Science.gov

Sample records for fast chirp transform

  1. Gravitational Waves from Rotating Neutron Stars and Evaluation of fast Chirp Transform Techniques

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    X-ray observations suggest that neutron stars in low mass X-ray binaries (LMXB) are rotating with frequencies from 300 - 600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince in the context of searching for the chirping signals observed during X-ray bursts.

  2. Gravitational waves from rotating neutron stars and evaluation of fast chirp transform techniques

    NASA Astrophysics Data System (ADS)

    Strohmayer, Tod E.

    2002-04-01

    X-ray observations suggest that neutron stars in low mass x-ray binaries (LMXB) are rotating with frequencies in the range 300-600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion-induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so-called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end, I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince (Prince T A and Jenet F A 2000 Phys. Rev. D 62 122001) in the context of searching for the chirping signals observed during x-ray bursts.

  3. Fast direct fourier reconstruction of radial and PROPELLER MRI data using the chirp transform algorithm on graphics hardware.

    PubMed

    Feng, Yanqiu; Song, Yanli; Wang, Cong; Xin, Xuegang; Feng, Qianjin; Chen, Wufan

    2013-10-01

    To develop and test a new algorithm for fast direct Fourier transform (DrFT) reconstruction of MR data on non-Cartesian trajectories composed of lines with equally spaced points. The DrFT, which is normally used as a reference in evaluating the accuracy of other reconstruction methods, can reconstruct images directly from non-Cartesian MR data without interpolation. However, DrFT reconstruction involves substantially intensive computation, which makes the DrFT impractical for clinical routine applications. In this article, the Chirp transform algorithm was introduced to accelerate the DrFT reconstruction of radial and Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) MRI data located on the trajectories that are composed of lines with equally spaced points. The performance of the proposed Chirp transform algorithm-DrFT algorithm was evaluated by using simulation and in vivo MRI data. After implementing the algorithm on a graphics processing unit, the proposed Chirp transform algorithm-DrFT algorithm achieved an acceleration of approximately one order of magnitude, and the speed-up factor was further increased to approximately three orders of magnitude compared with the traditional single-thread DrFT reconstruction. Implementation the Chirp transform algorithm-DrFT algorithm on the graphics processing unit can efficiently calculate the DrFT reconstruction of the radial and PROPELLER MRI data. Copyright © 2012 Wiley Periodicals, Inc.

  4. A direct digital synthesis chirped pulse Fourier transform microwave spectrometer.

    PubMed

    Finneran, Ian A; Holland, Daniel B; Carroll, P Brandon; Blake, Geoffrey A

    2013-08-01

    Chirped pulse Fourier transform microwave (CP-FTMW) spectrometers have become the instrument of choice for acquiring rotational spectra, due to their high sensitivity, fast acquisition rate, and large bandwidth. Here we present the design and capabilities of a recently constructed CP-FTMW spectrometer using direct digital synthesis (DDS) as a new method for chirped pulse generation, through both a suite of extensive microwave characterizations and deep averaging of the 10-14 GHz spectrum of jet-cooled acetone. The use of DDS is more suited for in situ applications of CP-FTMW spectroscopy, as it reduces the size, weight, and power consumption of the chirp generation segment of the spectrometer all by more than an order of magnitude, while matching the performance of traditional designs. The performance of the instrument was further improved by the use of a high speed digitizer with dedicated signal averaging electronics, which facilitates a data acquisition rate of 2.1 kHz.

  5. Chirp Z-transform spectral zoom optimization with MATLAB.

    SciTech Connect

    Martin, Grant D.

    2005-11-01

    The MATLAB language has become a standard for rapid prototyping throughout all disciplines of engineering because the environment is easy to understand and use. Many of the basic functions included in MATLAB are those operations that are necessary to carry out larger algorithms such as the chirp z-transform spectral zoom. These functions include, but are not limited to mathematical operators, logical operators, array indexing, and the Fast Fourier Transform (FFT). However, despite its ease of use, MATLAB's technical computing language is interpreted and thus is not always capable of the memory management and performance of a compiled language. There are however, several optimizations that can be made within the chirp z-transform spectral zoom algorithm itself, and also to the MATLAB implementation in order to take full advantage of the computing environment and lower processing time and improve memory usage. To that end, this document's purpose is two-fold. The first demonstrates how to perform a chirp z-transform spectral zoom as well as an optimization within the algorithm that improves performance and memory usage. The second demonstrates a minor MATLAB language usage technique that can reduce overhead memory costs and improve performance.

  6. Adaptive chirp-Fourier transform for chirp estimation with applications in ISAR imaging of maneuvering targets

    NASA Astrophysics Data System (ADS)

    Xia, Xiang-Gen; Wang, Genyuan; Chen, Victor C.

    2001-03-01

    This paper first reviews some basic properties of the discrete chirp-Fourier transform and then present an adaptive chirp- Fourier transform, a generalization of the amplitude and phase estimation of sinusoids (APES) algorithm proposed by Li and Stoica for sinusoidal signals. We finally applied it to the ISAR imaging of maneuvering targets.

  7. Chirp-enhanced fast light in semiconductor optical amplifiers.

    PubMed

    Sedgwick, F G; Pesala, Bala; Uskov, Alexander V; Chang-Hasnain, C J

    2007-12-24

    We present a novel scheme to increase the THz-bandwidth fast light effect in semiconductor optical amplifiers and increase the number of advanced pulses. By introducing a linear chirp to the input pulses before the SOA and recompressing at the output with an opposite chirp, the advance-bandwidth product reached 3.5 at room temperature, 1.55 microm wavelength. This is the largest number reported, to the best of our knowledge, for a semiconductor slow/fast light device.

  8. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling.

    PubMed

    Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail

    2016-11-14

    We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

  9. Spectral analysis using the CCD Chirp Z-transform

    NASA Technical Reports Server (NTRS)

    Eversole, W. L.; Mayer, D. J.; Bosshart, P. W.; Dewit, M.; Howes, C. R.; Buss, D. D.

    1978-01-01

    The charge coupled device (CCD) Chirp Z transformation (CZT) spectral analysis techniques were reviewed and results on state-of-the-art CCD CZT technology are presented. The CZT algorithm was examined and the advantages of CCD implementation are discussed. The sliding CZT which is useful in many spectral analysis applications is described, and the performance limitations of the CZT are studied.

  10. Two-dimensional chirped-pulse Fourier transform microwave spectroscopy.

    PubMed

    Wilcox, David S; Hotopp, Kelly M; Dian, Brian C

    2011-08-18

    Two-dimensional (2D) correlation techniques are developed for chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The broadband nature of the spectrometer coupled with fast digital electronics permits the generation of arbitrary pulse sequences and simultaneous detection of the 8-18 GHz region of the microwave spectrum. This significantly increases the number of rotation transitions that can be simultaneously probed, as well as the bandwidth in both frequency dimensions. We theoretically and experimentally evaluate coherence transfer of three- and four-level systems to relate the method with previous studies. We then extend the principles of single-quantum and autocorrelation to incorporate broadband excitation and detection. Global connectivity of the rotational energy level structure is demonstrated through the transfer of multiple coherences in a single 2D experiment. Additionally, open-system effects are observed from irradiating many-level systems. Quadrature detection in the indirectly measured frequency dimension and phase cycling are also adapted for 2D CP-FTMW spectroscopy.

  11. Optical chirp z-transform processor with a simplified architecture.

    PubMed

    Ngo, Nam Quoc

    2014-12-29

    Using a simplified chirp z-transform (CZT) algorithm based on the discrete-time convolution method, this paper presents the synthesis of a simplified architecture of a reconfigurable optical chirp z-transform (OCZT) processor based on the silica-based planar lightwave circuit (PLC) technology. In the simplified architecture of the reconfigurable OCZT, the required number of optical components is small and there are no waveguide crossings which make fabrication easy. The design of a novel type of optical discrete Fourier transform (ODFT) processor as a special case of the synthesized OCZT is then presented to demonstrate its effectiveness. The designed ODFT can be potentially used as an optical demultiplexer at the receiver of an optical fiber orthogonal frequency division multiplexing (OFDM) transmission system.

  12. Error analysis of the chirp-z transform when implemented using waveform synthesizers and FFTs

    SciTech Connect

    Bielek, T.P.

    1990-11-01

    This report analyzes the effects of finite-precision arithmetic on discrete Fourier transforms (DFTs) calculated using the chirp-z transform algorithm. An introduction to the chirp-z transform is given together with a description of how the chirp-z transform is implemented in hardware. Equations for the effects of chirp rate errors, starting frequency errors, and starting phase errors on the frequency spectrum of the chirp-z transform are derived. Finally, the maximum possible errors in the chirp rate, the starting frequencies, and starting phases are calculated and used to compute the worst case effects on the amplitude and phase spectrums of the chirp-z transform. 1 ref., 6 figs.

  13. Description of a New 400 MHZ Bandwidth Chirp Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Paganini, Lucas; Hartogh, Paul

    A new chirp transform spectrometer (CTS) with a bandwidth of 400 MHz and a spectral resolution of 100 kHz has been developed. The CTS is deviced using a digital chirp generator and a preprocessing unit based on a Complementary Metal Oxide Semiconductor (CMOS) and an Application-Specific Integrated Circuit (ASIC). A build in PC 104 computer handles the process control and the external communication via Ethernet and a Transistor-Transistor Logic (TTL) interface. The CTS has been applied to atmospheric science, i.e., a 25-K noise temperature, 22-GHz water vapor, and a 142-GHz ozone system. Astronomical observations have been performed using the Heinrich Hertz submillimeter telescope. In this paper, we describe the function of the CTS and provide information about its functional performance.

  14. Time frequency chirp-Wigner transform for signals with any nonlinear polynomial time varying instantaneous frequency

    NASA Astrophysics Data System (ADS)

    Gelman, L.; Gould, J. D.

    2007-11-01

    The new technique, the time-frequency chirp-Wigner transform has been proposed recently. This technique is further investigated for the general case of higher order chirps, i.e. non-stationary signals with any nonlinear polynomial variation of the instantaneous frequency in time. Analytical and numerical comparison of the chirp-Wigner transform and the classical Wigner distribution was performed for processing of single-component and multi-component higher order chirps. It is shown for the general case of single component higher order chirps that the chirp-Wigner transform has an essential advantage in comparison with the traditional Wigner distribution: the chirp-Wigner transform ideally follows the nonlinear polynomial frequency variation without amplitude errors. It is shown for multi-component signal where each component is a higher order chirp, that the chirp-Wigner transform adjusted to a single component will follow the instantaneous frequency of the component without amplitude errors. It is also shown that the classical Wigner distribution is unable to estimate component amplitudes of single component and multi-component higher order chirps.

  15. Chirped-Pulse Fourier Transform Microwave Spectroscopy of 3-VINYLBENZALDEHYDE

    NASA Astrophysics Data System (ADS)

    Smith, Miranda; Brown, Gordon G.

    2013-06-01

    The pure rotational spectrum of 3-vinylbenzaldehyde (3VBA) has been measured and assigned. Coker College's chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer was used to measure the rotational spectrum of 3VBA in the 7.5 - 18.5 GHz region of the microwave spectrum. The results have been analyzed to discover the rotational constants and centrifugal distortion constants of four distinct conformations of 3VBA: cis,cis-, cis,trans-, trans,cis-, and trans,trans-3VBA. The experimental rotational constants have been compared to the results of ab initio calculations. The performance of Coker's CP-FTMW spectrometer will also be discussed.

  16. A Fast Hermite Transform.

    PubMed

    Leibon, Gregory; Rockmore, Daniel N; Park, Wooram; Taintor, Robert; Chirikjian, Gregory S

    2008-12-17

    We present algorithms for fast and stable approximation of the Hermite transform of a compactly supported function on the real line, attainable via an application of a fast algebraic algorithm for computing sums associated with a three-term relation. Trade-offs between approximation in bandlimit (in the Hermite sense) and size of the support region are addressed. Numerical experiments are presented that show the feasibility and utility of our approach. Generalizations to any family of orthogonal polynomials are outlined. Applications to various problems in tomographic reconstruction, including the determination of protein structure, are discussed.

  17. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation.

    PubMed

    Brown, Gordon G; Dian, Brian C; Douglass, Kevin O; Geyer, Scott M; Shipman, Steven T; Pate, Brooks H

    2008-05-01

    Designs for a broadband chirped pulse Fourier transform microwave (CP-FTMW) spectrometer are presented. The spectrometer is capable of measuring the 7-18 GHz region of a rotational spectrum in a single data acquisition. One design uses a 4.2 Gsampless arbitrary waveform generator (AWG) to produce a 1 mus duration chirped pulse with a linear frequency sweep of 1.375 GHz. This pulse is sent through a microwave circuit to multiply the bandwidth of the pulse by a factor of 8 and upconvert it to the 7.5-18.5 GHz range. The chirped pulse is amplified by a traveling wave tube amplifier and broadcast inside the spectrometer by using a double ridge standard gain horn antenna. The broadband molecular free induction decay (FID) is received by a second horn antenna, downconverted, and digitized by a 40 Gsampless (12 GHz hardware bandwidth) digital oscilloscope. The second design uses a simplified pulse generation and FID detection scheme, employing current state-of-the-art high-speed digital electronics. In this spectrometer, a chirped pulse with 12 GHz of bandwidth is directly generated by using a 20 Gsampless AWG and upconverted in a single step with an ultrabroadband mixer. The amplified molecular emission is directly detected by using a 50 Gsampless digital oscilloscope with 18 GHz bandwidth. In both designs, fast Fourier transform of the FID produces the frequency domain rotational spectrum in the 7-18 GHz range. The performance of the CP-FTMW spectrometer is compared to a Balle-Flygare-type cavity-FTMW spectrometer. The CP-FTMW spectrometer produces an equal sensitivity spectrum with a factor of 40 reduction in measurement time and a reduction in sample consumption by a factor of 20. The CP-FTMW spectrometer also displays good intensity accuracy for both sample number density and rotational transition moment. Strategies to reduce the CP-FTMW measurement time by another factor of 90 while simultaneously reducing the sample consumption by a factor of 30 are demonstrated.

  18. Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2012-01-01

    This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.

  19. Fast Fourier transform telescope

    SciTech Connect

    Tegmark, Max; Zaldarriaga, Matias

    2009-04-15

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog{sub 2}N rather than N{sup 2}) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  20. Progress Towards Chirped-Pulse Fourier Transform Thz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Douglass, Kevin O.; Plusquellic, David F.; Gerecht, Eyal

    2010-06-01

    New opportunities are provided by the development of higher power THz frequency multiplier sources, the development of a broadband Chirped-Pulse FTMW spectroscopy technique at microwave and mm Wave frequencies, and recently demonstrated heterodyne hot electron bolometer detection technology in the THz frequency region with near quantum noise-limited performance and high spectral resolution. Combining these three technologies and extending the chirped-pulse technique to 0.85 THz enables a host of new applications. NIST is currently pursing applications as a point sensor for greenhouse gases, volatile organic compounds, and potentially human breath. The generation and detection of phase stable chirped pulses at 850 GHz will be demonstrated. A description of the experimental setup and preliminary data will be presented for nitrous oxide. G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S. Shipman and B.H. Pate, Rev.Sci.Instrum. 79 (2008) 053103. E. Gerecht, D. Gu, L. You, K.S. Yngvesson, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. 56, (2008) 1083.

  1. Parallel fast gauss transform

    SciTech Connect

    Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan

    2010-01-01

    We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.

  2. Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy of 2-ETHOXYETHANOL

    NASA Astrophysics Data System (ADS)

    Phillips, Maria A.; Shipman, Steven T.

    2013-06-01

    The pure rotational spectrum of 2-ethoxyethanol was recorded from 8.7 to 26.5 GHz at 250 K with a waveguide chirped-pulse Fourier transform microwave spectrometer. The full spectrum contains contributions from multiple vibrational states. Preliminary assignments have been made with a combination of ab initio calculations and an automated spectral fitting program that accelerates the initial fitting process.

  3. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  4. SAW-based chirp Fourier transform and its application to analogue on-board signal processing

    NASA Astrophysics Data System (ADS)

    Bakken, Petter M.; Ronnekleiv, Arne

    1989-11-01

    This paper reports on the work done at ELAB-RUNIT on surface acoustic wave (SAW) on-board signal processing. The main processing is done by the analogue chirp Fourier transformer (CFT) and its inverse (ICFT). In a CFT, the input signal is transformed from an FDMA format to a TDMA format and at the same time filtered by a filter bank. By multiplying and convolving the signal with chirp waveforms, the CFT is implemented by one bandpass cover filter and one chirp filter. The paper demonstrates that SAW reflector array compressors (RAC) built by ELAB-RUNIT have suitable chirp responses and adequate precision for digital satellite communication. Two applications are described. An on-board multicarrier demodulator (MCD) for 9.6 kb/sec QPSK carriers and a processor for filtering, routing and beam steering (FROBE) for flexible transparent repeaters. For MCDs the use of SAW CFTs leads to a power consumption for demultiplexing and A/D conversion of 15 mW per carrier with room for improvements. For transparent payloads, the FROBE leads to more flexibility and narrower guardbands than can be obtained by other analogue processors.

  5. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy.

    PubMed

    Park, G Barratt; Field, Robert W

    2016-05-28

    Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

  6. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    PubMed

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  7. Chirp Z transform based enhanced frequency resolution for depth resolvable non stationary thermal wave imaging

    NASA Astrophysics Data System (ADS)

    Suresh, B.; Subhani, Sk.; Vijayalakshmi, A.; Vardhan, V. H.; Ghali, V. S.

    2017-01-01

    This paper proposes a novel post processing modality to enhance depth resolution in frequency modulated thermal wave imaging using chirp Z transform. It explores the spectral zooming feature of the proposed modality to enhance depth resolution and validates it through the experimentation carried over a carbon fiber reinforced plastic and mild steel specimens. Further, defect detection capability of the proposed modality has been compared with that of the other contemporary modalities by taking the defect signal to noise ratio into consideration.

  8. Chirp Z transform based enhanced frequency resolution for depth resolvable non stationary thermal wave imaging.

    PubMed

    Suresh, B; Subhani, Sk; Vijayalakshmi, A; Vardhan, V H; Ghali, V S

    2017-01-01

    This paper proposes a novel post processing modality to enhance depth resolution in frequency modulated thermal wave imaging using chirp Z transform. It explores the spectral zooming feature of the proposed modality to enhance depth resolution and validates it through the experimentation carried over a carbon fiber reinforced plastic and mild steel specimens. Further, defect detection capability of the proposed modality has been compared with that of the other contemporary modalities by taking the defect signal to noise ratio into consideration.

  9. A Wide-Swath Spaceborne TOPS SAR Image Formation Algorithm Based on Chirp Scaling and Chirp-Z Transform

    PubMed Central

    Yang, Wei; Chen, Jie; Zeng, Hong Cheng; Wang, Peng Bo; Liu, Wei

    2016-01-01

    Based on the terrain observation by progressive scans (TOPS) mode, an efficient full-aperture image formation algorithm for focusing wide-swath spaceborne TOPS data is proposed. First, to overcome the Doppler frequency spectrum aliasing caused by azimuth antenna steering, the range-independent derotation operation is adopted, and the signal properties after derotation are derived in detail. Then, the azimuth deramp operation is performed to resolve image folding in azimuth. The traditional dermap function will introduce a time shift, resulting in appearance of ghost targets and azimuth resolution reduction at the scene edge, especially in the wide-swath coverage case. To avoid this, a novel solution is provided using a modified range-dependent deramp function combined with the chirp-z transform. Moreover, range scaling and azimuth scaling are performed to provide the same azimuth and range sampling interval for all sub-swaths, instead of the interpolation operation for the sub-swath image mosaic. Simulation results are provided to validate the proposed algorithm. PMID:27941706

  10. A Wide-Swath Spaceborne TOPS SAR Image Formation Algorithm Based on Chirp Scaling and Chirp-Z Transform.

    PubMed

    Yang, Wei; Chen, Jie; Zeng, Hong Cheng; Wang, Peng Bo; Liu, Wei

    2016-12-09

    Based on the terrain observation by progressive scans (TOPS) mode, an efficient full-aperture image formation algorithm for focusing wide-swath spaceborne TOPS data is proposed. First, to overcome the Doppler frequency spectrum aliasing caused by azimuth antenna steering, the range-independent derotation operation is adopted, and the signal properties after derotation are derived in detail. Then, the azimuth deramp operation is performed to resolve image folding in azimuth. The traditional dermap function will introduce a time shift, resulting in appearance of ghost targets and azimuth resolution reduction at the scene edge, especially in the wide-swath coverage case. To avoid this, a novel solution is provided using a modified range-dependent deramp function combined with the chirp-z transform. Moreover, range scaling and azimuth scaling are performed to provide the same azimuth and range sampling interval for all sub-swaths, instead of the interpolation operation for the sub-swath image mosaic. Simulation results are provided to validate the proposed algorithm.

  11. Pulse compression of harmonic chirp signals using the fractional fourier transform.

    PubMed

    Arif, M; Cowell, D M J; Freear, S

    2010-06-01

    In ultrasound harmonic imaging with chirp-coded excitation, a harmonic matched filter (HMF) is typically used on the received signal to perform pulse compression of the second harmonic component (SHC) to recover signal axial resolution. Designing the HMF for the compression of the SHC is a problematic issue because it requires optimal window selection. In the compressed second harmonic signal, the sidelobe level may increase and the mainlobe width (MLW) widen under a mismatched condition, resulting in loss of axial resolution. We propose the use of the fractional Fourier transform (FrFT) as an alternative tool to perform compression of the chirp-coded SHC generated as a result of the nonlinear propagation of an ultrasound signal. Two methods are used to experimentally assess the performance benefits of the FrFT technique over the HMF techniques. The first method uses chirp excitation with central frequency of 2.25 MHz and bandwidth of 1 MHz. The second method uses chirp excitation with pulse inversion to increase the bandwidth to 2 MHz. In this study, experiments were performed in a water tank with a single-element transducer mounted coaxially with a hydrophone in a pitch-catch configuration. Results are presented that indicate that the FrFT can perform pulse compression of the second harmonic chirp component, with a 14% reduction in the MLW of the compressed signal when compared with the HMF. Also, the FrFT provides at least 23% reduction in the MLW of the compressed signal when compared with the harmonic mismatched filter (HMMF). The FrFT maintains comparable peak and integrated sidelobe levels when compared with the HMF and HMMF techniques.

  12. Programmable convolution via the chirp Z-transform with CCD's

    NASA Technical Reports Server (NTRS)

    Buss, D. D.

    1977-01-01

    Technique filtering by convolution in frequency domain rather than in time domain presents possible solution to problem of programmable transversal filters. Process is accomplished through utilization of chip z-transform (CZT) with charge-coupled devices

  13. Programmable convolution via the chirp Z-transform with CCD's

    NASA Technical Reports Server (NTRS)

    Buss, D. D.

    1977-01-01

    Technique filtering by convolution in frequency domain rather than in time domain presents possible solution to problem of programmable transversal filters. Process is accomplished through utilization of chip z-transform (CZT) with charge-coupled devices

  14. a Study of 4,4-DIMETHYLAMINOBEZONITRILE by Chirped-Pulsed Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bird, Ryan G.; Alstadt, Valerie J.; Pratt, David W.; Neill, Justin L.; Pate, Brooks H.

    2010-06-01

    The ground state rotational spectrum of 4,4-dimethylaminobenzonitrile (DMABN) was studied using chirped-pulsed Fourier transform microwave spectroscopy (CP-FTMW). The rotational spectrum from 6.5 to 18 GHz was collected using a compilation of 250 MHz chirped pulses and pieced together. DMABN is widely known as an important model for excited state twisted intramolecular charge transfer dynamics. It has been previously studied in our group using high resolution electronic spectroscopy, in which a strong coupling between methyl group internal rotation and overall rotation was discovered. We have recently determined that these couplings are not present in the ground state spectrum. The ground state structure and nuclear quadrupole coupling terms will also be discussed.

  15. Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis.

    PubMed

    Neill, Justin L; Harris, Brent J; Steber, Amanda L; Douglass, Kevin O; Plusquellic, David F; Pate, Brooks H

    2013-08-26

    Chirped-pulse Fourier transform spectroscopy has recently been extended to millimeter wave spectroscopy as a technique for the characterization of room-temperature gas samples. Here we present a variation of this technique that significantly reduces the technical requirements on high-speed digital electronics and the data throughput, with no reduction in the broadband spectral coverage and no increase in the time required to reach a given sensitivity level. This method takes advantage of the frequency agility of arbitrary waveform generators by utilizing a series of low-bandwidth chirped excitation pulses paired in time with a series of offset single frequency local oscillators, which are used to detect the molecular free induction decay signals in a heterodyne receiver. A demonstration of this technique is presented in which a 67 GHz bandwidth spectrum of methanol (spanning from 792 to 859 GHz) is acquired in 58 μs.

