration measurements. An optimization was performed by finding excitation and emission wavelengths for fluorescent acquisition. A comparison of two non-related bacteria, foodborne pathogens Escherichia coli and Listeria monocytogenes, was performed in 96 well plates. A metabolic and clonogenic dependence was established for fluorescent kinetic signals.
Reducing the Handover Delay in FMIPv6 Using Proactive Care-of Address Scheme
NASA Astrophysics Data System (ADS)
Li, Yong; Jin, Depeng; Su, Li; Zeng, Lieguang
To deal with the increasing number of mobile devices accessing the Internet and the increasing demands of mobility management, IETF has proposed Mobile IPv6 and its fast handover protocol FMIPv6. In FMIPv6, the possibility of Care-of Address (CoA) collision and the time for Return Routability (RR) procedure result in long handover delay, which makes it unsuitable for real-time applications. In this paper, we propose an improved handover scheme for FMIPv6, which reduces the handover delay by using proactive CoA acquisition, configuration and test method. In our proposal, collision-free CoA is proactively prepared, and the time for RR procedure does not contribute to the handover delay. Furthermore, we analyze our proposal's benefits and overhead tradeoff. The numerical results demonstrate that it outperforms the current schemes, such as FMIPv6 and enhanced FMIPv6, on the aspect of handover delay and packet transmission delay.
Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.
Klir, D; Kravarik, J; Kubes, P; Rezac, K; Litseva, E; Tomaszewski, K; Karpinski, L; Paduch, M; Scholz, M
2011-03-01
We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.
Acquisition of New DNA Sequences After Infection of Chicken Cells with Avian Myeloblastosis Virus
Shoyab, M.; Baluda, M. A.; Evans, R.
1974-01-01
DNA-RNA hybridization studies between 70S RNA from avian myeloblastosis virus (AMV) and an excess of DNA from (i) AMV-induced leukemic chicken myeloblasts or (ii) a mixture of normal and of congenitally infected K-137 chicken embryos producing avian leukosis viruses revealed the presence of fast- and slow-hybridizing virus-specific DNA sequences. However, the leukemic cells contained twice the level of AMV-specific DNA sequences observed in normal chicken embryonic cells. The fast-reacting sequences were two to three times more numerous in leukemic DNA than in DNA from the mixed embryos. The slow-reacting sequences had a reiteration frequency of approximately 9 and 6, in the two respective systems. Both the fast- and the slow-reacting DNA sequences in leukemic cells exhibited a higher Tm (2 C) than the respective DNA sequences in normal cells. In normal and leukemic cells the slow hybrid sequences appeared to have a Tm which was 2 C higher than that of the fast hybrid sequences. Individual non-virus-producing chicken embryos, either group-specific antigen positive or negative, contained 40 to 100 copies of the fast sequences and 2 to 6 copies of the slowly hybridizing sequences per cell genome. Normal rat cells did not contain DNA that hybridized with AMV RNA, whereas non-virus-producing rat cells transformed by B-77 avian sarcoma virus contained only the slowly reacting sequences. The results demonstrate that leukemic cells transformed by AMV contain new AMV-specific DNA sequences which were not present before infection. PMID:16789139
Cullinan, David B; Hondrogiannis, George; Henderson, Terry J
2008-04-15
Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at < or = 25 microg/mL were easily detected in a sample where the 1H solvent signal was approximately 58,000-fold more intense than the analyte 1H signals. The problem of overlapping signals typically observed in conventional 1H spectroscopy was essentially eliminated, while 1H and 13C chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, David, E-mail: dhthomas@mednet.ucla.edu; Lamb, James; White, Benjamin
2014-05-01
Purpose: To develop a novel 4-dimensional computed tomography (4D-CT) technique that exploits standard fast helical acquisition, a simultaneous breathing surrogate measurement, deformable image registration, and a breathing motion model to remove sorting artifacts. Methods and Materials: Ten patients were imaged under free-breathing conditions 25 successive times in alternating directions with a 64-slice CT scanner using a low-dose fast helical protocol. An abdominal bellows was used as a breathing surrogate. Deformable registration was used to register the first image (defined as the reference image) to the subsequent 24 segmented images. Voxel-specific motion model parameters were determined using a breathing motion model. Themore » tissue locations predicted by the motion model in the 25 images were compared against the deformably registered tissue locations, allowing a model prediction error to be evaluated. A low-noise image was created by averaging the 25 images deformed to the first image geometry, reducing statistical image noise by a factor of 5. The motion model was used to deform the low-noise reference image to any user-selected breathing phase. A voxel-specific correction was applied to correct the Hounsfield units for lung parenchyma density as a function of lung air filling. Results: Images produced using the model at user-selected breathing phases did not suffer from sorting artifacts common to conventional 4D-CT protocols. The mean prediction error across all patients between the breathing motion model predictions and the measured lung tissue positions was determined to be 1.19 ± 0.37 mm. Conclusions: The proposed technique can be used as a clinical 4D-CT technique. It is robust in the presence of irregular breathing and allows the entire imaging dose to contribute to the resulting image quality, providing sorting artifact–free images at a patient dose similar to or less than current 4D-CT techniques.« less
Thomas, David; Lamb, James; White, Benjamin; Jani, Shyam; Gaudio, Sergio; Lee, Percy; Ruan, Dan; McNitt-Gray, Michael; Low, Daniel
2014-05-01
To develop a novel 4-dimensional computed tomography (4D-CT) technique that exploits standard fast helical acquisition, a simultaneous breathing surrogate measurement, deformable image registration, and a breathing motion model to remove sorting artifacts. Ten patients were imaged under free-breathing conditions 25 successive times in alternating directions with a 64-slice CT scanner using a low-dose fast helical protocol. An abdominal bellows was used as a breathing surrogate. Deformable registration was used to register the first image (defined as the reference image) to the subsequent 24 segmented images. Voxel-specific motion model parameters were determined using a breathing motion model. The tissue locations predicted by the motion model in the 25 images were compared against the deformably registered tissue locations, allowing a model prediction error to be evaluated. A low-noise image was created by averaging the 25 images deformed to the first image geometry, reducing statistical image noise by a factor of 5. The motion model was used to deform the low-noise reference image to any user-selected breathing phase. A voxel-specific correction was applied to correct the Hounsfield units for lung parenchyma density as a function of lung air filling. Images produced using the model at user-selected breathing phases did not suffer from sorting artifacts common to conventional 4D-CT protocols. The mean prediction error across all patients between the breathing motion model predictions and the measured lung tissue positions was determined to be 1.19 ± 0.37 mm. The proposed technique can be used as a clinical 4D-CT technique. It is robust in the presence of irregular breathing and allows the entire imaging dose to contribute to the resulting image quality, providing sorting artifact-free images at a patient dose similar to or less than current 4D-CT techniques. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Elson, Daniel S.; Marcu, Laura
2014-03-01
The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8-7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence lifetime measurements of low quantum efficiency sub-nanosecond fluorophores.
The influence of respiratory motion on CT image volume definition.
Rodríguez-Romero, Ruth; Castro-Tejero, Pablo
2014-04-01
Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. 4DCT acquisitions provided volume and position accuracies within ± 3% and ± 2 mm for structure dimensions >2 cm, breath amplitude ≤ 15 mm, and breath period ≥ 3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath patterns of higher frequency and amplitude motion. Larger volume differences (>10%) and inconsistencies between the relative positions of objects were detected in image studies acquired without respiratory control. Increasing the 3DCT rotation period caused a higher distortion in structures without obtaining their envelope. Simulated data showed that the slice acquisition time should be at least twice the breath period to average object movement. Respiratory 4DCT images provide accurate volume and position of organs affected by breath motion detecting higher volume discrepancies as amplitude length or breath frequency are increased. For 3DCT acquisitions, a CT should be considered slow enough to include lesion envelope as long as the slice acquisition time exceeds twice the breathing period. If this requirement cannot be satisfied, a fast CT (along with breath-hold inhale and exhale CTs to estimate roughly the ITV) is recommended in order to minimize structure distortion. Even with an awareness of a patient's respiratory cycle, its coupling with 3DCT acquisition cannot be predicted since patient anatomy is not accurately known. © 2014 American Association of Physicists in Medicine.
The influence of respiratory motion on CT image volume definition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org
Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move knownmore » geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath patterns of higher frequency and amplitude motion. Larger volume differences (>10%) and inconsistencies between the relative positions of objects were detected in image studies acquired without respiratory control. Increasing the 3DCT rotation period caused a higher distortion in structures without obtaining their envelope. Simulated data showed that the slice acquisition time should be at least twice the breath period to average object movement. Conclusions: Respiratory 4DCT images provide accurate volume and position of organs affected by breath motion detecting higher volume discrepancies as amplitude length or breath frequency are increased. For 3DCT acquisitions, a CT should be considered slow enough to include lesion envelope as long as the slice acquisition time exceeds twice the breathing period. If this requirement cannot be satisfied, a fast CT (along with breath-hold inhale and exhale CTs to estimate roughly the ITV) is recommended in order to minimize structure distortion. Even with an awareness of a patient's respiratory cycle, its coupling with 3DCT acquisition cannot be predicted since patient anatomy is not accurately known.« less
Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa
2012-04-01
We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics
Simultaneous Multi-Slice fMRI using Spiral Trajectories
Zahneisen, Benjamin; Poser, Benedikt A.; Ernst, Thomas; Stenger, V. Andrew
2014-01-01
Parallel imaging methods using multi-coil receiver arrays have been shown to be effective for increasing MRI acquisition speed. However parallel imaging methods for fMRI with 2D sequences show only limited improvements in temporal resolution because of the long echo times needed for BOLD contrast. Recently, Simultaneous Multi-Slice (SMS) imaging techniques have been shown to increase fMRI temporal resolution by factors of four and higher. In SMS fMRI multiple slices can be acquired simultaneously using Echo Planar Imaging (EPI) and the overlapping slices are un-aliased using a parallel imaging reconstruction with multiple receivers. The slice separation can be further improved using the “blipped-CAIPI” EPI sequence that provides a more efficient sampling of the SMS 3D k-space. In this paper a blipped-spiral SMS sequence for ultra-fast fMRI is presented. The blipped-spiral sequence combines the sampling efficiency of spiral trajectories with the SMS encoding concept used in blipped-CAIPI EPI. We show that blipped spiral acquisition can achieve almost whole brain coverage at 3 mm isotropic resolution in 168 ms. It is also demonstrated that the high temporal resolution allows for dynamic BOLD lag time measurement using visual/motor and retinotopic mapping paradigms. The local BOLD lag time within the visual cortex following the retinotopic mapping stimulation of expanding flickering rings is directly measured and easily translated into an eccentricity map of the cortex. PMID:24518259
Development of a high-performance multichannel system for time-correlated single photon counting
NASA Astrophysics Data System (ADS)
Peronio, P.; Cominelli, A.; Acconcia, G.; Rech, I.; Ghioni, M.
