Sample records for fast axis orientation

  1. Highly c-axis-oriented monocrystalline Pb(Zr, Ti)O₃ thin films on si wafer prepared by fast cooling immediately after sputter deposition.

    PubMed

    Yoshida, Shinya; Hanzawa, Hiroaki; Wasa, Kiyotaka; Esashi, Masayoshi; Tanaka, Shuji

    2014-09-01

    We successfully developed sputter deposition technology to obtain a highly c-axis-oriented monocrystalline Pb(Zr, Ti)O3 (PZT) thin film on a Si wafer by fast cooling (~-180°C/min) of the substrate after deposition. The c-axis orientation ratio of a fast-cooled film was about 90%, whereas that of a slow-cooled (~-40°C/min) film was only 10%. The c-axis-oriented monocrystalline Pb(Zr0.5, Ti0.5)O3 films showed reasonably large piezoelectric coefficients, e(31,f) = ~-11 C/m(2), with remarkably small dielectric constants, ϵ(r) = ~220. As a result, an excellent figure of merit (FOM) was obtained for piezoelectric microelectromechanical systems (MEMS) such as a piezoelectric gyroscope. This c-axis orientation technology on Si will extend industrial applications of PZT-based thin films and contribute further to the development of piezoelectric MEMS.

  2. Observations of SKS splitting beneath the Central and Southern External Dinarides in the Adria-Eurasia convergence zone

    NASA Astrophysics Data System (ADS)

    Subašić, Senad; Prevolnik, Snježan; Herak, Davorka; Herak, Marijan

    2017-05-01

    Seismic anisotropy beneath the greater region of the Central and Southern External Dinarides is estimated from observations of SKS splitting. The area is located in the broad and complex Africa-Eurasia convergent plate boundary zone, where the Adriatic microplate interacts with the Dinarides. We analyzed recordings of 12 broadband seismic stations located in the Croatian coastal region. Evidence of seismic anisotropy was found beneath all stations. Fast axis directions are oriented approximately in the NE-SW to NNE-SSW direction, perpendicularly to the strike of the Dinarides. Average delay times range between 0.6 and 1.0 s. A counter-clockwise rotation in average fast axis directions was observed for the stations in the northern part with respect to the stations in the southern part of the studied area. Fast axis directions coincide with the assumed direction of asthenospheric flow through a slab-gap below the Northern and Central External Dinarides, with the maximum tectonic stress orientation in the crust, and with fast directions of Pg and Sg-waves in the crust. These observations suggest that the detected SKS birefringence is primarily caused by the preferred lattice orientation of mantle minerals generated by the asthenospheric flow directed SW-NE to SSW-NNE, with a possible contribution from the crust.

  3. Evidence of multifaceted SKS/SKKS splitting directions in the Sikkim Himalaya, India

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Kumar, Sushil

    2018-06-01

    We have investigated the anisotropy strength and fast-axis orientation using an SKS/SKKS splitting technique of seismic phases at Sikkim Himalaya, which is a seismically active zone situated in the central portion of the Great Himalyan Arc in the Indian region. This region lies between two major plate boundary faults, the Main Central Thrust (MCT) and the Main Boundary Thrust (MBT) at its north and south respectively, along with a few regional lineaments. In this study we deployed eight broadband seismic stations and acquired two years of tele-seismic earthquake data, from which we derived 66 good quality anisotropic measurements. In general, the splitting results from both the SKS and SKKS phases show a complex pattern of fast-axis orientation along the northern periphery of the MCT. However, at the central part of the Sikkim between the MBT and the MCT, both results are consistent with the upper mantle deformation of the Indian Plate. We also observed that the anisotropic strength varies between 0.6 s to 3 s and is skewed towards higher anisotropy with orthogonal polarization, which indicate the presence of a two-layer anisotropy. Results of the modelling of 66 anisotropic measurements indicate that the bottom-layer fast-axis orientations are towards N180E with higher anisotropic strength of ∂t = 1.3 s, which elucidates the pristine nature of the upper mantle deformation as a result of asthenospheric flow. But the tectonic deformation of the upper mantle within the lithosphere is prominently observed in the top layer, where the fast axis orientations are towards N480E with lower anisotropic strength of ∂t = 0.6 s.

  4. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-02-01

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincaré sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  5. Optic axis determination by fiber-based polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-03-01

    We describe a fiber-based variable-incidence-angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3-D optical axis of birefringent biological tissues. Single-plane VIAPS- OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fiber on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fiber. A proposed algorithm based on the angle between Stokes vectors on the Poincaré sphere is confirmed to work for all settings of the sample arm fiber. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  6. Kinematic principles of primate rotational vestibulo-ocular reflex. I. Spatial organization of fast phase velocity axes

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    The spatial organization of fast phase velocity vectors of the vestibulo-ocular reflex (VOR) was studied in rhesus monkeys during yaw rotations about an earth-horizontal axis that changed continuously the orientation of the head relative to gravity ("barbecue spit" rotation). In addition to a velocity component parallel to the rotation axis, fast phases also exhibited a velocity component that invariably was oriented along the momentary direction of gravity. As the head rotated through supine and prone positions, torsional components of fast phase velocity axes became prominent. Similarly, as the head rotated through left and right ear-down positions, fast phase velocity axes exhibited prominent vertical components. The larger the speed of head rotation the greater the magnitude of this fast phase component, which was collinear with gravity. The main sequence properties of VOR fast phases were independent of head position. However, peak amplitude as well as peak velocity of fast phases were both modulated as a function of head orientation, exhibiting a minimum in prone position. The results suggest that the fast phases of vestibulo-ocular reflexes not only redirect gaze and reposition the eye in the direction of head motion but also reorient the eye with respect to earth-vertical when the head moves relative to gravity. As further elaborated in the companion paper, the underlying mechanism could be described as a dynamic, gravity-dependent modulation of the coordinates of ocular rotations relative to the head.

  7. Mixing Characteristics of Elliptical Jet Control with Crosswire

    NASA Astrophysics Data System (ADS)

    Manigandan, S.; Vijayaraja, K.

    2018-02-01

    The aerodynamic mixing efficiency of elliptical sonic jet flow with the effect of crosswire is studied computationally and experimentally at different range of nozzle pressure ratio with different orientation along the minor axis of the exit. The cross wire of different orientation is found to reduce the strength of the shock wave formation. Due to the presence of crosswire the pitot pressure oscillation is reduced fast, which weakens the shock cell structure. When the cross wire is placed at center position we see high mixing along the major axis. Similarly, when the cross wire is placed at ¼ and ¾ position we see high mixing promotion along minor axis. It also proves, as the position of the cross wire decreased along minor axis there will be increase in the mixing ratio. In addition to that we also found that, jet spread is high in major axis compared to minor axis due to bifurcation of jet along upstream

  8. Wave-plate structures, power selective optical filter devices, and optical systems using same

    DOEpatents

    Koplow, Jeffrey P [San Ramon, CA

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  9. Adaptive Changes in the Perception of Fast and Slow Movement at Different Head Positions.

    PubMed

    Panichi, Roberto; Occhigrossi, Chiara; Ferraresi, Aldo; Faralli, Mario; Lucertini, Marco; Pettorossi, Vito E

    2017-05-01

    This paper examines the subjective sense of orientation during asymmetric body rotations in normal subjects. Self-motion perception was investigated in 10 healthy individuals during asymmetric whole-body rotation with different head orientations. Both on-vertical axis and off-vertical axis rotations were employed. Subjects tracked a remembered earth-fixed visual target while rotating in the dark for four cycles of asymmetric rotation (two half-sinusoidal cycles of the same amplitude, but of different duration). The rotations induced a bias in the perception of velocity (more pronounced with fast than with slow motion). At the end of rotation, a marked target position error (TPE) was present. For the on-vertical axis rotations, the TPE was no different if the rotations were performed with a 30° nose-down, a 60° nose-up, or a 90° side-down head tilt. With off-vertical axis rotations, the simultaneous activation of the semicircular canals and otolithic receptors produced a significant increase of TPE for all head positions. This difference between on-vertical and off-vertical axis rotation was probably partly due to the vestibular transfer function and partly due to different adaptation to the speed of rotation. Such a phenomenon might be generated in different components of the vestibular system. The adaptive process enhancing the perception of dynamic movement around the vertical axis is not related to the specific semicircular canals that are activated; the addition of an otolithic component results in a significant increase of the TPE.Panichi R, Occhigrossi C, Ferraresi A, Faralli M, Lucertini M, Pettorossi VE. Adaptive changes in the perception of fast and slow movement at different head positions. Aerosp Med Hum Perform. 2017; 88(5):463-468.

  10. Power selective optical filter devices and optical systems using same

    DOEpatents

    Koplow, Jeffrey P

    2014-10-07

    In an embodiment, a power selective optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes at least one substantially zero-order, zero-wave plate. The zero-order, zero-wave plate is configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. The zero-order, zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  11. Dual-mesoporous ZSM-5 zeolite with highly b-axis-oriented large mesopore channels for the production of benzoin ethyl ether.

    PubMed

    Zhou, Xiaoxia; Chen, Hangrong; Zhu, Yan; Song, Yudian; Chen, Yu; Wang, Yongxia; Gong, Yun; Zhang, Guobin; Shu, Zhu; Cui, Xiangzhi; Zhao, Jinjin; Shi, Jianlin

    2013-07-22

    Dual-mesoporous ZSM-5 zeolite with highly b axis oriented large mesopores was synthesized by using nonionic copolymer F127 and cationic surfactant CTAB as co-templates. The product contains two types of mesopores--smaller wormlike ones of 3.3 nm in size and highly oriented larger ones of 30-50 nm in diameter along the b axis--and both of them interpenetrate throughout the zeolite crystals and interconnect with zeolite microporosity. The dual-mesoporous zeolite exhibits excellent catalytic performance in the condensation of benzaldehyde with ethanol and greater than 99 % selectivity for benzoin ethyl ether at room temperature, which can be ascribed to the zeolite lattice structure offering catalytically active sites and the hierarchical and oriented mesoporous structure providing fast access of reactants to these sites in the catalytic reaction. The excellent recyclability and high catalytic stability of the catalyst suggest prospective applications of such unique mesoporous zeolites in the chemical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Acoustic Sensing of Ocean Turbulence

    DTIC Science & Technology

    1991-12-01

    quantities and of fast varying quantities, requiring high spatial resolution, fast response sensors and stable observation platforms. A classical approach to...with this type of sensor . Moum et.al. [Ref.l0] performed upper ocean observations with this instrument where they were able to 60 characterize the fine...platform orientation using the 3 axis accelerometer as tiltmeters . E. NON-ACOUSTIC DATA The non-acoustic channels on the CDV package are: 3 component

  13. Celestial orientation with the sun not in view: lizards use a time-compensated sky polarization compass.

    PubMed

    Maoret, Francesco; Beltrami, Giulia; Bertolucci, Cristiano; Foà, Augusto

    2014-04-01

    The present investigation was aimed at testing whether the lizard sky polarization compass is time compensated. For this purpose, ruin lizards, Podarcis sicula, were both trained and tested for orientation inside a Morris water maze under clear skies with the sun not in view. During training, lizards showed a striking bimodal orientation along the training axis, demonstrating their capability of determining the symmetry plane of the sky polarization pattern and thus the use of polarization information in orientation. After reaching criteria, lizards were kept 7 days in a 6-h fast clock-shift treatment and then released with the sun not in view. Six-hour clock-shifted lizards showed a bimodal distribution of directional choices, which was oriented perpendicularly to the training axis, as it was expected on the basis of the clock-shift. The results show that the only celestial diurnal compass mechanism that does not need a direct vision of the sun disk (i.e., the sky polarization compass) is a time-compensated compass.

  14. Determination of 3D optic axis orientation in cartilage by polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Bonesi, Marco; Matcher, Stephen J.

    2008-02-01

    Polarization-sensitive optical coherence tomography has been used to solve fast-axis fibre orientation in three dimension space. Previously we have demonstrated that the apparent variations in polar angle orientation of collagen fibers along sagittal ridge of equine third metacarpophalangeal joint exist. A quantitative method based on multiple angles of illumination has been proposed to determine the polar angle of the collagen fibers. This method however ignored the full 3D structure by assuming that the collagen fibers long-axis lay within the plane of incidence. A new quantitative method based on the theory of light propagation in uniaxial materials is described which avoids this assumption. To test this method we have performed control experiments on a sample of equine tendon (this tissue has well defined c-axis lying along the long-axis of the tendon). Several samples of tendon were cut to achieve a planar surface inclined at -20° to the long axis. Additional 30° rotation provided non-zero azimuthal angle. The surface was then imaged using incident beam angles -40°, -20°, 0, +20°, +40° in two orthogonal planes. Values for both the polar and azimuthal angles were then derived using a numerical optimisation procedure. Results agreed qualitatively with the nominal values but suggested that the accuracy was limited by our method of determining the apparent birefringence.

  15. Determination of 3D optic axis orientation in cartilage by polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Matcher, Stephen J.

    2007-02-01

    Polarization-sensitive optical coherence tomography has been used to solve fast-axis fibre orientation in three dimension space. Previously we have demonstrated that the apparent variations in polar angle orientation of collagen fibers along sagittal ridge of equine third metacarpophalangeal joint exist. A quantitative method based on multiple angles of illumination has been proposed to determine the polar angle of the collagen fibers. This method however ignored the full 3-D structure by assuming that the collagen fibers long-axis lay within the plane of incidence. A new quantitative method based on the theory of light propagation in uniaxial materials is described which avoids this assumption. To test this method we have performed control experiments on a sample of equine tendon (this tissue has well defined c-axis lying along the long-axis of the tendon). Several samples of tendon were cut to achieve a planar surface inclined at -20° to the long axis. Additional 30° rotation provided non-zero azimuthal angle. The surface was then imaged using incident beam angles -40°, -20°, 0, +20°, +40° in two orthogonal planes. Values for both the polar and azimuthal angles were then derived using a numerical optimisation procedure. Results agreed qualitatively with the nominal values but suggested that the accuracy was limited by our method of determining the apparent birefringence.

  16. Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadezhda; Gangnus, Sergei V.; Matcher, Stephen J.

    2006-08-01

    Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.

  17. Oculomotor control of primary eye position discriminates between translation and tilt

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1999-01-01

    We have previously shown that fast phase axis orientation and primary eye position in rhesus monkeys are dynamically controlled by otolith signals during head rotations that involve a reorientation of the head relative to gravity. Because of the inherent ambiguity associated with primary otolith afferent coding of linear accelerations during head translation and tilts, a similar organization might also underlie the vestibulo-ocular reflex (VOR) during translation. The ability of the oculomotor system to correctly distinguish translational accelerations from gravity in the dynamic control of primary eye position has been investigated here by comparing the eye movements elicited by sinusoidal lateral and fore-aft oscillations (0.5 Hz +/- 40 cm, equivalent to +/- 0.4 g) with those during yaw rotations (180 degrees/s) about a vertically tilted axis (23.6 degrees). We found a significant modulation of primary eye position as a function of linear acceleration (gravity) during rotation but not during lateral and fore-aft translation. This modulation was enhanced during the initial phase of rotation when there was concomitant semicircular canal input. These findings suggest that control of primary eye position and fast phase axis orientation in the VOR are based on central vestibular mechanisms that discriminate between gravity and translational head acceleration.

  18. Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes

    NASA Astrophysics Data System (ADS)

    Wölbern, I.; Löbl, U.; Rümpker, G.

    2014-04-01

    In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.

  19. Azimuthal Anisotropy beneath the Contiguous United States Revealed by Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Liu, K. H.; Yang, B.; Liu, Y.; Dahm, H. H.; Refayee, H. A.; Gao, S. S.

    2017-12-01

    We have produced a uniformly-measured XKS (including SKS, SKKS, and PKS) splitting database for the contiguous United States and adjacent areas. The database consists of about 30,000 pairs of splitting parameters from 3185 stations. Both the fast orientations and splitting times show systematic spatial variations. The vast majority of the fast orientations are in agreement with the absolute plate motion (APM) direction computed under a fixed hot-spot reference frame. Spatial coherency analysis of the splitting parameters indicates that for the majority of the study area, where a single layer of anisotropy with a horizontal axis of symmetry is inferred, the source of anisotropy is located in the rheologically transitional zone between the lithosphere and asthenosphere. Beneath the western U.S., the previously recognized semi-circular feature of the fast orientations has a much greater spatial coverage, extending to northern Mexico and the Rio Grande Rift. The fast orientations are parallel to the western, southern, and southeastern edges of the North American Craton and can be interpreted by simple shear strain associated with mantle flow around the cratonic keel. The combination of anisotropy induced by this around keel flow and the APM can effectively explain the E-W fast orientations beneath the southern margin of the North American Craton and NE U.S., as well as the nearly N-S fast orientations and small splitting times observed in the SE U.S. The splitting times show a systematic decrease from both the western and eastern U.S. toward the central U.S., where the thickness of the lithosphere is the largest in the study area. This trend can be explained by the reduced efficiency of anisotropy development at greater depth, as well as by the lack of around keel flow in the continental interior.

  20. Raman q-plates for Singular Atom Optics

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.

    2016-05-01

    We use a coherent two-photon Raman interaction as the atom-optic equivalent of a birefringent optical q-plate to facilitate spin-to-orbital angular momentum conversion in a pseudo-spin-1/2 BEC. A q-plate is a waveplate with a fixed retardance but a spatially varying fast axis orientation angle. We derive the time evolution operator for the system and compare it to a Jones matrix for an optical waveplate to show that in our Raman q-plate, the equivalent orientation of the fast axis is described by the relative phase of the Raman beams and the retardance is determined by the pulse area. The charge of the Raman q-plate is determined by the orbital angular momentum of the Raman beams, and the beams contain umbilic C-point polarization singularities which are imprinted into the condensate as spin singularities: lemons, stars, spirals, and saddles. By tuning the optical beam parameters, we can create a full-Bloch BEC, which is a coreless vortex that contains every possible superposition of two spin states, that is, it covers the Bloch sphere.

  1. Evidence of Tectonic Rotations and Magmatic Flow Within the Sheeted Dike Complex of Super-Fast Spread Crust Exposed at the Pito Deep Rift

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.

    2008-12-01

    Escarpments bounding the Pito Deep Rift expose cross-sections into ~3 Ma oceanic crust accreted at a super-fast spreading (>140 mm/yr) segment of the East Pacific Rise (EPR). Dikes within the sheeted dike complex persistently strike NE, parallel to local abyssal hill lineaments and magnetic anomaly stripes, and dip SE, outward and away from the EPR. During the Pito Deep 2005 Cruise, both ALVIN and JASON II used the Geocompass to fully orient a total of 69 samples [63 basaltic dikes, 6 massive gabbros] collected in situ. Paleomagnetic analyses of these oriented samples provide a quantitative constraint of kinematics of structural rotations of dikes. Magnetic remanence of dike samples indicates a dominant normal polarity with almost all directions rotated clockwise from the expected direction. The most geologically plausible model to account for these dispersions using these data coupled with the general orientation of the dikes incorporates two different structural rotations: 1) A horizontal-axis rotation that occurred near the EPR axis, related to sub-axial subsidence, and 2) A clockwise vertical-axis rotation, associated with the rotation of the Easter microplate consistent with current models. Additionally, the anisotropy of magnetic susceptibility (AMS) of dike samples indicates rock fabric and magmatic flow direction within dikes. In most samples, two of three AMS eigenvectors lie near the dike plane orientations. Generally, Kmin lies perpendicular to dike planes, while Kmax is often shallow within the dike planes, indicating dominantly subhorizontal magma flow. Steep Kmax in a few samples indicates vertical flow directions that suggest either primary flow or gravitational back-flow during waning stages of dike intrusion. These results provide the first direct evidence for primarily horizontal magma flow in sheeted dikes of super-fast spread oceanic crust. Results for Pito Deep Rift and previous results for Hess Deep Rift reveal outward dipping dikes that are interpreted as a result of subaxial spreading processes that are not evident from surface studies of spreading centers. Both areas show evidence of subaxial subsidence during accretion and lateral magmatic flow in the sheeted dike complex.

  2. Along-axis hydrothermal flow at the axis of slow spreading Mid-Ocean Ridges: Insights from numerical models of the Lucky Strike vent field (MAR)

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice J.; Cannat, Mathilde; Escartin, Javier; Crawford, Wayne C.

    2014-07-01

    processes and efficiency of hydrothermal heat extraction along the axis of mid-ocean ridges are controlled by lithospheric thermal and permeability structures. Hydrothermal circulation models based on the structure of fast and intermediate spreading ridges predict that hydrothermal cell organization and vent site distribution are primarily controlled by the thermodynamics of high-temperature mid-ocean ridge hydrothermal fluids. Using recent constraints on shallow structure at the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge, we present a physical model of hydrothermal cooling that incorporates the specificities of a magma-rich slow spreading environment. Using three-dimensional numerical models, we show that, in contrast to the aforementioned models, the subsurface flow at Lucky Strike is primarily controlled by across-axis permeability variations. Models with across-axis permeability gradients produce along-axis oriented hydrothermal cells and an alternating pattern of heat extraction highs and lows that match the distribution of microseismic clusters recorded at the Lucky Strike axial volcano. The flow is also influenced by temperature gradients at the base of the permeable hydrothermal domain. Although our models are based on the structure and seismicity of the Lucky Strike segment, across-axis permeability gradients are also likely to occur at faster spreading ridges and these results may also have important implications for the cooling of young crust at fast and intermediate spreading centers.

  3. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    PubMed

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (t<λ; where λ is the absorption constant for graphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  4. Seismic Anisotropy Beneath Eastern North America: Results from Multi-Event Inversion

    NASA Astrophysics Data System (ADS)

    Li, Y.; Levin, V. L.; Chen, X.

    2017-12-01

    Seismic anisotropy observed from the split core-refracted shear phases reflects upper mantle deformation. To characterize anisotropic signatures beneath eastern North America, we collected observations along a 1300 km long array from James Bay to the Fundy Basin. The averaged splitting parameters of individual sites show uniform fast polarization orientation of 80° and delay times linearly decreasing from 1.0 s in the Appalachians to 0.5 s in the Superior Province. We also see directional variation of fast polarizations at most sites, which is a likely effect of vertical changes in anisotropic properties. For sites with 10 or more observations, we used a multi-event inversion technique to solve for the underlying anisotropic structure. The technique considers the NULL observations from single-event analysis that are excluded from the averaged splitting parameters. For models with a single 100 km thick anisotropic layer with a horizontal fast axis, we find up to 6% of anisotropy in the Appalachian Orogen, equivalent to a splitting delay time of 1.5 s. Anisotropy strength reduces to 1.8% in the Superior Province, equivalent to delay times under 0.5 s. The overall decrease in anisotropic strength is modified by local changes of up to 2%, suggesting small-scale local variations near the surface. Orientations of the fast axes change from 60° in the Appalachian Orogen to 90° in the Superior Province, and are also modulated by local deviations. In the Appalachian Orogen the fast axes are close to the absolute plate motion in a hot-spot reference frame, while those in the Superior Province differ from it by almost 30°. Average values of splitting delays agree well with results of inversions in the Superior Province, and diverge in the Appalachians. Conversely, averaged fast polarizations match inversion results in the Appalachians, and are systematically different in the Superior Province. For an set of sites with recording periods exceeding 5 years, we will test more complicated models of anisotropy, including dipping fast axes and multiple layers. Figure 1. The best fit anisotropic parameters, orientations of fast axes (top) and strength of anisotropy (bottom), assuming a single 100 km thick horizontal layer with a horizontal fast axis. The red line in top represents the absolute plate motion in a hot spot reference frame.

  5. Inner Core Anisotropy: Can Seismic Observations be Reconciled with Ab Initio Calculations of Elasticity?

    NASA Astrophysics Data System (ADS)

    Song, X.; Jordan, T. H.

    2016-12-01

    Body-wave and normal-mode observations have revealed an inner-core structure that is radially layered, axially anisotropic, and hemispherically asymmetric. Previous theoretical studies have examined the consistency of these features with the elasticity of iron crystals thought to dominate inner-core composition, but a fully consistent model has been elusive. Here we compare the seismic observation with effective-medium models derived from ab initio calculations of the elasticity tensors for hcp-Fe and bcc-Fe. Our estimates are based on Jordan's (GJI, 2015) effective medium theory, which is derived from a self-consistent, second-order Born approximation. The theory provides closed-form expressions for the effective elastic parameters of 3D anisotropic, heterogeneous media in which the local anisotropy is a constant hexagonal stiffness tensor C stochastically oriented about a constant symmetry axis \\hat{s} and the statistics of the small-scale heterogeneities are transversely isotropic in the plane perpendicular to \\hat{s}. The stochastic model is then described by a dimensionless "aspect ratio of the heterogeneity", 0 ≤ η < ∞, and a dimensionless "orientation ratio of the anisotropy", 0 ≤ ξ < ∞. The latter determines the degree to which the axis of C is aligned with \\hat{s}. We compute the loci of models with \\hat{s} oriented along the Earth's rotational axis ( \\hat{s} = north) by varying ξ and η for various ab initio estimates of C. We show that a lot of widely used estimates of C are inconsistent with most published normal-mode models of inner-core anisotropy. In particular, if the P-wave fast axis aligns with the rotational axis, which is required to satisfy the body-wave observations, then these hcp-Fe models predict that the fast polarization of the S waves is in the plane perpendicular to \\hat{s}, which disagrees with most normal-mode models. We have attempted to resolve this discrepancy by examining alternative hcp-Fe models, including radially anisotropic distributions of stochastic anisotropy and heterogeneity (i.e., where \\hat{s} = \\hat{r}), as well as bcc-Fe models. Our calculations constrain the form of C needed to satisfy the seismological inferences.

  6. Fast Auroral Snapshot performance using a multi-body dynamic simulation

    NASA Technical Reports Server (NTRS)

    Zimbelman, Darrell; Walker, Mary

    1993-01-01

    This paper examines the complex dynamic interaction between two 2.6 m long stacer booms, four 30 m long flexible wire booms and the attitude control system of the Fast Auroral SnapshoT (FAST) spacecraft. The FAST vehicle will nominally operate as a negative orbit spinner, positioned in a 83 deg inclination, 350 x 4200 km orbit. For this study, a three-axis, non-linear, seven body dynamic simulation is developed using the TREETOPS software package. The significance of this approach is the ability to model each component of the FAST spacecraft as an individual member and connect them together in order to better understand the dynamic coupling between structures and the control system. Both the wire and stacer booms are modeled as separate bodies attached to a rigid central body. The wire booms are oriented perpendicular to the spin axis at right angles relative to each other, whereas the stacer booms are aligned with the spin axis. The analysis consists of a comparison between the simulated in-plane and out-of-plane boom motions with theoretically derived frequencies, and an examination of the dynamic coupling between the control system and boom oscillations. Results show that boom oscillations of up to 0.36 deg are acceptable in order to meet the performance requirements. The dynamic motion is well behaved when the precession coil is operating, however, activation of the spin coil produces an erratic trend in the spin rate which approaches the spin rate requirement.

  7. Field-controllable Spin-Hall Effect of Light in Optical Crystals: A Conoscopic Mueller Matrix Analysis.

    PubMed

    Samlan, C T; Viswanathan, Nirmal K

    2018-01-31

    Electric-field applied perpendicular to the direction of propagation of paraxial beam through an optical crystal dynamically modifies the spin-orbit interaction (SOI), leading to the demonstration of controllable spin-Hall effect of light (SHEL). The electro- and piezo-optic effects of the crystal modifies the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in a complex pattern with different topologies due to the symmetry-breaking effect of the applied field. This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector resolved conoscopic Mueller matrix measurement and analysis provides a first glimpse of the SHEL in the biaxial crystal, identified via the appearance of weak circular birefringence. The emergence of field-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of freedom for affecting and controlling the spin and orbital angular momentum of photons to unravel the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall devices.

  8. Seismic Anisotropy Beneath the Eastern Flank of the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Benton, N. W.; Pulliam, J.

    2015-12-01

    Shear wave splitting was measured across the eastern flank of the Rio Grande Rift (RGR) to investigate mechanisms of upper mantle anisotropy. Earthquakes recorded at epicentral distances of 90°-130° from EarthScope Transportable Array (TA) and SIEDCAR (SC) broadband seismic stations were examined comprehensively, via the Matlab program "Splitlab", to determine whether SKS and SKKS phases indicated anisotropic properties. Splitlab allows waveforms to be rotated, filtered, and windowed interactively and splitting measurements are made on a user-specified waveform segment via three independent methods simultaneously. To improve signal-to-noise and improve reliability, we stacked the error surfaces that resulted from grid searches in the measurements for each station location. Fast polarization directions near the Rio Grande Rift tend to be sub-parallel to the RGR but then change to angles that are consistent with North America's average plate motion, to the east. The surface erosional depression of the Pecos Valley coincides with fast polarization directions that are aligned in a more northerly direction than their neighbors, whereas the topographic high to the east coincides with an easterly change of the fast axis.The area above a mantle high velocity anomaly discovered separately via seismic tomography which may indicate thickened lithosphere, corresponds to unusually large delay times and fast polarization directions that are more closely aligned to a north-south orientation. The area of southeastern New Mexico that falls between the mantle fast anomaly and the Great Plains craton displays dramatically smaller delay times, as well as changes in fast axis directions toward the northeast. Changes in fast axis directions may indicate flow around the mantle anomaly; small delay times could indicate vertical or attenuated flow.

  9. Kinematic principles of primate rotational vestibulo-ocular reflex. II. Gravity-dependent modulation of primary eye position

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    The kinematic constraints of three-dimensional eye positions were investigated in rhesus monkeys during passive head and body rotations relative to gravity. We studied fast and slow phase components of the vestibulo-ocular reflex (VOR) elicited by constant-velocity yaw rotations and sinusoidal oscillations about an earth-horizontal axis. We found that the spatial orientation of both fast and slow phase eye positions could be described locally by a planar surface with torsional variation of <2.0 +/- 0.4 degrees (displacement planes) that systematically rotated and/or shifted relative to Listing's plane. In supine/prone positions, displacement planes pitched forward/backward; in left/right ear-down positions, displacement planes were parallel shifted along the positive/negative torsional axis. Dynamically changing primary eye positions were computed from displacement planes. Torsional and vertical components of primary eye position modulated as a sinusoidal function of head orientation in space. The torsional component was maximal in ear-down positions and approximately zero in supine/prone orientations. The opposite was observed for the vertical component. Modulation of the horizontal component of primary eye position exhibited a more complex dependence. In contrast to the torsional component, which was relatively independent of rotational speed, modulation of the vertical and horizontal components of primary position depended strongly on the speed of head rotation (i.e., on the frequency of oscillation of the gravity vector component): the faster the head rotated relative to gravity, the larger was the modulation. Corresponding results were obtained when a model based on a sinusoidal dependence of instantaneous displacement planes (and primary eye position) on head orientation relative to gravity was fitted to VOR fast phase positions. When VOR fast phase positions were expressed relative to primary eye position estimated from the model fits, they were confined approximately to a single plane with a small torsional standard deviation ( approximately 1.4-2.6 degrees). This reduced torsional variation was in contrast to the large torsional spread (well >10-15 degrees ) of fast phase positions when expressed relative to Listing's plane. We conclude that primary eye position depends dynamically on head orientation relative to space rather than being fixed to the head. It defines a gravity-dependent coordinate system relative to which the torsional variability of eye positions is minimized even when the head is moved passively and vestibulo-ocular reflexes are evoked. In this general sense, Listing's law is preserved with respect to an otolith-controlled reference system that is defined dynamically by gravity.

  10. Mechanically driven centrifugal pyrolyzer

    DOEpatents

    Linck, Martin Brendan [Mount Prospect, IL; Bush, Phillip Vann [Bartlett, IL

    2012-03-06

    An apparatus for fast pyrolysis of biomass and other solid organic materials including a vertically oriented cylindrical vessel having a solids outlet proximate the bottom thereof, a vapor outlet, a top wall forming at least one opening, and an adjacent heated side wall. Disposed within the cylindrical vessel and extending through the at least one opening in the top wall is a rotor having a rotatable shaft coincident with the longitudinal axis of the cylindrical vessel to which is attached at least one substantially vertically oriented blade having one edge connected directly or indirectly with the rotatable shaft and having an opposite edge spaced apart from the heated side wall, whereby a non-radial, preferably tangential, force is imparted on the feedstock in the cylindrical vessel. Also disclosed is a method for fast pyrolysis of biomass and other solid organic materials.

  11. Improved optical axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Matcher, Stephen J.

    2013-03-01

    We report on a new calibration technique that permits the accurate extraction of sample Jones matrix and hence fast-axis orientation by using fiber-based polarization-sensitive optical coherence tomography (PS-OCT) that is completely based on non polarization maintaining fiber such as SMF-28. In this technique, two quarter waveplates are used to completely specify the parameters of the system fibers in the sample arm so that the Jones matrix of the sample can be determined directly. The device was validated on measurements of a quarter waveplate and an equine tendon sample by a single-mode fiber-based swept-source PS-OCT system.

  12. Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers.

    PubMed Central

    Dale, R E; Hopkins, S C; an der Heide, U A; Marszałek, T; Irving, M; Goldman, Y E

    1999-01-01

    The orientation of proteins in ordered biological samples can be investigated using steady-state polarized fluorescence from probes conjugated to the protein. A general limitation of this approach is that the probes typically exhibit rapid orientational motion ("wobble") with respect to the protein backbone. Here we present a method for characterizing the extent of this wobble and for removing its effects from the available information about the static orientational distribution of the probes. The analysis depends on four assumptions: 1) the probe wobble is fast compared with the nanosecond time scale of its excited-state decay; 2) the orientational distributions of the absorption and emission transition dipole moments are cylindrically symmetrical about a common axis c fixed in the protein; 3) protein motions are negligible during the excited-state decay; 4) the distribution of c is cylindrically symmetrical about the director of the experimental sample. In a muscle fiber, the director is the fiber axis, F. All of the information on the orientational order of the probe that is available from measurements of linearly polarized fluorescence is contained in five independent polarized fluorescence intensities measured with excitation and emission polarizers parallel or perpendicular to F and with the propagation axis of the detected fluorescence parallel or perpendicular to that of the excitation. The analysis then yields the average second-rank and fourth-rank order parameters ( and ) of the angular distribution of c relative to F, and and , the average second-rank order parameters of the angular distribution for wobble of the absorption and emission transition dipole moments relative to c. The method can also be applied to other cylindrically ordered systems such as oriented lipid bilayer membranes and to processes slower than fluorescence that may be observed using longer-lived optically excited states. PMID:10049341

  13. A Platform for Developing Autonomy Technologies for Small Military Robots

    DTIC Science & Technology

    2008-12-01

    angular increments around the disk so described. A line scanner oriented so the plane of detected points is horizontal (e.g., the axis about which...behaviors can be implemented. Thus it will contain the custom scripts , executables, and data that compose the actual behavior of the robot. Currently, the...operating system was constructed to be relatively small and boot fast. Debian GNU/Linux, however, provides an installation script that downloads a

  14. THE LIMITED EFFECT OF COINCIDENT ORIENTATION ON THE CHOICE OF INTRINSIC AXIS (.).

    PubMed

    Li, Jing; Su, Wei

    2015-06-01

    The allocentric system computes and represents general object-to-object spatial relationships to provide a spatial frame of reference other than the egocentric system. The intrinsic frame-of-reference system theory, which suggests people learn the locations of objects based upon an intrinsic axis, is important in research about the allocentric system. The purpose of the current study was to determine whether the effect of coincident orientation on the choice of intrinsic axis was limited. Two groups of participants (24 men, 24 women; M age = 24 yr., SD = 2) encoded different spatial layouts in which the objects shared the coincident orientation of 315° and 225° separately at learning perspective (0°). The response pattern of partial-scene-recognition task following learning reflected different strategies for choosing the intrinsic axis under different conditions. Under the 315° object-orientation condition, the objects' coincident orientation was as important as the symmetric axis in the choice of the intrinsic axis. However, participants were more likely to choose the symmetric axis as the intrinsic axis under the 225° object-orientation condition. The results suggest the effect of coincident orientation on the choice of intrinsic axis is limited.

  15. Automated analysis of SKS splitting to infer upper mantle anisotropy beneath Germany using more than 20 yr of GRSN and GRF data

    NASA Astrophysics Data System (ADS)

    Walther, M.; Plenefisch, T.; Rümpker, G.

    2014-02-01

    Upper mantle anisotropy beneath Germany is investigated through the measurements and analysis of shear-wave splitting using SKS phases. We analysed teleseismic events recorded by 24 broadband stations of the German Regional Seismic Network (GRSN) and three broadband stations of the Gräfenberg-Array (GRF). These permanent German networks cover an area extending from the Alps in the south up to the Northern German basin towards north. In comparison to several former studies that are based either on short observation periods or that are restricted to limited areas of Germany, we resort to 22 yr of the GRSN (1991-2012) and 34 yr of GRF data archive (1979-2012). Due to the huge amount of data, we applied a fully automatic procedure to determine SKS splitting parameters from archived recordings and also applied strong quality constraints to obtain reliable solutions. From our analysis, two main features are obvious: For the stations in the middle and southern part of Germany we found homogeneous E-W to ENE-WSW fast-axis directions. In contrast, stations in NE-Germany exhibit a NW-SE oriented fast axis. Both findings can be correlated to major tectonic features in Central Europe. The E-W to ENE-WSW orientations in the middle and southern part of Germany are nearly parallel to the strike of the Variscan mountain belts, whereas the NW-SE direction in NE-Germany corresponds to the orientation of the nearby Tornquist-Teisseyre suture zone. For the southern part of Germany, there are indications for an alignment of the fast axis parallel to the curvature of the nearby Alps. Apart from the more large-scale features there are two stations (BFO and CLZ) which seem to have an imprint related to the regional geodynamic setting, namely the rifting in the Southern Rhine Graben and the formation of the Harz Mountains, respectively. We conclude that the observed regional variations of splitting parameter over Germany advocate for a mostly lithospheric route of the anisotropy. Furthermore, variations of the splitting parameters with respect to the azimuths of the incoming waves, as observed at some stations, point to vertical varying anisotropy. For some stations (BFO, RUE) the inversions for two anisotropic layers revealed directions of the fast axes that are similar to the strike directions of the surrounding tectonic units. For other stations, the confidence regions are too large for a tectonic interpretation.

  16. Mica-dominated seismic properties of mid-crust beneath west Yunnan (China) and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Shao, Tongbin; Ji, Shaocheng; Oya, Shoma; Michibayashi, Katsuyoshi; Wang, Qian

    2016-05-01

    Measurements of crystallographic preferred orientations (CPO) and calculations of P- and S-wave velocities (Vp and Vs) and anisotropy were conducted on three quartz-mica schists and one felsic mylonite, which are representative of typical metamorphic rocks deformed in the middle crust beneath the southeastern Tibetan plateau. Results show that the schists have Vp anisotropy (AVp) ranging from 16.4% to 25.5% and maximum Vs anisotropy [AVs(max)] between 21.6% and 37.8%. The mylonite has lower AVp and AVs(max) but slightly higher foliation anisotropy, which are 13.2%, 18.5%, and 3.07%, respectively, due to the lower content and CPO strength of mica. With increasing mica content, the deformed rocks tend to form transverse isotropy (TI) with fast velocities in the foliation plane and slow velocities normal to the foliation. However, the presence of prismatic minerals (e.g., amphibole and sillimanite) forces the overall symmetry to deviate from TI. An increase in feldspar content reduces the bulk anisotropy caused by mica or quartz because the fast-axis of feldspar aligns parallel to the slow-axis of mica and/or quartz. The effect of quartz on seismic properties of mica-bearing rocks is complex, depending on its content and prevailing slip system. The greatest shear-wave splitting and fastest Vp both occur for propagation directions within the foliation plane, consistent with the fast Pms (S-wave converted from P-wave at the Moho) polarization directions in the west Yunnan where mica/amphibole-bearing rocks have developed pervasive subvertical foliation and subhorizontal lineation. The fast Pms directions are perpendicular to the approximately E-W orienting fast SKS (S-wave traversing the core as P-wave) directions, indicating a decoupling at the Moho interface between the crust and mantle beneath the region. The seismic data are inconsistent with the model of crustal channel flow as the latter should produce a subhorizontal foliation where vertically incident shear waves suffer little splitting.

  17. Single and two-shot quantitative phase imaging using Hilbert-Huang Transform based fringe pattern analysis

    NASA Astrophysics Data System (ADS)

    Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos

    2016-08-01

    In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.

  18. Anisotropy in the lowermost mantle beneath the Indian Ocean Geoid Low from ScS splitting measurements

    NASA Astrophysics Data System (ADS)

    Padma Rao, B.; Ravi Kumar, M.; Singh, Arun

    2017-02-01

    The Indian Ocean Geoid Low (IOGL) to the south of Indian subcontinent is the world's largest geoid anomaly. In this study, we investigate the seismic anisotropy of the lowermost mantle beneath the IOGL by analyzing splitting of high-quality ScS phases corrected for source and receiver side upper mantle anisotropy. Results reveal significant anisotropy (˜1.01%) in the D'' layer. The observed fast axis polarization azimuths in the ray coordinate system indicate a TTI (transverse isotropy with a tilted axis of symmetry) style of anisotropy. Lattice Preferred Orientation (LPO) deformation of the palaeo-subducted slabs experiencing high shear strain is a plausible explanation for the observed anisotropy beneath the IOGL.

  19. Design of collimating and rearrangement systems of laser diode array beam

    NASA Astrophysics Data System (ADS)

    Gao, Runmei; Fang, Tao; Fu, Rulian; Yao, Jianquan

    2015-10-01

    To improve the laser diode output beam quality, micro-cylindrical lens and the step-type lens combination are designed. The former is used to collimate beam in fast-axis direction, while the latter plays a role in the slow-axis of splitting and the rearrangement. The micro-column semi-elliptical lens is made with the drops of spherical zoom lensin electric field and with the help of the material properties of light-cured production, which can reduce the reflection of the front surface and total reflection loss of the after. The divergence angle in the fast axis is compressed to roughly the same as that in the slow-axis direction; Stepped lens splits compressed long strip beam in the slow axis, with parallelogram style of level equidistant and rearrange in the fast axis direction. The spot in the slow axis gets smaller and the spot becomes larger in the fast axis. At last divergence angle and the beam spot achieve balanced in the fast axis and slow axis, optical parameters BPP integrates approximate the same, and beam quality can be improved.

  20. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to be extracted from single-axis accelerometer data.

  1. Crystal alignments in the Fast ice of arctic Alaska

    NASA Astrophysics Data System (ADS)

    Weeks, W. F.; Gow, A. J.

    1980-02-01

    Field observations at 60 sites located in the fast or near-fast ice along a 1200-km stretch of the north coast of Alaska between the Bering Strait and Barter Island have shown that the great majority of the ice samples (95%) exhibit striking c axis alignments within the horizontal plane. In all cases the degree of preferred orientation increased with depth in the ice. Representative standard deviations around a mean direction in the horizontal plane are commonly less than ±10° for samples collected near the bottom of the ice. At a given site the mean c axis direction ?0 may vary as much as 20° with vertical location in the ice sheet. The c axis allignments in the nearshore region generally parallel the coast, with strong alignments occurring in the lagoon systems between the barrier islands and the coast and seaward of the barrier islands. In passes between islands and in entrances such as the opening to Kotzebue Sound the alignment is parallel to the channel. Only limited observations are available farther seaward over the inner (10- to 50-m isobaths) and outer (50-m isobath to shelf break) shelf regions. These indicate NE-SW and E-W alignments, respectively, in the Beaufort Sea north of Prudhoe Bay. The general patterns of the alignments support the correlation between the preferred c axis direction and the current direction at the ice/water interface suggested by Weeks and Gow (1978). A comparison between c axis alignments and instantaneous current measurements made at 42 locations shows that the most frequent current direction coincides with ?0. At the one site where we were able to determine the current direction (52°T) over a longer period (7 hours), the agreement with ?0. (48°T) was excellent. Similarly, if only ?0. values determined in the nearshore region are considered, the most frequent deviation is 10° or less between ?0. and the trend of the adjacent shoreline, which is presumably parallel to the prevailing longshore currents. The c axis alignments are believed to be the result of geometric selection, with the most favored orientation being that in which the current flows normal to the (0001) plates of ice that comprise the dendritic sea ice/seawater interface. The instantaneous current observations suggest SW nearshore currents along the Chukchi coast between SW of Point Lay and SW of the Rogers-Post Monument. In the vicinity of Barrow all currents measured along the Chukchi coast were toward the NE. Current directions along the Beaufort coast in the nearshore region were generally parallel to the coast, with 45% of the observations indicating currents toward the E and 55% currents toward the W.

  2. Accurate determination of chemical shift tensor orientations of single-crystals by solid-state magic angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Avadhut, Yamini S.; Weber, Johannes; Schmedt auf der Günne, Jörn

    2017-09-01

    An improved implementation of single-crystal magic-angle-spinning (MAS) NMR is presented which gives access to chemical shift tensors both in orientation (relative to the crystal axis system) and principal axis values. For mounting arbitrary crystals inside ordinary MAS rotors, a mounting tool is described which allows to relate the crystal orientation determined by diffraction techniques to the rotor coordinate system. The crystal is finally mounted into a MAS rotor equipped with a special insert which allows a defined reorientation of the single-crystal by 90°. The approach is based on the idea that the dispersive spectra, which are obtained when applying read-pulses at specific rotor-phases, not only yield the size of the eigenvalues but also encode the orientation of the different chemical shift (rank-2) tensors. For this purpose two 2D-data sets with orthogonal crystal orientation are fitted simultaneously. The presented analysis for chemical shift tensors is supported by an analytical formula which allows fast calculation of phase and amplitude of individual spinning side-bands and by a protocol which solves the problem of finding the correct reference phase of the spectrum. Different rotor-synchronized pulse-sequences are introduced for the same reason. Experiments are performed on L-alanine and O-phosphorylethanolamine and the observed errors are analyzed in detail. The experimental data are opposed to DFT-computed chemical shift tensors which have been obtained by the extended embedded ion method.

  3. Large-scale trench-normal mantle flow beneath central South America

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rümpker, G.; Wölbern, I.

    2018-01-01

    We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.

  4. A method to determine the orientation of the upper arm about its longitudinal axis during dynamic motions.

    PubMed

    Gordon, Brian J; Dapena, Jesús

    2013-01-04

    Inaccuracy in determining the orientation of the upper arm about its longitudinal axis (twist orientation) has been a pervasive problem in sport biomechanics research. The purpose of this study was to develop a method to improve the calculation of the upper arm twist orientation in dynamic sports activities. The twist orientation of the upper arm is defined by the orientation of its mediolateral axis. The basis for the new method is that at any angle in the flexion/extension range of an individual's elbow, it is possible to define a true mediolateral axis and also a surrogate mediolateral axis perpendicular to the plane containing the shoulder, elbow and wrist joints. The difference between the twist orientations indicated by these two versions of the mediolateral axis will vary from one elbow angle to another, but if the elbow joint deforms equally in different activities, for any given subject the difference should be constant at any given value of the elbow angle. Application of the new method required individuals to execute sedate elbow extension trials prior to the dynamic trials. Three-dimensional motion analysis of the sedate extension trials allowed quantification of the difference between the true and surrogate mediolateral axes for all angles in the entire flexion/extension range of an individual's elbow. This made it possible to calculate in any dynamic trial the twist orientation defined by the true mediolateral axis from the twist orientation defined by the surrogate mediolateral axis. The method was tested on a wooden model of the arm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency

    NASA Astrophysics Data System (ADS)

    Piron, P.; Delacroix, C.; Huby, E.; Mawet, D.; Karlsson, M.; Ruane, G.; Habraken, S.; Absil, O.; Surdej, J.

    2015-09-01

    The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed.

  6. Source analysis of MEG activities during sleep (abstract)

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Iramina, K.

    1991-04-01

    The present study focuses on magnetic fields of the brain activities during sleep, in particular on K-complexes, vertex waves, and sleep spindles in human subjects. We analyzed these waveforms based on both topographic EEG (electroencephalographic) maps and magnetic fields measurements, called MEGs (magnetoencephalograms). The components of magnetic fields perpendicular to the surface of the head were measured using a dc SQUID magnetometer with a second derivative gradiometer. In our computer simulation, the head is assumed to be a homogeneous spherical volume conductor, with electric sources of brain activity modeled as current dipoles. Comparison of computer simulations with the measured data, particularly the MEG, suggests that the source of K-complexes can be modeled by two current dipoles. A source for the vertex wave is modeled by a single current dipole which orients along the body axis out of the head. By again measuring the simultaneous MEG and EEG signals, it is possible to uniquely determine the orientation of this dipole, particularly when it is tilted slightly off-axis. In sleep stage 2, fast waves of magnetic fields consistently appeared, but EEG spindles appeared intermittently. The results suggest that there exist sources which are undetectable by electrical measurement but are detectable by magnetic-field measurement. Such source can be described by a pair of opposing dipoles of which directions are oppositely oriented.

  7. Teleseismic P-wave polarization analysis at the Gräfenberg array

    NASA Astrophysics Data System (ADS)

    Cristiano, L.; Meier, T.; Krüger, F.; Keers, H.; Weidle, C.

    2016-12-01

    P-wave polarization at the Gräfenberg array (GRF) in southern Germany is analysed in terms of azimuthal deviations and deviations in the vertical polarization using 20 yr of broad-band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth-dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyse their periodicity as a function of backazimuth. The dominant periods are 180° and 360°. At low frequencies, between 0.03 and 0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180° periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20°E with an uncertainty of about 8° and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low-frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high-frequency band between 0.1 and 0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360° periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric anisotropy in the area of the GRF array. Seismic anisotropy is more variable in the brittle upper crust compared to lower crustal and subcrustal depths.

  8. Automated cell tracking identifies mechanically oriented cell divisions during Drosophila axis elongation.

    PubMed

    Wang, Michael F Z; Hunter, Miranda V; Wang, Gang; McFaul, Christopher; Yip, Christopher M; Fernandez-Gonzalez, Rodrigo

    2017-04-01

    Embryos extend their anterior-posterior (AP) axis in a conserved process known as axis elongation. Drosophila axis elongation occurs in an epithelial monolayer, the germband, and is driven by cell intercalation, cell shape changes, and oriented cell divisions at the posterior germband. Anterior germband cells also divide during axis elongation. We developed image analysis and pattern-recognition methods to track dividing cells from confocal microscopy movies in a generally applicable approach. Mesectoderm cells, forming the ventral midline, divided parallel to the AP axis, while lateral cells displayed a uniform distribution of division orientations. Mesectoderm cells did not intercalate and sustained increased AP strain before cell division. After division, mesectoderm cell density increased along the AP axis, thus relieving strain. We used laser ablation to isolate mesectoderm cells from the influence of other tissues. Uncoupling the mesectoderm from intercalating cells did not affect cell division orientation. Conversely, separating the mesectoderm from the anterior and posterior poles of the embryo resulted in uniformly oriented divisions. Our data suggest that mesectoderm cells align their division angle to reduce strain caused by mechanical forces along the AP axis of the embryo. © 2017. Published by The Company of Biologists Ltd.

  9. Fast growth with crystal splitting of morphology-controllable Bi2S3 flowers on TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Yang, L. X.; Ding, Y. B.; Luo, S. L.; Luo, Y.; Deng, F.; Li, Y.

    2013-03-01

    Bi2S3 crystals with flower-like morphologies are deposited on TiO2 nanotube arrays (NTs) by applying the cathodic pulse electrodeposition (PED) technique at 120 °C in 20 s. The highly oriented TiO2 NTs/Ti serving as substrate has high surface energy which is favorable for Gibbs free energy decreasing in nucleation process. Numerous boundaries between NTs are nucleation sites for atomic clusters, resulting in a fast nucleation velocity. Effective and fast heterogeneous nucleation initiates a thermodynamic control growth model and finally leads to the fast formation of highly crystallized Bi2S3 with a typical splitting property. Ethylene glycol (EG) was introduced into the electrolytes to inhibit the typical growth along the c axis ([0 0 1] plane) and facilitate the growth along the ab plane, producing Bi2S3 crystals with variable morphologies from sheaves to flowers by increasing EG contents.

  10. The depth range of azimuthal anisotropy beneath Southern California via analyses of long-period Rayleigh-waves

    NASA Astrophysics Data System (ADS)

    Tsang, Stephanie Doris

    The motion of the mantle beneath the tectonic plates is still unknown. Mantle shears associated with flow generate anisotropy. In order to investigate the anisotropic properties within the Earth to a range of depths within the crust and upper mantle (and perhaps beyond), long-period Rayleigh waves (periods of 51:282 ≤ T ≤ 333:33 seconds) are used in this study. One model suggests that the fast axis orientation, arising from the preferential alignment of olivine crystal grains in the upper mantle, coincides with the direction of absolute plate motion of the North-American plate. Other models suggest it is aligned with the direction of relative plate motion of the Pacific and North-American plates. A third suggests that an eastward mantle flow occurs beneath the North-American plate. There is also controversy as to the depth to which anisotropy is generated. In this thesis, the Rayleigh-wave phase velocities' dependence on a seismic event's back-azimuth angle is explored within the Southern California Seismic Network (SCSN). Because surface wave velocities vary depending on the range of depth into the Earth sampled by each period, an observed deviation of the resulting phase velocity calculations for a wide range of back-azimuth angles, (6° to 349°) with respect to a reference dispersion curve of the area, provides information on the anisotropy of the subsurface structure. Further work on the fast-axis orientation and its tectonic implications is carried out here. I find that the 2 directions 270° = 90° and 290° = 110° are possible fast-axes orientations. I also find that the amplitude of azimuthal anisotropy is insufficient to explain birefringence of S-body waves, also known as SKS splitting, suggesting that it occurs much deeper than previously thought, perhaps all the way to the transition zone. Future work might involve array analysis of Love-wave components using the beamforming approach. This approach should prove effective in yielding further insight into the heterogeneity of the subsurface structure beneath Southern California.

  11. C-Axis-Oriented Hydroxyapatite Film Grown Using ZnO Buffer Layer

    NASA Astrophysics Data System (ADS)

    Sakoishi, Yasuhiro; Iguchi, Ryo; Nishikawa, Hiroaki; Hontsu, Shigeki; Hayami, Takashi; Kusunoki, Masanobu

    2013-11-01

    A method of fabricating c-axis-oriented hydroxyapatite film on a quartz crystal microbalance (QCM) sensor was investigated. ZnO was used as a template to obtain a hexagonal hydroxyapatite crystal of uniaxial orientation. The ZnO was grown as a c-axis film on a Au/quartz with the surface structure of a QCM sensor. Under optimized conditions, hydroxyapatite was deposited by pulsed laser deposition. X-ray diffraction showed the hydroxyapatite film to be oriented along the c-axis. Because Au and ZnO are applied to many devices, the anisotropic properties of hydroxyapatite may be incorporated into these devices as well as QCM sensors.

  12. Real time coarse orientation detection in MR scans using multi-planar deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Bhatia, Parmeet S.; Reda, Fitsum; Harder, Martin; Zhan, Yiqiang; Zhou, Xiang Sean

    2017-02-01

    Automatically detecting anatomy orientation is an important task in medical image analysis. Specifically, the ability to automatically detect coarse orientation of structures is useful to minimize the effort of fine/accurate orientation detection algorithms, to initialize non-rigid deformable registration algorithms or to align models to target structures in model-based segmentation algorithms. In this work, we present a deep convolution neural network (DCNN)-based method for fast and robust detection of the coarse structure orientation, i.e., the hemi-sphere where the principal axis of a structure lies. That is, our algorithm predicts whether the principal orientation of a structure is in the northern hemisphere or southern hemisphere, which we will refer to as UP and DOWN, respectively, in the remainder of this manuscript. The only assumption of our method is that the entire structure is located within the scan's field-of-view (FOV). To efficiently solve the problem in 3D space, we formulated it as a multi-planar 2D deep learning problem. In the training stage, a large number coronal-sagittal slice pairs are constructed as 2-channel images to train a DCNN to classify whether a scan is UP or DOWN. During testing, we randomly sample a small number of coronal-sagittal 2-channel images and pass them through our trained network. Finally, coarse structure orientation is determined using majority voting. We tested our method on 114 Elbow MR Scans. Experimental results suggest that only five 2-channel images are sufficient to achieve a high success rate of 97.39%. Our method is also extremely fast and takes approximately 50 milliseconds per 3D MR scan. Our method is insensitive to the location of the structure in the FOV.

  13. Detection of defects in formed sheet metal using medial axis transformation

    NASA Astrophysics Data System (ADS)

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  14. Love-to-Rayleigh Conversions and Seismic Anisotropy in Cascadia

    NASA Astrophysics Data System (ADS)

    Rieger, Duayne Matthew

    Seismic anisotropy is often attributed to the development of lattice-preferred orientation (LPO) of olivine crystals in peridotite, induced by the dislocation creep component of mantle deformation (Karato et al., 2008; Ribe, 1992). Mantle-flow-induced seismic anisotropy is often modeled in the simple form of hexagonal symmetry, where the anisotropic volume is uniaxially fast or slow. This relationship between seismic anisotropy and mantle deformation allows for the mapping of mantle dynamics using measurements of seismic anisotropy. Presently, methods of measuring seismic anisotropy in Earth's mantle include shear-wave splitting and surface-wave tomography. These methods are tuned to seismically fast axes laying in the horizontal or surface-tangent plane and are limited in discerning clipping seismic fast axes. This is a shortcoming. It is reasonable to suspect the presence of dipping seismic fast axes induced by mantle flow in several tectonic regimes such as subduction zones. The slab rollback model of the subduction zone system has been argued to exhibit trench-parallel subslab anisotropy due to the lateral evacuation of the subslab mantle material (Hall et al., 2000; Russo and Silver, 1994). This model has been emboldened by the dominance of trench-parallel shear-wave-splitting measurements in the subslab mantle of global subduction zones. This model has significant geodynamic implications, requiring viscous decoupling between the subslab mantle and the sub-ducting slab. The Cascadian subduction zone is of particular scientific interest. While experiencing slab rollback (Zandt and Humphreys, 2008), trench-perpendicular shear-wave-splitting measurements are observed in the subslab mantle of Cascadia (Currie et al., 2004; Eakin et al., 2010; Long and Silver, 2008; 2009). This suggests either viscous coupling resulting in slab-entrained flow or the presence of an alternate relationship between finite strain in the mantle and seismic anisotropy. The ability to discern a clipping anisotropic axis would help gain insight into the mantle dynamics of regions such as Cascadia. Lateral gradients of seismic anisotropy in Earth's upper mantle induce coupling among Earth's spheroidal and toroidal normal modes. This coupling can manifest as observable surface-wave polarization anomalies resulting from Love to Rayleigh wave conversions. These Love to Rayleigh conversions are known in the literature as Quasi-Love (QL) waves (Park and Yu, 1992) and are sensitive to both the strike and the dip of an anisotropic symmetry axis. In this dissertation I investigate the phenomenology of QL surface-wave scattering, including its sensitivity to the type and orientation of seismic anisotropy. I then apply my findings to observations of QL wave scattering in Cascada in order to further constrain subslab mantle anisotropy in the region. First, I make initial observations and confirm the presence of QL scattering in Cascada and the western U.S. using data recorded on USArray. I then move on to develop an algorithm to model efficiently QL wave scattering in the presence of 3-dimensional anisotropic structure. Using this forward-modeling algorithm, I investigate the dependence of QL wave scattering on the type and orientation of seismic Anisotropy. I find that P and S anisotropies exhibit independent effects on scattering. Scattering due to S anisotropy is stronger than that due to P anisotropy for all orientations and dominates in the observed scattering pattern. Both the phase and amplitude of the QL wave is dependent on the orientation (strike and dip) of the symmetry axis relative to the incident propagation azimuth of the source-receiver great-circle path. Due to this, the orientation of the anisotropic symmetry axis provides a distinct signature which is observable in the variation of QL wave scattering with wave-propagation azimuth. Finally, using data recorded on USArray, I observe the variation in QL wave scattering with propagation azimuth. I then attempt to forward-model the observed behavior using the algorithm developed earlier. The best-fitting model suggests coherent trench-perpendicular mantle anisotropy with an eastward dip in the sublsab mantle of the Cascadian subduction zone. The resulting anisotropic model adds confidence to the entrained subslab mantle-flow model for Cascadia and further refutes the 3-D return-flow model associated with slab rollback.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian

    Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO{sub 3} (KNN) epitaxial films on [100]-cut SrTiO{sub 3} single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO{sub 3} (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.

  16. Magnetic domain configuration of (111)-oriented LaFeO 3 epitaxial thin films

    DOE PAGES

    Hallsteinsen, I.; Moreau, M.; Chopdekar, R. V.; ...

    2017-08-22

    In antiferromagnetic spintronics control of the domains and corresponding spin axis orientation is crucial for devices. Here we investigate the antiferromagnetic axis in (111)-oriented LaFeO 3 SrTiO 3 , which is coupled to structural twin domains. The structural domains have either the orthorhombic a- or b-axis along the in-plane <1more » $$\\bar{1}$$0> cubic directions of the substrate, and the corresponding magnetic domains have the antiferromagnetic axis in the sample plane. Six degenerate antiferromagnetic axes are found corresponding to the <1$$\\bar{1}$$0> and <11$$\\bar{2}$$> in-plane directions. This is in contrast to the biaxial anisotropy in (001)-oriented films and reflects how crystal orientation can be used to control magnetic anisotropy in antiferromagnets.« less

  17. Well-ordered large-area arrays of epitaxial ferroelectric (Bi,La)4Ti3O12 nanostructures fabricated by gold nanotube-membrane lithography

    NASA Astrophysics Data System (ADS)

    Lee, Sung Kyun; Lee, Woo; Alexe, Marin; Nielsch, Kornelius; Hesse, Dietrich; Gösele, Ulrich

    2005-04-01

    Two-dimensionally well-ordered, large-area arrays of epitaxial, ferroelectric, La-substituted Bi4Ti3O12 (BLT) nanostructures are prepared using gold nanotube membranes as a liftoff mask. Epitaxial nanostructures with a height of about 65nm and a lateral size of about 150nm, with either (001) ("c-axis") orientation, or mixed (118)/(100) ("non-c-axis") orientation, are obtained on (001)- and (011)-oriented SrTiO3 substrates, respectively. The ferroelectric properties are probed by piezoresponse scanning force microscopy. Non-c-axis-oriented BLT nanostructures show an effective piezoresponse coefficient (2dzz) of about 38.0pm /V, whereas c-axis-oriented structures show one of only about 4.9pm/V.