  16. a Chirped-Pulse Fourier Transform Spectrometer Operating from 110 TO 170 GHZ

    NASA Astrophysics Data System (ADS)

    Bernier, Lauren E.; Shipman, Steven

    2014-06-01

    A chirped-pulse Fourier transform spectrometer operating from 110 - 170 GHz was constructed. The design of this spectrometer is directly adapted from that of the 260 - 295 GHz chirped-pulse spectrometer built by Steber and co-workers at the University of Virginia. In this instrument, an arbitrary waveform generator (AWG) produces a chirped pulse which is frequency shifted to a range between 9.2 and 14.1 GHz and then multiplied by a factor of 12 via an active multiplier chain to a range between 110 and 170 GHz. As in the Pate lab design, the AWG also serves as a local oscillator (LO) source; this LO is multiplied and used to downconvert the molecular emission, allowing it to be collected by a 40 GS/s digitizer. Benchmark measurements were taken for methanol at room temperature, and details of the instrument's performance will be discussed. A.L. Steber, B.J. Harris, J.L. Neill, and B.H. Pate, J. Mol. Spectrosc., 280, 3 (2012)

  17. Fast generic polar harmonic transforms.

    PubMed

    Hoang, Thai V; Tabbone, Salvatore

    2014-07-01

    Generic polar harmonic transforms have recently been proposed to extract rotation-invariant features from images and their usefulness has been demonstrated in a number of pattern recognition problems. However, direct computation of these transforms from their definition is inefficient and is usually slower than some efficient computation strategies that have been proposed for other methods. This paper presents a number of novel computation strategies to compute these transforms rapidly. The proposed methods are based on the inherent recurrence relations among complex exponential and trigonometric functions used in the definition of the radial and angular kernels of these transforms. The employment of these relations leads to recursive and addition chain-based strategies for fast computation of harmonic function-based kernels. Experimental results show that the proposed method is about 10× faster than direct computation and 5× faster than fast computation of Zernike moments using the q-recursive strategy. Thus, among all existing rotation-invariant feature extraction methods, polar harmonic transforms are the fastest.

  18. Temporal transformation of periodic incoherent ultrashort light pulses by chirped fiber gratings.

    PubMed

    Zalvidea, Dobryna; Duchowicz, Ricardo; Sicre, Enrique E

    2004-05-20

    The analogy between free-space propagation of optical beams and light-pulse reflection from linearly chirped fiber gratings is used to analyze the Lau effect in the temporal domain. The coherence conditions that are satisfied in the spatial domain for obtaining, at certain fixed locations, periodic fringes patterns are reformulated for guided light propagation. In this analogy, spatial periodic irradiance distributions are transformed in periodic sequences of light pulses. An optical setup is proposed to produce sharp pulse trains, with minimal distortion effects, that have repetition frequencies that are different from those associated with the input periodic optical signal. Some numerical results are given to illustrate this approach.

  19. Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy of 1-PROPANETHIOL

    NASA Astrophysics Data System (ADS)

    Gordon, Brittany P.; Shipman, Steven T.

    2013-06-01

    The rotational spectrum of 1-propanethiol was measured from 8.7 to 26.5 GHz at 250 K with a waveguide chirped-pulse Fourier transform microwave spectrometer. This thiol has a dense spectrum containing contributions from multiple conformers, excited vibrational states, and singly-substituted isotopomers (^{34}S and ^{13}C) in natural abundance. Further, the spectrum shows complications due to the presence of internal rotation. Despite this complexity, some progress has been made, and preliminary work on this molecule will be presented.

  20. Chirped-Pulse Fourier Transform Microwave Spectroscopy of Meta-Chlorobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Arnold, Sean T.; Garrett, Jessica A.; Brown, Gordon G.

    2013-06-01

    The pure rotational spectrum of meta-chlorobenzaldehyde (m-ClBA) has been measured from 8 - 18.5 GHz by chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The spectrum has been analyzed to discover the presence of two conformations of m-ClBA in the free jet expansion. For each conformation the rotational constants, the centrifugal distortion constants, and the nuclear quadrupole coupling constants have been found for both the ^{35}Cl and the ^{37}Cl isotopologue. The rotational constants and the nuclear quadrupole coupling constants have been compared to ab initio calculations performed using the Gaussian 03W software package.

  1. Fourier-transform electron spin resonance with bandwidth-compensated chirp pulses

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Jeschke, Gunnar

    2014-09-01

    Electron spin echo experiments using chirp pulses at X-band around 9 GHz have been performed with a home-built spectrometer based on an arbitrary waveform generator. Primary echoes without phase dispersion were obtained by employing the Böhlen-Bodenhausen scheme with the refocusing pulse being half as long as the coherence-generating pulse. To account for physical bandwidth limitation by the resonator, the instantaneous sweep rate of the chirps was adapted to the spectrometer’s frequency response function, which can be recorded from the sample under study within a few minutes. Such bandwidth-compensated chirp pulses are experimentally shown to achieve an almost uniform excitation bandwidth that exceeds the resonator bandwidth. This uniform excitation allows for computing frequency-domain spectra by Fourier-transformation (FT) of the echo signal. For a nitroxide in dilute solid solution with a spectral width of 200 MHz, the FT EPR spectrum agrees remarkably well with a field-swept echo-detected EPR spectrum. The overall spectral perturbation for operation far beyond the resonator bandwidth was characterized by acquiring a 700 MHz wide spectral range of a copper (II) EPR spectrum with nearly uniform amplitude with excitation and refocusing pulses of 200 and 100 ns, respectively. Furthermore, peculiarities were observed in solid-state FT EPR spectra of disordered systems. To understand these peculiarities two-dimensional data sets were acquired that correlate the FT EPR spectrum to inversion recovery or nuclear modulation. The echo envelope modulation experiments reveal echo decay rates increased by enhanced instantaneous diffusion and passage-specific effects in the nuclear modulations. The latter effect can be suppressed by nuclear modulation averaging. Apparent longitudinal relaxation times for a given subset of orientations are influenced by nuclear modulation effects. Proper extraction of orientation-dependent relaxation times thus requires an experimental

  2. Fourier-transform electron spin resonance with bandwidth-compensated chirp pulses.

    PubMed

    Doll, Andrin; Jeschke, Gunnar

    2014-09-01

    Electron spin echo experiments using chirp pulses at X-band around 9GHz have been performed with a home-built spectrometer based on an arbitrary waveform generator. Primary echoes without phase dispersion were obtained by employing the Böhlen-Bodenhausen scheme with the refocusing pulse being half as long as the coherence-generating pulse. To account for physical bandwidth limitation by the resonator, the instantaneous sweep rate of the chirps was adapted to the spectrometer's frequency response function, which can be recorded from the sample under study within a few minutes. Such bandwidth-compensated chirp pulses are experimentally shown to achieve an almost uniform excitation bandwidth that exceeds the resonator bandwidth. This uniform excitation allows for computing frequency-domain spectra by Fourier-transformation (FT) of the echo signal. For a nitroxide in dilute solid solution with a spectral width of 200MHz, the FT EPR spectrum agrees remarkably well with a field-swept echo-detected EPR spectrum. The overall spectral perturbation for operation far beyond the resonator bandwidth was characterized by acquiring a 700MHz wide spectral range of a copper (II) EPR spectrum with nearly uniform amplitude with excitation and refocusing pulses of 200 and 100ns, respectively. Furthermore, peculiarities were observed in solid-state FT EPR spectra of disordered systems. To understand these peculiarities two-dimensional data sets were acquired that correlate the FT EPR spectrum to inversion recovery or nuclear modulation. The echo envelope modulation experiments reveal echo decay rates increased by enhanced instantaneous diffusion and passage-specific effects in the nuclear modulations. The latter effect can be suppressed by nuclear modulation averaging. Apparent longitudinal relaxation times for a given subset of orientations are influenced by nuclear modulation effects. Proper extraction of orientation-dependent relaxation times thus requires an experimental setup

  3. a KA-BAND Chirped-Pulse Fourier Transform Microwave Spectrometer.

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matthew T.; Pate, Brooks H.; Carroll, P. Brandon; Weaver, Susanna L. Widicus

    2010-06-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25-40 GHz will be discussed. A 10.5-3 GHz linear frequency sweep, generated by a 24 GS/s arbitrary waveform generator, is upconverted by a 23.00 GHz phase-locked oscillator, then fed into an active doubler to create a 25-40 GHz chirped pulse. After amplification with a 60-80 W pulsed traveling wave tube amplifier, the pulse is broadcast across a molecular beam chamber where it interacts with a molecular sample. The molecular FID signal is downconverted with the 23 GHz oscillator so that it can be digitized on a 50 GS/s oscilloscope with 16 GHz hardware bandwidth. The sensitivity and phase stability of this spectrometer is comparable to that of the previously reported 6.5-18.5 CP-FTMW spectrometer. On propyne (μ=0.78 D), a single-shot signal to noise ratio of approximately 200:1 is observed on the J=2-1 rotational transition at 34183 MHz when the full bandwidth is swept; optimal excitation is observed for this transition with a 250 MHz bandwidth sweep. The emission has a T_2 lifetime of 4 μs. Early results from this spectrometer, particularly in the study of species of astrochemical interest, will be presented. G.G. Brown et al., Rev. Sci. Instrum. 79 (2008) 053103.

  4. Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy of Allyl Bromide

    NASA Astrophysics Data System (ADS)

    McCabe, Morgan N.; Shipman, Steven

    2014-06-01

    The rotational spectrum of allyl bromide was recorded from 8.7 to 26.5 GHz at -20 °C with a waveguide chirped-pulse Fourier transform microwave spectrometer. The rotational spectrum of allyl bromide has been previously studied by Niide and coworkers. However, previous assignments of this spectrum only extended to J = 12 and K_a = 1. Newly acquired data from our spectrometer has allowed us to extend the previous work to higher values of J and K_a, leading to significant improvements in the distortion constants in particular. Comparisons between the spectra and conformational preferences of the allyl halides will also be discussed. Y. Niide, M, Takano,T. Satoh, and Y. Sasada J. Mol. Spectrosc., 63, 108(1976) Niide, Yuzuru, J. Sci. Hiroshima Univ., Ser. A, 48, 1(1984)

  5. Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy: Applications to Multi-Level Systems

    NASA Astrophysics Data System (ADS)

    Hotopp, Kelly M.; Wilcox, David S.; Shirar, Amanda J.; Dian, Brian C.

    2010-06-01

    Two-dimensional chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy has been used to study rotational energy level connectivity of 1,3-difluoroacetone and m-methylbenzaldehyde. In this series of experiments, non-selective polarizing pulse sequences were used to probe both progressively and regressively connected systems through coherences of coupled rotational energy levels. Coherence propagation among shared energy levels will be demonstrated on 1,3-difluoroacetone. Ab initio calculations predict that the methyl rotor barrier of m-methylbenzaldehyde is less than 35 cm-1 therefore giving rise to large A-E splitting. Furthermore there are two conformers of m-methylbenzaldehyde making the assignment of the rotational spectrum extremely difficult. We will show how coherence propagation demonstrated by 1,3-difluoroacetone can be applied in a general way to assign complex ground state rotational spectra such as m-methylbenzaldehyde.

  6. Rotation and translation registration of bandlimited interferometric images using a chirp z-transform

    NASA Astrophysics Data System (ADS)

    Iacchetta, Alexander S.; Fienup, James R.; Leisawitz, David T.

    2016-07-01

    Image reconstruction algorithms for wide-field spatio-spectral interferometry require knowledge of registration parameters associated with low-resolution image measurements at various baseline orientations, such that the images can be registered to within the fine resolution of the final desired image. We have developed an image registration procedure that combines a nonlinear optimization algorithm with the sub-pixel precision of chirp z-transform resampling, particularly for rotation and translation, of bandlimited images with non-radially symmetric aberrations. We show the accuracy of this image registration technique on simulated images that have a complexity comparable to scenes observed experimentally with NASA's wide-field imaging interferometry testbed. Registration to within a tenth of a pixel for translation and within three arcminutes for rotation is demonstrated at the largest simulated noise levels.

  7. An 18-26 GHz Segmented Chirped Pulse Fourier Transform Microwave Spectrometer for Astrochemical Applications

    NASA Astrophysics Data System (ADS)

    Steber, Amanda; Fatima, Mariyam; Perez, Cristobal; Schnell, Melanie

    2017-06-01

    In the past decade, astrochemistry has seen an increase in interest. As higher throughput and increased resolution radio astronomy facilities come online, faster laboratory instrumentation that directly covers the frequency ranges of these facilities is needed. The 18-26 GHz region is of interest astronomically as many cold organic molecules have their peak intensity in this region. We present here a new segmented chirped pulse Fourier transform microwave (CP-FTMW) spectrometer operating between 18-26 GHz. Using state-of-the-art digital electronics and the segmented approach[1], this design has the potential to be faster and cheaper than the previously presented broadband design. Characterization of the instrument using OCS will be presented, along with a comparison to the previously built and optimized 18-26 CP-FTMW built at the University of Virginia. It will be coupled with a discharge nozzle[2], and its applications to astrochemistry will be explored in this talk. [1] Neill, J.L., Harris, B.J., Steber, A.L., Douglass, K.O., Plusquellic, D.F., Pate, B.H. Opt. Express, 21, 19743-19749, 2013. [2] McCarthy, M.C., Chen, W., Travers, M.J., Thaddeus, P. Astrophys. J. Suppl. Ser., 129, 611-623 , 2000.

  8. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    NASA Astrophysics Data System (ADS)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  9. The rotational spectrum of epifluorohydrin measured by chirped-pulse Fourier transform microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Brown, Gordon G.; Dian, Brian C.; Douglass, Kevin O.; Geyer, Scott M.; Pate, Brooks H.

    2006-08-01

    The rotational spectrum of epifluorohydrin measured by chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy is presented. A new CP-FTMW spectrometer capable of measuring the entire 7.5-18.5 GHz spectrum with a single polarizing pulse is described briefly. The CP-FTMW spectrometer takes advantage of recent advances in digital electronics by utilizing a 4.2 GS/s arbitrary waveform generator as a frequency source and a 12 GHz digital oscilloscope to digitize the down converted molecular free induction decay (FID). Signal averaging in the time domain is used to increase the signal-to-noise ratio. The rotational constants of three unique conformers of epifluorohydrin were measured, as well as the rotational constants of the three unique 13C isotopomers and the 18O isotopomer (in natural abundance) of the most stable conformer. The rotational constants of the two less stable conformers differ significantly from those previously reported [F.G. Fujiwara, J.L. Painter, H. Kim, J. Mol. Struct. 41 (1977) 169-175]. Ab initio calculations were performed for all three conformations and are compared to experimental values.

  10. A Segmented Chirped-Pulse Fourier Transform Mm-Wave Spectrometer (260-295 Ghz) with Real-Time Signal Averaging Capability

    NASA Astrophysics Data System (ADS)

    Harris, Brent J.; Steber, Amanda L.; Pate, Brooks H.

    2013-06-01

    The design and performance of a 260-295 GHz segmented chirped-pulse Fourier transform mm-wave spectrometer is presented. The spectrometer uses an arbitrary waveform generator to create an excitation and detection waveform. The excitation waveform is a series of chirped pulses with 720 MHz bandwidth at mm-wave and about 200 ns pulse duration. The excitation pulses are produced using an x24 active multiplier chain with a peak power of 30 mW. Following a chirped pulse excitation, the molecular emission from all transitions in the excitation bandwidth is detected using heterodyne detection. The free induction decay (FID) is collected for about 1.5 microseconds and each segment measurement time period is 2 microseconds. The local oscillator for the detection in each segment is also created from the arbitrary waveform generator. The full excitation waveform contains 50 segments that scan the chirped pulse frequency and LO frequency across the 260-295 GHz frequency range in a total measurement time of 100 microseconds. The FID from each measurement segment is digitized at 4 GSamples/s, for a record length of 400 kpts. Signal averaging is performed by accumulating the FID signals from each sweep through the spectrum in a 32-bit FPGA. This allows the acquisition of 16 million sequential 260-295 GHz spectra in real time. The final spectrum is produced from fast Fourier transform of the FID in each measurement segment with the frequency calculated using the segment's LO frequency. The agility of the arbitrary waveform generator light source makes it possible to perform several coherent spectroscopic measurements to speed the analysis of the spectrum. In particular, high-sensitivity double-resonance measurements can be performed by applying a "pi-pulse" to a selected molecular transition and observing the changes to all other transitions in the 260-295 GHz frequency range of the spectrometer. In this mode of operation, up to 50 double-resonance frequencies can be used in each

  11. Chirped-Pulse Fourier Transform Microwave Spectroscopy of the 2,3-DIFLUOROPYRIDINE-CARBON Dioxide Complex

    NASA Astrophysics Data System (ADS)

    Gaster, Sydney A.; Funderburk, Cameron M.; Brown, Gordon G.

    2017-06-01

    The pure rotational spectrum of the 2,3-difluoropyridine-CO_{2} complex was measured on a chirped-pulsed Fourier transform microwave (CP-FTMW) spectrometer in the 3 - 18 GHz frequency range. The spectrum was analyzed to find the spectroscopic constants of the complex, including the quadrupole coupling constants and the centrifugal distortion constants. The spectrum of the 2,3-difluoropyridine-^{13}CO_{2} complex was also measured and analyzed. Experimental constants were compared to the results of ab initio calculations.

  12. Fast Fourier Transform algorithm design and tradeoffs

    NASA Technical Reports Server (NTRS)

    Kamin, Ray A., III; Adams, George B., III

    1988-01-01

    The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.

  13. The Marriage of Spectroscopy and Dynamics: Chirped-Pulse Fourier-Transform Mm-Wave Cp-Ft Spectroscopy in Pulsed Uniform Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Oldham, James M.; Suits, Arthur G.; Park, G. Barratt; Field, Robert W.

    2012-06-01

    A new experimental scheme is presented that combines two powerful emerging technologies: chirped-pulse Fourier-transform mm-Wave spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates, and perform unique spectroscopic, kinetics, and dynamics measurements. Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, pioneered by Pate and coworkers, allows rapid acquisition of broadband microwave spectrum through advancements in waveform generation and oscilloscope technology. This revolutionary approach has successfully been adapted to higher frequencies by the Field group at MIT. Our new apparatus will exploit amplified chirped pulses in the range of 26-40 GHz, in combination with a pulsed uniform supersonic flow from a Laval nozzle. This nozzle source, pioneered by Rowe, Sims, and Smith for low temperature kinetics studies, produces thermalized reactants at high densities and low temperatures perfectly suitable for reaction dynamics experiments studied using the CP-mmW approach. This combination of techniques shall enhance the thousand-fold improvement in data acquisition rate achieved in the CP method by a further 2-3 orders of magnitude. A pulsed flow alleviates the challenges of continuous uniform flow, e.g. large gas loads and reactant consumption rates. In contrast to other pulsed Laval systems currently in use, we will use a fast piezo valve and small chambers to achieve the desired pressures while minimizing the gas load, so that a 10 Hz repetition rate can be achieved with one turbomolecular pump. The proposed technique will be suitable for many diverse fields, including fundamental studies in spectroscopy and reaction dynamics, reaction kinetics, combustion, atmospheric chemistry, and astrochemistry. We expect a significant advancement in the ability to

  14. The fast parametric slantlet transform with applications

    NASA Astrophysics Data System (ADS)

    Agaian, Sos S.; Tourshan, Khaled; Noonan, Joseph P.

    2004-05-01

    Transform methods have played an important role in signal and image processing applications. Recently, Selesnick has constructed the new orthogonal discrete wavelet transform, called the slantlet wavelet, with two zero moments and with improved time localization. The discrete slantlet wavelet transform is carried out by an existing filterbank which lacks a tree structure and has a complexity problem. The slantlet wavelet has been successfully applied in compression and denoising. In this paper, we present a new class of orthogonal parametric fast Haar slantlet transform system where the slantlet wavelet and Haar transforms are special cases of it. We propose designing the slantlet wavelet transform using Haar slantlet transform matrix. A new class of parametric filterbanks is developed. The behavior of the parametric Haar slantlet transforms in signal and image denoising is presented. We show that the new technique performs better than the slantlet wavelet transform in denoising for piecewise constant signals. We also show that the parametric Haar slantlet transform performs better than the cosine and Fourier transforms for grey level images.

  15. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. II. Performance and applications for reaction dynamics

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Zack, Lindsay N.; Park, G. Barratt; Joalland, Baptiste; Oldham, James M.; Prozument, Kirill; Ariyasingha, Nuwandi M.; Sims, Ian R.; Field, Robert W.; Suits, Arthur G.

    2014-12-01

    This second paper in a series of two reports on the performance of a new instrument for studying chemical reaction dynamics and kinetics at low temperatures. Our approach employs chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy to probe photolysis and bimolecular reaction products that are thermalized in pulsed uniform flows. Here we detail the development and testing of a new Ka-band CP-FTMW spectrometer in combination with the pulsed flow system described in Paper I [J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. B. Park, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 154202 (2014)]. This combination delivers broadband spectra with MHz resolution and allows monitoring, on the μs timescale, of the appearance of transient reaction products. Two benchmark reactive systems are used to illustrate and characterize the performance of this new apparatus: the photodissociation of SO2 at 193 nm, for which the vibrational populations of the SO product are monitored, and the reaction between CN and C2H2, for which the HCCCN product is detected in its vibrational ground state. The results show that the combination of these two well-matched techniques, which we refer to as chirped-pulse in uniform flow, also provides insight into the vibrational and rotational relaxation kinetics of the nascent reaction products. Future directions are discussed, with an emphasis on exploring the low temperature chemistry of complex polyatomic systems.

  16. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. II. Performance and applications for reaction dynamics.

    PubMed

    Abeysekera, Chamara; Zack, Lindsay N; Park, G Barratt; Joalland, Baptiste; Oldham, James M; Prozument, Kirill; Ariyasingha, Nuwandi M; Sims, Ian R; Field, Robert W; Suits, Arthur G

    2014-12-07

    This second paper in a series of two reports on the performance of a new instrument for studying chemical reaction dynamics and kinetics at low temperatures. Our approach employs chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy to probe photolysis and bimolecular reaction products that are thermalized in pulsed uniform flows. Here we detail the development and testing of a new K(a)-band CP-FTMW spectrometer in combination with the pulsed flow system described in Paper I [J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. B. Park, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 154202 (2014)]. This combination delivers broadband spectra with MHz resolution and allows monitoring, on the μs timescale, of the appearance of transient reaction products. Two benchmark reactive systems are used to illustrate and characterize the performance of this new apparatus: the photodissociation of SO2 at 193 nm, for which the vibrational populations of the SO product are monitored, and the reaction between CN and C2H2, for which the HCCCN product is detected in its vibrational ground state. The results show that the combination of these two well-matched techniques, which we refer to as chirped-pulse in uniform flow, also provides insight into the vibrational and rotational relaxation kinetics of the nascent reaction products. Future directions are discussed, with an emphasis on exploring the low temperature chemistry of complex polyatomic systems.

  17. Fast Hardware Implementation Of The DOLP Transform

    NASA Astrophysics Data System (ADS)

    Waltz, Frederick M.

    1988-03-01

    The Difference-of-Low-Pass (DOLP) Transform uses a hierarchy of bandpass filters to perform size discrimination and pattern matching of objects and features in a visual field. Like the Discrete Fourier Transform (DFT), it "sorts" entities according to their size or spatial frequencies; but unlike the DFT, it also retains positional information.This positional information is essential for the very common industrial web inspection problem in which a "flaw map" must be produced - mere flaw detection (as provided by the DFT) is not enough. The DOLP Transform is usually implemented using finite-impulse-response difference-of-Gaussian (DOG) filters of progressively increasing kernel size. Various potential industrial applications have been described and demonstrated, but implementations have been hampered by the heavy computational burden involved in the generation of the Transform. This paper describes a fast implementation of Crowley's resampled DOLP Transform using commercially-available board-level hardware. With a moderate investment in hardware modules, a nine-band DOLP Transform can be computed for a 485 by 512 image in about one second. Additional hardware modules could be added to bring the speed up to 30 complete 9-band Transforms per second, if desired. Additional bands beyond the first nine, while seldom needed, require very little additional time, because the image has been repeatedly resampled down to a small size.

  18. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system.