2017-05-01
Time-Correlated Single Photon Counting (TCSPC) is one of the most effective techniques for measuring weak and fast optical signals. It outperforms traditional "analog" techniques due to its high sensitivity along with high temporal resolution. Despite those significant advantages, a main drawback still exists, which is related to the long acquisition time needed to perform a measurement. In past years many TCSPC systems have been developed with higher and higher number of channels, aimed to dealing with that limitation. Nevertheless, modern systems suffer from a strong trade-off between parallelism level and performance: the higher the number of channels the poorer the performance. In this work we present the design of a 32x32 TCSPC system meant for overtaking the existing trade-off. To this aim different technologies has been employed, to get the best performance both from detectors and sensing circuits. The exploitation of different technologies will be enabled by Through Silicon Vias (TSVs) which will be investigated as a possible solution for connecting the detectors to the sensing circuits. When dealing with a high number of channels, the count rate is inevitably set by the affordable throughput to the external PC. We targeted a throughput of 10Gb/s, which is beyond the state of the art, and designed the number of TCSPC channels accordingly. A dynamic-routing logic will connect the detectors to the lower number of acquisition chains.
Radiation-hardened fast acquisition/weak signal tracking system and method
NASA Technical Reports Server (NTRS)
Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)
2009-01-01
A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.
NASA Astrophysics Data System (ADS)
Dardanelli, G.; Carella, M.
2013-09-01
This article summarizes the experience gained between 2012 and 2013 by the department of "Civil Engineering, Environmental, Aerospace and Materials" of University of Palermo on the integrated survey of Ninni Park Cassara Park in Palermo and the subsequent testing of methods, tools and techniques based on current research regarding the acquisition and processing of GNSS (Global Navigation Satellite System) data and laser-scanner. A fruitful time dedicated to the design of the survey has allowed us to become aware of the critical issues that the site presents because of its vast extent and diversity in size and number of the elements of which it is composed. The work has been addressed thematizing the elements to detect and selecting the techniques as possible economic and fast to be applied in the acquisition phase. Sixteen control points evenly distributed within the site were first materialized and detected with static GNSS mode. The survey mode NRTK (Network Real Time Kinematic) of the elements was then planned and carried out. The survey of the numerous planting was done by exploiting the mode with EGNOS (European Geostationary Navigation Overlay Service) correction. We continued the work experimenting with MMS (Mobile Mapping System) acquisition through which it was possible to acquire data on the morphology of the terrain, the conditions of the state of footpaths, buildings and on the distribution of street furniture. The point clouds obtained were subjected to both automatic and manual procedures to verify, finally, their actual descriptive possibilities of real forms detected.
Fernández-Coello, Alejandro; Havas, Viktória; Juncadella, Montserrat; Sierpowska, Joanna; Rodríguez-Fornells, Antoni; Gabarrós, Andreu
2017-06-01
OBJECTIVE Most knowledge regarding the anatomical organization of multilingualism is based on aphasiology and functional imaging studies. However, the results have still to be validated by the gold standard approach, namely electrical stimulation mapping (ESM) during awake neurosurgical procedures. In this ESM study the authors describe language representation in a highly specific group of 13 multilingual individuals, focusing on how age of acquisition may influence the cortical organization of language. METHODS Thirteen patients who had a high degree of proficiency in multiple languages and were harboring lesions within the dominant, left hemisphere underwent ESM while being operated on under awake conditions. Demographic and language data were recorded in relation to age of language acquisition (for native languages and early- and late-acquired languages), neuropsychological pre- and postoperative language testing, the number and location of language sites, and overlapping distribution in terms of language acquisition time. Lesion growth patterns and histopathological characteristics, location, and size were also recorded. The distribution of language sites was analyzed with respect to age of acquisition and overlap. RESULTS The functional language-related sites were distributed in the frontal (55%), temporal (29%), and parietal lobes (16%). The total number of native language sites was 47. Early-acquired languages (including native languages) were represented in 97 sites (55 overlapped) and late-acquired languages in 70 sites (45 overlapped). The overlapping distribution was 20% for early-early, 71% for early-late, and 9% for late-late. The average lesion size (maximum diameter) was 3.3 cm. There were 5 fast-growing and 7 slow-growing lesions. CONCLUSIONS Cortical language distribution in multilingual patients is not homogeneous, and it is influenced by age of acquisition. Early-acquired languages have a greater cortical representation than languages acquired later. The prevalent native and early-acquired languages are largely represented within the perisylvian left hemisphere frontoparietotemporal areas, and the less prevalent late-acquired languages are mostly overlapped with them.
Forget, Benoît-Claude; Ramaz, François; Atlan, Michaël; Selb, Juliette; Boccara, Albert-Claude
2003-03-01
We report new results on acousto-optical tomography in phantom tissues using a frequency chirp modulation and a CCD camera. This technique allows quick recording of three-dimensional images of the optical contrast with a two-dimensional scan of the ultrasound source in a plane perpendicular to the ultrasonic path. The entire optical contrast along the ultrasonic path is concurrently obtained from the capture of a film sequence at a rate of 200 Hz. This technique reduces the acquisition time, and it enhances the axial resolution and thus the contrast, which are usually poor owing to the large volume of interaction of the ultrasound perturbation.
Rocketdyne automated dynamics data analysis and management system
NASA Technical Reports Server (NTRS)
Tarn, Robert B.
1988-01-01
An automated dynamics data analysis and management systems implemented on a DEC VAX minicomputer cluster is described. Multichannel acquisition, Fast Fourier Transformation analysis, and an online database have significantly improved the analysis of wideband transducer responses from Space Shuttle Main Engine testing. Leakage error correction to recover sinusoid amplitudes and correct for frequency slewing is described. The phase errors caused by FM recorder/playback head misalignment are automatically measured and used to correct the data. Data compression methods are described and compared. The system hardware is described. Applications using the data base are introduced, including software for power spectral density, instantaneous time history, amplitude histogram, fatigue analysis, and rotordynamics expert system analysis.
Motion corrected photoacoustic difference imaging of fluorescent contrast agents
NASA Astrophysics Data System (ADS)
Märk, Julia; Wagener, Asja; Pönick, Sarah; Grötzinger, Carsten; Zhang, Edward; Laufer, Jan
2016-03-01
In fluorophores, such as exogenous dyes and genetically expressed proteins, the excited state lifetime can be modulated using pump-probe excitation at wavelengths corresponding to the absorption and fluorescence spectra. Simultaneous pump-probe pulses induce stimulated emission (SE) which, in turn, modulates the thermalized energy, and hence the photoacoustic (PA) signal amplitude. For time-delayed pulses, by contrast, SE is suppressed. Since this is not observed in endogenous chromophores, the location of the fluorophore can be determined by subtracting images acquired using simultaneous and time-delayed pump-probe excitation. This simple experimental approach exploits a fluorophorespecific contrast mechanism, and has the potential to enable deep-tissue molecular imaging at fluences below the MPE. In this study, some of the challenges to its in vivo implementation are addressed. First, the PA signal amplitude generated in fluorophores in vivo is often much smaller than that in blood. Second, tissue motion can give rise to artifacts that correspond to endogenous chromophores in the difference image. This would not allow the unambiguous detection of fluorophores. A method to suppress motion artifacts based on fast switching between simultaneous and time-delayed pump-probe excitation was developed. This enables the acquisition of PA signals using the two excitation modes with minimal time delay (20 ms), thus minimizing the effects of tissue motion. The feasibility of this method is demonstrated by visualizing a fluorophore (Atto680) in tissue phantoms, which were moved during the image acquisition to mimic tissue motion.
NASA Astrophysics Data System (ADS)
Cominelli, A.; Acconcia, G.; Caldi, F.; Peronio, P.; Ghioni, M.; Rech, I.
2018-02-01
Time-Correlated Single Photon Counting (TCSPC) is a powerful tool that permits to record extremely fast optical signals with a precision down to few picoseconds. On the other hand, it is recognized as a relatively slow technique, especially when a large time-resolved image is acquired exploiting a single acquisition channel and a scanning system. During the last years, much effort has been made towards the parallelization of many acquisition and conversion chains. In particular, the exploitation of Single-Photon Avalanche Diodes in standard CMOS technology has paved the way to the integration of thousands of independent channels on the same chip. Unfortunately, the presence of a large number of detectors can give rise to a huge rate of events, which can easily lead to the saturation of the transfer rate toward the elaboration unit. As a result, a smart readout approach is needed to guarantee an efficient exploitation of the limited transfer bandwidth. We recently introduced a novel readout architecture, aimed at maximizing the counting efficiency of the system in typical TCSPC measurements. It features a limited number of high-performance converters, which are shared with a much larger array, while a smart routing logic provides a dynamic multiplexing between the two parts. Here we propose a novel routing algorithm, which exploits standard digital gates distributed among a large 32x32 array to ensure a dynamic connection between detectors and external time-measurement circuits.
Terahertz imaging with compressive sensing
NASA Astrophysics Data System (ADS)
Chan, Wai Lam
Most existing terahertz imaging systems are generally limited by slow image acquisition due to mechanical raster scanning. Other systems using focal plane detector arrays can acquire images in real time, but are either too costly or limited by low sensitivity in the terahertz frequency range. To design faster and more cost-effective terahertz imaging systems, the first part of this thesis proposes two new terahertz imaging schemes based on compressive sensing (CS). Both schemes can acquire amplitude and phase-contrast images efficiently with a single-pixel detector, thanks to the powerful CS algorithms which enable the reconstruction of N-by- N pixel images with much fewer than N2 measurements. The first CS Fourier imaging approach successfully reconstructs a 64x64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels which defines the image in the Fourier plane. Only about 12% of the pixels are required for reassembling the image of a selected object, equivalent to a 2/3 reduction in acquisition time. The second approach is single-pixel CS imaging, which uses a series of random masks for acquisition. Besides speeding up acquisition with a reduced number of measurements, the single-pixel system can further cut down acquisition time by electrical or optical spatial modulation of random patterns. In order to switch between random patterns at high speed in the single-pixel imaging system, the second part of this thesis implements a multi-pixel electrical spatial modulator for terahertz beams using active terahertz metamaterials. The first generation of this device consists of a 4x4 pixel array, where each pixel is an array of sub-wavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. The spatial modulator has a uniform modulation depth of around 40 percent across all pixels, and negligible crosstalk, at the resonant frequency. The second-generation spatial terahertz modulator, also based on metamaterials with a higher resolution (32x32), is under development. A FPGA-based circuit is designed to control the large number of modulator pixels. Once fully implemented, this second-generation device will enable fast terahertz imaging with both pulsed and continuous-wave terahertz sources.