  18. Ferro- and piezoelectric properties of polar-axis-oriented CaBi4Ti4O15 films

    NASA Astrophysics Data System (ADS)

    Kato, Kazumi; Fu, Desheng; Suzuki, Kazuyuki; Tanaka, Kiyotaka; Nishizawa, Kaori; Miki, Takeshi

    2004-05-01

    Polar-axis-oriented CaBi4Ti4O15 (CBTi144) films were fabricated on Pt foils using a complex metal alkoxide solution. The 500-nm-thick film showed the columnar structure and consisted of well-developed grains. The a/b-axis orientation of the ferroelectric films is considered to be associated with the preferred orientation of Pt foil. The film showed good ferro- and piezoelectric properties. The Pr and Ec were 25 μC/cm2 and 306 kV/cm, respectively, at an applied voltage of 115 V. The d33 was characterized as 30 pm/V by piezoresponse force microscopy. The values were twice as large as those of the CBTi144 thin film with random orientation. The polar-axis-oriented CBTi144 films would open up possibilities for devices as Pb-free piezoelectric materials.

  19. Structure and function of cytochrome c2 in electron transfer complexes with the photosynthetic reaction center of Rhodobacter sphaeroides: optical linear dichroism and EPR.

    PubMed

    Drepper, F; Mathis, P

    1997-02-11

    The photosynthetic reaction center (RC) and its secondary electron donor the water-soluble cytochrome (cyt) c2 from the purple bacterium Rhodobacter sphaeroides have been used in cross-linked and non-cross-linked complexes, oriented in compressed gels or partially dried multilayers, to study the respective orientation of the primary donor P (BChl dimer) and of cyt c2. Three methods were used: (i) Polarized optical absorption spectra at 295 and 10 K were measured and the linear dichroism of the two individual transitions (Qx, Qy), which are nearly degenerate within the alpha-band of reduced cyt c2, was determined. Attribution of the polarization directions to the molecular axes within the heme plane yielded the average cyt orientation in the complexes. (ii) Time-resolved flash absorption measurements using polarized light allowed determination of the orientation of cyt c2 in complexes which differ in their kinetics of electron transfer. (iii) EPR spectroscopy of ferricyt c2 in cross-linked RC-cyt c2 complexes was used to determine the angle between the heme and the membrane plane. The results suggest the following structural properties for the docking of cyt c2 to the RC: (i) In cross-linked complexes, the two cytochromes displaying half-lives of 0.7 and 60 micros for electron transfer to P+ are similarly oriented (difference < 10 degrees). (ii) For cross-linked cyt c2 the heme plane is parallel to the symmetry axis of the RC (0 degrees +/- 10 degrees). Moreover, the Qy transition, which is assumed to be polarized within the ring III-ring I direction of the heme plane, makes an angle of 56 degrees +/- 1 degree with the symmetry axis. (iii) The dichroism spectrum for the fast phase (0.7 micros) for the non-cross-linked cyt c2-RC complex suggests an orientation similar to that of cross-linked cyt c2, but the heme plane is tilted about 20 degrees closer to the membrane. An alternative model is that two or more bound states of cyt c2 with heme plane tilt angles between 0 degrees and 30 degrees allow the fast electron transfer. Zero-length cross-linking of cyt c2 may take place in one of these bound states. These orientations of cyt c2 are compared to different structural models of RC-cyt c2 complexes proposed previously. The relation of the two kinetic phases observed in cross-linked cyt c2 complexes to biphasic kinetics of the mobile reaction partners is discussed with respect to the dynamic electrostatic interactions during the formation of a docking complex and its dissociation. A mechanism is proposed in which a pre-orientation of cyt c2 relative to the membrane plane occurs by interaction of its strong electrostatic dipole with the negative surface charges of the RC. The optimal matching of the oppositely charged surfaces of the two proteins necessitates further rotation of the cyt around its dipole axis.

  20. Contour symmetry detection: the influence of axis orientation and number of objects.

    PubMed

    Friedenberg, J; Bertamini, M

    2000-09-01

    Participants discriminated symmetrical from random contours connected by straight lines to form part of one- or two-objects. In experiment one, symmetrical contours were translated or reflected and presented at vertical, horizontal, and oblique axis orientations with orientation constant within blocks. Translated two-object contours were detected more easily than one, replicating a "lock-and-key" effect obtained previously for vertical orientations only [M. Bertamini, J.D. Friedenberg, M. Kubovy, Acta Psychologica, 95 (1997) 119-140]. A second experiment extended these results to a wider variety of axis orientations under mixed block conditions. The pattern of performance for translation and reflection at different orientations corresponded in both experiments, suggesting that orientation is processed similarly in the detection of these symmetries.

  1. PSOCT studies of intervertebral disk

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, Peter C.; Gangnus, Sergey V.

    2004-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is an emerging optical imaging technique that is sensitive to the birefringence properties of tissues. It thus has applications in studying the large-scale ordering of collagen fibers within connective tissues. This ordering not only provides useful insights into the relationship between structure and function for various anatomical structures but also is an indicator of pathology. Intervertebral disk is an elastic tissue of the spine and possesses a 3-D collagen structure well suited to study using PSOCT. Since the outer layer of the disk has a lamellar structure with collagen fibers oriented in a trellis-like arrangement between lamellae, the birefringence fast-axis shows pronounced variations with depth, on a spatial scale of about 100 μm. The lamellar thickness varies with age and possibly with disease. We have used a polarisation-sensitive optical coherence tomography system to measure the birefringence properties of freshly excised, hydrated bovine caudal intervertebral disk and compared this with equine flexor tendon. Our results clearly demonstrate the ability of PSOCT to detect the outer three lamellae, down to a depth of at least 700 μm, via discontinuities in the depth-resolved retardance. We have applied a simple semi-empirical model based on Jones calculus to quantify the variation in the fast-axis orientation with depth. Our data and modeling is in broad agreement with previous studies using x-ray diffraction and polarization microscopy applied to histological sections of dehydrated disk. Our results imply that PSOCT may prove a useful tool to study collagen organisation within intervertebral disk in vitro and possibly in vivo and its variation with age and disease.

  2. Stimuli-Driven Control of the Helical Axis of Self-Organized Soft Helical Superstructures.

    PubMed

    Bisoyi, Hari Krishna; Bunning, Timothy J; Li, Quan

    2018-06-01

    Supramolecular and macromolecular functional helical superstructures are ubiquitous in nature and display an impressive catalog of intriguing and elegant properties and performances. In materials science, self-organized soft helical superstructures, i.e., cholesteric liquid crystals (CLCs), serve as model systems toward the understanding of morphology- and orientation-dependent properties of supramolecular dynamic helical architectures and their potential for technological applications. Moreover, most of the fascinating device applications of CLCs are primarily determined by different orientations of the helical axis. Here, the control of the helical axis orientation of CLCs and its dynamic switching in two and three dimensions using different external stimuli are summarized. Electric-field-, magnetic-field-, and light-irradiation-driven orientation control and reorientation of the helical axis of CLCs are described and highlighted. Different techniques and strategies developed to achieve a uniform lying helix structure are explored. Helical axis control in recently developed heliconical cholesteric systems is examined. The control of the helical axis orientation in spherical geometries such as microdroplets and microshells fabricated from these enticing photonic fluids is also explored. Future challenges and opportunities in this exciting area involving anisotropic chiral liquids are then discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High-piezoelectric behavior of c-axis-oriented lead zirconate titanate thin films with composition near the morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Fu, Desheng; Suzuki, Hisao; Ogawa, Takeshi; Ishikawa, Kenji

    2002-05-01

    The piezoelectric responses of c-axis-oriented Pb(Zr0.53Ti0.47)O3 (PZT) thin films have been studied by measuring the stress-induced charge with an accurate charge integrator. These measurements reveal that the c-axis-oriented PZT films have high values of d33, which are several times those of ceramic materials. The intrinsic d33 values of poled films are about 680 and 800 pC/N for the c-axis-oriented films on Si and MgO single-crystal substrates, respectively. It shows that the thin-film deposition technique opens an approach for exploring the potential superior properties of PZT near the morphotropic phase boundary.

  4. Growth of Highly c-axis Oriented and/or Epitaxial Single-Domain b-axis Oriented La5Ca9Cu24O41 Thin Films by Pulsed Laser Deposition

    DTIC Science & Technology

    2016-04-01

    project attempted to grow La5Ca9Cu24O41 (LCCO) films on important substrates with the high- thermal -conductivity direction parallel or perpendicular...to the surface of the substrate, counting success as demonstration of b-axis or c-axis oriented LCCO films along with measurement of bulk thermal ...deposition, LCCO, La5Ca9Cu24O41, thermal conductivity, epitaxy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 24

  5. Polarized Raman Spectroscopy for Determining the Orientation of di-D-phenylalanine Molecules in a Nanotube.

    PubMed

    Sereda, Valentin; Ralbovsky, Nicole M; Vasudev, Milana C; Naik, Rajesh R; Lednev, Igor K

    2016-09-01

    Self-assembly of short peptides into nanostructures has become an important strategy for the bottom-up fabrication of nanomaterials. Significant interest to such peptide-based building blocks is due to the opportunity to control the structure and properties of well-structured nanotubes, nanofibrils, and hydrogels. X-ray crystallography and solution NMR, two major tools of structural biology, have significant limitations when applied to peptide nanotubes because of their non-crystalline structure and large weight. Polarized Raman spectroscopy was utilized for structural characterization of well-aligned D-Diphenylalanine nanotubes. The orientation of selected chemical groups relative to the main axis of the nanotube was determined. Specifically, the C-N bond of CNH 3 + groups is oriented parallel to the nanotube axis, the peptides' carbonyl groups are tilted at approximately 54° from the axis and the COO - groups run perpendicular to the axis. The determined orientation of chemical groups allowed the understanding of the orientation of D-diphenylalanine molecule that is consistent with its equilibrium conformation. The obtained data indicate that there is only one orientation of D-diphenylalanine molecules with respect to the nanotube main axis.

  6. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2010-01-01

    The extremely massive (> 90 Solar Mass) and luminous (= 5 x 10(exp 6) Solar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the galaxy. However, many of its underlying physical parameters remain a mystery. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision in Eta Car, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of i approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-1) space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  7. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2011-01-01

    The extremely massive (> 90 Stellar Mass) and luminous (= 5 x 10(exp 6) Stellar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  8. The sun and heliosphere at solar maximum

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Marsden, R. G.; Balogh, A.; Gloeckler, G.; Geiss, J.; McComas, D. J.; McKibben, R. B.; MacDowall, R. J.; Lanzerotti, L. J.; Krupp, N.; hide

    2003-01-01

    Recent Ulysses observations from the Sun's equator to the poles reveal fundamental properties of the three-dimensional heliosphere at the maximum in solar activity. The heliospheric magnetic field originates from a magnetic dipole oriented nearly perpendicular to, instead of nearly parallel to, the Sun'rotation axis. Magnetic fields, solar wind, and energetic charged particles from low-latitude sources reach all latitudes, including the polar caps. The very fast high-latitude wind and polar coronal holes disappear and reappear together. Solar wind speed continues to be inversely correlated with coronal temperature. The cosmic ray flux is reduced symmetrically at all latitudes.

  9. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2015 First Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Kijewski, Seth A.

    2015-01-29

    During the first quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Autodesk delivered a new research version of ASMI to PNNL. This version includes the improved 3D fiber orientation solver, and the reduced order model (ROM) for fiber length distribution using the proper orthogonal decomposition (POD) implemented in the mid-plane, dual-domain and 3D solvers. 2) Autodesk coordinated a conference paper with PNNL reporting ASMI mid-plane fiber orientation predictions compared with the measured data for two PlastiComp plaques. This paper was accepted for presentation at the 2015 Society for Plastics Engineers (SPE) ANTEC conference.more » 3) The University of Illinois (Prof. Tucker) assisted team members from Purdue with fiber orientation measurement techniques, including interpretation of off-axis cross sections. 4) The University of Illinois assisted Autodesk team members with software implementation of the POD approach for fiber length modeling, and with fiber orientation modeling. 5) The University of Illinois co-authored in the SPE ANTEC paper, participated with the team in discussions of plaque data and model results, and participated in the definition of go/no-go experiments and data. 6) Purdue University (Purdue) conducted fiber orientation measurements for 3 PlastiComp plaques: fast-fill 30wt% LCF/PP center-gated, fast-fill 50wt% LCF/PA66 edge-gated and fast-fill 50wt% LCF/PA66 center-gated plaques, and delivered the fiber orientation data for these plaques at the selected locations (named A, B, and C) to PNNL. However, the data for the fast-fill 50wt% LCF/PA66 edge-gated plaque exhibited unusual variations and could not be used for the model validation. Purdue will re-measure fiber orientation for this plaque. 7) Based on discussions with the University of Illinois Purdue explained the ambiguity in the measurements of the fiber orientation components. 8) PNNL discussed with team members to establish a go/no-go decision plan for the project and submitted the established plan to DOE. 9) PNNL performed ASMI mid-plane analyses for the fast-fill center-gated 30wt% LCF/PP and 50wt% LCF/PA66 plaques and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. 10) Based on discussions with the University of Illinois and Autodesk, PNNL proposed a procedure to adjust fiber orientation data for Location A of the center-gated plaques so that the data can be expressed and interpreted in the flow/cross-flow direction coordinate system. 11) PNNL tested the new ASMI version received from Autodesk, examined and discussed 3D fiber orientation predictions for PlastiComp plaques. 12) PlastiComp, Inc. (PlastiComp), Toyota Research Institute North America (Toyota) and Magna Exteriors and Interiors Corp. (Magna) participated in discussions with team members on the go/no-go plan and the issues related to fiber length measurements. Toyota continued the discussion with Magna on tool modification for molding the complex part in order to achieve the target fiber length in the part.« less

  10. Estimating the spin axis orientation of the Echostar-2 box-wing geosynchronous satellite

    NASA Astrophysics Data System (ADS)

    Earl, Michael A.; Somers, Philip W.; Kabin, Konstantin; Bédard, Donald; Wade, Gregg A.

    2018-04-01

    For the first time, the spin axis orientation of an inactive box-wing geosynchronous satellite has been estimated from ground-based optical photometric observations of Echostar-2's specular reflections. Recent photometric light curves obtained of Echostar-2 over four years suggest that unusually bright and brief specular reflections were occurring twice within an observed spin period. These bright and brief specular reflections suggested two satellite surfaces with surface normals separated by approximately 180°. The geometry between the satellite, the Sun, and the observing location at the time of each of the brightest observed reflections, was used to estimate Echostar-2's equatorial spin axis orientation coordinates. When considering prograde and retrograde rotation, Echostar-2's spin axis orientation was estimated to have been located within 30° of either equatorial coordinate pole. Echostar-2's spin axis was observed to have moved approximately 180° in right ascension, within a time span of six months, suggesting a roughly one year spin axis precession period about the satellite's angular momentum vector.

  11. Effect of Stress and Saturation on Shear Wave Anisotropy: Laboratory Observations Using Laser Doppler Interferometry

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Collet, O.; Bona, A.; Gurevich, B.

    2015-12-01

    Estimations of hydrocarbon and water resources as well as reservoir management during production are the main challenges facing the resource recovery industry nowadays. The recently discovered reservoirs are not only deep but they are also located in complicated geological formations. Hence, the effect of anisotropy on reservoir imaging becomes significant. Shear wave (S-wave) splitting has been observed in the field and laboratory experiments for decades. Despite the fact that S-wave splitting is widely used for evaluation of subsurface anisotropy, the effects of stresses as well fluid saturation on anisotropy have not been understood in detail. In this paper we present the laboratory study of the effect of stress and saturation on S-wave splitting for a Bentheim sandstone sample. The cubic sample (50mm3), porosity 22%, density 1890kg/m3) was placed into a true-triaxial cell. The sample was subjected to several combinations of stresses varying from 0 to 10MPa and applied to the sample in two directions (X and Y), while no stress was applied to the sample in the Z-direction. The sample's bedding was nearly oriented parallel to Y-Z plane. The ultrasonic S-waves were exited at a frequency of 0.5MHz by a piezoelectric transducer and were propagating in the Z-direction. Upon wave arrival onto the free surface the displacement of the surface was monitored by a Laser Doppler interferometer. Hodograms of the central point of the dry sample (Fig. 1) demonstrate how S-wave polarizations for both "fast" and "slow" S-waves change when increasing the stress in the X direction, while the stress in direction Y is kept constant at 3 MPa. Polarization of the fast S wave is shifted towards the X-axis (axis of the maximum stress). While both S-wave velocities increase with stress, the anisotropy level remains the same. No shift of polarization of fast wave was observed when the stress along the Y-axis was kept at 3 MPa, while the stress along the X-axis was increasing. However, in that case, S-wave splitting is more prominent. The fast S-wave velocity is increasing with the stress increase while the slow S-wave velocity starts decreasing after 5MPa, indicating possible cracks opening in the Y-direction. Interestingly no change in anisotropy was observed for the water-saturated sample.

  12. Accuracy of right and left ventricular functional assessment by short-axis vs axial cine steady-state free-precession magnetic resonance imaging: intrapatient correlation with main pulmonary artery and ascending aorta phase-contrast flow measurements.

    PubMed

    James, Susan H; Wald, Rachel; Wintersperger, Bernd J; Jimenez-Juan, Laura; Deva, Djeven; Crean, Andrew M; Nguyen, Elsie; Paul, Narinder S; Ley, Sebastian

    2013-08-01

    The left ventricle (LV) is routinely assessed with cardiac magnetic resonance imaging (MRI) by using short-axis orientation; it remains unclear whether the right ventricle (RV) can also be adequately assessed in this orientation or whether dedicated axial orientation is required. We used phase-contrast (PC) flow measurements in the main pulmonary artery (MPA) and the ascending aorta (Aorta) as nonvolumetric standard of reference and compared RV and LV volumes in short-axis and axial orientations. A retrospective analysis identified 30 patients with cardiac MRI data sets. Patients underwent MRI (1.5 T or 3 T), with retrospectively gated cine steady-state free-precession in axial and short-axis orientations. PC flow analyses of MPA and Aorta were used as the reference measure of RV and LV output. There was a high linear correlation between MPA-PC flow and RV-stroke volume (SV) short axis (r = 0.9) and RV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 1.4 mL for RV axial and -2.3 mL for RV-short-axis vs MPA-PC flow. There was a high linear correlation between Aorta-PC flow and LV-SV short-axis (r = 0.9) and LV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 4.8 m for LV short axis and 7.0 mL for LV axial vs Aorta-PC flow. There was no significant difference (P = .6) between short-axis-LV SV and short-axis-RV SV. No significant impact of the slice acquisition orientation for determination of RV and LV stroke volumes was found. Therefore, cardiac magnetic resonance workflow does not need to be extended by an axial data set for patients without complex cardiac disease for assessment of biventricular function and volumes. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Ice crystal c-axis orientation and mean grain size measurements from the Dome Summit South ice core, Law Dome, East Antarctica

    NASA Astrophysics Data System (ADS)

    Treverrow, Adam; Jun, Li; Jacka, Tim H.

    2016-06-01

    We present measurements of crystal c-axis orientations and mean grain area from the Dome Summit South (DSS) ice core drilled on Law Dome, East Antarctica. All measurements were made on location at the borehole site during drilling operations. The data are from 185 individual thin sections obtained between a depth of 117 m below the surface and the bottom of the DSS core at a depth of 1196 m. The median number of c-axis orientations recorded in each thin section was 100, with values ranging from 5 through to 111 orientations. The data from all 185 thin sections are provided in a single comma-separated value (csv) formatted file which contains the c-axis orientations in polar coordinates, depth information for each core section from which the data were obtained, the mean grain area calculated for each thin section and other data related to the drilling site. The data set is also available as a MATLAB™ structure array. Additionally, the c-axis orientation data from each of the 185 thin sections are summarized graphically in figures containing a Schmidt diagram, histogram of c-axis colatitudes and rose plot of c-axis azimuths. All these data are referenced by doi:10.4225/15/5669050CC1B3B and are available free of charge at https://data.antarctica.gov.au.<

  14. Domino model for geomagnetic field reversals.

    PubMed

    Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M

    2013-01-01

    We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.

  15. Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Fujitani, W.; Ishimoto, T.; Umakoshi, Y.

    2009-05-01

    Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-Kα radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.

  16. Piezoelectric actuated gimbal

    DOEpatents

    Tschaggeny, Charles W [Woods Cross, UT; Jones, Warren F [Idaho Falls, ID; Bamberg, Eberhard [Salt Lake City, UT

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  17. Chalcogenide molded freeform optics for mid-infrared lasers

    NASA Astrophysics Data System (ADS)

    Chenard, Francois; Alvarez, Oseas; Yi, Allen

    2017-05-01

    High-precision chalcogenide molded micro-lenses were produced to collimate mid-infrared Quantum Cascade Lasers (QCLs). Molded cylindrical micro-lens prototypes with aspheric contour (acylindrical), high numerical aperture (NA 0.8) and small focal length (f<2 mm) were fabricated to collimate the QCL fast-axis beam. Another innovative freeform micro-lens has an input acylindrical surface to collimate the fast axis and an orthogonal output acylindrical surface to collimate the slow axis. The thickness of the freeform lens is such that the output fast- and slow-axis beams are circular. This paper presents results on the chalcogenide molded freeform micro-lens designed to collimate and circularize QCL at 4.6 microns.

  18. Polarization/Spatial Combining of Laser-Diode Pump Beams

    NASA Technical Reports Server (NTRS)

    Gelsinger, Paul; Liu, Duncan

    2008-01-01

    A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.

  19. Anisotropy in the lowermost mantle: to the limits of ray theory (and beyond)

    NASA Astrophysics Data System (ADS)

    Nowacki, A.; Walker, A.; Wookey, J. M.; Kendall, J. M.

    2013-12-01

    It seems that the Earth's mantle flows on the order of centimetres per year, but it has thus far been impossible to directly constrain details of flow direction or magnitude through our primary means of probing the deep interior--seismic waves. Yet the presence of anisotropy in the upper and lowermost mantle presents an intriguing possibility: if this is due to lattice preferred orientation (LPO) of anisotropic minerals in response to flow, one may be able to ';invert' for the recent strain history in these regions. New mineral physics experiments and numerical modelling will help define slip systems for mantle minerals and under which conditions LPO develops, eventually removing two key current unknowns. Homogenisation techniques (e.g., viscoplastic self-consistent method) to model LPO development from strain history exist and are in active development. Models of mantle convection are increasingly complex and will in future include viscosity which depends on strain history and LPO. The key step in retrieving flow from seismic observables, therefore, is to obtain enough information about the type of anisotropy present in order to relate it to the alignment of mineral grains. Here we focus on the seismological ';worst case' of the lowermost mantle--D″--where surface waves are not available, giving the most pessimistic view of progress. The infinite frequency (ray theory) assumption is often made when forward modelling wave propagation because it allows for rapid computation. Any inversion for flow must be computationally tractable, so we must assess the applicability of this assumption. To do so, we compute the wave field making no assumptions about the symmetry of elasticity in the Earth; i.e., we permit all 21 elastic constants to vary. Calculations are performed at the same frequency as observations (0.01-0.2 Hz). We use the spectral element method, which scales well for very large calculations. In particular we use a modified version of SPECFEM3D_GLOBE which does not perform any file I/O, removing a major bottleneck in the simulations at the scale we require. As a starting case, one step more complicated than radial anisotropy, we model anisotropy in D″ where there is a rotational axis of symmetry taking any orientation relative to the wave propagation direction (termed tilted transverse isotropy, TTI). In ray theory, one can retrieve the orientation of the axis of symmetry using two rays which traverse the region in different directions by measuring the shear wave splitting in each. The fast orientation should directly relate to the apparent orientation of the axis in that direction. A finite frequency approach, however, shows that whilst shear wave splitting is produced for an anisotropic layer ~50 km thick or more at the base of the mantle, the fast orientation does not relate directly to that expected-it may be up to 45° different to the ray-theory prediction. The situation becomes more complicated as the symmetry of the anisotropy is reduced further to orthorhombic. Nonetheless, we propose a simple relation between observed splitting parameters and TTI orientation which enables qualitative predictions to be made without the necessity of very large calculations on HPC machines. In the medium term, this may be enough to make a first step towards taking seismic observables and retrieving the flow in the deep mantle.

  20. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Chistyakov, Roman

    2017-02-01

    Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  1. Motion streaks in fast motion rivalry cause orientation-selective suppression.

    PubMed

    Apthorp, Deborah; Wenderoth, Peter; Alais, David

    2009-05-14

    We studied binocular rivalry between orthogonally translating arrays of random Gaussian blobs and measured the strength of rivalry suppression for static oriented probes. Suppression depth was quantified by expressing monocular probe thresholds during dominance relative to thresholds during suppression. Rivalry between two fast motions or two slow motions was compared in order to test the suggestion that fast-moving objects leave oriented "motion streaks" due to temporal integration (W. S. Geisler, 1999). If fast motions do produce motion streaks, then fast motion rivalry might also entail rivalry between the orthogonal streak orientations. We tested this using a static oriented probe that was aligned either parallel to the motion trajectory (hence collinear with the "streaks") or was orthogonal to the trajectory, predicting that rivalry suppression would be greater for parallel probes, and only for rivalry between fast motions. Results confirmed that suppression depth did depend on probe orientation for fast motion but not for slow motion. Further experiments showed that threshold elevations for the oriented probe during suppression exhibited clear orientation tuning. However, orientation-tuned elevations were also present during dominance, suggesting within-channel masking as the basis of the extra-deep suppression. In sum, the presence of orientation-dependent suppression in fast motion rivalry is consistent with the "motion streaks" hypothesis.

  2. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  3. An Adaptive 6-DOF Tracking Method by Hybrid Sensing for Ultrasonic Endoscopes

    PubMed Central

    Du, Chengyang; Chen, Xiaodong; Wang, Yi; Li, Junwei; Yu, Daoyin

    2014-01-01

    In this paper, a novel hybrid sensing method for tracking an ultrasonic endoscope within the gastrointestinal (GI) track is presented, and the prototype of the tracking system is also developed. We implement 6-DOF localization by sensing integration and information fusion. On the hardware level, a tri-axis gyroscope and accelerometer, and a magnetic angular rate and gravity (MARG) sensor array are attached at the end of endoscopes, and three symmetric cylindrical coils are placed around patients' abdomens. On the algorithm level, an adaptive fast quaternion convergence (AFQC) algorithm is introduced to determine the orientation by fusing inertial/magnetic measurements, in which the effects of magnetic disturbance and acceleration are estimated to gain an adaptive convergence output. A simplified electro-magnetic tracking (SEMT) algorithm for dimensional position is also implemented, which can easily integrate the AFQC's results and magnetic measurements. Subsequently, the average position error is under 0.3 cm by reasonable setting, and the average orientation error is 1° without noise. If magnetic disturbance or acceleration exists, the average orientation error can be controlled to less than 3.5°. PMID:24915179

  4. The dynamic contributions of the otolith organs to human ocular torsion

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Teiwes, W.; Clarke, A. H.; Scherer, H.; Young, L. R.

    1996-01-01

    We measured human ocular torsion (OT) monocularly (using video) and binocularly (using search coils) while sinusoidally accelerating (0.7 g) five human subjects along an earth-horizontal axis at five frequencies (0.35, 0.4, 0.5, 0.75, and 1.0 Hz). The compensatory nature of OT was investigated by changing the relative orientation of the dynamic (linear acceleration) and static (gravitational) cues. Four subject orientations were investigated: (1) Y-upright-acceleration along the interaural (y) axis while upright; (2) Y-supine-acceleration along the y-axis while supine; (3) Z-RED-acceleration along the dorsoventral (z) axis with right ear down; (4) Z-supine-acceleration along the z-axis while supine. Linear acceleration in the Y-upright, Y-supine and Z-RED orientations elicited conjugate OT. The smaller response in the Z-supine orientation appeared disconjugate. The amplitude of the response decreased and the phase lag increased with increasing frequency for each orientation. This frequency dependence does not match the frequency response of the regular or irregular afferent otolith neurons; therefore the response dynamics cannot be explained by simple peripheral mechanisms. The Y-upright responses were larger than the Y-supine responses (P < 0.05). This difference indicates that OT must be more complicated than a simple low-pass filtered response to interaural shear force, since the dynamic shear force along the interaural axis was identical in these two orientations. The Y-supine responses were, in turn, larger than the Z-RED responses (P < 0.01). Interestingly, the vector sum of the Y-supine responses plus Z-RED responses was not significantly different (P = 0.99) from the Y-upright responses. This suggests that, in this frequency range, the conjugate OT response during Y-upright stimulation might be composed of two components: (1) a response to shear force along the y-axis (as in Y-supine stimulation), and (2) a response to roll tilt of gravitoinertial force (as in Z-RED stimulation).

  5. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  6. The Attitude Control System for the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe mission produces a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. Sufficient attitude knowledge is provided to yield instrument pointing to a standard deviation (l sigma) of 1.3 arc-minutes per axis. In addition, the spacecraft acquires and holds the sunline at initial acquisition and in the event of a failure, and slews to the proper orbit adjust orientations and to the proper off-sunline attitude to start the compound spin. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  7. Automated flight path planning for virtual endoscopy.

    PubMed

    Paik, D S; Beaulieu, C F; Jeffrey, R B; Rubin, G D; Napel, S

    1998-05-01

    In this paper, a novel technique for rapid and automatic computation of flight paths for guiding virtual endoscopic exploration of three-dimensional medical images is described. While manually planning flight paths is a tedious and time consuming task, our algorithm is automated and fast. Our method for positioning the virtual camera is based on the medial axis transform but is much more computationally efficient. By iteratively correcting a path toward the medial axis, the necessity of evaluating simple point criteria during morphological thinning is eliminated. The virtual camera is also oriented in a stable viewing direction, avoiding sudden twists and turns. We tested our algorithm on volumetric data sets of eight colons, one aorta and one bronchial tree. The algorithm computed the flight paths in several minutes per volume on an inexpensive workstation with minimal computation time added for multiple paths through branching structures (10%-13% per extra path). The results of our algorithm are smooth, centralized paths that aid in the task of navigation in virtual endoscopic exploration of three-dimensional medical images.

  8. Orientation dependent ferroelectric properties in samarium doped bismuth titanate thin films grown by the pulsed-laser-ablation method

    NASA Astrophysics Data System (ADS)

    Cheng, Zhenxiang; Kannan, Chinna Venkatasamy; Ozawa, Kiyoshi; Kimura, Hideo; Wang, Xiaolin

    2006-07-01

    Samarium doped bismuth titanate thin films with the composition of Bi3.25Sm0.75Ti3O12 and with strong preferred orientations along the c axis and the (117) direction were fabricated on Pt /TiO2/SiO2/Si substrate by pulsed laser ablation. Measurements on Pt /BSmT/Pt capacitors showed that the c-axis oriented film had a small remanent polarization (2Pr) of 5μC/cm2, while the highly (117) oriented film showed a 2Pr value of 54μC/cm2 at an electrical field of 268kV/cm and a coercive field Ec of 89kV/cm. This is different from the sol-gel derived c-axis oriented Bi3.15Sm0.85Ti3O12 film showing a 2Pr value of 49μC/cm2.

  9. Short-term fasting attenuates the response of the HPG axis to kisspeptin challenge in the adult male rhesus monkey (Macaca mulatta).

    PubMed

    Wahab, Fazal; Aziz, Farzana; Irfan, Shahzad; Zaman, Waheed-Uz; Shahab, Muhammad

    2008-11-07

    In primates, changes in nutritional status affect the hypothalamic-pituitary-gonadal (HPG) axis by still poorly understood mechanisms. Recently, hypothalamic kisspeptin-GPR54 signaling has emerged as a significant regulator of this neuroendocrine axis. The present study was designed to examine whether suppression of the reproductive function by acute food-restriction in a non-human primate is mediated by decreased responsiveness of the HPG axis to endogenous kisspeptin drive. Five intact adult male rhesus monkeys habituated to chair-restraint, received intravenous boli of human kisspeptin-10 (KP10, 50 microg), hCG (50 IU), and vehicle (1 ml) in both fed and 48-h fasting conditions. Plasma concentrations of glucose, cortisol and testosterone (T) were measured by using enzymatic and specific RIAs, respectively. The acute 48-h fasting decreased plasma glucose (P<0.01) and T (P<0.005) levels, and increased cortisol levels (P<0.05). KP10 administration caused a robust stimulation of T secretion in both fed and fasted monkeys. However, mean T concentration and T AUC after KP10 administration were significantly (P<0.01-0.005) reduced in fasted monkeys. Likewise, the time of the first significant increase in post-KP10 T levels was also significantly (P<0.01) delayed. T response to hCG stimulation was similar in fed and fasted monkeys. The present results indicate that under fasting conditions the KP10 induced T response is delayed and suppressed. These data support the notion that fasting-induced suppression of the HPG axis in the adult male rhesus monkey may involve, at least in part, a reduction in the sensitivity of the GnRH neuronal network to endogenous kisspeptin stimulation.

  10. Twinning of amphibian embryos by centrifugation

    NASA Technical Reports Server (NTRS)

    Black, S. D.

    1984-01-01

    In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.

  11. Highly controlled orientation of CaBi4Ti4O15 using a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Suzuki, Tohru S.; Kimura, Masahiko; Shiratsuyu, Kosuke; Ando, Akira; Sakka, Yoshio; Sakabe, Yukio

    2006-09-01

    The texture of feeble magnetic ceramics can be controlled by a strong magnetic field. When the magnetic susceptibility of the c axis is smaller than that of the other axes, the c axis aligns perpendicular to the magnetic field; however, the direction is randomly oriented on the plane perpendicular to the magnetic field. The authors demonstrate in this letter that a highly controlled texture in bismuth titanate, which has a c-axis susceptibility smaller than the other axes, can be achieved using a two-step magnetic field procedure. This highly controlled orientation is effective for improving the electromechanical coupling coefficient.

  12. Effect of vanadium content on remanent polarization in bismuth titanate thin films prepared by liquid source misted chemical deposition

    NASA Astrophysics Data System (ADS)

    Kim, Tai Suk; Kim, Ki Woong; Jeon, Min Ku; Jung, Chang Hwa; Woo, Seong Ihl

    2007-01-01

    Bi4-x/3Ti3-xVxO12 (BTV) ferroelectric thin films were fabricated by liquid source misted chemical deposition. The substitution of vanadium for titanium site changed the crystalline orientation and surface morphology of the thin film, which in turn influenced the remanent polarization (Pr). 2Pr of BTV thin film increased with increase of vanadium content and reached a maximum value (21.5μC/cm2) at x =0.03, as this corresponded with the largest degree of a-axis orientation. However, at 0.05⩽x⩽0.09, 2Pr reduced with decrease in the degree of a-axis orientation. These results indicate that the Pr of the films is dependent on the degree of a-axis orientation.

  13. The Effect of Microgravity on the Growth of Lead Tin Telluride

    NASA Technical Reports Server (NTRS)

    Narayanan, R.

    2000-01-01

    The main objective of this research was to present a model for the prediction of the effect of the microgravity environment on the growth of Lead Tin Telluride. The attitude change and its relation to the experimental objectives: The main objective for the AADSF experiment on USMP 3 involving LTT growth was to estimate the effect of ampoule orientation on the axial and radial segregation of tin telluride. As the furnace was not situated on a gimbal there was no possibility to reorient the ampoule during the flight. Instead the only way to change the growth orientation was to change the attitude of the orbiter. This was accomplished by vernier rocket firings. In what follows it must be noted that the orbiter body coordinates are such that the positive z axis points outward from the 'belly', the positive 'x' axis points outwards from the nose and the positive 'y' axis points outwards from the starboard side. The furnace which was in the pay load had its axis aligned with the orbiter's 'z' axis with the hot end closest to the shuttle body. There were basically three orientations that were desired. These corresponded to the ampoule being seen as a heated from above (thermally stable-solutally unstable) configuration, the heated from below (where the instabilities were reversed from the first orientation) configuration and an 'in between' case where the ampoule axis was misaligned with respect to the orbiters 'g(sub z)' axis.

  14. Axis of Eye Rotation Changes with Head-Pitch Orientation during Head Impulses about Earth-Vertical

    PubMed Central

    Schubert, Michael C.; Clendaniel, Richard A.; Carey, John P.; Della Santina, Charles C.; Minor, Lloyd B.; Zee, David S.

    2006-01-01

    The goal of this study was to assess how the axis of head rotation, Listing's law, and eye position influence the axis of eye rotation during brief, rapid head rotations. We specifically asked how the axis of eye rotation during the initial angular vestibuloocular reflex (VOR) changed when the pitch orientation of the head relative to Earth-vertical was varied, but the initial position of the eye in the orbit and the orientation of Listing's plane with respect to the head were fixed. We measured three-dimensional eye and head rotation axes in eight normal humans using the search coil technique during head-and-trunk (whole-body) and head-on-trunk (head-only) “impulses” about an Earth-vertical axis. The head was initially oriented at one of five pitch angles (30° nose down, 15° nose down, 0°, 15° nose up, 30° nose up). The fixation target was always aligned with the nasooccipital axis. Whole-body impulses were passive, unpredictable, manual, rotations with peak-amplitude of ∼20°, peak-velocity of ∼80°/s, and peak-acceleration of ∼1000°/s2. Head-only impulses were also passive, unpredictable, manual, rotations with peak-amplitude of ∼20°, peak-velocity of ∼150°/s, and peak-acceleration of ∼3000°/s2. During whole-body impulses, the axis of eye rotation tilted in the same direction, and by an amount proportional (0.51 ± 0.09), to the starting pitch head orientation (P < 0.05). This proportionality constant decreased slightly to 0.39 ± 0.08 (P < 0.05) during head-only impulses. Using the head-only impulse data, with the head pitched up, we showed that only 50% of the tilt in the axis of eye rotation could be predicted from vectorial summation of the gains (eye velocity/head velocity) obtained for rotations about the pure yaw and roll head axes. Thus, even when the orientation of Listing's plane and eye position in the orbit are fixed, the axis of eye rotation during the VOR reflects a compromise between the requirements of Listing's law and a perfectly compensatory VOR. PMID:16552499

  15. Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography.

    PubMed

    Park, B Hyle; Pierce, Mark C; Cense, Barry; de Boer, Johannes F

    2005-10-01

    We present a generalized analysis of fiber-based polarization-sensitive optical coherence tomography with an emphasis on determination of sample optic axis orientation. The polarization properties of a fiber-based system can cause an overall rotation in a Poincaré sphere representation such that the plane of possible measured sample optic axes for linear birefringence and diattenuation no longer lies in the QU-plane. The optic axis orientation can be recovered as an angle on this rotated plane, subject to an offset and overall indeterminacy in sign such that only the magnitude, but not the direction, of a change in orientation can be determined. We discuss the accuracy of optic axis determination due to a fundamental limit on the accuracy with which a polarization state can be determined as a function of signal-to-noise ratio.

  16. Viking lander location and spin axis of Mars: determination from radio tracking data.

    PubMed

    Michael, W H; Tolson, R H; Mayo, A P; Blackshear, W T; Kelly, G M; Cain, D L; Brenkle, J P; Shapiro, I I; Reasenberg, R D

    1976-08-27

    Radio tracking data from the Viking lander have been used to determine the lander position and the orientation of the spin axis of Mars. The areocentric coordinates of the lander are 22.27 degrees N, 48.00 degrees W, and 3389.5 kilometers from the center of mass; the spin axis orientation, referred to Earth's mean equator and equinox of 1950.0, is 317.35 degrees right ascension and 52.71 degrees declination.

  17. Orientation of human optokinetic nystagmus to gravity: a model-based approach

    NASA Technical Reports Server (NTRS)

    Gizzi, M.; Raphan, T.; Rudolph, S.; Cohen, B.

    1994-01-01

    Optokinetic nystagmus (OKN) was induced by having subjects watch a moving display in a binocular, head-fixed apparatus. The display was composed of 3.3 degrees stripes moving at 35 degrees/s for 45 s. It subtended 88 degrees horizontally by 72 degrees vertically of the central visual field and could be oriented to rotate about axes that were upright or tilted 45 degrees or 90 degrees. The head was held upright or was tilted 45 degrees left or right on the body during stimulation. Head-horizontal (yaw axis) and head-vertical (pitch axis) components of OKN were recorded with electro-oculography (EOG). Slow phase velocity vectors were determined and compared with the axis of stimulation and the spatial vertical (gravity axis). With the head upright, the axis of eye rotation during yaw axis OKN was coincident with the stimulus axis and the spatial vertical. With the head tilted, a significant vertical component of eye velocity appeared during yaw axis stimulation. As a result the axis of eye rotation shifted from the stimulus axis toward the spatial vertical. Vertical components developed within 1-2 s of stimulus onset and persisted until the end of stimulation. In the six subjects there was a mean shift of the axis of eye rotation during yaw axis stimulation of approximately 18 degrees with the head tilted 45 degrees on the body. Oblique optokinetic stimulation with the head upright was associated with a mean shift of the axis of eye rotation toward the spatial vertical of 9.2 degrees. When the head was tilted and the same oblique stimulation was given, the axis of eye rotation rotated to the other side of the spatial vertical by 5.4 degrees. This counterrotation of the axis of eye rotation is similar to the "Muller (E) effect," in which the perception of the upright is counterrotated to the opposite side of the spatial vertical when subjects are tilted in darkness. The data were simulated by a model of OKN with a "direct" and "indirect" pathway. It was assumed that the direct visual pathway is oriented in a body, not a spatial frame of reference. Despite the short optokinetic after-nystagmus time constants, strong horizontal to vertical cross-coupling could be produced if the horizontal and vertical time constants were in proper ratio and there were no suppression of nystagmus in directions orthogonal to the stimulus direction. The model demonstrates that the spatial orientation of OKN can be achieved by restructuring the system matrix of velocity storage. We conclude that an important function of velocity storage is to orient slow-phase velocity toward the spatial vertical during movement in a terrestrial environment.

  18. Exploring point-cloud features from partial body views for gender classification

    NASA Astrophysics Data System (ADS)

    Fouts, Aaron; McCoppin, Ryan; Rizki, Mateen; Tamburino, Louis; Mendoza-Schrock, Olga

    2012-06-01

    In this paper we extend a previous exploration of histogram features extracted from 3D point cloud images of human subjects for gender discrimination. Feature extraction used a collection of concentric cylinders to define volumes for counting 3D points. The histogram features are characterized by a rotational axis and a selected set of volumes derived from the concentric cylinders. The point cloud images are drawn from the CAESAR anthropometric database provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International. This database contains approximately 4400 high resolution LIDAR whole body scans of carefully posed human subjects. Success from our previous investigation was based on extracting features from full body coverage which required integration of multiple camera images. With the full body coverage, the central vertical body axis and orientation are readily obtainable; however, this is not the case with a one camera view providing less than one half body coverage. Assuming that the subjects are upright, we need to determine or estimate the position of the vertical axis and the orientation of the body about this axis relative to the camera. In past experiments the vertical axis was located through the center of mass of torso points projected on the ground plane and the body orientation derived using principle component analysis. In a natural extension of our previous work to partial body views, the absence of rotational invariance about the cylindrical axis greatly increases the difficulty for gender classification. Even the problem of estimating the axis is no longer simple. We describe some simple feasibility experiments that use partial image histograms. Here, the cylindrical axis is assumed to be known. We also discuss experiments with full body images that explore the sensitivity of classification accuracy relative to displacements of the cylindrical axis. Our initial results provide the basis for further investigation of more complex partial body viewing problems and new methods for estimating the two position coordinates for the axis location and the unknown body orientation angle.

  19. Numerical simulations of fast-axis instability of vector solitons in mode-locked fiber lasers.

    PubMed

    Du, Yueqing; Shu, Xuewen; Cheng, Peiyun

    2017-01-23

    We demonstrate the fast-axis instability in mode-locked fiber lasers numerically for the first time. We find that the energy of the fast mode will be transferred to the slow mode when the strong pump strength makes the soliton period short. A nearly linearly polarized vector soliton along the slow-axis could be generated under certain cavity parameters. The final polarization of the vector soliton is related to the initial polarization of the seed pulse. Two regimes of energy exchanging between the slow mode and the fast mode are explored and the direction of the energy flow between two modes depends on the phase difference. The dip-type sidebands are found to be intrinsic characteristics of the mode-locked fiber lasers under high pulse energy.

  20. Effects of astigmatic axis orientation on postural stabilization with stationary equilibrium

    NASA Astrophysics Data System (ADS)

    Kanazawa, Masatsugu; Uozato, Hiroshi; Asakawa, Ken; Kawamorita, Takushi

    2018-02-01

    We evaluated 15 healthy participants by assessing their maintenance of postural control while standing on a platform stabilometer for 1 min under the following conditions: eyes open; eyes open with + 3.00 D on both eyes on same directions (45, 90, 135, 180 degree axis); right eye on 45 degree axis and left eye on 135 degree axis (inverted V-pattern), and right eye on 135 degree axis and left eye on axis 45 degree axis (V-pattern). The differences in the linear length, area and maximum velocity of center of pressure during postural control before and after the six types of positive cylinder-oriented axes were analyzed. Comparing the antero-posterior lengths and antero-posterior maximum velocities, there were significant differences between the V-pattern condition and the six other conditions. Astigmatic defocus in the antagonistic axes conditions, particularly the V-pattern condition, affects postural control of antero-posterior sway (143/150).

  1. Dynamic modulation of ocular orientation during visually guided saccades and smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Hess, Bernhard J M.; Angelaki, Dora E.

    2003-01-01

    Rotational disturbances of the head about an off-vertical yaw axis induce a complex vestibuloocular reflex pattern that reflects the brain's estimate of head angular velocity as well as its estimate of instantaneous head orientation (at a reduced scale) in space coordinates. We show that semicircular canal and otolith inputs modulate torsional and, to a certain extent, also vertical ocular orientation of visually guided saccades and smooth-pursuit eye movements in a similar manner as during off-vertical axis rotations in complete darkness. It is suggested that this graviceptive control of eye orientation facilitates rapid visual spatial orientation during motion.

  2. Controlled sample orientation and rotation in an acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Gaspar, Mark S. (Inventor); Trinh, Eugene H. (Inventor)

    1988-01-01

    A system is described for use with acoustic levitators, which can prevent rotation of a levitated object or control its orientation and/or rotation. The acoustic field is made nonsymmetrical about the axis of the levitator, to produce an orienting torque that resists sample rotation. In one system, a perturbating reflector is located on one side of the axis of the levitator, at a location near the levitated object. In another system, the main reflector surface towards which incoming acoustic waves are directed is nonsymmetrically curved about the axis of the levitator. The levitated object can be reoriented or rotated in a controlled manner by repositioning the reflector producing the nonsymmetry.

  3. Rheologic effects of crystal preferred orientation in upper mantle flow near plate boundaries

    NASA Astrophysics Data System (ADS)

    Blackman, Donna; Castelnau, Olivier; Dawson, Paul; Boyce, Donald

    2016-04-01

    Observations of anisotropy provide insight into upper mantle processes. Flow-induced mineral alignment provides a link between mantle deformation patterns and seismic anisotropy. Our study focuses on the rheologic effects of crystal preferred orientation (CPO), which develops during mantle flow, in order to assess whether corresponding anisotropic viscosity could significantly impact the pattern of flow. We employ a coupled nonlinear numerical method to link CPO and the flow model via a local viscosity tensor field that quantifies the stress/strain-rate response of a textured mineral aggregate. For a given flow field, the CPO is computed along streamlines using a self-consistent texture model and is then used to update the viscosity tensor field. The new viscosity tensor field defines the local properties for the next flow computation. This iteration produces a coupled nonlinear model for which seismic signatures can be predicted. Results thus far confirm that CPO can impact flow pattern by altering rheology in directionally-dependent ways, particularly in regions of high flow gradient. Multiple iterations run for an initial, linear stress/strain-rate case (power law exponent n=1) converge to a flow field and CPO distribution that are modestly different from the reference, scalar viscosity case. Upwelling rates directly below the spreading axis are slightly reduced and flow is focused somewhat toward the axis. Predicted seismic anisotropy differences are modest. P-wave anisotropy is a few percent greater in the flow 'corner', near the spreading axis, below the lithosphere and extending 40-100 km off axis. Predicted S-wave splitting differences would be below seafloor measurement limits. Calculations with non-linear stress/strain-rate relation, which is more realistic for olivine, indicate that effects are stronger than for the linear case. For n=2-3, the distribution and strength of CPO for the first iteration are greater than for n=1, although the fast seismic axis directions are similar. The greatest difference in CPO for the nonlinear cases develop at the flow 'corner' at depths of 10-30 km and 20-100 km off-axis. J index values up to 10% greater than the linear case are predicted near the lithosphere base in that region. Viscosity tensor components are notably altered in the nonlinear cases. Iterations between the texture and flow calculations for the non-linear cases are underway this winter; results will be reported in the presentation.

  4. Anisotropy of the Earth's inner inner core from autocorrelations of earthquake coda in China Regional Seismic Networks

    NASA Astrophysics Data System (ADS)

    Xia, H.; Song, X.; Wang, T.

    2014-12-01

    The Earth's inner core possesses strong cylindrical anisotropy with the fast symmetry axis parallel to the rotation axis. However, recent study has suggested that the inner part of the inner core has a fast symmetry axis near the equator with a different form of anisotropy from the outer part (Wang et al., this session). To confirm the observation, we use data from dense seismic arrays of the China Regional Seismic Networks. We perform autocorrelation (ACC) of the coda after major earthquakes (Mw>=7.0) at each station and then stack the ACCs at each cluster of stations. The PKIKP2 and PKIIKP2 phases (round-trip phase from the Earth's surface reflections) can be clearly extracted from the stacked empirical Green's functions. We observe systematic variation of the differential times between PKIKP2 and PKIIKP2 phases, which are sensitive to the bulk anisotropy of the inner core. The differential times show large variations with both latitudes and longitudes, even though our ray paths are not polar (with our stations at mid-range latitudes of about 20 to 45 degrees). The observations cannot be explained by an averaged anisotropy model with the fast axis along the rotation axis. The pattern appears consistent with an inner inner core that has a fast axis near the equator.

  5. Measurement of Posterior Corneal Astigmatism by the IOLMaster 700.

    PubMed

    LaHood, Benjamin R; Goggin, Michael

    2018-05-01

    To provide the first description of posterior corneal astigmatism as measured by the IOLMaster 700 (Carl Zeiss Meditec, Jena, Germany) and assess how its characteristics compare to previous measurements from other devices. A total of 1,098 routine IOLMaster 700 biometric measurements were analyzed to provide magnitudes and orientation of steep and flat axes of anterior and posterior corneal astigmatism. Subgroup analysis was conducted to assess correlation of posterior corneal astigmatism characteristics to anterior corneal astigmatism and describe the distribution of posterior corneal astigmatism with age. Mean posterior corneal astigmatism was 0.24 ± 0.15 diopters (D). The steep axis of posterior corneal astigmatism was vertically oriented in 73.32% of measurements. Correlation between the magnitude of anterior and posterior corneal astigmatism was greatest when the steep axis of the anterior corneal astigmatism was oriented vertically (r = 0.68, P < .0001). Vertical orientation of the steep axis of anterior corneal astigmatism became less common as age increased, whereas for posterior corneal astigmatism it remained by far the most common orientation. This first description of posterior corneal astigmatism measurement by the IOLMaster 700 found the average magnitude of posterior corneal astigmatism and proportion of vertical orientation of steep axis was lower than previous estimates. The IOLMaster 700 appears capable of providing enhanced biometric measurement for individualized surgical planning. [J Refract Surg. 2018;34(5):331-336.]. Copyright 2018, SLACK Incorporated.

  6. Effects of off-axis loading on the tensile behavior of a ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, C.S.; Evans, A.G.

    A 0{degree}/90{degree} ceramic-matrix composite (CMC) comprised of Nicalon fibers in magnesium aluminosilicate (MAS) has been loaded in tension in three orientations relative to the fiber direction: 0, 30, and 45{degree}. The off-axis loaded samples exhibit inelastic deformation at appreciably lower stresses than samples loads at 0{degree}. Matrix cracking governs the inelastic strains in all orientations. But, important differences in the morphologies and sequencing of the cracks account for the differences in the stress levels. Off-axis failure also occurs at substantially lower stresses than on-axis failure. On-axis composite failure is governed by fiber fracture, but off-axis failure involves matrix-crack coalescence. Tomore » facilitate interpretation and modeling of these behaviors, the interface friction and debond stresses have been determined from hysteresis measurements.« less

  7. Localized deformation in Ni-Mn-Ga single crystals

    NASA Astrophysics Data System (ADS)

    Davis, Paul H.; Efaw, Corey M.; Patten, Lance K.; Hollar, Courtney; Watson, Chad S.; Knowlton, William B.; Müllner, Peter

    2018-06-01

    The magnetomechanical behavior of ferromagnetic shape memory alloys such as Ni-Mn-Ga, and hence the relationship between structure and nanoscale magnetomechanical properties, is of interest for their potential applications in actuators. Furthermore, due to its crystal structure, the behavior of Ni-Mn-Ga is anisotropic. Accordingly, nanoindentation and magnetic force microscopy were used to probe the nanoscale mechanical and magnetic properties of electropolished single crystalline 10M martensitic Ni-Mn-Ga as a function of the crystallographic c-axis (easy magnetization) direction relative to the indentation surface (i.e., c-axis in-plane versus out-of-plane). Load-displacement curves from 5-10 mN indentations on in-plane regions exhibited pop-in during loading, whereas this phenomenon was absent in out-of-plane regions. Additionally, the reduced elastic modulus measured for the c-axis out-of-plane orientation was ˜50% greater than for in-plane. Although heating above the transition temperature to the austenitic phase followed by cooling to the room temperature martensitic phase led to partial recovery of the indentation deformation, the magnitude and direction of recovery depended on the original relative orientation of the crystallographic c-axis: positive recovery for the in-plane orientation versus negative recovery (i.e., increased indent depth) for out-of-plane. Moreover, the c-axis orientation for out-of-plane regions switched to in-plane upon thermal cycling, whereas the number of twins in the in-plane regions increased. We hypothesize that dislocation plasticity contributes to the permanent deformation, while pseudoelastic twinning causes pop-in during loading and large recovery during unloading in the c-axis in-plane case. Minimization of indent strain energy accounts for the observed changes in twin orientation and number following thermal cycling.

  8. Parabrachial nucleus neuronal responses to off-vertical axis rotation in macaques

    PubMed Central

    McCandless, Cyrus H.; Balaban, Carey D.

    2010-01-01

    The caudal aspect of the parabrachial nucleus (PBN) contains neurons responsive to whole body, periodic rotational stimulation in alert monkeys. This study characterizes the angular and linear motion-sensitive response properties of PBN unit responses during off-vertical axis rotation (OVAR) and position trapezoid stimulation. The OVAR responses displayed a constant firing component which varied from the firing rate at rest. Nearly two-thirds of the units also modulated their discharges with respect to head orientation (re: gravity) during constant velocity OVAR stimulation. The modulated response magnitudes were equal during ipsilateral and contralateral OVARs, indicative of a one-dimensional accelerometer. These response orientations during OVAR divided the units into three spatially tuned populations, with peak modulation responses centered in the ipsilateral ear down, contralateral anterior semicircular canal down, and occiput down orientations. Because the orientation of the OVAR modulation response was opposite in polarity to the orientation of the static tilt component of responses to position trapezoids for the majority of units, the linear acceleration responses were divided into colinear dynamic linear and static tilt components. The orientations of these unit responses formed two distinct population response axes: (1) units with an interaural linear response axis and (2) units with an ipsilateral anterior semicircular canal-contralateral posterior semicircular canal plane linear response axis. The angular rotation sensitivity of these units is in a head-vertical plane that either contains the linear acceleration response axis or is perpendicular to the linear acceleration axis. Hence, these units behave like head-based (‘strap-down’) inertial guidance sensors. Because the PBN contributes to sensory and interoceptive processing, it is suggested that vestibulo-recipient caudal PBN units may detect potentially dangerous anomalies in control of postural stability during locomotion. In particular, these signals may contribute to the range of affective and emotional responses that include panic associated with falling, malaise associated with motion sickness and mal-de-debarquement, and comorbid balance and anxiety disorders. PMID:20039027

  9. Testing the Accuracy of Different A-Axis Types for Measuring the Orientation of Bones in the Archaeological and Paleontological Record

    PubMed Central

    Domínguez-Rodrigo, Manuel; García-Pérez, Alfonso

    2013-01-01

    Orientation of archaeological and paleontological materials plays a prominent role in the interpretation of site formation processes. Allochthony and authochthony are frequently assumed from orientation patterns or lack thereof. Although it is still debated to what extent orientation of items can be produced in original depositional contexts, the recent use of GIS tools to measure orientations has highlighted several ways of reproducing A-axes with which to address these taphonomic issues. In the present study, the three most relevant A-axis types are compared to test their accuracy in reproducing water current direction. Although results may be similar in specific bone shapes, differences are important in other shapes. As known in engineering working with wind and fluid mechanics (developing shape optimization), longitudinal symmetrical axes (LSA) are the one that best orient structures against or in the same direction of wind and water. The present work shows that this is also the case for bones (regardless of shape), since LSA produce the most accurate estimates of flow direction. This has important consequences for the interpretation of orientation patterns at sites, since this type of axis is still not properly reproduced by GIS available tools. PMID:23874825

  10. Automated polarization control for the precise alignment of laser-induced self-organized nanostructures

    NASA Astrophysics Data System (ADS)

    Hermens, Ulrike; Pothen, Mario; Winands, Kai; Arntz, Kristian; Klocke, Fritz

    2018-02-01

    Laser-induced periodic surface structures (LIPSS) found in particular applications in the fields of surface functionalization have been investigated since many years. The direction of these ripple structures with a periodicity in the nanoscale can be manipulated by changing the laser polarization. For industrial use, it is useful to manipulate the direction of these structures automatically and to obtain smooth changes of their orientation without any visible inhomogeneity. However, currently no system solution exists that is able to control the polarization direction completely automated in one software solution so far. In this paper, a system solution is presented that includes a liquid crystal polarizer to control the polarization direction. It is synchronized with a scanner, a dynamic beam expander and a five axis-system. It provides fast switching times and small step sizes. First results of fabricated structures are also presented. In a systematic study, the conjunction of LIPSS with different orientation in two parallel line scans has been investigated.

  11. Understanding misfit strain releasing mechanisms via molecular dynamics simulations of CdTe growth on {112}zinc-blende CdS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaowang; Chavez, Jose J.; Almeida, Sergio F.

    Molecular dynamics simulations have been used to analyse microstructures of CdTe films grown on {112} surfaces of zinc-blende CdS. Interestingly, CdTe films grow in <331> orientations as opposed to <112> epitaxial orientations. At the CdTe-{331}/CdS-{112} interface, however, there exists an axis that is parallel to the <110> orientation of both CdS and CdTe. It is the direction orthogonal to this <110> that becomes different, being <116> for CdTe and <111> for CdS, respectively. Missing CdTe-{110} planes are found along the <110> axis, suggesting that the misfit strain is released by the conventional misfit dislocation mechanism along this axis. In themore » orthogonal axis, the misfit strain is found to be more effectively released by the new grain orientation mechanism. Our finding is supported by literature experimental observations of the change of growth direction when Cd 0.96Zn 0.04Te films are deposited on GaAs. Lastly the analyses of energetics clearly demonstrate the cause for the formation of the new orientation, and the insights gained from our studies can help understand the grain structures experimentally observed in lattice mismatched systems.« less

  12. Understanding misfit strain releasing mechanisms via molecular dynamics simulations of CdTe growth on {112}zinc-blende CdS

    DOE PAGES

    Zhou, Xiaowang; Chavez, Jose J.; Almeida, Sergio F.; ...

    2016-07-25

    Molecular dynamics simulations have been used to analyse microstructures of CdTe films grown on {112} surfaces of zinc-blende CdS. Interestingly, CdTe films grow in <331> orientations as opposed to <112> epitaxial orientations. At the CdTe-{331}/CdS-{112} interface, however, there exists an axis that is parallel to the <110> orientation of both CdS and CdTe. It is the direction orthogonal to this <110> that becomes different, being <116> for CdTe and <111> for CdS, respectively. Missing CdTe-{110} planes are found along the <110> axis, suggesting that the misfit strain is released by the conventional misfit dislocation mechanism along this axis. In themore » orthogonal axis, the misfit strain is found to be more effectively released by the new grain orientation mechanism. Our finding is supported by literature experimental observations of the change of growth direction when Cd 0.96Zn 0.04Te films are deposited on GaAs. Lastly the analyses of energetics clearly demonstrate the cause for the formation of the new orientation, and the insights gained from our studies can help understand the grain structures experimentally observed in lattice mismatched systems.« less

  13. Mercury's gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Margot, J. L.

    2015-12-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury's gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent. The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models. Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models. We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation.

  14. Mercury’s gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    NASA Astrophysics Data System (ADS)

    Verma, Ashok Kumar; Margot, Jean-Luc

    2015-11-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury’s gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent.The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models.Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models.We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation

  15. M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Abgarmi, Bizhan; Ozacar, A. Arda

    2017-04-01

    Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for additional capabilities or for other applications.

  16. Effects of slice orientation on reproducibility of sequential assessment of right ventricular volumes and ejection fraction: short-axis vs transverse SSFP cine cardiovascular magnetic resonance.

    PubMed

    D'Errico, Luigia; Lamacie, Mariana M; Jimenez Juan, Laura; Deva, Djeven; Wald, Rachel M; Ley, Sebastian; Hanneman, Kate; Thavendiranathan, Paaladinesh; Wintersperger, Bernd J

    2016-09-22

    Test-retest reproducibility is of utmost importance in follow-up of right ventricular (RV) volumes and function; optimal slice orientation though is not yet known. We compared test-retest reproducibility and intra-/inter-observer variability of right ventricular (RV) volumes and function assessed with short-axis and transverse cardiovascular magnetic resonance (CMR). Eighteen volunteers underwent cine CMR for RV assessment obtaining ventricular coverage in short-axis and transverse slice orientation. Additional 2D phase contrast flow imaging of the main pulmonary artery (MPA) was performed. After complete repositioning repeat acquisitions were performed. Data sets were contoured by two blinded observers. Statistical analysis included Student's t-test, Bland-Altman plots, intra-class correlation coefficient (ICC) and 2-way ANOVA, SEM and minimal detectable difference calculations. Heart rates (65.0 ± 7.4 vs. 67.6 ± 9.9 bpm; P = 0.1) and MPA flow (89.8 ± 16.6 vs. 87.2 ± 14.9 mL; P = 0.1) did not differ between imaging sessions. EDV and ESV demonstrated an inter-study bias of 0.4 %[-9.5 %,10.3 %] and 2.1 %[-12.3 %,16.4 %] for short-axis and 1.1 %[-7.3 %,9.4 %] and 0.8 %[-16.0 %,17.6 %] for transverse orientation, respectively. There was no significant interaction between imaging orientation and interstudy reproducibility (p = 0.395-0.824), intra-observer variability (p = 0.726-0.862) or inter-observer variability (p = 0.447-0.706) by 2-way ANOVA. Inter-observer agreement by ICC was greater for short axis versus transverse orientation for all parameters (0.769-0.986 vs. 0.625-0.983, respectively). Minimal detectable differences for short axis and transverse orientations were 10.1 mL/11.5 mL for EDV, 8.3 mL/8.4 mL for ESV and 4.1 % vs. 4.7 % for EF, respectively. Short-axis and transverse orientation both provide reliable and reproducible measures for follow-up of RV volumes and global function. Therefore, additional transverse SSFP cine CMR may not necessarily be required if performed for the sole purpose of quantitative volumetric RV assessment.