    PubMed

    Oldham, James M; Abeysekera, Chamara; Joalland, Baptiste; Zack, Lindsay N; Prozument, Kirill; Sims, Ian R; Park, G Barratt; Field, Robert W; Suits, Arthur G

    2014-10-21

    We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.

  19. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system

    NASA Astrophysics Data System (ADS)

    Oldham, James M.; Abeysekera, Chamara; Joalland, Baptiste; Zack, Lindsay N.; Prozument, Kirill; Sims, Ian R.; Park, G. Barratt; Field, Robert W.; Suits, Arthur G.

    2014-10-01

    We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.

  20. Broadband Chirped-Pulse Fourier Transform Microwave Spectroscopy and Molecular Structure of the ARGON-1-CHLORO-1-FLUOROETHYLENE Complex

    NASA Astrophysics Data System (ADS)

    Marshall, Mark D.; Leung, Helen O.

    2013-06-01

    Previous studies of argon complexes with fluoroethylenes have revealed a preference for a geometry that maximizes the contact of the argon atom with heavy atoms on the fluoroethylene. We have observed a continuation of this trend when one of the fluorine atoms is replaced by chlorine. As part of a systematic study of the effect of chlorine substitution on intermolecular interactions, we have examined the argon-1-chloro-1-fluoroethylene complex, and obtained the 5.6 - 18.1 GHz chirped-pulse Fourier transform microwave spectrum of this species. Transitions for both the ^{35}Cl and ^{37}Cl isotopologues are observed and analyzed to provide geometric parameters for this non-planar complex. The structure is found to be similar to those of analogous complexes and agrees well with ab initio predictions. Z. Kisiel, P.W. Fowler, and A.C. Legon, J. Chem. Phys. {95,} 2283 (1991).

  1. A fast DFT algorithm using complex integer transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1978-01-01

    Winograd's algorithm for computing the discrete Fourier transform is extended considerably for certain large transform lengths. This is accomplished by performing the cyclic convolution, required by Winograd's method, by a fast transform over certain complex integer fields. This algorithm requires fewer multiplications than either the standard fast Fourier transform or Winograd's more conventional algorithms.

  2. A fast computation of complex convolution using a hybrid transform

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1978-01-01

    The cyclic convolution of complex values was obtained by a hybrid transform that is a combination of a Winograd transform and a fast complex integer transform. This new hybrid algorithm requires fewer multiplications than any previously known algorithm.

  3. Applications of a fast, continuous wavelet transform

    SciTech Connect

    Dress, W.B.

    1997-02-01

    A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.

  4. Applications of a fast continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Dress, William B.

    1997-04-01

    A fast, continuous, wavelet transform, justified by appealing to Shannon's sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and from the standard treatment of the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon's sampling theorem lets us view the Fourier transform of the data set as representing the continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time-domain sampling of the signal under analysis. Although more computationally costly and not represented by an orthogonal basis, the inherent flexibility and shift invariance of the frequency-space wavelets are advantageous for certain applications. The method has been applied to forensic audio reconstruction, speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants' heart beats. Audio reconstruction is aided by selection of desired regions in the 2D representation of the magnitude of the transformed signals. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass- spring system by an occupant's beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, different features may be extracted from voice

  5. Single shot, temporally and spatially resolved measurements of fast electron dynamics using a chirped optical probe

    NASA Astrophysics Data System (ADS)

    Green, J. S.; Murphy, C. D.; Booth, N.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Rusby, D.; Wilson, L.

    2014-03-01

    A new approach to rear surface optical probing is presented that permits multiple, time-resolved 2D measurements to be made during a single, ultra-intense ( > 1018 W cm-2) laser-plasma interaction. The diagnostic is capable of resolving rapid changes in target reflectivity which can be used to infer valuable information on fast electron transport and plasma formation at the target rear surface. Initial results from the Astra-Gemini laser are presented, with rapid radial sheath expansion together with detailed filamentary features being observed to evolve during single shots.

  6. Microwave spectral taxonomy: A semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy.

    PubMed

    Crabtree, Kyle N; Martin-Drumel, Marie-Aline; Brown, Gordon G; Gaster, Sydney A; Hall, Taylor M; McCarthy, Michael C

    2016-03-28

    Because of its structural specificity, rotational spectroscopy has great potential as an analytical tool for characterizing the chemical composition of complex gas mixtures. However, disentangling the individual molecular constituents of a rotational spectrum, especially if many of the lines are entirely new or unknown, remains challenging. In this paper, we describe an empirical approach that combines the complementary strengths of two techniques, broadband chirped-pulse Fourier transform microwave spectroscopy and narrowband cavity Fourier transform microwave spectroscopy, to characterize and assign lines. This procedure, called microwave spectral taxonomy, involves acquiring a broadband rotational spectrum of a rich mixture, categorizing individual lines based on their relative intensities under series of assays, and finally, linking rotational transitions of individual chemical compounds within each category using double resonance techniques. The power of this procedure is demonstrated for two test cases: a stable molecule with a rich spectrum, 3,4-difluorobenzaldehyde, and products formed in an electrical discharge through a dilute mixture of C2H2 and CS2, in which spectral taxonomy has enabled the identification of propynethial, HC(S)CCH.

  7. Chirp excitation

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin

    2017-09-01

    The paper describes the design of broadband chirp excitation pulses. We first develop a three stage model for understanding chirp excitation in NMR. We then show how a chirp π pulse can be used to refocus the phase of the chirp excitation pulse. The resulting magnetization still has some phase dispersion in it. We show how a combination of two chirp π pulses instead of one can be used to eliminate this dispersion, leaving behind a small residual phase dispersion. The excitation pulse sequence presented here allows exciting arbitrary large bandwidths without increasing the peak rf-amplitude. Experimental excitation profiles for the residual HDO signal in a sample of 99.5 % D2O are displayed as a function of resonance offset. Although methods presented in this paper have appeared elsewhere, we present complete analytical treatment that elucidates the working of these methods.

  8. Parallel and pipeline computation of fast unitary transforms

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    The letter discusses the parallel and pipeline organization of fast-unitary-transform algorithms such as the fast Fourier transform, and points out the efficiency of a combined parallel-pipeline processor of a transform such as the Haar transform, in which (2 to the n-th power) -1 hardware 'butterflies' generate a transform of order 2 to the n-th power every computation cycle.

  9. Parallel and pipeline computation of fast unitary transforms

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    The letter discusses the parallel and pipeline organization of fast-unitary-transform algorithms such as the fast Fourier transform, and points out the efficiency of a combined parallel-pipeline processor of a transform such as the Haar transform, in which (2 to the n-th power) -1 hardware 'butterflies' generate a transform of order 2 to the n-th power every computation cycle.

  10. VLSI Implementation Of The Fast Fourier Transform

    NASA Astrophysics Data System (ADS)

    Chau, Paul M.; Ku, Walter H.

    1986-03-01

    A VLSI implementation of a Fast Fourier Transform (FFT) processor consisting of a mesh interconnection of complex floating-point butterfly units is presented. The Cooley-Tukey radix-2 Decimation-In-Frequency (DIF) formulation of the FFT was chosen since it offered the best overall compromise between the need for fast and efficient algorithmic computation and the need for a structure amenable to VLSI layout. Thus the VLSI implementation is modular, regular, expandable to various problem sizes and has a simple systolic flow of data and control. To evaluate the FFT architecture, VLSI area-time complexity concepts are used, but are now adapted to a complex floating-point number system rather than the usual integer ring representation. We show by our construction that the Thompson area-time optimum bound for the VLSI computation of an N-point FFT, area-time2oc = ORNlogN)1+a] can be attained by an alternative number representation, and hence the theoretical bound is a tight bound regardless of number system representation.

  11. A fast multipole transformation for global climate calculations

    SciTech Connect

    Holmes, J.A.; Wang, Z.; Drake, J.B.; Lyon, B.F.; Chen, W.T.

    1996-01-01

    A fast multipole transformation is adapted to the evaluation of summations that occur in global climate calculations when transforming between spatial and spherical harmonic representations. For each summation, the timing of the fast multipole transformation scales linearly with the number of latitude gridpoints, but the timing for direct evaluations scales quadratically. In spite of a larger computational overhead, this scaling advantage renders the fast multipole method faster than direct evaluation for transformations involving greater than approximately 300 to 500 gridpoints. Convergence of the fast multipole transformation is accurate to machine precision. As the resolution in global climate calculations continues to increase, an increasingly large fraction of the computational work involves the transformation between spatial and spherical harmonic representations. The fast multipole transformation offers a significant reduction in computational time for these high-resolution cases.

  12. Chirped-Pulse Fourier Transform Microwave Spectroscopy Coupled with a Flash Pyrolysis Microreactor: Structural Determination of the Reactive Intermediate Cyclopentadienone.

    PubMed

    Kidwell, Nathanael M; Vaquero-Vara, Vanesa; Ormond, Thomas K; Buckingham, Grant T; Zhang, Di; Mehta-Hurt, Deepali N; McCaslin, Laura; Nimlos, Mark R; Daily, John W; Dian, Brian C; Stanton, John F; Ellison, G Barney; Zwier, Timothy S

    2014-07-03

    Chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) is combined with a flash pyrolysis (hyperthermal) microreactor as a novel method to investigate the molecular structure of cyclopentadienone (C5H4═O), a key reactive intermediate in biomass decomposition and aromatic oxidation. Samples of C5H4═O were generated cleanly from the pyrolysis of o-phenylene sulfite and cooled in a supersonic expansion. The (13)C isotopic species were observed in natural abundance in both C5H4═O and in C5D4═O samples, allowing precise measurement of the heavy atom positions in C5H4═O. The eight isotopomers include: C5H4═O, C5D4═O, and the singly (13)C isotopomers with (13)C substitution at the C1, C2, and C3 positions. Microwave spectra were interpreted by CCSD(T) ab initio electronic structure calculations and an re molecular structure for C5H4═O was found. Comparisons of the structure of this "anti-aromatic" molecule are made with those of comparable organic molecules, and it is concluded that the disfavoring of the "anti-aromatic" zwitterionic resonance structure is consistent with a more pronounced C═C/C-C bond alternation.

  13. Probing Chemical Dynamics with High Resolution Spectroscopy: Chirped-Pulse Fourier-Transform Microwave Spectroscopy Coupled with a Hyperthermal Source

    NASA Astrophysics Data System (ADS)

    Kidwell, Nathanael M.; Vara, Vanesa Vaquero; Mehta-Hurt, Deepali N.; Korn, Joseph A.; Dian, Brian C.; Zwier, Timothy S.

    2013-06-01

    Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy has proven to be a well-suited technique for the rapid study and spectral identification of molecular species due to its ultra-broadband capability and excellent specificity to molecular structure from high-resolution rotational transitions. This talk will describe initial results from combining CP-FTMW detection with a hyperthermal nozzle source. This source has the advantage of producing traditionally high thermal product densities in a pulsed supersonic expansion with a short contact time compared to conventional pyrolysis. Used in tandem, CP-FTMW spectroscopy and the hyperthermal nozzle in a supersonic expansion is a powerful method that can produce and detect changes in conformation and isomer populations, and characterize important intermediates on the reaction surface of a precursor. In particular, we show its utility to provide insight into the unimolecular decomposition pathways of model lignin compounds and alternative biofuels. Preliminary results will be discussed including spectroscopic evidence for formation of cyclopentadienone in the pyrolysis of a lignin derivative guaiacol (o-methoxyphenol).

  14. Fast Fourier transform discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Graham, J. T.; Rollett, A. D.; LeSar, R.

    2016-12-01

    Discrete dislocation dynamics simulations have been generally limited to modeling systems described by isotropic elasticity. Effects of anisotropy on dislocation interactions, which can be quite large, have generally been ignored because of the computational expense involved when including anisotropic elasticity. We present a different formalism of dislocation dynamics in which the dislocations are represented by the deformation tensor, which is a direct measure of the slip in the lattice caused by the dislocations and can be considered as an eigenstrain. The stresses arising from the dislocations are calculated with a fast Fourier transform (FFT) method, from which the forces are determined and the equations of motion are solved. Use of the FFTs means that the stress field is only available at the grid points, which requires some adjustments/regularizations to be made to the representation of the dislocations and the calculation of the force on individual segments, as is discussed hereinafter. A notable advantage of this approach is that there is no computational penalty for including anisotropic elasticity. We review the method and apply it in a simple dislocation dynamics calculation.

  15. Chirped-Pulse and Cavity Based Fourier Transform Microwave Spectroscopy of the Methyl Lactate-Ammonia Adduct

    NASA Astrophysics Data System (ADS)

    Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie

    2012-06-01

    The hydrogen bonded complex of ammonia with methyl lactate, a chiral alpha-hydroxyester, has been studied using rotational spectroscopy and high level ab initio calculations. Previous studies showed that methyl lactate can exist in a number of conformers. However, only the most stable one which has an intramolecular hydrogen bonded ring formed with its alcoholic hydroxyl and its carbonyl oxygen atom was detected experimentally An extensive ab initio search has been performed to locate all possible low energy conformers of the methyl lactate-ammonia contact pair. Five lowest energy conformers have been identified at the MP2/6-311++G(d,p) level. The lowest energy conformer favors an insertion arrangement, where ammonia is inserted into the existing intramolecular hydrogen bonded ring in the most stable methyl lactate conformer. Broadband scans for the rotational spectra of possible binary conformers have been carried out using a chirped-pulse Fourier transform microwave (FTMW) instrument. The most stable binary adduct was identified and assigned. The final frequency measurements have been done with a cavity based FTMW instrument. The spectrum observed shows complicated fine and hyperfine splitting patterns, likely due to the internal rotations of the methyl groups of methyl lactate and that of ammonia, as well as the 14N quadrupolar nucleus. The binary adduct with 15NH3 has also been studied to simplify the splitting pattern and to aid the assignments of the extensive splittings. The isotopic data and the fine and hyperfine structures will be discussed in terms of internal rotation dynamics and geometry of the hydrogen bonded adduct.

  16. Orthogonal fast spherical Bessel transform on uniform grid

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.

    2017-07-01

    We propose an algorithm for the orthogonal fast discrete spherical Bessel transform on a uniform grid. Our approach is based upon the spherical Bessel transform factorization into the two subsequent orthogonal transforms, namely the fast Fourier transform and the orthogonal transform founded on the derivatives of the discrete Legendre orthogonal polynomials. The method utility is illustrated by its implementation for the problem of a two-atomic molecule in a time-dependent external field simulating the one utilized in the attosecond streaking technique.

  17. Fast algorithm for computing complex number-theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Liu, K. Y.; Truong, T. K.

    1977-01-01

    A high-radix FFT algorithm for computing transforms over FFT, where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.

  18. Fast algorithm for computing complex number-theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Liu, K. Y.; Truong, T. K.

    1977-01-01

    A high-radix FFT algorithm for computing transforms over FFT, where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.

  19. Fast Digital Correlations and Transforms Using Finite Field Techniques

    DTIC Science & Technology

    1979-12-01

    Signal Processing, Vol. ASSP-26, No. 6, December 1978. 14. I. S. Reed and T. K. Truong, "Fast Mersenne - Prime Transforms for Digital Filtering," Proceeding...Theorem for Computing Primitive Elements in the Field of Complex Integers Mersenne Prime ," (to be published) IEEE Trans. Acoustics, Speech, and Signal...Letters, Vol. 14, No. 15, 20th July, 1978. 20. I. S. Reed, T. K. Truong and R. L. Miller, "Correction to Fast Mersenne Prime Transforms for Digital

  20. Three phase transformer modelling for fast electromagnetic transient studies

    SciTech Connect

    Papadias, B.C.; Hatziargyriou, N.D.; Bakopoulos, J.A.; Prousalidis, J.M. . Electric Energy Systems Lab.)

    1994-04-01

    In this paper the overvoltages produced by switching the primary side of reactor loaded transformers are simulated using the Electromagnetic Transients Program (EMTP). Attention is focused on transformer modeling. Five general three-phase transformer models are used and from the results obtained, and comparisons with field tests positive conclusions concerning the reliability and the accuracy of these models in the study of switching fast electromagnetic transients are drawn.

  1. Compressive imaging using fast transform coding

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew; Calderbank, Robert

    2016-10-01

    We propose deterministic sampling strategies for compressive imaging based on Delsarte-Goethals frames. We show that these sampling strategies result in multi-scale measurements which can be related to the 2D Haar wavelet transform. We demonstrate the effectiveness of our proposed strategies through numerical experiments.

  2. Fast linear transformation for tiled images.

    PubMed

    Rao, A; Perens, B

    1996-01-01

    This work describes an efficient algorithm for linear coordinate transformation developed specifically for a tiled image processing system. A detailed description of the algorithm is presented, and its performance is compared with that of other techniques. The effect of image size on relative performance is analyzed and correlated with the tile-based storage technique.

  3. Methods for performing fast discrete curvelet transforms of data

    DOEpatents

    Candes, Emmanuel; Donoho, David; Demanet, Laurent

    2010-11-23

    Fast digital implementations of the second generation curvelet transform for use in data processing are disclosed. One such digital transformation is based on unequally-spaced fast Fourier transforms (USFFT) while another is based on the wrapping of specially selected Fourier samples. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. Both implementations are fast in the sense that they run in about O(n.sup.2 log n) flops for n by n Cartesian arrays or about O(N log N) flops for Cartesian arrays of size N=n.sup.3; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity.

  4. Efficient Computer Implementations of Fast Fourier Transforms.

    DTIC Science & Technology

    1980-12-01

    TRANSFORMS, THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment of...The Algorithm * of S. Winograd", NASA, Jet Propulsion Lab, California Ins.titute of Technology , Pasadena, CA, 15 February 79 (AS N79-19733). 1 ’ 192...M. :- E. ,._T-. OF THE A ’rY TO B E TRANFO:-:F ’. :3:’ -:f1 .QT E:-7T TE:-T FLAG3=1 IF PE :-L TRAN’-FORM :34"(1 TEST FLAG = IF IF ,OMLE. TRA;:FORM 7 T

  5. Computer program for fast Karhunen Loeve transform algorithm

    NASA Technical Reports Server (NTRS)

    Jain, A. K.

    1976-01-01

    The fast KL transform algorithm was applied for data compression of a set of four ERTS multispectral images and its performance was compared with other techniques previously studied on the same image data. The performance criteria used here are mean square error and signal to noise ratio. The results obtained show a superior performance of the fast KL transform coding algorithm on the data set used with respect to the above stated perfomance criteria. A summary of the results is given in Chapter I and details of comparisons and discussion on conclusions are given in Chapter IV.

  6. A fast complex integer convolution using a hybrid transform

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; K Truong, T.

    1978-01-01

    It is shown that the Winograd transform can be combined with a complex integer transform over the Galois field GF(q-squared) to yield a new algorithm for computing the discrete cyclic convolution of complex number points. By this means a fast method for accurately computing the cyclic convolution of a sequence of complex numbers for long convolution lengths can be obtained. This new hybrid algorithm requires fewer multiplications than previous algorithms.

  7. A fast complex integer convolution using a hybrid transform

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; K Truong, T.

    1978-01-01

    It is shown that the Winograd transform can be combined with a complex integer transform over the Galois field GF(q-squared) to yield a new algorithm for computing the discrete cyclic convolution of complex number points. By this means a fast method for accurately computing the cyclic convolution of a sequence of complex numbers for long convolution lengths can be obtained. This new hybrid algorithm requires fewer multiplications than previous algorithms.

  8. Multiplexed chirp waveform synthesizer

    DOEpatents

    Dudley, Peter A.; Tise, Bert L.

    2003-09-02

    A synthesizer for generating a desired chirp signal has M parallel channels, where M is an integer greater than 1, each channel including a chirp waveform synthesizer generating at an output a portion of a digital representation of the desired chirp signal; and a multiplexer for multiplexing the M outputs to create a digital representation of the desired chirp signal. Preferably, each channel receives input information that is a function of information representing the desired chirp signal.

  9. Fast transform decoding of nonsystematic Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Cheung, K.-M.; Reed, I. S.; Shiozaki, A.

    1989-01-01

    A Reed-Solomon (RS) code is considered to be a special case of a redundant residue polynomial (RRP) code, and a fast transform decoding algorithm to correct both errors and erasures is presented. This decoding scheme is an improvement of the decoding algorithm for the RRP code suggested by Shiozaki and Nishida, and can be realized readily on very large scale integration chips.

  10. Fast Fourier transform based direct integration algorithm for the linear canonical transform

    NASA Astrophysics Data System (ADS)

    Wang, Dayong; Liu, Changgeng; Wang, Yunxin; Zhao, Jie

    2011-03-01

    The linear canonical transform(LCT) is a parameterized linear integral transform, which is the general case of many well-known transforms such as the Fourier transform(FT), the fractional Fourier transform(FRT) and the Fresnel transform(FST). These integral transforms are of great importance in wave propagation problems because they are the solutions of the wave equation under a variety of circumstances. In optics, the LCT can be used to model paraxial free space propagation and other quadratic phase systems such as lens and graded-index media. A number of algorithms have been presented to fast compute the LCT. When they are used to compute the LCT, the sampling period in the transform domain is dependent on that in the signal domain. This drawback limits their applicability in some cases such as color digital holography. In this paper, a Fast-Fourier-Transform-based Direct Integration algorithm(FFT-DI) for the LCT is presented. The FFT-DI is a fast computational method of the Direct Integration(DI) for the LCT. It removes the dependency of the sampling period in the transform domain on that in the signal domain. Simulations and experimental results are presented to validate this idea.

  11. Fast Fourier transform based direct integration algorithm for the linear canonical transform

    NASA Astrophysics Data System (ADS)

    Wang, Dayong; Liu, Changgeng; Wang, Yunxin; Zhao, Jie

    2010-07-01

    The linear canonical transform(LCT) is a parameterized linear integral transform, which is the general case of many well-known transforms such as the Fourier transform(FT), the fractional Fourier transform(FRT) and the Fresnel transform(FST). These integral transforms are of great importance in wave propagation problems because they are the solutions of the wave equation under a variety of circumstances. In optics, the LCT can be used to model paraxial free space propagation and other quadratic phase systems such as lens and graded-index media. A number of algorithms have been presented to fast compute the LCT. When they are used to compute the LCT, the sampling period in the transform domain is dependent on that in the signal domain. This drawback limits their applicability in some cases such as color digital holography. In this paper, a Fast-Fourier-Transform-based Direct Integration algorithm(FFT-DI) for the LCT is presented. The FFT-DI is a fast computational method of the Direct Integration(DI) for the LCT. It removes the dependency of the sampling period in the transform domain on that in the signal domain. Simulations and experimental results are presented to validate this idea.

  12. Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware.

    PubMed

    Sorensen, T S; Schaeffter, T; Noe, K O; Hansen, M S

    2008-04-01

    We present a fast parallel algorithm to compute the nonequispaced fast Fourier transform on commodity graphics hardware (the GPU). We focus particularly on a novel implementation of the convolution step in the transform as it was previously its most time consuming part. We describe the performance for two common sample distributions in medical imaging (radial and spiral trajectories), and for different convolution kernels as these parameters all influence the speed of the algorithm. The GPU-accelerated convolution is up to 85 times faster as our reference, the open source NFFT library on a state-of-the-art 64 bit CPU. The accuracy of the proposed GPU implementation was quantitatively evaluated at the various settings. To illustrate the applicability of the transform in medical imaging, in which it is also known as gridding, we look specifically at non-Cartesian magnetic resonance imaging and reconstruct both a numerical phantom and an in vivo cardiac image.

  13. FAST AND EXACT SPIN-s SPHERICAL HARMONIC TRANSFORMS

    SciTech Connect

    Huffenberger, Kevin M.; Wandelt, Benjamin D.

    2010-08-15

    We demonstrate a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. In contrast to previous work, where spin transforms are computed independently, our algorithm permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d matrices evaluated at {pi}/2, which may be computed with efficient recursions. For any spin, the computation scales as O(L{sup 3}), where L is the band limit of the function. Our publicly available numerical implementation permits very high accuracy at modest computational cost. We discuss applications to the cosmic microwave background and gravitational lensing.

  14. Fast Fourier transformation results from gamma-ray burst profiles

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Norris, Jay P.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, W. S.

    1992-01-01

    Several gamma-ray bursts in the BATSE data have sufficiently long durations and complex temporal structures with pulses that appear to be spaced quasi-periodically. In order to test and quantify these periods we have applied fast Fourier transformations (FFT) to all these events. We have also performed cross spectral analyses of the FFT of the two extreme (high-low) energy bands in each case to determine the lead/lag of the pulses in different energies.