NASA Astrophysics Data System (ADS)
Yarnykh, V.; Korostyshevskaya, A.
2017-08-01
Macromolecular proton fraction (MPF) is a biophysical parameter describing the amount of macromolecular protons involved into magnetization exchange with water protons in tissues. MPF represents a significant interest as a magnetic resonance imaging (MRI) biomarker of myelin for clinical applications. A recent fast MPF mapping method enabled clinical translation of MPF measurements due to time-efficient acquisition based on the single-point constrained fit algorithm. However, previous MPF mapping applications utilized only 3 Tesla MRI scanners and modified pulse sequences, which are not commonly available. This study aimed to test the feasibility of MPF mapping implementation on a 1.5 Tesla clinical scanner using standard manufacturer’s sequences and compare the performance of this method between 1.5 and 3 Tesla scanners. MPF mapping was implemented on 1.5 and 3 Tesla MRI units of one manufacturer with either optimized custom-written or standard product pulse sequences. Whole-brain three-dimensional MPF maps obtained from a single volunteer were compared between field strengths and implementation options. MPF maps demonstrated similar quality at both field strengths. MPF values in segmented brain tissues and specific anatomic regions appeared in close agreement. This experiment demonstrates the feasibility of fast MPF mapping using standard sequences on 1.5 T and 3 T clinical scanners.
Reproducibility study of whole-brain 1H spectroscopic imaging with automated quantification.
Gu, Meng; Kim, Dong-Hyun; Mayer, Dirk; Sullivan, Edith V; Pfefferbaum, Adolf; Spielman, Daniel M
2008-09-01
A reproducibility study of proton MR spectroscopic imaging ((1)H-MRSI) of the human brain was conducted to evaluate the reliability of an automated 3D in vivo spectroscopic imaging acquisition and associated quantification algorithm. A PRESS-based pulse sequence was implemented using dualband spectral-spatial RF pulses designed to fully excite the singlet resonances of choline (Cho), creatine (Cre), and N-acetyl aspartate (NAA) while simultaneously suppressing water and lipids; 1% of the water signal was left to be used as a reference signal for robust data processing, and additional lipid suppression was obtained using adiabatic inversion recovery. Spiral k-space trajectories were used for fast spectral and spatial encoding yielding high-quality spectra from 1 cc voxels throughout the brain with a 13-min acquisition time. Data were acquired with an 8-channel phased-array coil and optimal signal-to-noise ratio (SNR) for the combined signals was achieved using a weighting based on the residual water signal. Automated quantification of the spectrum of each voxel was performed using LCModel. The complete study consisted of eight healthy adult subjects to assess intersubject variations and two subjects scanned six times each to assess intrasubject variations. The results demonstrate that reproducible whole-brain (1)H-MRSI data can be robustly obtained with the proposed methods.
Pardo, Zulay D.; Olsen, Greg; Fernández-Valle, María Encarnación; Frydman, Lucio; Martínez-Álvarez, Roberto; Herrera, Antonio
2016-01-01
Recent years have witnessed unprecedented advances in the development of fast multidimensional NMR acquisition techniques. This progress could open valuable new opportunities for the elucidation of chemical and biochemical processes. This study demonstrates one such capability, with the first real-time 2D dynamic analysis of a complex organic reaction relying on unlabeled substrates. Implementing such measurements required the development of new ultrafast 2D methods, capable of monitoring multiple spectral regions of interest as the reaction progressed. The alternate application of these acquisitions in an interleaved, excitation-optimized fashion, allowed us to extract new structural and dynamic insight concerning the reaction between aliphatic ketones and triflic anhydride in the presence of nitriles to yield alkylpyrimidines. Up to 2500 2D NMR data sets were thus collected over the course of this nearly 100 min long reaction, in an approach resembling that used in functional magnetic resonance imaging. With the aid of these new frequency-selective low-gradient-strength experiments, supplemented by chemical shift calculations of the spectral coordinates observed in the 2D heteronuclear correlations, previously postulated intermediates involved in the alkylpyrimidine formation process could be confirmed, and hitherto undetected ones were revealed. The potential and limitations of the resulting methods are discussed. PMID:22283498
Increasing spatial resolution and comparison of MR imaging sequences for the inner ear
NASA Astrophysics Data System (ADS)
Snyder, Carl J.; Bolinger, Lizann; Rubinstein, Jay T.; Wang, Ge
2002-04-01
The size and location of the cochlea and cochlear nerve are needed to assess the feasibility of cochlea implantation, provide information for surgical planning, and aid in construction of cochlear models. Models of implant stimulation incorporating anatomical and physiological information are likely to provide a better understanding of the biophysics of information transferred with cochlear implants and aid in electrode design and arrangement on cochlear implants. Until recently MR did not provide the necessary image resolution and suffered from long acquisition times. The purpose of this study was to optimize both Fast Spin Echo (FSE) and Steady State Free Precession (FIESTA) imaging scan parameters for the inner ear and comparatively examine both for improved image quality and increased spatial resolution. Image quality was determined by two primary measurements, signal to noise ratio (SNR), and image sharpness. Optimized parameters for FSE were 120ms, 3000ms, 64, and 32.25kHz for the TE, TR, echo train length, and bandwidth, respectively. FIESTA parameters were optimized to 2.7, 5.5ms, 70 degree(s), and 62.5kHz, for TE, TR, flip angle, and bandwidth, respectively. While both had the same in-plane spatial resolution, 0.625mm, FIESTA data shows higher SNR per acquisition time and better edge sharpness.
A Bayesian Model for Highly Accelerated Phase-Contrast MRI
Rich, Adam; Potter, Lee C.; Jin, Ning; Ash, Joshua; Simonetti, Orlando P.; Ahmad, Rizwan
2015-01-01
Purpose Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to 4D flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to PC-MRI. Theory and Methods ReVEAL models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. Results ReVEAL is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R ≤ 10. For SV, Pearson r ≥ 0.996 for phantom imaging (n = 24) and r ≥ 0.956 for prospectively accelerated in vivo imaging (n = 10) for R ≤ 10. Conclusion ReVEAL enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to 4D flow imaging, where higher acceleration may be possible due to additional redundancy. PMID:26444911
TIMESERIESSTREAMING.VI: LabVIEW program for reliable data streaming of large analog time series
NASA Astrophysics Data System (ADS)
Czerwinski, Fabian; Oddershede, Lene B.
2011-02-01
With modern data acquisition devices that work fast and very precise, scientists often face the task of dealing with huge amounts of data. These need to be rapidly processed and stored onto a hard disk. We present a LabVIEW program which reliably streams analog time series of MHz sampling. Its run time has virtually no limitation. We explicitly show how to use the program to extract time series from two experiments: For a photodiode detection system that tracks the position of an optically trapped particle and for a measurement of ionic current through a glass capillary. The program is easy to use and versatile as the input can be any type of analog signal. Also, the data streaming software is simple, highly reliable, and can be easily customized to include, e.g., real-time power spectral analysis and Allan variance noise quantification. Program summaryProgram title: TimeSeriesStreaming.VI Catalogue identifier: AEHT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 250 No. of bytes in distributed program, including test data, etc.: 63 259 Distribution format: tar.gz Programming language: LabVIEW ( http://www.ni.com/labview/) Computer: Any machine running LabVIEW 8.6 or higher Operating system: Windows XP and Windows 7 RAM: 60-360 Mbyte Classification: 3 Nature of problem: For numerous scientific and engineering applications, it is highly desirable to have an efficient, reliable, and flexible program to perform data streaming of time series sampled with high frequencies and possibly for long time intervals. This type of data acquisition often produces very large amounts of data not easily streamed onto a computer hard disk using standard methods. Solution method: This LabVIEW program is developed to directly stream any kind of time series onto a hard disk. Due to optimized timing and usage of computational resources, such as multicores and protocols for memory usage, this program provides extremely reliable data acquisition. In particular, the program is optimized to deal with large amounts of data, e.g., taken with high sampling frequencies and over long time intervals. The program can be easily customized for time series analyses. Restrictions: Only tested in Windows-operating LabVIEW environments, must use TDMS format, acquisition cards must be LabVIEW compatible, driver DAQmx installed. Running time: As desirable: microseconds to hours
Image Quality in High-resolution and High-cadence Solar Imaging
NASA Astrophysics Data System (ADS)
Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.
2018-03-01
Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.
SignalPlant: an open signal processing software platform.
Plesinger, F; Jurco, J; Halamek, J; Jurak, P
2016-07-01
The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant-a stand-alone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75 × 10(6) samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by third parties ensuring its adaptability to future research tasks and new data formats.
Whole slide imaging of unstained tissue using lensfree microscopy
NASA Astrophysics Data System (ADS)
Morel, Sophie Nhu An; Hervé, Lionel; Bordy, Thomas; Cioni, Olivier; Delon, Antoine; Fromentin, Catherine; Dinten, Jean-Marc; Allier, Cédric
2016-04-01
Pathologist examination of tissue slides provides insightful information about a patient's disease. Traditional analysis of tissue slides is performed under a binocular microscope, which requires staining of the sample and delays the examination. We present a simple cost-effective lensfree imaging method to record 2-4μm resolution wide-field (10 mm2 to 6 cm2) images of unstained tissue slides. The sample processing time is reduced as there is no need for staining. A wide field of view (10 mm2) lensfree hologram is recorded in a single shot and the image is reconstructed in 2s providing a very fast acquisition chain. The acquisition is multispectral, i.e. multiple holograms are recorded simultaneously at three different wavelengths, and a dedicated holographic reconstruction algorithm is used to retrieve both amplitude and phase. Whole tissue slides imaging is obtained by recording 130 holograms with X-Y translation stages and by computing the mosaic of a 25 x 25 mm2 reconstructed image. The reconstructed phase provides a phase-contrast-like image of the unstained specimen, revealing structures of healthy and diseased tissue. Slides from various organs can be reconstructed, e.g. lung, colon, ganglion, etc. To our knowledge, our method is the first technique that enables fast wide-field lensfree imaging of such unlabeled dense samples. This technique is much cheaper and compact than a conventional phase contrast microscope and could be made portable. In sum, we present a new methodology that could quickly provide useful information when a rapid diagnosis is needed, such as tumor margin identification on frozen section biopsies during surgery.