  17. Plagioclase-dominated Seismic Anisotropy in the Basin and Range Lower Crust

    NASA Astrophysics Data System (ADS)

    Bernard, R. E.; Behr, W. M.

    2017-12-01

    Observations of seismic anisotropy have the ability to provide important information on deformation and structures within the lithosphere. While the mechanisms controlling seismic anisotropy in the upper mantle are fairly well understood (i.e., olivine "lattice preferred orientation" or LPO), less is known about the minerals and structures controlling regional lower crustal anisotropy. We use lower crustal xenoliths from young cinder cones in the eastern Mojave/western Basin and Range to investigate mineral LPOs and their effect on seismic anisotropy. Lower crustal gabbros were collected from two areas roughly 80 km apart — the Cima and Deadman Lake Volcanic Fields. Lower crustal fabrics measured using EBSD are dominated by LPOs in plagioclase associated with both plastic deformation and magmatic flow. In all fabric types, plagioclase LPOs produce seismic fast axes oriented perpendicular to the foliation plane. This is in contrast to mantle peridotite xenoliths from the same locations, which preserve olivine LPOs with fast axes aligned parallel to the foliation plane. The orthogonal orientations of mantle and lower crustal fast axes relative to foliation implies that even where fabric development in both layers is coeval and kinematically compatible, their measured anisotropies can be perpendicular to each other, therefore appearing anti-correlated when measured seismically. Furthermore, our observation of plagioclase-dominated LPO and negligible concentrations of mica is at odds with the common assumption that lower crustal anisotropy is dominated by micaceous minerals, whose slow axes reliably align parallel to lineation or flow. In contrast, our data show that for plagioclase, fast axes align perpendicular to flow and the slow axes are variably aligned within the foliation plane. Therefore, for a crustal section dominated by plagioclase LPO with assumed horizontal foliation, there would be a vertical rather than a horizontal axis of symmetry, resulting in a lack of azimuthal anisotropy and minimal shear wave splitting for vertically propagating waves. Crustal seismic studies in this type of setting may only be able to identify crustal flow planes, but not flow directions. These findings may be generally applicable to regions of significant mafic volcanism and lower crustal magmatic underplating.

  18. Seismic anisotropy and mantle creep in young orogens

    USGS Publications Warehouse

    Meissner, R.; Mooney, W.D.; Artemieva, I.

    2002-01-01

    Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.

  19. Equatorial anisotropy in the inner part of Earth's inner core from autocorrelation of earthquake coda

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Song, Xiaodong; Xia, Han H.

    2015-03-01

    The Earth's solid inner core exhibits strong anisotropy, with wave velocity dependent on the direction of propagation due to the preferential alignment of iron crystals. Variations in the anisotropic structure, laterally and with depth, provide markers for measuring inner-core rotation and offer clues into the formation and dynamics of the inner core. Previous anisotropy models of the inner core have assumed a cylindrical anisotropy in which the symmetry axis is parallel to the Earth's spin axis. An inner part of the inner core with a distinct form of anisotropy has been suggested, but there is considerable uncertainty regarding its existence and characteristics. Here we analyse the autocorrelation of earthquake coda measured by global broadband seismic arrays between 1992 and 2012, and find that the differential travel times of two types of core-penetrating waves vary at low latitudes by up to 10 s. Our findings are consistent with seismic anisotropy in the innermost inner core that has a fast axis near the equatorial plane through Central America and Southeast Asia, in contrast to the north-south alignment of anisotropy in the outer inner core. The different orientations and forms of anisotropy may represent a shift in the evolution of the inner core.

  20. Application of Effective Medium Theory to the Three-Dimensional Heterogeneity of Mantle Anisotropy

    NASA Astrophysics Data System (ADS)

    Song, X.; Jordan, T. H.

    2015-12-01

    A self-consistent theory for the effective elastic parameters of stochastic media with small-scale 3D heterogeneities has been developed using a 2nd-order Born approximation to the scattered wavefield (T. H. Jordan, GJI, in press). Here we apply the theory to assess how small-scale variations in the local anisotropy of the upper mantle affect seismic wave propagation. We formulate a anisotropic model in which the local elastic properties are specified by a constant stiffness tensor with hexagonal symmetry of arbitrary orientation. This orientation is guided by a Gaussian random vector field with transversely isotropic (TI) statistics. If the outer scale of the statistical variability is small compared to a wavelength, then the effective seismic velocities are TI and depend on two parameters, a horizontal-to-vertical orientation ratio ξ and a horizontal-to-vertical aspect ratio, η. If ξ = 1, the symmetry axis is isotropically distributed; if ξ < 1, it is vertical biased (bipolar distribution), and if ξ > 1, it is horizontally biased (girdle distribution). If η = 1, the heterogeneity is geometrically isotropic; as η à∞, the medium becomes a horizontal stochastic laminate; as η à0, the medium becomes a vertical stochastic bundle. Using stiffness tensors constrained by laboratory measurements of mantle xenoliths, we explore the dependence of the effective P and S velocities on ξ and η. The effective velocities are strongly controlled by the orientation ratio ξ; e.g., if the hexagonal symmetry axis of the local anisotropy is the fast direction of propagation, then vPH > vPV and vSH > vSV for ξ > 1. A more surprising result is the 2nd-order insensitivity of the velocities to the heterogeneity aspect ratio η. Consequently, the geometrical anisotropy of upper-mantle heterogeneity significantly enhances seismic-wave anisotropy only through local variations in the Voigt-averaged velocities, which depend primarily on rock composition and not deformation history.

  1. Equatorial anisotropy of the Earth's inner-inner core

    NASA Astrophysics Data System (ADS)

    Song, X.; Wang, T.; Xia, H.

    2015-12-01

    Anisotropy of Earth's inner core is a key to understand its evolution and the generation of the Earth's magnetic field. All the previous inner core anisotropy models have assumed a cylindrical anisotropy with the symmetry axis parallel (or nearly parallel) to the Earth's spin axis. However, we have recently found that the fast axis in the inner part of the inner core is close to the equator from inner-core waves extracted from earthquake coda. We obtained inner core phases, PKIIKP2 and PKIKP2 (round-trip phases between the station and its antipode that passes straight through the center of the Earth and that is reflected from the inner core boundary, respectively), from stackings of autocorrelations of the coda of large earthquakes (10,000~40,000 s after Mw>=7.0 earthquakes) at seismic station clusters around the world. We observed large variation of up to 10 s along equatorial paths in the differential travel times PKIIKP2 - PKIKP2, which are sensitive to inner-core structure. The observations can be explained by a cylindrical anisotropy in the inner inner core (IIC) (with a radius of slightly less than half the inner core radius) that has a fast axis aligned near the equator and a cylindrical anisotropy in the outer inner core (OIC) that has a fast axis along the north-south direction. We have obtained more observations using the combination of autocorrelations and cross-correlations at low-latitude station arrays. The results further confirm that the IIC has an equatorial anisotropy and a pattern different from the OIC. The equatorial fast axis of the IIC is near the Central America and the Southeast Asia. The drastic change in the fast axis and the form of anisotropy from the IIC to the OIC may suggest a phase change of the iron or a major shift in the crystallization and deformation during the formation and growth of the inner core.

  2. Influence of Moisture Content and Compression Axis on Physico-mechanical Properties of Shorea robusta Seeds

    NASA Astrophysics Data System (ADS)

    Shashikumar, C.; Pradhan, R. C.; Mishra, S.

    2018-06-01

    Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.

  3. Influence of Moisture Content and Compression Axis on Physico-mechanical Properties of Shorea robusta Seeds

    NASA Astrophysics Data System (ADS)

    Shashikumar, C.; Pradhan, R. C.; Mishra, S.

    2018-02-01

    Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.

  4. Visual Search for Object Orientation Can Be Modulated by Canonical Orientation

    ERIC Educational Resources Information Center

    Ballaz, Cecile; Boutsen, Luc; Peyrin, Carole; Humphreys, Glyn W.; Marendaz, Christian

    2005-01-01

    The authors studied the influence of canonical orientation on visual search for object orientation. Displays consisted of pictures of animals whose axis of elongation was either vertical or tilted in their canonical orientation. Target orientation could be either congruent or incongruent with the object's canonical orientation. In Experiment 1,…

  5. Optokinetic and vestibular stimulation determines the spatial orientation of negative optokinetic afternystagmus in the rabbit.

    PubMed

    Pettorossi, V E; Errico, P; Ferraresi, A; Barmack, N H

    1999-02-15

    Prolonged binocular optokinetic stimulation (OKS) in the rabbit induces a high-velocity negative optokinetic afternystagmus (OKAN II) that persists for several hours. We have taken advantage of this uniform nystagmus to study how changes in static head orientation in the pitch plane might influence the orientation of the nystagmus. After horizontal OKS, the rotation axis of the OKAN II remained almost constant in space as it was kept aligned with the gravity vector when the head was pitched by as much as 80 degrees up and 35 degrees down. Moreover, during reorientation, slow-phase eye velocity decreased according to the head pitch angle. Thereafter, we analyzed the space orientation of OKAN II after optokinetic stimulation during which the head and/or the OKS were pitched upward and downward. The rotation axis of OKAN II did not remain aligned with an earth vertical axis nor a head vertical axis, but it tended to be aligned with that of the OKS respace. The slow-phase eye velocity of OKAN II was also affected by the head pitch angle during OKS, because maximal OKAN II velocity occurred at the same head pitch angle as that during optokinetic stimulation. We suggest that OKAN II is coded in gravity-centered rather than in head-centered coordinates, but that this coordinate system may be influenced by optokinetic and vestibular stimulation. Moreover, the velocity attenuation of OKAN II seems to depend on the mismatch between the space-centered nystagmus rotation axis orientation and that of the "remembered" head-centered optokinetic pathway activated by OKS.

  6. Effects of the symmetry axis orientation of a TI overburden on seismic images

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsiung; Chang, Young-Fo; Tseng, Cheng-Wei

    2017-07-01

    In active tectonic regions, the primary formations are often tilted and subjected to the processes of folding and/or faulting. Dipping formations may be categorised as tilted transverse isotropy (TTI). While carrying out hydrocarbon exploration in areas of orogenic structures, mispositioning and defocusing effects in apparent reflections are often caused by the tilted transverse isotropy of the overburden. In this study, scaled physical modelling was carried out to demonstrate the behaviours of seismic wave propagation and imaging problems incurred by transverse isotropic (TI) overburdens that possess different orientations of the symmetry axis. To facilitate our objectives, zero-offset reflections were acquired from four stratum-fault models to image the same structures that were overlain by a TI (phenolite) slab. The symmetry axis of the TI slab was vertical, tilted or horizontal. In response to the symmetry axis orientations, spatial shifts and asymmetrical diffraction patterns in apparent reflections were observed in the acquired profiles. Given the different orientations of the symmetry axis, numerical manipulations showed that the imaged events could be well described by theoretical ray paths computed by the trial-and-error ray method and Fermat's principle (TERF) method. In addition, outputs of image restoration show that the imaging problems, i.e. spatial shift in the apparent reflections, can be properly handled by the ray-based anisotropic 2D Kirchhoff time migration (RAKTM) method.

  7. Method and sample spinning apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.

  8. Crystallographic orientation of the c-axis of biological apatite as a new index of the quality of subchondral bone in knee joint osteoarthritis.

    PubMed

    Lee, Jee-Wook; Kobayashi, Akio; Nakano, Takayoshi

    2017-05-01

    The aim of the present study was to investigate the preferred orientation of biological apatite (BAp) as a new index of the quality of subchondral bone (SB) in knee joint osteoarthritis (OA). Ten OA and five normal knee joints were obtained. Thickness, quantity and bone mineral density (BMD) of SB were analyzed at the medial condyle of the femur in dry conditions by peripheral quantitative computed tomography. In addition, the preferred crystallographic orientation of the c-axis of BAp was evaluated as bone quality parameter using a microbeam X-ray diffractometer technique. BMD and thickness of SB were significantly increased in OA specimens compared to normal knee specimens (P < 0.01), and the preferred orientation of the c-axis of BAp along the normal direction of SB surface was significantly higher in OA specimens (P < 0.01), reflecting the change in stress of concentration in the pathological portion without cartilage. SB sclerosis in OA results in both proliferation of bone tissues and enhanced degree of preferential alignment of the c-axis of BAp. Our findings could have major implications for the diagnosis of clinical studies, including pathologic elucidation in OA.

  9. Thickness and Nb-doping effects on ferro- and piezoelectric properties of highly a-axis-oriented Nb-doped Pb(Zr0.3Ti0.7)O3 films

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Xiang; Ruangchalermwong, C.; Li, Jing-Feng

    2008-09-01

    Tetragonal Nb-doped Pb(Zr0.3Ti0.7)O3 (PNZT) films with a lead oxide seeding layer were deposited on the Pt(111)/Ti/SiO2/Si(100) substrates by sol-gel processing. The as-grown PNZT films with thicknesses ranging from about 0.08 to 0.78 μm show highly a-axis preferential orientation, and their ferroelectric and piezoelectric properties improved with increasing film thickness. Due to the combined effects of Nb doping and a-axis texturing as well as reduced substrate constraint, a high d33 constant up to 196 pm/V was obtained for PNZT film at 0.78 μm in addition to a large remnant polarization of 69 μC/cm2. This well a-axis-oriented PNZT films on platinized Si with a high piezoresponse are suitable for the fabrication of microelectromechanical devices.

  10. Uniaxial alignment of triisopropylsilylethynyl pentacene via zone-casting technique.

    PubMed

    Su, Yajun; Gao, Xiang; Liu, Jiangang; Xing, Rubo; Han, Yanchun

    2013-09-14

    Uniaxially aligned triisopropylsilylethynyl pentacene (TIPS-pentacene) crystals over a large area were fabricated using zone-casting technique. The array of TIPS-pentacene displayed a high orientation degree with a dichroic ratio (DR) of 0.80. The crystals were arranged with c axis perpendicular to the substrate and the long axis of the ribbon corresponded to the a axis of TIPS-pentacene. The properties of the solutions and the processing parameters were shown to influence the formation of the oriented TIPS-pentacene crystalline array. Solvent with a low boiling point (such as chloroform) favoured the orientation of the ribbon-like crystals. The concentration of the solution should be appropriate, ensuring the crystallization velocity of TIPS-pentacene matching with the receding of the meniscus. Besides, we proved that the casting speed should be large enough to induce a sufficient concentration gradient. The orientation mechanism of TIPS-pentacene was attributed to a synergy of the ordered nuclei and a match between the crystallization velocity and the casting speed. Field effect transistors (FETs) based on the oriented TIPS-pentacene crystalline array showed a mobility of 0.67 cm(2) V(-1) s(-1).

  11. [How safe are orthoroentgenograms in determining the amount of correction for varus deformities?].

    PubMed

    Gürsu, Sarper; Yıldırım, Timur; Issın, Ahmet; Sofu, Hakan; Sahin, Vedat

    2014-01-01

    In this study, we evaluated the effects of the distance of the legs from the midline on alignment and angles of the lower extremities in orthoroentgenograms. Between March 2012 and April 2013, 95 limbs of 56 patients with varus deformity who underwent orthoroentgenogram to identify the amount of joint laxity in two positions were included in this study. The initial X-ray was performed with the feet in contact, while the other was performed as the legs were abducted to be in line with the shoulders. For each orthoroentgenogram, the mean mechanical axis angle, anatomical axis, and joint line orientation angles were measured retrospectively. These measurements were repeated for 43 limbs with varus deformity >10°. In the orthoroentgenograms with the feet in contact, the mean mechanical axis angle was 9.58°±5.7°, (0.20°; 26.0°), the mean anatomical axis angle 3.65°±6.14°, (-9.0°; 21.0°), and the mean joint line orientation angle -3.41°±2.52°, (-12.0°; 1.60°). In the orthoroentgenograms with the legs abducted, the mean mechanical axis angle was 7.73°±5.58°, (-3.0°; 23.0°), the mean anatomical axis angle 2.62°±5.87°, (-11.0°; 18.30°), and mean joint line orientation angle was -2.44°±2.41°, (-13.0°; 3.0°). The differences in the angles between the two positions were statistically significant (p<0.005). Our study results showed that the mean values of mechanical axis angle, anatomical axis and the joint line orientation angle were higher in orthoroentgenograms with the feet in contact than the orthoroentgenograms with the legs abducted in patients with varus gonarthrosis. We suggest that this may lead to mistakes in the preoperative planning. Ideal positions should be standardized to minimize possible problems.

  12. Anisotropy of the innermost inner core from body wave and normal mode observations

    NASA Astrophysics Data System (ADS)

    Deuss, A. F.; Smink, M.; Bouwman, D.; Ploegstra, J.; van Tent, R.

    2016-12-01

    It has been known for a long time that the Earth's inner core is cylindrically anisotropic, with waves that travel in the direction of the Earth's rotation axis arriving several seconds before waves travelling in the equatorial direction. Recently, several studies have suggested that the Earth's rotation axis may not be the fast anisotropy direction in the innermost inner core. Beghein and Trampert (2003) found that the Earth's rotation axis is slow, with the equatorial plane being fast. Wang et al (2015) found instead that the fast symmetry axis is in the equatorial plane. Here, we use both body wave and normal mode observations to test these two different hypotheses. Similar to Wang, we correct body wave PKIKP data for anisotropy in the upper inner core, and investigate if there is any anisotropy remaining in the innermost inner core. We find that the results strongly depend on the very limited number of polar direction waves with angle less than 25 degrees. With the limited data it is difficult to distinguish between the two different hypotheses, and if any tilted anisotropy is required at all. Normal modes see inner core anisotropy with north-south symmetry axis as anomalous zonal coefficients. We will show theoretically that if the anisotropy symmetry axis is tilted, non-zonal coefficients will also become anomalous. We search consistent anomalous non-zonal coefficients for modes sensitive to the innermost inner core. If the symmetry axis is still north south, but this is now the slow direction and the equatorial plane fast, then we predict negative zonal coefficients. This is observed for some normal modes, explaining why Beghein and Trampert (2003) found this type of anisotropy in the innermost inner core.

  13. Spin reorientation of a nonsymmetric body with energy dissipation

    NASA Technical Reports Server (NTRS)

    Cenker, R. J.

    1973-01-01

    Stable rotating semi-rigid bodies were demonstrated analytically, and verified in flights such as Explorer 1 and ATS-5 satellites. The problem arises from the two potential orientations which the final spin vector can take after large angle reorientation from minor to major axis, i.e., along the positive or negative axis of the maximum inertia. Reorientation of a satellite initially spinning about the minor axis using an energy dissipation device may require that the final spin orientation be controlled. Examples of possible applications are the Apogee Motor Assembly with Paired Satellites (AMAPS) configuration, where proper orientation of the thruster is required; and reorientation of ATS-5, where the spin sensitive nature of the despin device (yo-yo mechanism) requires that the final spin vector point is a specified direction.

  14. Indium hexagonal island as seed-layer to boost a-axis orientation of AlN thin films

    NASA Astrophysics Data System (ADS)

    Redjdal, N.; Salah, H.; Azzaz, M.; Menari, H.; Manseri, A.; Guedouar, B.; Garcia-Sanchez, A.; Chérif, S. M.

    2018-06-01

    Highly a-axis oriented aluminum nitride films have been grown on Indium coated (100) Si substrate by DC reactive magnetron sputtering. It is shown that In incorporated layer improve the extent of preferential growth along (100) axis and form dense AlN films with uniform surface and large grains, devoid of micro-cracks. As revealed by SEM cross section images, AlN structure consists of oriented columnar grains perpendicular to the Si surface, while AlN/In structure results in uniformely tilted column. SEM images also revealed the presence of In hexagonal islands persistent throughout the entire growth. Micro -Raman spectroscopy of the surface and the cross section of the AlN/In grown films evidenced their high degree of homogeneity and cristallinity.

  15. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells: Roles of Doping, Orientation, and Crystal Structure.

    PubMed

    Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L

    2016-12-21

    Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr 2 CuO 4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr 1.6 Sr 0.4 CuO 4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ . Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.

  16. Role of gravity-based information on the orientation and localization of the perceived body midline.

    PubMed

    Ceyte, Hadrien; Cian, Corinne; Nougier, Vincent; Olivier, Isabelle; Trousselard, Marion

    2007-01-01

    The present study focused on the influence of gravity-based information on the orientation and localization of the perceived body midline. The orientation was investigated by the rolling adjustment of a rod on the subjects' Z-axis and the localization by the horizontal adjustment of a visual dot as being straight ahead. Experiment 1 investigated the effect of the dissociation between the Z-axis and the direction of gravity by placing subjects in roll tilt and supine postures. In roll tilt, the perception of the body midline orientation was deviated in the direction of body tilt and the perception of its localization was deviated in the opposite direction. In the supine body orientation, estimates of the Z-axis and straight-ahead remained veridical as when the body was upright. Experiment 2 highlighted the relative importance of the otolithic and tactile information using diffuse pressure stimulation. The estimation of body midline orientation was modified contrarily to the estimation of its localization. Thus, subjects had no absolute representation of their egocentric space. The main hypothesis regarding the dissociation between the orientation and localization of the body midline may be related to a difference in the integration of sensory information. It can be suggested that the horizontal component of the vestibulo-ocular reflex (VOR) contributed to the perceived localization of the body midline, whereas its orientation was mainly influenced by tactile information.

  17. Direct evidence from anisotropy of magnetic susceptibility for lateral melt migration at superfast spreading centers

    NASA Astrophysics Data System (ADS)

    Varga, Robert J.; Horst, Andrew J.; Gee, Jeffrey S.; Karson, Jeffrey A.

    2008-08-01

    Rare, fault-bounded escarpments expose natural cross sections of ocean crust in several areas and provide an unparalleled opportunity to study the end products of tectonic and magmatic processes that operated at depth beneath oceanic spreading centers. We mapped the geologic structure of ocean crust produced at the East Pacific Rise (EPR) and now exposed along steep cliffs of the Pito Deep Rift near the northern edge of the Easter microplate. The upper oceanic crust in this area is typified by basaltic lavas underlain by a sheeted dike complex comprising northeast striking, moderately to steeply southeast dipping dikes. Paleomagnetic remanence of oriented blocks of dikes collected with both Alvin and Jason II indicate clockwise rotation of ˜61° related to rotation of the microplate indicating structural coupling between the microplate and crust of the Nazca Plate to the north. The consistent southeast dip of dikes formed as the result of tilting at the EPR shortly after their injection. Anisotropy of magnetic susceptibility of dikes provides well-defined magmatic flow directions that are dominantly dike-parallel and shallowly plunging. Corrected to their original EPR orientation, magma flow is interpreted as near-horizontal and parallel to the ridge axis. These data provide the first direct evidence from sheeted dikes in ocean crust for along-axis magma transport. These results also suggest that lateral transport in dikes is important even at fast spreading ridges where a laterally continuous subaxial magma chamber is present.

  18. Effects of fasting on growth hormone, growth hormone receptor, and insulin-like growth factor-I axis in seawater-acclimated tilapia, Oreochromis mossambicus.

    PubMed

    Fox, B K; Riley, L G; Hirano, T; Grau, E G

    2006-09-15

    Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.

  19. Seismic anisotropy in the Earth's innermost inner core: Testing structural models against mineral physics predictions

    DOE PAGES

    Romanowicz, Barbara; Cao, Aimin; Godwal, Budhiram; ...

    2016-01-06

    Using an updated data set of ballistic PKIKP travel time data at antipodal distances, we test different models of anisotropy in the Earth's innermost inner core (IMIC) and obtain significantly better fits for a fast axis aligned with Earth's rotation axis, rather than a quasi-equatorial direction, as proposed recently. Reviewing recent results on the single crystal structure and elasticity of iron at core conditions, we find that an hcp structure with the fast c axis parallel to Earth's rotation is more likely but a body-centered cubic structure with the [111] axis aligned in that direction results in very similar predictionsmore » for seismic anisotropy. These models are therefore not distinguishable based on current seismological data. In addition, to match the seismological observations, the inferred strength of anisotropy in the IMIC (6–7%) implies almost perfect alignment of iron crystals, an intriguing, albeit unlikely situation, especially in the presence of heterogeneity, which calls for further studies. Fast axis of anisotropy in the central part of the inner core aligned with Earth's axis of rotation Lastly, the structure of iron in the inner core is most likely hcp, not bcc Not currently possible to distinguish between hcp and bcc structures from seismic observations« less

  20. Growth and magnetoelectric properties of (00l)-oriented La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} heterostructure films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fuxue, E-mail: yanfuxue@126.com; Han, Kai, E-

    2017-02-15

    C-axis oriented La{sub 0.67}Sr{sub 0.33}MnO{sub 3}(LSMO)/PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}(PZT) films are fabricated successfully by sol-gel method on LaAlO{sub 3} (00l) substrates. The structure, composition and morphology of the films are investigated by X-ray diffractometer (XRD, θ-2θ scan, ω-scan and ϕ-scan), X-ray photoelectron spectroscope (XPS), field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). The electric and magnetic properties of randomly and c-axis oriented LSMO/PZT films are studied comparably using ferroelectric testing apparatus and physical property measurement system (PPMS). It is found that the epitaxial LSMO/PZT composite films show well controlled growth along c-axis, and much bettermore » magnetoelectric properties than the randomly oriented ones. The ME voltage coefficient increases from 23 mV cm{sup −1} Oe{sup −1} for the randomly oriented LSMO/PZT composite films to 52 mV cm{sup −1} Oe{sup −1} for c-axis oriented ones prepared using the low cost sol-gel method presented in this study, which shows high potential in promising applications. - Highlights: •Epitaxial LSMO/PZT films were fabricated successfully by sol-gel method on LAO (00l) substrate. •The prepared films exhibit well-defined multiferroic properties for the epitaxial LSMO/PZT films. •Epitaxial LSMO/PZT films show superior magnetoelectric properties to the randomly oriented ones.« less

  1. Elastic response of zone axis (001)-oriented PWA 1480 single crystal: The influence of secondary orientation

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.

    1991-01-01

    The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.

  2. Compression-Induced Conformation and Orientation Changes in an n-Alkane Monolayer on a Au(111) Surface.

    PubMed

    Endo, Osamu; Nakamura, Masashi; Amemiya, Kenta; Ozaki, Hiroyuki

    2017-04-25

    The influence of the preparation method and adsorbed amount of n-tetratetracontane (n-C 44 H 90 ) on its orientation in a monolayer on the Au(111) surface is studied by near carbon K-edge X-ray absorption fine structure spectroscopy (C K-NEXAFS), scanning tunneling microscopy (STM) under ultrahigh vacuum, and infrared reflection-absorption spectroscopy (IRAS) at the electrochemical interface in sulfuric acid solution. The n-C 44 H 90 molecules form self-assembled lamellar structures with the chain axis parallel to the surface, as observed by STM. For small amounts adsorbed, the carbon plane is parallel to the surface (flat-on orientation). An increase in the adsorbed amount by ∼10-20% induces compression of the lamellar structure either along the lamellar axis or alkyl chain axis. The compressed molecular arrangement is observed by STM, and induced conformation and orientation changes are confirmed by in situ IRAS and C K-NEXAFS.

  3. Application of Gaussian beam ray-equivalent model and back-propagation artificial neural network in laser diode fast axis collimator assembly.

    PubMed

    Yu, Hao; Rossi, Giammarco; Braglia, Andrea; Perrone, Guido

    2016-08-10

    The paper presents the development of a tool based on a back-propagation artificial neural network to assist in the accurate positioning of the lenses used to collimate the beam from semiconductor laser diodes along the so-called fast axis. After training using a Gaussian beam ray-equivalent model, the network is capable of indicating the tilt, decenter, and defocus of such lenses from the measured field distribution, so the operator can determine the errors with respect to the actual lens position and optimize the diode assembly procedure. An experimental validation using a typical configuration exploited in multi-emitter diode module assembly and fast axis collimating lenses with different focal lengths and numerical apertures is reported.

  4. Past orientation of the lunar spin axis.

    PubMed

    Ward, W R

    1975-08-01

    The orientation of the lunar spin axis is traced from the early history of the earth-moon system to the present day. Tides raised on the earth by the moon have caused an expansion of the lunar orbit. Tides raised on the moon by the earth have de-spun the moon to synchronous rotation and driven its spin axis to a Cassini state-that is, in a coprecessing configuration, coplanar with the lunar orbit normal and the normal to the Laplacian plane (which is at present coincident with the normal to the ecliptic). This combination of events has resulted in a complex history for the lunar spin axis. For much of the period during which its orbital semimajor axis expanded between 30 and 40 earth radii, the obliquity of the moon was of order 25 degrees to 50 degrees . In fact, for a brief period the obliquity periodically attained a value as high as 77 degrees ; that is, the spin axis of the moon was only 13 degrees from lying in its orbit plane.

  5. Past orientation of the lunar spin axis

    NASA Technical Reports Server (NTRS)

    Ward, W. R.

    1975-01-01

    The orientation of the lunar spin axis is traced from the early history of the earth-moon system to the present day. Tides raised on the earth by the moon have caused an expansion of the lunar orbit. Tides raised on the moon by the earth have de-spun the moon to synchronous rotation and driven its spin axis to a Cassini state - that is, in a coprecessing configuration, coplanar with the lunar orbit normal and the normal to the Laplacian plane (which is at present coincident with the normal to the ecliptic). This combination of events has resulted in a complex history for the lunar spin axis. For much of the period during which its orbital semimajor axis expanded between 30 and 40 earth radii, the obliquity of the moon was of order 25 to 50 deg. In fact, for a brief period the obliquity periodically attained a value as high as 77 deg; that is, the spin axis of the moon was only 13 deg from lying in its orbit plane.

  6. A polarized view on DNA under tension

    NASA Astrophysics Data System (ADS)

    van Mameren, Joost; Vermeulen, Karen; Wuite, Gijs J. L.; Peterman, Erwin J. G.

    2018-03-01

    In the past decades, sensitive fluorescence microscopy techniques have contributed significantly to our understanding of the dynamics of DNA. The specific labeling of DNA using intercalating dyes has allowed for quantitative measurement of the thermal fluctuations the polymers undergo. On the other hand, recent advances in single-molecule manipulation techniques have unraveled the mechanical and elastic properties of this intricate polymer. Here, we have combined these two approaches to study the conformational dynamics of DNA under a wide range of tensions. Using polarized fluorescence microscopy in conjunction with optical-tweezers-based manipulation of YOYO-intercalated DNA, we controllably align the YOYO dyes using DNA tension, enabling us to disentangle the rapid dynamics of the dyes from that of the DNA itself. With unprecedented control of the DNA alignment, we resolve an inconsistency in reports about the tilted orientation of intercalated dyes. We find that intercalated dyes are on average oriented perpendicular to the long axis of the DNA, yet undergo fast dynamics on the time scale of absorption and fluorescence emission. In the overstretching transition of double-stranded DNA, we do not observe changes in orientation or orientational dynamics of the dyes. Only beyond the overstretching transition, a considerable depolarization is observed, presumably caused by an average tilting of the DNA base pairs. Our combined approach thus contributes to the elucidation of unique features of the molecular dynamics of DNA.

  7. Anisotropy of high temperature strength in precipitation-hardened nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y. G.; Terashima, H.; Yoshizawa, H.; Ohta, Y.; Murakami, K.

    1986-01-01

    The anisotropy of high temperature strength of nickel-base superalloy, Alloy 454, in service for advanced jet engine turbine blades and vanes, was investigated. Crystallographic orientation dependence of tensile yield strength, creep and creep rupture strength was found to be marked at about 760C. In comparison with other single crystal data, a larger allowance in high strength off-axial orientation from the 001 axis, and relatively poor strength at near the -111 axis were noted. From transmission electron microscopy the anisotropic characteristics of this alloy were explained in terms of available slip systems and stacking geometries of gamma-prime precipitate cuboids which are well hardened by a large tantalum content. 100 cube slip was considered to be primarily responsible for the poor strength of the -111 axis orientation replacing the conventional 111 plane slip systems.

  8. Charge retention behavior of preferentially oriented and textured Bi3.25La0.75Ti3O12 thin films by electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, T. Y.; Lee, J. H.; Oh, Y. J.; Choi, M. R.; Jo, W.

    2007-02-01

    The authors report charge retention in preferentially (117) oriented and textured c-axis oriented ferroelectric Bi3.25La0.75Ti3O12 thin films by electrostatic force microscopy. Surface charges of the films were observed as a function of time in a selected area which consists of a single-poled region and a reverse-poled region. The highly (117) oriented film shows the extended exponential decay with characteristic scaling exponents, n =1.5-1.6. The preferentially c-axis oriented film shows a remarkable retained behavior regardless of the poling. Decay and retention mechanisms of the regions are explained by space-charge redistribution and trapping of defects in the films.

  9. Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties.

    PubMed

    Jehl, Z; Rousset, J; Donsanti, F; Renou, G; Naghavi, N; Lincot, D

    2010-10-01

    The electrodeposition of ZnO nanorods on ZnO:Al films with different orientations is reported. The influence of the total charge exchanged during electrodeposition on the nanorod's geometry (length, diameter, aspect ratio and surface density) and the optical transmission properties of the nanorod arrays is studied on a [0001]-oriented ZnO:Al substrate. The nanorods are highly vertically oriented along the c axis, following the lattice matching with the substrate. The growth on a [1010] and [1120] ZnO:Al-oriented substrate with c axis parallel to the substrate leads to a systematic deviation angle of 55 degrees from the perpendicular direction. This finding has been explained by the occurrence of a minority orientation with the [1011] planes parallel to the surface, with a preferential growth on corresponding [0001] termination. Substrate crystalline orientation is thereby found to be a major parameter in finely tuning the orientation of the nanorod array. This new approach allows us to optimize the light scattering properties of the films.

  10. Slow Manifold and Hannay Angle in the Spinning Top

    ERIC Educational Resources Information Center

    Berry, M. V.; Shukla, P.

    2011-01-01

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…

  11. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaozhi; Yue, Zhenxing, E-mail: yuezhx@mail.tsinghua.edu.cn; Meng, Siqin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s}more » of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)« less

  12. Measurement of the orientation of buffer-gas-cooled, electrostatically-guided ammonia molecules

    NASA Astrophysics Data System (ADS)

    Steer, Edward W.; Petralia, Lorenzo S.; Western, Colin M.; Heazlewood, Brianna R.; Softley, Timothy P.

    2017-02-01

    The extent to which the spatial orientation of internally and translationally cold ammonia molecules can be controlled as molecules pass out of a quadrupole guide and through different electric field regions is examined. Ammonia molecules are collisionally cooled in a buffer gas cell, and are subsequently guided by a three-bend electrostatic quadrupole into a detection chamber. The orientation of ammonia molecules is probed using (2 + 1) resonance-enhanced multiphoton ionisation (REMPI), with the laser polarisation axis aligned both parallel and perpendicular to the time-of-flight axis. Even with the presence of a near-zero field region, the ammonia REMPI spectra indicate some retention of orientation. Monte Carlo simulations propagating the time-dependent Schrödinger equation in a full basis set including the hyperfine interaction enable the orientation of ammonia molecules to be calculated - with respect to both the local field direction and a space-fixed axis - as the molecules pass through different electric field regions. The simulations indicate that the orientation of ∼95% of ammonia molecules in JK =11 could be achieved with the application of a small bias voltage (17 V) to the mesh separating the quadrupole and detection regions. Following the recent combination of the buffer gas cell and quadrupole guide apparatus with a linear Paul ion trap, this result could enable one to examine the influence of molecular orientation on ion-molecule reaction dynamics and kinetics.

  13. Evolution of quartz microstructure and c-axis crystallographic preferred orientation within ductilely deformed granitoids (Arolla unit, Western Alps)

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio; Heilbronner, Renee; Pittarello, Lidia

    2008-11-01

    We have studied quartz microstructures and the c-axis crystallographic preferred orientations (CPOs) in four granitoid samples representative of increasing ductile shear deformation, from a weakly deformed granitoid (stage 1) to a mylonitic granitoid (stage 4). The quartz c-axis CPO measured in the mylonitic granitoid has been compared with the one observed in a fully recrystallized quartz mylonite from the same area. All the samples belong to the Austroalpine Arolla unit (Western Alps) and were deformed at greenschist facies conditions. The quartz c-axis CPO was analyzed using a U-stage and the optical orientation imaging technique. The magmatic plagioclase, forming more than 50% of the volume of the granitoid, is extensively replaced by a mica-rich aggregate even in weakly deformed samples of stage 1. These aggregates flow to form an interconnected weak matrix with increasing deformation, wrapping relatively less strained quartz grains that undergo dominantly coaxial strain. Recrystallization of quartz ranges from less than 1% in the weakly deformed granitoid to up to 85% in the mylonitic granitoid, with average grain strain of 41% and 64%, respectively. With increasing strain and recrystallization, quartz grains in the granitoids show a sequence of transient microstructures and CPOs. Crystal plastic deformation is initially accomplished by dislocation glide with limited recovery, and at 50% grain strain it results in a CPO consistent with dominantly basal < a> slip. At 60% grain strain, recrystallization is preferentially localized along shear bands, which appear to develop along former intragranular cracks, and the recrystallized grains develop a strong c-axis CPO with maxima orthogonal to the shear band boundaries and independent of the host grain orientation. Within the granitoid mylonite, at an average quartz grain strain of 64%, recrystallization is extensive and the c-axis CPO of new grains displays maxima overlapping the host c-axis orientation and, therefore, unrelated to the bulk sense of shear. The host-controlled CPO is inferred to reflect pervasive recrystallization by progressive subgrain rotation. The switch from 'shear band-control' to 'host-control' on c-axis CPO occurred between 40% and 70% of recrystallization. In the quartz mylonite, the quartz c-axis CPO develops an asymmetric single girdle consistent with the bulk sense of shear and the synkinematic greenschist facies conditions. This study indicates that the CPO evolution of quartz may significantly differ in cases of polymineralic vs. monomineralic rocks under the same deformation conditions, if quartz in the polymineralic rock behaves as a 'strong' phase.

  14. A three-dimensional axis for the study of femoral neck orientation

    PubMed Central

    Bonneau, Noémie; Libourel, Paul-Antoine; Simonis, Caroline; Puymerail, Laurent; Baylac, Michel; Tardieu, Christine; Gagey, Olivier

    2012-01-01

    A common problem in the quantification of the orientation of the femoral neck is the difficulty to determine its true axis; however, this axis is typically estimated visually only. Moreover, the orientation of the femoral neck is commonly analysed using angles that are dependent on anatomical planes of reference and only quantify the orientation in two dimensions. The purpose of this study is to establish a method to determine the three-dimensional orientation of the femoral neck using a three-dimensional model. An accurate determination of the femoral neck axis requires a reconsideration of the complex architecture of the proximal femur. The morphology of the femoral neck results from both the medial and arcuate trabecular systems, and the asymmetry of the cortical bone. Given these considerations, two alternative models, in addition to the cylindrical one frequently assumed, were tested. The surface geometry of the femoral neck was subsequently used to fit one cylinder, two cylinders and successive cross-sectional ellipses. The model based on successive ellipses provided a significantly smaller average deviation than the two other models (P < 0.001) and reduced the observer-induced measurement error. Comparisons with traditional measurements and analyses on a sample of 91 femora were also performed to assess the validity of the model based on successive ellipses. This study provides a semi-automatic and accurate method for the determination of the functional three-dimensional femoral neck orientation avoiding the use of a reference plane. This innovative method has important implications for future studies that aim to document and understand the change in the orientation of the femoral neck associated with the acquisition of a bipedal gait in humans. Moreover, the precise determination of the three-dimensional orientation has implications in current research involved in developing clinical applications in diagnosis, hip surgery and rehabilitation. PMID:22967192

  15. Effects of static orientation upon human optokinetic afternystagmus

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Merfeld, D. M.; Zupan, L.

    1999-01-01

    "Normal" human subjects were placed in a series of 5 static orientations with respect to gravity and were asked to view an optokinetic display moving at a constant angular velocity. The axis of rotation coincided with the subject's rostro-caudal axis and produced horizontal optokinetic nystagmus and afternystagmus. Wall (1) previously reported that these optokinetic afternystagmus responses were not well characterized by parametric fits to slow component velocity. The response for nose-up, however, was larger than for nose-down. This suggested that the horizontal eye movements measured during optokinetic stimulation might include an induced linear VOR component as presented in the body of this paper. To investigate this hypothesis, another analysis of these data has been made using cumulative slow component eye position. Some subjects' responses had reversals in afternystagmus direction. These reversals were "filled in" by a zero slow component velocity. This method of analysis gives a much more consistent result across subjects and shows that, on average, responses from the nose-down horizontal (prone) orientation are greatly reduced (p < 0.05) compared to other horizontal and vertical orientations. Average responses are compared to responses predicted by a model previously used to predict successfully the responses to post-rotatory nystagmus after earth horizontal axis rotation. Ten of 11 subjects had larger responses in their supine than their prone orientation. Application of horizontal axis optokinetic afternystagmus for clinical otolith function testing, and implications for altered gravity experiments are discussed.

  16. Slow Rotating Asteroids: A Long Day's Journey into Night

    NASA Astrophysics Data System (ADS)

    Warner, Brian D.

    2009-05-01

    While there is no formal definition of a "slow rotator" among asteroids, anything with a period of at least 24 hours can be considered to be at least at the fast end of the group. These objects are of particular interest to those studying the evolution and dynamics of the asteroids within the solar system for several reasons. Most important among them is to generalize theories regarding the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, which is the thermal re-radiation of sunlight that can not only affect the orientation of an asteroid's spin axis but its rate of rotation as well. In those cases where the spin rate is decreased, an asteroid can eventually be sent into a state of "tumbling" (NPAR - non-principal axis rotation) that can last for millions of years. However, not all slow rotating asteroids appear to be tumbling. This is not expected and so careful studies of these objects are needed to determine if this is really the case or if the tumbling has reached a condition where the secondary frequency - the precession of the spin axis - has been reduced to near zero. Furthermore, there appears to be an excess of slow rotators among the NEA and inner main-belt populations. Determining whether or not this is true among the broader population of asteroids is also vital to understanding the forces at work among the asteroids.

  17. Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gutiérrez, P. J.; Jorda, L.; Gaskell, R. W.; Davidsson, B. J. R.; Capanna, C.; Hviid, S. F.; Keller, H. U.; Maquet, L.; Mottola, S.; Preusker, F.; Scholten, F.; Lara, L. M.; Moreno, F.; Rodrigo, R.; Sierks, H.; Barbieri, C.; Lamy, P.; Koschny, D.; Rickman, H.; Agarwal, J.; A'Hearn, M. F.; Auger, A. T.; Barucci, M. A.; Bertaux, J. L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez-Marques, P.; Güttler, C.; Ip, W. H.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; López-Moreno, J. J.; Magrin, S.; Marchi, S.; Marzari, F.; Naletto, G.; Oklay, N.; Pajola, M.; Pommerol, A.; Sabau, D.; Thomas, N.; Toth, I.; Tubiana, C.; Vincent, J. B.

    2016-05-01

    Context. Data derived from the reconstruction of the nucleus shape of comet 67P/Churyumov-Gerasimenko (67P) from images of the OSIRIS camera onboard ROSETTA show evidence that the nucleus rotates in complex mode. First, the orientation of the spin axis is not fixed in an inertial reference frame, which suggests a precessing motion around the angular momentum vector with a periodicity of approximately 257 h ± 12 h.Second, periodograms of the right ascension and declination (RA/Dec) coordinates of the body-frame Z axis show a very significant (higher than 99.99%) periodicity at 276 h ± 12 h, different from the rotational period of 12.40 h as previously determined from light-curve analysis. Aims: The main goal is to interpret the data and associated periodicities of the spin axis orientation in space. Methods: We analyzed the spin axis orientation in space and associated periodicities and compared them with solutions of Euler equations under the assumption that the body rotates in torque-free conditions. Statistical tests comparing the observationally derived spin axis orientation with the outcome from simulations were applied to determine the most likely inertia moments, excitation level, and periods. Results: Under the assumption that the body is solid-rigid and rotates in torque-free conditions, the most likely interpretation is that 67P is spinning around the principal axis with the highest inertia moment with a period of about 13 h. At the same time, the comet precesses around the angular momentum vector with a period of about 6.35 h. While the rotating period of such a body would be about 12.4 h, RA/Dec coordinates of the spin axis would have a periodicity of about 270 h as a result of the combination of the two aforementioned motions. Conclusions: The most direct and simple interpretation of the complex rotation of 67P requires a ratio of inertia moments significantly higher than that of a homogeneous body.

  18. 'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?

    PubMed

    Phillips, John B; Borland, S Chris; Freake, Michael J; Brassart, Jacques; Kirschvink, Joseph L

    2002-12-01

    Experiments were carried out to investigate the earlier prediction that prolonged exposure to long-wavelength (>500 nm) light would eliminate homing orientation by male Eastern red-spotted newts Notophthalmus viridescens. As in previous experiments, controls held in outdoor tanks under natural lighting conditions and tested in a visually uniform indoor arena under full-spectrum light were homeward oriented. As predicted, however, newts held under long-wavelength light and tested under either full-spectrum or long-wavelength light (>500 nm) failed to show consistent homeward orientation. The newts also did not orient with respect to the shore directions in the outdoor tanks in which they were held prior to testing. Unexpectedly, however, the newts exhibited bimodal orientation along a more-or-less 'fixed' north-northeast-south-southwest magnetic axis. The orientation exhibited by newts tested under full-spectrum light was indistinguishable from that of newts tested under long-wavelength light, although these two wavelength conditions have previously been shown to differentially affect both shoreward compass orientation and homing orientation. To investigate the possibility that the 'fixed-axis' response of the newts was mediated by a magnetoreception mechanism involving single-domain particles of magnetite, natural remanent magnetism (NRM) was measured from a subset of the newts. The distribution of NRM alignments with respect to the head-body axis of the newts was indistinguishable from random. Furthermore, there was no consistent relationship between the NRM of individual newts and their directional response in the overall sample. However, under full-spectrum, but not long-wavelength, light, the alignment of the NRM when the newts reached the 20 cm radius criterion circle in the indoor testing arena (estimated by adding the NRM alignment measured from each newt to its magnetic bearing) was non-randomly distributed. These findings are consistent with the earlier suggestion that homing newts use the light-dependent magnetic compass to align a magnetite-based 'map detector' when obtaining the precise measurements necessary to derive map information from the magnetic field. However, aligning the putative map detector does not explain the fixed-axis response of newts tested under long-wavelength light. Preliminary evidence suggests that, in the absence of reliable directional information from the magnetic compass (caused by the 90 degrees rotation of the response of the magnetic compass under long-wavelength light), newts may resort to a systematic sampling strategy to identify alignment(s) of the map detector that yields reliable magnetic field measurements.

  19. Controlling laser emission by selecting crystal orientation

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Han, Shujuan; Wang, Zhengping; Wang, Jiyang; Zhang, Huanjin; Yu, Haohai; Han, Shuo; Xu, Xinguang

    2013-01-01

    Based on the anisotropy of laser crystal, we demonstrate a method of adjusting laser emission by selecting crystal orientation. When the light propagating direction varies from a to c axis of Nd:LiGd(MoO4)2 crystal, emission wavelength exhibits a sensitive change of 1061 nm → 1061/1062 + 1068 nm → 1068 nm. The experimental discipline is well explained by a theoretical study of simulating on the spatial distribution of stimulated emission cross-section. This letter manifests that the laser property along non-principal-axis direction is also valuable for research and application, which breaks through the traditional custom of using laser materials processed along principal-axis.

  20. Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography.

    PubMed

    Guo, Shuguang; Zhang, Jun; Wang, Lei; Nelson, J Stuart; Chen, Zhongping

    2004-09-01

    Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient mathematical tool, is used to represent an optical element and simplify the algorithm. Experimental results with beef tendon and rabbit tendon and muscle show that this technique has promising potential for imaging the birefringent structure of multiple-layer samples with varying optical axes.

  1. Tracking formulas and strategies for a receiver oriented dual-axis tracking toroidal heliostat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Minghuan; Wang, Zhifeng; Liang, Wenfeng

    2010-06-15

    A 4 m x 4 m toroidal heliostat with receiver oriented dual-axis tracking, also called spinning-elevation tracking, was developed as an auxiliary heat source for a hydrogen production system. A series of spinning-elevation tracking formulas have been derived for this heliostat. This included basic tracking formulas, a formula for the elevation angle for heliostat with a mirror-pivot offset, and a more general formula for the biased elevation angle. This paper presents the new tracking formulas in detail and analyzes the accuracy of applying a simplifying approximation. The numerical results show these receiver oriented dual-axis tracking formula approximations are accurate tomore » within 2.5 x 10{sup -6} m in image plane. Some practical tracking strategies are discussed briefly. Solar images from the toroidal heliostat at selected times are also presented. (author)« less

  2. Histological techniques for study of photoreceptor orientation.

    PubMed

    Laties, A M

    1969-01-01

    An histological method for the study of photoreceptor orientation in primate eyes is described. To preserve photoreceptor orientation it is necessary to protect the fragile rod and cone outer segments to the maximum extent possible from mechanical deformation and from injury by solvent extraction. To prevent mechanical deformation the eyes are freeze-dried and embedded in plastic with or without prior vapor fixation. Solvent extraction from the lipid-rich outer segment is limited by avoidance or restriction of organic solvents. When large segments of primate eyes are so treated, it is possible to section the plastic blocks along the visual axis, polish the block surface, and view photoreceptor orientation by epi-illumination microscopy. In such specimens a differential orientation of photoreceptors exists with the long axis of photoreceptor inner and outer segments in line with incoming light rays.

  3. Orientation distribution of sheared isotactic polypropylene plates through thickness in the presence of sodium benzoate

    NASA Astrophysics Data System (ADS)

    Zhu, Peng-wei; Phillips, Andrew; Tung, Jason; Edward, Graham

    2005-05-01

    The orientation distribution of sheared isotactic polypropylene (iPP) containing different amount of sodium benzoate (SB) has been investigated through the gradient of shear flow field using microbeam of synchrotron wide-angle x-ray techniques. The degree of the overall orientation of α-phase crystal is found to increase with increasing concentration of SB. Compared with the sheared iPP in the absence of SB, the orientation of α-phase crystal is found to distribute over a broader range of shear flow field in the presence of SB. The overall orientation of α-phase crystal is explained in terms of a parent-daughter model or lamella-branched shish-kebab structure. As the concentration of SB increases, the contribution from the c-axis orientation of parent lamellae decreases in the flow direction. The contribution from the a*-axis orientation of daughter lamellae is developed to be dominant in the flow direction when the concentration of SB exceeds a critical value.

  4. Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.

    PubMed

    Tang, Zan; Hu, Yucheng; Wang, Zheng; Jiang, Kewu; Zhan, Cheng; Marshall, Wallace F; Tang, Nan

    2018-02-05

    Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Orientation estimation algorithm applied to high-spin projectiles

    NASA Astrophysics Data System (ADS)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  6. Contribution of the maculo-ocular reflex to gaze stability in the rabbit.

    PubMed

    Pettorossi, V E; Errico, P; Santarelli, R M

    1991-01-01

    The contribution of the maculo-ocular reflex to gaze stability was studied in 10 pigmented rabbits by rolling the animals at various angles of sagittal inclination of the rotation and/or longitudinal animal axes. At low frequencies (0.005-0.01 Hz) of sinusoidal stimulation the vestibulo-ocular reflex (VOR) was due to macular activation, while at intermediate and high frequencies it was mainly due to ampullar activation. The following results were obtained: 1) maculo-ocular reflex gain decreased as a function of the cosine of the angle between the rotation axis and the earth's horizontal plane. No change in gain was observed when longitudinal animal axis alone was inclined. 2) At 0 degrees of rotation axis and with the animal's longitudinal axis inclination also set at 0 degrees, the maculo-ocular reflex was oriented about 20 degrees forward and upward with respect to the earth's vertical axis. This orientation remained constant with sagittal inclinations of the rotation and/or longitudinal animal axes ranging from approximately 5 degrees upward to 30 degrees downward. When the longitudinal animal axis was inclined beyond these limits, the eye trajectory tended to follow the axis inclination. In the upside down position, the maculo-ocular reflex was anticompensatory, oblique and fixed with respect to orbital coordinates. 3) Ampullo-ocular reflex gain did not change with inclinations of the rotation and/or longitudinal animal axes. The ocular responses were consistently oriented to the stimulus plane. At intermediate frequencies the eye movement trajectory was elliptic because of directional differences between the ampullo- and maculo-ocular reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Upper Mantle Dynamics of Bangladesh by Splitting Analyzes of Core Refracted SKS and SKKS Waves

    NASA Astrophysics Data System (ADS)

    Tiwari, A. K.; Bhushan, K.; Eken, T.; Singh, A.

    2017-12-01

    New shear wave splitting measurements are obtained from hitherto less studied Bengal Basin using core refracted SKS and SKKS phases. Splitting parameters, time delays (δt) and fast polarization directions (Φ) were estimated through analysis of 64 high-quality waveforms (≥ 2.5 signal to noise ratio) from 29 earthquakes with magnitude ≥5.5 recorded at eight seismic stations deployed over Bangladesh. We found no evidence of splitting which indicates azimuthal isotropy beneath the region. Null measurements can be explained by near vertical axis of anisotropy or by the presence of multiple anisotropic layers with different fast polarization directions, where combined effect results in null. We consider that the presence of partial melts within the upper mantle due to Kerguelen mantle plume activities may be the potential geodynamic cause for observed null measurements. It locally perturbed mantle convection flow beneath the region and reoriented the lattice preferred orientation of the upper mantle mineral mainly olivine as this disabled the core refracted SKS and SKKS phases to scan the anisotropic characteristics of the region, and hence null measurements are obtained.

  8. FAST Simulation Tool Containing Methods for Predicting the Dynamic Response of Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason

    2015-08-12

    FAST is a simulation tool (computer software) for modeling tlie dynamic response of horizontal-axis wind turbines. FAST employs a combined modal and multibody structural-dynamics formulation in the time domain.

  9. Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film

    PubMed Central

    Shirsath, Sagar E.; Liu, Xiaoxi; Yasukawa, Yukiko; Li, Sean; Morisako, Akimitsu

    2016-01-01

    Perpendicular magnetization and precise control over the magnetic easy axis in magnetic thin film is necessary for a variety of applications, particularly in magnetic recording media. A strong (111) orientation is successfully achieved in the CoFe2O4 (CFO) thin film at relatively low substrate temperature of 100 °C, whereas the (311)-preferred randomly oriented CFO is prepared at room temperature by the DC magnetron sputtering technique. The oxygen-deficient porous CFO film after post-annealing gives rise to compressive strain perpendicular to the film surface, which induces large perpendicular coercivity. We observe the coercivity of 11.3 kOe in the 40-nm CFO thin film, which is the highest perpendicular coercivity ever achieved on an amorphous SiO2/Si substrate. The present approach can guide the systematic tuning of the magnetic easy axis and coercivity in the desired direction with respect to crystal orientation in the nanoscale regime. Importantly, this can be achieved on virtually any type of substrate. PMID:27435010

  10. Microstructures and Crystallographic Misorientation in Experimentally Deformed Natural Quartz Single Crystals

    NASA Astrophysics Data System (ADS)

    Thust, Anja; Heilbronner, Renée.; Stünitz, Holger

    2010-05-01

    Samples of natural milky quartz were deformed in a Griggs deformation apparatus at different confining pressures (700 MPa, 1000 MPa, 1500 MPa), with constant displacement rates of 1 * 10-6s-1, axial strains of 3 - 19%, and at a temperature of 900° C. The single crystal starting material contains a large number of H2O-rich fluid inclusions. Directly adjacent to the fluid inclusions the crystal is essentially dry (50-150H/106Si, determined by FTIR). The samples were cored from a narrow zone of constant 'milkyness' (i.e. same density of fluid inclusions) in a large single crystal in two different orientations (1) normal to one of the prism planes (⊥{m} orientation) and (2) 45° to and to (O+ orientation).During attaining of the experimental P and T conditions, numerous fluid inclusions decrepitate by cracking. Rapid crack healing produces regions of very small fluid inclusions ('wet' quartz domains). Only these regions are subsequently deformed by dislocation glide, dry quartz domains without cracking and decrepitation of fluid inclusions remain undeformed. Sample strain is not sufficient to cause recrystallization, so that deformation is restricted to dislocation glide. In experiments at lower temperatures (800, 700° C) or at lower strain rate (10-5s-1) there is abundant cracking and semi-brittle deformation, indicating that 900° C, (10-6s-1) represents the lower temperature end of crystal plastic deformation in these single crystals. Peak strengths (at 900° C) range between 150 and 250 MPa for most samples of both orientations. There is a trend of decreasing strength with increasing confining pressure, as described by Kronenberg and Tullis (1984) for quartzites, but the large variation in strength due to inhomogeneous sample strain precludes a definite analysis of the strength/pressure dependence in our single crystals. In the deformed samples, we can distinguish a number of microstructures and inferred different slip systems. In both orientations, deformation lamellae with a high optical relief appear in the usual sub-basal orientation; often they are associated with 'fluid inclusions trails', cracks or en echelon arrays. In ⊥{m} orientation, conjugate misorientation bands sub-parallel to the prism planes can be observed. The barreled shape of the samples can be explained by prism glide. Unfortunately, since prism glide does not affect the c-axis orientation it cannot be recognized on a c-axis orientation image. Nevertheless, changes in the c-axis orientation are observed locally, indicating either the activity of an additional slip system or a different deformation process (not specified yet). In O+ orientation, we observe the formation of internally kinked shear bands. They are up to 100 μm wide and oriented at α 90° w/r to the host c-axis, slightly oblique to the sense of shear. The width of the kinked domains is 20-40 μm and the average misorientation (β) is 5° . The dispersion of c-axis orientation with synthetic rotation of the c-axis is evidence of basal glide. References: Kronenberg, A.K. & Tullis, J. (1984): Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. JGR Vol. 89, 4281-4281.

  11. Steady-state LPO is not always reached in high-strain shear zones

    NASA Astrophysics Data System (ADS)

    Kumamoto, K. M.; Warren, J. M.

    2017-12-01

    Seismic anisotropy in the upper mantle results from the alignment of olivine crystal lattices during flow by dislocation creep. Experiments on the evolution of olivine lattice preferred orientation (LPO) as a function of shear strain have found that high strains (>10) are necessary to achieve a steady-state LPO (i.e., the dominant slip system does not change appreciably with further strain) when a pre-existing LPO is present. At lower strain ( 2), a pseudo-steady-state fabric is reached, in which the [100] axes of olivine reach a steady orientation relative to the deformation kinematics, but the [010] and [001] axes continue to evolve (e.g. Hansen et al., 2014). To constrain LPO evolution at mantle conditions, we looked at the LPO variation across three high temperature mantle shear zones in the Josephine Peridotite of SW Oregon. These shear zones provide a rare opportunity to examine LPO evolution in natural samples as a function of shear strain, due to the presence of a pyroxene foliation that serves as a strain marker. Observations of two of these shear zones are consistent with experimental observations (Warren et al., 2008; Skemer et al., 2010). Shear Zone G reaches a steady-state LPO at a strain of >20. Shear Zone P reaches a pseudo-steady-state LPO, with a consistent [100] axis orientation, at a strain of 3.5. However, a steady-state orientation is not reached in the [010] or [001] axes at the maximum strain of 5.25. The third shear zone, Shear Zone A, does not appear to reach even a pseudo-steady-state LPO, despite reaching strains >20 at its center. Instead, the dominant slip plane switches back and forth between the (010) and (001) planes with increasing strain, while the [100] axis orientations continue to evolve. Unusually, at peak strain, the [100] axes are oriented 40° past the shear plane. In contrast, the other two shear zones, along with other natural and experimental examples, have the [100] axes oriented approximately parallel to the shear direction at very high strain. The high angle of the [100] axes to the shear direction at high strain in SZA may explain angular offsets between plate motion and fast seismic direction, for instance as seen in the MELT experiment (Wolfe and Solomon, 1998). Hansen et al., 2014, EPSLSkemer et al., 2010, J. Pet. Warren et al., 2008, EPSLWolfe and Solomon, 1998, Science

  12. Deformation of the Tonga Slab: Evidence for Interaction with a Small-scale Secondary Plume in the Transition Zone

    NASA Astrophysics Data System (ADS)

    Billen, M. I.; Bikoba, J. Z.; Tarlow, S.

    2015-12-01

    Magali I. Billen and John Z. BikobaThe Tonga Slab is the most seismically active subduction zone providing a uniquely detailed picture of the internal deformation of the slab, with apparent warping and folding, from the surface through the transition zone. Here, we investigate the dynamical origin of a irregular feature in the seismicity within the transition zone located at 21-28oS, using 3D visualization and analysis of the seismicity and compression/tension (P/T) axis from the moment tensor solutions to characterize the geometry of, and the orientation of forces acting on, the slab. This irregular feature can be described as narrow region of upward deflection of the slab, with a gap in seismicity beyond (down-dip of) the deflected region, and flanked by two narrow V-shaped gaps in seismicity suggestive of tearing of the slab. The P/T axis show a dominate down-dip orientation of the P axis above the deflection point, which rotate to a nearly vertical orientation within the central region of the deflected slab. The adjacent attached regions (down-dip of the two flanking slab gaps) also have rotated and more heterogeneous P/T axis orientations. In contrast, the adjacent section of the slab to the north of 21oS has continuous seismicity throughout the transition zone, with a roughly uniform planar shape, and generally down-dip orientation of the P axis. We explore three possible hypothesis for the observed deformation including: 1) deflection due to a buoyant metastable olivine wedge, 2) a buckling feature in the slab as previously proposed by Myhill (GJI., 2013), and interaction with a small-scale, secondary plume upwelling below the slab. If the newly-observed gaps in seismicity indicate physical gaps or significant thinning of the slab, then these observations are not consistent with the buckling hypothesis. The lack of significant along-strike variation in slab age or subduction rate also suggests that a localized region of metastable olivine is unlikely. Therefore, we test the third hypothesis using a simple 3D geodynamical model of a planar dipping slab overlying a localized buoyant upwelling (radius < 150 km). We present comparisons of the observations to the model predictions for the subsequent deformation of the slab and orientations of principal stress axis within the slab.

  13. Three-dimensional anthropometry of the adult face.

    DOT National Transportation Integrated Search

    1978-03-01

    This study describes a new three-dimensional anatomical axis system based on four conventional anthropometrical face landmarks. Coincident as a coordinate (orthogonal) axis system, this reference system was developed to provide convenient orientation...

  14. Epitaxially grown BaM hexaferrite films having uniaxial axis in the film plane for self-biased devices

    PubMed Central

    Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G.

    2017-01-01

    Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range. PMID:28276492

  15. Epitaxially grown BaM hexaferrite films having uniaxial axis in the film plane for self-biased devices.

    PubMed

    Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G

    2017-03-09

    Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range.