  15. Implementation and parallelization of fast matrix multiplication for a fast Legendre transform

    SciTech Connect

    Chen, Wentao

    1993-09-01

    An algorithm was presented by Alpert and Rokhlin for the rapid evaluation of Legendre transforms. The fast algorithm can be expressed as a matrix-vector product followed by a fast cosine transform. Using the Chebyshev expansion to approximate the entries of the matrix and exchanging the order of summations reduces the time complexity of computation from O(n{sup 2}) to O(n log n), where n is the size of the input vector. Our work has been focused on the implementation and the parallelization of the fast algorithm of matrix-vector product. Results have shown the expected performance of the algorithm. Precision problems which arise as n becomes large can be resolved by doubling the precision of the calculation.

  16. A note on parallel and pipeline computation of fast unitary transforms

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1974-01-01

    The parallel and pipeline organization of fast unitary transform algorithms such as the Fast Fourier Transform are discussed. The efficiency is pointed out of a combined parallel-pipeline processor of a transform such as the Haar transform in which 2 to the n minus 1 power hardware butterflies generate a transform of order 2 to the n power every computation cycle.

  17. Improved FFT-based numerical inversion of Laplace transforms via fast Hartley transform algorithm

    NASA Technical Reports Server (NTRS)

    Hwang, Chyi; Lu, Ming-Jeng; Shieh, Leang S.

    1991-01-01

    The disadvantages of numerical inversion of the Laplace transform via the conventional fast Fourier transform (FFT) are identified and an improved method is presented to remedy them. The improved method is based on introducing a new integration step length Delta(omega) = pi/mT for trapezoidal-rule approximation of the Bromwich integral, in which a new parameter, m, is introduced for controlling the accuracy of the numerical integration. Naturally, this method leads to multiple sets of complex FFT computations. A new inversion formula is derived such that N equally spaced samples of the inverse Laplace transform function can be obtained by (m/2) + 1 sets of N-point complex FFT computations or by m sets of real fast Hartley transform (FHT) computations.

  18. a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: Construction and Measurement of the Rotational Spectra of Divinyl Silane and 3,3-DIFLUOROPENTANE

    NASA Astrophysics Data System (ADS)

    Obenchain, Daniel A.; Steber, Amanda L.; Elliott, Ashley A.; Peebles, Rebecca A.; Peebles, Sean A.; Wurrey, Charles J.; Guirgis, Gamil A.

    2010-06-01

    A chirped-pulse Fourier-transform microwave (CP-FTMW) spectrometer based on the original Pate design has been constructed to allow analysis of any 480 MHz region in the 7 - 18 GHz range. A 1 μs chirped-pulse (0 - 240 MHz) from an arbitrary function generator is mixed with output from a microwave synthesizer and used to polarize a supersonic gas expansion; the resulting free induction decay is collected over 20 μs and Fourier-transformed on a 500 MHz oscilloscope to produce a rotational spectrum. A variety of molecules have now been studied with this instrument and results will be presented for numerous conformers of divinyl silane (predicted μtotal = 0.6 - 0.7 D) and the more polar 3,3-difluoropentane (predicted μtotal = 2.5 - 2.8 D). Two of the three possible conformers of divinyl silane were assigned (both having a C_1=C_2-Si-C_3 dihedral angle of -120° and a {C_2-Si-C_3=C_4} dihedral of either 0° (C_1 symmetry) or -120° (C_2 symmetry)). For 3,3-difluoropentane, three of the four possible {conformers} were identified: anti-gauche (C_1), gauche-gauche (C_2) and anti-anti (C2v). While rotational spectra for only the silicon isotopologues were observed for divinyl silane, measurement of the 13C spectra of 3,3-difluoropentane allowed heavy atom structure determinations for the anti-gauche and gauche-gauche conformers. Initial assignments of all spectra were made on the CP-FTMW {spectrometer}, and a Balle-Flygare FTMW spectrometer was used to compare frequencies of measured transitions and also to provide Stark effect data. Substitution (r_s) and inertial fit (r_0) structures will be compared with computational data and instrumental details will be presented. G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S.T. Shipman, B.H. Pate, Rev. Sci. Instrum., 79, (2008), 053103.

  19. Dispersive Fourier transformation for fast continuous single-shot measurements

    NASA Astrophysics Data System (ADS)

    Goda, K.; Jalali, B.

    2013-02-01

    Dispersive Fourier transformation is an emerging measurement technique that overcomes the speed limitations of traditional optical instruments and enables fast continuous single-shot measurements in optical sensing, spectroscopy and imaging. Using chromatic dispersion, dispersive Fourier transformation maps the spectrum of an optical pulse to a temporal waveform whose intensity mimics the spectrum, thus allowing a single-pixel photodetector to capture the spectrum at a scan rate significantly beyond what is possible with conventional space-domain spectrometers. Over the past decade, this method has brought us a new class of real-time instruments that permit the capture of rare events such as optical rogue waves and rare cancer cells in blood, which would otherwise be missed using conventional instruments. In this Review, we discuss the principle of dispersive Fourier transformation and its implementation across a wide range of diverse applications.

  20. Intravascular ultrasound chirp imaging

    NASA Astrophysics Data System (ADS)

    Maresca, D.; Jansen, K.; Renaud, G.; van Soest, G.; Li, X.; Zhou, Q.; de Jong, N.; Shung, K. K.; van der Steen, A. F. W.

    2012-01-01

    We demonstrate the feasibility of intravascular ultrasound (IVUS) chirp imaging as well as chirp reversal ultrasound contrast imaging at intravascular ultrasound frequency. Chirp excitations were emitted with a 34 MHz single crystal intravascular transducer and compared to conventional Gaussian-shaped pulses of equal acoustic pressure. The signal to noise ratio of the chirp images was increased by up to 9 dB relative to the conventional images. Imaging of contrast microbubbles was implemented by chirp reversal, achieving a contrast to tissue ratio of 12 dB. The method shows potential for intravascular imaging of structures in and beyond coronary atherosclerotic plaques including vasa vasorum.

  1. Ordered fast fourier transforms on a massively parallel hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Tong, Charles; Swarztrauber, Paul N.

    1989-01-01

    Design alternatives for ordered Fast Fourier Transformation (FFT) algorithms were examined on massively parallel hypercube multiprocessors such as the Connection Machine. Particular emphasis is placed on reducing communication which is known to dominate the overall computing time. To this end, the order and computational phases of the FFT were combined, and the sequence to processor maps that reduce communication were used. The class of ordered transforms is expanded to include any FFT in which the order of the transform is the same as that of the input sequence. Two such orderings are examined, namely, standard-order and A-order which can be implemented with equal ease on the Connection Machine where orderings are determined by geometries and priorities. If the sequence has N = 2 exp r elements and the hypercube has P = 2 exp d processors, then a standard-order FFT can be implemented with d + r/2 + 1 parallel transmissions. An A-order sequence can be transformed with 2d - r/2 parallel transmissions which is r - d + 1 fewer than the standard order. A parallel method for computing the trigonometric coefficients is presented that does not use trigonometric functions or interprocessor communication. A performance of 0.9 GFLOPS was obtained for an A-order transform on the Connection Machine.

  2. Fast transforms for acoustic imaging--part II: applications.

    PubMed

    Ribeiro, Flávio P; Nascimento, Vítor H

    2011-08-01

    In Part I ["Fast Transforms for Acoustic Imaging-Part I: Theory," IEEE Transactions on Image Processing], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT.

  3. Chirped-Pulse Fourier-Transform Microwave/pulsed Uniform Flow Spectrometer: the Low-Temperature Pulsed Uniform Supersonic Flow System

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Prozument, Kirill; Oldham, James; Joalland, Baptiste; Zack, Lindsay; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur

    2014-06-01

    Traditional techniques (e.g. REMPI, imaging, etc.) that are used to study reaction dynamics are able to provide a great deal of fundamental information about systems containing atoms and smaller molecules. However, as larger molecules and more complex systems are targeted, it becomes more of a challenge to determine isomer- and vibrational level-specific information and accurate branching ratios. In order to complement existing methods and obtain information about larger systems, a Ka-band (26-40 GHz) chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer has been has been constructed. The system integrates a pulsed uniform supersonic flow (PUSF) source to ensure that experimental conditions, such as temperature and density, are well-known and constant. This PUSF system is based around a high-throughput piezoelectric stack valve, a Laval nozzle, and simple pumping scheme. This system is able to produce cold, uniform flows with densities on the order of 1016 cm-3 that persist for up to 20 cm from the nozzle exit. A description of this system and its characterization will be presented.

  4. High pressure phase transformation in iron under fast compression

    SciTech Connect

    Bastea, M; Bastea, S; Becker, R

    2009-07-07

    We present experimental results on the solid-solid, {alpha} to {epsilon} phase transformation kinetics of iron under high pressure dynamic compression. We observe kinetic features - velocity loops - similar with the ones recently reported to occur when water is frozen into its ice VII phase under comparable experimental conditions. We analyze this behavior in terms of general ideas coupling the steady sample compression with phase nucleation and growth with a pressure dependent phase interface velocity. The model is used to predict the response of iron when steadily driven across the {alpha} - {epsilon} phase boundary on very short time scales, including those envisioned to be achieved in ultra-fast laser experiments.

  5. Uncertainty transformation via Hopf bifurcation in fast-slow systems.

    PubMed

    Kuehn, Christian

    2017-04-01

    Propagation of uncertainty in dynamical systems is a significant challenge. Here we focus on random multiscale ordinary differential equation models. In particular, we study Hopf bifurcation in the fast subsystem for random initial conditions. We show that a random initial condition distribution can be transformed during the passage near a delayed/dynamic Hopf bifurcation: (i) to certain classes of symmetric copies, (ii) to an almost deterministic output, (iii) to a mixture distribution with differing moments and (iv) to a very restricted class of general distributions. We prove under which conditions the cases (i)-(iv) occur in certain classes vector fields.

  6. Blind radial distortion compensation from video using fast Hough transform

    NASA Astrophysics Data System (ADS)

    Kunina, I. A.; Terekhin, A. P.; Gladilin, S. A.; Nikolaev, D. P.

    2017-02-01

    This paper presents a method of radial distortion automatic compensation on video from an unknown camera. The proposed algorithm estimates the distortion parameters by analyzing a sequence of video frames. It does not require any calibration objects, but is based on the assumption that the original scene contained straight lines. The method tries to perform such radial distortion correction that makes lines look generally straighter. To estimate the overall curvature of the lines we propose to use the fast Hough transform; without actually detecting them in the image. The proposed algorithm has been tested on real data.

  7. Fast Padé Transform Accelerated CSI for Hyperpolarized MRS

    PubMed Central

    Hansen, Esben Szocska Søvsø; Kim, Sun; Miller, Jack J.; Geferath, Marcus; Morrell, Glen; Laustsen, Christoffer

    2016-01-01

    The fast Padé transform (FPT) is a method of spectral analysis that can be used to reconstruct nuclear magnetic resonance spectra from truncated free induction decay signals with superior robustness and spectral resolution compared with conventional Fourier analysis. The aim of this study is to show the utility of FPT in reducing of the scan time required for hyperpolarized 13C chemical shift imaging (CSI) without sacrificing the ability to resolve a full spectrum. Simulations, phantom, and in vivo hyperpolarized [1-13C] pyruvate CSI data were processed with FPT and compared with conventional analysis methods. FPT shows improved stability and spectral resolution on truncated data compared with the fast Fourier transform and shows results that are comparable to those of the model-based fitting methods, enabling a reduction in the needed acquisition time in 13C CSI experiments. Using FPT can reduce the readout length in the spectral dimension by 2–6 times in 13C CSI compared with conventional Fourier analysis without sacrificing the spectral resolution. This increased speed is crucial for 13C CSI because T1 relaxation considerably limits the available scan time. In addition, FPT can also yield direct quantification of metabolite concentration without the additional peak analysis required in conventional Fourier analysis. PMID:28018967

  8. WAVEMOTH-FAST SPHERICAL HARMONIC TRANSFORMS BY BUTTERFLY MATRIX COMPRESSION

    SciTech Connect

    Seljebotn, D. S.

    2012-03-01

    We present Wavemoth, an experimental open source code for computing scalar spherical harmonic transforms (SHTs). Such transforms are ubiquitous in astronomical data analysis. Our code performs substantially better than existing publicly available codes owing to improvements on two fronts. First, the computational core is made more efficient by using small amounts of pre-computed data, as well as paying attention to CPU instruction pipelining and cache usage. Second, Wavemoth makes use of a fast and numerically stable algorithm based on compressing a set of linear operators in a pre-computation step. The resulting SHT scales as O(L{sup 2}log{sup 2} L) for the resolution range of practical interest, where L denotes the spherical harmonic truncation degree. For low- and medium-range resolutions, Wavemoth tends to be twice as fast as libpsht, which is the current state-of-the-art implementation for the HEALPix grid. At the resolution of the Planck experiment, L {approx} 4000, Wavemoth is between three and six times faster than libpsht, depending on the computer architecture and the required precision. Because of the experimental nature of the project, only spherical harmonic synthesis is currently supported, although adding support for spherical harmonic analysis should be trivial.

  9. Inverse synthetic aperture radar imaging of targets with complex motions based on modified chirp rate-quadratic chirp rate distribution for cubic phase signal

    NASA Astrophysics Data System (ADS)

    Yanyan, Li; Tao, Su; Jibin, Zheng

    2015-01-01

    For targets with complex motions, the time-varying Doppler frequency deteriorates inverse synthetic aperture radar (ISAR) images. After range alignment and phase adjustment, azimuth echoes in a range cell can be modeled as multicomponent cubic phase signals (CPSs). The chirp rate and the quadratic chirp rate of the CPS are identified as the causes of the time-varying Doppler frequency; thus, it is necessary to estimate these two parameters correctly to obtain a well-focused ISAR image. The parameter-estimation algorithm based on the modified chirp rate-quadratic chirp rate distribution (M-CRQCRD) is proposed for the CPS and applied to the ISAR imaging of targets with complex motions. The computational cost of M-CRQCRD is low, because it can be implemented by the fast Fourier transform (FFT) and the nonuniform FFT easily. Compared to two representative parameter-estimation algorithms, the M-CRQCRD can acquire a higher antinoise performance due to the introduction of an optimal lag-time. Through simulations and analyses for the synthetic radar data, the effectiveness of the M-CRQCRD and the imaging algorithm based on the M-CRQCRD are verified.

  10. Investigating molecular structures: Rapidly examining molecular fingerprints through fast passage broadband fourier transform microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Grubbs, Garry Smith Smitty, II

    Microwave spectroscopy is a gas phase technique typically geared toward measuring the rotational transitions of molecules. The information contained in this type of spectroscopy pertains to a molecules structure, both geometric and electronic, which give insight into a molecule's chemistry. Typically this type of spectroscopy is high resolution, but narrowband ≤1 MHz in frequency. This is achieved by tuning a cavity, exciting a molecule with electromagnetic radiation in the microwave region, turning the electromagnetic radiation off, and measuring a signal from the molecular relaxation in the form of a free induction decay (FID). The FID is then Fourier transformed to give a frequency of the transition. "Fast passage" is defined as a sweeping of frequencies through a transition at a time much shorter (≤10 mus) than the molecular relaxation (≈100 mus). Recent advancements in technology have allowed for the creation of these fast frequency sweeps, known as "chirps", which allow for broadband capabilities. This work presents the design, construction, and implementation of one such novel, high-resolution microwave spectrometer with broadband capabilities. The manuscript also provides the theory, technique, and motivations behind building of such an instrument. In this manuscript it is demonstrated that, although a gas phase technique, solids, liquids, and transient species may be studied with the spectrometer with high sensitivity, making it a viable option for many molecules wanting to be rotationally studied. The spectrometer has a relative correct intensity feature that, when coupled with theory, may ease the difficulty in transition assignment and facilitate dynamic chemical studies of the experiment. Molecules studied on this spectrometer have, in turn, been analyzed and assigned using common rotational spectroscopic analysis. Detailed theory on the analysis of these molecules has been provided. Structural parameters such as rotational constants and

  11. Towards Solvation of a Chiral Alpha-Hydroxy Ester: Broadband Chirp and Narrow Band Cavity Fouirier Transform Microwave Spectroscopy of Methyl Lactate-Water Clusters

    NASA Astrophysics Data System (ADS)

    Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie

    2013-06-01

    Methyl lactate (ML), a chiral alpha-hydroxy ester, has attracted much attention as a prototype system in studies of chirality transfer,[1] solvation effects on chiroptical signatures,[2] and chirality recognition.[3] It has multiple functional groups which can serve both as a hydrogen donor and acceptor. By applying rotational spectroscopy and high level ab initio calculations, we examine the delicate competition between inter- and intramolecular hydrogen-bonding in the ML-water clusters. Broadband rotational spectra obtained with a chirp Fourier transform microwave (FTMW) spectrometer, reveal that the insertion conformations are the most favourable ones in the binary and ternary solvated complexes. In the insertion conformations, the water molecule(s) inserts itself (themselves) into the existing intramolecular hydrogen-bonded ring formed between the alcoholic hydroxyl group and the oxygen of the carbonyl group of ML. The final frequency measurements have been carried out using a cavity based FTMW instrument where internal rotation splittings due to the ester methyl group have also been detected. A number of insertion conformers with subtle structural differences for both the binary and ternary complexes have been identified theoretically. The interconversion dynamics of these conformers and the identification of the most favorable conformers will be discussed. 1. C. Merten, Y. Xu, Angew. Chem. Int. Ed., 2013, 52, 2073 -2076. 2. M. Losada, Y. Xu, Phys. Chem. Chem. Phys., 2007, 9, 3127-3135; Y. Liu, G. Yang, M. Losada, Y. Xu, J. Chem. Phys., 2010, 132, 234513/1-11. 3. A. Zehnacker, M. Suhm, Angew. Chem. Int. Ed. 2008, 47, 6970 - 6992.

  12. The Pure Rotational Spectra of Acetaldehyde and Glycolaldehyde Isotopologues Measured in Natural Abundance by Chirped-Pulse Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Carroll, P. Brandon; McGuire, Brett A.; Weaver, Susanna L. Widicus; Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.

    2011-06-01

    Complex organic molecules (COMs) such as glycolaldehyde (HOCH_2CHO) and acetaldehyde (CH_3CHO) have now been detected in numerous interstellar sources. Glycolaldehyde has been detected in two hot cores, Sgr B2(N) and G31.41+0.31. Acetaldehyde has been observed in various sources, including the translucent clouds CB 17 and CB 24, cold molecular clouds such as TMC-1 and L134N, and hot cores such as Sgr B2(N), NGC 6334F, and the Orion Compact Ridge. Such COMs are known to have rich and complex spectra that add to the line confusion problem faced in observations of molecule-rich sources. Laboratory studies of excited vibrational states and isotopologues for known COMs therefore provide important guidance for sorting out the interstellar line confusion problem. Detection of isotopologues and determination of their abundance relative to the main isotopic species would also provide important constraints on interstellar chemical models, as these isotopic ratios are dependent on the formation mechanism for each species. The isotopic ratios for 13C/12C, 18O/16O, and D/H are known in various interstellar environments for simple molecules, but remain relatively unexplored for more complex species such as glycolaldehyde and acetaldehyde. The rotational spectra of the main isotopologues for glycolaldehyde and acetaldehyde have been well-characterized through microwave, millimeter, and submillimeter laboratory spectroscopy. Here we present the laboratory characterization of the isotopologues of acetaldehyde and glycolaldehyde in natural abundance by chirped pulse Fourier transform microwave spectroscopy (CP-FTMW). This spectroscopic information lays the groundwork for additional higher-frequency studies that can be directly applied to the interpretation of millimeter and submillimeter observations.

  13. Fast Fourier Transform Co-processor (FFTC), towards embedded GFLOPs

    NASA Astrophysics Data System (ADS)

    Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Witte, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland; Kopp, Nicholas

    2012-10-01

    Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co-Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment. In frame of the ESA activity "Fast Fourier Transform DSP Co-processor (FFTC)" (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following: • Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP. • The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance. The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT-based processing tasks. A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses. The paper will give an overview on the project, including the results of the validation of the FFTC ASIC prototypes.

  14. Fast Fourier Transform Co-Processor (FFTC)- Towards Embedded GFLOPs

    NASA Astrophysics Data System (ADS)

    Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Wite, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland

    2012-08-01

    Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co- Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment.In frame of the ESA activity “Fast Fourier Transform DSP Co-processor (FFTC)” (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following:Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP.The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance.The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT- based processing tasks.A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses.The presentation will give and overview on the project, including the results of the validation of the FFTC ASIC prototypes.

  15. A method to perform a fast fourier transform with primitive image transformations.

    PubMed

    Sheridan, Phil

    2007-05-01

    The Fourier transform is one of the most important transformations in image processing. A major component of this influence comes from the ability to implement it efficiently on a digital computer. This paper describes a new methodology to perform a fast Fourier transform (FFT). This methodology emerges from considerations of the natural physical constraints imposed by image capture devices (camera/eye). The novel aspects of the specific FFT method described include: 1) a bit-wise reversal re-grouping operation of the conventional FFT is replaced by the use of lossless image rotation and scaling and 2) the usual arithmetic operations of complex multiplication are replaced with integer addition. The significance of the FFT presented in this paper is introduced by extending a discrete and finite image algebra, named Spiral Honeycomb Image Algebra (SHIA), to a continuous version, named SHIAC.

  16. On the abstracted dataflow complexity of Fast Fourier Transforms

    SciTech Connect

    Boehm, A.P.W.; Hiromoto, R.E.; Kelly, K.A.; Ashley, J.M.

    1992-05-01

    In this paper we develop and analyze the simulated performance of codes for the Fast Fourier Transform written in If and targeted for execution on Motorola`s dataflow machine Monsoon. The FFT application is of interest because of its computational parallelism, its requirement for global communications, and its array element data dependences. We use the parallel profiling simulator Id World to study the dataflow performance of various implementations. Our approach is comparative. We study two approaches, a recursive and an iterative one, and in each version we examine the effect of a variety of implementations. We contend that only through such comparative evaluations can significant insight be gained in understanding the computational and structural details of functional algorithms.

  17. Eliminating the picket fence effect of the fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Yan Feng; Chen, Kui Fu

    2008-04-01

    The canonical fast Fourier transform (FFT) is afflicted by the picket fence effect (PFE). This can be ascribed to the simplification caused by viewing non-parametrically. For a periodic signal composed of frequency well-separated tones, a complex formula for retrieving a tone's frequency can be derived in light of the parametric relationship among the FFT spectral lines around each tone's main-lobe. Compared to the modulus-based interpolated FFT, this complex spectrum-based approach is less sensitive to spectral leakage. The frequency, amplitude and phase retrieving formulas are presented for the generalized Hamming window, which is used frequently in physics but seldom mentioned in the interpolated FFT literature. Numerical simulation shows that the FPE can be eliminated efficiently by this approach.

  18. Fast quantum state engineering via universal SU(2) transformation

    NASA Astrophysics Data System (ADS)

    Huang, Bi-Hua; Kang, Yi-Hao; Chen, Ye-Hong; Wu, Qi-Cheng; Song, Jie; Xia, Yan

    2017-08-01

    We introduce a simple yet versatile protocol to inverse engineer the time-dependent Hamiltonian in two- and three-level systems. In the protocol, by utilizing a universal SU(2) transformation, a given speedup goal can be obtained with large freedom to select the control parameters. As an illustration example, the protocol is applied to perform population transfer between nitrogen-vacancy (NV) centers in diamond. Numerical simulation shows that the speed of the present protocol is fast compared with that of the adiabatic process. Moreover, the protocol is also tolerant to decoherence and experimental parameter fluctuations. Therefore, the protocol may be useful for designing an experimental feasible Hamiltonian to engineer a quantum system.

  19. OCTAD-S: digital fast Fourier transform spectrometers by FPGA

    NASA Astrophysics Data System (ADS)

    Iwai, Kazumasa; Kubo, Yûki; Ishibashi, Hiromitsu; Naoi, Takahiro; Harada, Kenichi; Ema, Kenji; Hayashi, Yoshinori; Chikahiro, Yuichi

    2017-07-01

    We have developed a digital fast Fourier transform spectrometer made of an analog-to-digital converter (ADC) and a field-programmable gate array (FPGA). The base instrument has independent ADC and FPGA modules, which allow us to implement different spectrometers in a relatively easy manner. Two types of spectrometers have been instrumented: one with 4.096 GS/s sampling speed and 2048 frequency channels and the other with 2.048 GS/s sampling speed and 32,768 frequency channels. The signal processing in these spectrometers has no dead time, and the accumulated spectra are recorded in external media every 8 ms. A direct sampling spectroscopy up to 8 GHz is achieved by a microwave track-and-hold circuit, which can reduce the analog receiver in front of the spectrometer. Highly stable spectroscopy with a wide dynamic range was demonstrated in a series of laboratory experiments and test observations of solar radio bursts.