Pradhan, MR; Taylor, FC; Agrawal, S; Prabhakaran, D; Ebrahim, S
2014-01-01
Background Food habits and choices in India are shifting due to many factors: changing food markets, fast urbanization, food price inflation, uncertain food production and unequal distribution during the past decade. This study aims to explore food acquisition and intra-household consumption patterns in urban low and middle income (LMI) households in Delhi. Methods Twenty households were randomly selected from the Center for Cardio-metabolic Risk Reduction in South Asia (CARRS) surveillance study. Data were derived from 20 questionnaires administered to women responsible for food preparation, four key-informant-interviews, and 20 in-depth interviews with household heads during September-November 2011. STATA and ATLAS.ti software were used for data analysis. Results Half of the households spent at least two-thirds of their income on food. The major expenditures were on vegetables (22% of total food expenditure), milk and milk products (16%), and cereal and related products (15%). Income, food prices, food preferences, and seasonal variation influenced food expenditure. Adults usually ate two to three times a day while children ate more frequently. Eating sequence was based on the work pattern within the household and cultural beliefs. Contrary to previous evidence, there was no gender bias in intra-household food distribution. Women considered food acquisition, preparation and distribution part of their self-worth and played a major role in food related issues in the household. Conclusion Women’s key roles in food acquisition, preparation and intra household food consumption should be considered in formulating food policies and programs. PMID:25473147
Ability/Motivation Interactions in Complex Skill Acquisition
1988-04-28
attentional resources. Finally, in the declarative knowledge phase, performance is slow and error prone. Once the learner has come to an adequate cognitive...mediation by the learner. After a substantial amount of consistent task practice, skilled performance becomes fast , accurate, and the task can often be
Practical Applications of Data Processing to School Purchasing.
ERIC Educational Resources Information Center
California Association of School Business Officials, San Diego. Imperial Section.
Electronic data processing provides a fast and accurate system for handling large volumes of routine data. If properly employed, computers can perform myriad functions for purchasing operations, including purchase order writing; equipment inventory control; vendor inventory; and equipment acquisition, transfer, and retirement. The advantages of…
Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo
2017-01-01
Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
Neural network Hilbert transform based filtered backprojection for fast inline x-ray inspection
NASA Astrophysics Data System (ADS)
Janssens, Eline; De Beenhouwer, Jan; Van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Verboven, Pieter; Nicolai, Bart; Sijbers, Jan
2018-03-01
X-ray imaging is an important tool for quality control since it allows to inspect the interior of products in a non-destructive way. Conventional x-ray imaging, however, is slow and expensive. Inline x-ray inspection, on the other hand, can pave the way towards fast and individual quality control, provided that a sufficiently high throughput can be achieved at a minimal cost. To meet these criteria, an inline inspection acquisition geometry is proposed where the object moves and rotates on a conveyor belt while it passes a fixed source and detector. Moreover, for this acquisition geometry, a new neural-network-based reconstruction algorithm is introduced: the neural network Hilbert transform based filtered backprojection. The proposed algorithm is evaluated both on simulated and real inline x-ray data and has shown to generate high quality reconstructions of 400 × 400 reconstruction pixels within 200 ms, thereby meeting the high throughput criteria.
An approach to real-time magnetic resonance imaging for speech production
NASA Astrophysics Data System (ADS)
Narayanan, Shrikanth; Nayak, Krishna; Byrd, Dani; Lee, Sungbok
2003-04-01
Magnetic resonance imaging has served as a valuable tool for studying primarily static postures in speech production. Now, recent improvements in imaging techniques, particularly in temporal resolution, are making it possible to examine the dynamics of vocal tract shaping during speech. Examples include Mady et al. (2001, 2002) (8 images/second, T1 fast gradient echo) and Demolin et al. (2000) (4-5 images/second, ultra fast turbo spin echo sequence). The present study uses a non 2D-FFT acquisition strategy (spiral k-space trajectory) on a GE Signa 1.5T CV/i scanner with a low-flip angle spiral gradient echo originally developed for cardiac imaging [Kerr et al. (1997), Nayak et al. (2001)] with reconstruction rates of 8-10 images/second. The experimental stimuli included English sentences varying the syllable position of /n, r, l/ (spoken by 2 subjects) and Tamil sentences varying among five liquids (spoken by one subject). The imaging parameters were the following: 15 deg flip angle, 20-interleaves, 6.7 ms TR, 1.88 mm resolution over a 20 cm FOV, 5 mm slice thickness, and 2.4 ms spiral readouts. Data show clear real-time movements of the lips, tongue and velum. Sample movies and data analysis strategies will be presented. Segmental durations, positions, and inter-articulator timing can all be quantitatively evaluated. [Work supported by NIH.
Kinect2 - respiratory movement detection study.
Rihana, Sandy; Younes, Elie; Visvikis, Dimitris; Fayad, Hadi
2016-08-01
Radiotherapy is one of the main cancer treatments. It consists in irradiating tumor cells to destroy them while sparing healthy tissue. The treatment is planned based on Computed Tomography (CT) and is delivered over fractions during several days. One of the main challenges is replacing patient in the same position every day to irradiate the tumor volume while sparing healthy tissues. Many patient positioning techniques are available. They are both invasive and not accurate performed using tattooed marker on the patient's skin aligned with a laser system calibrated in the treatment room or irradiating using X-ray. Currently systems such as Vision RT use two Time of Flight cameras. Time of Flight cameras have the advantage of having a very fast acquisition rate allows the real time monitoring of patient movement and patient repositioning. The purpose of this work is to test the Microsoft Kinect2 camera for potential use for patient positioning and respiration trigging. This type of Time of Flight camera is non-invasive and costless which facilitate its transfer to clinical practice.
Kazantsev, D.; Van Eyndhoven, G.; Lionheart, W. R. B.; Withers, P. J.; Dobson, K. J.; McDonald, S. A.; Atwood, R.; Lee, P. D.
2015-01-01
There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques. PMID:25939621
A fast algorithm for computer aided collimation gamma camera (CACAO)
NASA Astrophysics Data System (ADS)
Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.
2000-08-01
The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.
Wang, Charlie Y; Liu, Yuchi; Huang, Shuying; Griswold, Mark A; Seiberlich, Nicole; Yu, Xin
2017-12-01
The purpose of this work was to develop a 31 P spectroscopic magnetic resonance fingerprinting (MRF) method for fast quantification of the chemical exchange rate between phosphocreatine (PCr) and adenosine triphosphate (ATP) via creatine kinase (CK). A 31 P MRF sequence (CK-MRF) was developed to quantify the forward rate constant of ATP synthesis via CK ( kfCK), the T 1 relaxation time of PCr ( T1PCr), and the PCr-to-ATP concentration ratio ( MRPCr). The CK-MRF sequence used a balanced steady-state free precession (bSSFP)-type excitation with ramped flip angles and a unique saturation scheme sensitive to the exchange between PCr and γATP. Parameter estimation was accomplished by matching the acquired signals to a dictionary generated using the Bloch-McConnell equation. Simulation studies were performed to examine the susceptibility of the CK-MRF method to several potential error sources. The accuracy of nonlocalized CK-MRF measurements before and after an ischemia-reperfusion (IR) protocol was compared with the magnetization transfer (MT-MRS) method in rat hindlimb at 9.4 T (n = 14). The reproducibility of CK-MRF was also assessed by comparing CK-MRF measurements with both MT-MRS (n = 17) and four angle saturation transfer (FAST) (n = 7). Simulation results showed that CK-MRF quantification of kfCK was robust, with less than 5% error in the presence of model inaccuracies including dictionary resolution, metabolite T 2 values, inorganic phosphate metabolism, and B 1 miscalibration. Estimation of kfCK by CK-MRF (0.38 ± 0.02 s -1 at baseline and 0.42 ± 0.03 s -1 post-IR) showed strong agreement with MT-MRS (0.39 ± 0.03 s -1 at baseline and 0.44 ± 0.04 s -1 post-IR). kfCK estimation was also similar between CK-MRF and FAST (0.38 ± 0.02 s -1 for CK-MRF and 0.38 ± 0.11 s -1 for FAST). The coefficient of variation from 20 s CK-MRF quantification of kfCK was 42% of that by 150 s MT-MRS acquisition and was 12% of that by 20 s FAST acquisition. This study demonstrates the potential of a 31 P spectroscopic MRF framework for rapid, accurate and reproducible quantification of chemical exchange rate of CK in vivo. Copyright © 2017 John Wiley & Sons, Ltd.
Strategies to minimize sedation in pediatric body magnetic resonance imaging.
Jaimes, Camilo; Gee, Michael S
2016-05-01
The high soft-tissue contrast of MRI and the absence of ionizing radiation make it a valuable tool for assessment of body pathology in children. Infants and young children are often unable to cooperate with awake MRI so sedation or general anesthesia might be required. However, given recent data on the costs and potential risks of anesthesia in young children, there is a need to try to decrease or avoid sedation in this population when possible. Child life specialists in radiology frequently use behavioral techniques and audiovisual support devices, and they practice with children and families using mock scanners to improve child compliance with MRI. Optimization of the MR scanner environment is also important to create a child-friendly space. If the child can remain inside the MRI scanner, a variety of emerging techniques can reduce the effect of involuntary motion. Using sequences with short acquisition times such as single-shot fast spin echo and volumetric gradient echo can decrease artifacts and improve image quality. Breath-holding, respiratory triggering and signal averaging all reduce respiratory motion. Emerging techniques such as radial and multislice k-space acquisition, navigator motion correction, as well as parallel imaging and compressed sensing reconstruction methods can further accelerate acquisition and decrease motion. Collaboration among radiologists, anesthesiologists, technologists, child life specialists and families is crucial for successful performance of MRI in young children.