  16. Quartz c-axis orientation patterns in fracture cement as a measure of fracture opening rate and a validation tool for fracture pattern models

    DOE PAGES

    Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall

    2016-03-09

    Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less

  17. Quartz c-axis orientation patterns in fracture cement as a measure of fracture opening rate and a validation tool for fracture pattern models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall

    Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less

  18. Fabrication, Testing, Coating and Alignment of Fast Segmented Optics

    DTIC Science & Technology

    2006-05-25

    mirror segment, a 100 mm thick Zerodur mirror blank was purchased from Schott. Figure 2 shows the segment and its support for polishing and testing in...Polishing large off-axis segments of fast primary mirrors 2. Testing large segments in an off-axis geometry 3. Alignment of multiple segments of a large... mirror 4. Coatings that reflect high-intensity light without distorting the substrate These technologies are critical because of several unique

  19. Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing.

    PubMed

    Sha, Bei; Liu, Xuan; Ge, Xiao-Lu; Guo, Cheng-Shan

    2014-09-22

    A method for fast reconstruction of off-axis digital holograms based on digital multiplexing algorithm is proposed. Instead of the existed angular multiplexing (AM), the new method utilizes a spatial multiplexing (SM) algorithm, in which four off-axis holograms recorded in sequence are synthesized into one SM function through multiplying each hologram with a tilted plane wave and then adding them up. In comparison with the conventional methods, the SM algorithm simplifies two-dimensional (2-D) Fourier transforms (FTs) of four N*N arrays into a 1.25-D FTs of one N*N arrays. Experimental results demonstrate that, using the SM algorithm, the computational efficiency can be improved and the reconstructed wavefronts keep the same quality as those retrieved based on the existed AM method. This algorithm may be useful in design of a fast preview system of dynamic wavefront imaging in digital holography.

  20. Inversion of the chordate body axis: are there alternatives?

    NASA Technical Reports Server (NTRS)

    Gerhart, J.

    2000-01-01

    One major morphological difference between chordates and annelids or arthropods is the opposite orientation of the nerve cord and heart. A long-standing proposal is that the chordate axis evolved by inverting the body of an ancestor with the annelid/arthropod orientation. However, the data can also be explained by a common ancestor with diffuse dorsoventral organization, followed by oppositely directed condensation of the nerve cord and relocation of the heart in the two lines.

  1. Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach

    PubMed Central

    Dagdug, Leonardo; Berezhkovskii, Alexander M.; Skvortsov, Alexei T.

    2015-01-01

    We study trapping of diffusing particles by a cylindrical surface formed by rolling a flat surface, containing alternating absorbing and reflecting stripes, into a tube. For an arbitrary stripe orientation with respect to the tube axis, this problem is intractable analytically because it requires dealing with non-uniform boundary conditions. To bypass this difficulty, we use a boundary homogenization approach which replaces non-uniform boundary conditions on the tube wall by an effective uniform partially absorbing boundary condition with properly chosen effective trapping rate. We demonstrate that the exact solution for the effective trapping rate, known for a flat, striped surface, works very well when this surface is rolled into a cylindrical tube. This is shown for both internal and external problems, where the particles diffuse inside and outside the striped tube, at three orientations of the stripe direction with respect to the tube axis: (a) perpendicular to the axis, (b) parallel to the axis, and (c) at the angle of π/4 to the axis. PMID:26093574

  2. Factors determining the spin axis of a pitched fastball in baseball.

    PubMed

    Jinji, Tsutomu; Sakurai, Shinji; Hirano, Yuichi

    2011-04-01

    In this study, we wished to investigate the factors that determine the direction of the spin axis of a pitched baseball. Nineteen male baseball pitchers were recruited to pitch fastballs. The pitching motion was recorded with a three-dimensional motion analysis system (1000 Hz), and the orientations of the hand segment in a global coordinate system were calculated using Euler rotation angles. Reflective markers were attached to the ball, and the direction of the spin axis was calculated on the basis of their positional changes. The spin axis directions were significantly correlated with the orientations of the hand just before ball release. The ball is released from the fingertip and rotates on a plane that is formed by the palm and fingers; the spin axis of the ball is parallel to this plane. The lift force of the pitched baseball is largest when the angular and translational velocity vectors are mutually perpendicular. Furthermore, to increase the lift forces for the fastballs, the palm must face home plate.

  3. Effects of head orientation and lateral body tilt on egocentric coding: cognitive and sensory-motor accuracy.

    PubMed

    Prieur, J-M; Bourdin, C; Sarès, F; Vercher, J-L

    2006-01-01

    A major issue in motor control studies is to determine whether and how we use spatial frames of reference to organize our spatially oriented behaviors. In previous experiments we showed that simulated body tilt during off-axis rotation affected the performance in verbal localization and manual pointing tasks. It was hypothesized that the observed alterations were at least partly due to a change in the orientation of the egocentric frame of reference, which was indeed centered on the body but aligned with the gravitational vector. The present experiments were designed to test this hypothesis in a situation where no inertial constraints (except the usual gravitational one) exist and where the orientation of the body longitudinal z-axis was not aligned with the direction of the gravity. Eleven subjects were exposed to real static body tilt and were required to verbally localize (experiment 1) and to point as accurately as possible towards (experiment 2) memorized visual targets, in two conditions, Head-Free and Head-Fixed conditions. Results show that the performance was only affected by real body tilt in the localization task performed when the subject's head was tilted relative to the body. Thus, dissociation between gravity and body longitudinal z-axis alone is not responsible for localization nor for pointing errors. Therefore, the egocentric frame of reference seems independent from the orientation of the gravity with regard to body z-axis as expected from our previous studies. Moreover, the use of spatial referentials appears to be less mandatory than expected for pointing movements (motor task) than for localization task (cognitive task).

  4. The orientation of the mineral crystals in the radius and tibia of the sheep, and its variation with age.

    PubMed Central

    Bacon, G E; Goodship, A E

    1991-01-01

    The direction of preferred orientation of the hydroxyapatite crystals in both the tibia and radius of the sheep is close to the long axis of the bone, notwithstanding the angle of about 30 degrees which, for the tibia, exists between the long axis and the direction of principal dynamic strain during locomotion. For both bones the orientation of the cranial cortex, which is a tension surface during locomotion, is about 40% larger than the caudal. The variation with age of the magnitude of the preferred orientation for the sheep bones is contrasted with what has been reported earlier for the human femur. Notably, for the sheep, both bones show substantial orientation at birth--having increased steadily during gestation--so that the animal is able to stand and walk at the outset. PMID:1817133

  5. Some influences of touch and pressure cues on human spatial orientation

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1978-01-01

    In order to evaluate the influences of touch and pressure cues on human spatial orientation, blindfolded subjects were exposed to 30 rmp rotation about the Z-axis of their bodies while the axis was horizontal or near horizontal. It was found that the manipulation of pressure patterns to which the subjects are exposed significantly influences apparent orientation. When provided with visual information about actual orientation the subjects will eliminate the postural illusions created by pressure-cue patterns. The localization of sounds is dependent of the apparent orientation and the actual pattern of auditory stimulation. The study provides a basis for investigating: (1) the postural illusions experienced by astronauts in orbital flight and subjects in the free-fall phase of parabolic flight, and (2) the spatial-constancy mechanisms distinguishing changes in sensory afflux conditioned by a subject's movements in relation to the environment, and those conditioned by movements of the environment.

  6. The Implementation of Satellite Control System Software Using Object Oriented Design

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom

    1998-01-01

    NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses the benefits of the OOD versus a conventional procedural design. The final discussion in this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects, saving production time and costs.

  7. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.

    PubMed

    Oborn, B M; Dowdell, S; Metcalfe, P E; Crozier, S; Mohan, R; Keall, P J

    2015-05-01

    This paper investigates, via magnetic modeling and Monte Carlo simulation, the ability to deliver proton beams to the treatment zone inside a split-bore MRI-guided proton therapy system. Field maps from a split-bore 1 T MRI-Linac system are used as input to geant4 Monte Carlo simulations which model the trajectory of proton beams during their paths to the isocenter of the treatment area. Both inline (along the MRI bore) and perpendicular (through the split-bore gap) orientations are simulated. Monoenergetic parallel and diverging beams of energy 90, 195, and 300 MeV starting from 1.5 and 5 m above isocenter are modeled. A phase space file detailing a 2D calibration pattern is used to set the particle starting positions, and their spatial location as they cross isocenter is recorded. No beam scattering, collimation, or modulation of the proton beams is modeled. In the inline orientation, the radial symmetry of the solenoidal style fringe field acts to rotate the protons around the beam's central axis. For protons starting at 1.5 m from isocenter, this rotation is 19° (90 MeV) and 9.8° (300 MeV). A minor focusing toward the beam's central axis is also seen, but only significant, i.e., 2 mm shift at 150 mm off-axis, for 90 MeV protons. For the perpendicular orientation, the main MRI field and near fringe field act as the strongest to deflect the protons in a consistent direction. When starting from 1.5 m above isocenter shifts of 135 mm (90 MeV) and 65 mm (300 MeV) were observed. Further to this, off-axis protons are slightly deflected toward or away from the central axis in the direction perpendicular to the main deflection direction. This leads to a distortion of the phase space pattern, not just a shift. This distortion increases from zero at the central axis to 10 mm (90 MeV) and 5 mm (300 MeV) for a proton 150 mm off-axis. In both orientations, there is a small but subtle difference in the deflection and distortion pattern between protons fired parallel to the beam axis and those fired from a point source. This is indicative of the 3D spatially variant nature of the MRI fringe field. For the first time, accurate magnetic and Monte Carlo modeling have been used to assess the transport of generic proton beams toward a 1 T split-bore MRI. Significant rotation is observed in the inline orientation, while more complex deflection and distortion are seen in the perpendicular orientation. The results of this study suggest that due to the complexity and energy-dependent nature of the magnetic deflection and distortion, the pencil beam scanning method will be the only choice for delivering a therapeutic proton beam inside a potential MRI-guided proton therapy system in either the inline or perpendicular orientation. Further to this, significant correction strategies will be required to account for the MRI fringe fields.

  8. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo.

    PubMed

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1/5/8 signaling, suggesting that although this TGF-β may require Alk1/2 and/or Alk3/6 to antagonize nodal expression, it may do so by sequestering a factor essential for Nodal signaling, by activating a non-Smad pathway downstream of the type I receptors, or by activating extremely low levels of pSmad1/5/8. We provide evidence that, although panda mRNA is broadly distributed in the early embryo, local expression of panda mRNA efficiently orients the dorsal-ventral axis and that Panda activity is required locally in the early embryo to specify this axis. Taken together, these findings demonstrate that maternal panda mRNA is both necessary and sufficient to orient the dorsal-ventral axis. These results therefore provide evidence that in the highly regulative sea urchin embryo, the activity of spatially restricted maternal factors regulates patterning along the dorsal-ventral axis.

  9. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo

    PubMed Central

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1/5/8 signaling, suggesting that although this TGF-β may require Alk1/2 and/or Alk3/6 to antagonize nodal expression, it may do so by sequestering a factor essential for Nodal signaling, by activating a non-Smad pathway downstream of the type I receptors, or by activating extremely low levels of pSmad1/5/8. We provide evidence that, although panda mRNA is broadly distributed in the early embryo, local expression of panda mRNA efficiently orients the dorsal-ventral axis and that Panda activity is required locally in the early embryo to specify this axis. Taken together, these findings demonstrate that maternal panda mRNA is both necessary and sufficient to orient the dorsal-ventral axis. These results therefore provide evidence that in the highly regulative sea urchin embryo, the activity of spatially restricted maternal factors regulates patterning along the dorsal-ventral axis. PMID:26352141

  10. Growth axis maturation is linked to nutrition, growth and developmental rate.

    PubMed

    Hetz, Jennifer A; Menzies, Brandon R; Shaw, Geoffrey; Rao, Alexandra; Clarke, Iain J; Renfree, Marilyn B

    2015-08-15

    Maturation of the mammalian growth axis is thought to be linked to the transition from fetal to post-natal life at birth. However, in an altricial marsupial, the tammar wallaby (Macropus eugenii), this process occurs many months after birth but at a time when the young is at a similar developmental stage to that of neonatal eutherian mammals. Here we manipulate growth rates and demonstrate in slow, normal and fast growing tammar young that nutrition and growth rate affect the time of maturation of the growth axis. Maturation of GH/IGF-I axis components occurred earlier in fast growing young, which had significantly increased hepatic GHR, IGF1 and IGFALS expression, plasma IGF-I concentrations, and significantly decreased plasma GH concentrations compared to age-matched normal young. These data support the hypothesis that the time of maturation of the growth axis depends on the growth rate and maturity of the young, which can be accelerated by changing their nutritional status. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Vacuum chamber for containing particle beams

    DOEpatents

    Harvey, A.

    1985-11-26

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

  12. Three-axis orthogonal transceiver coil for eddy current sounding

    NASA Astrophysics Data System (ADS)

    Sukhanov, D.; Zavyalova, K.; Goncharik, M.

    2017-08-01

    We propose the new structure of three-axis transceiver magnetic-induction coil for eddy current probing. Due to the orientation of the coils, the direct signal from the transmitting coil to the receiving coil is minimized, which provided a high dynamic range. Sensitivity in all directions is provided by combining coils of different orientations. Numerical simulation and experimental studies of such a system have been carried out and confirmed the applicability of the proposed method and the mathematical model.

  13. Ab initio elastic properties of talc from 0 to 12 GPa: Interpretation of seismic velocities at mantle pressures and prediction of auxetic behaviour at low pressure

    NASA Astrophysics Data System (ADS)

    Mainprice, David; Le Page, Yvon; Rodgers, John; Jouanna, Paul

    2008-10-01

    Talc is a hydrous magnesium rich layered silicate that is widely disseminated in the Earth from the seafloor to over 100 km depth, in ultra-high pressure metamorphism of oceanic crust. In this paper we determine the single crystal elastic constants at pressures from 0 to 12 GPa of talc triclinic ( C 1¯) and monoclinic (C2/ c) polytypes using ab initio methods. We find that talc has an extraordinarily high elastic anisotropy at zero pressure that reduces with increasing pressure. The exceptional anisotropy is complemented by a negative Poisson's ratio for many directions in crystal space. Calculations show that talc is not only one of very few common minerals to exhibit auxetic behaviour, but the magnitude of this effect may be the largest reported so far for a mineral. The compression (Vp) and shear (Vs) wave velocity anisotropy is 80% and 85% for the triclinic polytype. At pressures where talc is known be stable in the Earth (up to 5 GPa) the Vp and Vs anisotropy is reduced to about 40% for both velocities, which is still a very high value. Vp is slow parallel to the c-axis and fast perpendicular to it. This remains unchanged with increasing pressure and is observed in both polytypes. The shear wave splitting (difference between fast and slow S-wave velocities) at low pressure has high values in the plane normal to the c-axis, with a maximum near the a*-axis in the triclinic and the b-axis in the monoclinic polytype. The c-axis is the direction of minimum splitting. The pattern of shear wave splitting does not change significantly with pressure. The volume fraction of talc varies between 11 and 41% for hydrated mantle rocks, but the lack of data on the crystallographic preferred orientation (CPO) precludes a detailed analysis of the impact of talc on seismic anisotropy in subduction zones. However, it is highly likely that CPO can easily develop in zones of deformation due to the platy habit of talc crystals. For random aggregates of talc, the isotropic Vp, Vs and Vp/Vs ratio have significantly lower values than those of antigorite and may explain low-velocity regions in the mantle wedge. Vp/Vs ratios are more complex in anisotropic media because there are fast and slow S-waves, resulting in Vp/Vs1 and Vp/Vs2 ratios for every propagation direction, making interpretation difficult in deformed polycrystalline talc with a CPO. Talc on the subduction plate boundary can strongly influence guided wave velocity as CPO would develop in this region of intense shearing. The very low coefficient of friction (< 0.1) of talc above 100 °C could also explain silent earthquakes at shallow depths ( ca 30 km) along the subduction plate boundaries, frequently responsible for tsunami.

  14. [The behavioral-neuroendocrine mechanism of development of homosexuality].

    PubMed

    Xue, Hui; Tai, Fa-Dao

    2007-10-01

    In this review, we primarily focus on the behavioral-neuroendocrine mechanism of development of homosexuality from genetic, neuroendocrine neuroanatomical and behavioral studies. Besides the influence of genetics and environment, sexual orientation was determined by the early perinatal hormone exposure. Gonadal steroidal hormone interacted with many neurotransmitters in individual development by hypothalamus pituitary adrenal axis and hypothalamus pituitary gonadal axis, which regulated the individual's sexual orientation. It was summarized here about the future directions on sexual orientation and demonstrated problems which would have to investigate next step. All these may be beneficial for our understanding of the homosexuality and paying attention to psychological and physiological health of homosexuality, which is useful to prevent the development of teenage homosexuality.

  15. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy.

    PubMed

    Yang, Haoqi; Jiang, Shaohua; Fang, Hong; Hu, Xiaowu; Duan, Gaigai; Hou, Haoqing

    2018-07-05

    Quantitative explanation on the improved mechanical properties of aligned electrospun polyimide (PI) nanofibers as the increased imidization temperatures is highly required. In this work, polarized FT-IR spectroscopy is applied to solve this problem. Based on the polarized FT-IR spectroscopy and the molecular model in the fibers, the length of the repeat unit of PI molecule, the angle between the fiber axis and the symmetric stretching direction of carbonyl group on the imide ring, and the angle between the PI molecular axis and fiber axis are all investigated. The Mark-Howink equation is used to calculate the number-average molar mass of PI molecules. The orientation states of PI molecules in the electrospun nanofibers are studied from the number-average molar mass of PI molecules and the average fiber diameter. Quantitative analysis of the orientation factor of PI molecules in the electrospun nanofibers is performed by polarized FT-IR spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. An experimental study of high Tc superconducting microstrip transmission lines at 35 GHz and the effect of film morphology

    NASA Technical Reports Server (NTRS)

    Chorey, C. M.; Bhasin, K. B.; Warner, J. D.; Josefowicz, J. Y.; Rensch, D. B.

    1991-01-01

    Microstrip transmission lines in the form of ring resonators were fabricated from a number of in-situ grown laser ablated films and post-annealed co-sputtered YBa2Cu3O(7-x) films. The properties of these resonators were measured at 35 GHz and the observed performance is examined in light of the critical temperature (Tc) and film thickness, and also the film morphology, which is different for the two deposition techniques. It is found that Tc is a major indicator of the film performance for each growth type, with film thickness becoming important as it decreases towards 1000 A. It is also found that the films with a mixed grain orientation (both a-axis and c-axis oriented grains) have poorer microwave properties as compared with the primarily c-axis oriented material. This is probably due to the significant number of grain boundaries between the different crystallites, which may act as superconducting weak links and contribute to the surface resistance.

  17. An experimental study of high Tc superconducting microstrip transmission lines at 35 GHz and the effect of film morphology

    NASA Technical Reports Server (NTRS)

    Chorey, C. M.; Bhasin, K. B.; Warner, J. D.; Josefowicz, J. Y.; Rensch, D. B.; Nieh, C. W.

    1990-01-01

    Microstrip transmission lines in the form of ring resonators were fabricated from a number of in-situ grown laser ablated films and post-annealed co-sputtered YBa2Cu3O(7-x) films. The properties of these resonators were measured at 35 GHz and the observed performance is examined in light of the critical temperature (Tc) and film thickness and also the film morphology which is different for the two deposition techniques. It is found that Tc is a major indicator of the film performance for each growth type with film thickness becoming important as it decreases towards 100 A. It is also found that the films with a mixed grain orientation (both a axis and c axis oriented grains) have poorer microwave properties as compared with the primarily c axis oriented material. This is probably due to the significant number of grain boundaries between the different crystallites, which may act as superconducting weak links and contribute to the surface resistance.

  18. Doping induced c-axis oriented growth of transparent ZnO thin film

    NASA Astrophysics Data System (ADS)

    Mistry, Bhaumik V.; Joshi, U. S.

    2018-04-01

    c-Axis oriented In doped ZnO (IZO) transparent conducting thin films were optimized on glass substrate using sol gel spin coating method. The Indium content in ZnO was varied systematically and the structural parameters were studied. Along with the crystallographic properties, the optoelectronic and electrical properties of IZO thin films were investigated in detail. The IZO thin films revealed hexagonal wurtzite structure. It was found that In doping in ZnO promotes the c-axis oriented growth of the thin films deposited on amorphous substrate. The particle size of the IZO films were increase as doping content increases from 2% to 5%. The 2% In doped ZnO film show electrical resistivity of 0.11 Ω cm, which is far better than the reported value for ZnO thin film. Better than 75% average optical transmission was estimated in the wavelength range from 400-800 nm. Systematic variartions in the electron concentration and band gap was observed with increasing In doping. Note worthy finding is that, with suitable amount of In doping improves not only transparency and conductivity but also improves the preferred orientation of the oxide thin film.

  19. Barium ferrite thin-film recording media

    NASA Astrophysics Data System (ADS)

    Sui, Xiaoyu; Scherge, Matthias; Kryder, Mark H.; Snyder, John E.; Harris, Vincent G.; Koon, Norman C.

    1996-03-01

    Both longitudinal and perpendicular barium ferrite thin films are being pursued as overcoatless magnetic recording media. In this paper, prior research on thin-film Ba ferrite is reviewed and the most recent results are presented. Self-textured high-coercivity longitudinal Ba ferrite thin films have been achieved using conventional rf diode sputtering. Microstructural studies show that c-axis in-plane oriented grains have a characteristic acicular shape, while c-axis perpendicularly oriented grains have a platelet shape. Extended X-ray absorption fine structure (EXAFS) measurements indicate that the crystal orientations are predetermined by the structural anisotropy in the as-sputtered 'amorphous' state. Recording tests on 1500 Oe coercivity longitudinal Ba ferrite disks show performance comparable with that of a 1900 Oe Co alloy disk. To further improve the recording performance, both grain size and aspect ratio need to be reduced. Initial tribological tests indicate high hardness of Ba ferrite thin films. However, surface roughness needs to be reduced. For future ultrahigh-density contact recording, it is believed that perpendicular recording may be used. A thin Pt underlayer has been found to be capable of producing Ba ferrite thin films with excellent c-axis perpendicular orientation.

  20. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    PubMed

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Jacob, K.

    Flank eruptions of polygenetic volcanoes are regarded as surface expressions of radial dikes. Therefore, the approximate pattern of radial dikes is revealed by the distribution of sites of flank eruptions. Bending of radial dikes into a preferred orientation reveals the maximum horizontal compressive stress axis. The Aleutian and Alaskan volcanoes are studied using this concept and 28 orientations of the maximum horizontal compressive stress axis are obtained. Combined with the orientation of similar quality obtained from active faults in central Alaska the trajectories of the maximum horizontal stress for the entire area during recent 10,000 to 100,000 years or longermore » is depicted. Along the Aleutian-Alaska volcanic belt, the maximum horizontal compression parallels the direction of relative motion between the North American and Pacific plates. Seven roughly east-westerly orientations are obtained from west Alaskan and Bering Sea volcanoes. In central Alaska, the trajectories spread north-westward in a fan shape with axis of symmetry in a N25/sup 0/W direction passing through the easternmost part of the Aleutian trench. The trajectories continue westward onto the Bering Sea shelf with a generally westerly trend. The overall pattern of orientations of maximum horizontal compressive stresses seems to be explained by the convergent plate motions along. An exception is the high--angle relationship between the maximum horizontal stress orientation in the central Aleutians and the immediate back-arc region, which suggests that in the back-arc region the tectonic stress system has a different origin probably at considerable depth beneath the crust.« less

  2. Purely hopping conduction in c-axis oriented LiNbO3 thin films

    NASA Astrophysics Data System (ADS)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Dielectric constant and ac conductivity of highly c-axis oriented LiNbO3 thin film grown by pulsed laser deposition were studied in a metal-insulator-metal configuration over a wide temperature (200 to 450 K) and frequency (100 Hz to 1 MHz) range. The preferred oriented Al (1%) doped ZnO film with electrical conductivity 1.1×103 Ω-1 cm-1 was deposited for dual purpose: (1) to serve as nucleating center for LiNbO3 crystallites along preferred c-axis growth direction, and (2) to act as a suitable bottom electrode for electrical studies. The room temperature dc conductivity (σdc) of LiNbO3 film was about 5.34×10-10 Ω-1 cm-1 with activation energy ˜0.3 eV, indicating extrinsic conduction. The ac conductivity σac was found to be much higher in comparison to σdc in the low temperature region (<300 K) and exhibits a power law behavior due to the hopping of charge carriers. In higher temperature region (>300 K), σac shows a weak frequency dependence, whereas dielectric constant exhibits a strong frequency dispersion. The dielectric dispersion data has been discussed in the light of theoretical models based on Debye type mixed conduction and purely hopping conduction. The dominant conduction in c-axis oriented LiNbO3 thin film is attributed to the purely hopping where both σdc and σac arise due to same mechanism.

  3. Epitaxial Growth of YBa2Cu3O7 Films onto LaAlO3 (100) by Using Oxalates

    NASA Astrophysics Data System (ADS)

    Dominguez, A. Bustamante; Felix, L. León; Garcia, J.; Santibañez, J. Flores; Valladares, L. De Los Santos; Gonzalez, J. C.; Anaya, A. Osorio; Pillaca, M.

    Due to the current necessity to obtain epitaxial superconductor films at low cost, we report the growth of YBa2Cu3O7 (Y123) films by chemical deposition. The procedure involved simple steps such as precipitation of stoichiometric amounts of yttrium, barium and copper acetates in oxalic acid (H2C2O4). The precursor solution was dripped onto LaAlO3 (100) substrates with the help of a Fisher pipette. The films were annealed in oxygen atmosphere during 12 h at three different temperatures: 820 °C, 840 °C and 860 °C. After 820 °C and 860 °C annealing, X-ray diffraction (XRD) analysis revealed high intensity of the (00l) reflections denoting that most of the Y123 grains were c-axis oriented. In addition, we also observed a-axis oriented grains ((h00) reflexion), minor randomly oriented grains and other phases (such as Y2BaCuO5 and CuO). In contrast, the sample treated at 840 °C, we noticed c - and a-axis oriented grains, very small amounts of randomly oriented grains without formation of other phases. From the magnetization versus temperature measurements, the critical temperatures were estimated at 70K and 90K for the samples annealed at 820 °C and 860 °C respectively.

  4. Smart and precise alignment of optical systems

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Stickler, Daniel

    2013-09-01

    For the assembly of any kind of optical systems the precise centration of every single element is of particular importance. Classically the precise alignment of optical components is based on the precise centering of all components to an external axis (usually a high-precision rotary spindle axis). Main drawback of this timeconsuming process is that it is significantly sensitive to misalignments of the reference (e.g. the housing) axis. In order to facilitate process in this contribution we present a novel alignment strategy for the TRIOPTICS OptiCentric® instrument family that directly aligns two elements with respect to each other by measuring the first element's axis and using this axis as alignment reference without the detour of considering an external reference. According to the optical design any axis in the system can be chosen as target axis. In case of the alignment to a barrel this axis is measured by using a distance sensor (e.g., the classically used dial indicator). Instead of fine alignment the obtained data is used for the calculation of its orientation within the setup. Alternatively, the axis of an optical element (single lens or group of lenses) whose orientation is measured with the standard OptiCentric MultiLens concept can be used as a reference. In the instrument's software the decentering of the adjusting element to the calculated axis is displayed in realtime and indicated by a target mark that can be used for the manual alignment. In addition, the obtained information can also be applied for active and fully automated alignment of lens assemblies with the help of motorized actuators.

  5. Insight into NE Tibet expansion from SKS splitting: Missed mid-lower crustal flow in the frontier

    NASA Astrophysics Data System (ADS)

    Huang, Zhouchuan; Tilmann, Frederik; Xu, Mingjie; Wang, Liangshu; Ding, Zhifeng; Mi, Ning

    2017-04-01

    Two end member hypotheses for the expansion of the Tibetan plateau focus on either the deformation of the whole lithosphere or ductile flow in the mid-lower crust. Here, we analyse SKS shear-wave splitting at ChinArray stations in NE Tibet. Within the high plateau, the splitting measurements indicate two-layer anisotropy. The upper-layer anisotropy (with NE-SW fast axis) is caused by ductile-flow in the mid-lower crust while the lower-layer anisotropy (with NW-SE fast axis) reflects deformation in the upper mantle. In contrast, near the expansion frontier, the measurements indicate single layer splitting with a NW-SE fast axis that correlates with the strikes of most faults and the trend of the orogen. The results thus suggest different dynamics in the plateau and its NE margin. In the high plateau mid-lower crustal flow plays a dominant role while in the expansion frontier in the NE margin the initial tectonic uplift is induced by crustal thrust faulting.

  6. Orientation dependent modulation of apparent speed: a model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex.

    PubMed

    Seriès, Peggy; Georges, Sébastien; Lorenceau, Jean; Frégnac, Yves

    2002-11-01

    Psychophysical and physiological studies suggest that long-range horizontal connections in primary visual cortex participate in spatial integration and contour processing. Until recently, little attention has been paid to their intrinsic temporal properties. Recent physiological studies indicate, however, that the propagation of activity through long-range horizontal connections is slow, with time scales comparable to the perceptual scales involved in motion processing. Using a simple model of V1 connectivity, we explore some of the implications of this slow dynamics. The model predicts that V1 responses to a stimulus in the receptive field can be modulated by a previous stimulation, a few milliseconds to a few tens of milliseconds before, in the surround. We analyze this phenomenon and its possible consequences on speed perception, as a function of the spatio-temporal configuration of the visual inputs (relative orientation, spatial separation, temporal interval between the elements, sequence speed). We show that the dynamical interactions between feed-forward and horizontal signals in V1 can explain why the perceived speed of fast apparent motion sequences strongly depends on the orientation of their elements relative to the motion axis and can account for the range of speed for which this perceptual effect occurs (Georges, Seriès, Frégnac and Lorenceau, this issue).

  7. Method and apparatus for measuring birefringent particles

    DOEpatents

    Bishop, James K.; Guay, Christopher K.

    2006-04-18

    A method and apparatus for measuring birefringent particles is provided comprising a source lamp, a grating, a first polarizer having a first transmission axis, a sample cell and a second polarizer having a second polarization axis. The second polarizer has a second polarization axis that is set to be perpendicular to the first polarization axis, and thereby blocks linearly polarized light with the orientation of the beam of light passing through the first polarizer. The beam of light passing through the second polarizer is measured using a detector.

  8. A Novel Attitude Determination Algorithm for Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2007-01-01

    This paper presents a single frame algorithm for the spin-axis orientation-determination of spinning spacecraft that encounters no ambiguity problems, as well as a simple Kalman filter for continuously estimating the full attitude of a spinning spacecraft. The later algorithm is comprised of two low order decoupled Kalman filters; one estimates the spin axis orientation, and the other estimates the spin rate and the spin (phase) angle. The filters are ambiguity free and do not rely on the spacecraft dynamics. They were successfully tested using data obtained from one of the ST5 satellites.

  9. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Panda, Padmalochan; Ramaseshan, R.; Krishna, Nanda Gopala; Dash, S.

    2016-05-01

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N2 concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (HIT) of around 28.2 GPa for a nitrogen concentration of 25%.

  10. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Padmalochan; Ramaseshan, R., E-mail: seshan@igcar.gov.in; Dash, S.

    2016-05-23

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N{sub 2} concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (H{sub IT}) of around 28.2 GPa for a nitrogen concentration of 25%.

  11. Mental Health Needs of Sexual Minorities in Jamaica

    PubMed Central

    White, Yohann R. G.; Barnaby, Loraine; Swaby, Antoneal; Sandfort, Theo

    2010-01-01

    This study examined the prevalence of Axis I disorders and associated risk factors in a sample of sexual minority men and women in Jamaica, a country that is widely known for its high societal rejection of homosexuality. Poor relationships with family, negative or abusive experiences related to one’s sexual orientation, and greater openness about one’s sexual orientation were independent risk factors for Axis I disorders. Prevention of mental disorders in sexual minorities in Jamaica should focus on rebuilding family support and promoting social acceptance of sexual minorities. PMID:21052478

  12. Mechanism of competitive grain growth in a curvilinear channel of crystal-sorter during the orientational solidification of nickel-based heat-resistant alloy

    NASA Astrophysics Data System (ADS)

    Monastyrskiy, V. P.; Pozdnyakov, A. N.; Ershov, M. Yu.; Monastyrskiy, A. V.

    2017-07-01

    Using numerical simulation in the ProCAST program complex, the conditions of the solidification of heat-resistant nickel alloy in curvilinear channels of a ceramic mold have been investigated. It has been shown that, in practically important cases, the vector of the temperature gradient is oriented along the axis of the curvilinear channel. In a spiral crystal selector, a cyclic change in the preferred direction of growth occurs because of the cyclic change in the direction of the vector of the temperature gradient. The fact that the vector of the temperature gradient is almost always directed along the axis of the curvilinear channel makes it possible to govern the orientation of the vector of the temperature gradient in space and, therefore, to obtain a grain with the preferred crystallographic orientation. Based on the results of this investigation, a method of the grain selection with a desired azimuthal orientation is proposed.

  13. Accuracy of saccades to remembered targets as a function of body orientation in space

    NASA Technical Reports Server (NTRS)

    Vogelstein, Joshua T.; Snyder, Lawrence H.; Angelaki, Dora E.

    2003-01-01

    A vertical asymmetry in memory-guided saccadic eye movements has been previously demonstrated in humans and in rhesus monkeys. In the upright orientation, saccades generally land several degrees above the target. The origin of this asymmetry has remained unknown. In this study, we investigated whether the asymmetry in memory saccades is dependent on body orientation in space. Thus animals performed memory saccades in four different body orientations: upright, left-side-down (LSD), right-side-down (RSD), and supine. Data in all three rhesus monkeys confirm previous observations regarding a significant upward vertical asymmetry. Saccade errors made from LSD and RSD postures were partitioned into components made along the axis of gravity and along the vertical body axis. Up/down asymmetry persisted only in body coordinates but not in gravity coordinates. However, this asymmetry was generally reduced in tilted positions. Therefore the upward bias seen in memory saccades is egocentric although orientation in space might play a modulatory role.

  14. Responses of neurons in the medial column of the inferior olive in pigeons to translational and rotational optic flowfields.

    PubMed

    Winship, I R; Wylie, D R

    2001-11-01

    The responses of neurons in the medial column of the inferior olive to translational and rotational optic flow were recorded from anaesthetized pigeons. Panoramic translational or rotational flowfields were produced by mechanical devices that projected optic flow patterns onto the walls, ceiling and floor of the room. The axis of rotation/translation could be positioned to any orientation in three-dimensional space such that axis tuning could be determined. Each neuron was assigned a vector representing the axis about/along which the animal would rotate/translate to produce the flowfield that elicited maximal modulation. Both translation-sensitive and rotation-sensitive neurons were found. For neurons responsive to translational optic flow, the preferred axis is described with reference to a standard right-handed coordinate system, where +x, +y and +z represent rightward, upward and forward translation of the animal, respectively (assuming that all recordings were from the right side of the brain). t(+y) neurons were maximally excited in response to a translational optic flowfield that results from self-translation upward along the vertical (y) axis. t(-y) neurons also responded best to translational optic flow along the vertical axis but showed the opposite direction preference. The two remaining groups, t(-x+z) and t(-x-z) neurons, responded best to translational optic flow along horizontal axes that were oriented 45 degrees to the midline. There were two types of neurons responsive to rotational optic flow: rVA neurons preferred rotation about the vertical axis, and rH135c neurons preferred rotation about a horizontal axis at 135 degrees contralateral azimuth. The locations of marking lesions indicated a clear topographical organization of the six response types. In summary, our results reinforce that the olivo-cerebellar system dedicated to the analysis of optic flow is organized according to a reference frame consisting of three approximately orthogonal axes: the vertical axis, and two horizontal axes oriented 45 degrees to either side the midline. Previous research has shown that the eye muscles, vestibular semicircular canals and postural control system all share a similar spatial frame of reference.

  15. Earth Reflected Solar Radiation Incident upon an Arbitrarily Oriented Spinning Flat Plate

    NASA Technical Reports Server (NTRS)

    Cunningham, Fred G.

    1963-01-01

    A general derivation is given for the earth reflected solar radiation input to a flat plate--a solar cell paddle, for example--which is spinning about an axis coincident with the axis of symmetry of the satellite to which it is affixed. The resulting equations are written for the general case so that arbitrary orientations of the spin axis with respect to the earth-satellite line and arbitrary orientations of the normal to the plate with respect to the spin axis can be treated. No attempt is made to perform the resulting integrations because of the complexity of the equations; nor is there any attempt to delineate the integration limits for the general case. However, the equations governing these limits are given. The appendixes contain: the results, in graphical form, of two representative examples; the general computer program for the calculation is given in Fortran notation; and the results of a calculation of the distribution of albedo energy on the proposed Echo II satellite. The value of the mean solar constant used is 1.395 times 10 (sup 4) ergs per centimeters-squared per second; the mean albedo of the earth is assumed to be 0.34; and the earth is assumed to be a diffuse reflector.

  16. c-axis preferential orientation of hydroxyapatite accounts for the high wear resistance of the teeth of black carp (Mylopharyngodon piceus)

    PubMed Central

    Fu, Jimin; He, Chong; Xia, Biao; Li, Yan; Feng, Qiong; Yin, Qifang; Shi, Xinghua; Feng, Xue; Wang, Hongtao; Yao, Haimin

    2016-01-01

    Biological armors such as mollusk shells have long been recognized and studied for their values in inspiring novel designs of engineering materials with higher toughness and strength. However, no material is invincible and biological armors also have their rivals. In this paper, our attention is focused on the teeth of black carp (Mylopharyngodon piceus) which is a predator of shelled mollusks like snails and mussels. Nanoscratching test on the enameloid, the outermost layer of the teeth, indicates that the natural occlusal surface (OS) has much higher wear resistance compared to the other sections. Subsequent X-ray diffraction analysis reveals that the hydroxyapatite (HAp) crystallites in the vicinity of OS possess c-axis preferential orientation. The superior wear resistance of black carp teeth is attributed to the c-axis preferential orientation of HAp near the OS since the (001) surface of HAp crystal, which is perpendicular to the c-axis, exhibits much better wear resistance compared to the other surfaces as demonstrated by the molecular dynamics simulation. Our results not only shed light on the origin of the good wear resistance exhibited by the black carp teeth but are of great value to the design of engineering materials with better abrasion resistance. PMID:27001150

  17. Concerted orientation induced unidirectional water transport through nanochannels.

    PubMed

    Wan, Rongzheng; Lu, Hangjun; Li, Jinyuan; Bao, Jingdong; Hu, Jun; Fang, Haiping

    2009-11-14

    The dynamics of water inside nanochannels is of great importance for biological activities as well as for the design of molecular sensors, devices, and machines, particularly for sea water desalination. When confined in specially sized nanochannels, water molecules form a single-file structure with concerted dipole orientations, which collectively flip between the directions along and against the nanotube axis. In this paper, by using molecular dynamics simulations, we observed a net flux along the dipole-orientation without any application of an external electric field or external pressure difference during the time period of the particular concerted dipole orientations of the molecules along or against the nanotube axis. We found that this unique special-directional water transportation resulted from the asymmetric potential of water-water interaction along the nanochannel, which originated from the concerted dipole orientation of the water molecules that breaks the symmetry of water orientation distribution along the channel within a finite time period. This finding suggests a new mechanism for achieving high-flux water transportation, which may be useful for nanotechnology and biological applications.

  18. Seedlayer and underlayer effects on the crystallographic orientation and magnetic recording performance of glass media

    NASA Astrophysics Data System (ADS)

    Zheng, Min; Choe, Geon; Johnson, Kenneth E.

    2002-05-01

    Seedlayer and underlayer effects on crystallographic orientation and recording performance were studied for CoCrPtB media sputtered on glass substrates. For this study, the seedlayers are XAl (X=Ni, Co, Ti, and Ru) and the underlayers are CrY (Y=V, Mo, W, and Ti). It was found that not only different seedlayers, but also different combinations of seedlayer and underlayer, led to different magnetic performance. NiAl and CoAl seedlayers orient the Co c axis to (10.0) and TiAl and RuAl seedlayers produce (11.0) Co orientation. For the NiAl and CoAl seedlayer, CrV and CrW underlayers develop less out-of-plane c-axis orientation and higher coercivity and coercive squareness while CrTi and CrMo underlayers work better for TiAl and RuAl seedlayers, respectively. Media with RuAl seedlayers have better parametric performance than media with NiAl and CoAl seedlayers. The detailed relationship between seedlayer and underlayer types and crystal orientation and recording performance is discussed.

  19. Raman tensor elements for tetragonal BaTiO3 and their use for in-plane domain texture assessments

    NASA Astrophysics Data System (ADS)

    Deluca, Marco; Higashino, Masayuki; Pezzotti, Giuseppe

    2007-08-01

    A quantitative assessment of c-axis oriented domains in a textured BaTiO3 (BT) single crystal has been carried out by polarized Raman microprobe spectroscopy. The relative intensity modulation of the Raman phonon modes has been theoretically modeled as a function of crystal rotation and linked to the volume fraction of c-axis oriented domains. Raman tensor elements have also been experimentally determined for the Ag and B1 vibrational modes. As an application, the internal in-plane texture and the volume fraction of c-oriented domains in the BT single crystal have been nondestructively visualized by monitoring the relative intensity of Ag and B1 Raman modes.

  20. Method and apparatus for radiometer star sensing

    NASA Technical Reports Server (NTRS)

    Wilcox, Jack E. (Inventor)

    1989-01-01

    A method and apparatus for determining the orientation of the optical axis of radiometer instruments mounted on a satellite involves a star sensing technique. The technique makes use of a servo system to orient the scan mirror of the radiometer into the path of a sufficiently bright star such that motion of the satellite will cause the star's light to impinge on the scan mirror and then the visible light detectors of the radiometer. The light impinging on the detectors is converted to an electronic signal whereby, knowing the position of the star relative to appropriate earth coordinates and the time of transition of the star image through the detector array, the orientation of the optical axis of the instrument relative to earth coordinates can be accurately determined.

  1. Texture formation in FePt thin films via thermal stress management

    NASA Astrophysics Data System (ADS)

    Rasmussen, P.; Rui, X.; Shield, J. E.

    2005-05-01

    The transformation variant of the fcc to fct transformation in FePt thin films was tailored by controlling the stresses in the thin films, thereby allowing selection of in- or out-of-plane c-axis orientation. FePt thin films were deposited at ambient temperature on several substrates with differing coefficients of thermal expansion relative to the FePt, which generated thermal stresses during the ordering heat treatment. X-ray diffraction analysis revealed preferential out-of-plane c-axis orientation for FePt films deposited on substrates with a similar coefficients of thermal expansion, and random orientation for FePt films deposited on substrates with a very low coefficient of thermal expansion, which is consistent with theoretical analysis when considering residual stresses.

  2. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells

    PubMed Central

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells. PMID:26039484

  3. Mineral lineation produced by 3-D rotation of rigid inclusions in confined viscous simple shear

    NASA Astrophysics Data System (ADS)

    Marques, Fernando O.

    2016-08-01

    The solid-state flow of rocks commonly produces a parallel arrangement of elongate minerals with their longest axes coincident with the direction of flow-a mineral lineation. However, this does not conform to Jeffery's theory of the rotation of rigid ellipsoidal inclusions (REIs) in viscous simple shear, because rigid inclusions rotate continuously with applied shear. In 2-dimensional (2-D) flow, the REI's greatest axis (e1) is already in the shear direction; therefore, the problem is to find mechanisms that can prevent the rotation of the REI about one axis, the vorticity axis. In 3-D flow, the problem is to find a mechanism that can make e1 rotate towards the shear direction, and so generate a mineral lineation by rigid rotation about two axes. 3-D analogue and numerical modelling was used to test the effects of confinement on REI rotation and, for narrow channels (shear zone thickness over inclusion's least axis, Wr < 2), the results show that: (1) the rotational behaviour deviates greatly from Jeffery's model; (2) inclusions with aspect ratio Ar (greatest over least principle axis, e1/e3) > 1 can rotate backwards from an initial orientation w e1 parallel to the shear plane, in great contrast to Jeffery's model; (3) back rotation is limited because inclusions reach a stable equilibrium orientation; (4) most importantly and, in contrast to Jeffery's model and to the 2-D simulations, in 3-D, the confined REI gradually rotated about an axis orthogonal to the shear plane towards an orientation with e1 parallel to the shear direction, thus producing a lineation parallel to the shear direction. The modelling results lead to the conclusion that confined simple shear can be responsible for the mineral alignment (lineation) observed in ductile shear zones.

  4. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.

    PubMed

    Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H

    2012-04-27

    Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.

  5. Asteroid families spin and shape models to be supported by the ProjectSoft robotic observatory

    NASA Astrophysics Data System (ADS)

    Brož, M.; Ďurech, J.; Hanuš, J.; Lehký, M.

    2014-07-01

    In our recent work (Hanuš et al. 2013), we studied dynamics of asteroid families constrained by the distribution of pole latitudes vs semimajor axis. The model contained the following ingredients: (i) the Yarkovsky semimajor-axis drift; (ii) secular spin evolution due to the YORP effect; (iii) collisional re-orientations; (iv) a simple treatment of spin-orbit resonances; and (v) of mass shedding. We suggest to use a different complementary approach, based on distribution functions of shape parameters. Based on ˜1000 old and new convex-hull shape models, we construct the distributions of suitable quantities (ellipticity, normalized facet areas, etc.) and we discuss a significance of differences among asteroid populations. We check for outlier points which may then serve as a possible identification of (large) interlopers among ''real'' family members. This has also implications for SPH models of asteroid disruptions which can be possibly further constrained by the shape models of resulting fragments. Up to now, the observed size-frequency distribution and velocity field were used as constraints, sometimes allowing for a removal of interlopers (Michel et al. 2011). We also outline an ongoing construction of the ProjectSoft robotic observatory called ''Blue Eye 600'', which will support our efforts to complete the sample of shapes for a substantial fraction of (large) family members. Dense photometry will be targeted in such a way to maximize a possibility to derive a new pole/shape model. Other possible applications of the observatory include: (i) fast resolved observations of fireballs (thanks to a fast-motion capability, tens of degrees per second); or, (ii) an automatic survey of a particular population of objects (main-belt and near-Earth asteroids, variable stars, novae etc.)

  6. Comparing position and orientation accuracy of different electromagnetic sensors for tracking during interventions.

    PubMed

    Nijkamp, Jasper; Schermers, Bram; Schmitz, Sander; de Jonge, Sofieke; Kuhlmann, Koert; van der Heijden, Ferdinand; Sonke, Jan-Jakob; Ruers, Theo

    2016-08-01

    To compare the position and orientation accuracy between using one 6-degree of freedom (DOF) electromagnetic (EM) sensor, or the position information of three 5DOF sensors within the scope of tumor tracking. The position accuracy of Northern Digital Inc Aurora 5DOF and 6DOF sensors was determined for a table-top field generator (TTFG) up to a distance of 52 cm. For each sensor 716 positions were measured for 10 s at 15 Hz. Orientation accuracy was determined for each of the orthogonal axis at the TTFG distances of 17, 27, 37 and 47 cm. For the 6DOF sensors, orientation was determined for sensors in-line with the orientation axis, and perpendicular. 5DOF orientation accuracy was determined for a theoretical 4 cm tumor. An optical tracking system was used as reference. Position RMSE and jitter were comparable between the sensors and increasing with distance. Jitter was within 0.1 cm SD within 45 cm distance to the TTFG. Position RMSE was approximately 0.1 cm up to 32 cm distance, increasing to 0.4 cm at 52 cm distance. Orientation accuracy of the 6DOF sensor was within 1[Formula: see text], except when the sensor was in-line with the rotation axis perpendicular to the TTFG plane (4[Formula: see text] errors at 47 cm). Orientation accuracy using 5DOF positions was within 1[Formula: see text] up to 37 cm and 2[Formula: see text] at 47 cm. The position and orientation accuracy of a 6DOF sensor was comparable with a sensor configuration consisting of three 5DOF sensors. To achieve tracking accuracy within 1 mm and 1[Formula: see text], the distance to the TTFG should be limited to approximately 30 cm.

  7. A review of wind turbine-oriented active flow control strategies

    NASA Astrophysics Data System (ADS)

    Aubrun, Sandrine; Leroy, Annie; Devinant, Philippe

    2017-10-01

    To reduce the levelized cost of energy, the energy production, robustness and lifespan of horizontal axis wind turbines (HAWTs) have to be improved to ensure optimal energy production and operational availability during periods longer than 15-20 years. HAWTs are subject to unsteady wind loads that generate combinations of unsteady mechanical loads with characteristic time scales from seconds to minutes. This can be reduced by controlling the aerodynamic performance of the wind turbine rotors in real time to compensate the overloads. Mitigating load fluctuations and optimizing the aerodynamic performance at higher time scales need the development of fast-response active flow control (AFC) strategies located as close as possible to the torque generation, i.e., directly on the blades. The most conventional actuators currently used in HAWTs are mechanical flaps/tabs (similar to aeronautical accessories), but some more innovative concepts based on fluidic and plasma actuators are very promising since they are devoid of mechanical parts, have a fast response and can be driven in unsteady modes to influence natural instabilities of the flow. In this context, the present paper aims at giving a state-of-the-art review of current research in wind turbine-oriented flow control strategies applied at the blade scale. It provides an overview of research conducted in the last decade dealing with the actuators and devices devoted to developing AFC on rotor blades, focusing on the flow phenomena that they cause and that can lead to aerodynamic load increase or decrease. After providing some general background on wind turbine blade aerodynamics and on the atmospheric flows in which HAWTs operate, the review focuses on flow separation control and circulation control mainly through experimental investigations. It is followed by a discussion about the overall limitations of current studies in the wind energy context, with a focus on a few studies that attempt to provide a global efficiency assessment and wind energy-oriented energy balance.

  8. Relationship between selected orientation rest frame, circular vection and space motion sickness

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Parker, D. E.; Reschke, M. F.; Skinner, N. C.

    1998-01-01

    Space motion sickness (SMS) and spatial orientation and motion perception disturbances occur in 70-80% of astronauts. People select "rest frames" to create the subjective sense of spatial orientation. In microgravity, the astronaut's rest frame may be based on visual scene polarity cues and on the internal head and body z axis (vertical body axis). The data reported here address the following question: Can an astronaut's orientation rest frame be related and described by other variables including circular vection response latencies and space motion sickness? The astronaut's microgravity spatial orientation rest frames were determined from inflight and postflight verbal reports. Circular vection responses were elicited by rotating a virtual room continuously at 35 degrees/s in pitch, roll and yaw with respect to the astronaut. Latency to the onset of vection was recorded from the time the crew member opened their eyes to the onset of vection. The astronauts who used visual cues exhibited significantly shorter vection latencies than those who used internal z axis cues. A negative binomial regression model was used to represent the observed total SMS symptom scores for each subject for each flight day. Orientation reference type had a significant effect, resulting in an estimated three-fold increase in the expected motion sickness score on flight day 1 for astronauts who used visual cues. The results demonstrate meaningful classification of astronauts' rest frames and their relationships to sensitivity to circular vection and SMS. Thus, it may be possible to use vection latencies to predict SMS severity and duration.

  9. Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges.

    PubMed

    Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars H; Morgan, Jason P; Iyer, Karthik; Petersen, Sven; Devey, Colin W

    2014-04-24

    Hydrothermal flow at oceanic spreading centres accounts for about ten per cent of all heat flux in the oceans and controls the thermal structure of young oceanic plates. It also influences ocean and crustal chemistry, provides a basis for chemosynthetic ecosystems, and has formed massive sulphide ore deposits throughout Earth's history. Despite this, how and under what conditions heat is extracted, in particular from the lower crust, remains largely unclear. Here we present high-resolution, whole-crust, two- and three-dimensional simulations of hydrothermal flow beneath fast-spreading ridges that predict the existence of two interacting flow components, controlled by different physical mechanisms, that merge above the melt lens to feed ridge-centred vent sites. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle-ductile transition. About 60 per cent of the discharging fluid mass is replenished on-axis by warm (up to 300 degrees Celsius) recharge flow surrounding the hot thermal plumes, and the remaining 40 per cent or so occurs as colder and broader recharge up to several kilometres away from the axis that feeds hot (500-700 degrees Celsius) deep-rooted off-axis flow towards the ridge. Despite its lower contribution to the total mass flux, this deep off-axis flow carries about 70 per cent of the thermal energy released at the ridge axis. This combination of two flow components explains the seismically determined thermal structure of the crust and reconciles previously incompatible models favouring either shallower on-axis or deeper off-axis hydrothermal circulation.

  10. Relativistic laser channeling in plasmas for fast ignition

    NASA Astrophysics Data System (ADS)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  11. On the use of response surface methodology to predict and interpret the preferred c-axis orientation of sputtered AlN thin films

    NASA Astrophysics Data System (ADS)

    Adamczyk, J.; Horny, N.; Tricoteaux, A.; Jouan, P.-Y.; Zadam, M.

    2008-01-01

    This paper deals with experimental design applied to response surface methodology (RSM) in order to determine the influence of the discharge conditions on preferred c-axis orientation of sputtered AlN thin films. The thin films have been deposited by DC reactive magnetron sputtering on Si (1 0 0) substrates. The preferred orientation was evaluated using a conventional Bragg-Brentano X-ray diffractometer ( θ-2 θ) with the CuKα radiation. We have first determined the experimental domain for 3 parameters: sputtering pressure (2-6 mTorr), discharge current (312-438 mA) and nitrogen percentage (17-33%). For the setup of the experimental design we have used a three factors Doehlert matrix which allows the use of the statistical response surface methodology (RSM) in a spherical domain. A four dimensional surface response, which represents the (0 0 0 2) peak height as a function of sputtering pressure, discharge current and nitrogen percentage, was obtained. It has been found that the main interaction affecting the preferential c-axis orientation was the pressure-nitrogen percentage interaction. It has been proved that a Box-Cox transformation is a very useful method to interpret and discuss the experimental results and leads to predictions in good agreement with experiments.

  12. Effect of gravito-inertial cues on the coding of orientation in pre-attentive vision.

    PubMed

    Stivalet, P; Marendaz, C; Barraclough, L; Mourareau, C

    1995-01-01

    To see if the spatial reference frame used by pre-attentive vision is specified in a retino-centered frame or in a reference frame integrating visual and nonvisual information (vestibular and somatosensory), subjects were centrifuged in a non-pendular cabin and were asked to search for a target distinguishable from distractors by difference in orientation (Treisman's "pop-out" paradigm [1]). In a control condition, in which subjects were sitting immobilized but not centrifuged, this task gave an asymmetric search pattern: Search was rapid and pre-attentional except when the target was aligned with the horizontal retinal/head axis, in which case search was slow and attentional (2). Results using a centrifuge showed that slow/serial search patterns were obtained when the target was aligned with the subjective horizontal axis (and not with the horizontal retinal/head axis). These data suggest that a multisensory reference frame is used in pre-attentive vision. The results are interpreted in terms of Riccio and Stoffregen's "ecological theory" of orientation in which the vertical and horizontal axes constitute independent reference frames (3).

  13. Regulation of the activins-follistatins-inhibins axis by energy status: Impact on reproductive function.

    PubMed

    Perakakis, Nikolaos; Upadhyay, Jagriti; Ghaly, Wael; Chen, Joyce; Chrysafi, Pavlina; Anastasilakis, Athanasios D; Mantzoros, Christos S

    2018-05-09

    We have previously demonstrated that the adipose tissue derived hormone leptin controls reproductive function by regulating the hypothalamic-pituitary-gonadal axis in response to energy deficiency. Here, we evaluate the activins-follistatins-inhibins (AFI) axis during acute (short-term fasting in healthy people) and chronic energy deficiency (women with hypothalamic amenorrhea due to strenuous exercise [HA]) and investigate their relation to leptin and reproductive function in healthy subjects and subjects with HA. The AFI axis was investigated in: a) A double-blinded study in healthy subjects having three randomly assigned admissions, each time for four days: in the isocaloric fed state, complete fasting with placebo treatment, complete fasting with leptin replacement, b) A case-control study comparing women with HA vs healthy controls, c) An open-label interventional study investigating leptin treatment in women with HA over a period of up to three months, d) A randomized interventional trial investigating leptin treatment vs placebo in women with HA for nine months. The circulating levels of activin A, activin B, follistatin and follistatin-like 3 change robustly in response to acute and chronic energy deficiency. Leptin replacement in acute energy deprivation does not affect the levels of these hormones suggesting an independent regulation by these two hormonal pathways. In chronic energy deficiency, leptin replacement restores only activin B levels, which are in turn associated with an increase in the number of dominant follicles. We demonstrate for the first time that the AFI axis is affected both by acute and chronic energy deficiency. Partial restoration of a component of the axis, i.e. activin B only, through leptin replacement is associated with improved reproductive function in women with HA. Copyright © 2018. Published by Elsevier Inc.

  14. High-speed spectral domain polarization-sensitive OCT using a single InGaAs line-scan camera and an optical switch

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Won; Jeong, Hyun-Woo; Kim, Beop-Min

    2010-02-01

    We demonstrated high-speed spectral domain polarization-sensitive optical coherence tomography (SD-PSOCT) using a single InGaAs line-scan camera and an optical switch at 1.3-μm region. The polarization-sensitive low coherence interferometer in the system was based on the original free-space PS-OCT system published by Hee et al. The horizontal and vertical polarization light rays split by polarization beam splitter were delivered and detected via an optical switch to a single spectrometer by turns instead of dual spectrometers. The SD-PSOCT system had an axial resolution of 8.2 μm, a sensitivity of 101.5 dB, and an acquisition speed of 23,496 Alines/s. We obtained the intensity, phase retardation, and fast axis orientation images of a biological tissue. In addition, we calculated the averaged axial profiles of the phase retardation in human skin.

  15. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes.

    PubMed

    Ma, Zhipeng; Fan, Yuqian; Shao, Guangjie; Wang, Guiling; Song, Jianjun; Liu, Tingting

    2015-02-04

    The low electronic conductivity and one-dimensional diffusion channel along the b axis for Li ions are two major obstacles to achieving high power density of LiFePO4 material. Coating carbon with excellent conductivity on the tailored LiFePO4 nanoparticles therefore plays an important role for efficient charge and mass transport within this material. We report here the in situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates with highly oriented (010) facets by introducing ferrocene as a catalyst during thermal treatment. The as-obtained material exhibits superior performances for Li-ion batteries at high rate (100 C) and low temperature (-20 °C), mainly because of fast electron transport through the graphitic carbon layer and efficient Li(+)-ion diffusion through the thin nanoplates.

  16. High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 microm.

    PubMed

    Lee, Sang-Won; Jeong, Hyun-Woo; Kim, Beop-Min

    2010-01-01

    We propose high-speed spectral domain polarization-sensitive optical coherence tomography (SD-PS-OCT) using a single camera and a 1x2 optical switch at the 1.3-microm region. The PS-low coherence interferometer used in the system is constructed using free-space optics. The reflected horizontal and vertical polarization light rays are delivered via an optical switch to a single spectrometer by turns. Therefore, our system costs less to build than those that use dual spectrometers, and the processes of timing and triggering are simpler from the viewpoints of both hardware and software. Our SD-PS-OCT has a sensitivity of 101.5 dB, an axial resolution of 8.2 microm, and an acquisition speed of 23,496 A-scans per second. We obtain the intensity, phase retardation, and fast axis orientation images of a rat tail tendon ex vivo.

  17. A High-Resolution 3D Separated-Local-Field Experiment by Means of Magic-Angle Turning

    PubMed

    Hu; Alderman; Pugmire; Grant

    1997-05-01

    A 3D separated-local-field (SLF) experiment based on the 2D PHORMAT technique is described. In the 3D experiment, the conventional 2D SLF powder pattern for each chemically inequivalent carbon is separated according to their different isotropic chemical shifts. The dipolar coupling constant of a C-H pair, hence the bond distance, and the relative orientation of the chemical-shift tensor to the C-H vector can all be determined for the protonated carbons with a single measurement. As the sample turns at only about 30 Hz in a MAT experiment, the SLF patterns obtained approach those of a stationary sample, and an accuracy in the measurement similar to that obtained on a stationary sample is expected. The technique is demonstrated on 2,6-dimethoxynaphthalene, where the 13 C-1 H separated-local-field powder patterns for the six chemically inequivalent carbons are clearly identified and measured. The observed dipolar coupling for the methoxy carbon is effectively reduced by the fast rotation of the group about its C3 symmetry axis. The average angle between the C-H bond direction and the C3 rotation axis in the OCH3 group is found to be about 66°.

  18. Experimental Investigation on Acousto-Ultrasonic Sensing Using Polarization-Maintaining Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wang, Gang; Banks, Curtis E.

    2015-01-01

    This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while using reduced number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor in a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves and they are oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It is shown that the PM-FBG sensor system is able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acousto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications.

  19. Experimental Investigation on Acousto-ultrasonic Sensing Using Polarization-Maintaining Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wang, Gag; Banks, Curtis E.

    2016-01-01

    This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while reducing the number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor attached to a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves that were oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It was shown that the PM-FBG sensor system was able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acouto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications. Nomenclature.

  20. 16 CFR 1511.4 - Protrusions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... orientation of the hinge axis shall be horizontal. A plane surface shall be applied to any protrusion from the... direction along the axis of the nipple. The normal of the plane surface shall be maintained parallel to the...

  1. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting.

    PubMed

    Liang, Qingning; Zhong, Ling; Zhang, Jialiang; Wang, Yu; Bornstein, Stefan R; Triggle, Chris R; Ding, Hong; Lam, Karen S L; Xu, Aimin

    2014-12-01

    Hepatic gluconeogenesis is a main source of blood glucose during prolonged fasting and is orchestrated by endocrine and neural pathways. Here we show that the hepatocyte-secreted hormone fibroblast growth factor 21 (FGF21) induces fasting gluconeogenesis via the brain-liver axis. Prolonged fasting induces activation of the transcription factor peroxisome proliferator-activated receptor α (PPARα) in the liver and subsequent hepatic production of FGF21, which enters into the brain to activate the hypothalamic-pituitary-adrenal (HPA) axis for release of corticosterone, thereby stimulating hepatic gluconeogenesis. Fasted FGF21 knockout (KO) mice exhibit severe hypoglycemia and defective hepatic gluconeogenesis due to impaired activation of the HPA axis and blunted release of corticosterone, a phenotype similar to that observed in PPARα KO mice. By contrast, intracerebroventricular injection of FGF21 reverses fasting hypoglycemia and impairment in hepatic gluconeogenesis by restoring corticosterone production in both FGF21 KO and PPARα KO mice, whereas all these central effects of FGF21 were abrogated by blockage of hypothalamic FGF receptor-1. FGF21 acts directly on the hypothalamic neurons to activate the mitogen-activated protein kinase extracellular signal-related kinase 1/2 (ERK1/2), thereby stimulating the expression of corticotropin-releasing hormone by activation of the transcription factor cAMP response element binding protein. Therefore, FGF21 maintains glucose homeostasis during prolonged fasting by fine tuning the interorgan cross talk between liver and brain. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Strain rate dependent orthotropic properties of pristine and impulsively loaded porcine temporomandibular joint disk.