  20. Detection of a chirping electromagnetic signal

    SciTech Connect

    Stearns, S.D.

    1989-01-01

    A matched chirp transform (MCT) method for detecting a dispersive electromagnetic pulse is described. The unique feature of this transform is that it gives a distribution of signal amplitude over time rather than frequency, and thereby simplifies signal detection and identification in the case described here. In the MCT method, the incoming signal is matched to a set of signal segments that chirp in accordance with an expected model of the dispersive medium. The performance of the MCT method is compared with that of a standard periodogram method of frequency measurement. 6 refs., 5 figs.

  1. High-resolution wide-band fast Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Klein, B.; Hochgürtel, S.; Krämer, I.; Bell, A.; Meyer, K.; Güsten, R.

    2012-06-01

    We describe the performance of our latest generations of sensitive wide-band high-resolution digital fast Fourier transform spectrometer (FFTS). Their design, optimized for a wide range of radio astronomical applications, is presented. Developed for operation with the GREAT far infrared heterodyne spectrometer on-board SOFIA, the eXtended bandwidth FFTS (XFFTS) offers a high instantaneous bandwidth of 2.5 GHz with 88.5 kHz spectral resolution and has been in routine operation during SOFIA's Basic Science since July 2011. We discuss the advanced field programmable gate array (FPGA) signal processing pipeline, with an optimized multi-tap polyphase filter bank algorithm that provides a nearly loss-less time-to-frequency data conversion with significantly reduced frequency scallop and fast sidelobe fall-off. Our digital spectrometers have been proven to be extremely reliable and robust, even under the harsh environmental conditions of an airborne observatory, with Allan-variance stability times of several 1000 s. An enhancement of the present 2.5 GHz XFFTS will duplicate the number of spectral channels (64k), offering spectroscopy with even better resolution during Cycle 1 observations.

  2. Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick

    2016-05-01

    The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a few orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. The method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.

  3. A new hybrid algorithm for computing a fast discrete Fourier transform

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1978-01-01

    For certain long transform lengths, Winograd's algorithm for computing the discrete Fourier transform is extended considerably. This is accomplished by performing the cyclic convolution, required by Winograd's method, with the Mersenne-prime number theoretic transform. This new algorithm requires fewer multiplications than either the standard fast Fourier transform or Winograd's more conventional algorithm.

  4. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  5. Wide and fast dispersion tuning of a picosecond OPO based on aperiodic quasi-phase matching using an axially chirped volume Bragg grating.

    PubMed

    Descloux, Delphine; Walter, Guillaume; Cadiou, Erwan; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Melkonian, Jean-Michel; Raybaut, Myriam; Drag, Cyril; Godard, Antoine

    2016-09-01

    We report on a widely tunable synchronously pumped picosecond optical parametric oscillator (OPO) combining an aperiodically poled MgO-doped LiNbO3 crystal as a broadband gain medium and an axially chirped volume Bragg grating as a spectral filtering dispersive element. Translation of the Bragg grating along the beam axis enables wavelength tuning over 215 nm around 3.82 μm and provides spectral narrowing. Rapid continuous tuning over 150 nm in 100 ms is demonstrated.

  6. A new fast algorithm for computing a complex number: Theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Liu, K. Y.; Truong, T. K.

    1977-01-01

    A high-radix fast Fourier transformation (FFT) algorithm for computing transforms over GF(sq q), where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.

  7. A new fast algorithm for computing a complex number: Theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Liu, K. Y.; Truong, T. K.

    1977-01-01

    A high-radix fast Fourier transformation (FFT) algorithm for computing transforms over GF(sq q), where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.

  8. Fast Fourier Transform Chlorine Nuclear Quadrupole Resonance Spectroscopy.

    NASA Astrophysics Data System (ADS)

    D'Iorio, Marie

    A nuclear quadrupole resonance spectrometer operating in the frequency range 1-40 MHz was updated for fast Fourier transform spectroscopy and coupled to a Nicolet 1180 computer and data acquisition system. It was used with a low temperature cryostat for studies shown down to liquid helium temperature and with a high pressure/low temperature system for studies down to liquid nitrogen temperature and up to six kilobars. The study of the ('35)Cl NQR spectrum of K(,2)OsCl(,6) at 298 K and 77 K revealed the presence of a satellite associated with the nearest neighbour chlorines to H('+) ion impurities located at vacant octahedral sties. This result is in agreement with the predictions of a point charge model calculation. A residence time for the H('+) ion was deduced and is consistent with the result obtained from dielectric measurements. A detailed study of the ('35)Cl NQR frequency in K(,2)ReCl(,6) was performed in the temperature range 85 - 130K where two structural phase transitions occur, and at pressures from 1 to 2643 bars. A number of unusual features were revealed and discussed as the possible signature of incommensurate behavior. The primary effect of the pressure was to alter the temperatures at which the phase transitions occurred. Contrary to the behavior expected, the transition temperature for the antiferrorotative transition has a negative pressure coefficient. The spin-lattice and spin-spin relaxation times for the ('35)Cl and ('37)Cl isotopes of the one dimensional XY system, PrCl(,3), were measured at 4.2K. The spin-lattice relaxation is exponential and dominated by magnetic dipole -dipole interactions. The spin-spin relaxation is non-exponential and dominated by electric quadrupolar interactions arising from the coupling of the electric dipole moment at the praseodymium site and the quadrupole moment of the chlorine ion. The temperature dependence of the spin-spin relaxation time was investigated. At 17.4 K both magnetic dipolar and electric

  9. A new hybrid algorithm for computing a fast discrete Fourier transform

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1979-01-01

    In this paper for certain long transform lengths, Winograd's algorithm for computing the discrete Fourier transform (DFT) is extended considerably. This is accomplished by performing the cyclic convolution, required by Winograd's method, with the Mersenne prime number-theoretic transform developed originally by Rader. This new algorithm requires fewer multiplications than either the standard fast Fourier transform (FFT) or Winograd's more conventional algorithm. However, more additions are required.

  10. Dynamic propagation of symmetric Airy pulses with initial chirps in an optical fiber

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohui; Huang, Xianwei; Deng, Yangbao; Tan, Chao; Bai, Yanfeng; Fu, Xiquan

    2017-09-01

    We analytically and numerically investigate the propagation dynamics of initially chirped symmetric Airy pulses in an optical fiber. The results show that the positive chirps act to promote the interference in generating a focal point on the propagation axis, while the negative chirps tend to suppress the focusing effect, as compared to conventional unchirped symmetric Airy pulses. The numerical results demonstrate that the linear propagation of chirped symmetric Airy pulses depend considerably on the chirp parameter and the primary lobe position. In the anomalous dispersion region, positively chirped symmetric Airy pulses first undergo an initial compression, and reach a foci due to the opposite acceleration, and then experience a lossy inversion transformation, and come to the opposite facing focal position. The impact of truncation coefficient and Kerr nonlinearity on the chirped symmetric Airy pulses propagation is also disclosed separately.

  11. Fast orthogonal transforms and generation of Brownian paths

    PubMed Central

    Leobacher, Gunther

    2012-01-01

    We present a number of fast constructions of discrete Brownian paths that can be used as alternatives to principal component analysis and Brownian bridge for stratified Monte Carlo and quasi-Monte Carlo. By fast we mean that a path of length n can be generated in O(nlog(n)) floating point operations. We highlight some of the connections between the different constructions and we provide some numerical examples. PMID:23471545

  12. Parallel fast Fourier transforms for non power of two data

    SciTech Connect

    Semeraro, B.D.

    1994-09-01

    This report deals with parallel algorithms for computing discrete Fourier transforms of real sequences of length N not equal to a power of two. The method described is an extension of existing power of two transforms to sequences with N a product of small primes. In particular, this implementation requires N = 2{sup p}3{sup q}5{sup r}. The communication required is the same as for a transform of length N = 2{sup p}. The algorithm presented is intended for use in the solution of partial differential equations, or in any situation in which a large number of forward and backward transforms must be performed and in which the Fourier Coefficients need not be ordered. This implementation is a one dimensional FFT but the techniques are applicable to multidimensional transforms as well. The algorithm has been implemented on a 128 node Intel Ipsc/860.

  13. All-Fiber, Directly Chirped Laser Source for Chirped-Pulse-Amplification

    NASA Astrophysics Data System (ADS)

    Xin, Ran

    Chirped-pulse-amplification (CPA) technology is widely used to produce ultra-short optical pulses (sub picosecond to femtoseconds) with high pulse energy. A chirped pulse laser source with flexible dispersion control is highly desirable as a CPA seed. This thesis presents an all-fiber, directly chirped laser source (DCLS) that produces nanosecond, linearly-chirped laser pulses at 1053 nm for seeding high energy CPA systems. DCLS produces a frequency chirp on an optical pulse through direct temporal phase modulation. DCLS provides programmable control for the temporal phase of the pulse, high pulse energy and diffraction-limited beam performance, which are beneficial for CPA systems. The DCLS concept is first described. Its key enabling technologies are identified and their experimental demonstration is presented. These include high-precision temporal phase control using an arbitrary waveform generator, multi-pass phase modulation to achieve high modulation depth, regenerative amplification in a fiber ring cavity and a negative feedback system that controls the amplifier cavity dynamics. A few technical challenges that arise from the multi-pass architecture are described and their solutions are presented, such as polarization management and gain-spectrum engineering in the DCLS fiber cavity. A DCLS has been built and its integration into a high energy OPCPA system is demonstrated. DCLS produces a 1-ns chirped pulse with a 3-nm bandwidth. The temporal phase and group delay dispersion on the DCLS output pulse is measured using temporal interferometry. The measured temporal phase has an ˜1000 rad amplitude and is close to a quadratic shape. The chirped pulse is amplified from 0.9 nJ to 76 mJ in an OPCPA system. The amplified pulse is compressed to close to its Fourier transform limit, producing an intensity autocorrelation trace with a 1.5-ps width. Direct compressed-pulse duration control by adjusting the phase modulation drive amplitude is demonstrated. Limitation

  14. Development of out-of-core fast Fourier transform software for the connection machine. Final report

    SciTech Connect

    Sweet, R.; Wilson, J.

    1995-10-01

    This report describes the algorithm and implementation of an out-of-core Fast Fourier Transform routine for the Thinking Machines Corp. CM-5 parallel computer. The software has the capability of transforming multi-dimensional arrays that are both real and complex.

  15. Hybrid Chirped Pulse Amplification

    SciTech Connect

    Jovanovic, I; Barty, C P J

    2002-05-07

    We present a novel chirped pulse amplification method which combines optical parametric amplification and laser amplification. We have demonstrated this hybrid CPA concept with a combination of beta-barium borate and Ti:sapphire. High-efficiency, multi-terawatt compatible amplification is achieved without gain narrowing and without electro-optic modulators using a simple commercial pump laser.

  16. Fast and parallel spectral transform algorithms for global shallow water models. Doctoral thesis

    SciTech Connect

    Jakob, R.

    1993-01-01

    The dissertation examines spectral transform algorithms for the solution of the shallow water equations on the sphere and studies their implementation and performance on shared memory vector multiprocessors. Beginning with the standard spectral transform algorithm in vorticity divergence form and its implementation in the Fortran based parallel programming language Force, two modifications are researched. First, the transforms and matrices associated with the meridional derivatives of the associated Legendre functions are replaced by corresponding operations with the spherical harmonic coefficients. Second, based on the fast Fourier transform and the fast multipole method, a lower complexity algorithm is derived that uses fast transformations between Legendre and interior Fourier nodes, fast surface spherical truncation and a fast spherical Helmholz solver. Because the global shallow water equations are similar to the horizontal dynamical component of general circulation models, the results can be applied to spectral transform numerical weather prediction and climate models. In general, the derived algorithms may speed up the solution of time dependent partial differential equations in spherical geometry.

  17. Fast calculation of computer-generated spherical hologram by spherical harmonic transform

    NASA Astrophysics Data System (ADS)

    Sando, Y.; Barada, D.; Jackin, B. J.; Yatagai, T.

    2017-05-01

    This paper presents a fast calculation method for spherical computer-generated hologram by using a spherical harmonic transform. A three-dimensional (3D) object defined in the 3D Cartesian coordinate system is numerically Fourier transformed with fast Fourier transforms (FFTs). Fourier components on the spherical surface of the radius 1/λ are extracted. The wavefronts on the spherical surface can be calculated from the single spherical Fourier components. This paper reveals the analytical diffraction integral between the spherical Fourier components and the wavefront on the spherical surface. This diffraction integral is expressed in the form of convolution integral on the sphere and can be calculated very fast based on the spherical harmonic transform. By the numerical simulation, the validity and the effectiveness of our proposal has been verified.

  18. Fast infrared maritime target detection: Binarization via histogram curve transformation

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Dong, Lili; Zhao, Ming; Xu, Wenhai

    2017-06-01

    To improve the accuracy and efficiency of infrared maritime target detection under different environmental conditions and for different kinds of targets, we proposed a novel self-adaptive binarization algorithm which is based on the histogram curve transformation. The main contribution was a rapid and robust method for detecting infrared maritime targets that have positive local contrasts. This method has low computational complexity and high detection accuracy under a variety of conditions and enhances the accuracy and speed of single-frame detection for infrared maritime distressed targets. The proposed histogram rightwards cyclic shift binarization (HRCSB) first transforms the histogram curve (HC) according to a self-adaptive gray level transformation equation. Then, the background subtraction based on Gaussian filtering can be used to generate an enhanced image. Finally, the final HC can be extracted from this enhanced image. After a cyclic shift of the final HC, the average gray level of the shifted HC can reveal an effective threshold for detecting targets from the enhanced image. Experimental results show that, compared with four existing algorithms, the proposed HRCSB can successfully detect targets under a variety of conditions while keeping a low false alarm rate and a low computational complexity. Thus, the proposed HRCSB algorithm has potential for excellent applicability.

  19. Chirp and polarization control of femtosecond molecular fragmentation

    NASA Astrophysics Data System (ADS)

    Goswami, T.; Das, D. K.; Karthick Kumar, S. K.; Goswami, D.

    2012-03-01

    We explore the simultaneous effect of chirp and polarization as the two control parameters for non-resonant photo-dissociation of n-propyl benzene. Experiments performed over a wide range of laser intensities show that these two control knobs behave mutually exclusively. Specifically, for the coherently enhanced fragments (C3H3 +, C5H5 +) with negatively chirped pulses and C6H5 + with positively chirped pulses, polarization effect is the same as compared to that in the case of transform-limited pulses. Though a change in polarization affects the overall fragmentation efficiency, the fragmentation pattern of n-propyl benzene molecule remains unaffected in contrast to the chirp case.

  20. Chirp and polarization control of femtosecond molecular fragmentation.

    PubMed

    Goswami, T; Das, D K; Kumar, S K Karthick; Goswami, D

    2012-03-01

    We explore the simultaneous effect of chirp and polarization as the two control parameters for non-resonant photo-dissociation of n-propyl benzene. Experiments performed over a wide range of laser intensities show that these two control knobs behave mutually exclusively. Specifically, for the coherently enhanced fragments (C3H3(+), C5H5(+)) with negatively chirped pulses and C6H5(+) with positively chirped pulses, polarization effect is the same as compared to that in the case of transform-limited pulses. Though a change in polarization affects the overall fragmentation efficiency, the fragmentation pattern of n-propyl benzene molecule remains unaffected in contrast to the chirp case.

  1. Fast white-light interferometry with Hilbert transform evaluation

    NASA Astrophysics Data System (ADS)

    Pavliček, Pavel; Mikeska, Erik

    2016-12-01

    White-light interferometry is an established method for the measurement of the shape of objects. Unlike to the classical interferometry, white-light interferometry can measure the shape of objects with rough surface. A major disadvantage of white-light interferometry is the low scanning speed and thus the long measurement time. This disadvantage can be overcome by a strong undersampling and Hilbert transform evaluation. We propose a system that measures the shape of objects with rough surface with the scanning speed of more than 100 μm/s with the standard frame rate of 25 fps. The measurement uncertainty is comparable with that obtained with standard design.

  2. Sparse matrix transform for fast projection to reduced dimension

    SciTech Connect

    Theiler, James P; Cao, Guangzhi; Bouman, Charles A

    2010-01-01

    We investigate three algorithms that use the sparse matrix transform (SMT) to produce variance-maximizing linear projections to a lower-dimensional space. The SMT expresses the projection as a sequence of Givens rotations and this enables computationally efficient implementation of the projection operator. The baseline algorithm uses the SMT to directly approximate the optimal solution that is given by principal components analysis (PCA). A variant of the baseline begins with a standard SMT solution, but prunes the sequence of Givens rotations to only include those that contribute to the variance maximization. Finally, a simpler and faster third algorithm is introduced; this also estimates the projection operator with a sequence of Givens rotations, but in this case, the rotations are chosen to optimize a criterion that more directly expresses the dimension reduction criterion.

  3. Ordered fast Fourier transforms on a massively parallel hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Tong, Charles; Swarztrauber, Paul N.

    1991-01-01

    The present evaluation of alternative, massively parallel hypercube processor-applicable designs for ordered radix-2 decimation-in-frequency FFT algorithms gives attention to the reduction of computation time-dominating communication. A combination of the order and computational phases of the FFT is accordingly employed, in conjunction with sequence-to-processor maps which reduce communication. Two orderings, 'standard' and 'cyclic', in which the order of the transform is the same as that of the input sequence, can be implemented with ease on the Connection Machine (where orderings are determined by geometries and priorities. A parallel method for trigonometric coefficient computation is presented which does not employ trigonometric functions or interprocessor communication.

  4. Advantages of Karhunen Loève transform over fast Fourier transform for planetary radar and space debris detection

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2007-04-01

    The present article describes that the range of any radiotelescope (and radar in general) may be increased by virtue of software, if one replaces the fast Fourier transform by the Karhunen Loève transform. The range increases with the inverse of the fourth root of the signal-to-noise ratio when this ratio decreases. Thus, the range on any radiotelescope (and radar) may be increased without changing the hardware at all, but by changing the software only. This improvement in the range of the radiotelescope is currently implemented at the 32-m antenna located at Medicina, near Bologna, in Italy, for both SETI and general radioastronomy.

  5. Broadband spectroscopy of dynamic impedances with short chirp pulses.

    PubMed

    Min, M; Land, R; Paavle, T; Parve, T; Annus, P; Trebbels, D

    2011-07-01

    An impedance spectrum of dynamic systems is time dependent. Fast impedance changes take place, for example, in high throughput microfluidic devices and in operating cardiovascular systems. Measurements must be as short as possible to avoid significant impedance changes during the spectrum analysis, and as long as possible for enlarging the excitation energy and obtaining a better signal-to-noise ratio (SNR). The authors propose to use specific short chirp pulses for excitation. Thanks to the specific properties of the chirp function, it is possible to meet the needs for a spectrum bandwidth, measurement time and SNR so that the most accurate impedance spectrogram can be obtained. The chirp wave excitation can include thousands of cycles when the impedance changes slowly, but in the case of very high speed changes it can be shorter than a single cycle, preserving the same excitation bandwidth. For example, a 100 kHz bandwidth can be covered by the chirp pulse with durations from 10 µs to 1 s; only its excitation energy differs also 10(5) times. After discussing theoretical short chirp properties in detail, the authors show how to generate short chirps in the microsecond range with a bandwidth up to a few MHz by using digital synthesis architectures developed inside a low-cost standard field programmable gate array.

  6. Effect of pulse profile and chirp on a laser wakefield generation

    SciTech Connect

    Zhang Xiaomei; Shen Baifei; Ji Liangliang; Wang Wenpeng; Xu Jiancai; Yu Yahong; Yi Longqing; Wang Xiaofeng; Hafz, Nasr A. M.; Kulagin, V.

    2012-05-15

    A laser wakefield driven by an asymmetric laser pulse with/without chirp is investigated analytically and through two-dimensional particle-in-cell simulations. For a laser pulse with an appropriate pulse length compared with the plasma wavelength, the wakefield amplitude can be enhanced by using an asymmetric un-chirped laser pulse with a fast rise time; however, the growth is small. On the other hand, the wakefield can be greatly enhanced for both positively chirped laser pulse having a fast rise time and negatively chirped laser pulse having a slow rise time. Simulations show that at the early laser-plasma interaction stage, due to the influence of the fast rise time the wakefield driven by the positively chirped laser pulse is more intense than that driven by the negatively chirped laser pulse, which is in good agreement with analytical results. At a later time, since the laser pulse with positive chirp exhibits opposite evolution to the one with negative chirp when propagating in plasma, the wakefield in the latter case grows more intensely. These effects should be useful in laser wakefield acceleration experiments operating at low plasma densities.

  7. FITVQSPC: Fast and Improved Transformed Vector Quantization Using Static Pattern Clustering

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, R.; Punidha, R.

    In this paper, a new fast transformed vector quantization (TVQ) algorithm with static pattern clustering is proposed for coding of color images. To speed up the design process of VQ with better compression ratio, the features of transform coding and VQ are combined in this work. The transformed training set is obtained using integer based orthogonal polynomials transform with reduced computational complexity. The proposed method generates a single codebook for all the three color components, because of the inter-correlation property of the proposed transformation. The proposed algorithm reduces codebook construction time by clustering the static input patterns and eliminates redundant computations at the successive iterations of codebook optimization phase of LBG codebook training process. The computation time is also reduced by choosing only non homogeneous vectors for codebook initialization from the large volume of transformed input training set. The experiments are conducted and compared with existing technique.

  8. Performance analyses for fast variable optical attenuator-based optical current transformer

    NASA Astrophysics Data System (ADS)

    Wei, Pu; Chen, Chen; Wang, Xuefeng; Shan, Xuekang; Sun, Xiaohan

    2014-06-01

    In this paper, we analyze the performance of the electro-optic hybrid optical current transformer (HOCT) proposed by ourselves for high-voltage metering and protective relaying application. The transformer makes use of a fast variable optical attenuator (FVOA) to modulate the lightwave according to the voltage from the primary current sensor, such as low-power current transformer (LPCT). In order to improve the performance of the transformer, we use an optic-electro feedback loop with the PID control algorithm to compensate the nonlinearity of the FVOA. The linearity and accuracy of the transformer were analyzed and tested. The results indicate that the nonlinearity of the FVOA is completely compensated by the loop and the ratio and phase errors are under 0.07% and 5 minutes respectively, under the working power of less than 1 mW power. The transformer can be immune to the polarization and wavelength drift, and also robust against the environmental interference.

  9. Fast Solvers for Transient Hydraulic Tomography based on Laplace transform

    NASA Astrophysics Data System (ADS)

    Bakhos, T.; Saibaba, A.; Kitanidis, P. K.

    2013-12-01

    Transient Hydraulic Tomography (THT) is a method to estimate the parameters hydraulic conductivity and specific storage, from measurements of hydraulic heads or pressure obtained in a series of interference tests in aquifer geologic formation such as an aquifer (i.e., pumping at one location and depth while measuring the response at several others). These measurements can be used to reconstruct the spatial variation of hydraulic parameters by solving a nonlinear inverse problem, which we tackle using the geostatistical approach. A central challenge associated with the application of the geostatistical approach to THT, is the computational cost associated with constructing the Jacobian - which represents the sensitivity of the measurements to the unknown parameters. This essentially requires repeated solutions to the 'forward problem' and the 'adjoint problem' for determination of derivatives, which are both time-dependent parabolic partial differential equations. To solve the 'forward problem', we use a Laplace Transform based exponential time integrator combined with a Krylov subspace based method for solving shifted systems. This approach allows us to independently evaluate the transient problem at different time instants at (almost) the cost of solving one steady-state groundwater equation. A similar approach can be used to accelerate the solution of the 'adjoint problem' as well. As we demonstrate, this approach dramatically lowers the computational cost associated with evaluating the Jacobian and as a result, the reconstruction of the parameters. The performance of our algorithm is demonstrated on some challenging synthetic examples; in particular, we apply it to large-scale inverse problems arising from transient hydraulic tomography.

  10. A compact representation for the auditory full-range response and its fast denoising using an image filter based on the Radon transform.