Noncontact phase-sensitive dynamic optical coherence elastography at megahertz rate
NASA Astrophysics Data System (ADS)
Singh, Manmohan; Wu, Chen; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Nair, Achuth; Kistenev, Yury V.; Larin, Kirill V.
2016-03-01
Dynamic optical coherence elastography (OCE) techniques have shown great promise at quantitatively obtaining the biomechanical properties of tissue. However, the majority of these techniques have required multiple temporal OCT acquisitions (M-B mode) and corresponding excitations, which lead to clinically unfeasible acquisition times and potential tissue damage. Furthermore, the large data sets and extended laser exposures hinder their translation to the clinic, where patient discomfort and safety are critical criteria. In this work we demonstrate noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz. The elastic wave was imaged at a frame rate of ~7.3 kHz using only a single excitation. In contrast to previous techniques, successive B-scans were acquired over the measurement region (B-M mode) in this work. The feasibility of this method was validated by quantifying the elasticity of tissue-mimicking agar phantoms as well as porcine corneas ex vivo at different intraocular pressures. The results demonstrate that this method can acquire a depth-resolved elastogram in milliseconds. The reduced data set enabled a rapid elasticity assessment, and the ultra-fast acquisition speed allowed for a clinically safe laser exposure to the cornea.
Goh, Vicky; Halligan, Steve; Hugill, Jo-Ann; Gartner, Louise; Bartram, Clive I
2005-01-01
To determine the effect of acquisition time on quantitative colorectal cancer perfusion measurement. Dynamic contrast-enhanced computed tomography (CT) was performed prospectively in 10 patients with histologically proven colorectal cancer using 4-detector row CT (Lightspeed Plus; GE Healthcare Technologies, Waukesha, WI). Tumor blood flow, blood volume, mean transit time, and permeability were assessed for 3 acquisition times (45, 65, and 130 seconds). Mean values for all 4 perfusion parameters for each acquisition time were compared using the paired t test. Significant differences in permeability values were noted between acquisitions of 45 seconds and 65 and 130 seconds, respectively (P=0.02, P=0.007). There was no significant difference for values of blood volume, blood flow, and mean transit time between any of the acquisition times. Scan acquisitions of 45 seconds are too short for reliable permeability measurement in the abdomen. Longer acquisition times are required.
Development of fast wireless detection system for fixed offshore platform
NASA Astrophysics Data System (ADS)
Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping
2011-04-01
Offshore platforms' security is concerned since in 1950s and 1960s, and in the early 1980s some important specifications and standards are built, and all these provide technical basis of fixed platform design, construction, installation and evaluation. With the condition that more and more platforms are in serving over age, the research about the evaluation and detection technology of offshore platform has been a hotspot, especially underwater detection, and assessment method based on the finite element calculation. For fixed platform structure detection, conventional NDT methods, such as eddy current, magnetic powder, permeate, X-ray and ultrasonic, etc, are generally used. These techniques are more mature, intuitive, but underwater detection needs underwater robot, the necessary supporting tools of auxiliary equipment, and trained professional team, thus resources and cost used are considerable, installation time of test equipment is long. This project presents a new kind of fast wireless detection and damage diagnosis system for fixed offshore platform using wireless sensor networks, that is, wireless sensor nodes can be put quickly on the offshore platform, detect offshore platform structure global status by wireless communication, and then make diagnosis. This system is operated simply, suitable for offshore platform integrity states rapid assessment. The designed system consists in intelligence acquisition equipment and 8 wireless collection nodes, the whole system has 64 collection channels, namely every wireless collection node has eight 16-bit accuracy of A/D channels. Wireless collection node, integrated with vibration sensing unit, embedded low-power micro-processing unit, wireless transceiver unit, large-capacity power unit, and GPS time synchronization unit, can finish the functions such as vibration data collection, initial analysis, data storage, data wireless transmission. Intelligence acquisition equipment, integrated with high-performance computation unit, wireless transceiver unit, mobile power unit and embedded data analysis software, can totally control multi-wireless collection nodes, receive and analyze data, parameter identification. Data is transmitted at the 2.4GHz wireless communication channel, every sensing data channel in charge of data transmission is in a stable frequency band, control channel responsible for the control of power parameters is in a public frequency band. The test is initially conducted for the designed system, experimental results show that the system has good application prospects and practical value with fast arrangement, high sampling rate, high resolution, capacity of low frequency detection.
Cohen, Ouri; Huang, Shuning; McMahon, Michael T; Rosen, Matthew S; Farrar, Christian T
2018-05-13
To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of the N α -amine protons of L-arginine (L-Arg) phantoms and the amide and semi-solid exchangeable protons of in vivo rat brain tissue. L-Arg phantoms were made with different concentrations (25-100 mM) and pH (pH 4-6). The MRF acquisition schedule varied the saturation power randomly for 30 iterations (phantom: 0-6 μT; in vivo: 0-4 μT) with a total acquisition time of ≤2 min. The signal trajectories were pattern-matched to a large dictionary of signal trajectories simulated using the Bloch-McConnell equations for different combinations of exchange rate, exchangeable proton volume fraction, and water T 1 and T 2 relaxation times. The chemical exchange rates of the N α -amine protons of L-Arg were significantly (P < 0.0001) correlated with the rates measured with the quantitation of exchange using saturation power method. Similarly, the L-Arg concentrations determined using MRF were significantly (P < 0.0001) correlated with the known concentrations. The pH dependence of the exchange rate was well fit (R 2 = 0.9186) by a base catalyzed exchange model. The amide proton exchange rate measured in rat brain cortex (34.8 ± 11.7 Hz) was in good agreement with that measured previously with the water exchange spectroscopy method (28.6 ± 7.4 Hz). The semi-solid proton volume fraction was elevated in white (12.2 ± 1.7%) compared to gray (8.1 ± 1.1%) matter brain regions in agreement with previous magnetization transfer studies. CEST-MRF provides a method for fast, quantitative CEST imaging. © 2018 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Yutaka; Vagge, Stefano; Agostinelli, Stefano
2015-01-01
Purpose: To develop, characterize, and implement a fast patient localization method for total marrow irradiation. Methods and Materials: Topographic images were acquired using megavoltage computed tomography (MVCT) detector data by delivering static orthogonal beams while the couch traversed through the gantry. Geometric and detector response corrections were performed to generate a megavoltage topogram (MVtopo). We also generated kilovoltage topograms (kVtopo) from the projection data of 3-dimensional CT images to reproduce the same geometry as helical tomotherapy. The MVtopo imaging dose and the optimal image acquisition parameters were investigated. A multi-institutional phantom study was performed to verify the image registration uncertainty. Forty-fivemore » MVtopo images were acquired and analyzed with in-house image registration software. Results: The smallest jaw size (front and backup jaws of 0) provided the best image contrast and longitudinal resolution. Couch velocity did not affect the image quality or geometric accuracy. The MVtopo dose was less than the MVCT dose. The image registration uncertainty from the multi-institutional study was within 2.8 mm. In patient localization, the differences in calculated couch shift between the registration with MVtopo-kVtopo and MVCT-kVCT images in lateral, cranial–caudal, and vertical directions were 2.2 ± 1.7 mm, 2.6 ± 1.4 mm, and 2.7 ± 1.1 mm, respectively. The imaging time in MVtopo acquisition at the couch speed of 3 cm/s was <1 minute, compared with ≥15 minutes in MVCT for all patients. Conclusion: Whole-body MVtopo imaging could be an effective alternative to time-consuming MVCT for total marrow irradiation patient localization.« less
Reichert, Miriam; Morelli, John N; Runge, Val M; Tao, Ai; von Ritschl, Ruediger; von Ritschl, Andreas; Padua, Abraham; Dix, James E; Marra, Michael J; Schoenberg, Stefan O; Attenberger, Ulrike I
2013-01-01
The aim of this study was to compare the detection of brain metastases at 3 T using a 32-channel head coil with 2 different 3-dimensional (3D) contrast-enhanced sequences, a T1-weighted fast spin-echo-based (SPACE; sampling perfection with application-optimized contrasts using different flip angle evolutions) sequence and a conventional magnetization-prepared rapid gradient-echo (MP-RAGE) sequence. Seventeen patients with 161 brain metastases were examined prospectively using both SPACE and MP-RAGE sequences on a 3-T magnetic resonance system. Eight healthy volunteers were similarly examined for determination of signal-to-noise ratio (SNR) values. Parameters were adjusted to equalize acquisition times between the sequences (3 minutes and 30 seconds). The order in which sequences were performed was randomized. Two blinded board-certified neuroradiologists evaluated the number of detectable metastatic lesions with each sequence relative to a criterion standard reading conducted at the Gamma Knife facility by a neuroradiologist with access to all clinical and imaging data. In the volunteer assessment with SPACE and MP-RAGE, SNR (10.3 ± 0.8 vs 7.7 ± 0.7) and contrast-to-noise ratio (0.8 ± 0.2 vs 0.5 ± 0.1) were statistically significantly greater with the SPACE sequence (P < 0.05). Overall, lesion detection was markedly improved with the SPACE sequence (99.1% of lesions for reader 1 and 96.3% of lesions for reader 2) compared with the MP-RAGE sequence (73.6% of lesions for reader 1 and 68.5% of lesions for reader 2; P < 0.01). A 3D T1-weighted fast spin echo sequence (SPACE) improves detection of metastatic lesions relative to 3D T1-weighted gradient-echo-based scan (MP-RAGE) imaging when implemented with a 32-channel head coil at identical scan acquisition times (3 minutes and 30 seconds).