    PubMed

    Beatty, M W; Bruno, M J; Iwasaki, L R; Nickel, J C

    2001-10-01

    The purpose of this study was to characterize the tensile stress-strain behavior of the porcine temporomandibular joint (TMJ) disk with respect to collagen orientation and strain rate dependency. The apparent elastic modulus, ultimate tensile strength, and strain at maximum stress were measured at three elongation rates (0.5, 50, and 500 mm/min) for dumbbell-shaped samples oriented along either anteroposterior or mediolateral axes of the disks. In order to study the effects of impact-induced fissuring on the mechanical behavior, the same properties were measured along each orientation at an elongation rate of 500 mm/min for disks subjected to impulsive loads of 0.5 N. s. The results suggested a strongly orthotropic nature to the healthy pristine disk. The values for the apparent modulus and ultimate strength were 10-fold higher along the anteroposterior axis (p < or = 0.01), which represented the primary orientation of the collagen fibers. Strain rate dependency was evident for loading along the anteroposterior axis but not along the mediolateral axis. No significant differences in any property were noted between pristine and impulsively loaded disks for either orientation (p > 0.05). The results demonstrated the importance of choosing an orthotropic model for the TMJ disk to conduct finite element modeling, to develop failure criteria, and to construct tissue-engineered replacements. Impact-induced fissuring requires further study to determine if the TMJ disk is orthotropic with respect to fatigue.

  3. Linear and Non-Linear Response of Liquid and Solid Particles to Energetic Radiation

    DTIC Science & Technology

    1991-03-11

    for particle 2 located on the + x6 axis (perpendicular to the beam propagation axis) one diameter surface-to-surface from particle 1 (i 12 = 4.0, Obd2 ...axis direction. Off is the far field scattering angle relative to the beam propagation axis. Obd2 is the orientation angle of particle 2 relative to...Particle 2 in the Xb - Zb plane and positioned one diameter surface-to-surface from particle 1 (P12 = 4.0). a.) Obd2 = 00, b.) Obd2 = 30 ° , c.) ebd

  4. Plastic Deformation of Magnesium Alloy Subjected to Compression-First Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Lee, Soo Yeol; Gharghouri, Michael A.; Root, John H.

    In-situ neutron diffraction has been employed to study the deformation mechanisms in a precipitation-hardened and extruded Mg-8.5wt.% Al alloy subjected to compression followed by reverse tension. The starting texture is such that the basal poles of most grains are oriented normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis. Diffraction peak intensities for several grain orientations monitored in-situ during deformation show that deformation twinning plays an important role in the elastic-plastic transition and subsequent plastic deformation behavior. Significant non-linear behavior is observed during unloading after compression and appears to be due to detwinning. This effect is much stronger after compressive loading than after tensile loading.

  5. X-ray diffraction and Raman investigations of thickness dependent stress effects on Pb(ZrxTi1-x)O3 thin films

    NASA Astrophysics Data System (ADS)

    Lappalainen, Jyrki; Lantto, Vilho; Frantti, Johannes; Hiltunen, Jussi

    2006-06-01

    Microstructure, film orientation, and optical transmission spectra of polycrystalline Nd-modified Pb(ZrxTi1-x)O3 films were studied as a function of film thickness. Pulsed laser deposition was used for the fabrication of films with thickness from 80to465nm on single-crystal MgO(100) substrates. Raman spectroscopy, x-ray diffraction, and spectrophotometry measurements were utilized in the film characterization. With the decreasing film thickness, films first oriented with c axis perpendicular to film surface, and then, after some critical thickness, changed to a-axis orientation. At the same time, compressive stress increased up to 1.3GPa and a clear blueshift of the optical absorption edge was found in transmission spectra.

  6. Expanded Equations for Torque and Force on a Cylindrical Permanent Magnet Core in a Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    The expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic suspension system are presented. The core is assumed to be uniformly magnetized, and equations are developed for two orientations of the magnetization vector. One orientation is parallel to the axis of symmetry, and the other is perpendicular to this axis. Fields and gradients produced by suspension system electromagnets are assumed to be calculated at a point in inertial space which coincides with the origin of the core axis system in its initial alignment. Fields at a given point in the core are defined by expanding the fields produced at the origin as a Taylor series. The assumption is made that the fields can be adequately defined by expansion up to second-order terms. Examination of the expanded equations for the case where the magnetization vector is perpendicular to the axis of symmetry reveals that some of the second-order gradient terms provide a method of generating torque about the axis of magnetization and therefore provide the ability to produce six-degree-of-freedom control.

  7. Fast steering and quick positioning of large field-of-regard, two-axis, four-gimbaled sight

    NASA Astrophysics Data System (ADS)

    Ansari, Zahir Ahmed; Nigam, Madhav Ji; Kumar, Avnish

    2017-07-01

    Fast steering and quick positioning are prime requirements of the current electro-optical tracking system to achieve quick target acquisition. A scheme has been proposed for realizing these features using two-axis, four-gimbaled sight. For steering the line of sight in the stabilization mode, outer gimbal is slaved to the gyro stabilized inner gimbal. Typically, the inner gimbals have direct drives and outer gimbals have geared drives, which result in a mismatch in the acceleration capability of their servo loops. This limits the allowable control bandwidth for the inner gimbal. However, to achieve high stabilization accuracy, high bandwidth control loops are essential. This contradictory requirement has been addressed by designing a suitable command conditioning module for the inner gimbals. Also, large line-of-sight freedom in pitch axis is required to provide a wide area surveillance capacity for airborne application. This leads to a loss of freedom along the yaw axis as the pitch angle goes beyond 70 deg or so. This is addressed by making the outer gimbal master after certain pitch angle. Moreover, a mounting scheme for gyro has been proposed to accomplish yaw axis stabilization for 110-deg pitch angle movement with a single two-axis gyro.

  8. Alignment of cell division axes in directed epithelial cell migration

    NASA Astrophysics Data System (ADS)

    Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

    2014-11-01

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

  9. Orientations of the Bronze Age Villa Complex at Vathypetro in Crete

    NASA Astrophysics Data System (ADS)

    Blomberg, M.; Henriksson, G.

    We present the results of our archaeoastronomical study of the villa and the tripartite shrine at Vathypetro. We found orientations to three major celestial events (counting the equinoxes as one): to sunrise at the equinoxes and the winter solstice in the case of the villa and to sunset at the summer solstice in the case of the tripartite stone. The axis of symmetry of the major room of the villa was oriented to sunrise of the 22nd of October in the Late Minoan period. This was also the orientation of the axis of symmetry of the main cult room in the west wing of the palace at Malia. We propose that this orientation marked the time for planting and thus the beginning of the agricultural year. It is unusual that archaeoastronomical studies make contributions to historical debates. However certain orientations dating after Late Minoan I seem to reflect the Mycenaean presence in Crete. The orientation of the tripartite shrine to sunset at the summer solstice is the same as the orientations of the small shrines at Malia and Agia Triada, all of which we argue to have been built for Mycenaeans. We propose that there are two types of orientations in the island: those to the east within the limits for sunrise - made by Minoans, and some to the west - made by (or for) Mycenaeans.

  10. Sensitivity of finite helical axis parameters to temporally varying realistic motion utilizing an idealized knee model.

    PubMed

    Johnson, T S; Andriacchi, T P; Erdman, A G

    2004-01-01

    Various uses of the screw or helical axis have previously been reported in the literature in an attempt to quantify the complex displacements and coupled rotations of in vivo human knee kinematics. Multiple methods have been used by previous authors to calculate the axis parameters, and it has been theorized that the mathematical stability and accuracy of the finite helical axis (FHA) is highly dependent on experimental variability and rotation increment spacing between axis calculations. Previous research has not addressed the sensitivity of the FHA for true in vivo data collection, as required for gait laboratory analysis. This research presents a controlled series of experiments simulating continuous data collection as utilized in gait analysis to investigate the sensitivity of the three-dimensional finite screw axis parameters of rotation, displacement, orientation and location with regard to time step increment spacing, utilizing two different methods for spatial location. Six-degree-of-freedom motion parameters are measured for an idealized rigid body knee model that is constrained to a planar motion profile for the purposes of error analysis. The kinematic data are collected using a multicamera optoelectronic system combined with an error minimization algorithm known as the point cluster method. Rotation about the screw axis is seen to be repeatable, accurate and time step increment insensitive. Displacement along the axis is highly dependent on time step increment sizing, with smaller rotation angles between calculations producing more accuracy. Orientation of the axis in space is accurate with only a slight filtering effect noticed during motion reversal. Locating the screw axis by a projected point onto the screw axis from the mid-point of the finite displacement is found to be less sensitive to motion reversal than finding the intersection of the axis with a reference plane. A filtering effect of the spatial location parameters was noted for larger time step increments during periods of little or no rotation.

  11. Design and realization of test system for testing parallelism and jumpiness of optical axis of photoelectric equipment

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-bing; Chen, Zhen-xing; Qin, Shao-gang; Song, Chun-yan; Jiang, Yun-hong

    2014-09-01

    With the development of science and technology, photoelectric equipment comprises visible system, infrared system, laser system and so on, integration, information and complication are higher than past. Parallelism and jumpiness of optical axis are important performance of photoelectric equipment,directly affect aim, ranging, orientation and so on. Jumpiness of optical axis directly affect hit precision of accurate point damage weapon, but we lack the facility which is used for testing this performance. In this paper, test system which is used fo testing parallelism and jumpiness of optical axis is devised, accurate aim isn't necessary and data processing are digital in the course of testing parallelism, it can finish directly testing parallelism of multi-axes, aim axis and laser emission axis, parallelism of laser emission axis and laser receiving axis and first acuualizes jumpiness of optical axis of optical sighting device, it's a universal test system.

  12. Equatorial anisotropy of the Earth's inner inner core from autocorrelations of earthquake coda

    NASA Astrophysics Data System (ADS)

    Wang, T.; Song, X.; Xia, H.

    2014-12-01

    The anisotropic structure of the inner core seems complex with significant depth and lateral variations. An innermost inner core has been suggested with a distinct form of anisotropy, but it has considerable uncertainties in its form, size, or even existence. All the previous inner-core anisotropy models have assumed a cylindrical anisotropy with the symmetry axis parallel (or nearly parallel) to the Earth's spin axis. In this study, we obtain inner-core phases, PKIIKP2 and PKIKP2 (the round-trip phases between the station and its antipode that passes straight through the center of the Earth and that is reflected from the inner-core boundary, respectively), from stackings of autocorrelations of earthquake coda at seismic station clusters around the world. The differential travel times PKIIKP2 - PKIKP2, which are sensitive to inner-core structure, show fast arrivals at high latitudes. However, we also observed large variations of up to 10 s along equatorial paths. These observations can be explained by a cylindrical anisotropy in the inner inner core (IIC) (with a radius of slightly less than half the inner core radius) that has a fast axis aligned near the equator and a cylindrical anisotropy in the outer inner core (OIC) that has a fast axis along the north-south direction. The equatorial fast axis of the IIC is near the Central America and the Southeast Asia. The form of the anisotropy in the IIC is distinctly different from that in the OIC and the anisotropy amplitude in the IIC is about 70% stronger than in the OIC. The different forms of anisotropy may be explained by a two-phase system of iron in the inner core (hcp in the OIC and bcc in the IIC). These results may suggest a major shift of the tectonics of the inner core during its formation and growth.

  13. Modeling control of eye orientation in three dimensions. I. Role of muscle pulleys in determining saccadic trajectory.

    PubMed

    Raphan, T

    1998-05-01

    This study evaluates the effects of muscle axis shifts on the performance of a vector velocity-position integrator in the CNS. Earlier models of the oculomotor plant assumed that the muscle axes remained fixed relative to the head as the eye rotated into secondary and tertiary eye positions. Under this assumption, the vector integrator model generates torsional transients as the eye moves from secondary to tertiary positions of fixation. The torsional transient represents an eye movement response to a spatial mismatch between the torque axes that remain fixed in the head and the displacement plane that changes by half the angle of the change in eye orientation. When muscle axis shifts were incorporated into the model, the torque axes were closer to the displacement plane at each eye orientation throughout the trajectory, and torsional transients were reduced dramatically. Their size and dynamics were close to reported data. It was also shown that when the muscle torque axes were rotated by 50% of the eye rotation, there was no torsional transient and Listing's law was perfectly obeyed. When muscle torque axes rotated >50%, torsional transients reversed direction compared with what occurred for muscle axis shifts of <50%. The model indicates that Listing's law is implemented by the oculomotor plant subject to a two-dimensional command signal that is confined to the pitch-yaw plane, having zero torsion. Saccades that bring the eye to orientations outside Listing's plane could easily be corrected by a roll pulse that resets the roll state of the velocity-position integrator to zero. This would be a simple implementation of the corrective controller suggested by Van Opstal and colleagues. The model further indicates that muscle axis shifts together with the torque orientation relationship for tissue surrounding the eye and Newton's laws of motion form a sufficient plant model to explain saccadic trajectories and periods of fixation when driven by a vector command confined to the pitch-yaw plane. This implies that the velocity-position integrator is probably realized as a subtractive feedback vector integrator and not as a quaternion-based integrator that implements kinematic transformations to orient the eye.

  14. Kinesthetic perceptions of earth- and body-fixed axes.

    PubMed

    Darling, W G; Hondzinski, J M

    1999-06-01

    The major purpose of this research was to determine whether kinesthetic/proprioceptive perceptions of the earth-fixed vertical axis are more accurate than perceptions of intrinsic axes. In one experiment, accuracy of alignment of the forearm to earth-fixed vertical and head- and trunk-longitudinal axes by seven blindfolded subjects was compared in four tasks: (1) Earth-Arm--arm (humerus) orientation was manipulated by the experimenter; subjects aligned the forearm parallel to the vertical axis, which was also aligned with the head and trunk longitudinal axis; (2) Head--head, trunk, and upper-limb orientations were manipulated by the experimenter, subjects aligned the forearm parallel to the longitudinal axis of the head using only elbow flexion/extension and shoulder internal/external rotation; (3) Trunk--same as (2), except that subjects aligned the forearm parallel to the trunk-longitudinal axis; (4) Earth--same as (2), except that subjects aligned the forearm parallel to the earth-fixed vertical. Head, trunk, and gravitational axes were never parallel in tasks 2, 3, and 4 so that subjects could not simultaneously match their forearm to all three axes. The results showed that the errors for alignment of the forearm with the earth-fixed vertical were lower than for the trunk- and head-longitudinal axes. Furthermore, errors in the Earth condition were less dependent on alterations of the head and trunk orientation than in the Head and Trunk conditions. These data strongly suggest that the earth-fixed vertical is used as one axis for the kinesthetic sensory coordinate system that specifies upper-limb orientation at the perceptual level. We also examined the effects of varying gravitational torques at the elbow and shoulder on the accuracy of forearm alignment to earth-fixed axes. Adding a 450 g load to the forearm to increase gravitational torques when the forearm is not vertical did not improve the accuracy of forearm alignment with the vertical. Furthermore, adding small, variably sized loads (between which the subjects could not distinguish at the perceptual level) to the forearm just proximal to the wrist produced similar errors in aligning the forearm with the vertical and horizontal. Forearm-positioning errors were not correlated with the size of the load, as would be expected if gravitational torques affected forearm-position sense. We conclude that gravitational torques exerted about the shoulder and elbow do not make significant contributions to sensing forearm-orientation relative to earth-fixed axes when the upper-limb segments are not constrained by external supports.

  15. Regulating positioning and orientation of mitotic spindles via cell size and shape

    NASA Astrophysics Data System (ADS)

    Li, Jingchen; Jiang, Hongyuan

    2018-01-01

    Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.

  16. Pelvic orientation for total hip arthroplasty in lateral decubitus: can it be accurately measured?

    PubMed

    Sykes, Alice M; Hill, Janet C; Orr, John F; Gill, Harinderjit S; Salazar, Jose J; Humphreys, Lee D; Beverland, David E

    2016-05-16

    During total hip arthroplasty (THA), accurately predicting acetabular cup orientation remains a key challenge, in great part because of uncertainty about pelvic orientation. This pilot study aimed to develop and validate a technique to measure pelvic orientation; establish its accuracy in the location of anatomical landmarks and subsequently; investigate if limb movement during a simulated surgical procedure alters pelvic orientation. The developed technique measured 3-D orientation of an isolated Sawbone pelvis, it was then implemented to measure pelvic orientation in lateral decubitus with post-THA patients (n = 20) using a motion capture system. Orientation of the isolated Sawbone pelvis was accurately measured, demonstrated by high correlations with angular data from a coordinate measurement machine; R-squared values close to 1 for all pelvic axes. When applied to volunteer subjects, largest movements occurred about the longitudinal pelvic axis; internal and external pelvic rotation. Rotations about the anteroposterior axis, which directly affect inclination angles, showed >75% of participants had movement within ±5° of neutral, 0°. The technique accurately measured orientation of the isolated bony pelvis. This was not the case in a simulated theatre environment. Soft tissue landmarks were difficult to palpate repeatedly. These findings have direct clinical relevance, landmark registration in lateral decubitus is a potential source of error, contributing here to large ranges in measured movement. Surgeons must be aware that present techniques using bony landmarks to reference pelvic orientation for cup implantation, both computer-based and mechanical, may not be sufficiently accurate.

  17. Far field emission profile of pure wurtzite InP nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgarini, Gabriele, E-mail: g.bulgarini@tudelft.nl; Reimer, Michael E.; Zwiller, Val

    2014-11-10

    We report on the far field emission profile of pure wurtzite InP nanowires in comparison to InP nanowires with predominantly zincblende crystal structure. The emission profile is measured on individual nanowires using Fourier microscopy. The most intense photoluminescence of wurtzite nanowires is collected at small angles with respect to the nanowire growth axis. In contrast, zincblende nanowires present a minimum of the collected light intensity in the direction of the nanowire growth. Results are explained by the orientation of electric dipoles responsible for the photoluminescence, which is different from wurtzite to zincblende. Wurtzite nanowires have dipoles oriented perpendicular to themore » nanowire growth direction, whereas zincblende nanowires have dipoles oriented along the nanowire axis. This interpretation is confirmed by both numerical simulations and polarization dependent photoluminescence spectroscopy. Knowledge of the dipole orientation in nanostructures is crucial for developing a wide range of photonic devices such as light-emitting diodes, photodetectors, and solar cells.« less

  18. A look-up table based approach to characterize crystal twinning for synchrotron X-ray Laue microdiffraction scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yao; Wan, Liang; Chen, Kai

    An automated method has been developed to characterize the type and spatial distribution of twinning in crystal orientation maps from synchrotron X-ray Laue microdiffraction results. The method relies on a look-up table approach. Taking into account the twin axis and twin plane for plausible rotation and reflection twins, respectively, and the point group symmetry operations for a specific crystal, a look-up table listing crystal-specific rotation angle–axis pairs, which reveal the orientation relationship between the twin and the parent lattice, is generated. By comparing these theoretical twin–parent orientation relationships in the look-up table with the measured misorientations, twin boundaries are mappedmore » automatically from Laue microdiffraction raster scans with thousands of data points. Finally, taking advantage of the high orientation resolution of the Laue microdiffraction method, this automated approach is also applicable to differentiating twinning elements among multiple twinning modes in any crystal system.« less

  19. A look-up table based approach to characterize crystal twinning for synchrotron X-ray Laue microdiffraction scans

    DOE PAGES

    Li, Yao; Wan, Liang; Chen, Kai

    2015-04-25

    An automated method has been developed to characterize the type and spatial distribution of twinning in crystal orientation maps from synchrotron X-ray Laue microdiffraction results. The method relies on a look-up table approach. Taking into account the twin axis and twin plane for plausible rotation and reflection twins, respectively, and the point group symmetry operations for a specific crystal, a look-up table listing crystal-specific rotation angle–axis pairs, which reveal the orientation relationship between the twin and the parent lattice, is generated. By comparing these theoretical twin–parent orientation relationships in the look-up table with the measured misorientations, twin boundaries are mappedmore » automatically from Laue microdiffraction raster scans with thousands of data points. Finally, taking advantage of the high orientation resolution of the Laue microdiffraction method, this automated approach is also applicable to differentiating twinning elements among multiple twinning modes in any crystal system.« less

  20. Direct Determination of Site-Specific Noncovalent Interaction Strengths of Proteins from NMR-Derived Fast Side Chain Motional Parameters.

    PubMed

    Rajeshwar T, Rajitha; Krishnan, Marimuthu

    2017-05-25

    A novel approach to accurately determine residue-specific noncovalent interaction strengths (ξ) of proteins from NMR-measured fast side chain motional parameters (O axis 2 ) is presented. By probing the environmental sensitivity of side chain conformational energy surfaces of individual residues of a diverse set of proteins, the microscopic connections between ξ, O axis 2 , conformational entropy (S conf ), conformational barriers, and rotamer stabilities established here are found to be universal among proteins. The results reveal that side chain flexibility and conformational entropy of each residue decrease with increasing ξ and that for each residue type there exists a critical range of ξ, determined primarily by the mean side chain conformational barriers, within which flexibility of any residue can be reversibly tuned from highly flexible (with O axis 2 ∼ 0) to highly restricted (with O axis 2 ∼ 1) by increasing ξ by ∼3 kcal/mol. Beyond this critical range of ξ, both side chain flexibility and conformational entropy are insensitive to ξ. The interrelationships between conformational dynamics, conformational entropy, and noncovalent interactions of protein side chains established here open up new avenues to probe perturbation-induced (for example, ligand-binding, temperature, pressure) changes in fast side chain dynamics and thermodynamics of proteins by comparing their conformational energy surfaces in the native and perturbed states.

  1. ORIENTATION AND LOCUS OF TROPIC PHOTORECEPTOR MOLECULES IN SPORES OF BOTRYTIS AND OSMUNDA

    PubMed Central

    Jaffe, Lionel; Etzold, Helmut

    1962-01-01

    Study of the tropic responses of Botrytis cinerea and Osmunda cinnamomea spores to blue light shows the photoreceptor molecules to be highly dichroic and oriented: in Botrytis their axes of maximum absorption lie perpendicular to the nearby cell surface; in Osmunda, parallel. The chief evidence lies in a comparison of their responses to plane polarized light—both germinate parallel to the vibration planes (defined by the axis of vibration of the electric vector and the axis of light propagation)—with those to partial illumination with unpolarized light: Botrytis grows from its brighter part; Osmunda, from its darker. The degree of orientation produced by polarized light corresponds, at high intensities, to that produced by the imposition of such large (about 100 per cent) intensity differences across a cell as to preclude all alternatives to oriented dichroic receptors. The photoreceptors of the Botrytis spore lie within the cell wall's inner half. The chief evidence lies in the component of its tropic responses to polarized light within the vibration plane: germination peaks about 10° off the vibration axis. This deviation arises from focusing which is effective only in the wall's inner half. At high intensities, anomalies appear in Botrytis which are interpreted as "centering," i.e., a tendency toward growth from the center of two or more equally illuminated points of a cell rather than from one of them. PMID:14450869

  2. Titan's interior from its rotation axis orientation and its Love number

    NASA Astrophysics Data System (ADS)

    Baland, Rose-Marie; Gabriel, Tobie; Axel, Lefèvre

    2013-04-01

    The tidal Love number k2 of Titan has been recently estimated from Cassini flybys radio-tracking and is consistent with the presence of a global ocean in Titan's interior, located between two ice layers (Iess et al. 2012), in accordance with prediction from interior and evolutionary models for Titan. Previously, the orientation of the rotation axis of Titan has been measured on the basis of radar images from Cassini (Stiles et al. 2008). Titan's obliquity, is about 0.3. The measured orientation is more consistent with the presence of a global internal liquid ocean than with an entirely solid Titan (Baland et al. 2011). The global topography data of Titan seem to indicate some departure from the hydrostatic shape expected for a synchronous satellite under the influence of its rotation and the static tides raised by the central planet (Zebker et al. 2009). This may be explained by a differential tidal heating in the ice shell which flattens the poles (Nimmo and Bills 2010). A surface more flattened than expected implies compensation in depth to explain the measured gravity coefficients C20 and C22 of Iess et al. (2012). Here, all layers are assumed to have a tri-axial ellipsoid shape, but with polar and equatorial flattenings that differ from the hydrostatic expected ones. We assess the influence of this non-hydrostatic shape on the conclusions of Baland et al. (2011), which developped a Cassini state model for the orientation of the rotation axis of a synchronous satellite having an internal liquid layer. We assess the possibility to constrain Titan's interior (and particularly the structure of the water/ice layer) from both the rotation axis orientation and the Love number. We consider a range of internal structure models consistent with the mean density and the mean radius of Titan, and made of a shell, an ocean, a mantle, and a core, from the surface to the center, with various possible compositions (e.g. ammonia mixed with water for the ocean). The internal structure models consistent with the measured orientation of the rotation axis and Love number still have to be examined with respect to other constrains, such as the shell thickness estimation derived from electric-field measurement of the Huyges probe (Béghin et al. 2012) and the expected temperature profile of the water/ice layer. For instance, a thin shell would imply a rather thick ocean, based on water (or water/ammonia) phase diagram.

  3. Flow in the western Mediterranean shallow mantle: Insights from xenoliths in Pliocene alkali basalts from SE Iberia (eastern Betics, Spain)

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Konc, Zoltán.; Garrido, Carlos J.; Tommasi, Andréa.; Vauchez, Alain; Padrón-Navarta, José Alberto; Marchesi, Claudio; Booth-Rea, Guillermo; Acosta-Vigil, Antonio; Szabó, Csaba; Varas-Reus, María. Isabel; Gervilla, Fernando

    2016-11-01

    Mantle xenoliths in Pliocene alkali basalts of the eastern Betics (SE Iberia, Spain) are spinel ± plagioclase lherzolite, with minor harzburgite and wehrlite, displaying porphyroclastic or equigranular textures. Equigranular peridotites have olivine crystal preferred orientation (CPO) patterns similar to those of porphyroclastic xenoliths but slightly more dispersed. Olivine CPO shows [100]-fiber patterns characterized by strong alignment of [100]-axes subparallel to the stretching lineation and a girdle distribution of [010]-axes normal to it. This pattern is consistent with simple shear or transtensional deformation accommodated by dislocation creep. One xenolith provides evidence for synkinematic reactive percolation of subduction-related Si-rich melts/fluids that resulted in oriented crystallization of orthopyroxene. Despite a seemingly undeformed microstructure, the CPO in orthopyroxenite veins in composite xenoliths is identical to those of pyroxenes in the host peridotite, suggesting late-kinematic crystallization. Based on these observations, we propose that the annealing producing the equigranular microstructures was triggered by melt percolation in the shallow subcontinental lithospheric mantle coeval to the late Neogene formation of veins in composite xenoliths. Calculated seismic properties are characterized by fast propagation of P waves and polarization of fast S waves parallel to olivine [100]-axis (stretching lineation). These data are compatible with present-day seismic anisotropy observations in SE Iberia if the foliations in the lithospheric mantle are steeply dipping and lineations are subhorizontal with ENE strike, implying dominantly horizontal mantle flow in the ENE-WSW direction within vertical planes, that is, subparallel to the paleo-Iberian margin. The measured anisotropy could thus reflect a lithospheric fabric due to strike-slip deformation in the late Miocene in the context of WSW tearing of the subducted south Iberian margin lithosphere.

  4. Paleomagnetic constraints on deformation of superfast-spread oceanic crust exposed at Pito Deep Rift

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.

    2011-12-01

    The uppermost oceanic crust produced at the superfast spreading (˜142 km Ma-1, full-spreading rate) southern East Pacific Rise (EPR) during the Gauss Chron is exposed in a tectonic window along the northeastern wall of the Pito Deep Rift. Paleomagnetic analysis of fully oriented dike (62) and gabbro (5) samples from two adjacent study areas yield bootstrapped mean remanence directions of 38.9° ± 8.1°, -16.7° ± 15.6°, n = 23 (Area A) and 30.4° ± 8.0°, -25.1° ± 12.9°, n = 44 (Area B), both are significantly distinct from the Geocentric Axial Dipole expected direction at 23° S. Regional tectonics and outcrop-scale structural data combined with bootstrapped remanence directions constrain models that involve a sequence of three rotations that result in dikes restored to subvertical orientations related to (1) inward-tilting of crustal blocks during spreading (Area A = 11°, Area B = 22°), (2) clockwise, vertical-axis rotation of the Easter Microplate (A = 46°, B = 44°), and (3) block tilting at Pito Deep Rift (A = 21°, B = 10°). These data support a structural model for accretion at the southern EPR in which outcrop-scale faulting and block rotation accommodates spreading-related subaxial subsidence that is generally less than that observed in crust generated at a fast spreading rate exposed at Hess Deep Rift. These data also support previous estimates for the clockwise rotation of crust adjacent to the Easter Microplate. Dike sample natural remanent magnetization (NRM) has an arithmetic mean of 5.96 A/m ± 3.76, which suggests that they significantly contribute to observed magnetic anomalies from fast- to superfast-spread crust.

  5. Orientation dependence of ferroelectric and piezoelectric properties of Bi3.15Nd0.85Ti3O12 thin films on Pt(100)/TiO2/SiO2/Si substrates

    NASA Astrophysics Data System (ADS)

    Hu, G. D.

    2006-11-01

    Bi3.15Nd0.85Ti3O12 (BNT0.85) thin films with (100) [α(100)=87.8%], (117) [α(117)=77.1%], and (001) [α(001)=98.8%] preferred orientations were deposited on Pt(100)/TiO2/SiO2/Si substrates using a metal organic decomposition process. The remanent polarization of (100)-predominant BNT0.85 film is about 50% and three times larger than those of (117)-preferred and (001)-oriented films, respectively, suggesting that the major polarization vector of BNT0.85 is close to the a axis rather than the c axis. This result can be further demonstrated by the piezoelectric measurements using an atomic force microscope in the piezoresponse mode.

  6. Attitude orientation control for a spinning satellite

    NASA Astrophysics Data System (ADS)

    Frost, Gerald

    The Department of the Air Force, Headquarters Space Systems Division, and the National Aeronautics and Space Administration (NASA) are currently involved in litigation with Hughes Aircraft Company over the alledged infringement of the 'Williams patent,' which describes a method for attitude control of a spin-stabilized vehicle. Summarized here is pre-1960 RAND work on this subject and information obtained from RAND personnel knowledgeable on this subject. It was concluded that there is no RAND documentation that directly parallels the 'Williams patent' concept. Also, the TIROS II magnetic torque attitude control method is reviewed. The TIROS II meteorological satellite, launched on November 23, 1960, incorporated a magnetic actuation system for spin axis orientation control. The activation system was ground controlled to orient the satellite spin axis to obtain the desired pointing direction for optical and infrared sensor subsystems.

  7. Ion-/proton-conducting apparatus and method

    DOEpatents

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2011-05-17

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  8. Numerical study of ultra-low field nuclear magnetic resonance relaxometry utilizing a single axis magnetometer for signal detection.

    PubMed

    Vogel, Michael W; Vegh, Viktor; Reutens, David C

    2013-05-01

    This paper investigates optimal placement of a localized single-axis magnetometer for ultralow field (ULF) relaxometry in view of various sample shapes and sizes. The authors used finite element method for the numerical analysis to determine the sample magnetic field environment and evaluate the optimal location of the single-axis magnetometer. Given the different samples, the authors analysed the magnetic field distribution around the sample and determined the optimal orientation and possible positions of the sensor to maximize signal strength, that is, the power of the free induction decay. The authors demonstrate that a glass vial with flat bottom and 10 ml volume is the best structure to achieve the highest signal out of samples studied. This paper demonstrates the importance of taking into account the combined effects of sensor configuration and sample parameters for signal generation prior to designing and constructing ULF systems with a single-axis magnetometer. Through numerical simulations the authors were able to optimize structural parameters, such as sample shape and size, sensor orientation and location, to maximize the measured signal in ultralow field relaxometry.

  9. Evidence for an oscillation of the magnetic axis of the white dwarf in the polar DP Leonis

    NASA Astrophysics Data System (ADS)

    Beuermann, K.; Dreizler, S.; Hessman, F. V.; Schwope, A. D.

    2014-02-01

    From 1979 to 2001, the magnetic axis of the white dwarf in the polar DP Leo slowly rotated by 50° in azimuth, possibly indicating a small asynchronism between the rotational and orbital periods of the magnetic white dwarf. Using the MONET/North telescope, we have obtained phase-resolved orbital light curves between 2009 and 2013, which show that this trend has not continued in recent years. Our data are consistent with the theoretically predicted oscillation of the magnetic axis of the white dwarf about an equilibrium orientation, which is defined by the competition between the accretion torque and the magnetostatic interaction of the primary and secondary star. Our data indicate an oscillation period of ~60 yr, an amplitude of about 25°, and an equilibrium orientation leading the connecting line of the two stars by about 7°.

  10. Sexual orientation disparities in mental health: the moderating role of educational attainment.

    PubMed

    Barnes, David M; Hatzenbuehler, Mark L; Hamilton, Ava D; Keyes, Katherine M

    2014-09-01

    Mental health disparities between sexual minorities and heterosexuals remain inadequately understood, especially across levels of educational attainment. The purpose of the present study was to test whether education modifies the association between sexual orientation and mental disorder. We compared the odds of past 12-month and lifetime psychiatric disorder prevalence (any Axis-I, any mood, any anxiety, any substance use, and comorbidity) between lesbian, gay, and bisexual (LGB) and heterosexual individuals by educational attainment (those with and without a bachelor's degree), adjusting for covariates, and tested for interaction between sexual orientation and educational attainment. Data are drawn from the National Epidemiologic Survey on Alcohol and Related Conditions, a nationally representative survey of non-institutionalized US adults (N = 34,653; 577 LGB). Sexual orientation disparities in mental health are smaller among those with a college education. Specifically, the disparity in those with versus those without a bachelor's degree was attenuated by 100 % for any current mood disorder, 82 % for any current Axis-I disorder, 76 % for any current anxiety disorder, and 67 % for both any current substance use disorder and any current comorbidity. Further, the interaction between sexual orientation and education was statistically significant for any current Axis-I disorder, any current mood disorder, and any current anxiety disorder. Our findings for lifetime outcomes were similar. The attenuated mental health disparity at higher education levels underscores the particular risk for disorder among LGBs with less education. Future studies should consider selection versus causal factors to explain the attenuated disparity we found at higher education levels.

  11. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED).

  12. Effect of crystal orientation on conductivity and electron mobility in single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The electrical conductivity of high-purity, single-crystal alumina is determined parallel to and perpendicular to the c-axis. The mean conductivity of four samples of each orientation is a factor 3.3 higher parallel to the c-axis than perpendicular to it. The conductivity as a function of temperature is attributed to extrinsic electron conduction at temperatures from 400 to 900 C, and intrinsic semiconduction at temperatures from 900 to 1300 C. In the high-temperature regime, the slope on all eight specimens is 4.7 +/- 0.1 eV. Hence, the thermal bandgap at O K is 9.4 +/- 0.2 eV.

  13. Morphotectonic architecture of the Transantarctic Mountains rift flank between the Royal Society Range and the Churchill Mountains based on geomorphic analysis

    USGS Publications Warehouse

    Demyanick, Elizabeth; Wilson, Terry J.

    2007-01-01

    Extensional forces within the Antarctic Plate have produced the Transantarctic Mountains rift-flank uplift along the West Antarctic rift margin. Large-scale linear morphologic features within the mountains are controlled by bedrock structure and can be recognized and mapped from satellite imagery and digital elevation models (DEMs). This study employed the Antarctic Digital Database DEM to obtain slope steepness and aspect maps of the Transantarctic Mountains (TAM) between the Royal Society Range and the Churchill Mountains, allowing definition of the position and orientation of the morphological axis of the rift-flank. The TAM axis, interpreted as a fault-controlled escarpment formed by coast-parallel retreat, provides a marker for the orientation of the faulted boundary between the TAM and the rift system. Changes in position and orientation of the TAM axis suggests the rift flank is segmented into tectonic blocks bounded by relay ramps and transverse accommodation zones. The transverse boundaries coincide with major outlet glaciers, supporting interpretation of rift structures between them. The pronounced morphological change across Byrd Glacier points to control by structures inherited from the Ross orogen.

  14. Strong Orientation-Dependent Spin-Orbit Torque in Thin Films of the Antiferromagnet Mn2Au

    NASA Astrophysics Data System (ADS)

    Zhou, X. F.; Zhang, J.; Li, F.; Chen, X. Z.; Shi, G. Y.; Tan, Y. Z.; Gu, Y. D.; Saleem, M. S.; Wu, H. Q.; Pan, F.; Song, C.

    2018-05-01

    Antiferromagnets with zero net magnetic moment, strong anti-interference, and ultrafast switching speed are potentially competitive in high-density information storage. The body-centered tetragonal antiferromagnet Mn2Au with opposite-spin sublattices is a unique metallic material for Néel-order spin-orbit-torque (SOT) switching. We investigate the SOT switching in quasiepitaxial (103), (101) and (204) Mn2Au films prepared by a simple magnetron sputtering method. We demonstrate current-induced antiferromagnetic moment switching in all of the prepared Mn2Au films by using a short current pulse at room temperature, whereas differently oriented films exhibit distinguished switching characters. A direction-independent reversible switching is attained in Mn2Au (103) films due to negligible magnetocrystalline anisotropy energy, while for Mn2Au (101) and (204) films, the switching is invertible with the current applied along the in-plane easy axis and its vertical axis, but it becomes attenuated seriously during initial switching circles when the current is applied along the hard axis because of the existence of magnetocrystalline anisotropy energy. Besides the fundamental significance, the strong orientation-dependent SOT switching, which is not realized, irrespective of ferromagnet and antiferromagnet, provides versatility for spintronics.

  15. Registering myocardial fiber orientations with heart geometry using iterative closest points algorithms

    NASA Astrophysics Data System (ADS)

    Deng, Dongdong; Jiao, Peifeng; Shou, Guofa; Xia, Ling

    2009-10-01

    Myocardial electrical excitation propagation is anisotropic, with the most rapid spread of current along the direction of the long axis of the fiber. Fiber orientation is also an important determinant of myocardial mechanics. So myocardial fiber orientations are very important to heart modeling and simulation. Accurately construction of myocardial fiber orientations, however, is still a challenge. The purpose of this paper is to construct a heart geometrical model with myocardial fiber orientations based on CT and 3D laser scanned pictures. The iterative closest points (ICP) algorithms were used to register the fiber orientations with the heart geometry.

  16. The orientation of iron–sulphur clusters in membrane multilayers prepared from aerobically-grown Escherichia coli K12 and a cytochrome-deficient mutant

    PubMed Central

    Blum, Haywood; Poole, Robert K.; Ohnishi, Tomoko

    1980-01-01

    1. Membrane particles prepared from ultrasonically-disrupted, aerobically-grown Escherichia coli were centrifuged on to a plastic film that was supported perpendicular to the centrifugal field to yield oriented membrane multilayers. In such preparations, there is a high degree of orientation of the planes of the membranes such that they lie parallel to each other and to the supporting film. 2. When dithionite- or succinate-reduced multilayers are rotated in the magnetic field of an e.p.r. spectrometer, about an axis lying in the membrane plane, angular-dependent signals from an iron–sulphur cluster at gx=1.92, gy=1.93 and gz=2.02 are seen. The g=1.93 signal has maximal amplitude when the plane of the multilayer is perpendicular to the magnetic field. Conversely, the g=2.02 signal is maximal when the plane of the multilayer is parallel with the magnetic field. 3. Computer simulations of the experimental data show that the cluster lies in the cytoplasmic membrane with the gy axis perpendicular to the membrane plane and with the gx and gz axes lying in the membrane plane. 4. In partially-oxidized multilayers, a signal resembling the mitochondrial high-potential iron–sulphur protein (Hipip) is seen whose gz=2.02 axis may be deduced as lying perpendicular to the membrane plane. 5. Appropriate choice of sample temperature and receiver gain reveals two further signals in partially-reduced multilayers: a g=2.09 signal arises from a cluster with its gz axis in the membrane plane, whereas a g=2.04 signal is from a cluster with the gz axis lying along the membrane normal. 6. Membrane particles from a glucose-grown, haem-deficient mutant contain dramatically-lowered levels of cytochromes and exhibit, in addition to the iron–sulphur clusters seen in the parental strain, a major signal at g=1.90. 7. Only the latter may be demonstrated to be oriented in multilayer preparations from the mutant. 8. Comparisons are drawn between the orientations of the iron–sulphur proteins in the cytoplasmic membrane of E. coli and those in mitochondrial membranes. The effects of diminished cytochrome content on the properties of the iron–sulphur proteins are discussed. PMID:6258566

  17. Crystallographic control and texture inheritance during mylonitization of coarse grained quartz veins

    NASA Astrophysics Data System (ADS)

    Ceccato, Alberto; Pennacchioni, Giorgio; Menegon, Luca; Bestmann, Michel

    2017-10-01

    Quartz veins within Rieserferner pluton underwent deformation during post-magmatic cooling at temperature around 450 °C. Different crystallographic orientations of cm-sized quartz vein crystals conditioned the evolution of microstructures and crystallographic preferred orientations (CPO) during vein-parallel simple shear up to high shear strains (γ ≈ 10). For γ < 2, crystals stretched to ribbons of variable aspect ratios. The highest aspect ratios resulted from {m} glide in ribbons with c-axis sub-parallel to the shear zone vorticity Y-axis. Ribbons with c-axis orthogonal to Y (XZ-type ribbons) were stronger and hardened more quickly: they show lower aspect ratios and fine (grain size 10-20 μm) recrystallization along sets of microshear zones (μSZs) exploiting crystallographic planes. Distortion of XZ-type ribbons and recrystallization preferentially exploited the slip systems with misorientation axis close to Y. New grains of μSZs initiated by subgrain rotation recrystallization (SGR) and thereupon achieved high angle misorientations by a concurrent process of heterogeneous rigid grain rotation around Y associated with the confined shear within the μSZ. Dauphiné twinning occurred pervasively, but did not play a dominant role on μSZ nucleation. Recrystallization became widespread at γ > 2 and pervasive at γ ≈ 10. Ultramylonitic quartz veins are fine grained ( 10 μm, similar to new grains of μSZ) and show a CPO banding resulting in a bulk c-axis CPO with a Y-maximum, as part of a single girdle about orthogonal to the foliation, and orientations at the pole figure periphery at moderate to high angle to the foliation. This bulk CPO derives from steady-state SGR associated with preferential activity, in the different CPO bands, of slip systems generating subgrain boundaries with misorientation axes close to Y. The CPO of individual recrystallized bands is largely inherited from the original crystallographic orientation of the ribbons (and therefore vein crystals) from which they derived. High strain and pervasive recrystallization were not enough to reset the initial crystallographic heterogeneity and this CPO memory is explained by the dominance of SGR. This contrast with experimental observation of a rapid erasure of a pristine CPO by cannibalism from grains with the most favourably oriented slip system under dominant grain boundary migration recrystallization.

  18. Can high-temperature, high-heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast-spreading Mid-Ocean Ridges?

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice J.; Rabinowicz, M.; Cannat, M.

    2017-05-01

    We present numerical models to explore possible couplings along the axis of fast-spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end-member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt-rich lower crustal along-axis corridor and permeability k not exceeding ˜10-16 m2 in the upper crust, the hot, melt-rich, gabbroic lower crust convects as a viscous fluid, with convection rolls parallel to the ridge axis. In these models, we show that the magmatic-hydrothermal interface settles at realistic depths for fast ridges, i.e., 1-2 km below seafloor. Convection cells in both horizons are strongly coupled and kilometer-wide hydrothermal upflows/plumes, spaced by 8-10 km, arise on top of the magmatic upflows. Such magmatic-hydrothermal convective couplings may explain the distribution of vent fields along the East (EPR) and South-East Pacific Rise (SEPR). The lower crustal plumes deliver melt locally at the top of the magmatic horizon possibly explaining the observed distribution of melt-rich regions/pockets in the axial melt lenses of EPR and SEPR. Crystallization of this melt provides the necessary latent heat to sustain permanent ˜100 MW vents fields. Our models also contribute to current discussions on how the lower crust forms at fast ridges: they provide a possible mechanism for focused transport of melt-rich crystal mushes from moho level to the axial melt lens where they further crystallize, feed eruptions, and are transported both along and off-axis to produce the lower crust.

  19. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  20. Constraining the Absolute Orientation of eta Carinae's Binary Orbit: A 3-D Dynamical Model for the Broad [Fe III] Emission

    NASA Technical Reports Server (NTRS)

    Madura, T. I.; Gull, T. R.; Owocki, S. P.; Groh, J. H.; Okazaki, A. T.; Russell, C. M. P.

    2011-01-01

    We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA(theta) that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38deg, and the temporal variations in emission seen at negative slit PAs, the binary needs to have an i approx. = 130deg to 145deg, Theta approx. = -15deg to +30deg, and an orbital axis projected on the sky at a P A approx. = 302deg to 327deg east of north. This represents a system with an orbital axis that is closely aligned with the inferred polar axis of the Homunculus nebula, in 3-D. The companion star, Eta(sub B), thus orbits clockwise on the sky and is on the observer's side of the system at apastron. This orientation has important implications for theories for the formation of the Homunculus and helps lay the groundwork for orbital modeling to determine the stellar masses.

  1. Heating equipment installation system

    DOEpatents

    Meuschke, Robert E.; Pomaibo, Paul P.

    1991-01-01

    A method for installing a heater unit assembly (52, 54) in a reactor pressure vessel (2) for performance of an annealing treatment on the vessel (2), the vessel (2) having a vertical axis, being open at the top, being provided at the top with a flange (6) having a horizontal surface, and being provided internally, at a location below the flange (6), with orientation elements (8) which are asymmetrical with respect to the vertical axis, by the steps of: providing an orientation fixture (10) having an upwardly extending guide member (18) and orientation elements (14, 16) and installing the orientation fixture (10) in the vessel (2) so that the orientation elements (14,16) of the orientation fixture (10) mate with the orientation elements (8) of the pressure vessel (2) in order to establish a defined position of the orientation fixture (10) in the pressure vessel (2), and so that the guide member (18) projects above the pressure vessel (2) flange (6); placing a seal ring (30) in a defined position on the pressure vessel (2) flange (6) with the aid of the guide member (18); mounting at least one vertical, upwardly extending guide stud (40) upon the seal ring (30); withdrawing the orientation fixture (10) from the pressure vessel (2); and moving the heater unit assembly (52,54) vertically downwardly into the pressure vessel (2) while guiding the heater unit assembly (52,54) along a path with the aid of the guide stud (40).

  2. Effect of spaceflight on the spatial orientation of the vestibulo-ocular reflex during eccentric roll rotation: A case report.

    PubMed

    Reschke, Millard F; Wood, Scott J; Clément, Gilles

    2018-01-01

    Ground-based studies have reported shifts of the vestibulo-ocular reflex (VOR) slow phase velocity (SPV) axis toward the resultant gravito-inertial force vector. The VOR was examined during eccentric roll rotation before, during and after an 8-day orbital mission. On orbit this vector is aligned with the head z-axis. Our hypothesis was that eccentric roll rotation on orbit would generate horizontal eye movements. Two subjects were rotated in a semi-supine position with the head nasal-occipital axis parallel to the axis of rotation and 0.5 m off-center. The chair accelerated at 120 deg/s2 to 120 deg/s, rotated at constant velocity for one minute, and then decelerated to a stop in similar fashion. On Earth, the stimulation primarily generated torsional VOR. During spaceflight, in one subject torsional VOR became horizontal VOR, and then decayed very slowly. In the other subject, torsional VOR was reduced on orbit relative to pre- and post-flight, but the SPV axis did not rotate. We attribute the shift from torsional to horizontal VOR on orbit to a spatial orientation of velocity storage toward alignment with the gravito-inertial force vector, and the inter-individual difference to cognitive factors related to the subjective straight-ahead.

  3. Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space.

    PubMed

    Stępień, Grzegorz

    2018-03-17

    The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems-interior and exterior orientation of sensors-to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins) and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data). The accuracy of the results in the laboratory test is on the level of 10 -6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author's 2017 Total Free Station (TFS) transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation-MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solla, E.L., E-mail: esolla@uvigo.es

    Herein, we report on the micro- and nanostructure of the calcium phosphate coating produced by pulsed laser deposition (PLD), using focused ion beam (FIB) lamella sample preparation and transmission electron microscopy (TEM) as the characterization technique. The initial selected area electron diffraction (SAED) data demonstrated the presence of hydroxyapatite (HA) over any other possible calcium phosphate crystalline structure and the polycrystalline nature of the coating. Moreover, the SAED analyses showed clear textured ring patterns coherent with the presence of a preferred orientation in the HA nano-crystal growth. The SAED data also indicated that the coating appears to be textured inmore » the 〈002〉 crystalline direction. Dark-field images obtained using 002 as the working reflection showed a clear oriented crystal growth in columns, from bottom to top. These columns have a peculiar arrangement of nano-crystals since, in some cases, the preferred orientation appears to start at a certain distance from the substrate. Direct d-spacing measurements on high-resolution TEM images provided further proof of the presence of an HA nano-crystal structure. The reported data may be of interest in the future to adjust the microstructure of the HA coatings. - Highlights: •The FIB lift-out technique allows a very site-specific sample preparation method for HRTEM analysis. •It also permits a fast assessment of the HA coating thickness and elemental composition (EDS). •The coatings exhibit a nano-crystalline nature, with a texturing effect along the 002 planes. •PLD is suitable for the production of crystalline c-axis oriented hydroxyapatite coatings. •The crystalline HA phase in the PLD coating is very similar to the present in bone.« less

  5. Flow Behavior Around a Fast-Starting Robotic Fish

    NASA Astrophysics Data System (ADS)

    Ma, Ganzhong; Currier, Todd; Modarres-Sadeghi, Yahya

    2017-11-01

    A robotic fish is used to study the flow behavior around the body of a fast-starting fish as it experiences a fast-start. The robotic fish is designed and built emulating a Northern Pike, Esox Lucius, which can accelerate at up to 245 m/s2. In previous studies, we had focused on the flow around the tail during the fast-start, by using a tail which acted flexibly in the preparatory stage and rigidly in the propulsive stage. We have extended that study by including the fish body in the experimental setup, where the body can bend into a C-shape, so that the influence of the body motion on the resulting flow around the structure can be understood as well. In the tests, the fish can rotate about a vertical axis, where a multi-axis force sensor measures flow forces acting on the body. Synchronized with the force measurement, flow visualizations using bubble image velocimetry are conducted, and the observed shed vortices are related to the peak forces observed during the maneuver.

  6. Transversely polarized source cladding for an optical fiber

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1994-01-01

    An optical fiber comprising a fiber core having a longitudinal symmetry axis is provided. An active cladding surrounds a portion of the fiber core and comprises light-producing sources which emit light in response to chemical or light excitation. The cladding sources are oriented transversely with respect to the longitudinal axis of the fiber core. This polarization results in a superior power efficiency compared to active cladding sources that are randomly polarized or longitudinally polarized parallel with the longitudinal symmetry axis.

  7. Axial Magma System Geometry beneath a Fast-Spreading Mid-Ocean Ridge: Insight from Three-Dimensional Seismic Reflection Imaging on the East Pacific Rise 9º42' to 9º57'N

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J. P.; Nedimovic, M. R.

    2014-12-01

    The fast-spreading East Pacific Rise at the 9º50'N Ridge 2000 Integrated Study Site was the focus of the first academic 3D, multi-source, multi-streamer seismic survey, carried out aboard R/V Langseth in summer 2008. The main area of 3D coverage extends from 9º42-57'N, spanning the seafloor extent of two documented volcanic eruptions. There, the 3D geometry of the mid-crustal axial magma lens (AML), located ~1.5 km below the seafloor, was initially investigated using a best 1D stacking velocity function hung from the seafloor and two-pass post-stack time migration. Preliminary results suggested a relatively narrow (~0.5-1.8 km wide) AML showing fingering and overlap of individual magma bodies, particularly in association with several small-scale ridge-axis discontinuities identified from seafloor morphology and structure of the axial summit trough. A westward-dipping limb of the AML was imaged near 9º51'N, where the AML attains its largest width. From 9º53-56'N, the AML was seen to veer slightly westward, in accordance with a shift in orientation of the ridge. Sub-axial magma lenses (SAMLs) have been recently imaged between 9º20' and 9º56'N on along-axis reflection profiles from the same survey, with the suggestion that these deeper lenses may have contributed melts to the 2005/06 eruption. In the cross-axis dataset, SAML events are observed down to ~600-700 ms (~1.7-2 km) below the AML. They sometimes appear slightly offset with respect to the center of the AML. They are generally less bright than the AML reflection, some of them display prominent diffraction tails on un-migrated sections, and the deeper events have a distinctly lower frequency content than the shallower ones. New images for the 9º42-57'N area are currently being generated from a suite of detailed stacking velocities for the AML and SAML events and 3D post-stack time migration, which will provide insight into the width and along-axis continuity of individual magma bodies at multiple levels within the crust. The fine-scale AML structure will be constrained from the reprocessed seismic volume, beyond the main features noted above. The 3D geometry of the AML and SAMLs will be discussed in relation with other ridge properties along this ~27-km long section of the EPR.

  8. Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy.

    PubMed

    Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne

    2014-04-25

    We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840  eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.

  9. Advances in sapphire optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Wang, Anbo; Wang, George Z.; Gollapudi, Sridhar; May, Russell G.; Murphy, Kent A.; Claus, Richard O.

    1993-01-01

    We describe the development and testing of two sapphire fiber sensor designs intended for use in high temperature environments. The first is a birefringence-balanced polarimetric sapphire fiber sensor. In this sensor, two single crystal sapphire rods, acting as the birefringence sensing element, are connected to each other in such a way that the slow axis of the first rod is aligned along with the fast axis of the second rod, and the fast axis of the first rod is along the slow axis of the second rod. This sensor has been demonstrated for measurement of temperature up to 1500 C. The second is a sapphire-fiber-based intrinsic interferometric sensor. In this sensor, a length of uncoated, unclad, structural-graded multimode sapphire fiber is fusion spliced to a singlemode silica fiber to form a Fabry-Perot cavity. The reflections from the silica-to-sapphire fiber splice and the free endface of the sapphire fiber give rise to the interfering fringe output. This sensor has been demonstrated for the measurement of temperature above 1510 C, and a resolution of 0.1 C has been obtained.

  10. Magneto-transport properties of As-implanted highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    de Jesus, R. F.; Camargo, B. C.; da Silva, R. R.; Kopelevich, Y.; Behar, M.; Gusmão, M. A.; Pureur, P.

    2016-11-01

    We report on magneto-transport experiments in a high-quality sample of highly-oriented pyrolytic graphite (HOPG). Magneto-resistance and Hall resistivity measurements were carried out in magnetic inductions up to B = 9 T applied parallel to the c-axis at fixed temperatures between T=2 K and T=12 K. The sample was submitted to three subsequent irradiations with As ions. The implanted As contents were 2.5, 5 and 10 at% at the maximum of the distribution profile. Experiments were performed after each implantation stage. Shubnikov-de Haas (SdH) oscillations were observed in both the magneto-resistance and Hall-effect measurements. Analyses of these results with fast Fourier transform (FFT) lead to fundamental frequencies and effective masses for electrons and holes that are independent of the implantation fluences. The Hall resistivity at low temperatures shows a sign reversal as a function of the field in all implanted states. We interpret the obtained results with basis on a qualitative model that supposes the existence of an extrinsic hole density associated to the defect structure of our sample. We conclude that the As implantation does not produce a semiconductor-type doping in our HOPG sample. Instead, an increase in the extrinsic hole density is likely to occur as a consequence of disorder induced by implantation.

  11. Three-dimensional tool radius compensation for multi-axis peripheral milling

    NASA Astrophysics Data System (ADS)

    Chen, Youdong; Wang, Tianmiao

    2013-05-01

    Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUT® with different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of three- to five-axis machine tools as a general form.

  12. Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea

    2016-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Nozzle

    DOEpatents

    Chen, Alexander G.; Cohen, Jeffrey M.

    2009-06-16

    A fuel injector has a number of groups of nozzles. The groups are generally concentric with an injector axis. Each nozzle defines a gas flowpath having an outlet for discharging a fuel/air mixture jet. There are means for introducing the fuel to the air. One or more groups of the nozzles are oriented to direct the associated jets skew to the injector axis.

  14. The Managerial Grid; Key Orientations for Achieving Production through People.

    ERIC Educational Resources Information Center

    Blake, Robert R; Mouton, Jane S.

    The Managerial Grid arranges a concern for production on the horizontal axis and a concern for people on the vertical axis of a coordinate system: 1,1 shows minimum concern for production and people; 9,1 shows major production emphasis and minimum human considerations; 1,9 shows maximum concern for friendly working conditions and minimum…

  15. Linearly polarized pumped passively Q-switched Nd:YVO4 microchip laser for Ince-Gaussian laser modes with controllable orientations

    NASA Astrophysics Data System (ADS)

    He, Hong-Sen; Zhang, Ming-Ming; Dong, Jun; Ueda, Ken-Ichi

    2016-12-01

    A tilted, linearly polarized laser diode end-pumped Cr4+:YAG passively Q-switched a-cut Nd:YVO4 microchip laser for generating numerous Ince-Gaussian (IG) laser modes with controllable orientations has been demonstrated by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The same IG laser mode with different orientations has been achieved with the same absorbed pump power in a passively Q-switched Nd:YVO4 microchip laser under linearly polarized pumping when the incident pump power and the crystalline orientation of an a-cut Nd:YVO4 crystal are both properly selected. The significant improvement of pulsed laser performance of controllable IG modes has been achieved by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The maximum pulse energy is obtained along the a-axis of an a-cut Nd:YVO4 crystal and the highest peak power is achieved along the c-axis of an a-cut Nd:YVO4 crystal, respectively, which has potential applications on quantum computation and optical manipulation. The generation of controllable IG laser modes in microchip lasers under linearly polarized pumping provides a convenient and universal way to control IG laser mode numbers with anisotropic crystal as a gain medium.

  16. Polarization switching behavior of one-axis-oriented lead zirconate titanate films fabricated on metal oxide nanosheet layer

    NASA Astrophysics Data System (ADS)

    Uchida, Hiroshi; Ichinose, Daichi; Shiraishi, Takahisa; Shima, Hiromi; Kiguchi, Takanori; Akama, Akihiko; Nishida, Ken; Konno, Toyohiko J.; Funakubo, Hiroshi

    2017-10-01

    For the application of electronic devices using ferroelectric/piezoelectric components, one-axis-oriented tetragonal Pb(Zr0.40Ti0.60)O3 (PZT) films with thicknesses of up to 1 µm were fabricated with the aid of a Ca2Nb3O10 nanosheet (ns-CN) template for preferential crystal growth for evaluating their polarization switching behavior. The ns-CN template was supported on ubiquitous silicon (Si) wafer by a simple dip coating technique, followed by the repetitive chemical solution deposition (CSD) of PZT films. The PZT films were grown successfully with preferential crystal orientation of PZT(100) up to the thickness of 1020 nm. The (100)-oriented PZT film with ∼1 µm thickness exhibited unique polarization behavior of ferroelectric polarization, i.e., a marked increase in remanent polarization (P r) up to approximately 40 µC/cm2 induced by domain switching under high electric field, whereas the film with a lower thickness showed only a lower P r of approximately 11 µC/cm2 even under a high electric field. The ferroelectric property of the (100)-oriented PZT film after domain switching on ns-CN/Pt/Si can be comparable to those of (001)/(100)-oriented epitaxial PZT films.

  17. Aligned 1-D nanorods of a π-gelator exhibit molecular orientation and excitation energy transport different from entangled fiber networks.

    PubMed

    Sakakibara, Keita; Chithra, Parayalil; Das, Bidisa; Mori, Taizo; Akada, Misaho; Labuta, Jan; Tsuruoka, Tohru; Maji, Subrata; Furumi, Seiichi; Shrestha, Lok Kumar; Hill, Jonathan P; Acharya, Somobrata; Ariga, Katsuhiko; Ajayaghosh, Ayyappanpillai

    2014-06-18

    Linear π-gelators self-assemble into entangled fibers in which the molecules are arranged perpendicular to the fiber long axis. However, orientation of gelator molecules in a direction parallel to the long axes of the one-dimensional (1-D) structures remains challenging. Herein we demonstrate that, at the air-water interface, an oligo(p-phenylenevinylene)-derived π-gelator forms aligned nanorods of 340 ± 120 nm length and 34 ± 5 nm width, in which the gelator molecules are reoriented parallel to the long axis of the rods. The orientation change of the molecules results in distinct excited-state properties upon local photoexcitation, as evidenced by near-field scanning optical microscopy. A detailed understanding of the mechanism by which excitation energy migrates through these 1-D molecular assemblies might help in the design of supramolecular structures with improved charge-transport properties.

  18. Ion-conducting ceramic apparatus, method, fabrication, and applications

    DOEpatents

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2012-03-06

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unseren, M.A.

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less

  20. Attitude-Independent Magnetometer Calibration for Spin-Stabilized Spacecraft

    NASA Technical Reports Server (NTRS)

    Natanson, Gregory

    2005-01-01

    The paper describes a three-step estimator to calibrate a Three-Axis Magnetometer (TAM) using TAM and slit Sun or star sensor measurements. In the first step, the Calibration Utility forms a loss function from the residuals of the magnitude of the geomagnetic field. This loss function is minimized with respect to biases, scale factors, and nonorthogonality corrections. The second step minimizes residuals of the projection of the geomagnetic field onto the spin axis under the assumption that spacecraft nutation has been suppressed by a nutation damper. Minimization is done with respect to various directions of the body spin axis in the TAM frame. The direction of the spin axis in the inertial coordinate system required for the residual computation is assumed to be unchanged with time. It is either determined independently using other sensors or included in the estimation parameters. In both cases all estimation parameters can be found using simple analytical formulas derived in the paper. The last step is to minimize a third loss function formed by residuals of the dot product between the geomagnetic field and Sun or star vector with respect to the misalignment angle about the body spin axis. The method is illustrated by calibrating TAM for the Fast Auroral Snapshot Explorer (FAST) using in-flight TAM and Sun sensor data. The estimated parameters include magnetic biases, scale factors, and misalignment angles of the spin axis in the TAM frame. Estimation of the misalignment angle about the spin axis was inconclusive since (at least for the selected time interval) the Sun vector was about 15 degrees from the direction of the spin axis; as a result residuals of the dot product between the geomagnetic field and Sun vectors were to a large extent minimized as a by-product of the second step.