    PubMed

    Kohl, Manuel C; Strauss, Daniel J; Kohl, Manuel C; Strauss, Daniel J; Strauss, Daniel J; Kohl, Manuel C

    2016-08-01

    The Auditory Brainstem, Middle-Latency and Late Responses, a class of event-related potentials (ERPs), are of considerable interest in neuroscience research as robust neural correlates of different processing stages along the auditory pathway. While most research to date centers around one of the responses at a time for practical reasons, recent efforts indicate a paradigm shift towards acquiring them together, enabling the simultaneous monitoring of all auditory processing stages from the brainstem to the cortex. In this paper, we introduce a compact representation for this Auditory Full-Range Response (AFRR) as an ERP map with adaptive sampling rate, making it suitable for computationally inexpencive image filtering. Furthermore, we propose a novel algorithm for the fast denoising of such ERP maps based on the Radon Transform and its inversion by filtered backprojection. Its performance is compared qualitatively to a Gaussian means filter using a real-world chirp-evoked AFRR recording. The algorithm exhibits good noise suppression as well as high preservance of the single-response structure, making it a promising denoising tool for future ERP studies.

  11. Unexpected Behavior on Nonlinear Tunneling of Chirped Ultrashort Soliton Pulse in Non-Kerr Media with Raman Effect

    NASA Astrophysics Data System (ADS)

    Rajan, M. S. Mani

    2016-08-01

    In this manuscript, the ultrashort soliton pulse propagation through nonlinear tunneling in cubic quintic media is investigated. The effect of chirping on propagation characteristics of the soliton pulse is analytically investigated using similarity transformation. In particular, we investigate the propagation dynamics of ultrashort soliton pulse through dispersion barrier for both chirp and chirp-free soliton. By investigating the obtained soliton solution, we found that chirping has strong influence on soliton dynamics such as pulse compression with amplification. These two important dynamics of chirped soliton in cubic quintic media open new possibilities to improve the solitonic communication system. Moreover, we surprisingly observe that a dispersion well is formed for the chirped case whereas a barrier is formed for the chirp-free case, which has certain applications in the construction of logic gate devices to achieve ultrafast switching.

  12. Nonuniform fast Fourier transform-based fast back-projection algorithm for stepped frequency continuous wave ground penetrating radar imaging

    NASA Astrophysics Data System (ADS)

    Qu, Lele; Yin, Yuqing

    2016-10-01

    Stepped frequency continuous wave ground penetrating radar (SFCW-GPR) systems are becoming increasingly popular in the GPR community due to the wider dynamic range and higher immunity to radio interference. The traditional back-projection (BP) algorithm is preferable for SFCW-GPR imaging in layered mediums scenarios for its convenience and robustness. However, the existing BP imaging algorithms are usually very computationally intensive, which limits their practical applications to SFCW-GPR imaging. To solve the above problem, a fast SFCW-GPR BP imaging algorithm based on nonuniform fast Fourier transform (NUFFT) technique is proposed in this paper. By reformulating the traditional BP imaging algorithm into the evaluations of NUFFT, the computational efficiency of NUFFT is exploited to reduce the computational complexity of the imaging reconstruction. Both simulation and experimental results have verified the effectiveness and improvement of computational efficiency of the proposed imaging method.

  13. Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform

    NASA Astrophysics Data System (ADS)

    Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin

    2013-12-01

    Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.

  14. Measuring residual stress of anisotropic thin film by fast Fourier transform.

    PubMed

    Tien, Chuen-Lin; Zeng, Hung-Da

    2010-08-02

    A new method for the measurement of anisotropic stress in thin films based on 2-D fast Fourier transform (FFT) is presented. A modified Twyman-Green interferometer was used for surface topography measurement. A fringe normalization technique was also used to improve the phase extraction technique efficiently. The measurement of anisotropic stress in obliquely deposited MgF(2) thin film was demonstrated.

  15. The uselessness of the Fast Gauss Transform for summing Gaussian radial basis function series

    NASA Astrophysics Data System (ADS)

    Boyd, John P.

    2010-02-01

    The Fast Gauss Transform is an algorithm for summing a series of Gaussians which is sometimes much faster than direct summation. Gaussian series in d dimensions are of the form ∑j=1N λjexp(-[α/h]2 ‖x-xj‖2) where the xj are the centers, h is the average separation between centers and α is the relative inverse width parameter. We show that the speed-up of the Fast Gauss Transform is bounded by a factor Ω(α). When α≪1, Ω can be large. However, when applied to Gaussian radial basis function interpolation, it is difficult to apply the Gaussian basis in this parameter range because the interpolation matrix is exponentially ill-conditioned: the condition number κ˜(1/2)exp{π2}/{4α2} for a uniform, one-dimensional grid, and larger still in two dimensions or when the grid is irregular. Furthermore, the Gaussian RBF interpolant is ill-conditioned for most series in the sense that the interpolant is the small difference of terms with exponentially large coefficients. Fornberg and Piret developed a "QR-basis" that ameliorates this difficulty for approximations on the surface of a sphere, but because the recombined basis functions are perturbed spherical harmonics, not Gaussians, the Fast Gauss Transform is no longer applicable. The solution of the interpolation matrix system by a preconditioned iteration is less sensitive to condition numbers than direct methods because iterations are self-correcting and also because the preconditioning reduces the spread of the eigenvalues. However, each iteration requires a matrix-vector multiply which is fast only if this operation can be performed by some species of Fast Summation. When α˜O(1), alas, we show that Ω is not large and the Fast Gauss Transform is not accelerative. Gaussian RBFs are unusual among RBF species through the absence of long-range interactions due to the exponential decay of the Gaussians with distance from their centers; many other RBF species do have long-range interactions, and it is well

  16. A fast D.F.T. algorithm using complex integer transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1978-01-01

    Winograd (1976) has developed a new class of algorithms which depend heavily on the computation of a cyclic convolution for computing the conventional DFT (discrete Fourier transform); this new algorithm, for a few hundred transform points, requires substantially fewer multiplications than the conventional FFT algorithm. Reed and Truong have defined a special class of finite Fourier-like transforms over GF(q squared), where q = 2 to the p power minus 1 is a Mersenne prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 61. In the present paper it is shown that Winograd's algorithm can be combined with the aforementioned Fourier-like transform to yield a new algorithm for computing the DFT. A fast method for accurately computing the DFT of a sequence of complex numbers of very long transform-lengths is thus obtained.

  17. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.

    PubMed

    Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook

    2016-09-19

    The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.

  18. Quantifying chirp in sleep spindles.

    PubMed

    Schönwald, Suzana V; Carvalho, Diego Z; Dellagustin, Guilherme; de Santa-Helena, Emerson L; Gerhardt, Günther J L

    2011-04-15

    Sleep spindles are considered as a marker of integrity for thalamo-cortical circuits. Recently, attention has been given to internal frequency variation in sleep spindles. In this study, a procedure based on matching pursuit with a Gabor-chirplet dictionary was applied in order to measure chirp rate in atoms representing sleep spindles, also categorized into negative, positive or zero chirp types. The sample comprised 707 EEG segments containing visual sleep spindles, labeled TP, obtained from nine healthy male volunteers (aged 20-34, average 24.6 y). Control datasets were 333 non-REM (NREM) sleep background segments and 287 REM sleep intervals, each with 16s duration. Analyses were carried out on the C3-A2 EEG channel. In TP and NREM groups, the proportion of non-null chirp types was non-random and total chirp distribution was asymmetrical towards negative values, in contrast to REM. Median negative chirp rate in the TP and NREM groups was significantly lower than in REM (-0.4 Hz/s vs -0.3 Hz/s, P < 0.05). Negative chirp atoms outnumbered positives by 50% in TP, while in NREM and REM, they were, respectively, only 22% and 12% more prevalent. TP negative chirp atoms were significantly higher in amplitude compared to positive or zero types. Considering individual subjects, 88.9% had a TP negative/positive chirp ratio above 1 (mean ± sd=1.64 ± 0.65). We propose there is increasing evidence, corroborated by the present study, favoring systematic measurement of sleep spindle chirp rate or internal frequency variation. Preferential occurrence of negatively chirping spindles is consistent with the hypothesis of electrophysiological modulation of neocortical memory consolidation.

  19. The effect of fault segmentation on the dynamics of fast-slipping oceanic transform faults

    NASA Astrophysics Data System (ADS)

    Gregg, P. M.; Behn, M. D.; Lin, J.; Grove, T. L.; Montési, L. G.

    2007-12-01

    The majority of oceanic transform faults (OTFs) systems along the fast-spreading equatorial East Pacific Rise are segmented into two or more strike-slip fault strands as a result of plate motion reorganization. Fresh basaltic lava sampled from these locations (e.g., the Siqueiros and Garrett OTFs) indicate that active crustal accretion is occurring within these transform systems. New Residual Mantle Bouguer gravity Anomalies (RMBA) calculated along fast-slipping OTFs are found to be more negative than the RMBA values along adjacent ridge segments. One possible explanation for these observations is enhanced magmatic upwelling and crustal accretion at intra- transform spreading centers (ITSC) and within the transform valley of the fast-slipping OTFs. In this study, we examine two end-member 3-D thermal models (constant viscosity rheology versus visco-plastic rheology) to explore mantle flow and melt extraction beneath segmented transform faults. Melt fraction is calculated using the parameterized fractional melting model of Kinzler and Grove (JGR, 1992a, 1992b, and 1993), and the fractional crystallization models of Yang et al. (Cont. Min. Pet., 1996). We evaluate the sensitivity of these models to various parameters including transform fault geometry, mantle potential temperature, and initial mantle composition. Preliminary results for a 100 km-long transform fault, slipping at 100 mm/yr, segmented by a single 10 km-long ITSC indicate that incorporating a visco-plastic rheology results in an approximately 35 percent decrease in the brittle fault area (< 600°C isotherm) compared to a constant viscosity model. Assuming upward melt migration along the base of the lithosphere, we find that crustal production is enhanced at ITSC by 1-1.5 km compared to the adjacent ridge segments. However, crustal thickness variations are sensitive to transform fault geometry and assumptions made about the pooled melt region. For example, if melt migration is not permitted across the

  20. 5 Hz, >250 mJ Optical Parametric Chirped-Pulse Amplifier at 1053 nm

    SciTech Connect

    Bagnoud, V.; Begishev, I.A.; Guardalben, M.J.; Puth, J.; Zuegel, J.D.

    2005-07-15

    A 250 mJ, 5 Hz repetition rate optical parametric chirped-pulse amplifier with near-Fourier-transform-limited, 430 fs pulses and a beam that can be focused to near the diffraction limit is demonstrated.

  1. Excitation of Chirping Whistler Waves in a Laboratory Plasma

    NASA Astrophysics Data System (ADS)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Gekelman, W. N.; Pribyl, P.

    2015-12-01

    Whistler mode chorus emissions with a characteristic frequency chirp are an important magnetospheric wave, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified. The research was funded by NSF/DOE Plasma Partnership program by grant DE-SC0010578. Work was done at the Basic Plasma Science Facility (BAPSF) also funded by NSF/DOE.

  2. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping

    NASA Astrophysics Data System (ADS)

    Song, Kechen; Hu, Shaopeng; Wen, Xin; Yan, Yunhui

    2016-09-01

    This paper presents a novel, simple, yet fast 3D shape measurement method using Fourier transform profilometry. Different from the conventional Fourier transform profilometry, this proposed method introduces the binocular stereo vision and employs two image pairs (i.e., original image pairs and fringe image pairs) to restructure 3D shape. In this proposed method, instead of phase unwrapping algorithm, a coarse disparity map is adopted as a constraint condition to realize phase matching using wrapped phase. Since the local phase matching and sub-pixel disparity refinement are proposed to obtain high measuring accuracy, high-quality phase is not required. The validity of the proposed method is verified by experiments.

  3. Ultra-fast dynamic compression technique to study kinetics of phase transformations in Bismuth

    SciTech Connect

    Smith, R F; Kane, J O; Eggert, J H; Saculla, M D; Jankowski, A F; Bastea, M; Hicks, D G; Collins, G W

    2007-12-28

    Pre-heated Bi was ramp compressed within 30 ns to a peak stress of {approx}11 GPa to explore structural phase transformation kinetics under dynamic loading conditions. Under these ultra-fast compression time-scales the equilibrium Bi I-II phase boundary is overpressurized by {Delta}P {approx} 0.8 GPa. {Delta}P is observed to increase logarithmically with strain rate, {var_epsilon}, above 10{sup 6} s{sup -1}. Estimates from a kinetics model predict that the Bi I phase is fully transformed within 3 ns.

  4. Ultrabroadband optical chirp linearization for precision metrology applications.

    PubMed

    Roos, Peter A; Reibel, Randy R; Berg, Trenton; Kaylor, Brant; Barber, Zeb W; Babbitt, Wm Randall

    2009-12-01

    We demonstrate precise linearization of ultrabroadband laser frequency chirps via a fiber-based self-heterodyne technique to enable extremely high-resolution, frequency-modulated cw laser-radar (LADAR) and a wide range of other metrology applications. Our frequency chirps cover bandwidths up to nearly 5 THz with frequency errors as low as 170 kHz, relative to linearity. We show that this performance enables 31-mum transform-limited LADAR range resolution (FWHM) and 86 nm range precisions over a 1.5 m range baseline. Much longer range baselines are possible but are limited by atmospheric turbulence and fiber dispersion.

  5. Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Lebensohn, R. A.

    2009-09-01

    In this work, we compare finite element and fast Fourier transform approaches for the prediction of the micromechanical behavior of polycrystals. Both approaches are full-field approaches and use the same visco-plastic single crystal constitutive law. We investigate the texture and the heterogeneity of the inter- and intragranular stress and strain fields obtained from the two models. Additionally, we also look into their computational performance. Two cases—rolling of aluminum and wire drawing of tungsten—are used to evaluate the predictions of the two models. Results from both the models are similar, when large grain distortions do not occur in the polycrystal. The finite element simulations were found to be highly computationally intensive, in comparison with the fast Fourier transform simulations. Figure 9 was corrected in this article on the 25 August 2009. The corrected electronic version is identical to the print version.

  6. Simulation of micromechanical behavior of polycrystals: finite elements vs. fast Fourier transforms

    SciTech Connect

    Lebensohn, Ricardo A; Prakash, Arun

    2009-01-01

    In this work, we compare finite element and fast Fourier transform approaches for the prediction of micromechanical behavior of polycrystals. Both approaches are full-field approaches and use the same visco-plastic single crystal constitutive law. We investigate the texture and the heterogeneity of the inter- and intragranular, stress and strain fields obtained from the two models. Additionally, we also look into their computational performance. Two cases - rolling of aluminium and wire drawing of tungsten - are used to evaluate the predictions of the two mode1s. Results from both the models are similar, when large grain distortions do not occur in the polycrystal. The finite element simulations were found to be highly computationally intensive, in comparison to the fast Fourier transform simulations.

  7. Transionospheric chirp event classifier

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.; Freeman, M.J.

    1995-09-01

    In this paper we will discuss a project designed to provide computer recognition of the transionospheric chirps/pulses measured by the Blackbeard (BB) satellite, and expected to be measured by the upcoming FORTE satellite. The Blackbeard data has been perused by human means -- this has been satisfactory for the relatively small amount of data taken by Blackbeard. But with the advent of the FORTE system, which by some accounts might ``see`` thousands of events per day, it is important to provide a software/hardware method of accurately analyzing the data. In fact, we are providing an onboard DSP system for FORTE, which will test the usefulness of our Event Classifier techniques in situ. At present we are constrained to work with data from the Blackbeard satellite, and will discuss the progress made to date.

  8. Transionospheric chirp event classifier

    NASA Astrophysics Data System (ADS)

    Argo, P. E.; Fitzgerald, T. J.; Freeman, M. J.

    In this paper we will discuss a project designed to provide computer recognition of the transionospheric chirps/pulses measured by the Blackbeard (BB) satellite, and expected to be measured by the upcoming FORTE satellite. The Blackbeard data has been perused by human means - this has been satisfactory for the relatively small amount of data taken by Blackbeard. But with the advent of the FORTE system, which by some accounts might 'see' thousands of events per day, it is important to provide a software/hardware method of accurately analyzing the data. In fact, we are providing an onboard DSP system for FORTE, which will test the usefulness of our Event Classifier techniques in situ. At present we are constrained to work with data from the Blackbeard satellite, and will discuss the progress made to date.

  9. A Fast Fourier transform stochastic analysis of the contaminant transport problem

    USGS Publications Warehouse

    Deng, F.W.; Cushman, J.H.; Delleur, J.W.

    1993-01-01

    A three-dimensional stochastic analysis of the contaminant transport problem is developed in the spirit of Naff (1990). The new derivation is more general and simpler than previous analysis. The fast Fourier transformation is used extensively to obtain numerical estimates of the mean concentration and various spatial moments. Data from both the Borden and Cape Cod experiments are used to test the methodology. Results are comparable to results obtained by other methods, and to the experiments themselves.

  10. Using single buffers and data reorganization to implement a multi-megasample fast Fourier transform

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1992-01-01

    Data ordering in large fast Fourier transforms (FFT's) is both conceptually and implementationally difficult. Discribed here is a method of visualizing data orderings as vectors of address bits, which enables the engineer to use more efficient data orderings and reduce double-buffer memory designs. Also detailed are the difficulties and algorithmic solutions involved in FFT lengths up to 4 megasamples (Msamples) and sample rates up to 80 MHz.

  11. The Sharper Image: Implementing a Fast Fourier Transform (FFT) to Enhance a Video-Captured Image.

    DTIC Science & Technology

    1994-01-01

    mathematical system to quantitatively analyze and compare complex wave forms. In 1307, Baron Jean - Baptiste - Joseph Fourier proved that any periodic wave can be...HOVEY ROAD, PENSACOLA, FL 32508-1046 NAMRL Special Report 94-1 THE SHARPER IMAGE: 16 IMPLEMENTING A FAST FOURIER TRANSFORM (FFT) TO ENHANCE A VIDEO...most visually impaired persons fail to discern the higher spatial frequencies present in an image. Based on the Fourier analysis of vision, Peli et al

  12. Fast Fourier transform for Voigt profile: Comparison with some other algorithms

    NASA Astrophysics Data System (ADS)

    Abousahl, S.; Gourma, M.; Bickel, M.

    1997-02-01

    There are different algorithms describing the Voigt profile. This profile is encountered in many areas of physics which could be limited by the resolution of the instrumentation used to measure it and by other phenomena like the interaction between the emitted waves and matter. In nuclear measurement field, the codes used to characterise radionucleides rely on algorithms resolving the Voigt profile equation. The Fast Fourier Transform (FFT) algorithm allows the validation of some algorithms.

  13. A fast Fourier transform on multipoles (FFTM) algorithm for solving Helmholtz equation in acoustics analysis.

    PubMed

    Ong, Eng Teo; Lee, Heow Pueh; Lim, Kian Meng

    2004-09-01

    This article presents a fast algorithm for the efficient solution of the Helmholtz equation. The method is based on the translation theory of the multipole expansions. Here, the speedup comes from the convolution nature of the translation operators, which can be evaluated rapidly using fast Fourier transform algorithms. Also, the computations of the translation operators are accelerated by using the recursive formulas developed recently by Gumerov and Duraiswami [SIAM J. Sci. Comput. 25, 1344-1381(2003)]. It is demonstrated that the algorithm can produce good accuracy with a relatively low order of expansion. Efficiency analyses of the algorithm reveal that it has computational complexities of O(Na), where a ranges from 1.05 to 1.24. However, this method requires substantially more memory to store the translation operators as compared to the fast multipole method. Hence, despite its simplicity in implementation, this memory requirement issue may limit the application of this algorithm to solving very large-scale problems.

  14. Stability and oscillations in a slow-fast flexible joint system with transformation delay

    NASA Astrophysics Data System (ADS)

    Jiang, Shan-Ying; Xu, Jian; Yan, Yao

    2014-10-01

    Flexible joints are usually used to transfer velocities in robot systems and may lead to delays in motion transformation due to joint flexibility. In this paper, a link-rotor structure connected by a flexible joint or shaft is firstly modeled to be a slow-fast delayed system when moment of inertia of the lightweight link is far less than that of the heavy rotor. To analyze the stability and oscillations of the slow-fast system, the geometric singular perturbation method is extended, with both slow and fast manifolds expressed analytically. The stability of the slow manifold is investigated and critical boundaries are obtained to divide the stable and the unstable regions. To study effects of the transformation delay on the stability and oscillations of the link, two quantitatively different driving forces derived from the negative feedback of the link are considered. The results show that one of these two typical driving forces may drive the link to exhibit a stable state and the other kind of driving force may induce a relaxation oscillation for a very small delay. However, the link loses stability and undergoes regular periodic and bursting oscillation when the transformation delay is large. Basically, a very small delay does not affect the stability of the slow manifold but a large delay affects substantially.

  15. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations.

    PubMed

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M; Liu, Yi; Grelu, Philippe

    2016-06-01

    We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.

  16. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Liu, Yi; Grelu, Philippe

    2016-06-01

    We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.

  17. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Goswami, Tapas; Karthick Kumar, S. K.; Dutta, Aveek; Goswami, Debabrata

    2009-06-01

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H 3 + and C5H 5 + in the case of negatively chirped pulses and C6H 5 + in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  18. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses.

    PubMed

    Goswami, Tapas; Karthick Kumar, S K; Dutta, Aveek; Goswami, Debabrata

    2009-06-12

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H3+ and C5H5+ in the case of negatively chirped pulses and C6H5+ in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  19. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    PubMed

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  20. Region-based image denoising through wavelet and fast discrete curvelet transform

    NASA Astrophysics Data System (ADS)

    Gu, Yanfeng; Guo, Yan; Liu, Xing; Zhang, Ye

    2008-10-01

    Image denoising always is one of important research topics in the image processing field. In this paper, fast discrete curvelet transform (FDCT) and undecimated wavelet transform (UDWT) are proposed for image denoising. A noisy image is first denoised by FDCT and UDWT separately. The whole image space is then divided into edge region and non-edge regions. After that, wavelet transform is performed on the images denoised by FDCT and UDWT respectively. Finally, the resultant image is fused through using both of edge region wavelet cofficients of the image denoised by FDCT and non-edge region wavelet cofficients of the image denoised by UDWT. The proposed method is validated through numerical experiments conducted on standard test images. The experimental results show that the proposed algorithm outperforms wavelet-based and curvelet-based image denoising methods and preserve linear features well.

  1. Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform

    NASA Astrophysics Data System (ADS)

    Gan, Shuwei; Wang, Shoudong; Chen, Yangkang; Chen, Xiaohong; Huang, Weiling; Chen, Hanming

    2016-07-01

    According to the compressive sensing (CS) theory in the signal-processing field, we proposed a new CS approach based on a fast projection onto convex sets (POCS) algorithm with sparsity constraint in the seislet transform domain. The seislet transform appears to be the sparest among the state-of-the-art sparse transforms. The FPOCS can obtain much faster convergence than conventional POCS (about two thirds of conventional iterations can be saved), while maintaining the same recovery performance. The FPOCS can obtain faster and better performance than FISTA for relatively cleaner data but will get slower and worse performance than FISTA, which becomes a reference to decide which algorithm to use in practice according the noise level in the seismic data. The seislet transform based CS approach can achieve obviously better data recovery results than f - k transform based scenarios, considering both signal-to-noise ratio (SNR), local similarity comparison, and visual observation, because of a much sparser structure in the seislet transform domain. We have used both synthetic and field data examples to demonstrate the superior performance of the proposed seislet-based FPOCS approach.

  2. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana.

    PubMed

    Shimada, Takashi L; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2010-02-01

    The creation of transgenic plants has contributed extensively to the advancement of plant science. Establishing homozygous transgenic lines is time-consuming and laborious, and using antibiotics or herbicides to select transformed plants may adversely affect the growth of some transgenic plants. Here we describe a novel technology, which we have named FAST (fluorescence-accumulating seed technology), that overcomes these difficulties. Although this technology was designed for use in Arabidopsis thaliana, it may be adapted for use in other plants. The technology is based on the expression of a fluorescent co-dominant screenable marker FAST, under the control of a seed-specific promoter, on the oil body membrane. The FAST marker harbors a fusion gene encoding either GFP or RFP with an oil body membrane protein that is prominent in seeds. The marker protein was only expressed in a specific organ (i.e. in dry seeds) and at a specific time (i.e. during dormancy), which are desirable features of selectable and/or screenable markers. This technique provides an immediate and non-destructive method for identifying transformed dry seeds. It identified the heterozygous transformed seeds among the T(1) population and the homozygous seeds among the T(2) population with a false-discovery rate of <1%. The FAST marker reduces the length of time required to produce homozygous transgenic lines from 7.5 to 4 months. Furthermore, it does not require sterilization, clean-bench protocols or the handling of large numbers of plants. This technology should greatly facilitate the generation of transgenic Arabidopsis plants.

  3. An actively cooled 120-kW coaxial winding transformer for fast charging electric vehicles

    SciTech Connect

    Klontz, K.W.; Divan, D.M.; Novotny, D.W.