Stirnberg, Rüdiger; Huijbers, Willem; Brenner, Daniel; Poser, Benedikt A; Breteler, Monique; Stöcker, Tony
2017-12-01
State-of-the-art simultaneous-multi-slice (SMS-)EPI and 3D-EPI share several properties that benefit functional MRI acquisition. Both sequences employ equivalent parallel imaging undersampling with controlled aliasing to achieve high temporal sampling rates. As a volumetric imaging sequence, 3D-EPI offers additional means of acceleration complementary to 2D-CAIPIRINHA sampling, such as fast water excitation and elliptical sampling. We performed an application-oriented comparison between a tailored, six-fold CAIPIRINHA-accelerated 3D-EPI protocol at 530 ms temporal and 2.4 mm isotropic spatial resolution and an SMS-EPI protocol with identical spatial and temporal resolution for whole-brain resting-state fMRI at 3 T. The latter required eight-fold slice acceleration to compensate for the lack of elliptical sampling and fast water excitation. Both sequences used vendor-supplied on-line image reconstruction. We acquired test/retest resting-state fMRI scans in ten volunteers, with simultaneous acquisition of cardiac and respiration data, subsequently used for optional physiological noise removal (nuisance regression). We found that the 3D-EPI protocol has significantly increased temporal signal-to-noise ratio throughout the brain as compared to the SMS-EPI protocol, especially when employing motion and nuisance regression. Both sequence types reliably identified known functional networks with stronger functional connectivity values for the 3D-EPI protocol. We conclude that the more time-efficient 3D-EPI primarily benefits from reduced parallel imaging noise due to a higher, actual k-space sampling density compared to SMS-EPI. The resultant BOLD sensitivity increase makes 3D-EPI a valuable alternative to SMS-EPI for whole-brain fMRI at 3 T, with voxel sizes well below 3 mm isotropic and sampling rates high enough to separate dominant cardiac signals from BOLD signals in the frequency domain. Copyright © 2017 Elsevier Inc. All rights reserved.
Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry.
De Leeuw, A A; Crezee, J; Lagendijk, J J
1993-01-01
Multisensor (7-14) thermocouple thermometry is used at our department for temperature measurement with our 'Coaxial TEM' regional hyperthermia system. A special design of the thermometry system with high resolution (0.005 degrees C) and fast data-acquisition (all channels within 320 ms) together with a pulsed power technique allows assessment of specific absorption rate (SAR) information in patients along catheter tracks. A disadvantage of thermocouple thermometry, EM interference, is almost entirely eliminated by application of absorbing ferrite beads around the probe leads. We investigated the effect of remaining disturbance on the temperature decay after power-off, both experimentally in phantoms and in the clinic, and with numerical simulations. Probe and tissue characteristics influence the response time tau dist of the decay of the disturbance. In our clinical practice a normal pulse sequence is 50 s power-on, 10 s power-off: a response time longer than the power-off time results in a deflection of the temperature course at the start. Based on analysis of temperature decays correction of temperature is possible. A double-pulse technique is introduced to provide an initial correction of temperature, and fast information about accuracy. Sometimes disturbance with a relatively long response time occurs, probably due to a bad contact between probe, catheter and/or tissue. Thermocouple thermometry proved to be suitable to measure the SAR along a catheter track. This is used to optimize the SAR distribution by patient positioning before treatment. A clinical example illustrates this.
Tianxiao Jiang; Siddiqui, Hasan; Ray, Shruti; Asman, Priscella; Ozturk, Musa; Ince, Nuri F
2017-07-01
This paper presents a portable platform to collect and review behavioral data simultaneously with neurophysiological signals. The whole system is comprised of four parts: a sensor data acquisition interface, a socket server for real-time data streaming, a Simulink system for real-time processing and an offline data review and analysis toolbox. A low-cost microcontroller is used to acquire data from external sensors such as accelerometer and hand dynamometer. The micro-controller transfers the data either directly through USB or wirelessly through a bluetooth module to a data server written in C++ for MS Windows OS. The data server also interfaces with the digital glove and captures HD video from webcam. The acquired sensor data are streamed under User Datagram Protocol (UDP) to other applications such as Simulink/Matlab for real-time analysis and recording. Neurophysiological signals such as electroencephalography (EEG), electrocorticography (ECoG) and local field potential (LFP) recordings can be collected simultaneously in Simulink and fused with behavioral data. In addition, we developed a customized Matlab Graphical User Interface (GUI) software to review, annotate and analyze the data offline. The software provides a fast, user-friendly data visualization environment with synchronized video playback feature. The software is also capable of reviewing long-term neural recordings. Other featured functions such as fast preprocessing with multithreaded filters, annotation, montage selection, power-spectral density (PSD) estimate, time-frequency map and spatial spectral map are also implemented.
Blocking the BK Channel Impedes Acquisition of Trace Eyeblink Conditioning
ERIC Educational Resources Information Center
Matthews, Elizabeth A.; Disterhoft, John F.
2009-01-01
Big-K[superscript +] conductance (BK)-channel mediated fast afterhyperpolarizations (AHPs) following action potentials are reduced after eyeblink conditioning. Blocking BK channels with paxilline increases evoked firing frequency in vitro and spontaneous pyramidal activity in vivo. To examine how increased excitability after BK-channel blockade…
Wang, Z I; Dell'Osso, L F
2007-05-01
The objective of this study was to investigate the dynamic properties of infantile nystagmus syndrome (INS) that affect visual function; i.e., which factors influence latency of the initial reflexive saccade (Ls) and latency to target acquisition (Lt). We used our behavioral ocular motor system (OMS) model to simulate saccadic responses (in the presence of INS) to target jumps at different times within a single INS cycle and at random times during multiple cycles. We then studied the responses of 4 INS subjects with different waveforms to test the model's predictions. Infrared reflection was used for 1 INS subject, high-speed digital video for 3. We recorded and analyzed human responses to large and small target-step stimuli. We evaluated the following factors: stimulus time within the cycle (Tc), normalized Tc (Tc%), initial orbital position (Po), saccade amplitude, initial retinal error (e(i)), and final retinal error (e(f)). The ocular motor simulations were performed in MATLAB Simulink environment and the analysis was performed in MATLAB environment using OMLAB software. Both the OMS model and OMtools software are available from http://http:www.omlab.org. Our data analysis showed that for each subject, Ls was a fixed value that is typically higher than the normal saccadic latency. Although saccadic latency appears somewhat lengthened in INS, the amount is insufficient to cause the "slow-to-see" impression. For Lt, Tc% was the most influential factor for each waveform type. The main refixation strategies employed by INS subjects made use of slow and fast phases and catch-up saccades, or combinations of them. These strategies helped the subjects to foveate effectively after target movement, sometimes at the cost of increased target acquisition time. Foveating or braking saccades intrinsic to the nystagmus waveforms seemed to disrupt the OMS' ability to accurately calculate reflexive saccades' amplitude and refoveate. Our OMS model simulations demonstrated this emergent behavior and predicted the lengthy target acquisition times found in the patient data.
Gong, Zhaoyuan; Walls, Jamie D
2018-02-01
Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gong, Zhaoyuan; Walls, Jamie D.
2018-02-01
Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.
Real-time Interpolation for True 3-Dimensional Ultrasound Image Volumes
Ji, Songbai; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.
2013-01-01
We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1–2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm3 voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery. PMID:21266563
Real-time interpolation for true 3-dimensional ultrasound image volumes.
Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D
2011-02-01
We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.
Bullen, A; Patel, S S; Saggau, P
1997-07-01
The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.
Bullen, A; Patel, S S; Saggau, P
1997-01-01
The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging. Images FIGURE 6 PMID:9199810
MRI technique for the snapshot imaging of quantitative velocity maps using RARE
NASA Astrophysics Data System (ADS)
Shiko, G.; Sederman, A. J.; Gladden, L. F.
2012-03-01
A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T2 weighted, not T2∗ weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98 × 49 μm2, within 20 min, and monitored over ˜13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390 × 390 μm2. The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques.
User-friendly InSAR Data Products: Fast and Simple Timeseries (FAST) Processing
NASA Astrophysics Data System (ADS)
Zebker, H. A.
2017-12-01
Interferometric Synthetic Aperture Radar (InSAR) methods provide high resolution maps of surface deformation applicable to many scientific, engineering and management studies. Despite its utility, the specialized skills and computer resources required for InSAR analysis remain as barriers for truly widespread use of the technique. Reduction of radar scenes to maps of temporal deformation evolution requires not only detailed metadata describing the exact radar and surface acquisition geometries, but also a software package that can combine these for the specific scenes of interest. Furthermore, the radar range-Doppler radar coordinate system itself is confusing, so that many users find it hard to incorporate even useful products in their customary analyses. And finally, the sheer data volume needed to represent interferogram time series makes InSAR analysis challenging for many analysis systems. We show here that it is possible to deliver radar data products to users that address all of these difficulties, so that the data acquired by large, modern satellite systems are ready to use in more natural coordinates, without requiring further processing, and in as small volume as possible.
Fast myopic 2D-SIM super resolution microscopy with joint modulation pattern estimation
NASA Astrophysics Data System (ADS)
Orieux, François; Loriette, Vincent; Olivo-Marin, Jean-Christophe; Sepulveda, Eduardo; Fragola, Alexandra
2017-12-01
Super-resolution in structured illumination microscopy (SIM) is obtained through de-aliasing of modulated raw images, in which high frequencies are measured indirectly inside the optical transfer function. Usual approaches that use 9 or 15 images are often too slow for dynamic studies. Moreover, as experimental conditions change with time, modulation parameters must be estimated within the images. This paper tackles the problem of image reconstruction for fast super resolution in SIM, where the number of available raw images is reduced to four instead of nine or fifteen. Within an optimization framework, the solution is inferred via a joint myopic criterion for image and modulation (or acquisition) parameters, leading to what is frequently called a myopic or semi-blind inversion problem. The estimate is chosen as the minimizer of the nonlinear criterion, numerically calculated by means of a block coordinate optimization algorithm. The effectiveness of the proposed method is demonstrated for simulated and experimental examples. The results show precise estimation of the modulation parameters jointly with the reconstruction of the super resolution image. The method also shows its effectiveness for thick biological samples.
Kakita, Veera Mohana Rao; Rachineni, Kavitha; Hosur, Ramakrishna V
2017-07-21
The present manuscript focuses on fast and simultaneous determination of 1 H- 1 H and 1 H- 19 F scalar couplings in fluorinated complex steroid molecules. Incorporation of broadband PSYCHE homonuclear decoupling in the indirect dimension of zero-quantum filtered diagonal experiments (F1-PSYCHE-DIAG) suppresses 1 H- 1 H scalar couplings; however, it retains 1 H- 19 F scalar couplings (along F1 dimension) for the 19 F coupled protons while preserving the pure-shift nature for 1 H resonances uncoupled to 19 F. In such cases, along the direct dimensions, 1 H- 1 H scalar coupling multiplets deconvolute and they appear as duplicated multiplets for the 19 F coupled protons, which facilitates unambiguous discrimination of 19 F coupled 1 H chemical sites from the others. Further, as an added advantage, data acquisition has been accelerated by invoking the known ideas of spectral aliasing in the F1-PSYCHE-DIAG scheme and experiments demand only ~10 min of spectrometer times. Copyright © 2017 John Wiley & Sons, Ltd.