  1. Normal modes of synchronous rotation

    NASA Astrophysics Data System (ADS)

    Varadi, Ferenc; Musotto, Susanna; Moore, William; Schubert, Gerald

    2005-07-01

    The dynamics of synchronous rotation and physical librations are revisited in order to establish a conceptually simple and general theoretical framework applicable to a variety of problems. Our motivation comes from disagreements between the results of numerical simulations and those of previous theoretical studies, and also because different theoretical studies disagree on basic features of the dynamics. We approach the problem by decomposing the orientation matrix of the body into perfectly synchronous rotation and deviation from the equilibrium state. The normal modes of the linearized equations are computed in the case of a circular satellite orbit, yielding both the periods and the eigenspaces of three librations. Libration in longitude decouples from the other two, vertical modes. There is a fast vertical mode with a period very close to the average rotational period. It corresponds to tilting the body around a horizontal axis while retaining nearly principal-axis rotation. In the inertial frame, this mode appears as nutation and free precession. The other vertical mode, a slow one, is the free wobble. The effects of the nodal precession of the orbit are investigated from the point of view of Cassini states. We test our theory using numerical simulations of the full equations of the dynamics and discuss the disagreements among our study and previous ones. The numerical simulations also reveal that in the case of eccentric orbits large departures from principal-axis rotation are possible due to a resonance between free precession and wobble. We also revisit the history of the Moon's rotational state and show that it switched from one Cassini state to another when it was at 46.2 Earth radii. This number disagrees with the value 34.2 derived in a previous study.

  2. Automated assembly of fast-axis collimation (FAC) lenses for diode laser bar modules

    NASA Astrophysics Data System (ADS)

    Miesner, Jörn; Timmermann, Andre; Meinschien, Jens; Neumann, Bernhard; Wright, Steve; Tekin, Tolga; Schröder, Henning; Westphalen, Thomas; Frischkorn, Felix

    2009-02-01

    Laser diodes and diode laser bars are key components in high power semiconductor lasers and solid state laser systems. During manufacture, the assembly of the fast axis collimation (FAC) lens is a crucial step. The goal of our activities is to design an automated assembly system for high volume production. In this paper the results of an intermediate milestone will be reported: a demonstration system was designed, realized and tested to prove the feasibility of all of the system components and process features. The demonstration system consists of a high precision handling system, metrology for process feedback, a powerful digital image processing system and tooling for glue dispensing, UV curing and laser operation. The system components as well as their interaction with each other were tested in an experimental system in order to glean design knowledge for the fully automated assembly system. The adjustment of the FAC lens is performed by a series of predefined steps monitored by two cameras concurrently imaging the far field and the near field intensity distributions. Feedback from these cameras processed by a powerful and efficient image processing algorithm control a five axis precision motion system to optimize the fast axis collimation of the laser beam. Automated cementing of the FAC to the diode bar completes the process. The presentation will show the system concept, the algorithm of the adjustment as well as experimental results. A critical discussion of the results will close the talk.

  3. Anisotropic evaluation of synthetic surgical meshes.

    PubMed

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  4. Capsule endoscope localization based on computer vision technique.

    PubMed

    Liu, Li; Hu, Chao; Cai, Wentao; Meng, Max Q H

    2009-01-01

    To build a new type of wireless capsule endoscope with interactive gastrointestinal tract examination, a localization and orientation system is needed for tracking 3D location and 3D orientation of the capsule movement. The magnetic localization and orientation method produces only 5 DOF, but misses the information of rotation angle along capsule's main axis. In this paper, we presented a complementary orientation approach for the capsule endoscope, and the 3D rotation can be determined by applying computer vision technique on the captured endoscopic images. The experimental results show that the complementary orientation method has good accuracy and high feasibility.

  5. Zebra finches have a light-dependent magnetic compass similar to migratory birds.

    PubMed

    Pinzon-Rodriguez, Atticus; Muheim, Rachel

    2017-04-01

    Birds have a light-dependent magnetic compass that provides information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina and mediated by a light-induced, radical-pair mechanism involving cryptochromes as sensory receptor molecules. To investigate how the behavioural responses of birds under different light spectra match with cryptochromes as the primary magnetoreceptor, we examined the spectral properties of the magnetic compass in zebra finches. We trained birds to relocate a food reward in a spatial orientation task using magnetic compass cues. The birds were well oriented along the trained magnetic compass axis when trained and tested under low-irradiance 521 nm green light. In the presence of a 1.4 MHz radio-frequency electromagnetic (RF)-field, the birds were disoriented, which supports the involvement of radical-pair reactions in the primary magnetoreception process. Birds trained and tested under 638 nm red light showed a weak tendency to orient ∼45 deg clockwise of the trained magnetic direction. Under low-irradiance 460 nm blue light, they tended to orient along the trained magnetic compass axis, but were disoriented under higher irradiance light. Zebra finches trained and tested under high-irradiance 430 nm indigo light were well oriented along the trained magnetic compass axis, but disoriented in the presence of a RF-field. We conclude that magnetic compass responses of zebra finches are similar to those observed in nocturnally migrating birds and agree with cryptochromes as the primary magnetoreceptor, suggesting that light-dependent, radical-pair-mediated magnetoreception is a common property for all birds, including non-migratory species. © 2017. Published by The Company of Biologists Ltd.

  6. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  7. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  8. Multi-Axis Test Facility Orientation

    NASA Image and Video Library

    1960-03-01

    Seven Astronauts and William North undergo Multi Axis Space Test Inertia Facility (MASTIF) orientation: This film contains footage Gus Grissom leaving "Astro-Penthouse" and beginning tests, pilot Joe Algranti explaining the MASTIF to Scott Carpenter, Walter Schirra testing the controls and being strapped in, Deke Slayton climbing into the rig, and John Glenn preparing for test and being briefed by Algranti. Also seen are Alan Shepherd talking with Algranti and James Useller prior to climbing into rig and beginning test, Gordon Cooper being strapped in and beginning his test, Cooper and Algranti briefing to William North prior to his test. North was a test pilot on the NASA committee which selected the Mercury 7 astronauts.

  9. Flux pinning forces in irradiated a-axis oriented EuBa{sub 2}Cu{sub 3}O{sub 7} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, J. I.; Gonzalez, E. M.; Kwok, W.-K

    1999-10-12

    {alpha}-axis oriented EuBa{sub 2}Cu{sub 3}O{sub 7} films have been irradiated with high energy heavy ions in different configurations to study the possible pinning role of the artificial defects in this kind of samples. The original pinning limiting mechanism of the samples is not essentially altered what the irradiation is parallel to the CuO{sub 2} planes. However, when it is deviated from this direction, an increase in critical current density and a change in pinning force are observed when the magnetic field is parallel to the columnar defects at values around the matching field.

  10. Orientation tuning of contrast masking caused by motion streaks.

    PubMed

    Apthorp, Deborah; Cass, John; Alais, David

    2010-08-01

    We investigated whether the oriented trails of blur left by fast-moving dots (i.e., "motion streaks") effectively mask grating targets. Using a classic overlay masking paradigm, we varied mask contrast and target orientation to reveal underlying tuning. Fast-moving Gaussian blob arrays elevated thresholds for detection of static gratings, both monoptically and dichoptically. Monoptic masking at high mask (i.e., streak) contrasts is tuned for orientation and exhibits a similar bandwidth to masking functions obtained with grating stimuli (∼30 degrees). Dichoptic masking fails to show reliable orientation-tuned masking, but dichoptic masks at very low contrast produce a narrowly tuned facilitation (∼17 degrees). For iso-oriented streak masks and grating targets, we also explored masking as a function of mask contrast. Interestingly, dichoptic masking shows a classic "dipper"-like TVC function, whereas monoptic masking shows no dip and a steeper "handle". There is a very strong unoriented component to the masking, which we attribute to transiently biased temporal frequency masking. Fourier analysis of "motion streak" images shows interesting differences between dichoptic and monoptic functions and the information in the stimulus. Our data add weight to the growing body of evidence that the oriented blur of motion streaks contributes to the processing of fast motion signals.

  11. Further improvements in conducting and transparent properties of ZnO:Ga films with perpetual c-axis orientation: Materials optimization and application in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Mondal, Praloy; Das, Debajyoti

    2017-07-01

    Technologically appropriate device friendly ZnO:Ga films have been prepared at a low growth temperature (100 °C) by changing the RF power (P) applied to the magnetron plasma. Structurally preferred c-axis orientation of the ZnO:Ga network has been attained with I〈002〉/I〈103〉 > 5. The c-axis oriented grains of wurtzite ZnO:Ga grows geometrically and settles in tangentially, providing favorable conduction path for stacked layer devices. Nano-sheet like structures produced at the surface are interconnected and provide conducting path across the surface; however, those accommodate a lot of pores in between that help better light trapping and reduce the reflection loss. The optimized ZnO:Ga thin film prepared at RF power of 200 W has 〈002〉 oriented grains of average size ∼10 nm and exhibits a very high conductivity ∼200 S cm-1 and elevated transmission (∼93% at 500 nm) in the visible range. The optimized ZnO:Ga film has been used as the transparent conducting oxide (TCO) window layer of RF-PECVD grown silicon thin film solar cells in glass/TCO/p-i-n-Si/Al configuration. The characteristics of identically prepared p-i-n-Si solar cells are compared by replacing presently developed ZnO:Ga TCO with the best quality U-type SnO2 coated Asahi glass substrates. The ZnO:Ga coated glass substrate offers a higher open circuit voltage (VOC) and the higher fill factor (FF). The ZnO:Ga film being more stable in hydrogen plasma than its SnO2 counterpart, maintains a high transparency to the solar radiation and improves the VOC, while reduced diffusion of Zn across the p-layer creates less defects at the p-i interface in Si:H cells and thereby, increases the FF. Nearly identical conversion efficiency is preserved for both TCO substrates. Excellent c-axis orientation even at low growth temperature promises improved device performance by extended parametric optimization.

  12. Well-aligned polycrystalline lanthanum silicate oxyapatite grown by reactive diffusion between solid La{sub 2}SiO{sub 5} and gases [SiO+1/2O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp; Hasegawa, Ryo; Kitagawa, Takuya

    2016-03-15

    The c-axis-oriented polycrystalline lanthanum silicate oxyapatite, La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} (□ denotes a vacancy in the Si site), was successfully prepared by the reactive diffusion between randomly grain-oriented La{sub 2}SiO{sub 5} polycrystal and [SiO+1/2O{sub 2}] gases at 1873 K in Ar atmosphere. The polycrystal was characterized using optical microscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, micro-Raman spectroscopy, X-ray diffractometry, and impedance spectroscopy. The crystal structure (space group P6{sub 3}/m) showed the deficiency of Si site at ca. 1.9%. The bulk oxide-ion conductivity along the grain-alignment direction steadily increased from 9.2 × 10{sup −3} to 1.17 ×more » 10{sup −2} S/cm with increasing temperature from 923 to 1073 K. The activation energy of conduction was 0.23(2) eV. - Graphical abstract: We have successfully prepared the highly c-axis-oriented polycrystalline La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} by the reactive diffusion between randomly grain-oriented La{sub 2}SiO{sub 5} polycrystal and [SiO + 1/2O{sub 2}] gases at 1873 K in Ar atmosphere. The crystal structure (space group P6{sub 3}/m) showed the deficiency of Si site of ca. 1.9%. - Highlights: • The c-axis-oriented polycrystalline La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} is successfully prepared. • Crystal structure of La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} is determined by single-crystal XRD. • The polycrystal shows relatively high oxide ion conductivity along the common c-axis. • Reactive diffusion is successfully used for the preparation of grain-aligned ceramics.« less

  13. The grain size(s) of Black Hills Quartzite deformed in the dislocation creep regime

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée; Kilian, Rüdiger

    2017-10-01

    General shear experiments on Black Hills Quartzite (BHQ) deformed in the dislocation creep regimes 1 to 3 have been previously analyzed using the CIP method (Heilbronner and Tullis, 2002, 2006). They are reexamined using the higher spatial and orientational resolution of EBSD. Criteria for coherent segmentations based on c-axis orientation and on full crystallographic orientations are determined. Texture domains of preferred c-axis orientation (Y and B domains) are extracted and analyzed separately. Subdomains are recognized, and their shape and size are related to the kinematic framework and the original grains in the BHQ. Grain size analysis is carried out for all samples, high- and low-strain samples, and separately for a number of texture domains. When comparing the results to the recrystallized quartz piezometer of Stipp and Tullis (2003), it is found that grain sizes are consistently larger for a given flow stress. It is therefore suggested that the recrystallized grain size also depends on texture, grain-scale deformation intensity, and the kinematic framework (of axial vs. general shear experiments).

  14. Effect of Aerogel Anisotropy in Superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. M.; Li, J. I. A.; Pollanen, J.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.

    2014-03-01

    Two theories have been advanced to describe the effects of anisotropic impurity introduced by stretched silica aerogel on the orientation of the orbital angular momentum l& circ; in superfluid 3He-A. These theories disagree on whether the anisotropy will orient l& circ; perpendicular[2] or parallel[3] to the strain axis. In order to examine this question we have produced and characterized a homogeneous aerogel sample with uniaxial anisotropy introduced during growth, corresponding to stretching of the aerogel. These samples have been shown to stabilize two new chiral states;[4] the higher temperature state being the subject of the present study. Using pulsed NMR we have performed experiments on 3He-A imbibed in this sample in two orientations: strain parallel and perpendicular to the applied magnetic field. From the NMR frequency shifts as a function of tip angle and temperature, we find that the angular momentum l& circ; is oriented along the strain axis, providing evidence for the theory advanced by Sauls. This work was supported by the National Science Foundation, DMR-1103625.

  15. Crystal orientation of PEO confined within the nanorod templated by AAO nanochannels.

    PubMed

    Liu, Chien-Liang; Chen, Hsin-Lung

    2018-06-18

    The orientation of poly(ethylene oxide) (PEO) crystallites developed in the nanochannels of anodic aluminum oxide (AAO) membrane has been investigated. PEO was filled homogeneously into the nanochannels in the melt state, and the crystallization confined within the PEO nanorod thus formed was allowed to take place subsequently at different temperatures. The effects of PEO molecular weight (MPEO), crystallization temperature (Tc) and AAO channel diameter (DAAO) on the crystal orientation attained in the nanorod were revealed by 2-D wide angle X-ray scattering (WAXS) patterns. In the nanochannels with DAAO = 23 nm, the crystallites formed from PEO with the lowest MPEO (= 3400 g mol-1) were found to adopt a predominantly perpendicular orientation with the crystalline stems aligning normal to the channel axis irrespective of Tc (ranging from -40 to 20 °C). Increasing MPEO or decreasing Tc tended to induce the development of the tilt orientation characterized by the tilt of the (120) plane by 45° from the channel axis. In the case of the highest MPEO (= 95 000 g mol-1) studied, both perpendicular and tilt orientations coexisted irrespective of Tc. Coexistent orientation was always observed in the channels with a larger diameter (DAAO = 89 nm) irrespective of MPEO and Tc. Compared with the previous results of the crystal orientation attained in nanotubes templated by the preferential wetting of the channel walls by PEO, the window of the perpendicular crystal orientation in the nanorod was much narrower due to its weaker confinement effect imposed on the crystal growth than that set by the nanotube.

  16. Food, stress, and reproduction: short-term fasting alters endocrine physiology and reproductive behavior in the zebra finch.

    PubMed

    Lynn, Sharon E; Stamplis, Teresa B; Barrington, William T; Weida, Nicholas; Hudak, Casey A

    2010-07-01

    Stress is thought to be a potent suppressor of reproduction. However, the vast majority of studies focus on the relationship between chronic stress and reproductive suppression, despite the fact that chronic stress is rare in the wild. We investigated the role of fasting in altering acute stress physiology, reproductive physiology, and reproductive behavior of male zebra finches (Taeniopygia guttata) with several goals in mind. First, we wanted to determine if acute fasting could stimulate an increase in plasma corticosterone and a decrease in corticosteroid binding globulin (CBG) and testosterone. We then investigated whether fasting could alter expression of undirected song and courtship behavior. After subjecting males to fasting periods ranging from 1 to 10h, we collected plasma to measure corticosterone, CBG, and testosterone. We found that plasma corticosterone was elevated, and testosterone was decreased after 4, 6, and 10h of fasting periods compared with samples collected from the same males during nonfasted (control) periods. CBG was lower than control levels only after 10h of fasting. We also found that, coincident with these endocrine changes, males sang less and courted females less vigorously following short-term fasting relative to control conditions. Our data demonstrate that acute fasting resulted in rapid changes in endocrine physiology consistent with hypothalamo-pituitary-adrenal axis activation and hypothalamo-pituitary-gonadal axis deactivation. Fasting also inhibited reproductive behavior. We suggest that zebra finches exhibit physiological and behavioral flexibility that makes them an excellent model system for studying interactions of acute stress and reproduction. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Good imaging with very fast paraboloidal primaries - An optical solution and some applications. [performance improvement of astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Woolf, N. J.; Epps, N. W.

    1982-01-01

    Attention is given to the imaging performance improvement obtainable in telescopes with fast parabolic primaries by means of two-mirror correctors of the Paul-Baker type. Images with 80 percent of the energy concentrated within 0.2 arcsec are projected for an f/1 primary relaying to an f/2 final focus, over a 1 deg-diameter field. It is noted that the mechanical structure and enclosure of a large telescope built with these fast optics should be significantly smaller and less expensive than those for conventional optics. The application of the Paul-Baker corrector system is explored for such diverse telescope types as those employing six off-axis primary mirrors, UV astronomy telescopes with no chromatic aberration, a low emissivity IR astronomy instrument with an off-axis f/1 parent primary mirror part, and thin rectangular aperture telescopes which are useful for spectroscopy and photometry.

  18. A polyvalent harmonic coil testing method for small-aperture magnets

    NASA Astrophysics Data System (ADS)

    Arpaia, Pasquale; Buzio, Marco; Golluccio, Giancarlo; Walckiers, Louis

    2012-08-01

    A method to characterize permanent and fast-pulsed iron-dominated magnets with small apertures is presented. The harmonic coil measurement technique is enhanced specifically for small-aperture magnets by (1) in situ calibration, for facing search-coil production inaccuracy, (2) rotating the magnet around its axis, for correcting systematic effects, and (3) measuring magnetic fluxes by stationary coils at different angular positions for measuring fast pulsed magnets. This method allows a quadrupole magnet for particle accelerators to be characterized completely, by assessing multipole field components, magnetic axis position, and field direction. In this paper, initially the metrological problems arising from testing small-aperture magnets are highlighted. Then, the basic ideas of the proposed method and the architecture of the corresponding measurement system are illustrated. Finally, experimental validation results are shown for small-aperture permanent and fast-ramped quadrupole magnets for the new linear accelerator Linac4 at CERN (European Organization for Nuclear Research).

  19. Rotary fast tool servo system and methods

    DOEpatents

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  20. Rotary fast tool servo system and methods

    DOEpatents

    Montesanti, Richard C [Cambridge, MA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.

    2009-08-18

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. One or more position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  1. The Polarization of Achernar

    NASA Astrophysics Data System (ADS)

    McDavid, D.

    2005-11-01

    Recent near-infrared measurements of the angular diameter of Achernar (the bright Be star alpha Eridani) with the ESO VLT interferometer have been interpreted as the detection of an extremely oblate photosphere, with a ratio of equatorial to polar radius of at least 1.56 ± 0.05 and a minor axis orientation of 39° ± 1° (from North to East). The optical linear polarization of this star during an emission phase in 1995 September was 0.12 ± 0.02% at position angle 37° ± 8° (in equatorial coordinates), which is the direction of the projection of the rotation axis on the plane of the sky according to the theory of polarization by electron scattering in an equatorially flattened circumstellar disk. These two independent determinations of the orientation of the rotation axis are therefore in agreement. The observational history of correlations between Hα emission and polarization as found in the literature is that of a typical Be star, with the exception of an interesting question raised by the contrast between Schröder's measurement of a small polarization perpendicular to the projected rotation axis in 1969--70 and Tinbergen's measurement of zero polarization in 1974.5, both at times when emission was reportedly absent.

  2. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr

    USGS Publications Warehouse

    Aluru, N.; Jorgensen, E.H.; Maule, A.G.; Vijayan, M.M.

    2004-01-01

    We examined whether brain glucocorticoid receptor (GR) modulation by polychlorinated biphenyls (PCBs) was involved in the abnormal cortisol response to stress seen in anadromous Arctic charr (Salvelinus alpinus). Fish treated with Aroclor 1254 (0, 1, 10, and 100 mg/kg body mass) were maintained for 5 mo without feeding in the winter to mimic their seasonal fasting cycle, whereas a fed group with 0 and 100 mg/kg Aroclor was maintained for comparison. Fasting elevated plasma cortisol levels and brain GR content but depressed heat shock protein 90 (hsp90) and interrenal cortisol production capacity. Exposure of fasted fish to Aroclor 1254 resulted in a dose-dependent increase in brain total PCB content. This accumulation in fish with high PCB dose was threefold higher in fasted fish compared with fed fish. PCBs depressed plasma cortisol levels but did not affect in vitro interrenal cortisol production capacity in fasted charr. At high PCB dose, the brain GR content was significantly lower in the fasted fish and this corresponded with a lower brain hsp70 and hsp90 content. The elevation of plasma cortisol levels and upregulation of brain GR content may be an important adaptation to extended fasting in anadromous Arctic charr, and this response was disrupted by PCBs. Taken together, the hypothalamus-pituitary- interrenal axis is a target for PCB impact during winter emaciation in anadromous Arctic charr.

  3. Sensing of substratum rigidity and directional migration by fast-crawling cells

    NASA Astrophysics Data System (ADS)

    Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki

    2018-05-01

    Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ˜10 μ m and migration velocity is ˜10 μ m /min . In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.

  4. Sensing of substratum rigidity and directional migration by fast-crawling cells.

    PubMed

    Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki

    2018-05-01

    Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ∼10 μm and migration velocity is ∼10 μm/min. In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.

  5. Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions

    PubMed Central

    Braaf, Boy; Vermeer, Koenraad A.; de Groot, Mattijs; Vienola, Kari V.; de Boer, Johannes F.

    2014-01-01

    In polarization-sensitive optical coherence tomography (PS-OCT) the use of single-mode fibers causes unpredictable polarization distortions which can result in increased noise levels and erroneous changes in calculated polarization parameters. In the current paper this problem is addressed by a new Jones matrix analysis method that measures and corrects system polarization distortions as a function of wavenumber by spectral analysis of the sample surface polarization state and deeper located birefringent tissue structures. This method was implemented on a passive-component depth-multiplexed swept-source PS-OCT system at 1040 nm which was theoretically modeled using Jones matrix calculus. High-resolution B-scan images are presented of the double-pass phase retardation, diattenuation, and relative optic axis orientation to show the benefits of the new analysis method for in vivo imaging of the human retina. The correction of system polarization distortions yielded reduced phase retardation noise, and better estimates of the diattenuation and the relative optic axis orientation in weakly birefringent tissues. The clinical potential of the system is shown by en face visualization of the phase retardation and optic axis orientation of the retinal nerve fiber layer in a healthy volunteer and a glaucoma patient with nerve fiber loss. PMID:25136498

  6. Strain pattern represented by scarps formed during the earthquakes of October 2, 1915, Pleasant Valley, Nevada

    USGS Publications Warehouse

    Wallace, R.E.

    1979-01-01

    The pattern of scarps developed during the earthquakes of October 2, 1915, in Pleasant Valley, Nevada, may have formed as a result of a modern stress system acting on a set of fractures produced by an earlier stress system which was oriented differently. Four major scarps developed in a right-stepping, en-echelon pattern suggestive of left-lateral slip across the zone and an extension axis oriented approximately S85??W. The trend of the zone is N25??E. However, the orientation of simple dip-slip on most segments trending approximately N20-40?? E and a right-lateral component of displacement on several N- and NW-trending segments of the scarps indicate that the axis of regional extension was oriented between N50?? and 70?? W, normal to the zone. The cumulative length of the scarps is 60 km, average vertical displacement 2 m, and the maximum vertical displacement near the Pearce School site 5.8 m. Almost everywhere the 1915 scarps formed along an older scarp line, and in some places older scarps represent multiple previous events. The most recent displacement event prior to 1915 is interpreted to have occurred more than 6600 years ago, but possibly less than 20,000 years ago. Some faults expressed by older scarps that trend northwest were not reactivated in 1915, possibly because they are oriented at a low angle with respect to the axis of modern regional extension. The 1915 event occurred in an area of overlap of three regional fault trends oriented northwest, north, and northeast and referred to, respectively, as the Oregon-Nevada, Northwest Nevada, and Midas-Battle Moutain trends. Each of these trends may have developed at a different time; the Oregon-Nevada trend was possibly the earliest and developed in Late Miocene time (Stewart et al. 1975). Segments of the 1915 scarps are parallel to each of these trends, suggesting influence by older sets of fractures. ?? 1979.

  7. Polytype Stability and Microstructural Characterization of Silicon Carbide Epitaxial Films Grown on [ {11}overline{{2}} {0} ]- and [0001]-Oriented Silicon Carbide Substrates

    NASA Astrophysics Data System (ADS)

    Bishop, S. M.; Reynolds, C. L.; Liliental-Weber, Z.; Uprety, Y.; Zhu, J.; Wang, D.; Park, M.; Molstad, J. C.; Barnhardt, D. E.; Shrivastava, A.; Sudarshan, T. S.; Davis, R. F.

    2007-04-01

    The polytype and surface and defect microstructure of epitaxial layers grown on 4H( {11}overline{{2}} {0} ), 4H(0001) on-axis, 4H(0001) 8° off-axis, and 6H(0001) on-axis substrates have been investigated. High-resolution x-ray diffraction (XRD) revealed the epitaxial layers on 4H( {11}overline{{2}} {0} ) and 4H(0001) 8° off-axis to have the 4H-SiC (silicon carbide) polytype, while the 3C-SiC polytype was identified for epitaxial layers on 4H(0001) and 6H(0001) on-axis substrates. Cathodoluminescence (CL), Raman spectroscopy, and transmission electron microscopy (TEM) confirmed these results. The epitaxial surface of 4H( {11}overline{{2}} {0} ) films was specular with a roughness of 0.16-nm root-mean-square (RMS), in contrast to the surfaces of the other epitaxial layer-substrate orientations, which contained curvilinear boundaries, growth pits (˜3 × 104 cm-2), triangular defects >100 μm, and significant step bunching. Molten KOH etching revealed large defect densities within 4H( {11}overline{{2}} {0} ) films that decreased with film thickness to ˜106 cm-2 at 2.5 μm, while cross-sectional TEM studies showed areas free of defects and an indistinguishable film-substrate interface for 4H( {11}overline{{2}} {0} ) epitaxial layers.

  8. Satellite borne gravity gradiometer study

    NASA Technical Reports Server (NTRS)

    Metzger, E.; Jircitano, A.; Affleck, C.

    1976-01-01

    Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.

  9. Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites.

    PubMed

    Bakulin, Artem A; Selig, Oleg; Bakker, Huib J; Rezus, Yves L A; Müller, Christian; Glaser, Tobias; Lovrincic, Robert; Sun, Zhenhua; Chen, Zhuoying; Walsh, Aron; Frost, Jarvist M; Jansen, Thomas L C

    2015-09-17

    The introduction of a mobile and polarized organic moiety as a cation in 3D lead-iodide perovskites brings fascinating optoelectronic properties to these materials. The extent and the time scales of the orientational mobility of the organic cation and the molecular mechanism behind its motion remain unclear, with different experimental and computational approaches providing very different qualitative and quantitative description of the molecular dynamics. Here we use ultrafast 2D vibrational spectroscopy of methylammonium (MA) lead iodide to directly resolve the rotation of the organic cations within the MAPbI3 lattice. Our results reveal two characteristic time constants of motion. Using ab initio molecular dynamics simulations, we identify these as a fast (∼300 fs) "wobbling-in-a-cone" motion around the crystal axis and a relatively slow (∼3 ps) jump-like reorientation of the molecular dipole with respect to the iodide lattice. The observed dynamics are essential for understanding the electronic properties of perovskite materials.

  10. Nuclear resonance tomography with a toroid cavity detector

    DOEpatents

    Woelk, K.; Rathke, J.W.; Klingler, R.J.

    1996-11-12

    A toroid cavity detection system is described for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is input to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties. 4 figs.

  11. Nuclear resonance tomography with a toroid cavity detector

    DOEpatents

    Woelk, Klaus; Rathke, Jerome W.; Klingler, Robert J.

    1996-01-01

    A toroid cavity detection system for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is inputted to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties.

  12. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    DOE PAGES

    Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.; ...

    2016-01-01

    X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less

  13. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.

    X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less

  14. The electrical heart axis and ST events in fetal monitoring: A post-hoc analysis following a multicentre randomised controlled trial.

    PubMed

    Vullings, Rik; Verdurmen, Kim M J; Hulsenboom, Alexandra D J; Scheffer, Stephanie; de Lau, Hinke; Kwee, Anneke; Wijn, Pieter F F; Amer-Wåhlin, Isis; van Laar, Judith O E H; Oei, S Guid

    2017-01-01

    Reducing perinatal morbidity and mortality is one of the major challenges in modern health care. Analysing the ST segment of the fetal electrocardiogram was thought to be the breakthrough in fetal monitoring during labour. However, its implementation in clinical practice yields many false alarms and ST monitoring is highly dependent on cardiotocogram assessment, limiting its value for the prediction of fetal distress during labour. This study aims to evaluate the relation between physiological variations in the orientation of the fetal electrical heart axis and the occurrence of ST events. A post-hoc analysis was performed following a multicentre randomised controlled trial, including 1097 patients from two participating centres. All women were monitored with ST analysis during labour. Cases of fetal metabolic acidosis, poor signal quality, missing blood gas analysis, and congenital heart disease were excluded. The orientation of the fetal electrical heart axis affects the height of the initial T/QRS baseline, and therefore the incidence of ST events. We grouped tracings with the same initial baseline T/QRS value. We depicted the number of ST events as a function of the initial baseline T/QRS value with a linear regression model. A significant increment of ST events was observed with increasing height of the initial T/QRS baseline, irrespective of the fetal condition; correlation coefficient 0.63, p<0.001. The most frequent T/QRS baseline is 0.12. The orientation of the fetal electrical heart axis and accordingly the height of the initial T/QRS baseline should be taken into account in fetal monitoring with ST analysis.

  15. Paleomagnetic and structural evidence for oblique slip in a fault-related fold, Grayback monocline, Colorado

    USGS Publications Warehouse

    Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.

    2008-01-01

    Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.

  16. Imaging the seismic structure beneath oceanic spreading centers using ocean bottom geophysical techniques

    NASA Astrophysics Data System (ADS)

    Zha, Yang

    This dissertation focuses on imaging the crustal and upper mantle seismic velocity structure beneath oceanic spreading centers. The goals are to provide a better understanding of the crustal magmatic system and the relationship between mantle melting processes, crustal architecture and ridge characteristics. To address these questions I have analyzed ocean bottom geophysical data collected from the fast-spreading East Pacific Rise and the back-arc Eastern Lau Spreading Center using a combination of ambient noise tomography and seafloor compliance analysis. To characterize the crustal melt distribution at fast spreading ridges, I analyze seafloor compliance - the deformation under long period ocean wave forcing - measured during multiple expeditions between 1994 and 2007 at the East Pacific Rise 9º - 10ºN segment. A 3D numerical modeling technique is developed and used to estimate the effects of low shear velocity zones on compliance measurements. The forward modeling suggests strong variations of lower crustal shear velocity along the ridge axis, with zones of possible high melt fractions beneath certain segments. Analysis of repeated compliance measurements at 9º48'N indicates a decrease of crustal melt fraction following the 2005 - 2006 eruption. This temporal variability provides direct evidence for short-term variations of the magmatic system at a fast spreading ridge. To understand the relationship between mantle melting processes and crustal properties, I apply ambient noise tomography of ocean bottom seismograph (OBS) data to image the upper mantle seismic structure beneath the Eastern Lau Spreading Center (ELSC). The seismic images reveal an asymmetric upper mantle low velocity zone (LVZ) beneath the ELSC, representing a zone of partial melt. As the ridge migrates away from the volcanic arc, the LVZ becomes increasingly offset and separated from the sub-arc low velocity zone. The separation of the ridge and arc low velocity zones is spatially coincident with the abrupt transition in crustal composition and ridge morphology. Therefore these results confirm a previous prediction that the changing interaction between the arc and back-arc magmatic systems is responsible for the abrupt change in crustal properties along the ELSC. I further investigate the crustal structure along and across the ELSC using seafloor compliance. Compliance measurements are inverted for local crustal shear velocity structure as well as sediment thickness at 30 OBS locations using a Monte Carlo method. Sediment increases asymmetrically with seafloor age, with much a higher rate to the east of the ridge. Along the ELSC, upper crustal velocities increase from south to north as the ridge migrates away from the volcanic arc front, consistent with a less porous upper crust with possibly less subduction input. Furthermore, average upper crust shear velocities for crust produced at past ELSC when it was near the volcanic arc are considerably slower than crust produced at present day northern ELSC. I show that the implications of previous active seismic studies in the axial ELSC can be extended much farther off-axis and back in time. I also address a challenge of ocean bottom seismology and develop a new method for determining OBS horizontal orientations using multi-component ambient noise correlation. I demonstrate that the OBS orientations can be robustly estimated through maximizing the correlation between the diagonal and cross terms of the noise correlation function. This method is applied to the ELSC OBS experiment dataset and the obtained orientations are consistent with results from a conventional teleseismic method. The new method is promising for a wide range of applications.

  17. The orientation of the cervical vertebral column in unrestrained awake animals. I. Resting position.

    PubMed

    Vidal, P P; Graf, W; Berthoz, A

    1986-01-01

    The orientation of the cervical vertebral column was studied by X-ray photography of the region containing the head and the neck in nine unrestrained species of vertebrates (man, monkey, cat, rabbit, guinea pig, rat, chicken, frog, lizard). In addition, the orientation of the horizontal semicircular canals was measured in four species using landmarks on the skull. In all vertebrates studied, with the exception of frog and lizard, the general orientation of the cervical vertebral column was vertical when animals were at rest, and not horizontal or oblique as suggested by the macroscopic appearance of the neck. The posture of the animal, whether lying, sitting or standing, had little effect on this general vertical orientation, although some variability was noticed depending on the species. This finding prompted the definition of a resting zone, where the cervical column can take any orientation within a narrow range around a mean position. The cervical vertebral column composes part of the S-shaped structure of the entire vertebral column, with one inflection around the cervico-thoracic (C7/Th1) junction. This feature is already noticable in the lizard. The vertical orientation of the cervical vertebral column is interpreted to provide a stable and energy saving balance of the head. Furthermore, when the head is lowered or raised, the atlanto-occipital and cervico-thoracic junctions are predominantly involved, while the entire cervical column largely preserves its intrinsic configuration. The curved configuration of the cervico-thoracic vertebral column embedded in long spring-like muscles is interpreted to function as a shock absorber. At rest, animals did not hold their heads with the horizontal canals oriented earth horizontally all the time, but often maintained them pitched up by ca. 5 deg, as has been reported for man. At other times, presumably when the vigilance level increased, the horizontal canals were brought into the earth horizontal plane. The vertical orientation of the cervical column results in a vertical positioning of the odontoid process of the axis (second cervical vertebra, C2), which thus provides the axis of rotation for yaw movements of the head. This axis corresponds to that of the horizontal semicircular canals. The vertical organization of the cervical vertebral column in birds and mammals, whether the animal is quadrupedal or bipedal, points to a common organizational principle for eye and head movement systems.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. An investigation of thoracic and lumbar cancellous vertebral architecture using power-spectral analysis of plain radiographs*

    PubMed Central

    Buck, AM; Price, RI; Sweetman, IM; Oxnard, CE

    2002-01-01

    The internal architecture of the vertebral bodies spanning the levels T1 to L5 in seven male columns was studied using mammographic-resolution radiographs of 2.5-mm-thick planar parasagittal slices. The overlapping radiographic shadows of vertebral trabeculae combined in the image to form a series of ‘elements’, broadly representative of the cancellous structure. The orientations and sizes of these elements were analysed by applying the Fast Fourier transform (FFT) to the digitized radiographic images. Elements aligned in the ‘vertical’ orientation, along the long axis of the column, were the most prominent for all vertebral levels. The relative prominence of horizontal to vertical elements was generally constant along the column below T5. In contrast, the relative prominence of oblique to vertical elements declined in the cranio-caudal direction, particularly in individuals aged ≥ 60 years. The ratio of ‘large’ (x > 0.3 mm) to ‘small’ (0.15 mm ≤ x ≤ 0.3 mm) elements was unchanged cranio-caudally in specimens < 60 years. However, in individuals ≥ 60 years, large elements increased in relative prominence in the caudal direction. These results suggest that a basic orthogonal pattern of trabeculae is found along the male human spine, regardless of differences in vertebral body size. Power-spectral analysis is shown to yield information summarizing the predominant orientations and sizes of radiographically rendered architectural elements of vertebral cancellous bone, to define the effects of ageing on architecture, and to identify broad structural differences between vertebral levels in the adult male spine. PMID:12090391

  19. Effects of short-term fasting on stress physiology, body condition, and locomotor activity in wintering male white-crowned sparrows.

    PubMed

    Krause, Jesse S; Pérez, Jonathan H; Meddle, Simone L; Wingfield, John C

    2017-08-01

    For wild free-living animals the availability of food resources can be greatly affected by environmental perturbations such as weather events. In response to environmental perturbations, animals activate the hypothalamic-pituitary-adrenal (HPA) axis to adjust physiology and behavior. The literature asserts that during weather events food intake declines leading to changes in HPA axis activity, as measured by both baseline and stress-induced glucocorticoid concentrations. Here we investigated how body condition, locomotor activity, and stress physiology were affected by varying lengths of a fast (1, 2, 6, and 24h; similar to that experienced by free-living birds) compared to when food was provided ad libitum in captive wintering male white-crowned sparrows, Zonotrichia leucophrys gambelii, exposed to a short day photoperiod. Baseline corticosterone concentrations were increased for all fasting durations but were highest in 6 and 24h fasted birds. Stress-induced corticosterone was elevated in 1h fasted birds with a trend for the 2h of fast; no other differences were found. Baseline corticosterone concentrations were negatively related to both total fat scores and body mass. All birds lost body mass regardless of fast length but birds fasted for 24h lost the most. Fat scores declined in the 6 and 24h groups, and no measureable changes were detected in pectoralis muscle profile. Locomotor activity was increased over the entire period in which food was removed regardless of fasting duration. Together this suggests that reduced food availability is responsible, at least in part, for the rapid elevation both baseline corticosterone under any duration of fast and stress-induced concentrations during short-term fasts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The development and testing of a novel cross axis wind turbine

    NASA Astrophysics Data System (ADS)

    Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.

    2016-06-01

    A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).

  1. High-power direct diode laser output by spectral beam combining

    NASA Astrophysics Data System (ADS)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  2. Reduced Oblique Effect in Children with Autism Spectrum Disorders (ASD)

    PubMed Central

    Sysoeva, Olga V.; Davletshina, Maria A.; Orekhova, Elena V.; Galuta, Ilia A.; Stroganova, Tatiana A.

    2016-01-01

    People are very precise in the discrimination of a line orientation relative to the cardinal (vertical and horizontal) axes, while their orientation discrimination sensitivity along the oblique axes is less refined. This difference in discrimination sensitivity along cardinal and oblique axes is called the “oblique effect.” Given that the oblique effect is a basic feature of visual processing with an early developmental origin, its investigation in children with Autism Spectrum Disorder (ASD) may shed light on the nature of visual sensory abnormalities frequently reported in this population. We examined line orientation sensitivity along oblique and vertical axes in a sample of 26 boys with ASD (IQ > 68) and 38 typically developing (TD) boys aged 7–15 years, as well as in a subsample of carefully IQ-matched ASD and TD participants. Children were asked to detect the direction of tilt of a high-contrast black-and-white grating relative to vertical (90°) or oblique (45°) templates. The oblique effect was reduced in children with ASD as compared to TD participants, irrespective of their IQ. This reduction was due to poor orientation sensitivity along the vertical axis in ASD children, while their ability to discriminate line orientation along the oblique axis was unaffected. We speculate that this deficit in sensitivity to vertical orientation may reflect disrupted mechanisms of early experience-dependent learning that takes place during the critical period for orientation selectivity. PMID:26834540

  3. Steerable vertical to horizontal energy transducer for mobile robots

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.

    2001-01-01

    The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

  4. High-speed optical three-axis vector magnetometry based on nonlinear Hanle effect in rubidium vapor

    NASA Astrophysics Data System (ADS)

    Azizbekyan, Hrayr; Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Movsisyan, Marina; Papoyan, Aram

    2017-07-01

    The magnetic-field-compensation optical vector magnetometer based on the nonlinear Hanle effect in alkali metal vapor allowing two-axis measurement operation has been further elaborated for three-axis performance, along with significant reduction of measurement time. The upgrade was achieved by implementing a two-beam resonant excitation configuration and a fast maximum searching algorithm. Results of the proof-of-concept experiments, demonstrating 1 μT B-field resolution, are presented. The applied interest and capability of the proposed technique is analyzed.

  5. Clusters in the distribution of pulsars in period, pulse-width, and age. [statistical analysis/statistical distributions

    NASA Technical Reports Server (NTRS)

    Baker, K. B.; Sturrock, P. A.

    1975-01-01

    The question of whether pulsars form a single group or whether pulsars come in two or more different groups is discussed. It is proposed that such groups might be related to several factors such as the initial creation of the neutron star, or the orientation of the magnetic field axis with the spin axis. Various statistical models are examined.

  6. Application of very high harmonic fast waves for off-axis current drive in the DIII-D and FNSF-AT tokamaks

    DOE PAGES

    Prater, Ronald; Moeller, Charles P.; Pinsker, Robert I.; ...

    2014-06-26

    Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called “helicons” or “whistlers”) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behavior of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly toward the plasma center. The high frequency also contributes to strong damping. Modeling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta ismore » above about 1.8%. Detailed analysis of ray behavior shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behavior in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n||, so wave accessibility issues can be reduced. Finally, use of a traveling wave antenna provides a very narrow n|| spectrum, which also helps avoid accessibility problems.« less

  7. Lineation-parallel c-axis Fabric of Quartz Formed Under Water-rich Conditions

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, J.; Li, P.

    2014-12-01

    The crystallographic preferred orientation (CPO) of quartz is of great significance because it records much valuable information pertinent to the deformation of quartz-rich rocks in the continental crust. The lineation-parallel c-axis CPO (i.e., c-axis forming a maximum parallel to the lineation) in naturally deformed quartz is generally considered to form under high temperature (> ~550 ºC) conditions. However, most laboratory deformation experiments on quartzite failed to produce such a CPO at high temperatures up to 1200 ºC. Here we reported a new occurrence of the lineation-parallel c-axis CPO of quartz from kyanite-quartz veins in eclogite. Optical microstructural observations, fourier transform infrared (FTIR) and electron backscattered diffraction (EBSD) techniques were integrated to illuminate the nature of quartz CPOs. Quartz exhibits mostly straight to slightly curved grain boundaries, modest intracrystalline plasticity, and significant shape preferred orientation (SPO) and CPOs, indicating dislocation creep dominated the deformation of quartz. Kyanite grains in the veins are mostly strain-free, suggestive of their higher strength than quartz. The pronounced SPO and CPOs in kyanite were interpreted to originate from anisotropic crystal growth and/or mechanical rotation during vein-parallel shearing. FTIR results show quartz contains a trivial amount of structurally bound water (several tens of H/106 Si), while kyanite has a water content of 384-729 H/106 Si; however, petrographic observations suggest quartz from the veins were practically deformed under water-rich conditions. We argue that the observed lineation-parallel c-axis fabric in quartz was inherited from preexisting CPOs as a result of anisotropic grain growth under stress facilitated by water, but rather than due to a dominant c-slip. The preservation of the quartz CPOs probably benefited from the preexisting quartz CPOs which renders most quartz grains unsuitably oriented for an easy a-slip at lower temperatures and the weak deformation during subsequent exhumation. This hypothesis provides a reasonable explanation for the observations that most lineation-parallel c-axis fabrics of quartz were found in veins and that deformation experiments on quartz-rich rocks at high temperature failed to produce such CPOs.

  8. Effect of difference of cupula and endolymph densities on the dynamics of semicircular canal.

    PubMed

    Kondrachuk, A V; Sirenko, S P; Boyle, R

    2008-01-01

    The effect of different densities of a cupula and endolymph on the dynamics of the semicircular canals is considered within the framework of a simplified one-dimensional mathematical model where the canal is approximated by a torus. If the densities are equal, the model is represented by Steinhausen's phenomenological equation. The difference of densities results in the complex dynamics of the cupulo-endolymphatic system, and leads to a dependence on the orientation of both the gravity vector relative to the canal plane and the axis of rotation, as well as on the distance between the axis of rotation and the center of the semicircular canal. Our analysis focused on two cases of canal stimulation: rotation with a constant velocity and a time-dependent (harmonically oscillating) angular velocity. Two types of spatial orientation of the axis of rotation, the axis of canal symmetry, and the vector of gravity were considered: i) the gravity vector and axis of rotation lie in the canal plane, and ii) the axis of rotation and gravity vector are normal to the canal plane. The difference of the cupula and endolymph densities reveals new features of cupula dynamics, for instance--a shift of the cupula to a new position of equilibrium that depends on the gravity vector and the parameters of head rotation, and the onset of cupula oscillations with multiple frequencies that results in the distortion of cupula dynamics relative to harmonic stimulation. Factors that might influence the density difference effects and the conditions under which these effects occur are discussed.

  9. Portable low-coherence interferometry for quantitatively imaging fast dynamics with extended field of view

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena

    2014-06-01

    We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.

  10. Dependence of intravoxel incoherent motion diffusion MR threshold b-value selection for separating perfusion and diffusion compartments and liver fibrosis diagnostic performance.

    PubMed

    Wáng, Yì Xiáng J; Li, Yáo T; Chevallier, Olivier; Huang, Hua; Leung, Jason Chi Shun; Chen, Weitian; Lu, Pu-Xuan

    2018-01-01

    Background Intravoxel incoherent motion (IVIM) tissue parameters depend on the threshold b-value. Purpose To explore how threshold b-value impacts PF ( f), D slow ( D), and D fast ( D*) values and their performance for liver fibrosis detection. Material and Methods Fifteen healthy volunteers and 33 hepatitis B patients were included. With a 1.5-T magnetic resonance (MR) scanner and respiration gating, IVIM data were acquired with ten b-values of 10, 20, 40, 60, 80, 100, 150, 200, 400, and 800 s/mm 2 . Signal measurement was performed on the right liver. Segmented-unconstrained analysis was used to compute IVIM parameters and six threshold b-values in the range of 40-200 s/mm 2 were compared. PF, D slow , and D fast values were placed along the x-axis, y-axis, and z-axis, and a plane was defined to separate volunteers from patients. Results Higher threshold b-values were associated with higher PF measurement; while lower threshold b-values led to higher D slow and D fast measurements. The dependence of PF, D slow , and D fast on threshold b-value differed between healthy livers and fibrotic livers; with the healthy livers showing a higher dependence. Threshold b-value = 60 s/mm 2 showed the largest mean distance between healthy liver datapoints vs. fibrotic liver datapoints, and a classification and regression tree showed that a combination of PF (PF < 9.5%), D slow (D slow  < 1.239 × 10 -3 mm 2 /s), and D fast (D fast  < 20.85 × 10 -3 mm 2 /s) differentiated healthy individuals and all individual fibrotic livers with an area under the curve of logistic regression (AUC) of 1. Conclusion For segmented-unconstrained analysis, the selection of threshold b-value = 60 s/mm 2 improves IVIM differentiation between healthy livers and fibrotic livers.

  11. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear

    DOE PAGES

    Sutherland, John C.

    2017-04-15

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonalmore » orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configuration. Approaches for measuring the dichroic increment ratio with modern dichrometers are further discussed.« less

  12. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.

    PubMed

    Sakota, Daisuke; Takatani, Setsuo

    2012-05-01

    Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.

  13. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, John C.

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonalmore » orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configuration. Approaches for measuring the dichroic increment ratio with modern dichrometers are further discussed.« less

  14. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear.

    PubMed

    Sutherland, John C

    2017-04-15

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonal orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configurations. Approaches for measuring the dichroic increment ratio with modern dichrometers are discussed. Copyright © 2017. Published by Elsevier Inc.

  15. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less

  16. Fabrication and Evaluation of One-Axis Oriented Lead Zirconate Titanate Films Using Metal-Oxide Nanosheet Interface Layer

    NASA Astrophysics Data System (ADS)

    Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi

    2013-09-01

    Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.

  17. A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue.

    PubMed

    Menzel, M; Michielsen, K; De Raedt, H; Reckfort, J; Amunts, K; Axer, M

    2015-10-06

    The neuroimaging technique three-dimensional polarized light imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve fibres—consisting of an axon and a surrounding myelin sheath—are uniaxial birefringent and that the measured optic axis is oriented in the direction of the nerve fibres (macroscopic model). Although experimental studies support this assumption, the molecular structure of the myelin sheath suggests that the birefringence of a nerve fibre can be described more precisely by multiple optic axes oriented radially around the fibre axis (microscopic model). In this paper, we compare the use of the macroscopic and the microscopic model for simulating 3D-PLI by means of the Jones matrix formalism. The simulations show that the macroscopic model ensures a reliable estimation of the fibre orientations as long as the polarimeter does not resolve structures smaller than the diameter of single fibres. In the case of fibre bundles, polarimeters with even higher resolutions can be used without losing reliability. When taking the myelin density into account, the derived fibre orientations are considerably improved. © 2015 The Author(s).

  18. Receptors signaling gravity orientation in an insect

    NASA Technical Reports Server (NTRS)

    Hartman, H. B.

    1982-01-01

    Displacement in any direction from primary orientation is found to evoke tonic activity from at least one of the four interneurons of a certain type of burrowing cockroach; the receptive field for each interneuron is slightly more than a quadrant. The receptive field of each interneuron is found to be the same as the row of receptors providing the input. Displacement about the least stable axis (0-180 deg) or roll, on the one hand, and the most stable axis (90-270 deg) or pitch, on the other, is found to be unambiguously signaled by pairs of interneurons. Indications are obtained that receptors in the lateral row drive a giant interneuron in a contralateral connective and those in the medial row drive one in an ipsilateral connective.

  19. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  20. Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Mehmed, Oral; Johnson, Dexter; Montague, Gerald; Duffy, Kirsten; Jansen, Ralph

    2005-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft. This rig is a more capable successor to a prior apparatus, denoted the Dynamic Spin Rig (DSR), that included a vertically oriented shaft with a mechanical thrust bearing at the upper end and a single actively controlled heteropolar radial magnetic bearing at the lower end.

  1. Bandgap tuning in highly c-axis oriented Zn1-xMgxO thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Parmod; Malik, Hitendra K.; Ghosh, Anima; Thangavel, R.; Asokan, K.

    2013-06-01

    We propose Mg doping in zinc oxide (ZnO) films for realizing wider optical bandgap in highly c-axis oriented Zn1-xMgxO (0 ≤ x ≤ 0.3) thin films. A remarkable enhancement of 25% in the bandgap by 30% Mg doping was achieved. The bandgap was tuned between 3.25 eV (ZnO) and 4.06 eV (Zn0.7Mg0.3O), which was further confirmed by density functional theory based wien2k simulation employing a combined generalized gradient approximation with scissor corrections. The change of stress and crystallite size in these films were found to be the causes for the observed blueshift in the bandgap.

  2. Electro-optical tunable birefringent filter

    DOEpatents

    Levinton, Fred M [Princeton, NJ

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  3. A design of optical measurement laboratory for space-based illumination condition emulation

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Zhao, Fei; Yang, Xin

    2015-10-01

    Space Objects Identification(SOI) and related technology have aroused wide attention from spacefaring nations due to the increasingly severe space environment. Multiple ground-based assets have been employed to acquire statistical survey data, detect faint debris, acquire photometric and spectroscopic data. Great efforts have been made to characterize different space objects using the statistical data acquired by telescopes. Furthermore, detailed laboratory data are needed to optimize the characterization of orbital debris and satellites via material composition and potential rotation axes, which calls for a high-precision and flexible optical measurement system. A typical method of taking optical measurements of a space object(or model) is to move light source and sensors through every possible orientation around it and keep the target still. However, moving equipments to accurate orientations in the air is difficult, especially for those large precise instruments sensitive to vibrations. Here, a rotation structure of "3+1" axes, with a three-axis turntable manipulating attitudes of the target and the sensor revolving around a single axis, is utilized to emulate every possible illumination condition in space, which can also avoid the inconvenience of moving large aparatus. Firstly, the source-target-sensor orientation of a real satellite was analyzed with vectors and coordinate systems built to illustrate their spatial relationship. By bending the Reference Coordinate Frame to the Phase Angle plane, the sensor only need to revolve around a single axis while the other three degrees of freedom(DOF) are associated with the Euler's angles of the satellite. Then according to practical engineering requirements, an integrated rotation system of four-axis structure is brought forward. Schemetic diagrams of the three-axis turntable and other equipments show an overview of the future laboratory layout. Finally, proposals on evironment arrangements, light source precautions and sensor selections are provided. Comparing to current methods, this design shows better effects on device simplication, automatic control and high-precision measurement.

  4. Changes in myosin S1 orientation and force induced by a temperature increase.

    PubMed

    Griffiths, Peter J; Bagni, Maria A; Colombini, Barbara; Amenitsch, Heinz; Bernstorff, Sigrid; Ashley, Christopher C; Cecchi, Giovanni; Ameritsch, Heinz

    2002-04-16

    Force generation in myosin-based motile systems is thought to result from an angular displacement of the myosin subfragment 1 (S1) tail domain with respect to the actin filament axis. In muscle, raised temperature increases the force generated by S1, implying a greater change in tail domain angular displacement. We used time-resolved x-ray diffraction to investigate the structural corollary of this force increase by measuring M3 meridional reflection intensity during sinusoidal length oscillations. This technique allows definition of S1 orientation with respect to the myofilament axis. M3 intensity changes were approximately sinusoid at low temperatures but became increasingly distorted as temperature was elevated, with the formation of a double intensity peak at maximum shortening. This increased distortion could be accounted for by assuming a shift in orientation of the tail domain of actin-bound S1 toward the orientation at which M3 intensity is maximal, which is consistent with a tail domain rotation model of force generation in which the tail approaches a more perpendicular projection from the thin filament axis at higher temperatures. In power stroke simulations, the angle between S1 tail mean position during oscillations and the position at maximum intensity decreased by 4.7 degrees, corresponding to a mean tail displacement toward the perpendicular of 0.73 nm for a temperature-induced force increase of 0.28 P(0) from 4 to 22 degrees C. Our findings suggest that at least 62% of crossbridge compliance is associated with the tail domain.

  5. Nanostructure and elastic modulus of single trabecula in bovine cancellous bone.

    PubMed

    Yamada, Satoshi; Tadano, Shigeru; Fukuda, Sakurako

    2014-11-07

    We aimed to investigate the elastic modulus of trabeculae using tensile tests and assess the effects of nanostructure at the hydroxyapatite (HAp) crystal scale on the elastic modulus. In the experiments, 18 trabeculae that were at least 3mm in length in the proximal epiphysis of three adult bovine femurs were used. Tensile tests were conducted using a small tensile testing device coupled with microscopy under air-dried condition. The c-axis orientation of HAp crystals and the degree of orientation were measured by X-ray diffraction. To observe the deformation behavior of HAp crystals under tensile loading, the same tensile tests were conducted in X-ray diffraction measurements. The mineral content of specimens was evaluated using energy dispersive X-ray spectrometry. The elastic modulus of a single trabecula varied from 4.5 to 23.6 GPa, and the average was 11.5 ± 5.0 GPa. The c-axis of HAp crystals was aligned with the trabecular axis and the crystals were lineally deformed under tensile loading. The ratio of the HAp crystal strain to the tissue strain (strain ratio) had a significant correlation with the elastic modulus (r=0.79; P<0.001). However, the mineral content and the degree of orientation did not vary widely and did not correlate with the elastic modulus in this study. It suggests that the strain ratio may represent the nanostructure of a single trabecula and would determine the elastic modulus as well as mineral content and orientation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Grating tuned unstable resonator laser cavity

    DOEpatents

    Johnson, Larry C.

    1982-01-01

    An unstable resonator to be used in high power, narrow line CO.sub.2 pump lasers comprises an array of four reflectors in a ring configuration wherein spherical and planar wavefronts are separated from each other along separate optical paths and only the planar wavefronts are impinged on a plane grating for line tuning. The reflector array comprises a concave mirror for reflecting incident spherical waves as plane waves along an output axis to form an output beam. A plane grating on the output axis is oriented to reflect a portion of the output beam off axis onto a planar relay mirror spaced apart from the output axis in proximity to the concave mirror. The relay mirror reflects plane waves from the grating to impinge on a convex expanding mirror spaced apart from the output axis in proximity to the grating. The expanding mirror reflects the incident planar waves as spherical waves to illuminate the concave mirror. Tuning is provided by rotating the plane grating about an axis normal to the output axis.

  7. Crustal Structure, Seismic Anisotropy and Deformations of the Ediacaran/Cambrian of the Małopolska Block in SE Poland Based on Data from Two Seismic Wide-Angle Experiments

    NASA Astrophysics Data System (ADS)

    Środa, Piotr

    2017-04-01

    The area of SE Poland represents a complex contact of tectonic units of different consolidation age—from the Precambrian East European Craton, through Palaeozoic West European Platform (including Małopolska Block) to Cenozoic Carpathians and Carpathian Foredeep. In order to investigate the anisotropic properties of the upper crust of the Małopolska Block and their relation to tectonic evolution of the area, two seismic datasets were used: seismic wide-angle off-line recordings from POLCRUST-01 deep seismic reflection profile and recordings from active deep seismic experiment CELEBRATION 2000. During acquisition of deep reflection seismic profile POLCRUST-01 in 2010, a 35-km-long line of 14 recorders (PA-14), oriented perpendicularly to the profile, was deployed to record the refractions from the upper crust (Pg) at wide range of azimuths. These data were used for an analysis of the azimuthal anisotropy of the MB with the modified delay-time inversion method. The results of modelling of the off-line refractions from the MB suggest 6% HTI anisotropy of the Cambrian/Ediacaran basement, with 130º azimuth of the fast velocity axis and mean Vp of 4.9 km/s. To compare this result with previous, independent information about anisotropy at larger depth, a subset of previously modelled data from CELEBRATION 2000 experiment, recorded in the MB area, was also analysed by inversion. The recordings of Pg phase at up to 120 km offsets were analysed using anisotropic delay-time inversion, providing information down to 12 km depth. The CELEBRATION 2000 model shows 9% HTI anisotropy with 126º orientation of the fast axis. Thus, local-scale anisotropy of this part of MB confirms the large-scale anisotropy suggested by previous studies based on data from a broader area and larger depth interval. The azimuthal anisotropy (i.e. HTI symmetry of the medium) is interpreted as a result of strong compressional deformation during the accretion of terranes to the EEC margin, leading to tight (sub-vertical) folding and fracturing of intrinsically anisotropic metasediments forming the MB basement. Obtained anisotropy models are compared with data about stratal dips of the MB sequences and implications of assuming more realistic TTI model are discussed. Wide-angle recordings from off-line measurements along a reflection profile provided new information about seismic velocity and anisotropy, not available from standard near-vertical profiling, and contributed to more complete image of the upper crustal structure of Małopolska Block.

  8. Controlling BaZrO3 nanostructure orientation in YBa2Cu3O{}_{7-\\delta } films for a three-dimensional pinning landscape

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.

    2015-12-01

    The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.

  9. Microgravity vestibular investigations: perception of self-orientation and self-motion

    NASA Technical Reports Server (NTRS)

    Benson, A. J.; Guedry, F. E.; Parker, D. E.; Reschke, M. F.

    1997-01-01

    Four astronauts experienced passive whole-body rotation in a number of test sessions during a 7-day orbital mission. Pitch (Y-axis) and roll (X-axis) rotation required subject orientations on the rotator in which the otolith system was at radius of 0.5 m. Thus subjects experienced a constant -0.22 Gz stimulus to the otoliths during the 60 s constant-velocity segments of "pitch" and "roll" ramp profiles. The Gz stimulus, a radius-dependent vector ranging from -0.22 Gz at the otoliths to +0.36 Gz at the feet, generated sensory information that was not interpreted as inversion in any of the 16 tests carried out in flight (12 in pitch and 4 in roll orientation). None of the subjects was rotated with head off-center during the first 33 h of the mission. In the state of orbital adaptation of these subjects, a -0.22 Gz otolith stimulus did not provide a vertical reference in the presence of a gradient of +Gz stimuli to the trunk and legs.

  10. Crystallization behavior of amorphous indium-gallium-zinc-oxide films and its effects on thin-film transistor performance

    NASA Astrophysics Data System (ADS)

    Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo

    2016-03-01

    Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.

  11. Local structure of human hair spatially resolved by sub-micron X-ray beam.

    PubMed

    Stanić, Vesna; Bettini, Jefferson; Montoro, Fabiano Emmanuel; Stein, Aaron; Evans-Lutterodt, Kenneth

    2015-11-30

    Human hair has three main regions, the medulla, the cortex, and the cuticle. An existing model for the cortex suggests that the α-keratin- based intermediate filaments (IFs) align with the hair's axis, but are orientationally disordered in-plane. We found that there is a new region in the cortex near the cuticle's boundary in which the IFs are aligned with the hair's axis, but additionally, they are orientationally ordered in-plane due to the presence of the cuticle/hair boundary. Further into the cortex, the IF arrangement becomes disordered, eventually losing all in-plane orientation. We also find that in the cuticle, a key diffraction feature is absent, indicating the presence of the β-keratin rather than that of the α-keratin phase. This is direct structural evidence that the cuticle contains β-keratin sheets. This work highlights the importance of using a sub-micron x-ray beam to unravel the structures of poorly ordered, multi-phase systems.

  12. On the role of the notochord in somite formation and the possible evolutionary significance of the concomitant cell re-orientation.

    PubMed

    Burgess, A M

    1983-06-01

    Homoplastic grafts of re-orientated unsegmented paraxial mesoderm transplanted from stage 20 Xenopus embryos into host embryos of the same age resulted in segmentation and the formation of somites in the same axis as if they had been left in situ. Because grafts transplanted with various orientations came under the stretching effect of the notochord in different directions but never the less maintained their original pattern and direction of segmentation, it would appear that the notochord has no effect on somite formation which thus emerges as an autonomous process independent of the elongation of the embryo. The re-alignment of cells which occurs as the somites are formed and which, in normal unimpeded development, results in the long axis of the cells lying parallel to that of the notochord, is considered in the light of the evolution of sinusoid locomotion and it is suggested that it may be the primary process with the formation of somite blocks as one of its consequences.

  13. Creep of plain weave polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the composites, was experimentally evaluated for time periods ranging from 1--120 hours under both loading conditions. The composite showed increase in creep with increase in temperature and stress. Creep of composite increased with increase in angle of loading, from 1% under on-axis loading to 31% under off-axis loading, within the tested time window. The experimental creep data for plain weave composites were superposed using TTSP (Time Temperature Superposition Principle) to obtain a master curve of experimental data extending to several years and was compared with model predictions to validate the model. The experimental and model results were found in good agreement within an error range of +/-1-3% under both loading conditions. A parametric study was also conducted to understand the effect of microstructure of plain weave composites on its on-axis and off-axis creep. Generation of knowledge in this area is also "first". Additionally, this thesis generated knowledge on time-dependent damage m woven composites and its effect on creep and tensile properties and their prediction.