    1995-11-01

    A 120-kW coaxial winding transformer has been built and tested to verify previous indications that a high power transformer is feasible with the key attributes of this novel design, namely: low leakage inductance, minimal effect of leakage field on core losses, low copper losses, and a convenient nesting structure well-suited for separability of the windings. The power transfer capability is more than double that of any previously published result for coaxial winding transformers. The application chosen for the fabricated transformer was an inductive coupler for fast charging of electric vehicles. Presented are the key parametric decisions, their impact on transformer fabrication and characteristics, and the results of these design choices as observed in the experimental data. The final design has active cooling to facilitate high power density and a separable core to allow the primary and secondary windings to be coupled and uncoupled. The experimental data shows performance better than expected, with a magnetizing to leakage inductance ratio of 1,000:1, efficiency well over 99% and power density of 25kW/kg.

  4. Delineation of First-Order Elastic Property Closures for Hexagonal Metals Using Fast Fourier Transforms

    PubMed Central

    Landry, Nicholas W.; Knezevic, Marko

    2015-01-01

    Property closures are envelopes representing the complete set of theoretically feasible macroscopic property combinations for a given material system. In this paper, we present a computational procedure based on fast Fourier transforms (FFTs) for delineation of elastic property closures for hexagonal close packed (HCP) metals. The procedure consists of building a database of non-zero Fourier transforms for each component of the elastic stiffness tensor, calculating the Fourier transforms of orientation distribution functions (ODFs), and calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP closures were computed using the generalized spherical harmonics (GSH) representation and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us to successfully calculate the closures for a range of HCP metals without invoking any sample symmetry assumption. The methodology presented here facilitates for the first time computation of property closures involving normal-shear coupling stiffness coefficients. We found that the representation of these property linkages using FFTs need more terms compared to GSH representations. However, the use of FFT representations reduces the computational time involved in producing the property closures due to the use of fast FFT algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes. PMID:28793566

  5. Delineation of First-Order Elastic Property Closures for Hexagonal Metals Using Fast Fourier Transforms.

    PubMed

    Landry, Nicholas W; Knezevic, Marko

    2015-09-17

    Property closures are envelopes representing the complete set of theoretically feasible macroscopic property combinations for a given material system. In this paper, we present a computational procedure based on fast Fourier transforms (FFTs) to delineation of elastic property closures for hexagonal close packed (HCP) metals. The procedure consists of building a database of non-zero Fourier transforms for each component of the elastic stiffness tensor, calculating the Fourier transforms of orientation distribution functions (ODFs), and calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP closures were computed using the generalized spherical harmonics (GSH) representation and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us to successfully calculate the closures for a range of HCP metals without invoking any sample symmetry assumption. The methodology presented here facilitates for the first time computation of property closures involving normal-shear coupling stiffness coefficients. We found that the representation of these property linkages using FFTs need more terms compared to GSH representations. However, the use of FFT representations reduces the computational time involved in producing the property closures due to the use of fast FFT algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes.

  6. Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core

    NASA Astrophysics Data System (ADS)

    Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin

    2013-02-01

    For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.

  7. Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core.

    PubMed

    Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin

    2013-02-01

    For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.

  8. Moving target detection method for bistatic radar using random stepped-frequency chirp signal

    NASA Astrophysics Data System (ADS)

    Lin, Caiyong; Tian, Ruiqi; Wang, Dinghe; Bao, Qinglong; Chen, Zengping

    2016-10-01

    As random stepped-frequency chirp (RSFC) signal is used in wide-band radar applications such as synthetic aperture radar (SAR) and inverse SAR. RSFC has advantages over the linear stepped-frequency chirp, including suppressing the range ambiguity, decoupling the range-Doppler coupling, and reducing the signal interference. RSFC is usually descrambled and then fed to the inverse fast Fourier transform (IFFT) to achieve a coherent integration as well as a high-resolution range. However, this method needs frequency descrambling and accurate velocity pre-estimation for moving target detection. We propose a coherent integration method based on time-dechirping for bistatic radar. This method can detect moving targets without frequency descrambling or accurate velocity pre-estimation. This paper first models the target echo mathematically and outlines the difficulties associated with the processing of IFFT for RSFC. Then the detailed principles of the proposed method are introduced and the flowchart is given. Finally, numerical simulations are conducted to verify the effectiveness of the proposed method and show its detecting ability in the presence of noise.

  9. Research progress on a focal plane array ladar system using chirped amplitude modulation

    NASA Astrophysics Data System (ADS)

    Stann, Barry L.; Abou-Auf, Ahmed; Aliberti, Keith; Dammann, John; Giza, Mark; Dang, Gerard; Ovrebo, Greg; Redman, Brian; Ruff, William; Simon, Deborah

    2003-08-01

    The Army Research Laboratory is researching a focal plane array (FPA) ladar architecture that is applicable for smart munitions, reconnaissance, face recognition, robotic navigation, etc.. Here we report on progress and test results attained over the past year related to the construction of a 32x32 pixel FPA ladar laboratory breadboard. The near-term objective of this effort is to evaluate and demonstrate an FPA ladar using chirped amplitude modulation; knowledge gained will then be used to build a field testable version with a larger array format. The ladar architecture achieves ranging based on a frequency modulation/continuous wave technique implemented by directly amplitude modulating a near-IR diode laser transmitter with a radio frequency (rf) subcarrier that is linearly frequency modulated (chirped amplitude modulation). The diode's output is collected and projected to form an illumination field in the downrange image area. The returned signal is focused onto an array of optoelectronic mixing, metal-semiconductor-metal detectors where it is detected and mixed with a delayed replica of the laser modulation signal that modulates the responsivity of each detector. The output of each detector is an intermediate frequency (IF) signal resulting from the mixing process whose frequency is proportional to the target range. This IF signal is continuously sampled over a period of the rf modulation. Following this, a signal processor calculates the discrete fast Fourier transform over the IF waveform in each pixel to establish the ranges and amplitudes of all scatterers.

  10. Fast X-ray microdiffraction techniques for studying irreversible transformations in materials

    PubMed Central

    Kelly, Stephen T.; Trenkle, Jonathan C.; Koerner, Lucas J.; Barron, Sara C.; Walker, Nöel; Pouliquen, Philippe O.; Tate, Mark W.; Gruner, Sol M.; Dufresne, Eric M.; Weihs, Timothy P.; Hufnagel, Todd C.

    2011-01-01

    A pair of techniques have been developed for performing time-resolved X-ray microdiffraction on irreversible phase transformations. In one technique capillary optics are used to focus a high-flux broad-spectrum X-ray beam to a 60 µm spot size and a fast pixel array detector is used to achieve temporal resolution of 55 µs. In the second technique the X-rays are focused with Kirkpatrick–Baez mirrors to achieve a spatial resolution better than 10 µm and a fast shutter is used to provide temporal resolution better than 20 µs while recording the diffraction pattern on a (relatively slow) X-ray CCD camera. Example data from experiments are presented where these techniques are used to study self-propagating high-temperature synthesis reactions in metal laminate foils. PMID:21525656

  11. Focusing of tandem bistatic SAR data using the chirp-scaling algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Shichao; Xing, Mengdao; Zhou, Song; Zhang, Lei; Bao, Zheng

    2013-12-01

    Based on an exact analytical bistatic point target spectrum, an efficient chirp-scaling algorithm is proposed to correct the range cell migration of different range gates to the one of the reference range for tandem bistatic synthetic aperture radar data processing. The length of the baseline (baseline to range ratio) does not give a direct influence to the proposed algorithm, which can be applied to the processing of tandem bistatic data with a large baseline even when the baseline is equal to the range. No interpolation is needed during the entire processing, only fast Fourier transforms and phase multiplications are needed, which result in efficiency. The validity of the proposed algorithm has been verified by simulated experiments.

  12. Dynamic Chirp Control and Pulse Compression for Attosecond High-Order Harmonic Emission

    NASA Astrophysics Data System (ADS)

    Zheng, Yinghui; Zeng, Zhinan; Zou, Pu; Zhang, Li; Li, Xiaofang; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2009-07-01

    We propose a scheme to compensate dynamically the intrinsic chirp of the attosecond harmonic pulses. By adding a weak second harmonic laser field to the driving laser field, the chirp compensation can be varied from the negative to the positive continuously by simply adjusting the relative time delay between the two-color pulses. Using this technique, the compensation of the negative chirp in harmonic emission is demonstrated experimentally for the first time and the nearly transform-limited attosecond pulse trains are obtained.

  13. Dynamic Chirp Control and Pulse Compression for Attosecond High-Order Harmonic Emission

    SciTech Connect

    Zheng Yinghui; Zeng Zhinan; Zou Pu; Zhang Li; Li Xiaofang; Liu Peng; Li Ruxin; Xu Zhizhan

    2009-07-24

    We propose a scheme to compensate dynamically the intrinsic chirp of the attosecond harmonic pulses. By adding a weak second harmonic laser field to the driving laser field, the chirp compensation can be varied from the negative to the positive continuously by simply adjusting the relative time delay between the two-color pulses. Using this technique, the compensation of the negative chirp in harmonic emission is demonstrated experimentally for the first time and the nearly transform-limited attosecond pulse trains are obtained.

  14. Performance evaluation of fast Fourier-transform continuous cyclic-voltammetry pesticide biosensor.

    PubMed

    Ebrahimi, Bahman; Shojaosadati, Seyed Abbas; Daneshgar, Parandis; Norouzi, Parviz; Mousavi, Seyyed Mohammad

    2011-02-21

    In this work, a method for the fast monitoring of OPs in flow-injection systems was evaluated. The fast Fourier transform continuous cyclic-voltammetry (FFTCCV) at the carbon-paste electrode in a flowing solution system was used for determination of OPs. In this method the S/N ratio is enhanced by using of fast Fourier transform of the analyte and signal integration. FFTCCV can be considered as a new sensitive, accurate and fast method for determination of drugs and some pesticides. However, in order to obtain better sensitivity for a specific target, experimental parameters should be optimized. Response surface methodology (RSM) was applied to optimize three effective parameters (enzyme activity, multiwall carbon nanotube quantity and acidic sol-gel quantity). The optimum values for the tested parameters were enzyme amount H0.169 U cm⁻², multiwall carbon nanotube (MWCNT) 0.607 mL and acidic sol-gel 1.012 mL. The optimum feed pH, feed flow rate, ATChCl concentration and sweeping-rate were found to be 7.4, 0.34 mL min⁻¹, 0.750 mM and 10Vs⁻¹, respectively. The long-term stability of this flow-through system was 80% of its initial response after 120 days. Based on an incubation time of 12 min, it was found that the detection limit for paraoxon was equal to 1.7×10⁻⁷ mg L⁻¹ (6.2×10⁻¹³ M). The developed biosensor exhibited good repeatability and reproducibility. This study provides a new, modern, sensitive tool for the analysis of organophosphate pesticides.

  15. Chirp Scaling Algorithms for SAR Processing

    NASA Technical Reports Server (NTRS)

    Jin, M.; Cheng, T.; Chen, M.

    1993-01-01

    The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.

  16. Objective Morphological Quantification of Microscopic Images Using a Fast Fourier Transform (FFT) Analysis.

    PubMed

    Taylor, Samuel E; Cao, Tuoxin; Talauliker, Pooja M; Lifshitz, Jonathan

    Quantification of immunohistochemistry (IHC) and immunofluorescence (IF) using image intensity depends on a number of variables. These variables add a subjective complexity in keeping a standard within and between laboratories. Fast Fourier Transformation (FFT) algorithms, however, allow for a rapid and objective quantification (via statistical analysis) using cell morphologies when the microscopic structures are oriented or aligned. Quantification of alignment is given in terms of a ratio of FFT intensity to the intensity of an orthogonal angle, giving a numerical value of the alignment of the microscopic structures. This allows for a more objective analysis than alternative approaches, which rely upon relative intensities.

  17. Ray matrix analysis of the fast Fresnel transform with applications towards liquid crystal displays.

    PubMed

    Davis, Jeffrey A; Cottrell, Don M

    2012-02-10

    We reexamine a previously published algorithm for performing a fast Fresnel diffraction calculation that uses two Fourier transform operations and is computationally much faster than the conventional approach. We analyze this technique using a ray matrix analysis and find explicit expressions for the maximum and minimum distances over which this algorithm is accurate. These distances coincide with the experimental distances that are appropriate when patterns are encoded onto liquid crystal displays. We show two examples that confirm our ideas. We expect that these results will be very useful for computational comparison with experimental studies of a variety of diffraction phenomena.

  18. Objective Morphological Quantification of Microscopic Images Using a Fast Fourier Transform (FFT) Analysis

    PubMed Central

    Taylor, Samuel E.; Cao, Tuoxin; Talauliker, Pooja M.; Lifshitz, Jonathan

    2016-01-01

    Quantification of immunohistochemistry (IHC) and immunofluorescence (IF) using image intensity depends on a number of variables. These variables add a subjective complexity in keeping a standard within and between laboratories. Fast Fourier Transformation (FFT) algorithms, however, allow for a rapid and objective quantification (via statistical analysis) using cell morphologies when the microscopic structures are oriented or aligned. Quantification of alignment is given in terms of a ratio of FFT intensity to the intensity of an orthogonal angle, giving a numerical value of the alignment of the microscopic structures. This allows for a more objective analysis than alternative approaches, which rely upon relative intensities. PMID:27134700

  19. Fast Wavefront Reconstruction in Large Adaptive Optics Systems Using the Fourier Transform

    SciTech Connect

    Poyneer, L; Gravel, D T; Brase, J M

    2002-01-13

    Wavefront Reconstruction using the Fast Fourier Transform and spatial filtering is shown to be computationally tractable and sufficiently accurate for use in large Shack Hartmann-based adaptive optics systems (up to at least 10,000 actuators). This method is significantly faster and can have lower noise propagation than traditional VMM reconstructors. The boundary problem which prevented the accurate reconstruction of phase in circular apertures using square-grid FTs is identified and solved. The methods are adapted for use on the Fried-geometry. Detailed performance analysis of mean squared error and noise propagation for FT methods is presented, using both theory and simulation.

  20. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula

    NASA Astrophysics Data System (ADS)

    Shen, Fabin; Wang, Anbo

    2006-02-01

    The numerical calculation of the Rayleigh-Sommerfeld diffraction integral is investigated. The implementation of a fast-Fourier-transform (FFT) based direct integration (FFT-DI) method is presented, and Simpson's rule is used to improve the calculation accuracy. The sampling interval, the size of the computation window, and their influence on numerical accuracy and on computational complexity are discussed for the FFT-DI and the FFT-based angular spectrum (FFT-AS) methods. The performance of the FFT-DI method is verified by numerical simulation and compared with that of the FFT-AS method.

  1. Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface

    NASA Astrophysics Data System (ADS)

    Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai

    2016-07-01

    A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.

  2. Numerical investigation of the influence of laser chirp on electron yield in laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Trines, R. M. G. M.; Kamp, L. P. J.; Schep, T. J.; Leemans, W. P.; Esarey, E. H.

    2001-10-01

    An important phenomenon in laser wakefield acceleration is the production of fast electrons by intense laser pulses. In recent experiments [1], an influence of the laser chirp on the fast electron yield has been observed. For the same peak power, the electron yield of a positively chirped pulse was significantly higher than that of a negatively chirped pulse. Numerical simulations have been performed using the particle-in-cell code XOOPIC [2] to investigate this influence and to reveal the mechanism behind it. Parametric studies of the dependence of the growth of plasma waves through the Raman forward and backward scattering, and the yield of accelerated electrons on the amount of chirp will be presented. These simulations indicate that enhanced excitation of fast and slow phase velocity plasma waves does indeed occur when using positively chirped laser pulses, in agreement with the experiments. Negatively chirped pulses could be used to suppress instabilities for intense pulses propagating through dense plasmas. [1] W.P. Leemans et al., Phys. Plasmas 8, 2510 (2001); W. P. Leemans et al., in preparation [2] J.P. Verboncoeur, A.B. Langdon and N.T. Gladd, Comp. Phys. Comm. 87, 199 (1995)

  3. Suppression law of quantum states in a 3D photonic fast Fourier transform chip

    NASA Astrophysics Data System (ADS)

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2016-02-01

    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong-Ou-Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms.

  4. Correlated image set compression system based on new fast efficient algorithm of Karhunen-Loeve transform

    NASA Astrophysics Data System (ADS)

    Musatenko, Yurij S.; Kurashov, Vitalij N.

    1998-10-01

    The paper presents improved version of our new method for compression of correlated image sets Optimal Image Coding using Karhunen-Loeve transform (OICKL). It is known that Karhunen-Loeve (KL) transform is most optimal representation for such a purpose. The approach is based on fact that every KL basis function gives maximum possible average contribution in every image and this contribution decreases most quickly among all possible bases. So, we lossy compress every KL basis function by Embedded Zerotree Wavelet (EZW) coding with essentially different loss that depends on the functions' contribution in the images. The paper presents new fast low memory consuming algorithm of KL basis construction for compression of correlated image ensembles that enable our OICKL system to work on common hardware. We also present procedure for determining of optimal losses of KL basic functions caused by compression. It uses modified EZW coder which produce whole PSNR (bitrate) curve during the only compression pass.

  5. Suppression law of quantum states in a 3D photonic fast Fourier transform chip

    PubMed Central

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2016-01-01

    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135

  6. Suppression law of quantum states in a 3D photonic fast Fourier transform chip.

    PubMed

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2016-02-04

    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong-Ou-Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms.

  7. A novel approach to Hough Transform for implementation in fast triggers

    NASA Astrophysics Data System (ADS)

    Pozzobon, Nicola; Montecassiano, Fabio; Zotto, Pierluigi

    2016-10-01

    Telescopes of position sensitive detectors are common layouts in charged particles tracking, and programmable logic devices, such as FPGAs, represent a viable choice for the real-time reconstruction of track segments in such detector arrays. A compact implementation of the Hough Transform for fast triggers in High Energy Physics, exploiting a parameter reduction method, is proposed, targeting the reduction of the needed storage or computing resources in current, or next future, state-of-the-art FPGA devices, while retaining high resolution over a wide range of track parameters. The proposed approach is compared to a Standard Hough Transform with particular emphasis on their application to muon detectors. In both cases, an original readout implementation is modeled.

  8. A fast partial Fourier transform (FPFT) for data compression and filtering.

    SciTech Connect

    Smith, Mark William

    2010-07-01

    A discrete Fourier transform (DFT) or the closely related discrete cosine transform (DCT) is often employed as part of a data compression scheme. This paper presents a fast partial Fourier transform (FPFT) algorithm that is useful for calculating a subset of M Fourier transform coefficients for a data set comprised of N points (M < N). This algorithm reduces to the standard DFT when M = 1 and it reduces to the radix-2, decimation-in-time FFT when M = N and N is a power of 2. The DFT requires on the order of MN complex floating point multiplications to calculate M coefficients for N data points, a complete FFT requires on the order of (N/2)log{sub 2}N multiplications independent of M, and the new FPFT algorithm requires on the order of (N/2)log{sub 2}M + N multiplications. The FPFT algorithm introduced in this paper could be readily adapted to parallel processing. In addition to data compression, the FPFT algorithm described in this paper might be useful for very narrow band filter operations that pass only a small number of non-zero frequency coefficients such that M << N.

  9. Fast near-field far-field transformation for phaseless and irregular antenna measurement data

    NASA Astrophysics Data System (ADS)

    Schnattinger, G.; Lopez, C.; Kılıç, E.; Eibert, T. F.

    2014-11-01

    The characterization of antenna radiation patterns by transformed near-field measurements requires accurate amplitude and phase data. This represents a problem since expensive measurement equipment is required, especially at millimeter and submillimeter wavelengths (Isernia et al., 1996). Amplitude-only antenna field measurements are theoretically sufficient for the unique determination of antenna far-fields. Therefore, phaseless techniques are of special interest. However, the required field transformations are extremely challenging, since they are nonlinear and strongly ill-posed. In this work, the amplitude-only or phaseless near-field far-field transformation problem is formulated as a nonlinear optimization problem. The linear radiation operator within the nonlinear formulation is evaluated using the fast irregular antenna field transformation algorithm (FIAFTA). A hybrid solution procedure is described which combines a genetic algorithm with an iterative conjugate gradient (CG) search method. Numerical results prove the efficiency and flexibility of the formulation and it is shown that the algorithm remains stable when the noise level in the measurements is moderate. Nevertheless, regularization techniques might be beneficial to further improve the robustness of the algorithm.

  10. Real-time 2D floating-point fast Fourier transforms for seeker simulation

    NASA Astrophysics Data System (ADS)

    Chamberlain, Richard; Lord, Eric; Shand, David J.

    2002-07-01

    The floating point Fast Fourier Transform (FFT) is one of the most useful basic functions available to the image and signal processing engineer allowing many complex and detailed special functions to be implemented more simply in the frequency domain. In the Hardware-in-the-Loop field an image transformed using FFT would allow the designer to think about accurate frequency based simulation of seeker lens effects, motion blur, detector transfer functions and much more. Unfortunately, the transform requires many hundreds of thousands or millions of floating point operations on a single modest sized image making it impractical for realtime Hardware-in-the-Loop systems. .until now. This paper outlines the development, by Nallatech, of an FPGA based IEEE floating point core. It traces the subsequent use of this core to develop a full 256 X 256 FFT and filter process implemented on COTS hardware at frame rates up to 150Hz. This transform can be demonstrated to model optical transfer functions at a far greater accuracy than the current spatial models. Other applications and extensions of this technique will be discussed such as filtering for image tracking algorithms and in the simulation of radar processing in the frequency domain.

  11. Fast hyperbolic Radon transform represented as convolutions in log-polar coordinates

    NASA Astrophysics Data System (ADS)

    Nikitin, Viktor V.; Andersson, Fredrik; Carlsson, Marcus; Duchkov, Anton A.

    2017-08-01

    The hyperbolic Radon transform is a commonly used tool in seismic processing, for instance in seismic velocity analysis, data interpolation and for multiple removal. A direct implementation by summation of traces with different moveouts is computationally expensive for large data sets. In this paper we present a new method for fast computation of the hyperbolic Radon transforms. It is based on using a log-polar sampling with which the main computational parts reduce to computing convolutions. This allows for fast implementations by means of FFT. In addition to the FFT operations, interpolation procedures are required for switching between coordinates in the time-offset; Radon; and log-polar domains. Graphical Processor Units (GPUs) are suitable to use as a computational platform for this purpose, due to the hardware supported interpolation routines as well as optimized routines for FFT. Performance tests show large speed-ups of the proposed algorithm. Hence, it is suitable to use in iterative methods, and we provide examples for data interpolation and multiple removal using this approach.

  12. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series.

    PubMed

    Martinez, Josue G; Bohn, Kirsten M; Carroll, Raymond J; Morris, Jeffrey S

    2013-06-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible.

  13. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series

    PubMed Central

    MARTINEZ, Josue G.; BOHN, Kirsten M.; CARROLL, Raymond J.

    2013-01-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible. PMID:23997376

  14. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  15. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  16. Optical signal splitting and chirping device modeling

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.

    2017-04-01

    This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.

  17. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential.

    PubMed

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  18. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential

    NASA Astrophysics Data System (ADS)

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  19. Character-embedded watermarking algorithm using the fast Hadamard transform for satellite images

    NASA Astrophysics Data System (ADS)

    Ho, Anthony T. S.; Shen, Jun; Tan, Soon H.

    2003-01-01

    In this paper, a character-embedded watermarking algorithm is proposed for copyright protection of satellite images based on the Fast Hadamard transform (FHT). By using a private-key watermarking scheme, the watermark can be retrieved without using the original image. To increase the invisibility of the watermark, a visual model based on original image characteristics, such as edges and textures are incorporated to determine the watermarking strength factor. This factor determines the strength of watermark bits embedded according to the region complexity of the image. Detailed or coarse areas will be assigned more strength and smooth areas with less strength. Error correction coding is also used to increase the reliability of the information bits. A post-processing technique based on log-polar mapping is incorporated to enhance the robustness against geometric distortion attacks. Experiments showed that the proposed watermarking scheme was able to survive more than 70% of attacks from a common benchmarking tool called Stirmark, and about 90% against Checkmark non-geometric attacks. These attacks were performed on a number of SPOT images of size 512×512×8bit embedded with 32 characters. The proposed FHT algorithm also has the advantage of easy software and hardware implementation as well as speed, comparing to other orthogonal transforms such as Cosine, Fourier and wavelet transform.

  20. Observation of laser chirp dependency on electron yield in laser wakefield accelerators.

    NASA Astrophysics Data System (ADS)

    Leemans, W. P.; Catravas, P. E.; Esarey, E.; Geddes, C. G. R.; Shadwick, B. A.; Toth, C.; van Tilborg, J.; Trines, R.; Cary, J. R.; Giacone, R.