Portable concealed weapon detection using millimeter-wave FMCW radar imaging
NASA Astrophysics Data System (ADS)
Johnson, Michael A.; Chang, Yu-Wen
2001-02-01
Unobtrusive detection of concealed weapons on persons or in abandoned bags would provide law enforcement a powerful tool to focus resources and increase traffic throughput in high- risk situations. We have developed a fast image scanning 94 GHz radar system that is suitable for portable operation and remote viewing of radar data. This system includes a novel fast image-scanning antenna that allows for the acquisition of medium resolution 3D millimeter wave images of stationary targets with frame times on order of one second. The 3D radar data allows for potential isolation of concealed weapons from body and environmental clutter such as nearby furniture or other people. The radar is an active system so image quality is not affected indoors, emitted power is however very low so there are no health concerns for operator or targets. The low power operation is still sufficient to penetrate heavy clothing or material. Small system size allows for easy transport and rapid deployment of the system as well as an easy migration path to future hand held systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
...-AH29 Defense Federal Acquisition Regulation Supplement: Simplified Acquisition Threshold for... statutory authority to invoke a simplified acquisition threshold that is two times the normal amount to...) to invoke a simplified acquisition threshold that is two times the amount specified at 41 U.S.C 134...
Prize for Industrial Applications of Physics Lecture: A physicist in Business
NASA Astrophysics Data System (ADS)
Woollam, John
2013-03-01
In the 1980s I inherited a famous ellipsometry laboratory. To speed up data acquisition and analysis I associated myself with creative scientists and engineers. We started a company which grew. Together we rapidly improved acquisition speed, accuracy, precision, spectral range, and types of applications. Yet, a business is much more than technology. In this talk I outline how a high-tech business functions, and illustrate the role of physicists and engineers in making a company successful. It is fast-paced, exciting, and enormously gratifying to provide quality instruments for researchers and industry.
NASA Astrophysics Data System (ADS)
Barros Marin, M.; Boccardi, A.; Donat Godichal, C.; Gonzalez, J. L.; Lefevre, T.; Levens, T.; Szuk, B.
2016-02-01
The Giga Bit Transceiver based Expandable Front-End (GEFE) is a multi-purpose FPGA-based radiation tolerant card. It is foreseen to be the new standard FMC carrier for digital front-end applications in the CERN BE-BI group. Its intended use ranges from fast data acquisition systems to slow control installed close to the beamlines, in a radioactive environment exposed to total ionizing doses of up to 750 Gy. This paper introduces the architecture of the GEFE, its features as well as examples of its application in different setups.
Individual Differences in Fear Extinction and Anxiety-Like Behavior
ERIC Educational Resources Information Center
King, Gabrielle; Scott, Elliot; Graham, Bronwyn M.; Richardson, Rick
2017-01-01
There is growing appreciation for the substantial individual differences in the acquisition and inhibition of aversive associations, and the insights this might give into identifying individuals particularly vulnerable to stress and psychopathology. We examined whether animals that differed in rate of extinction (i.e., Fast versus Slow) were…
Digital Signal Processing in Acoustics--Part 2.
ERIC Educational Resources Information Center
Davies, H.; McNeill, D. J.
1986-01-01
Reviews the potential of a data acquisition system for illustrating the nature and significance of ideas in digital signal processing. Focuses on the fast Fourier transform and the utility of its two-channel format, emphasizing cross-correlation and its two-microphone technique of acoustic intensity measurement. Includes programing format. (ML)
Riffel, Philipp; Michaely, Henrik J; Morelli, John N; Paul, Dominik; Kannengiesser, Stephan; Schoenberg, Stefan O; Haneder, Stefan
2015-04-01
The purpose of this study was to evaluate the feasibility and technical quality of a zoomed three-dimensional (3D) turbo spin-echo (TSE) sampling perfection with application optimized contrasts using different flip-angle evolutions (SPACE) sequence of the lumbar spine. In this prospective feasibility study, nine volunteers underwent a 3-T magnetic resonance examination of the lumbar spine including 1) a conventional 3D T2-weighted (T2w) SPACE sequence with generalized autocalibrating partially parallel acquisition technique acceleration factor 2 and 2) a zoomed 3D T2w SPACE sequence with a reduced field of view (reduction factor 2). Images were evaluated with regard to image sharpness, signal homogeneity, and the presence of artifacts by two experienced radiologists. For quantitative analysis, signal-to-noise ratio (SNR) values were calculated. Image sharpness of anatomic structures was statistically significantly greater with zoomed SPACE (P < .0001), whereas the signal homogeneity was statistically significantly greater with conventional SPACE (cSPACE; P = .0003). There were no statistically significant differences in extent of artifacts. Acquisition times were 8:20 minutes for cSPACE and 6:30 minutes for zoomed SPACE. Readers 1 and 2 selected zSPACE as the preferred sequence in five of nine cases. In two of nine cases, both sequences were rated as equally preferred by both the readers. SNR values were statistically significantly greater with cSPACE. In comparison to a cSPACE sequences, zoomed SPACE imaging of the lumbar spine provides sharper images in conjunction with a 25% reduction in acquisition time. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Siewerdsen, J. H.; Daly, M. J.; Bachar, G.; Moseley, D. J.; Bootsma, G.; Brock, K. K.; Ansell, S.; Wilson, G. A.; Chhabra, S.; Jaffray, D. A.; Irish, J. C.
2007-03-01
High-performance intraoperative imaging is essential to an ever-expanding scope of therapeutic procedures ranging from tumor surgery to interventional radiology. The need for precise visualization of bony and soft-tissue structures with minimal obstruction to the therapy setup presents challenges and opportunities in the development of novel imaging technologies specifically for image-guided procedures. Over the past ~5 years, a mobile C-arm has been modified in collaboration with Siemens Medical Solutions for 3D imaging. Based upon a Siemens PowerMobil, the device includes: a flat-panel detector (Varian PaxScan 4030CB); a motorized orbit; a system for geometric calibration; integration with real-time tracking and navigation (NDI Polaris); and a computer control system for multi-mode fluoroscopy, tomosynthesis, and cone-beam CT. Investigation of 3D imaging performance (noise-equivalent quanta), image quality (human observer studies), and image artifacts (scatter, truncation, and cone-beam artifacts) has driven the development of imaging techniques appropriate to a host of image-guided interventions. Multi-mode functionality presents a valuable spectrum of acquisition techniques: i.) fluoroscopy for real-time 2D guidance; ii.) limited-angle tomosynthesis for fast 3D imaging (e.g., ~10 sec acquisition of coronal slices containing the surgical target); and iii.) fully 3D cone-beam CT (e.g., ~30-60 sec acquisition providing bony and soft-tissue visualization across the field of view). Phantom and cadaver studies clearly indicate the potential for improved surgical performance - up to a factor of 2 increase in challenging surgical target excisions. The C-arm system is currently being deployed in patient protocols ranging from brachytherapy to chest, breast, spine, and head and neck surgery.
Bascandziev, Igor; Tardiff, Nathan; Zaitchik, Deborah; Carey, Susan
2018-08-01
Some episodes of learning are easier than others. Preschoolers can learn certain facts, such as "my grandmother gave me this purse," only after one or two exposures (easy to learn; fast mapping), but they require several years to learn that plants are alive or that the sun is not alive (hard to learn). One difference between the two kinds of knowledge acquisition is that hard cases often require conceptual construction, such as the construction of the biological concept alive, whereas easy cases merely involve forming new beliefs formulated over concepts the child already has (belief revision, a form of knowledge enrichment). We asked whether different domain-general cognitive resources support these two types of knowledge acquisition (conceptual construction and knowledge enrichment that supports fast mapping) by testing 82 6-year-olds in a pre-training/training/post-training study. We measured children's improvement in an episode involving theory construction (the beginning steps of acquisition of the framework theory of vitalist biology, which requires conceptual change) and in an episode involving knowledge enrichment alone (acquisition of little known facts about animals, such as the location of crickets' ears and the color of octopus blood). In addition, we measured children's executive functions and receptive vocabulary to directly compare the resources drawn upon in the two episodes of learning. We replicated and extended previous findings highlighting the differences between conceptual construction and knowledge enrichment, and we found that Executive Functions predict improvement on the Vitalism battery but not on the Fun Facts battery and that Receptive Vocabulary predicts improvement the Fun Facts battery but not on the Vitalism battery. This double dissociation provides new evidence for the distinction between the two types of knowledge acquisition, and bears on the nature of the learning mechanisms involved in each. Copyright © 2018 Elsevier Inc. All rights reserved.
Liu, Huiying; Li, Ying; Ren, Fei; Lin, Li; Zhu, Wenyan; He, Jin-Sheng; Niu, Kechang
2017-12-01
In competition-dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait-abundance relations in the line of species trade-off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade-off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height-SRA was found in NP-fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade-off in nutrient acquisition and resource conservation was a key driver of SRA in competition-dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta-communities.
Optimizing the Temporal Resolution of Fast-Scan Cyclic Voltammetry
2012-01-01
Electrochemical detection with carbon-fiber microelectrodes has become an established method to monitor directly the release of dopamine from neurons and its uptake by the dopamine transporter. With constant potential amperometry (CPA), the measured current provides a real time view of the rapid concentration changes, but the method lacks chemical identification of the monitored species and markedly increases the difficulty of signal calibration. Monitoring with fast-scan cyclic voltammetry (FSCV) allows species identification and concentration measurements but often exhibits a delayed response time due to the time-dependent adsorption/desorption of electroactive species at the electrode. We sought to improve the temporal resolution of FSCV to make it more comparable to CPA by increasing the waveform repetition rate from 10 to 60 Hz with uncoated carbon-fiber electrodes. The faster acquisition led to diminished time delays of the recordings that tracked more closely with CPA measurements. The measurements reveal that FSCV at 10 Hz underestimates the normal rate of dopamine uptake by about 18%. However, FSCV collection at 10 and 60 Hz provide identical results when a dopamine transporter (DAT) blocker such as cocaine is bath applied. To verify further the utility of this method, we used transgenic mice that overexpress DAT. After accounting for the slight adsorption delay time, FSCV at 60 Hz adequately monitored the increased uptake rate that arose from overexpression of DAT and, again, was similar to CPA results. Furthermore, the utility of collecting data at 60 Hz was verified in an anesthetized rat by using a higher scan rate (2400 V/s) to increase sensitivity and the overall signal. PMID:22708011
Recent developments in fast kurtosis imaging
NASA Astrophysics Data System (ADS)
Hansen, Brian; Jespersen, Sune N.