  14. Gravitational orientation of the orbital complex, Salyut-6--Soyuz

    NASA Technical Reports Server (NTRS)

    Grecho, G. M.; Sarychev, V. A.; Legostayev, V. P.; Sazonov, V. V.; Gansvind, I. N.

    1983-01-01

    A simple mathematical model is proposed for the Salyut-6-Soyuz orbital complex motion with respect to the center of mass under the one-axis gravity-gradient orientation regime. This model was used for processing the measurements of the orbital complex motion parameters when the above orientation region was implemented. Some actual satellite motions are simulated and the satellite's aerodynamic parameters are determined. Estimates are obtained for the accuracy of measurements as well as that of the mathematical model.

  15. Electrospun Nanofiber Scaffolds with Gradations in Fiber Organization

    PubMed Central

    Khandalavala, Karl; Jiang, Jiang; Shuler, Franklin D.; Xie, Jingwei

    2015-01-01

    The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion. PMID:25938562

  16. Strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  17. A strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  18. Single-axle, double-axis solar tracker

    NASA Technical Reports Server (NTRS)

    Brantley, L. W.; Lawson, B. D.

    1979-01-01

    Solar concentrator tracking mechanism consisting of angular axle and two synchronized drive motors, follows seasonal as well as diurnal changes in earth's orientation with respect to incoming sunlight.

  19. OPTICAL TRANSCRIBING OSCILLOSCOPE

    DOEpatents

    Kerns, Q.A.

    1961-09-26

    A device is designed for producing accurate graphed waveforms of very fast electronic pulses. The fast pulse is slowly tracked on a cathode ray tube and a pair of photomultiplier tubes, exposed to the pulse trace, view separate vertical portions thereof at each side of a fixed horizontal reference. Each phototube produces an output signal indicative of vertical movement of the exposed trace, which simultaneous signals are compared in a difference amplifier. The amplifier produces a difference signal which, when applied to the cathode ray tube, maintains the trace on the reference. A graphic recorder receives the amplified difference signal at an x-axis input, while a y-axis input is synchronized with the tracking time of the cathode ray tube and therefore graphs the enlarged waveshape.

  20. Continued development and application of far-infrared detection techniques

    NASA Technical Reports Server (NTRS)

    Low, F. J.

    1974-01-01

    The development of a balloon gondola and pointing system are discussed which can be used with the low background far infrared telescope. Flight test progress of the new gondola is reported using a 3-axis system which would provide much greater capabilities. In this design both a polar and declination axis are use and are maintained in the proper orientation by a free handing (vertical) azimuth shaft.

  1. A novel method for defining the Greyhound talocrural joint axis of rotation for hinged transarticular external skeletal fixation.

    PubMed

    Colborne, G R; Hadley, N R; Wallace, A M

    2013-01-01

    In order to apply hinged transarticular external skeletal fixation for stabilization of the injured canine tarsal joint, knowledge of the three-dimensional (3D) location and orientation of the transverse axis is necessary. This method of immobilization may be used as a primary or adjunctive method of stabilisation for a large number of traumatic conditions. Using pin-mounted markers in the cadaveric Greyhound crus and talus, a closed-form solution of absolute orientation was used to identify, on radiographs, the lateral and medial locations of the transverse axis by tracking the 3D excursions of the markers during flexion and extension. A line was drawn across the dorsal aspect of the calcaneus from the most dorsal point on the distal articular surface(proximal intertarsal joint: PIJ) to the most dorsal point on its proximal articulation with the body of the talus, and the location of the centre of rotation was expressed in terms of the length of that line. In seven Greyhound tarsal joints, the medial end of the axis was located 73 ± 10% proximal to the PIJ and 11 ± 7% dorsal to the line. The lateral end was 73 ± 9% proximal tothe PIJ and -2 ± 3% plantar to the line.

  2. Learning dynamic control of body yaw orientation.

    PubMed

    Vimal, Vivekanand Pandey; Lackner, James R; DiZio, Paul

    2018-05-01

    To investigate the role of gravitational cues in the learning of a dynamic balancing task, we placed blindfolded subjects in a device programmed with inverted pendulum dynamics about the yaw axis. Subjects used a joystick to try and maintain a stable orientation at the direction of balance during 20 100 s-long trials. They pressed a trigger button on the joystick to indicate whenever they felt at the direction of balance. Three groups of ten subjects each participated. One group balanced with their body and the yaw axis vertical, and thus did not have gravitational cues to help them to determine their angular position. They showed minimal learning, inaccurate indications of the direction of balance, and a characteristic pattern of positional drifting away from the balance point. A second group balanced with the yaw axis pitched 45° from the gravitational vertical and had gravity relevant position cues. The third group balanced with their yaw axis horizontal where they had gravity-dependent cues about body position in yaw. Groups 2 and 3 showed better initial balancing performance and more learning across trials than Group 1. These results indicate that in the absence of vision, the integration of transient semicircular canal and somatosensory signals about angular acceleration is insufficient for determining angular position during dynamic balancing; direct position-dependent gravity cues are necessary.

  3. Orientation of Ordered Structures of Cytosine and Cytidine 5'-Monophosphate Adsorbed at Au(110)/Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Weightman, P.; Dolan, G. J.; Smith, C. I.; Cuquerella, M. C.; Almond, N. J.; Farrell, T.; Fernig, D. G.; Edwards, C.; Martin, D. S.

    2006-03-01

    It is demonstrated using reflection anisotropy spectroscopy that the adsorption of cytosine and cytidine 5'-monophosphate at the Au(110) 1×2/electrolyte interface gives rise to ordered structures in which the base is oriented vertical to the surface and parallel to the [11¯0] axis of the Au(110) plane.

  4. Seismic anisotropy of the Slave craton, NW Canada, from joint interpretation of SKS and Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Snyder, David; Bruneton, Marianne

    2007-04-01

    Teleseismic events recorded at a 25-element array in NW Canada between 2001 and 2006 provided sufficient distribution in back azimuth to demonstrate birefringence in SKS and SKKS waves as well as directional dependence of Rayleigh-wave phase velocities. Typical delays between orthogonally polarized SKS waves are 0.8-1.2 s, and modelling of azimuthal dependence indicates two nearly horizontal layers of anisotropy within the mantle. Anisotropy of Rayleigh waves is generally consistent with models of layered Vs anisotropies that increase with depth from 1 per cent at the Moho to 9 per cent at 200 km but vary between subarrays. Consistency between the SKS and Rayleigh wave anisotropies in one subarray suggests that the assumption of symmetry about a horizontal axis is valid there but is not fully valid in other parts of the craton. The upper layer of anisotropy occupies approximately the uppermost 120 km in which the fast polarization direction strikes generally north-south, coinciding with regional-scale fold axes mapped at the surface. The fast polarization direction of the deeper layer aligns with current North America plate motion, but its correlation with trends of coeval kimberlite eruptions within the Lac de Gras field suggests it can be at least partly attributed to structural preferred orientation of vertical dykes inferred to exist to depths of 200 km.

  5. Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.

    PubMed

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  6. Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite

    PubMed Central

    Checa, Antonio G.; Bonarski, Jan T.; Willinger, Marc G.; Faryna, Marek; Berent, Katarzyna; Kania, Bogusz; González-Segura, Alicia; Pina, Carlos M.; Pospiech, Jan; Morawiec, Adam

    2013-01-01

    The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy–electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research. PMID:23804442

  7. Structural and interfacial defects in c-axis oriented LiNbO3 thin films grown by pulsed laser deposition on Si using Al : ZnO conducting layer

    NASA Astrophysics Data System (ADS)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Highly c-axis oriented LiNbO3 films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO3 films under the optimized deposition condition. An extra peak at 905 cm-1 was observed in the Raman spectra of LiNbO3 film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO3 films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO3 single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO3 film and the Al : ZnO layer.

  8. Onion epidermis as a new model to study the control of growth anisotropy in higher plants.

    PubMed

    Suslov, Dmitry; Verbelen, Jean-Pierre; Vissenberg, Kris

    2009-01-01

    To elucidate the role of cellulose microfibrils in the control of growth anisotropy, a link between their net orientation, in vitro cell wall extensibility, and anisotropic cell expansion was studied during development of the adaxial epidermis of onion (Allium cepa) bulb scales using polarization confocal microscopy, creep tests, and light microscopy. During growth the net cellulose alignment across the whole thickness of the outer epidermal wall changed from transverse through random to longitudinal and back to transverse relative to the bulb axis. Cell wall extension in vitro was always higher transverse than parallel to the net cellulose alignment. The direction of growth anisotropy was perpendicular to the net microfibril orientation and changed during development from longitudinal to transverse to the bulb axis. The correlation between the degree of growth anisotropy and the net cellulose alignment was poor. Thus the net cellulose microfibril orientation across the whole thickness of the outer periclinal epidermis wall defines the direction but not the degree of growth anisotropy. Strips isolated from the epidermis in the directions perpendicular and transverse to a net cellulose orientation can be used as an extensiometric model to prove a protein involvement in the control of growth anisotropy.

  9. The Effect of Sn Orientation on Intermetallic Compound Growth in Idealized Sn-Cu-Ag Interconnects

    NASA Astrophysics Data System (ADS)

    Kinney, Chris; Linares, Xioranny; Lee, Kyu-Oh; Morris, J. W.

    2013-04-01

    The work reported here explores the influence of crystal orientation on the growth of the interfacial intermetallic layer during electromigration in Cu||Sn||Cu solder joints. The samples were thin, planar Sn-Ag-Cu (SAC) solder layers between Cu bars subject to a uniaxial current. Electron backscatter diffraction (EBSD) was used to characterize the microstructure before and after testing. The most useful representation of the EBSD data identifies the Sn grain orientation by the angle between the Sn c-axis and the current direction. The tested samples included single-crystal joints with c-axis nearly parallel to the current ("green" samples) and with c-axis perpendicular to the current ("red" samples). At current density of 104 A/cm2 (steady-state temperature of ~150°C), an intermetallic layer grew at an observable rate in the "green" samples, but not in the "red" ones. A current density of 1.15 × 104 A/cm2 (temperature ~160°C) led to measurable intermetallic growth in both samples. The growth fronts were nearly planar and the growth rates constant (after an initial incubation period); the growth rates in the "green" samples were about 10× those in the "red" samples. The Cu concentrations were constant within the joints, showing that the intermetallic growth is dominated by the electromigration flux. The measured growth rates and literature values for the diffusion of Cu in Sn were used to extract values for the effective charge, z *, that governs the electromigration of Cu. The calculated value of z * is significantly larger for current perpendicular to the c-axis than along it.

  10. The effects of electron cyclotron heating and current drive on toroidal Alfvén eigenmodes in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Garcia-Munoz, M.; Van Zeeland, M. A.; Bobkov, B.; Classen, I. G. J.; Ferreira, J.; Figueiredo, A.; Fitzgerald, M.; Galdon-Quiroga, J.; Gallart, D.; Geiger, B.; Gonzalez-Martin, J.; Johnson, T.; Lauber, P.; Mantsinen, M.; Nabais, F.; Nikolaeva, V.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Schneider, P. A.; Snicker, A.; Vallejos, P.; the AUG Team; the EUROfusion MST1 Team

    2018-01-01

    Dedicated studies performed for toroidal Alfvén eigenmodes (TAEs) in ASDEX-Upgrade (AUG) discharges with monotonic q-profiles have shown that electron cyclotron resonance heating (ECRH) can make TAEs more unstable. In these AUG discharges, energetic ions driving TAEs were obtained by ion cyclotron resonance heating (ICRH). It was found that off-axis ECRH facilitated TAE instability, with TAEs appearing and disappearing on timescales of a few milliseconds when the ECRH power was switched on and off. On-axis ECRH had a much weaker effect on TAEs, and in AUG discharges performed with co- and counter-current electron cyclotron current drive (ECCD), the effects of ECCD were found to be similar to those of ECRH. Fast ion distributions produced by ICRH were computed with the PION and SELFO codes. A significant increase in T e caused by ECRH applied off-axis is found to increase the fast ion slowing-down time and fast ion pressure causing a significant increase in the TAE drive by ICRH-accelerated ions. TAE stability calculations show that the rise in T e causes also an increase in TAE radiative damping and thermal ion Landau damping, but to a lesser extent than the fast ion drive. As a result of the competition between larger drive and damping effects caused by ECRH, TAEs become more unstable. It is concluded, that although ECRH effects on AE stability in present-day experiments may be quite significant, they are determined by the changes in the plasma profiles and are not particularly ECRH specific.

  11. Hayabusa2 mission target asteroid (162173) 1999 JU_3: Searching for the object's spin-axis orientation

    NASA Astrophysics Data System (ADS)

    Müller, T.; Durech, J.; Mueller, M.; Kiss, C.; Vilenius, E.; Ishiguro, M.

    2014-07-01

    The JAXA Hayabusa2 mission was approved in 2011 with launch planned for late 2014. Arriving at the asteroid (162173) 1999 JU_3 in 2018, it will survey it, land, and obtain surface material, then depart in late 2019, and return to the Earth in December 2020. We observed the near-Earth asteroid 1999 JU_3 with the Herschel Space Observatory in April 2012 at thermal far-infrared wavelengths, supported by several ground-based observations to obtain optical lightcurves. We re-analyzed previously published Subaru-COMICS observations and merged them with existing data sets from Akari-IRC and Spitzer-IRS. In addition, we used the object's near-IR flux increase from February to May 2013 as observed by Spitzer. The almost spherical shape and the insufficient quality of lightcurve observations forced us to combine radiometric techniques and lightcurve inversion in a new way to find the object's spin-axis orientation, its shape, and to improve the quality of the key physical and thermal parameters of 1999 JU_3. We will present our best pre-launch solution for this C-class asteroid, including the sense of rotation, the spin-axis orientation, the effective diameter, the geometric albedo, and thermal inertia. The finely constrained values for this asteroid serve as an important input for the preparation of this exciting mission.

  12. Perceptual Strategies of Pigeons to Detect a Rotational Centre—A Hint for Star Compass Learning?

    PubMed Central

    Helduser, Sascha; Mouritsen, Henrik; Güntürkün, Onur

    2015-01-01

    Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy. PMID:25807499

  13. An optimal thermal evaporation synthesis of c-axis oriented ZnO nanowires with excellent UV sensing and emission characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Tridib, E-mail: tridib.saha@monash.edu; Achath Mohanan, Ajay, E-mail: ajay.mohanan@monash.edu; Swamy, Varghese, E-mail: varghese.swamy@monash.edu

    Highlights: • c-Axis alignment of ZnO nanowires was optimized using self-seeding thermal evaporation method. • Influence of purified air on the morphology and optoelectronic properties were studied. • Nanowires grown under optimal conditions exhibit strong UV emission peak in PL spectrum. • Optimized growth condition establish nanowires of excellent UV sensing characteristics - Abstract: Well-aligned (c-axis oriented) ZnO nanowire arrays were successfully synthesized on Si (1 0 0) substrates through an optimized self-seeding thermal evaporation method. An open-ended chemical vapor deposition (CVD) setup was used in the experiment, with argon and purified air as reaction gases. Epitaxial growth of c-axismore » oriented ZnO nanowires was observed for 5 sccm flow rate of purified air, whereas Zn/Zn suboxide layers and multiple polycrystalline layers of ZnO were obtained for absence and excess of purified air, respectively. Ultraviolet (UV) sensing and emission properties of the as-grown ZnO nanostructures were investigated through the current–voltage (I–V) characteristics of the nanowires under UV (λ = 365 nm) illumination of 8 mW/cm{sup 2} and using photoluminescence spectra. Nanowires grown under optimum flow of air emitted four times higher intensity of 380 nm UV light as well as exhibited 34 times higher UV radiation sensitivity compared to that of other nanostructures synthesized in this study.« less

  14. A 3D view of magnetic stripes at Pito Deep: implications for the thermal history of fast-spreading lower oceanic crust

    NASA Astrophysics Data System (ADS)

    Maher, S. M.; Gee, J. S.; Doran, A. K.; Gess, M.; Cheadle, M. J.; Coogan, L. A.; Gillis, K. M.; John, B. E.

    2017-12-01

    There is no consensus on how the lower oceanic crust cools at fast-spreading centers and, correspondingly, how the isotherms change with depth. Sufficient heat extraction above the axial magma lens might result in shallowly dipping fossil isotherms off axis, while significant removal of heat laterally in the lower crust would be accompanied by steeper isotherms. These end-member models and additional intermediate models may be accompanied by distinctive geochemical, mineralogical, and textural changes, but the record of geomagnetic reversals can provide key complementary information on the thermal history of the lower oceanic crust. In particular, the location of a reversal boundary with depth over exposed sections of gabbroic rock should reveal the fossil pattern of cooling below 600°C. Tectonic exposures at Pito Deep reveal cross sections of two magnetic reversals recorded in gabbroic rock formed at the fast-spreading East Pacific Rise during chron C2A (3.58­-2.581 Ma). High quality magnetic anomaly data, using a new miniature total field sensor, were acquired on 11 Sentry dives centered over 2An.2n (3.22­-3.11 Ma) and another over the young end of 2An.3n (3.58­-3.33 Ma). The local bathymetry is complex, so we have constructed several forward models based on isotherms predicted by different end-member models to determine which best fits the magnetic anomaly data. Initial results are difficult to reconcile with models of deep crustal cooling and steep isotherms within a few km of the axis. Instead they favor a model in which gabbroic rocks cool over long time periods, resulting in a polarity offset between the gabbros and the overlying dikes and lavas extending for several km. This difference in polarity is supported by magnetization inversions, calculated for a series of horizontal laminae using the Occam inversion (Constable et al., 1987). Additional confirmation comes from the magnetic remanence of nearly 400 gabbroic samples (most partially or fully oriented) retrieved by Jason II. Preliminary thermal demagnetization results provide evidence of multiple magnetization components in many samples, generally consistent with the presence of isochron boundaries between normal and reverse polarities inferred from the anomaly data.

  15. FAST (Four chamber view And Swing Technique) Echo: a Novel and Simple Algorithm to Visualize Standard Fetal Echocardiographic Planes

    PubMed Central

    Yeo, Lami; Romero, Roberto; Jodicke, Cristiano; Oggè, Giovanna; Lee, Wesley; Kusanovic, Juan Pedro; Vaisbuch, Edi; Hassan, Sonia S.

    2010-01-01

    Objective To describe a novel and simple algorithm (FAST Echo: Four chamber view And Swing Technique) to visualize standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). Methods We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) “swings” through the ductal arch image (“swing technique”), providing an infinite number of cardiac planes in sequence. Each line generated the following plane(s): 1) Line 1: three-vessels and trachea view; 2) Line 2: five-chamber view and long axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); 3) Line 3: four-chamber view; and 4) “Swing” line: three-vessels and trachea view, five-chamber view and/or long axis view of the aorta, four-chamber view, and stomach. The algorithm was then tested in 50 normal hearts (15.3 – 40 weeks of gestation) and visualization rates for cardiac diagnostic planes were calculated. To determine if the algorithm could identify planes that departed from the normal images, we tested the algorithm in 5 cases with proven congenital heart defects. Results In normal cases, the FAST Echo algorithm (3 locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long axis view of the aorta, four-chamber view): 1) individually in 100% of cases [except for the three-vessel and trachea view, which was seen in 98% (49/50)]; and 2) simultaneously in 98% (49/50). The “swing technique” was able to generate the three-vessels and trachea view, five-chamber view and/or long axis view of the aorta, four-chamber view, and stomach in 100% of normal cases. In the abnormal cases, the FAST Echo algorithm demonstrated the cardiac defects and displayed views that deviated from what was expected from the examination of normal hearts. The “swing technique” was useful in demonstrating the specific diagnosis due to visualization of an infinite number of cardiac planes in sequence. Conclusions This novel and simple algorithm can be used to visualize standard fetal echocardiographic planes in normal fetal hearts. The FAST Echo algorithm may simplify examination of the fetal heart and could reduce operator dependency. Using this algorithm, the inability to obtain expected views or the appearance of abnormal views in the generated planes should raise the index of suspicion for congenital heart disease. PMID:20878671

  16. Four-chamber view and 'swing technique' (FAST) echo: a novel and simple algorithm to visualize standard fetal echocardiographic planes.

    PubMed

    Yeo, L; Romero, R; Jodicke, C; Oggè, G; Lee, W; Kusanovic, J P; Vaisbuch, E; Hassan, S

    2011-04-01

    To describe a novel and simple algorithm (four-chamber view and 'swing technique' (FAST) echo) for visualization of standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) 'swings' through the ductal arch image (swing technique), providing an infinite number of cardiac planes in sequence. Each line generates the following plane(s): (a) Line 1: three-vessels and trachea view; (b) Line 2: five-chamber view and long-axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); (c) Line 3: four-chamber view; and (d) 'swing line': three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach. The algorithm was then tested in 50 normal hearts in fetuses at 15.3-40 weeks' gestation and visualization rates for cardiac diagnostic planes were calculated. To determine whether the algorithm could identify planes that departed from the normal images, we tested the algorithm in five cases with proven congenital heart defects. In normal cases, the FAST echo algorithm (three locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long-axis view of the aorta, four-chamber view) individually in 100% of cases (except for the three-vessels and trachea view, which was seen in 98% (49/50)) and simultaneously in 98% (49/50). The swing technique was able to generate the three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach in 100% of normal cases. In the abnormal cases, the FAST echo algorithm demonstrated the cardiac defects and displayed views that deviated from what was expected from the examination of normal hearts. The swing technique was useful for demonstrating the specific diagnosis due to visualization of an infinite number of cardiac planes in sequence. This novel and simple algorithm can be used to visualize standard fetal echocardiographic planes in normal fetal hearts. The FAST echo algorithm may simplify examination of the fetal heart and could reduce operator dependency. Using this algorithm, inability to obtain expected views or the appearance of abnormal views in the generated planes should raise the index of suspicion for congenital heart disease. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  17. Comparative study of bowtie and patient scatter in diagnostic CT

    NASA Astrophysics Data System (ADS)

    Prakash, Prakhar; Boudry, John M.

    2017-03-01

    A fast, GPU accelerated Monte Carlo engine for simulating relevant photon interaction processes over the diagnostic energy range in third-generation CT systems was developed to study the relative contributions of bowtie and object scatter to the total scatter reaching an imaging detector. Primary and scattered projections for an elliptical water phantom (major axis set to 300mm) with muscle and fat inserts were simulated for a typical diagnostic CT system as a function of anti-scatter grid (ASG) configurations. The ASG design space explored grid orientation, i.e. septa either a) parallel or b) parallel and perpendicular to the axis of rotation, as well as septa height. The septa material was Tungsten. The resulting projections were reconstructed and the scatter induced image degradation was quantified using common CT image metrics (such as Hounsfield Unit (HU) inaccuracy and loss in contrast), along with a qualitative review of image artifacts. Results indicate object scatter dominates total scatter in the detector channels under the shadow of the imaged object with the bowtie scatter fraction progressively increasing towards the edges of the object projection. Object scatter was shown to be the driving factor behind HU inaccuracy and contrast reduction in the simulated images while shading artifacts and elevated loss in HU accuracy at the object boundary were largely attributed to bowtie scatter. Because the impact of bowtie scatter could not be sufficiently mitigated with a large grid ratio ASG, algorithmic correction may be necessary to further mitigate these artifacts.

  18. Influence of gravity on the orientation of vestibular induced quick phases.

    PubMed

    Pettorossi, V E; Errico, P; Ferraresi, A; Draicchio, F

    1995-01-01

    In rabbits and cats the orientation of the quick phases (QPs) of the vestibulo-ocular reflex (VOR) was studied varying the head position in space. At different head tilt positions, QPs induced by step vestibular stimulation disaligned with respect to the stimulus toward the orientation of the earth's horizontal axis. The rabbits' QPs were horizontal during yaw stimulation and remained horizontal in a range of head pitch of +/- 90 degrees (reorientation gain = 1). Therefore, the slow compensatory responses (CSPs) progressively disaligned compared with the QPs. QPs induced by roll stimulation also showed horizontal orientation, although these were rare in the upright position and occurred more frequently when the head was pitched. In cats only the yaw-induced QPs were coplanar with the stimulus, while QPs induced by pitching were mostly oblique. It followed that in either yawing or pitching, the QPs had their end point scattered within a horizontally elongated area of the visual field. When tilting cats in the frontal plane, the orientation of QP trajectories changed with respect to the stimulus so that the end point distribution tended to remain aligned toward the horizontal instead of being fixed in the orbit. The reorientation gain decreased from 1 to 0.5 by increasing the head tilt. On the basis of difference regarding eye implantation and motility it was suggested that the effect of gravity on the orientation of QPs could be aimed at maintaining the interocular axis aligned with the horizon in the rabbit and at orientating the visual scanning system in the horizontal plane in the cat.

  19. Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions.

    PubMed

    Parr, W C H; Chatterjee, H J; Soligo, C

    2012-04-05

    Orientation of the subtalar joint axis dictates inversion and eversion movements of the foot and has been the focus of evolutionary and clinical studies for a number of years. Previous studies have measured the subtalar joint axis against the axis of the whole foot, the talocrural joint axis and, recently, the principal axes of the talus. The present study introduces a new method for estimating average joint axes from 3D reconstructions of bones and applies the method to the talus to calculate the subtalar and talocrural joint axes. The study also assesses the validity of the principal axes as a reference coordinate system against which to measure the subtalar joint axis. In order to define the angle of the subtalar joint axis relative to that of another axis in the talus, we suggest measuring the subtalar joint axis against the talocrural joint axis. We present corresponding 3D vector angles calculated from a modern human skeletal sample. This method is applicable to virtual 3D models acquired through surface-scanning of disarticulated 'dry' osteological samples, as well as to 3D models created from CT or MRI scans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Magnetic Compass Orientation in the European Eel

    PubMed Central

    Durif, Caroline M. F.; Browman, Howard I.; Phillips, John B.; Skiftesvik, Anne Berit; Vøllestad, L. Asbjørn; Stockhausen, Hans H.

    2013-01-01

    European eel migrate from freshwater or coastal habitats throughout Europe to their spawning grounds in the Sargasso Sea. However, their route (∼ 6000 km) and orientation mechanisms are unknown. Several attempts have been made to prove the existence of magnetoreception in Anguilla sp., but none of these studies have demonstrated magnetic compass orientation in earth-strength magnetic field intensities. We tested eels in four altered magnetic field conditions where magnetic North was set at geographic North, South, East, or West. Eels oriented in a manner that was related to the tank in which they were housed before the test. At lower temperature (under 12°C), their orientation relative to magnetic North corresponded to the direction of their displacement from the holding tank. At higher temperatures (12–17°C), eels showed bimodal orientation along an axis perpendicular to the axis of their displacement. These temperature-related shifts in orientation may be linked to the changes in behavior that occur between the warm season (during which eels are foraging) and the colder fall and winter (during which eels undertake their migrations). These observations support the conclusion that 1. eels have a magnetic compass, and 2. they use this sense to orient in a direction that they have registered moments before they are displaced. The adaptive advantage of having a magnetic compass and learning the direction in which they have been displaced becomes clear when set in the context of the eel’s seaward migration. For example, if their migration is halted or blocked, as it is the case when environmental conditions become unfavorable or when they encounter a barrier, eels would be able to resume their movements along their old bearing when conditions become favorable again or when they pass by the barrier. PMID:23554997

  1. Magnetic compass orientation in the European eel.

    PubMed

    Durif, Caroline M F; Browman, Howard I; Phillips, John B; Skiftesvik, Anne Berit; Vøllestad, L Asbjørn; Stockhausen, Hans H

    2013-01-01

    European eel migrate from freshwater or coastal habitats throughout Europe to their spawning grounds in the Sargasso Sea. However, their route (~ 6000 km) and orientation mechanisms are unknown. Several attempts have been made to prove the existence of magnetoreception in Anguilla sp., but none of these studies have demonstrated magnetic compass orientation in earth-strength magnetic field intensities. We tested eels in four altered magnetic field conditions where magnetic North was set at geographic North, South, East, or West. Eels oriented in a manner that was related to the tank in which they were housed before the test. At lower temperature (under 12°C), their orientation relative to magnetic North corresponded to the direction of their displacement from the holding tank. At higher temperatures (12-17°C), eels showed bimodal orientation along an axis perpendicular to the axis of their displacement. These temperature-related shifts in orientation may be linked to the changes in behavior that occur between the warm season (during which eels are foraging) and the colder fall and winter (during which eels undertake their migrations). These observations support the conclusion that 1. eels have a magnetic compass, and 2. they use this sense to orient in a direction that they have registered moments before they are displaced. The adaptive advantage of having a magnetic compass and learning the direction in which they have been displaced becomes clear when set in the context of the eel's seaward migration. For example, if their migration is halted or blocked, as it is the case when environmental conditions become unfavorable or when they encounter a barrier, eels would be able to resume their movements along their old bearing when conditions become favorable again or when they pass by the barrier.

  2. A new method to evaluate the quality of single crystal Cu by an X-ray diffraction butterfly pattern method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Zhenming; Guo Zhenqi; Li Jianguo

    2004-12-15

    A new method for the evaluation of the quality of an Ohno continuous cast (OCC) Cu single crystal by X-ray diffraction (XRD) butterfly pattern was brought forward. Experimental results show that the growth direction of single crystal Cu is inclined from both sides of the single crystal Cu rod to the axis and is axially symmetric. The degree of deviation from the [100] orientation from the crystal axis is less than 5 deg. with a casting speed 10-40 mm/min. The orientation of single crystal Cu does not have a fixed direction but is in a regular range. Moreover, the orientationmore » of stray grains in the single crystal Cu is random from continuous casting.« less

  3. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  4. MovAid- a novel device for advanced rehabilitation monitoring.

    PubMed

    Gupta, Prashant; Verma, Piyush; Gupta, Rakesh; Verma, Bhawna

    2015-08-01

    The present article introduces a new device "MovAid" which helps to measure and monitor rehabilitation. It has two main components- "MovAid device" and the "MovAid Smart Phone Application". The device connects wirelessly to the MovAid smart phone application via Bluetooth. It has electronic sensors to measure three important parameters of the patient- Angle of Joint Bent, Lift from the ground and Orientation of the limb. A mono-axis flex sensor to measure the degree of joint bent and a 3-axis accelerometer and gyroscope to measure the orientation of the limb and lift from the ground have been used. MovAid system bridges the gap between caretakers and patients, empowering both in ways never thought of before, by providing detailed and accurate data on every move.

  5. A Structural Model for the Single-Stranded DNA Genome of Filamentous Bacteriophage Pf1†

    PubMed Central

    Tsuboi, Masamichi; Tsunoda, Masaru; Overman, Stacy A.; Benevides, James M.; Thomas, George J.

    2010-01-01

    The filamentous bacteriophage Pf1, which infects strain PAK of Pseudomonas aeruginosa, is a flexible filament (~2000 × 6.5 nm) consisting of a covalently closed DNA loop of 7349 nucleotides sheathed by 7350 copies of a 46-residue α-helical subunit. The subunit α-helices, which are inclined at a small average angle (~16°) from the virion axis, are arranged compactly around the DNA core. Orientations of the Pf1 DNA nucleotides with respect to the filament axis are not known. In this work we report and interpret the polarized Raman spectra of oriented Pf1 filaments. We demonstrate that the polarizations of DNA Raman band intensities establish that the nucleotide bases of packaged Pf1 DNA are well ordered within the virion and that the base planes are positioned close to parallel to the filament axis. The present results are combined with a previously proposed projection of the intraviral path of Pf1 DNA (1) to develop a novel molecular model for the Pf1 assembly. PMID:20078135

  6. Satellite single-axis attitude determination based on Automatic Dependent Surveillance - Broadcast signals

    NASA Astrophysics Data System (ADS)

    Zhou, Kaixing; Sun, Xiucong; Huang, Hai; Wang, Xinsheng; Ren, Guangwei

    2017-10-01

    The space-based Automatic Dependent Surveillance - Broadcast (ADS-B) is a new technology for air traffic management. The satellite equipped with spaceborne ADS-B system receives the broadcast signals from aircraft and transfers the message to ground stations, so as to extend the coverage area of terrestrial-based ADS-B. In this work, a novel satellite single-axis attitude determination solution based on the ADS-B receiving system is proposed. This solution utilizes the signal-to-noise ratio (SNR) measurement of the broadcast signals from aircraft to determine the boresight orientation of the ADS-B receiving antenna fixed on the satellite. The basic principle of this solution is described. The feasibility study of this new attitude determination solution is implemented, including the link budget and the access analysis. On this basis, the nonlinear least squares estimation based on the Levenberg-Marquardt method is applied to estimate the single-axis orientation. A full digital simulation has been carried out to verify the effectiveness and performance of this solution. Finally, the corresponding results are processed and presented minutely.

  7. Metal-insulator transition of valence-controlled VO2 thin film prepared by RF magnetron sputtering using oxygen radical

    NASA Astrophysics Data System (ADS)

    Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.

  8. A multidimensional model of the effect of gravity on the spatial orientation of the monkey

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Young, L. R.; Oman, C. M.; Shelhamer, M. J.

    1993-01-01

    A "sensory conflict" model of spatial orientation was developed. This mathematical model was based on concepts derived from observer theory, optimal observer theory, and the mathematical properties of coordinate rotations. The primary hypothesis is that the central nervous system of the squirrel monkey incorporates information about body dynamics and sensory dynamics to develop an internal model. The output of this central model (expected sensory afference) is compared to the actual sensory afference, with the difference defined as "sensory conflict." The sensory conflict information is, in turn, used to drive central estimates of angular velocity ("velocity storage"), gravity ("gravity storage"), and linear acceleration ("acceleration storage") toward more accurate values. The model successfully predicts "velocity storage" during rotation about an earth-vertical axis. The model also successfully predicts that the time constant of the horizontal vestibulo-ocular reflex is reduced and that the axis of eye rotation shifts toward alignment with gravity following postrotatory tilt. Finally, the model predicts the bias, modulation, and decay components that have been observed during off-vertical axis rotations (OVAR).

  9. Heat transfer in rotating serpentine passages with selected model orientation for smooth or skewed trip walls

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.

    1993-01-01

    Experiments were conducted to determine the effects of model orientation as well as buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. Turbine blades have internal coolant passage surfaces at the leading and trailing edges of the airfoil with surfaces at angles which are as large as +/- 50 to 60 degrees to the axis of rotation. Most of the previously-presented, multiple-passage, rotating heat transfer experiments have focused on radial passages aligned with the axis of rotation. Results from serpentine passages with orientations 0 and 45 degrees to the axis of rotation which simulate the coolant passages for the mid chord and trailing edge regions of the rotating airfoil are compared. The experiments were conducted with rotation in both directions to simulate serpentine coolant passages with the rearward flow of coolant or with the forward flow of coolant. The experiments were conducted for passages with smooth surfaces and with 45 degree trips adjacent to airfoil surfaces for the radial portion of the serpentine passages. At a typical flow condition, the heat transfer on the leading surfaces for flow outward in the first passage with smooth walls was twice as much for the model at 45 degrees compared to the model at 0 degrees. However, the differences for the other passages and with trips were less. In addition, the effects of buoyancy and Coriolis forces on heat transfer in the rotating passage were decreased with the model at 45 degrees, compared to the results at 0 degrees. The heat transfer in the turn regions and immediately downstream of the turns in the second passage with flow inward and in the third passage with flow outward was also a function of model orientation with differences as large as 40 to 50 percent occurring between the model orientations with forward flow and rearward flow of coolant.

  10. Mechanical signals in plant development: a new method for single cell studies

    NASA Technical Reports Server (NTRS)

    Lynch, T. M.; Lintilhac, P. M.

    1997-01-01

    Cell division, which is critical to plant development and morphology, requires the orchestration of hundreds of intracellular processes. In the end, however, cells must make critical decisions, based on a discrete set of mechanical signals such as stress, strain, and shear, to divide in such a way that they will survive the mechanical loads generated by turgor pressure and cell enlargement within the growing tissues. Here we report on a method whereby tobacco protoplasts swirled into a 1.5% agarose entrapment medium will survive and divide. The application of a controlled mechanical load to agarose blocks containing protoplasts orients the primary division plane of the embedded cells. Photoelastic analysis of the agarose entrapment medium can identify the lines of principal stress within the agarose, confirming the hypothesis that cells divide either parallel or perpendicular to the principal stress tensors. The coincidence between the orientation of the new division wall and the orientation of the principal stress tensors suggests that the perception of mechanical stress is a characteristic of individual plant cells. The ability of a cell to determine a shear-free orientation for a new partition wall may be related to the applied load through the deformation of the matrix material. In an isotropic matrix a uniaxial load will produce a rotationally symmetric strain field, which will define a shear-free plane. Where high stress intensities combine with the loading geometry to produce multiaxial loads there will be no axis of rotational symmetry and hence no shear free plane. This suggests that two mechanisms may be orienting the division plane, one a mechanism that works in rotationally symmetrical fields, yielding divisions perpendicular to the compressive tensor, parallel to the long axis of the cell, and one in asymmetric fields, yielding divisions parallel to the short axis of the cell and the compressive tensor.

  11. Controlled crystal growth of layered-perovskite thin films as an approach to study their basic properties

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki; Funakubo, Hiroshi

    2006-09-01

    This article describes the current progress in thin bismuth layer-structured ferroelectric films (BLSFs) including SrBi2Ta2O9 and (Bi,La)4Ti3O12, particularly those developed in the last ten years. BLSF thin films can be applied to ferroelectric random access memories because of their durable fatigue-free properties and lead-free composition. We will briefly introduce epitaxial thin films grown on a variety of substrates. Because of the difficulty in growing single crystals of sufficient size to characterize the ferroelectric behavior in specific crystal growth directions, we will characterize epitaxially grown thin films to obtain basic information about the anisotropic switching behavior, which is important for evaluating the performance of emerging materials. We will then discuss the fiber-textured growth on the (111)Pt-covered Si substrates of SrBi2Ta2O9 and Bi4Ti3O12 thin films. Because we expect that the spread crystal orientation will affect the bit-to-bit errors, we believe that the fiber-textured growth and the characterization technique for the deposited film orientation are interesting from a practical standpoint. Another specific challenge of thin film growth is the growth of a-axis-(polar axis)-oriented films. a-/b-axis-oriented films are characterized both crystallographically and by electric hysteresis loop. The hysteresis performance was in accordance with the volume fraction of the a /b domains; however, no evidence for 90° switching of the b domain by an external electric field was obtained. The control of film orientation also allows systematic studies on the effects of a structural modification and relation between spontaneous polarization and Curie temperature, examples of which are given in this paper. After a short description of the piezoelectric properties, we will conclude with a summary and the future prospects of BLSF thin films for research and applications.

  12. The effect of size, orientation and alloying on the deformation of AZ31 nanopillars

    NASA Astrophysics Data System (ADS)

    Aitken, Zachary H.; Fan, Haidong; El-Awady, Jaafar A.; Greer, Julia R.

    2015-03-01

    We conducted uniaxial compression of single crystalline Mg alloy, AZ31 (Al 3 wt% and Zn 1 wt%) nanopillars with diameters between 300 and 5000 nm with two distinct crystallographic orientations: (1) along the [0001] c-axis and (2) at an acute angle away from the c-axis, nominally oriented for basal slip. We observe single slip deformation for sub-micron samples nominally oriented for basal slip with the deformation commencing via a single set of parallel shear offsets. Samples compressed along the c-axis display an increase in yield strength compared to basal samples as well as significant hardening with the deformation being mostly homogeneous. We find that the "smaller is stronger" size effect in single crystals dominates any improvement in strength that may have arisen from solid solution strengthening. We employ 3D-discrete dislocation dynamics (DDD) to simulate compression along the [0001] and [ 11 2 bar 2 ] directions to elucidate the mechanisms of slip and evolution of dislocation microstructure. These simulations show qualitatively similar stress-strain signatures to the experimentally obtained stress-strain data. Simulations of compression parallel to the [ 11 2 bar 2 ] direction reveal the activation and motion of only -type dislocations and virtually no dislocation junction formation. Computations of compression along [0001] show the activation and motion of both and dislocations along with a significant increase in the formation of junctions corresponding to the interaction of intersecting pyramidal planes. Both experiments and simulation show a size effect, with a differing exponent for basal and pyramidal slip. We postulate that this anisotropy in size effect is a result of the underlying anisotropic material properties only. We discuss these findings in the context of the effective resolved shear stress relative to the unit Burgers vector for each type of slip, which reveal that the mechanism that governs size effect in this Mg-alloy is equivalent in both orientations.

  13. Ultrafast shock-induced orientation of polycrystalline films: Applications to high explosives

    NASA Astrophysics Data System (ADS)

    Franken, Jens; Hambir, Selezion A.; Dlott, Dana D.

    1999-02-01

    Tiny laser-driven shock waves of ˜5 GPa pressure (nanoshocks) are used to study fast mechanical processes occurring in a thin layer of polycrystalline insensitive energetic material, (3-nitro-1,2,4-triazol-5-one) (NTO). Ultrafast coherent Raman spectroscopy of shocked NTO shows the existence of three distinct mechanical processes. Very fast (˜600 ps) changes in intensity and the appearance of new transitions are associated with the uniaxial nature of compression by the shock front. Frequency shifting and broadening processes which track the ˜2 ns duration nanoshock are associated with transient changes in density and temperature. A novel slower process (5-10 ns) starts as the shock begins to unload, and continues for several nanoseconds after the shock is over, resulting in changes of widths and intensities of several vibrational transitions. By comparing ultrafast spectra to static Raman spectra of single NTO crystals in various orientations, it is concluded that this process involves shock-induced partial orientation of the crystals in the NTO layer. The NTO crystals are oriented faster than the time scale for initiating chemical reactions. The sensitivity of explosive crystals to shock initiation may depend dramatically on the orientation of the crystal relative to the direction of shock propagation, so the implications of fast shock-induced orientation for energetic materials initiation are discussed briefly.

  14. In Situ Characterization of Twin Nucleation in Pure Ti Using 3D-XRD

    NASA Astrophysics Data System (ADS)

    Bieler, Thomas R.; Wang, Leyun; Beaudoin, Armand J.; Kenesei, Peter; Lienert, Ulrich

    2014-01-01

    A small tensile specimen of grade 1 commercially pure titanium was deformed to a few percent strain with concurrent synchrotron X-ray diffraction measurements to identify subsurface {102} twin nucleation events. This sample was from the same piece of material in which a prior study showed that twin nucleation stimulated by slip transfer across a grain boundary accounted for many instances of twin nucleation. The sample had a strong c-axis texture of about eight times random aligned with the tensile axis. After 1.5 pct tensile strain, three twin nucleation events were observed in grains where the c-axis was nearly parallel to the tensile direction. Far-field 3-D X-ray diffraction data were analyzed to obtain the positional center of mass, the average lattice strain, and stress tensors in each grain and twin. In one case where the parent grain was mostly surrounded by hard grain orientations, the twin system with the highest resolved shear stress (RSS) among the six {102} twin variants was activated and the stress in the parent grain decreased after twin nucleation. In two other parent grains with a majority of softer neighboring grain orientations, the observed twins did not occur on the twin system with the highest RSS. Their nucleation could be geometrically attributed to slip transfer from neighboring grains with geometrically favorable basal slip systems, and the stress in the parent grain increased after twin nucleation. In all three twin events, the stress in the twin was 10 to 30 pct lower than the stress in the parent grain, indicating load partitioning between the hard-oriented parent grain and the soft-oriented twin.

  15. Modes of uncontrolled rotational motion of the Progress M-29M spacecraft

    NASA Astrophysics Data System (ADS)

    Belyaev, M. Yu.; Matveeva, T. V.; Monakhov, M. I.; Rulev, D. N.; Sazonov, V. V.

    2018-01-01

    We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3-7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft's angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft's motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth-Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1-0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.

  16. Magneto-crystalline anisotropy of NdFe0.9Mn0.1O3 single crystal

    NASA Astrophysics Data System (ADS)

    Mihalik, Marián; Mihalik, Matúš; Zentková, Mária; Uhlířová, Klára; Kratochvílová, Marie; Roupcová, Pavla

    2018-05-01

    Our present study on oriented single crystal revealed huge magneto-crystalline anisotropy with respect to principal crystallographic axes, even several magnetic transitions were observed below TN = 748 K (c-axis) at 700 K (a-axis) as well 657 K (b-axis). The spin reorientation of magnetic moment takes place in very narrow temperature range between 135 K and 125 K and is attributed to vanishing of ferromagnetic component aligned along b-axis. Measurements of magnetic isotherms trace the development of ferromagnetic component and revealed the intermediate temperature range between 120 K and 20 K which is characterised by zero ferromagnetic components in any principal crystal direction. The ferromagnetic component develops consecutive at low temperature below 20 K along a-axis. Our study indicates completely different magnetic structure of NdFe0.9Mn0.1O3 below 135 K in comparison with NdFeO3.

  17. Tactile Cueing as a Gravitational Substitute for Spatial Navigation During Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Montgomery, K. L.; Beaton, K. H.; Barba, J. M.; Cackler, J. M.; Son, J. H.; Horsfield, S. P.; Wood, S. J.

    2010-01-01

    INTRODUCTION: Spatial navigation requires an accurate awareness of orientation in your environment. The purpose of this experiment was to examine how spatial awareness was impaired with changing gravitational cues during parabolic flight, and the extent to which vibrotactile feedback of orientation could be used to help improve performance. METHODS: Six subjects were restrained in a chair tilted relative to the plane floor, and placed at random positions during the start of the microgravity phase. Subjects reported their orientation using verbal reports, and used a hand-held controller to point to a desired target location presented using a virtual reality video mask. This task was repeated with and without constant tactile cueing of "down" direction using a belt of 8 tactors placed around the mid-torso. Control measures were obtained during ground testing using both upright and tilted conditions. RESULTS: Perceptual estimates of orientation and pointing accuracy were impaired during microgravity or during rotation about an upright axis in 1g. The amount of error was proportional to the amount of chair displacement. Perceptual errors were reduced during movement about a tilted axis on earth. CONCLUSIONS: Reduced perceptual errors during tilts in 1g indicate the importance of otolith and somatosensory cues for maintaining spatial awareness. Tactile cueing may improve navigation in operational environments or clinical populations, providing a non-visual non-auditory feedback of orientation or desired direction heading.

  18. Fabric analysis of quartzites with negative magnetic susceptibility - Does AMS provide information of SPO or CPO of quartz?

    NASA Astrophysics Data System (ADS)

    Renjith, A. R.; Mamtani, Manish A.; Urai, Janos L.

    2016-01-01

    We ask the question whether petrofabric data from anisotropy of magnetic susceptibility (AMS) analysis of deformed quartzites gives information about shape preferred orientation (SPO) or crystallographic preferred orientation (CPO) of quartz. Since quartz is diamagnetic and has a negative magnetic susceptibility, 11 samples of nearly pure quartzites with a negative magnetic susceptibility were chosen for this study. After performing AMS analysis, electron backscatter diffraction (EBSD) analysis was done in thin sections prepared parallel to the K1K3 plane of the AMS ellipsoid. Results show that in all the samples quartz SPO is sub-parallel to the orientation of the magnetic foliation. However, in most samples no clear correspondance is observed between quartz CPO and K1 (magnetic lineation) direction. This is contrary to the parallelism observed between K1 direction and orientation of quartz c-axis in the case of undeformed single quartz crystal. Pole figures of quartz indicate that quartz c-axis tends to be parallel to K1 direction only in the case where intracrystalline deformation of quartz is accommodated by prism slip. It is therefore established that AMS investigation of quartz from deformed rocks gives information of SPO. Thus, it is concluded that petrofabric information of quartzite obtained from AMS is a manifestation of its shape anisotropy and not crystallographic preferred orientation.

  19. Bifunctional Rhodamine Probes of Myosin Regulatory Light Chain Orientation in Relaxed Skeletal Muscle Fibers

    PubMed Central

    Brack, Andrew S.; Brandmeier, Birgit D.; Ferguson, Roisean E.; Criddle, Susan; Dale, Robert E.; Irving, Malcolm

    2004-01-01

    The orientation of the regulatory light chain (RLC) region of the myosin heads in relaxed skinned fibers from rabbit psoas muscle was investigated by polarized fluorescence from bifunctional rhodamine (BR) probes cross-linking pairs of cysteine residues introduced into the RLC. Pure 1:1 BR-RLC complexes were exchanged into single muscle fibers in EDTA rigor solution for 30 min at 30°C; ∼60% of the native RLC was removed and stoichiometrically replaced by BR-RLC, and >85% of the BR-RLC was located in the sarcomeric A-bands. The second- and fourth-rank order parameters of the orientation distributions of BR dipoles linking RLC cysteine pairs 100-108, 100-113, 108-113, and 104-115 were calculated from polarized fluorescence intensities, and used to determine the smoothest RLC orientation distribution—the maximum entropy distribution—consistent with the polarized fluorescence data. Maximum entropy distributions in relaxed muscle were relatively broad. At the peak of the distribution, the “lever” axis, linking Cys707 and Lys843 of the myosin heavy chain, was at 70–80° to the fiber axis, and the “hook” helix (Pro830–Lys843) was almost coplanar with the fiber and lever axes. The temperature and ionic strength of the relaxing solution had small but reproducible effects on the orientation of the RLC region. PMID:15041671

  20. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ke; Schreiber, Daniel K.; Li, Yulan

    Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM) thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB) to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, amore » 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.« less

  1. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    DOE PAGES

    Xu, Ke; Schreiber, Daniel K.; Li, Yulan; ...

    2017-02-10

    Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM) thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB) to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, amore » 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.« less

  2. The Patterned Topography of Ice Stream Beds; Insight from the Spatial Frequency of Mega-Scale Glacial Lineations

    NASA Astrophysics Data System (ADS)

    Spagnolo, M.; Bartholomaus, T. C.; Clark, C.; Stokes, C.; Atkinson, N.; Dowdeswell, J. A.; Ely, J.; Graham, A. G. C.; Hogan, K.; King, E. C.; Livingstone, S. J.; Pritchard, H. D.

    2016-12-01

    The formation of Mega-Scale Glacial Lineations (MSGLs), key to the understanding of how fast flowing ice streams interact with, and are controlled by, their beds is unresolved. Here we present a contribution to this debate based on a technique applied for the first time to these subglacial landscapes. 2D Fourier spectra were obtained from 22 datasets extracted from various offshore and terrestrial settings in Antarctica and Canada, including 11 samples from ice stream beds rich in MSGLs, both palaeo and extant, as well as terrains characterised by iceberg furrows, shelf-break canyons, streamlined bedrock, crag-and-tails and fluvial landforms. The Fourier analyses produces amplitude vs. wavelength plots for all possible orientations across all sampled datasets, thus allowing us to quantify which wavelengths are dominant and how strong their Fourier signal is. Uniquely amongst all other analysed terrains, MSGLs are characterised by amplitudes that are generally low along most orientations, but much higher than average along the consistent orientation of the landform's long axis. This is especially evident within a range of wavelengths between 300 and 1100 m, where a few dominant wavelengths show much higher amplitudes than all others. This distinct spectral signature could serve as a guide for models of ice stream flow and landscape evolution and allow for the automatic identification of MSGLs. The small number of dominant wavelengths also indicates that MSGLs represent a patterned topography in the sense that they are characterised by a regular lateral spacing and should be considered as a spatially self-organised phenomenon. Taken together, these results support the idea that some form(s) of instability is a key ingredient in the formation of the MSGLs.

  3. A scheiner-principle vernier optometer

    NASA Astrophysics Data System (ADS)

    Cushman, William B.

    1989-06-01

    A method and optometer apparatus is disclosed for measuring the dark focus of accommodation. In a preferred embodiment, the optometer apparatus includes: a pinhole aperture plate having first and second horizontally positioned apertures disposed on opposite sides of a first optical axis; first and second orthogonally-oriented polarizing filters respectively covering the first and second horizontally positioned apertures; a positive lens having an optical axis on the first optical axis and being positioned at a distance of approximately one focal length from the pinhole aperture plate; a lens system having an optical axis on the first optical axis; a slit aperture plate having a vertical slit and being disposed on the first optical axis and between the positive lens and the lens system; third and fourth vertically positioned polarizing filters selectively disposed adjacent to the slit aperture plate to divide the slit vertically, a monochromatic light source for propagating light along the first optical axis through the lens system; and movable means attached to the slit aperture plate, the lens system and the monochromatic light source for moving the slit aperture plate.

  4. Failure in laboratory fault models in triaxial tests

    USGS Publications Warehouse

    Savage, J.C.; Lockner, D.A.; Byerlee, J.D.

    1996-01-01

    A model of a fault in the Earth is a sand-filled saw cut in a granite cylinder subjected to a triaxial test. The saw cut is inclined at an angle a to the cylinder axis, and the sand filling is intended to represent gouge. The triaxial test subjects the granite cylinder to a constant confining pressure and increasing axial stress to maintain a constant rate of shortening of the cylinder. The required axial stress increases at a decreasing rate to a maximum, beyond which a roughly constant axial stress is sufficient to maintain the constant rate of shortening: Such triaxial tests were run for saw cuts inclined at angles ?? of 20??, 25??, 30??, 35??, 40??, 45??, and 50?? to the cylinder axis, and the apparent coefficient of friction ??a (ratio of the shear stress to the normal stress, both stresses resolved onto the saw cut) at failure was determined. Subject to the assumption that the observed failure involves slip on Coulomb shears (orientation unspecified), the orientation of the principal compression axis within the gouge can be calculated as a function of ??a for a given value of the coefficient of internal friction ??i. The rotation of the principal stress axes within the gouge in a triaxial test can then be followed as the shear strain across the gouge layer increases. For ??i ??? 0.8, an appropriate value for highly sheared sand, the observed values ??a imply that the principal-axis of compression within the gouge rotates so as to approach being parallel to the cylinder axis for all saw cut angles (20?? < ?? < 50??). In the limiting state (principal compression axis parallel to cylinder axis) the stress state in the gouge layer would be the same as that in the granite cylinder, and the failure criterion would be independent of the saw cut angle.

  5. Fault strength in Marmara region inferred from the geometry of the principle stress axes and fault orientations: A case study for the Prince's Islands fault segment

    NASA Astrophysics Data System (ADS)

    Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan

    2015-04-01

    The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.

  6. Coding of Velocity Storage in the Vestibular Nuclei.

    PubMed

    Yakushin, Sergei B; Raphan, Theodore; Cohen, Bernard

    2017-01-01

    Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.

  7. Coding of Velocity Storage in the Vestibular Nuclei

    PubMed Central

    Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard

    2017-01-01

    Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons. PMID:28861030

  8. ARID relative calibration experimental data and analysis

    NASA Technical Reports Server (NTRS)

    Doty, Keith L

    1992-01-01

    Several experiments measure the orientation error of the ARID end-frame as well as linear displacements in the Orbiter's y- and z-axes. In each experiment the position of the ARID on the trolley is fixed and the manipulator extends and retracts along the Orbiter's y-axis. A sensor platform consisting of four sonars arranged in a '+' pattern measures the platform pitch about the Orbiter's y-axis (angle b) and yaw about the Orbiter's x-axis (angle alpha). Corroborating measurements of the yaw error were performed using a carpenter's level to keep the platform perpendicular to the gravity vector at each ARID pose being measured.

  9. Transverse load sensor based on Mach-Zehnder interferometer constructed by a bowknot type taper

    NASA Astrophysics Data System (ADS)

    Lou, Weimin; Shentu, Fengying; Wang, Youqing; Shen, Changyu; Dong, Xinyong

    2018-01-01

    A transverse load fiber sensor based on Mach-Zehnder interferometer constructed by a Bowknot-type taper between a single mode fiber (SMF) and a polarization maintaining fiber (PMF) was proposed. Due to the polarization maintaining fiber's birefringence, intensities of the two peaks which are corresponding to the fast and slow axis modes changed with the transverse load applied on the PMF. The experimental results showed that the structure with a 2 cm-long PMF has the sensitivities of 104.52 and -102.94 dB/(N/mm) for the fast and slow axis spectral dip wavelengths of 1485 and 1545 nm in the interference pattern, respectively, which are almost 7 times higher than that of the current similar existing transverse load sensor.

  10. Effect of the loading rate on compressive properties of goose eggs.

    PubMed

    Nedomová, Š; Kumbár, V; Trnka, J; Buchar, J

    2016-03-01

    The resistance of goose (Anser anser f. domestica) eggs to damage was determined by measuring the average rupture force, specific deformation and rupture energy during their compression at different compression speeds (0.0167, 0.167, 0.334, 1.67, 6.68 and 13.36 mm/s). Eggs have been loaded between their poles (along X axis) and in the equator plane (Z axis). The greatest amount of force required to break the eggs was required when eggs were loaded along the X axis and the least compression force was required along the Z axis. This effect of the loading orientation can be described in terms of the eggshell contour curvature. The rate sensitivity of the eggshell rupture force is higher than that observed for the Japanese quail's eggs.

  11. Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary

    PubMed Central

    Yang, Deng; You, Zheng; Li, Bin; Duan, Wenrui; Yuan, Binwen

    2017-01-01

    Magnetometers combined with inertial sensors are widely used for orientation estimation, and calibrations are necessary to achieve high accuracy. This paper presents a complete tri-axis magnetometer calibration algorithm with a gyro auxiliary. The magnetic distortions and sensor errors, including the misalignment error between the magnetometer and assembled platform, are compensated after calibration. With the gyro auxiliary, the magnetometer linear interpolation outputs are calculated, and the error parameters are evaluated under linear operations of magnetometer interpolation outputs. The simulation and experiment are performed to illustrate the efficiency of the algorithm. After calibration, the heading errors calculated by magnetometers are reduced to 0.5° (1σ). This calibration algorithm can also be applied to tri-axis accelerometers whose error model is similar to tri-axis magnetometers. PMID:28587115

  12. Elastic response of (001)-oriented PWA 1480 single crystal - The influence of secondary orientation

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Azis, Ali; Mcgaw, Michael

    1991-01-01

    The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.

  13. A morphological basis for orientation tuning in primary visual cortex.

    PubMed

    Mooser, François; Bosking, William H; Fitzpatrick, David

    2004-08-01

    Feedforward connections are thought to be important in the generation of orientation-selective responses in visual cortex by establishing a bias in the sampling of information from regions of visual space that lie along a neuron's axis of preferred orientation. It remains unclear, however, which structural elements-dendrites or axons-are ultimately responsible for conveying this sampling bias. To explore this question, we have examined the spatial arrangement of feedforward axonal connections that link non-oriented neurons in layer 4 and orientation-selective neurons in layer 2/3 of visual cortex in the tree shrew. Target sites of labeled boutons in layer 2/3 resulting from focal injections of biocytin in layer 4 show an orientation-specific axial bias that is sufficient to confer orientation tuning to layer 2/3 neurons. We conclude that the anisotropic arrangement of axon terminals is the principal source of the orientation bias contributed by feedforward connections.

  14. Somatostatin and its receptors contribute in a tissue-specific manner to the sex-dependent metabolic (fed/fasting) control of growth hormone axis in mice

    PubMed Central

    Córdoba-Chacón, José; Gahete, Manuel D.; Castaño, Justo P.; Kineman, Rhonda D.

    2011-01-01

    Somatostatin (SST) inhibits growth hormone (GH) secretion and regulates multiple processes by signaling through its receptors sst1–5. Differential expression of SST/ssts may contribute to sex-specific GH pattern and fasting-induced GH rise. To further delineate the tissue-specific roles of SST and sst1–5 in these processes, their expression patterns were evaluated in hypothalamus, pituitary, and stomach of male and female mice under fed/fasted conditions in the presence (wild type) or absence (SST-knockout) of endogenous SST. Under fed conditions, hypothalamic/stomach SST/ssts expression did not differ between sexes, whereas male pituitary expressed more SST and sst2A/2B/3/5A/5TMD2/5TMD1 and less sst1, and male pituitary cell cultures were more responsive to SST inhibitory actions on GH release compared with females. This suggests that local pituitary SST/ssts can contribute to the sexually dimorphic pattern of GH release. Fasting (48 h) reduced stomach sst2A/B and hypothalamic SST/sst2A expression in both sexes, whereas it caused a generalized downregulation of pituitary sst subtypes in male and of sst2A only in females. Thus, fasting can reduce SST sensitivity across tissues and SST input to the pituitary, thereby jointly contributing to enhance GH release. In SST-knockout mice, lack of SST differentially altered sst subtype expression levels in both sexes, supporting an important role for SST in sex-dependent control of GH axis. Evaluation of SST, IGF-I, and glucocorticoid effects on hypothalamic and pituitary cell cultures revealed that these hormones could directly account for alterations in sst2/5 expression in the physiological states examined. Taken together, these results indicate that changes in SST output and sensitivity can contribute critically to precisely define, in a tissue-dependent manner, the sex-specific metabolic regulation of the GH axis. PMID:20943754

  15. Paleomagnetic and Seismologic Evidence for Oblique-Slip Partitioning to the Coalinga Anticline From the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Jones, C. H.

    2007-12-01

    The Coalinga Anticline is a one of a series of fault-related folds in the central Coast Ranges, California, oriented subparallel to the San Andreas Fault (SAF). The development of the Central Coast Range anticlines can be related to the relative strength of the SAF. If positing a weak SAF, fault-normal slip is partitioned to these subparallel compressional folds. If the SAF is strong, these folds rotated to their current orientation during wrenching. Another possibility is that the Coast Range anticlines are accommodating oblique-slip partitioned from the SAF. The 1983 Coalinga earthquake does not have a purely thrusting focal mechanism (rake =100°), reflecting the likelihood that oblique slip is being partitioned to this anticline, even though surface expression of fold-axis-parallel slip has not been identified. Paleomagnetic vertical-axis rotations and focal mechanism strain inversions were used to quantify oblique-slip deformation within the Coalinga Anticline. Clockwise rotations of 10° to 16° are inferred from paleomagnetic sites located in late Miocene to Pliocene beds on the steeply dipping forelimb and backlimb of the fold. Significant vertical-axis rotations are not identified in the paleomagnetic sites within the nose of the anticline. The varying vertical axis rotations conflict with wrench tectonics (strong SAF) as the mechanism of fold development. We use focal mechanisms inversions of earthquakes that occurred between 1983 to 2006 to constrain the seismogenic strain within the fold that presumably help to build it over time. In the upper 7 km, the principal shortening axis is oriented N37E to N40E, statistically indistinguishable from normal to the fold (N45E). The right-lateral shear in the folded strata above the fault tip, evident from the paleomagnetically determined clockwise vertical-axis rotations, is being accommodated aseismically or interseismically. In the region between 7 and 11 km, where the mainshock occurred, the shortening direction ranges from oblique to normal to the fold trend. Our results show that right-lateral slip is resolved along the main fault plane and not distributed to the smaller aftershocks at depths of 7-11 km. The principal strain axes and clockwise paleomagnetic rotations indicate that the Coalinga Anticline is accommodating minor right-lateral shearing and thus shares some of the strike-slip motion of the San Andreas system.

  16. Dimensions and aspect ratios of natural ice crystals

    DOE PAGES

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; ...