2017-09-01
Diffusion kurtosis imaging (DKI) is an extension of the popular diffusion tensor imaging (DTI) technique. DKI takes into account leading deviations from Gaussian diffusion stemming from a number of effects related to the microarchitecture and compartmentalization in biological tissues. DKI therefore offers increased sensitivity to subtle microstructural alterations over conventional diffusion imaging such as DTI, as has been demonstrated in numerous reports. For this reason, interest in routine clinical application of DKI is growing rapidly. In an effort to facilitate more widespread use of DKI, recent work by our group has focused on developing experimentally fast and robust estimates of DKI metrics. A significant increase in speed is made possible by a reduction in data demand achieved through rigorous analysis of the relation between the DKI signal and the kurtosis tensor based metrics. The fast DKI methods therefore need only 13 or 19 images for DKI parameter estimation compared to more than 60 for the most modest DKI protocols applied today. Closed form solutions also ensure rapid calculation of most DKI metrics. Some parameters can even be reconstructed in real time, which may be valuable in the clinic. The fast techniques are based on conventional diffusion sequences and are therefore easily implemented on almost any clinical system, in contrast to a range of other recently proposed advanced diffusion techniques. In addition to its general applicability, this also ensures that any acceleration achieved in conventional DKI through sequence or hardware optimization will also translate directly to fast DKI acquisitions. In this review, we recapitulate the theoretical basis for the fast kurtosis techniques and their relation to conventional DKI. We then discuss the currently available variants of the fast DKI methods, their strengths and weaknesses, as well as their respective realms of application. These range from whole body applications to methods mostly suited for spinal cord or peripheral nerve, and analysis specific to brain white matter. Having covered these technical aspects, we proceed to review the fast kurtosis literature including validation studies, organ specific optimization studies and results from clinical applications.
Isothermal thermogravimetric data acquisition analysis system
NASA Technical Reports Server (NTRS)
Cooper, Kenneth, Jr.
1991-01-01
The description of an Isothermal Thermogravimetric Analysis (TGA) Data Acquisition System is presented. The system consists of software and hardware to perform a wide variety of TGA experiments. The software is written in ANSI C using Borland's Turbo C++. The hardware consists of a 486/25 MHz machine with a Capital Equipment Corp. IEEE488 interface card. The interface is to a Hewlett Packard 3497A data acquisition system using two analog input cards and a digital actuator card. The system provides for 16 TGA rigs with weight and temperature measurements from each rig. Data collection is conducted in three phases. Acquisition is done at a rapid rate during initial startup, at a slower rate during extended data collection periods, and finally at a fast rate during shutdown. Parameters controlling the rate and duration of each phase are user programmable. Furnace control (raising and lowering) is also programmable. Provision is made for automatic restart in the event of power failure or other abnormal terminations. Initial trial runs were conducted to show system stability.
Temesi, David G; Martin, Scott; Smith, Robin; Jones, Christopher; Middleton, Brian
2010-06-30
Screening assays capable of performing quantitative analysis on hundreds of compounds per week are used to measure metabolic stability during early drug discovery. Modern orthogonal acceleration time-of-flight (OATOF) mass spectrometers equipped with analogue-to-digital signal capture (ADC) now offer performance levels suitable for many applications normally supported by triple quadruple instruments operated in multiple reaction monitoring (MRM) mode. Herein the merits of MRM and OATOF with ADC detection are compared for more than 1000 compounds screened in rat and/or cryopreserved human hepatocytes over a period of 3 months. Statistical comparison of a structurally diverse subset indicated good agreement for the two detection methods. The overall success rate was higher using OATOF detection and data acquisition time was reduced by around 20%. Targeted metabolites of diazepam were detected in samples from a CLint determination performed at 1 microM. Data acquisition by positive and negative ion mode switching can be achieved on high-performance liquid chromatography (HPLC) peak widths as narrow as 0.2 min (at base), thus enabling a more comprehensive first pass analysis with fast HPLC gradients. Unfortunately, most existing OATOF instruments lack the software tools necessary to rapidly convert the huge amounts of raw data into quantified results. Software with functionality similar to open access triple quadrupole systems is needed for OATOF to truly compete in a high-throughput screening environment. Copyright 2010 John Wiley & Sons, Ltd.
Multishot EPI-SSFP in the Heart
Herzka, Daniel A.; Kellman, Peter; Aletras, Anthony H.; Guttman, Michael A.; McVeigh, Elliot R.
2007-01-01
Refocused steady-state free precession (SSFP), or fast imaging with steady precession (FISP or TrueFISP), has recently proven valuable for cardiac imaging because of its high signal-to-noise ratio (SNR) and excellent blood-myocardium contrast. In this study, various implementations of multiecho SSFP or EPI-SSFP for imaging in the heart are presented. EPI-SSFP has higher scan-time efficiency than single-echo SSFP, as two or more phase-encode lines are acquired per repetition time (TR) at the cost of a modest increase in TR. To minimize TR, a noninterleaved phase-encode order in conjunction with a phased-array ghost elimination (PAGE) technique was employed, removing the need for echo time shifting (ETS). The multishot implementation of EPI-SSFP was used to decrease the breath-hold duration for cine acquisitions or to increase the temporal or spatial resolution for a fixed breath-hold duration. The greatest gain in efficiency was obtained with the use of a three-echo acquisition. Image quality for cardiac cine applications using multishot EPI-SSFP was comparable to that of single-echo SSFP in terms of blood-myocardium contrast and contrast-to-noise ratio (CNR). The PAGE method considerably reduced flow artifacts due to both the inherent ghost suppression and the concomitant reduction in phase-encode blip size. The increased TR of multishot EPI-SSFP led to a reduced specific absorption rate (SAR) for a fixed RF flip angle, and allowed the use of a larger flip angle without increasing the SAR above the FDA-approved limits. PMID:11948726
Centric scan SPRITE for spin density imaging of short relaxation time porous materials.
Chen, Quan; Halse, Meghan; Balcom, Bruce J
2005-02-01
The single-point ramped imaging with T1 enhancement (SPRITE) imaging technique has proven to be a very robust and flexible method for the study of a wide range of systems with short signal lifetimes. As a pure phase encoding technique, SPRITE is largely immune to image distortions generated by susceptibility variations, chemical shift and paramagnetic impurities. In addition, it avoids the line width restrictions on resolution common to time-based sampling, frequency encoding methods. The standard SPRITE technique is however a longitudinal steady-state imaging method; the image intensity is related to the longitudinal steady state, which not only decreases the signal-to-noise ratio, but also introduces many parameters into the image signal equation. A centric scan strategy for SPRITE removes the longitudinal steady state from the image intensity equation and increases the inherent image intensity. Two centric scan SPRITE methods, that is, Spiral-SPRITE and Conical-SPRITE, with fast acquisition and greatly reduced gradient duty cycle, are outlined. Multiple free induction decay (FID) points may be acquired during SPRITE sampling for signal averaging to increase signal-to-noise ratio or for T2* and spin density mapping without an increase in acquisition time. Experimental results show that most porous sedimentary rock and concrete samples have a single exponential T2* decay due to susceptibility difference-induced field distortion. Inhomogeneous broadening thus dominates, which suggests that spin density imaging can be easily obtained by SPRITE.
Steady-state MR imaging sequences: physics, classification, and clinical applications.
Chavhan, Govind B; Babyn, Paul S; Jankharia, Bhavin G; Cheng, Hai-Ling M; Shroff, Manohar M
2008-01-01
Steady-state sequences are a class of rapid magnetic resonance (MR) imaging techniques based on fast gradient-echo acquisitions in which both longitudinal magnetization (LM) and transverse magnetization (TM) are kept constant. Both LM and TM reach a nonzero steady state through the use of a repetition time that is shorter than the T2 relaxation time of tissue. When TM is maintained as multiple radiofrequency excitation pulses are applied, two types of signal are formed once steady state is reached: preexcitation signal (S-) from echo reformation; and postexcitation signal (S+), which consists of free induction decay. Depending on the signal sampled and used to form an image, steady-state sequences can be classified as (a) postexcitation refocused (only S+ is sampled), (b) preexcitation refocused (only S- is sampled), and (c) fully refocused (both S+ and S- are sampled) sequences. All tissues with a reasonably long T2 relaxation time will show additional signals due to various refocused echo paths. Steady-state sequences have revolutionized cardiac imaging and have become the standard for anatomic functional cardiac imaging and for the assessment of myocardial viability because of their good signal-to-noise ratio and contrast-to-noise ratio and increased speed of acquisition. They are also useful in abdominal and fetal imaging and hold promise for interventional MR imaging. Because steady-state sequences are now commonly used in MR imaging, radiologists will benefit from understanding the underlying physics, classification, and clinical applications of these sequences.
Fast experiments for structure elucidation of small molecules: Hadamard NMR with multiple receivers.
Gierth, Peter; Codina, Anna; Schumann, Frank; Kovacs, Helena; Kupče, Ēriks
2015-11-01
We propose several significant improvements to the PANSY (Parallel NMR SpectroscopY) experiments-PANSY COSY and PANSY-TOCSY. The improved versions of these experiments provide sufficient spectral information for structure elucidation of small organic molecules from just two 2D experiments. The PANSY-TOCSY-Q experiment has been modified to allow for simultaneous acquisition of three different types of NMR spectra-1D C-13 of non-protonated carbon sites, 2D TOCSY and multiplicity edited 2D HETCOR. In addition the J-filtered 2D PANSY-gCOSY experiment records a 2D HH gCOSY spectrum in parallel with a (1) J-filtered HC long-range HETCOR spectrum as well as offers a simplified data processing. In addition to parallel acquisition, further time savings are feasible because of significantly smaller F1 spectral windows as compared to the indirect detection experiments. Use of cryoprobes and multiple receivers can significantly alleviate the sensitivity issues that are usually associated with the so called direct detection experiments. In cases where experiments are sampling limited rather than sensitivity limited further reduction of experiment time is achieved by using Hadamard encoding. In favorable cases the total recording time for the two PANSY experiments can be reduced to just 40 s. The proposed PANSY experiments provide sufficient information to allow the CMCse software package (Bruker) to solve structures of small organic molecules. Copyright © 2015 John Wiley & Sons, Ltd.