    2015-04-15

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures ( T) between -87 and 0 °C. The projected maximum dimension ( D'), length ( L'), and width ( W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured.more » Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. Finally, the L– W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationships determined in previous studies were within the range of the current data.« less

  17. Dimensions and aspect ratios of natural ice crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures ( T) between -87 and 0 °C. The projected maximum dimension ( D'), length ( L'), and width ( W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured.more » Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. Finally, the L– W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationships determined in previous studies were within the range of the current data.« less

  18. Seismic anisotropy beneath the southeastern margin of the Tibetan Plateau and adjacent regions revealed by shear-wave splitting analyses

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Kong, F.; Wu, J.; Liu, L.; Liu, K. H.

    2017-12-01

    Seismic azimuthal anisotropy is measured at 83 stations situated at the southeastern margin of the Tibetan Plateau and adjacent regions based on shear-wave splitting analyses. A total of 1701 individual pairs of splitting parameters (fast polarization orientations and splitting delay times) are obtained using the PKS, SKKS, and SKS phases. The splitting parameters from 21 stations exhibit systematic back-azimuthal variations with a 90° periodicity, which is consistent with a two-layer anisotropy model. The resulting upper-layer splitting parameters computed based on a grid-search algorithm are comparable with crustal anisotropy measurements obtained independently based on the sinusoidal moveout of P-to-S conversions from the Moho. The fast orientations of the upper layer anisotropy, which is mostly parallel with major shear zones, are associated with crustal fabrics with a vertical foliation plane. The lower layer anisotropy and the station averaged splitting parameters at stations with azimuthally invariant splitting parameters can be adequately explained by the differential movement between the lithosphere and asthenosphere. The NW-SE fast orientations obtained in the northern part of the study area probably reflect the southeastward extruded mantle flow from central Tibet. In contrast, the NE-SW to E-W fast orientations observed in the southern part of the study area are most likely related to the northeastward to eastward mantle flow induced by the subduction of the Burma microplate.

  19. REVISITING THE ISN FLOW PARAMETERS, USING A VARIABLE IBEX POINTING STRATEGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, T. W.; Möbius, E.; Heirtzler, D.

    2015-05-01

    The Interstellar Boundary Explorer (IBEX) has observed the interstellar neutral (ISN) gas flow over the past 6 yr during winter/spring when the Earth’s motion opposes the ISN flow. Since IBEX observes the interstellar atom trajectories near their perihelion, we can use an analytical model based upon orbital mechanics to determine the interstellar parameters. Interstellar flow latitude, velocity, and temperature are coupled to the flow longitude and are restricted by the IBEX observations to a narrow tube in this parameter space. In our original analysis we found that pointing the spacecraft spin axis slightly out of the ecliptic plane significantly influencesmore » the ISN flow vector determination. Introducing the spacecraft spin axis tilt into the analytical model has shown that IBEX observations with various spin axis tilt orientations can substantially reduce the range of acceptable solutions to the ISN flow parameters as a function of flow longitude. The IBEX operations team pointed the IBEX spin axis almost exactly within the ecliptic plane during the 2012–2014 seasons, and about 5° below the ecliptic for half of the 2014 season. In its current implementation the analytical model describes the ISN flow most precisely for the spin axis orientation exactly in the ecliptic. This analysis refines the derived ISN flow parameters with a possible reconciliation between velocity vectors found with IBEX and Ulysses, resulting in a flow longitude λ{sub ∞} = 74.°5 ± 1.°7 and latitude β{sub ∞} = −5.°2 ± 0.°3, but at a substantially higher ISN temperature than previously reported.« less

  20. Oriented cell division: new roles in guiding skin wound repair and regeneration

    PubMed Central

    Yang, Shaowei; Ma, Kui; Geng, Zhijun; Sun, Xiaoyan; Fu, Xiaobing

    2015-01-01

    Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration. PMID:26582817

  1. Topographic stress perturbations in southern Davis Mountains, west Texas 1. Polarity reversal of principal stresses

    USGS Publications Warehouse

    Savage, W.Z.; Morin, R.H.

    2002-01-01

    We have applied a previously developed analytical stress model to interpret subsurface stress conditions inferred from acoustic televiewer logs obtained in two municipal water wells located in a valley in the southern Davis Mountains near Alpine, Texas. The appearance of stress-induced breakouts with orientations that shift by 90?? at two different depths in one of the wells is explained by results from exact solutions for the effects of valleys on gravity and tectonically induced subsurface stresses. The theoretical results demonstrate that above a reference depth termed the hinge point, a location that is dependent on Poisson's ratio, valley shape, and magnitude of the maximum horizontal tectonic stress normal to the long axis of the valley, horizontal stresses parallel to the valley axis are greater than those normal to it. At depths below this hinge point the situation reverses and horizontal stresses normal to the valley axis are greater than those parallel to it. Application of the theoretical model at Alpine is accommodated by the fact that nearby earthquake focal mechanisms establish an extensional stress regime with the regional maximum horizontal principal stress aligned perpendicular to the valley axis. We conclude that the localized stress field associated with a valley setting can be highly variable and that breakouts need to be examined in this context when estimating the orientations and magnitudes of regional principal stresses.

  2. Side-effects of a bad attitude: How GNSS spacecraft orientation errors affect solar radiation pressure modelling

    NASA Astrophysics Data System (ADS)

    Dilssner, Florian; Springer, Tim; Schönemann, Erik; Zandbergen, Rene; Enderle, Werner

    2015-04-01

    Solar radiation pressure (SRP) is the largest non-gravitational perturbation for Global Navigation Satellite System (GNSS) satellites, and can therefore have substantial impact on their orbital dynamics. Various SRP force models have been developed over the past 30 years for the purpose of precise orbit determination. They all rely upon the assumption that the satellites continuously maintain a Sun-Nadir pointing attitude with the navigation antenna boresight (body-fixed z-axis) pointing towards Earth center, and the solar panel rotation axis (body-fixed y-axis) being normal to the Sun direction. However, in reality, this is not perfectly the case. Reasons for a non-nominal spacecraft attitude may be eclipse maneuvers, commanded attitude biases and Sun/horizon sensor measurement errors, for example due to mounting misalignment or incorrectly calibrated sensor electronics. In this work the effect of GNSS spacecraft orientation errors on SRP modelling is investigated. Simplified mathematical functions describing the SRP force acting on the solar arrays in the presence of yaw-, pitch- and roll-biases are derived. Special attention is paid to the yaw-bias and its relationship to the SRP dynamics, particular in direction of the spacecraft y-axis ("y-bias force"). Analytical and experimental results gathered from orbit and attitude analyses of GPS Block II/IIA/IIF satellites demonstrate how sensitive the SRP coefficients are to changes in yaw.

  3. A technique for recording polycrystalline structure and orientation during in situ deformation cycles of rock analogues using an automated fabric analyser.

    PubMed

    Peternell, M; Russell-Head, D S; Wilson, C J L

    2011-05-01

    Two in situ plane-strain deformation experiments on norcamphor and natural ice using synchronous recording of crystal c-axis orientations have been performed with an automated fabric analyser and a newly developed sample press and deformation stage. Without interrupting the deformation experiment, c-axis orientations are determined for each pixel in a 5 × 5 mm sample area at a spatial resolution of 5 μm/pixel. In the case of norcamphor, changes in microstructures and associated crystallographic information, at a strain rate of ∼2 × 10(-5) s(-1), were recorded for the first time during a complete in situ deformation-cycle experiment that consisted of an annealing, deformation and post-deformation annealing path. In the case of natural ice, slower external strain rates (∼1 × 10(-6) s(-1)) enabled the investigation of small changes in the polycrystal aggregate's crystallography and microstructure for small amounts of strain. The technical setup and first results from the experiments are presented. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.

  4. Exploring Crustal Structure and Mantle Seismic Anisotropy Associated with the Incipient Southern and Southwestern Branches of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; Chindandali, P. R. N.; Moidaki, M.; Mutamina, D. M.

    2014-12-01

    In spite of numerous geoscientific studies, the mechanisms responsible for the initiation and development of continental rifts are still poorly understood. The key information required to constrain various geodynamic models on rift initiation can be derived from the crust/mantle structure and anisotropy beneath incipient rifts such as the Southern and Southwestern branches of the East African Rift System. As part of a National Science Foundation funded interdisciplinary project, 50 PASSCAL broadband seismic stations were deployed across the Malawi, Luangwa, and Okavango rift zones from the summer of 2012 to the summer of 2014. Preliminary results from these 50 SAFARI (Seismic Arrays for African Rift Initiation) and adjacent stations are presented utilizing shear-wave splitting (SWS) and P-S receiver function techniques. 1109 pairs of high-quality SWS measurements, consisting of fast polarization orientations and splitting times, have been obtained from a total of 361 seismic events. The results demonstrate dominantly NE-SW fast orientations throughout Botswana as well as along the northwestern flank of the Luangwa rift valley. Meanwhile, fast orientations beneath the eastern Luangwa rift flank rotate from NNW to NNE along the western border of the Malawi rift. Stations located alongside the western Malawi rift border faults yield ENE fast orientations, with stations situated in Mozambique exhibiting more E-W orientations. In the northern extent of the study region, fast orientations parallel the trend of the Rukwa and Usangu rift basins. Receiver function results reveal that, relative to the adjacent Pan-African mobile belts, the Luangwa rift zone has a thin (30 to 35 km) crust. The crustal thickness within the Okavango rift basin is highly variable. Preliminary findings indicate a northeastward thinning along the southeast Okavango border fault system congruent with decreasing extension toward the southwest. The Vp/Vs measurements in the Okavango basin are roughly 1.75 on average, suggesting an unmodified crustal composition, while those of the Luangwa and southern Malawi rift zones are relatively high, probably suggesting ancient or ongoing magmatic emplacement. The Pan-African mobile belts enveloping the rift zones are mostly characterized by more felsic and thicker crust.

  5. Analysis of off-axis incoherent digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-05-01

    Off-axis incoherent digital holography that enables single-shot three-dimensional (3D) distribution is introduced in the paper. Conventional fluorescence microscopy images 3D fields by sectioning, this prevents instant imaging of fast reactions of living cells. In order to realize digital holography from incoherent light, we adapted common path configuration to achieve the best temporal coherence. And by introducing gratings, we shifted the direction of each light to achieve off-axis interference. Simulations and preliminary experiments using LED light have confirmed the results. We expect to use this method to realize 3D phase imaging and fluorescent imaging at the same time from the same biological sample.

  6. Art and Physics.

    ERIC Educational Resources Information Center

    Altshuler, Ken

    1994-01-01

    Presents a method using art classics to teach that a third vector axis is required to represent orientations in three-dimensional space. Helps students understand the importance of perspective, frame of reference, balance, and color theory. (MVL)

  7. Integrated mechanics for the passive damping of polymer-matrix composites and composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1991-01-01

    Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).

  8. The Formation Mechanism of Nuclear Rings

    NASA Astrophysics Data System (ADS)

    Regan, M. W.; Teuben, P. J.

    2001-12-01

    Nuclear star forming rings are found in many barred galaxies. In some of these galaxies the majority of the star formation is occurring in the ring. Although there is circumstantial evidence that an inner Lindblad resonance is required for the ring to form, very little work has been done on why this is so. In this talk we will present some of the first analytical work on why, where, and under what conditions rings form. By using both hydrodynamic simulations and numerically integrated stellar orbits we are able to show the relationship between the extent of the X2 orbit family and the nuclear ring radius. This provides the first clear evidence that the ring is formed by the conflict between gas on X2 orbits oriented perpendicular to the bar major axis and gas on X1 orbits oriented along the bar major axis.

  9. Single-crystal-like, c-axis oriented BaTiO3 thin films with high-performance on flexible metal templates for ferroelectric applications

    NASA Astrophysics Data System (ADS)

    Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Kim, Dae Ho

    2009-06-01

    Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of ˜11.5 μC/cm2. Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices.

  10. How Much Gravity Is Needed to Establish the Perceptual Upright?

    PubMed Central

    Harris, Laurence R.; Herpers, Rainer; Hofhammer, Thomas; Jenkin, Michael

    2014-01-01

    Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars. PMID:25184481

  11. Spontaneous magnetic alignment behaviour in free-living lizards.

    PubMed

    Diego-Rasilla, Francisco J; Pérez-Mellado, Valentín; Pérez-Cembranos, Ana

    2017-04-01

    Several species of vertebrates exhibit spontaneous longitudinal body axis alignment relative to the Earth's magnetic field (i.e., magnetic alignment) while they are performing different behavioural tasks. Since magnetoreception is still not fully understood, studying magnetic alignment provides evidence for magnetoreception and broadens current knowledge of magnetic sense in animals. Furthermore, magnetic alignment widens the roles of magnetic sensitivity in animals and may contribute to shed new light on magnetoreception. In this context, spontaneous alignment in two species of lacertid lizards (Podarcis muralis and Podarcis lilfordi) during basking periods was monitored. Alignments in 255 P. muralis and 456 P. lilfordi were measured over a 5-year period. The possible influence of the sun's position (i.e., altitude and azimuth) and geomagnetic field values corresponding to the moment in which a particular lizard was observed on lizards' body axis orientation was evaluated. Both species exhibited a highly significant bimodal orientation along the north-northeast and south-southwest magnetic axis. The evidence from this study suggests that free-living lacertid lizards exhibit magnetic alignment behaviour, since their body alignments cannot be explained by an effect of the sun's position. On the contrary, lizard orientations were significantly correlated with geomagnetic field values at the time of each observation. We suggest that this behaviour might provide lizards with a constant directional reference while they are sun basking. This directional reference might improve their mental map of space to accomplish efficient escape behaviour. This study is the first to provide spontaneous magnetic alignment behaviour in free-living reptiles.

  12. Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Zheng, Z.; Phukan, H.

    Knowledge of the critical resolved shear stress (CRSS) values of different slip modes is important for accurately modeling plastic deformation of hexagonal materials. Here, we demonstrate that CRSS can be directly measured with an in-situ high energy X-ray diffraction microscopy (HEDM) experiment. A commercially pure Ti tensile specimen was deformed up to 2.6% strain. In-situ far-field HEDM experiments were carried out to track the evolution of crystallographic orientations, centers of masses, and stress states of 1153 grains in a material volume of 1.1mm×1mm×1mm. Predominant prismatic slip was identified in 18 grains, where the orientation change occurred primarily by rotation aroundmore » the c-axis during specimen deformation. By analyzing the resolved shear stress on individual slip systems, the estimated CRSS for prismatic slip is 96±18 MPa. Predominant basal slip was identified in 22 other grains, where the 2 orientation change occurred primarily by tilting the c-axis about an axis in the basal plane. The estimated CRSS for basal slip is 127±33 MPa. The ratio of CRSS basal/CRSS prismatic is in the range of 1.7-2.1. From indirect assessment, the CRSS for pyramidal < c+a > slip is likely greater than 240MPa. Lastly, grain size and free surface effects on the CRSS value in different grains are also examined.« less

  13. Cross-fiber Bragg grating transducer

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)

    2000-01-01

    A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.

  14. Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy

    DOE PAGES

    Wang, L.; Zheng, Z.; Phukan, H.; ...

    2017-05-07

    Knowledge of the critical resolved shear stress (CRSS) values of different slip modes is important for accurately modeling plastic deformation of hexagonal materials. Here, we demonstrate that CRSS can be directly measured with an in-situ high energy X-ray diffraction microscopy (HEDM) experiment. A commercially pure Ti tensile specimen was deformed up to 2.6% strain. In-situ far-field HEDM experiments were carried out to track the evolution of crystallographic orientations, centers of masses, and stress states of 1153 grains in a material volume of 1.1mm×1mm×1mm. Predominant prismatic slip was identified in 18 grains, where the orientation change occurred primarily by rotation aroundmore » the c-axis during specimen deformation. By analyzing the resolved shear stress on individual slip systems, the estimated CRSS for prismatic slip is 96±18 MPa. Predominant basal slip was identified in 22 other grains, where the 2 orientation change occurred primarily by tilting the c-axis about an axis in the basal plane. The estimated CRSS for basal slip is 127±33 MPa. The ratio of CRSS basal/CRSS prismatic is in the range of 1.7-2.1. From indirect assessment, the CRSS for pyramidal < c+a > slip is likely greater than 240MPa. Lastly, grain size and free surface effects on the CRSS value in different grains are also examined.« less

  15. How much gravity is needed to establish the perceptual upright?

    PubMed

    Harris, Laurence R; Herpers, Rainer; Hofhammer, Thomas; Jenkin, Michael

    2014-01-01

    Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars.

  16. Spontaneous magnetic alignment behaviour in free-living lizards

    NASA Astrophysics Data System (ADS)

    Diego-Rasilla, Francisco J.; Pérez-Mellado, Valentín; Pérez-Cembranos, Ana

    2017-04-01

    Several species of vertebrates exhibit spontaneous longitudinal body axis alignment relative to the Earth's magnetic field (i.e., magnetic alignment) while they are performing different behavioural tasks. Since magnetoreception is still not fully understood, studying magnetic alignment provides evidence for magnetoreception and broadens current knowledge of magnetic sense in animals. Furthermore, magnetic alignment widens the roles of magnetic sensitivity in animals and may contribute to shed new light on magnetoreception. In this context, spontaneous alignment in two species of lacertid lizards ( Podarcis muralis and Podarcis lilfordi) during basking periods was monitored. Alignments in 255 P. muralis and 456 P. lilfordi were measured over a 5-year period. The possible influence of the sun's position (i.e., altitude and azimuth) and geomagnetic field values corresponding to the moment in which a particular lizard was observed on lizards' body axis orientation was evaluated. Both species exhibited a highly significant bimodal orientation along the north-northeast and south-southwest magnetic axis. The evidence from this study suggests that free-living lacertid lizards exhibit magnetic alignment behaviour, since their body alignments cannot be explained by an effect of the sun's position. On the contrary, lizard orientations were significantly correlated with geomagnetic field values at the time of each observation. We suggest that this behaviour might provide lizards with a constant directional reference while they are sun basking. This directional reference might improve their mental map of space to accomplish efficient escape behaviour. This study is the first to provide spontaneous magnetic alignment behaviour in free-living reptiles.

  17. Resting Orientations of Dinosaur Scapulae and Forelimbs: A Numerical Analysis, with Implications for Reconstructions and Museum Mounts.

    PubMed

    Senter, Phil; Robins, James H

    2015-01-01

    The inclination of the scapular blade and the resting pose of the forelimb in dinosaurs differ among reconstructions and among skeletal mounts. For most dinosaurian taxa, no attempt has previously been made to quantify the correct resting positions of these elements. Here, we used data from skeletons preserved in articulation to quantify the resting orientations of the scapula and forelimb in dinosaurs. Specimens were included in the study only if they were preserved lying on their sides; for each specimen the angle between forelimb bones at a given joint was included in the analysis only if the joint was preserved in articulation. Using correlation analyses of the angles between the long axis of the sacrum, the first dorsal centrum, and the scapular blade in theropods and Eoraptor, we found that vertebral hyperextension does not influence scapular orientation in saurischians. Among examined taxa, the long axis of the scapular blade was found to be most horizontal in bipedal saurischians, most vertical in basal ornithopods, and intermediate in hadrosauroids. We found that in bipedal dinosaurs other than theropods with semilunate carpals, the resting orientation of the elbow is close to a right angle and the resting orientation of the wrist is such that the hand exhibits only slight ulnar deviation from the antebrachium. In theropods with semilunate carpals the elbow and wrist are more flexed at rest, with the elbow at a strongly acute angle and with the wrist approximately at a right angle. The results of our study have important implications for correct orientations of bones in reconstructions and skeletal mounts. Here, we provide recommendations on bone orientations based on our results.

  18. JPRS Report, Science & Technology, USSR: Electronics & Electrical Engineering.

    DTIC Science & Technology

    1988-12-14

    of Angle Measurement on Orientation of Porro Prism in Interferometer [G. A. Lenkova; AVTOMETRIYA, No 2, Mar-Apr 88] 33 Laser-Doppler Anemometer With...Measurement on Orientation of Porro Prism in Interferometer 18600122e Novosibirsk A VTOMETRIYA in Russian No 2, Mar-Apr 88 (manuscript received 19...identical Porro prisms being mounted rigidly on a common support and sym- metrically with respect to the axis of rotation. The range of measurable

  19. Electromagnetic (EM) Wave Attachment to Laser Plasma Filaments

    DTIC Science & Technology

    2009-05-01

    this phenomenon over a laboratory scale distance and observed that the channel energy, diameter, and modulated spectrum all remained relatively ...are oriented parallel to one another and insulated from one another to maintain a calculated separation. The TEM waves also represent plane waves...orientation, the electric field will point along the direction of the wire axis. The wire is 0.8 mm copper wire, fixed at both ends and insulated at

  20. Automatic short axis orientation of the left ventricle in 3D ultrasound recordings

    NASA Astrophysics Data System (ADS)

    Pedrosa, João.; Heyde, Brecht; Heeren, Laurens; Engvall, Jan; Zamorano, Jose; Papachristidis, Alexandros; Edvardsen, Thor; Claus, Piet; D'hooge, Jan

    2016-04-01

    The recent advent of three-dimensional echocardiography has led to an increased interest from the scientific community in left ventricle segmentation frameworks for cardiac volume and function assessment. An automatic orientation of the segmented left ventricular mesh is an important step to obtain a point-to-point correspondence between the mesh and the cardiac anatomy. Furthermore, this would allow for an automatic division of the left ventricle into the standard 17 segments and, thus, fully automatic per-segment analysis, e.g. regional strain assessment. In this work, a method for fully automatic short axis orientation of the segmented left ventricle is presented. The proposed framework aims at detecting the inferior right ventricular insertion point. 211 three-dimensional echocardiographic images were used to validate this framework by comparison to manual annotation of the inferior right ventricular insertion point. A mean unsigned error of 8, 05° +/- 18, 50° was found, whereas the mean signed error was 1, 09°. Large deviations between the manual and automatic annotations (> 30°) only occurred in 3, 79% of cases. The average computation time was 666ms in a non-optimized MATLAB environment, which potentiates real-time application. In conclusion, a successful automatic real-time method for orientation of the segmented left ventricle is proposed.

  1. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    PubMed Central

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; de Jesus Romero-Troncoso, Rene

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot. PMID:22163850

  2. Investigation of roughing machining simulation by using visual basic programming in NX CAM system

    NASA Astrophysics Data System (ADS)

    Hafiz Mohamad, Mohamad; Nafis Osman Zahid, Muhammed

    2018-03-01

    This paper outlines a simulation study to investigate the characteristic of roughing machining simulation in 4th axis milling processes by utilizing visual basic programming in NX CAM systems. The selection and optimization of cutting orientation in rough milling operation is critical in 4th axis machining. The main purpose of roughing operation is to approximately shape the machined parts into finished form by removing the bulk of material from workpieces. In this paper, the simulations are executed by manipulating a set of different cutting orientation to generate estimated volume removed from the machine parts. The cutting orientation with high volume removal is denoted as an optimum value and chosen to execute a roughing operation. In order to run the simulation, customized software is developed to assist the routines. Operations build-up instructions in NX CAM interface are translated into programming codes via advanced tool available in the Visual Basic Studio. The codes is customized and equipped with decision making tools to run and control the simulations. It permits the integration with any independent program files to execute specific operations. This paper aims to discuss about the simulation program and identifies optimum cutting orientations for roughing processes. The output of this study will broaden up the simulation routines performed in NX CAM systems.

  3. Magnetic field effect on growth, arsenic uptake, and total amylolytic activity on mesquite (Prosopis juliflora x P. velutina) seeds

    NASA Astrophysics Data System (ADS)

    Flores-Tavizón, Edith; Mokgalaka-Matlala, Ntebogeng S.; Elizalde Galindo, José T.; Castillo-Michelle, Hiram; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2012-04-01

    Magnetic field is closely related to the cell metabolism of plants [N. A. Belyavskaya, Adv. Space Res. 34, 1566 (2004)]. In order to see the effect of magnetic field on the plant growth, arsenic uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina) seeds, ten sets of 80 seeds were selected to be oriented with the long axis parallel or randomly oriented to an external magnetic field. The external magnetic field magnitude was 1 T, and the exposition time t = 30 min. Then, the seeds were stored for three days in a plastic bag and then sown on paper towels in a modified Hoagland's nutrient solution. After three days of germination in the dark and three days in light, seedlings were grown hydroponically in modified Hoagland's nutrient solution (high PO42-) containing 0, 10, or 20 ppm of arsenic as As (III) and (V). The results show that the germination ratios, growth, elongation, arsenic uptake, and total amylolytic activity of the long axis oriented mesquite seeds were much higher than those of the randomly oriented seeds. Also, these two sets of seeds showed higher properties than the ones that were not exposed to external magnetic field.

  4. Studies of anisotropic in-plane aligned a-axis oriented YBa(2)Cu(3)O(7-x) thin films

    NASA Astrophysics Data System (ADS)

    Trajanovic, Zoran

    1997-12-01

    Due to their layered planar structure, cuprate oxide superconductors possess remarkable anisotropic properties which may be related to their high transition temperatures. In-plane aligned a-axis YBa2Cu3O7 (YBCO) films are good candidates for such anisotropic studies. Furthermore, the full advantage of favorable material characteristics can be then utilized in applications such as vertical SNS junctions with the leads along the b-direction of YBCO and other novel junction configurations. High quality, smooth, in-plane aligned films are obtained on (100) LaSrGaO4. Form x-ray data, the films show complete b- and c-axes separation for the measured a-axis orientation. The anisotropic resistivity ratio (ρ c/ρ b), measured along the two crystallographic axes of single films gives ρ c/ρ b of ≈20 near the transition, with T cs near 90 K. In such films the grain boundary effects can be decoupled from the intrinsic anisotropic properties of YBCO. From oxygen annealing studies it was estimated that the CuO chains supply about 60% of the carriers. From J c measurements it is determined that the orientation of magnetic field with respect to the crystallographic film axes is the primary factor governing the J c values. The angular dependence of J c on the applied magnetic field is compared against various theoretical models showing the best agreement with the modified Ginzburg-Landau's anisotropic mass model (at T ≈ T c) and Tinkham's thin film model (at T < T c). By utilizing the Co-dopant, the coupling between CuO2 planes and the resulting enhancement of the intrinsic anisotropy of YBCO can be studied. Deposition and cooling conditions are shown to be the primary factor that influence the quality of dopant incorporation and the resulting oxygen ordering within the YBCO lattice. Various complex structures and devices utilizing in-plane aligned, a-axis films are presented. Other materials exhibiting in-plane alignment and a-axis growth are described. Optional substrates for achieving such films are also discussed.

  5. A test of the double-shearing model of flow for granular materials

    USGS Publications Warehouse

    Savage, J.C.; Lockner, D.A.

    1997-01-01

    The double-shearing model of flow attributes plastic deformation in granular materials to cooperative slip on conjugate Coulomb shears (surfaces upon which the Coulomb yield condition is satisfied). The strict formulation of the double-shearing model then requires that the slip lines in the material coincide with the Coulomb shears. Three different experiments that approximate simple shear deformation in granular media appear to be inconsistent with this strict formulation. For example, the orientation of the principal stress axes in a layer of sand driven in steady, simple shear was measured subject to the assumption that the Coulomb failure criterion was satisfied on some surfaces (orientation unspecified) within the sand layer. The orientation of the inferred principal compressive axis was then compared with the orientations predicted by the double-shearing model. The strict formulation of the model [Spencer, 1982] predicts that the principal stress axes should rotate in a sense opposite to that inferred from the experiments. A less restrictive formulation of the double-shearing model by de Josselin de Jong [1971] does not completely specify the solution but does prescribe limits on the possible orientations of the principal stress axes. The orientations of the principal compression axis inferred from the experiments are probably within those limits. An elastoplastic formulation of the double-shearing model [de Josselin de Jong, 1988] is reasonably consistent with the experiments, although quantitative agreement was not attained. Thus we conclude that the double-shearing model may be a viable law to describe deformation of granular materials, but the macroscopic slip surfaces will not in general coincide with the Coulomb shears.

  6. Effect of birefringence of lens material on polarization status and optical imaging characteristics

    NASA Astrophysics Data System (ADS)

    Kim, Wan-Chin; Park, No-Cheol

    2018-04-01

    In most cases of molding with glass or optical polymers, it is expected that there will be birefringence caused by the internal mechanical stresses remaining in the molding material. The distribution of the residual stress can be annealed by slow cooling, but this approach is disadvantageous with respect to the shape accuracy and manufacturing time. In this study, we propose an analytical model to calculate the diffracted field near the focal plane by considering two primary parameters, the orientation angle of the fast axis and the path difference. In order to verify the reliability of the analytical model, we compared the measured beam spot of the F-theta lens of the laser scanning unit (LSU) with the analytical result. In addition, we analyzed the calculated result from the perspective of the polarization status in the exit pupil. The proposed analysis method can be applied to enhance the image quality for cases in which birefringence occurs in a lens material by suitably modeling the amplitude and phase of the incident light flux.

  7. Illuminating heterogeneous anisotropic upper mantle: testing a new anisotropic teleseismic body-wave tomography code - part II: Inversion mode

    NASA Astrophysics Data System (ADS)

    Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi

    2015-04-01

    Considering only isotropic wave propagation and neglecting anisotropy in teleseismic tomography studies is a simplification obviously incongruous with current understanding of the mantle-lithosphere plate dynamics. Furthermore, in solely isotropic high-resolution tomography results, potentially significant artefacts (i.e., amplitude and/or geometry distortions of 3D velocity heterogeneities) may result from such neglect. Therefore, we have undertaken to develop a code for anisotropic teleseismic tomography (AniTomo), which will allow us to invert the relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. To accomplish that, we have modified frequently-used isotropic teleseismic tomography code Telinv (e.g., Weiland et al., JGR, 1995; Lippitsch, JGR, 2003; Karousova et al., GJI, 2013). Apart from isotropic velocity heterogeneities, a weak hexagonal anisotropy is assumed as well to be responsible for the observed P-wave travel-time residuals. Moreover, no limitations to orientation of the symmetry axis are prescribed in the code. We allow a search for anisotropy oriented generally in 3D, which represents a unique approach among recent trials that otherwise incorporate only azimuthal anisotopy into the body-wave tomography. The presented code for retrieving anisotropy in 3D thus enables its direct applications to datasets from tectonically diverse regions. In this contribution, we outline the theoretical background of the AniTomo anisotropic tomography code. We parameterize the mantle lithosphere and asthenosphere with an orthogonal grid of nodes with various values of isotropic velocities, as well as of strength and orientation of anisotropy in 3D, which is defined by azimuth and inclination of either fast or slow symmetry axis of the hexagonal approximation of the media. Careful testing of the new code on synthetics, concentrating on code functionality, strength and weaknesses, is a necessary step before AniTomo is applied to real datasets. We examine various aspects coming along with anisotropic tomography such as setting a starting anisotropic model and parameters controlling the inversion, and particularly influence of a ray coverage on resolvability of individual anisotropic parameters. Synthetic testing also allows investigation of the well-known trade-off between effects of P-wave anisotropy and isotropic heterogeneities. Therefore, the target synthetic models are designed to represent schematically different heterogeneous anisotropic structures of the upper mantle. Testing inversion mode of the AniTomo code, considering an azimuthally quasi-equal distribution of rays and teleseismic P-wave incidences, shows that a separation of seismic anisotropy and isotropic velocity heterogeneities is plausible and that the correct orientation of the symmetry axes in a model can be found within three iterations for well-tuned damping factors.

  8. Preliminary results of characteristic seismic anisotropy beneath Sunda-Banda subduction-collision zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiyono, Samsul H., E-mail: samsul.wiyono@bmkg.go.id; Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strongmore » correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.« less

  9. True-triaxial experimental seismic velocities linked to an in situ 3D seismic velocity structure

    NASA Astrophysics Data System (ADS)

    Tibbo, M.; Young, R. P.

    2017-12-01

    Upscaling from laboratory seismic velocities to in situ field seismic velocities is a fundamental problem in rock physics. This study presents a unique situation where a 3D velocity structure of comparable frequency ranges is available both in situ and experimentally. The in situ data comes from the Underground Research Laboratory (URL) located in Manitoba, Canada. The velocity survey and oriented, cubic rock sample, are from the 420m level of the mine, where the geology is a homogeneous and isotropic granite. The triaxial in situ stress field at this level was determined and the Mine-by tunnel was excavated horizontally to maximize borehole break out. Ultrasonic velocity measurements for P-, S1-,and S2-waves were done in the tunnel sidewall, ceiling and far-field rock mass.The geophysical imaging cell (GIC) used in this study allows for true triaxial stress (σ1 > σ2 > σ3). Velocity surveys for P-, S1-, and S2-wave can be acquired along all three axes, and therefore the effects of σ1, σ2, σ3 on the velocity-stress relationship is obtained along all 3 axes. The cubic (80 mm) granite sample was prepared oriented to the in situ principle stress axis in the field. The stress path of the sample extraction from in situ stress was modeled in FLAC 3D (by Itasca inc ), and then reapplied in the GIC to obtain the laboratory velocities at in situ stress. Both laboratory and field velocities conclude the same maximum velocity axis, within error, to be along σ2 at 5880±60 m/s for P-wave. This deviation from the expected fast axis being σ1, is believed to be caused by an aligned microcrack fabric. The theory of acoustoelasticity, the dependence of acoustic wave velocity on stresses in the propagating isotropic medium, is applied to the borehole hoop and radial stresses produced by the Mine-by tunnel. The acoustoelastic effect involves determining the linear (second-order) and nonlinear (third-order) elastic constants, which are derived from the velocity-stress slopes obtained from both uniaxial and hydrostatic stress tests performed on the granite. The acoustoelastic model produces the in situ far field P-wave velocity, as well as similar near borehole field velocities. In summary, this study compares a 3D field and laboratory velocity structure, and shows the potential of the theory of acoustoelasticity for velocity-stress inversion.

  10. Averaged changes in the orbital elements of meteoroids due to Yarkovsky-Radzievskij force

    NASA Astrophysics Data System (ADS)

    Ryabova, Galina O.

    2014-07-01

    Yarkovsky-Radzievskij effect exceeds the Poynting-Robertson effect in the perturbing action on particles larger than 100 μm. We obtained formulae for averaged changes in a meteoroid's Keplerian orbital elements and used them to estimate dispersion in the Geminid meteoroid stream. It was found that dispersion in semi-major axis of the model shower increased nearly three times on condition that meteoroids rotation is fast, and the rotation axis is stable.

  11. 2000W high beam quality diode laser for direct materials processing

    NASA Astrophysics Data System (ADS)

    Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Gao, Jing; Pan, Fei; Wang, Zhi-yong

    2011-11-01

    This article describes high beam quality and kilowatt-class diode laser system for direct materials processing, using optical design software ZEMAX® to simulate the diode laser optical path, including the beam shaping, collimation, coupling, focus, etc.. In the experiment, the diode laser stack of 808nm and the diode laser stack of 915nm were used for the wavelength coupling, which were built vertical stacks up to 16 bars. The threshold current of the stack is 6.4A, the operating current is 85A and the output power is 1280W. Through experiments, after collimating the diode laser beam with micro-lenses, the fast axis BPP of the stack is less than 60mm.mrad, and the slow-axis BPP of the stack is less than 75mm.mrad. After shaping the laser beam and improving the beam quality, the fast axis BPP of the stack is still 60mm.mrad, and the slow-axis BPP of the stack is less than 19mm.mrad. After wavelength coupling and focusing, ultimately the power of 2150W was obtained, focal spot size of 1.5mm * 1.2mm with focal length 300mm. The laser power density is 1.2×105W/cm2, and that can be used for metal remelting, alloying, cladding and welding. The total optical coupling conversion efficiency is 84%, and the total electrical - optical conversion efficiency is 50%.

  12. Suppression of Alfvénic modes with off-axis NBI

    NASA Astrophysics Data System (ADS)

    Fredrickson, Eric; Bell, R.; Diallo, A.; Leblanc, B.; Podesta, M.; Levinton, F.; Yuh, H.; Liu, D.

    2016-10-01

    GAE are seen on NSTX-U in the frequency range from 1 to 3 MHz with injection of the more perpendicular, NSTX neutral beam sources. A new result is that injection of any of the new, more tangential, neutral beam sources with tangency radii larger than the magnetic axis suppress this GAE activity. Simulations of beam deposition and slowing down with the TRANSP code indicate that these new sources deposit fast ions with 0.9

  13. Correlation of anisotropy and directional conduction in β-Li 3PS 4 fast Li + conductor

    DOE PAGES

    Chen, Yan; Cai, Lu; Liu, Zengcai; ...

    2015-07-06

    Our letter reports the correlation of anisotropy and directional conduction in the fast Li + conductor β-Li 3PS 4, one of the low-symmetry crystalline electrolyte candidates. The material has both high conductivity and good stability that serves well for the large-scale energy storage applications of all-solid-state lithium ion batteries. The anisotropic physical properties, demonstrated here by the thermal expansion coefficients, are crucial for compatibility in the solid-state system and battery performance. Neutron and X-ray powder diffraction measurements were done to determine the crystal structure and thermal stability. Moreover, the crystallographic b-axis was revealed as a fast expansion direction, while negligiblemore » thermal expansion was observed along the a-axis around the battery operating temperatures. The anisotropic behavior has its structural origin from the Li + conduction channels with incomplete Li occupancy and a flexible connection of LiS 4 and PS 4 tetrahedra within the framework. This indicates a strong correlation in the direction of the ionic transport in the low-symmetry Li + conductor.« less

  14. Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARα axis signalling.

    PubMed

    Shao, Mengle; Shan, Bo; Liu, Yang; Deng, Yiping; Yan, Cheng; Wu, Ying; Mao, Ting; Qiu, Yifu; Zhou, Yubo; Jiang, Shan; Jia, Weiping; Li, Jingya; Li, Jia; Rui, Liangyou; Yang, Liu; Liu, Yong

    2014-03-27

    Although the mammalian IRE1α-XBP1 branch of the cellular unfolded protein response has been implicated in glucose and lipid metabolism, the exact metabolic role of IRE1α signalling in vivo remains poorly understood. Here we show that hepatic IRE1α functions as a nutrient sensor that regulates the metabolic adaptation to fasting. We find that prolonged deprivation of food or consumption of a ketogenic diet activates the IRE1α-XBP1 pathway in mouse livers. Hepatocyte-specific abrogation of Ire1α results in impairment of fatty acid β-oxidation and ketogenesis in the liver under chronic fasting or ketogenic conditions, leading to hepatosteatosis; liver-specific restoration of XBP1s reverses the defects in IRE1α null mice. XBP1s directly binds to and activates the promoter of PPARα, the master regulator of starvation responses. Hence, our results demonstrate that hepatic IRE1α promotes the adaptive shift of fuel utilization during starvation by stimulating mitochondrial β-oxidation and ketogenesis through the XBP1s-PPARα axis.

  15. Thermal structure, magmatism, and evolution of fast-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Shah, Anjana K.

    2001-07-01

    We use thin-plate flexural models and high-resolution magnetic field data to constrain magmatic and tectonic processes at fast-spreading mid-ocean ridges, and how these processes evolve over time. Models are constructed to predict axial high topography and gravity for a given thermal structure of the crust and mechanical structure of the lithosphere. Whereas previous models predicted the high is due to a narrow column of buoyant material extending to 10's of kilometers depth in the mantle, we find the high can also be produced by a narrow zone of crustal melt, and lithosphere which thickens rapidly with distance from the axis. We consider the effects of plastic weakening using a yield strength envelope to map bending stresses associated with deflections. Near-surface stresses are extensional at distances which closely resemble regions of normal fault growth at certain axial highs, suggesting bending stresses play a significant role in normal faulting at fast-spreading ridges. We further develop the model to simulate ridge jumps. We fit topography and gravity data of a plume-influenced region which has recently experienced a ridge jump. Steep sides of the new high are best modeled as constructional features. An abandoned ridge remains at the old axis due to plate strengthening associated with crustal cooling. By fitting more than one profile along-axis, we constrain the accretion history at the new ridge. We also predict than an inconsistency between bull's eye mantle Bouguer anomaly lows and a nearly constant along-axis depth can be resolved by assuming a low density zone below the axis widens near the bull's eye center. Finally, we study high-resolution magnetic field data at two regions of the East Pacific Rise with different eruptive histories. The anomalies are used to map relatively fresh pillow mounds, void space created by lava tubes and lobate flows, and dike complexes which extend along the length of recent fissure eruptions. The dikes suggest episodic eruptive histories in these regions, and have implications regarding the migration history of the area.

  16. Strength of Dislocation Junctions in FCC-monocrystals with a [\\overline{1}11] Deformation Axis

    NASA Astrophysics Data System (ADS)

    Kurinnaya, R. I.; Zgolich, M. V.; Starenchenko, V. A.

    2017-07-01

    The paper examines all dislocation reactions implemented in FCC-monocrystals with axis deformation oriented in the [\\overline{1}11] direction. It identifies the fracture stresses of dislocation junctions depending on intersection geometry of the reacting dislocation loop segments. Estimates are produced for the full spectrum of reacting forest dislocations. The paper presents the statistical data of the research performed and identifies the share of long strong dislocation junctions capable of limiting the zone of dislocation shift.

  17. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  18. Template-based synthesis and magnetic properties of Mn-Zn ferrite nanotube and nanowire arrays

    NASA Astrophysics Data System (ADS)

    Guo, Limin; Wang, Xiaohui; Zhong, Caifu; Li, Longtu

    2012-01-01

    Template-based electrophoretic deposition of Mn-Zn ferrite nanotubes (NTs) and nanowires (NWs) were achieved using anodic alumina oxide (AAO) membranes. The effect of electrophoretic current and deposition time on the morphology of the tubes was investigated. The samples show cubic spinel structure with no preferred orientation. Room-temperature magnetic properties of the Mn-Zn ferrite NT/NW arrays were studied. The magnetic easy axis parallels the NT/NW's channel axis attributing to the large shape anisotropy in this direction, especially for the NTs with a small wall thickness. Magnetocrystalline anisotropy and magnetostatic interactions were found dominant in the samples when applied field was perpendicular to the channel axis.

  19. ESR study of the molecular orientation and dynamics of stable organic radicals included in the 1-D organic nanochannels of 2,4,6-tris-4-(chlorophenoxy)-1,3,5-triazine.

    PubMed

    Kobayashi, Hirokazu; Asaji, Tetsuo; Tani, Atsushi

    2012-03-01

    The molecular orientation and dynamics of the organic stable radicals such as 2,2,6,6-tetramethyl-1-piperidinyl-1-oxyl (TEMPO) or 4-hydroxy-TEMPO (TEMPOL) included in the one-dimensional (1-D) organic nanochannels of 2,4,6-tris-4-(chlorophenoxy)-1,3,5-triazine (CLPOT) were investigated by examining the inclusion compounds (ICs) diluted by the co-inclusion of non-radicals using ESR spectroscopy. Spectral simulation showed that the axial rotation of TEMPO or TEMPOL molecules is excited in the nanochannels with activation energies of 8 and 7 kJ mol(-1) , respectively. The rotation axis was estimated to be tilted towards the principal x direction in the axis system of the g-tensor of the respective radicals. This is quite different from that for similar ICs in the nanochannels of tris(o-phenylenedioxy)cyclotriphosphazene (TPP), in which the radicals are axially rotating around the principal axis y of the g-tensor. The difference is attributed to the larger nanospace of the CLPOT nanochannels. Copyright © 2012 John Wiley & Sons, Ltd.

  20. The microscopic protein structure of the lens with a theory for cataract formation as determined by Raman spectroscopy of intact bovine lenses.

    PubMed

    Schachar, R A; Solin, S A

    1975-05-01

    Intact bovine lenses have been studied using the polarized Raman spectroscopic technique. A brief theoretical and experimental review of Raman spectroscopy is presented. From the dependence of the Raman depolarization ratio on the propagation direction of the incident radiation we have determined that the uniaxial qualities of the lens result from microscopic anisotropy and have established the quantitative positional correlation of specific chemical bonds with respect to the lens optic axis. In particular, the hydrogen bonded linear CONH groups of the antiparallel beta-pleated sheet are preferentially oriented in directions orthogonal to the lens optic axis. The Raman spectra of intact lenses do not exhibit bands at positions characteristic of either the alpha-helix or the random coil protein structure. The antiparallel beta-pleated sheet protein microstructure and the lens fiber cross-sectional macrostructure exhibit a remarkable similarity. This similarity may be causal and is consistent with the protein concentration of the lens, the birefringent properties observed by both Lenhard and Brewster, the CONH bond angle distribution with respect to the optic axis, and the lens anatomy. It is suggested that cortical cataracts are caused by fluctuations in protein orientational order.

  1. Congenital axis dysmorphism in a medieval skeleton : …secunda a vertendo epistropheus….

    PubMed

    Travan, Luciana; Saccheri, Paola; Toso, Francesco; Crivellato, Enrico

    2013-05-01

    We describe here the axis dysmorphism that we observed in the skeletal remains of a human child dug up from a fifteenth century cemetery located in north-eastern Italy. This bone defect is discussed in the light of pertinent literature. We performed macroscopical examination and CT scan analysis of the axis. Axis structure was remarkably asymmetric. Whilst the left half exhibited normal morphology, the right one was smaller than normal, and its lateral articular surface showed horizontal orientation. In addition, the odontoid process appeared leftward deviated and displayed a supplementary articular-like facet situated on the right side of its surface. These findings suggest a diagnosis of unilateral irregular segmentation of atlas and axis, a rare dysmorphism dependent upon disturbances of notochordal development in early embryonic life. Likewise other malformations of the craniovertebral junction, this axis defect may alter the delicate mechanisms of upper neck movements and cause a complex series of clinical symptoms. This is an emblematic case whereby human skeletal remains may provide valuable information on the anatomical defects of craniovertebral junction.

  2. Implantable biaxial piezoresistive accelerometer for sensorimotor control.

    PubMed

    Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E

    2004-01-01

    This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift.

  3. Individualized FAC on bottom tab subassemblies to minimize adhesive gap between emitter and optics

    NASA Astrophysics Data System (ADS)

    Sauer, Sebastian; Müller, Tobias; Haag, Sebastian; Beleke, Andreas; Zontar, Daniel; Baum, Christoph; Brecher, Christian

    2017-02-01

    High Power Diode Laser (HPDL) systems with short focal length fast-axis collimators (FAC) require submicron assembly precision. Conventional FAC-Lens assembly processes require adhesive gaps of 50 microns or more in order to compensate for component tolerances (e.g. deviation of back focal length) and previous assembly steps. In order to control volumetric shrinkage of fast-curing UV-adhesives shrinkage compensation is mandatory. The novel approach described in this paper aims to minimize the impact of volumetric shrinkage due to the adhesive gap between HPDL edge emitters and FAC-Lens. Firstly, the FAC is actively aligned to the edge emitter without adhesives or bottom tab. The relative position and orientation of FAC to emitter are measured and stored. Consecutively, an individual subassembly of FAC and bottom tab is assembled on Fraunhofer IPT's mounting station with a precision of +/-1 micron. Translational and lateral offsets can be compensated, so that a narrow and uniform glue gap for the consecutive bonding process of bottom tab to heatsink applies (Figure 4). Accordingly, FAC and bottom tab are mounted to the heatsink without major shrinkage compensation. Fraunhofer IPT's department assembly of optical systems and automation has made several publications regarding active alignment of FAC lenses [SPIE LASE 8241-12], volumetric shrinkage compensation [SPIE LASE 9730-28] and FAC on bottom tab assembly [SPIE LASE 9727-31] in automated production environments. The approach described in this paper combines these and is the logical continuation of that work towards higher quality of HPDLs.

  4. Structure in the lowermost mantle from seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Walpole, J.; Wookey, J. M.; Nowacki, A.; Walker, A.; Kendall, J. M.; Masters, G.; Forte, A. M.

    2017-12-01

    Anisotropy is well established in D'' and places important constraints on the nature and dynamics of this elusive region. We present the results of a recent study probing anisotropy in D'', over a large area, using shear wave splitting on core-reflected ScS phases. Our dataset contains laterally continuous coverage beneath a large swath of east Asia - extending about 3000 km along the CMB - from south-east Asia to the north-east Pacific. The centre of this area represents a large down-welling core for subduction that has occurred over several super-continent cycles. In the centre of this region we observe a clear VSV}>V{SH fabric, in direct conflict with the prevailing view that fast, `cold', regions are associated with VSH}>V{SV fabric. Furthermore, systematic rotation of the fast axis traces out an apparent dome-like feature extending over thousands of km, albeit complicated by some short-scale variability. The dataset also samples regions where slab material may be actively impinging on the CMB; and a region corresponding to the edge of the Pacific LLSVP. We interpret our results in light of a combined computational geodynamic-petrofabric-seismic study designed to test the possibility that anisotropy is caused by the lattice preferred orientation of post-perovskite. We take into account the important finite-frequency effects of wave propagation in our synthetics by using the SPECFEM3D_GLOBE code; this can lead to drastically different results when compared to the less accurate ray theory.

  5. The Axial Compressive Strength of High Performance Polymer Fibers

    DTIC Science & Technology

    1985-03-01

    consists of axially oriented graphitic microfibrils that have the strong and stiff graphite crystal basal plane oriented parallel to the long axis of the... microfibrils [3,4]. The synthetic rigid polymer fibers are represented by only one commercial material: the PPTA fibers produced by E.I. DuPont de...and/or microfibrils is presented. A potential energy balance analysis is used to calculate critical stresses for the onset of compressive buckling

  6. Recording polarization gratings with a standing spiral wave

    NASA Astrophysics Data System (ADS)

    Vernon, Jonathan P.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Tabiryan, Nelson V.

    2013-11-01

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.

  7. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics.

    PubMed

    Kraus, P M; Rupenyan, A; Wörner, H J

    2012-12-07

    We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.

  8. Mechanical Strain Determines Cilia Length, Motility, and Planar Position in the Left-Right Organizer.

    PubMed

    Chien, Yuan-Hung; Srinivasan, Shyam; Keller, Ray; Kintner, Chris

    2018-05-07

    The Xenopus left-right organizer (LRO) breaks symmetry along the left-right axis of the early embryo by producing and sensing directed ciliary flow as a patterning cue. To carry out this process, the LRO contains different ciliated cell types that vary in cilia length, whether they are motile or sensory, and how they position their cilia along the anterior-posterior (A-P) planar axis. Here, we show that these different cilia features are specified in the prospective LRO during gastrulation, based on anisotropic mechanical strain that is oriented along the A-P axis, and graded in levels along the medial-lateral axis. Strain instructs ciliated cell differentiation by acting on a mesodermal prepattern present at blastula stages, involving foxj1. We propose that differential strain is a graded, developmental cue, linking the establishment of an A-P planar axis to cilia length, motility, and planar location during formation of the Xenopus LRO. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Effect of grain orientation and coating on thermal fatigue resistance of a directionally solidified superalloy (MAR-M 247)

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Dreshfield, R. L.; Calfo, F. D.

    1979-01-01

    The effect of off-axis directionally solidified (DS) grain growth on thermal fatigue life of Mar-M 247 alloy was evaluated. Uncoated conventionally cast as well as DS wedge bars were cycled in a burner rig between 1070 C and room temperature. The longitudinal axis and leading edge of the specimen coincided. As the angle between the specimen longitudinal axis and growth axis increased, the thermal fatigue life decreased for both the uncoated and aluminide-coated bars. Life increases of about 50 cycles for the DS conditions were attributed to coating. The decrease in thermal fatigue life with increasing angle is primarily attributed to the increase in modulus of elasticity with increasing angle and not to the intersection of DS grain boundaries with the specimen leading edge. The thermal fatigue cracks were observed to be transgranular in the DS material. Limited tensile and stress-rupture properties of conventionally cast and off-axis DS Mar-M 247 alloy are also presented.

  10. Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos

    NASA Technical Reports Server (NTRS)

    Denegre, J. M.; Danilchik, M. V.

    1993-01-01

    In fertilized eggs of the frog Xenopus, the vegetal yolk mass rotates away from the future dorsal side (J. P. Vincent and J. Gerhart, 1987, Dev. Biol. 123, 526-539), and a major rearrangement of the deep animal hemisphere cytoplasm produces a characteristic swirl in the prospective dorsal side (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). The relationship between this swirl and determination of the dorsal-ventral axis was further investigated by attempting to experimentally separate the positions of the swirl and the dorsal-ventral axis. Eggs were obliquely oriented in the gravity field to respecify the direction of yolk mass rotation and the position of the dorsal-ventral axis. When yolk mass rotation occurred in the absence of a sperm, as in activated eggs, a swirl pattern formed on the side away from which the yolk mass had rotated. In fertilized eggs tipped with the sperm entry point (SEP) down or to the side, swirl patterns were always found to form on the side away from which the yolk mass was displaced. However, in eggs tipped SEP up, in which the yolk mass was forced to rotate away from the SEP, more complicated rearrangements were observed in addition to the rotation-oriented swirl. Because the direction of yolk mass rotation was found to be influenced by both gravity and the actual position of the SEP in obliquely oriented eggs (SEP to the side), such complicated rearrangement patterns may result from opposing forces generated by both yolk mass rotation and the expanding sperm aster. Thus, except in cases in which the influences of SEP position and unit gravity opposed each other, it was not possible to experimentally separate the position of the deep cytoplasmic swirl from the direction of yolk mass rotation, and therefore the position of the prospective dorsal side.

  11. Modeling of micro thrusters for gravity probe B

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth M.

    1996-01-01

    The concept of testing Einstein's general theory of relativity by means of orbiting gyroscopes was first proposed in 1959, which lead to the development of the Gravity Probe B experiment. Einstein's theory concerns the predictions of the relativistic precession of a gyroscope in orbit around earth. According to his theory, there will be two precessions due to the warping of space-time by the earth's gravitational field: the geodetic precession in the plane of the orbit, and the frame-dragging effect, in the direction of earth rotation. For a polar orbit, these components are orthogonal. In order to simplify the measurement of the precessions, Gravity Probe B (GP-B) will be placed in a circular polar orbit at 650 km, for which the predicted precessions will be 6.6 arcsec/year (geodetic) and 42 milli-arcsec/year (frame-dragging). As the gyroscope precesses, the orientation of its spin-axis will be measured with respect to the line-of-sight to Rigel, a star whose proper motion is known to be within the required accuracy. The line-of-sight to Rigel will be established using a telescope, and the orientation of the gyroscope spin axis will be measured using very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The four gyroscopes will be coated with niobium. Below 2K, the niobium becomes superconducting and a dipole field will be generated which is precisely aligned with the gyroscope spin-axis. The change in orientation of these fields, as well as the spin-axis, is sensed by the SQUID magnetometers. In order to attain the superconducting temperatures for the gyroscopes and the SQUID's, the experiment package will be housed in a dewar filled with liquid helium. The helium flow through a GP-B micro thruster and into a vacuum is investigated using the Direct Simulation Monte Carlo method.

  12. Design of optical axis jitter control system for multi beam lasers based on FPGA

    NASA Astrophysics Data System (ADS)

    Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang

    2018-02-01

    A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.

  13. Architecture of the crust and uppermost mantle in the northern Canadian Cordillera from receiver functions

    NASA Astrophysics Data System (ADS)

    Tarayoun, Alizia; Audet, Pascal; Mazzotti, Stéphane; Ashoori, Azadeh

    2017-07-01

    The northern Canadian Cordillera (NCC) is an active orogenic belt in northwestern Canada characterized by deformed autochtonous and allochtonous structures that were emplaced in successive episodes of convergence since the Late Cretaceous. Seismicity and crustal deformation are concentrated along corridors located far (>200 to 800 km) from the convergent plate margin. Proposed geodynamic models require information on crust and mantle structure and strain history, which are poorly constrained. We calculate receiver functions using 66 broadband seismic stations within and around the NCC and process them to estimate Moho depth and P-to-S velocity ratio (Vp/Vs) of the Cordilleran crust. We also perform a harmonic decomposition to determine the anisotropy of the subsurface layers. From these results, we construct simple seismic velocity models at selected stations and simulate receiver function data to constrain crust and uppermost mantle structure and anisotropy. Our results indicate a relatively flat and sharp Moho at 32 ± 2 km depth and crustal Vp/Vs of 1.75 ± 0.05. Seismic anisotropy is pervasive in the upper crust and within a thin ( 10-15 km thick) sub-Moho layer. The modeled plunging slow axis of hexagonal symmetry of the upper crustal anisotropic layer may reflect the presence of fractures or mica-rich mylonites. The subhorizontal fast axis of hexagonal anisotropy within the sub-Moho layer is generally consistent with the SE-NW orientation of large-scale tectonic structures. These results allow us to revise the geodynamic models proposed to explain active deformation within the NCC.

  14. The relationship between anisotropic magnetoresistance and topology of Fermi surface in Td-MoTe2 crystal

    NASA Astrophysics Data System (ADS)

    Lv, Yang-Yang; Li, Xiao; Pang, Bin; Cao, Lin; Lin, Dajun; Zhang, Bin-Bin; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Dong, Song-Tao; Zhang, Shan-Tao; Lu, Ming-Hui; Chen, Yan-Feng

    2017-07-01

    Layered transition-metal dichalcogenides have been recently attracted a lot of attention because of their unique physical properties, such as extremely large and anisotropic magnetoresistance (MR) in WTe2. In this work, we observed the abnormally anisotropic MR on Td-MoTe2 crystal that is strongly dependent on the temperature, as well as the orientations of both magnetic field B and electric field E with respect to crystallographic axes of Td-MoTe2. When E//a-axis and B//c-axis, MR is parabolically dependent on B and is as high as 520% under 9 T and 2 K conditions; the MR is quasi-linearly dependent on B when E//a-axis and B//b-axis (E//b-axis and B//c-axis), and the corresponding MR is only 130% (220%); MR is initially parabolically dependent on B, then linearly on B, and finally shows a saturate trend under E//B//a-axis (or E//B//b-axis) conditions, and the MR is about 16% (30%). These anisotropic MR behaviors can be qualitatively explained by the features of the Fermi surface of Td-MoTe2. This work may demonstrate the rich anisotropic physical behavior in layered transition-metal dichalcognides.

  15. Uniaxial magnetic anisotropy energy of Fe wires embedded in carbon nanotubes.

    PubMed

    Muñoz, Francisco; Mejía-López, Jose; Pérez-Acle, Tomas; Romero, Aldo H

    2010-05-25

    In this work, we analyze the magnetic anisotropy energy (MAE) of Fe cylinders embedded within zigzag carbon nanotubes, by means of ab initio calculations. To see the influence of the confinement, we fix the Fe cylinder diameter and we follow the changes of the MAE as a function of the diameter of the nanotube, which contains the Fe cylinder. We find that the easy axis changes from parallel to perpendicular, with respect to the cylinder axis. The orientation change depends quite strongly on the confinement, which indicates a nontrivial dependence of the magnetization direction as function of the nanotube diameter. We also find that the MAE is affected by where the Fe cylinder sits with respect to the carbon nanotube, and the coupling between these two structures could also dominate the magnetic response. We analyze the thermal stability of the magnetization orientation of the Fe cylinder close to room temperature.

  16. Wind turbine generator with improved operating subassemblies

    DOEpatents

    Cheney, Jr., Marvin C.

    1985-01-01

    A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

  17. Mechanical responses of a-axis GaN nanowires under axial loads

    NASA Astrophysics Data System (ADS)

    Wang, R. J.; Wang, C. Y.; Feng, Y. T.; Tang, Chun

    2018-03-01

    Gallium nitride (GaN) nanowires (NWs) hold technological significance as functional components in emergent nano-piezotronics. However, the examination of their mechanical responses, especially the mechanistic understanding of behavior beyond elasticity (at failure) remains limited due to the constraints of in situ experimentation. We therefore performed simulations of the molecular dynamics (MD) of the mechanical behavior of [1\\bar{2}10]-oriented GaN NWs subjected to tension or compression loading until failure. The mechanical properties and critical deformation processes are characterized in relation to NW sizes and loading conditions. Detailed examinations revealed that the failure mechanisms are size-dependent and controlled by the dislocation mobility on shuffle-set pyramidal planes. The size dependence of the elastic behavior is also examined in terms of the surface structure determined modification of Young’s modulus. In addition, a comparison with c-axis NWs is made to show how size-effect trends vary with the growth orientation of NWs.

  18. System and method for manipulating domain pinning and reversal in ferromagnetic materials

    DOEpatents

    Silevitch, Daniel M.; Rosenbaum, Thomas F.; Aeppli, Gabriel

    2013-10-15

    A method for manipulating domain pinning and reversal in a ferromagnetic material comprises applying an external magnetic field to a uniaxial ferromagnetic material comprising a plurality of magnetic domains, where each domain has an easy axis oriented along a predetermined direction. The external magnetic field is applied transverse to the predetermined direction and at a predetermined temperature. The strength of the magnetic field is varied at the predetermined temperature, thereby isothermally regulating pinning of the domains. A magnetic storage device for controlling domain dynamics includes a magnetic hard disk comprising a uniaxial ferromagnetic material, a magnetic recording head including a first magnet, and a second magnet. The ferromagnetic material includes a plurality of magnetic domains each having an easy axis oriented along a predetermined direction. The second magnet is positioned adjacent to the magnetic hard disk and is configured to apply a magnetic field transverse to the predetermined direction.

  19. Increased Sensitivity to Mirror Symmetry in Autism

    PubMed Central

    Perreault, Audrey; Gurnsey, Rick; Dawson, Michelle; Mottron, Laurent; Bertone, Armando

    2011-01-01

    Can autistic people see the forest for the trees? Ongoing uncertainty about the integrity and role of global processing in autism gives special importance to the question of how autistic individuals group local stimulus attributes into meaningful spatial patterns. We investigated visual grouping in autism by measuring sensitivity to mirror symmetry, a highly-salient perceptual image attribute preceding object recognition. Autistic and non-autistic individuals were asked to detect mirror symmetry oriented along vertical, oblique, and horizontal axes. Both groups performed best when the axis was vertical, but across all randomly-presented axis orientations, autistics were significantly more sensitive to symmetry than non-autistics. We suggest that under some circumstances, autistic individuals can take advantage of parallel access to local and global information. In other words, autistics may sometimes see the forest and the trees, and may therefore extract from noisy environments genuine regularities which elude non-autistic observers. PMID:21559337

  20. Hot seeding for the growth of c-axis-oriented Nd-Ba-Cu-O

    NASA Astrophysics Data System (ADS)

    Chauhan, H. S.; Murakami, M.

    2000-06-01

    The fabrication of large single-grain RE-Ba-Cu-O (RE denotes rare earth elements) is essential for bulk applications. In the present study, we report on a hot-seeding method for growing Nd-Ba-Cu-O with Nd123 seed crystals. We made an arrangement, in which the Nd123 seed crystal can be transported to the centre of the furnace with a rod through a hole in a rubber cork and insulating stopper. The seed was placed in a small dip made in the rod, which can be turned to drop the seed on the sample. The advantage of this method is that perturbation in the growth conditions such as temperature and oxygen partial pressure can be minimized. Using this method we could grow large single-domain c-axis-oriented samples with the surface area larger than 3 cm×3 cm.

Top