    2001-10-01

    The effect of laser chirp on laser wakefield acceleration of electrons has been studied experimentally and theoretically. The experiments operated in the self-modulated laser wakefield acceleration regime and used a high density (1-5 × 10^19 cm-3) laser ionized plasma and a Ti:Al_2O3 laser producing up to 10 TW peak power in 45-55 fs duration laser pulses [1]. For the same peak power, positively chirped laser pulse are found to result in significantly higher amounts of charge per bunch than negatively chirped pulses. Simulations using PIC codes indicate that larger amplitude fast phase velocity plasma waves are generated for positively chirped pulses as well as larger amounts of stimulated Raman backscattering (SRS-B). The enhanced SRS-B in turn leads to larger amounts of trapped, high energy electrons, consistent with the experiments. [1] W.P. Leemans et al., Phys. Plasmas 8, 2510(2001)

  1. Robust alignment of chromatograms by statistically analyzing the shifts matrix generated by moving window fast Fourier transform cross-correlation.

    PubMed

    Zhang, Mingjing; Wen, Ming; Zhang, Zhi-Min; Lu, Hongmei; Liang, Yizeng; Zhan, Dejian

    2015-03-01

    Retention time shift is one of the most challenging problems during the preprocessing of massive chromatographic datasets. Here, an improved version of the moving window fast Fourier transform cross-correlation algorithm is presented to perform nonlinear and robust alignment of chromatograms by analyzing the shifts matrix generated by moving window procedure. The shifts matrix in retention time can be estimated by fast Fourier transform cross-correlation with a moving window procedure. The refined shift of each scan point can be obtained by calculating the mode of corresponding column of the shifts matrix. This version is simple, but more effective and robust than the previously published moving window fast Fourier transform cross-correlation method. It can handle nonlinear retention time shift robustly if proper window size has been selected. The window size is the only one parameter needed to adjust and optimize. The properties of the proposed method are investigated by comparison with the previous moving window fast Fourier transform cross-correlation and recursive alignment by fast Fourier transform using chromatographic datasets. The pattern recognition results of a gas chromatography mass spectrometry dataset of metabolic syndrome can be improved significantly after preprocessing by this method. Furthermore, the proposed method is available as an open source package at https://github.com/zmzhang/MWFFT2.

  2. Development of a Reduced-Cost Chirped Pulse Microwave Spectrometer

    NASA Astrophysics Data System (ADS)

    Finneran, Ian A.; Holland, Daniel B.; Carroll, P. Brandon; Blake, Geoffrey A.

    2013-06-01

    Chirped pulse Fourier transform microwave (CP-FTMW) spectroscopy has become a ubiquitous technique in the high-resolution molecular spectroscopy community. Unfortunately, many components of CP-FTMW spectrometers are extremely expensive. Here we report of the development of an inexpensive microwave circuit and we present spectra of tetrahydrofuran and methanol collected between 8-16 GHz. Possible applications in remote sensing will also be discussed.

  3. Fast and Scalable Computation of the Forward and Inverse Discrete Periodic Radon Transform.

    PubMed

    Carranza, Cesar; Llamocca, Daniel; Pattichis, Marios

    2016-01-01

    The discrete periodic radon transform (DPRT) has extensively been used in applications that involve image reconstructions from projections. Beyond classic applications, the DPRT can also be used to compute fast convolutions that avoids the use of floating-point arithmetic associated with the use of the fast Fourier transform. Unfortunately, the use of the DPRT has been limited by the need to compute a large number of additions and the need for a large number of memory accesses. This paper introduces a fast and scalable approach for computing the forward and inverse DPRT that is based on the use of: a parallel array of fixed-point adder trees; circular shift registers to remove the need for accessing external memory components when selecting the input data for the adder trees; an image block-based approach to DPRT computation that can fit the proposed architecture to available resources; and fast transpositions that are computed in one or a few clock cycles that do not depend on the size of the input image. As a result, for an N × N image (N prime), the proposed approach can compute up to N(2) additions per clock cycle. Compared with the previous approaches, the scalable approach provides the fastest known implementations for different amounts of computational resources. For example, for a 251×251 image, for approximately 25% fewer flip-flops than required for a systolic implementation, we have that the scalable DPRT is computed 36 times faster. For the fastest case, we introduce optimized just 2N + ⌈log(2) N⌉ + 1 and 2N + 3 ⌈log(2) N⌉ + B + 2 cycles, architectures that can compute the DPRT and its inverse in respectively, where B is the number of bits used to represent each input pixel. On the other hand, the scalable DPRT approach requires more 1-b additions than for the systolic implementation and provides a tradeoff between speed and additional 1-b additions. All of the proposed DPRT architectures were implemented in VHSIC Hardware Description Language

  4. [Fast determination of induction period of motor gasoline using Fourier transform attenuated total reflection infrared spectroscopy].

    PubMed

    Liu, Ya-Fei; Yuan, Hong-Fu; Song, Chun-Feng; Xie, Jin-Chun; Li, Xiao-Yu; Yan, De-Lin

    2014-11-01

    A new method is proposed for the fast determination of the induction period of gasoline using Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR). A dedicated analysis system with the function of spectral measurement, data processing, display and storage was designed and integrated using a Fourier transform infrared spectrometer module and chemometric software. The sample presentation accessory designed which has advantages of constant optical path, convenient sample injection and cleaning is composed of a nine times reflection attenuated total reflectance (ATR) crystal of zinc selenide (ZnSe) coated with a diamond film and a stainless steel lid with sealing device. The influence of spectral scanning number and repeated sample loading times on the spectral signal-to-noise ratio was studied. The optimum spectral scanning number is 15 times and the optimum sample loading number is 4 times. Sixty four different gasoline samples were collected from the Beijing-Tianjin area and the induction period values were determined as reference data by standard method GB/T 8018-87. The infrared spectra of these samples were collected in the operating condition mentioned above using the dedicated fast analysis system. Spectra were pretreated using mean centering and 1st derivative to reduce the influence of spectral noise and baseline shift A PLS calibration model for the induction period was established by correlating the known induction period values of the samples with their spectra. The correlation coefficient (R2), standard error of calibration (SEC) and standard error of prediction (SEP) of the model are 0.897, 68.3 and 91.9 minutes, respectively. The relative deviation of the model for gasoline induction period prediction is less than 5%, which meets the requirements of repeatability tolerance in GB method. The new method is simple and fast. It takes no more than 3 minutes to detect one sample. Therefore, the method is feasible for implementing

  5. A general purpose subroutine for fast fourier transform on a distributed memory parallel machine

    NASA Technical Reports Server (NTRS)

    Dubey, A.; Zubair, M.; Grosch, C. E.

    1992-01-01

    One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.

  6. Calculation of Computational Complexity for Radix-2 (p) Fast Fourier Transform Algorithms for Medical Signals.

    PubMed

    Amirfattahi, Rassoul

    2013-10-01

    Owing to its simplicity radix-2 is a popular algorithm to implement fast fourier transform. Radix-2(p) algorithms have the same order of computational complexity as higher radices algorithms, but still retain the simplicity of radix-2. By defining a new concept, twiddle factor template, in this paper, we propose a method for exact calculation of multiplicative complexity for radix-2(p) algorithms. The methodology is described for radix-2, radix-2 (2) and radix-2 (3) algorithms. Results show that radix-2 (2) and radix-2 (3) have significantly less computational complexity compared with radix-2. Another interesting result is that while the number of complex multiplications in radix-2 (3) algorithm is slightly more than radix-2 (2), the number of real multiplications for radix-2 (3) is less than radix-2 (2). This is because of the twiddle factors in the form of which need less number of real multiplications and are more frequent in radix-2 (3) algorithm.

  7. Nanowire humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; Pérez-Herrera, R.; Lopez-Aldaba, A.; López Bautista, M. C.; Esteban, O.; López-Amo, M.

    2015-09-01

    In this paper, a new sensor system for relative humidity measurements based on its interaction with the evanescent field of a nanowire is presented. The interrogation of the sensing head is carried out by monitoring the fast Fourier transform phase variations of one of the nanowire interference frequencies. This method is independent of the signal amplitude and also avoids the necessity of tracking the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a wide humidity range (20%-70% relative humidity) with a maximum sensitivity achieved of 0.14rad/% relative humidity. Finally, due to the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

  8. Fast Fourier transform-based Retinex and alpha-rooting color image enhancement

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.; Gonzales, Analysa M.

    2015-05-01

    Efficiency in terms of both accuracy and speed is highly important in any system, especially when it comes to image processing. The purpose of this paper is to improve an existing implementation of multi-scale retinex (MSR) by utilizing the fast Fourier transforms (FFT) within the illumination estimation step of the algorithm to improve the speed at which Gaussian blurring filters were applied to the original input image. In addition, alpha-rooting can be used as a separate technique to achieve a sharper image in order to fuse its results with those of the retinex algorithm for the sake of achieving the best image possible as shown by the values of the considered color image enhancement measure (EMEC).

  9. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    SciTech Connect

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivanio

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  10. Applications of Conformal Computing techniques to problems in computational physics: the Fast Fourier Transform

    NASA Astrophysics Data System (ADS)

    Raynolds, James E.; Mullin, Lenore R.

    2005-07-01

    The techniques of Conformal Computing are introduced with an application to the Fast Fourier Transform. Conformal Computing is a design methodology, based on a rigorous mathematical foundation, which provides a systematic approach to the most efficient organization of all levels of the software and hardware design hierarchy from high-level software constructs all the way down to the design of the integrated circuits. We show that using these general design principles, without any specialized optimization, leads to portable, scalable, code that is competitive with other well-tuned machine specific routines. Further improvements are straightforward within our formalism by taking into account specific hardware details (e.g., cache loops) in a portable parametric way. We also argue that the present theory constitutes a uniform way of reasoning about physics and the data structures that define physics on computers.

  11. Program for the analysis of time series. [by means of fast Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Brown, T. J.; Brown, C. G.; Hardin, J. C.

    1974-01-01

    A digital computer program for the Fourier analysis of discrete time data is described. The program was designed to handle multiple channels of digitized data on general purpose computer systems. It is written, primarily, in a version of FORTRAN 2 currently in use on CDC 6000 series computers. Some small portions are written in CDC COMPASS, an assembler level code. However, functional descriptions of these portions are provided so that the program may be adapted for use on any facility possessing a FORTRAN compiler and random-access capability. Properly formatted digital data are windowed and analyzed by means of a fast Fourier transform algorithm to generate the following functions: (1) auto and/or cross power spectra, (2) autocorrelations and/or cross correlations, (3) Fourier coefficients, (4) coherence functions, (5) transfer functions, and (6) histograms.

  12. Fast algorithm of byte-to-byte wavelet transform for image compression applications

    NASA Astrophysics Data System (ADS)

    Pogrebnyak, Oleksiy B.; Sossa Azuela, Juan H.; Ramirez, Pablo M.

    2002-11-01

    A new fast algorithm of 2D DWT transform is presented. The algorithm operates on byte represented images and performs image transformation with the Cohen-Daubechies-Feauveau wavelet of the second order. It uses the lifting scheme for the calculations. The proposed algorithm is based on the "checkerboard" computation scheme for non-separable 2D wavelet. The problem of data extension near the image borders is resolved computing 1D Haar wavelet in the vicinity of the borders. With the checkerboard splitting, at each level of decomposition only one detail image is produced that simplify the further analysis for data compression. The calculations are rather simple, without any floating point operation allowing the implementation of the designed algorithm in fixed point DSP processors for fast, near real time processing. The proposed algorithm does not possesses perfect restoration of the processed data because of rounding that is introduced at each level of decomposition/restoration to perform operations with byte represented data. The designed algorithm was tested on different images. The criterion to estimate quantitatively the quality of the restored images was the well known PSNR. For the visual quality estimation the error maps between original and restored images were calculated. The obtained simulation results show that the visual and quantitative quality of the restored images is degraded with number of decomposition level increasing but is sufficiently high even after 6 levels. The introduced distortion are concentrated in the vicinity of high spatial activity details and are absent in the homogeneous regions. The designed algorithm can be used for image lossy compression and in noise suppression applications.

  13. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses

    SciTech Connect

    Polli, D.; Lanzani, G.; Brida, D.; Cerullo, G.; Mukamel, S.

    2010-11-15

    This paper introduces a general theoretical description of femtosecond pump-probe spectroscopy with chirped pulses whose joint spectral and temporal profile is expressed by Wigner spectrograms. We demonstrate that the actual experimental time resolution intimately depends on the pulse-sample interaction and that the commonly used instrumental response function needs to be replaced by a sample-dependent effective response function. We also show that, using the proper configurations in excitation and/or detection, it is possible to overcome the temporal smearing of the measured dynamics due to chirp-induced pulse broadening and recover the temporal resolution that would be afforded by the transform-limited pulses. We verify these predictions with experiments using broadband chirped pump and probe pulses. Our results allow optimization of the temporal resolution in the common case when the chirp of the pump and/or probe pulse is not corrected and may be extended to a broad range of time-resolved experiments.

  14. Tunable chirped fiber Bragg grating embedded in a textile laminated beam for fiber dispersion compensation

    NASA Astrophysics Data System (ADS)

    Du, Weichong; Liu, W. P.; Du, David G.; Tam, Hwa-Yaw; Tao, Xiaoming; Yu, ChongXiu; Liu, Shong Hao

    1998-06-01

    A simple method is reported for transformation of a uniform fiber grating into a linear chirped grating and realization of independent tuning of grating's linear chirp degree and central wavelength. This method involves embedding a uniform grating into a textile laminated beam and creating an odd- symmetrical linear strain distribution along the grating versus its center with a three-point-bending and stretching setup. The grating's central wavelength and chirp degree can be tuned by adjusting the horizontal stretching range and vertical bending displacement on the beam independently. A simulated experiment for compensating the dispersion of a standard single-mode fiber over 100km for 10Gbit/s signal at 1550nm window is successfully demonstrated using such a tunable chirped grating with 10 cm in length.

  15. Fast and accurate auto focusing algorithm based on two defocused images using discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Park, Byung-Kwan; Kim, Sung-Su; Chung, Dae-Su; Lee, Seong-Deok; Kim, Chang-Yeong

    2008-02-01

    This paper describes the new method for fast auto focusing in image capturing devices. This is achieved by using two defocused images. At two prefixed lens positions, two defocused images are taken and defocused blur levels in each image are estimated using Discrete Cosine Transform (DCT). These DCT values can be classified into distance from the image capturing device to main object, so we can make distance vs. defocused blur level classifier. With this classifier, relation between two defocused blur levels can give the device the best focused lens step. In the case of ordinary auto focusing like Depth from Focus (DFF), it needs several defocused images and compares high frequency components in each image. Also known as hill-climbing method, the process requires about half number of images in all focus lens steps for focusing in general. Since this new method requires only two defocused images, it can save lots of time for focusing or reduce shutter lag time. Compared to existing Depth from Defocus (DFD) which uses two defocused images, this new algorithm is simple and accurate as DFF method. Because of this simplicity and accuracy, this method can also be applied to fast 3D depth map construction.

  16. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    PubMed

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  17. Conversion of chirp in fiber compression.

    PubMed

    Dombi, Péter; Rácz, Péter; Veisz, Laszlo; Baum, Peter

    2014-04-15

    Focusing positively chirped femtosecond pulses into nonlinear fibers provides significant spectral broadening and compression at higher pulse energies than achievable conventionally because self-focusing and damage are avoided. Here, we investigate the transfer of input to output chirp in such an arrangement. Our measurements show that the group delay dispersion of the output pulse, originating from the nonlinearities, is considerably reduced as compared to the initial value, by about a factor of 10. The mechanism of chirp reduction is understood by an interplay of self-phase modulation with initial chirp within the fiber. A simple model calculation based on this picture yields satisfactory agreement with the observations and predicts significant chirp reduction for input pulses up to the μJ regime. In practice, the reduction of chirp observed here allows for compressing the spectrally broadened intense pulses by ultrabroadband dispersive multilayer mirrors of quite moderate dispersion.

  18. Orthogonal Chirp-Based Ultrasonic Positioning

    PubMed Central

    Khyam, Mohammad Omar; Ge, Shuzhi Sam; Li, Xinde; Pickering, Mark

    2017-01-01

    This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively. PMID:28448454

  19. SAR impulse response with residual chirps.

    SciTech Connect

    Doerry, Armin Walter

    2009-06-01

    A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

  20. SAW device provides hyperbolic chirp

    NASA Astrophysics Data System (ADS)

    Johnson, R. H.

    1983-11-01

    The 'echo' location system employed by bats utilizes pulses whose frequency varies with time. This system is hyperbolically, rather than linearly weighted. It is pointed out that this concept of hyperbolic weighting, implemented with relatively inexpensive surface accoustic wave (SAW) devices, can be applied to torpedo guidance and satellite interception. The use of hyperbolic weighting allows the use of chirp by reducing the nonlinearity of the Doppler shift. The use of a hyperbolically weighted chirp (HWC) provides an approach for substantially overcoming a problem caused by the Doppler effect. The block diagram of a typical spread spectrum detection, tracking, and homing system is presented. This system uses a nonlinearly weighted SAW device as a spectrum spreader and compressor.

  1. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  2. Satellite cell ablation attenuates short-term fast-to-slow fibre type transformations in rat fast-twitch skeletal muscle.

    PubMed

    Martins, Karen J B; Murdoch, Gordon K; Shu, Yang; Harris, R Luke W; Gallo, Maria; Dixon, Walter T; Foxcroft, George R; Gordon, Tessa; Putman, Charles T

    2009-06-01

    The purpose of this time-course study was to determine whether satellite cell ablation within rat tibialis anterior (TA) muscles exposed to short-term chronic low-frequency stimulation (CLFS) would limit fast-to-slow fibre type transformations. Satellite cells of the left TA were ablated by exposure to gamma-irradiation before 1, 2, 5 or 10 days of CLFS and 1 week later where required. Control groups received only CLFS or a sham operation. Continuous infusion of 5-bromo-2'-deoxyuridine revealed that CLFS first induced an increase in satellite cell proliferation at 1 day, up to a maximum at 10 days over control (mean +/- SEM, 5.7 +/- 0.7 and 20.4 +/- 1.0 versus 1.5 +/- 0.2 mm(-2), respectively, P < 0.007) that was abolished by gamma-irradiation. Myosin heavy chain mRNA, immunohistochemical and sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses revealed CLFS-induced fast-to-slow fibre type transformation began at 5 days and continued at 10 days; in those muscles that were also exposed to gamma-irradiation, attenuation occurred within the fast fibre population, and the final fast-twitch to slow-twitch adaptation did not occur. These findings indicate satellite cells play active and obligatory roles early on in the time course during skeletal muscle fibre type adaptations to CLFS.

  3. Fast Padé Transform for Exact Quantification of Time Signals in Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Belkic, Dzevad

    This work employs the fast Padé transform (FPT) for spectral analysis of theoretically generated time signals. The spectral characteristics of these synthesised signals are reminiscent of the corresponding data that are measured experimentally via encoding digitised free induction decay curves from a healthy human brain using Magnetic Resonance Spectroscopy (MRS). In medicine, in vivo MRS is one of the most promising non-invasive diagnostic tools, especially in oncology, due to the provided biochemical information about functionality of metabolites of the scanned tissue. For success of such diagnostics, it is crucial to carry out the most reliable quantifications of the studied time signals. This quantification problem is the harmonic inversion via the spectral decomposition of the given time signal into its damped harmonic constituents. Such a reconstruction finds the unknown total number of resonances, their complex frequencies and the corresponding complex amplitudes. These spectral parameters of the fundamental harmonics give the peak positions, widths, heights, and phases of all the physical resonances. As per the unified theory of quantum-mechanical spectral analysis and signal processing, the FPT represents the exact solver of the quantification problem, which is mathematically ill-conditioned. The exact and unique solution via the FPT is valid for any noiseless synthesised time signal built from an arbitrary number of damped complex exponentials. These attenuated harmonics can appear as a linear combination with both stationary and non-stationary amplitudes. Such sums produce time signals that yield Lorentzian (non-degenerate) and non-Lorentzian (degenerate) spectra for isolated and overlapped resonances from MRS. We give a convergent validation for these virtues of the FPT. This is achieved through the proof-of-principle investigation by developing an algorithmic feasibility for robust and efficient computations of the exact numerical solution of a

  4. AN OPTIMIZED 64X64 POINT TWO-DIMENSIONAL FAST FOURIER TRANSFORM

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1994-01-01

    Scientists at Goddard have developed an efficient and powerful program-- An Optimized 64x64 Point Two-Dimensional Fast Fourier Transform-- which combines the performance of real and complex valued one-dimensional Fast Fourier Transforms (FFT's) to execute a two-dimensional FFT and its power spectrum coefficients. These coefficients can be used in many applications, including spectrum analysis, convolution, digital filtering, image processing, and data compression. The program's efficiency results from its technique of expanding all arithmetic operations within one 64-point FFT; its high processing rate results from its operation on a high-speed digital signal processor. For non-real-time analysis, the program requires as input an ASCII data file of 64x64 (4096) real valued data points. As output, this analysis produces an ASCII data file of 64x64 power spectrum coefficients. To generate these coefficients, the program employs a row-column decomposition technique. First, it performs a radix-4 one-dimensional FFT on each row of input, producing complex valued results. Then, it performs a one-dimensional FFT on each column of these results to produce complex valued two-dimensional FFT results. Finally, the program sums the squares of the real and imaginary values to generate the power spectrum coefficients. The program requires a Banshee accelerator board with 128K bytes of memory from Atlanta Signal Processors (404/892-7265) installed on an IBM PC/AT compatible computer (DOS ver. 3.0 or higher) with at least one 16-bit expansion slot. For real-time operation, an ASPI daughter board is also needed. The real-time configuration reads 16-bit integer input data directly into the accelerator board, operating on 64x64 point frames of data. The program's memory management also allows accumulation of the coefficient results. The real-time processing rate to calculate and accumulate the 64x64 power spectrum output coefficients is less than 17.0 mSec. Documentation is included

  5. Robust digital image-in-image watermarking algorithm using the fast Hadamard transform

    NASA Astrophysics Data System (ADS)

    Ho, Anthony T. S.; Shen, Jun; Tan, Soon H.

    2003-01-01

    In this paper, we propose a robust image-in-image watermarking algorithm based on the fast Hadamard transform (FHT) for the copyright protection of digital images. Most current research makes use of a normally distributed random vector as a watermark and where the watermark can only be detected by cross-correlating the received coefficients with the watermark generated by secret key and then comparing an experimental threshold value. However, the FHT image-in-image method involves a "blind" watermarking process that retrieves the watermark without the need for an original image present. In the proposed approach, a number of pseudorandom selected 8×8 sub-blocks of original image and a watermark image are decomposed into Hadamard coefficients. To increase the invisibility of the watermark, a visual model based on original image characteristics, such as edges and textures are incorporated to determine the watermarking strength factor. All the AC Hadamard coefficients of watermark image is scaled by the watermarking strength factor and inserted into several middle and high frequency AC components of the Hadamard coefficients from the sub-blocks of original image. To further increase the reliability of the watermarking against the common geometric distortions, such as rotation and scaling, a post-processing technique is proposed. Understanding the type of distortion provides a mean to apply a reversal of the attack on the watermarked image, enabling the restoration to the synchronization of the embedding positions. The performance of the proposed algorithm is evaluated using Stirmark. The experiment uses container image of size 512×512×8bits and the watermark image of size 64×64×8bits. It survives about 60% of all Stirmark attacks. The simplicity of Hadamard transform offers a significant advantage in shorter processing time and ease of hardware implementation than the commonly used DCT and DWT techniques.

  6. Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform

    PubMed Central

    Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos

    2013-01-01

    Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028

  7. Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity

    SciTech Connect

    Vasudevan, Rama K. Belianinov, Alex; Baddorf, Arthur P.; Tselev, Alexander; Jesse, S.; Gianfrancesco, Anthony G.

    2015-03-02

    Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La{sub 5/8}Ca{sub 3/8}MnO{sub 3} (LCMO) films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis and Independent Component Analysis of the Sliding FFT dataset reveal the distinct changes in crystallography, step edges, and boundaries between the multiple sub-lattices. The implications for the LCMO system are discussed. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.

  8. Support vector machine based classification of fast Fourier transform spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Lazarevic, Aleksandar; Pokrajac, Dragoljub; Marcano, Aristides; Melikechi, Noureddine

    2009-02-01

    Fast Fourier transform spectroscopy has proved to be a powerful method for study of the secondary structure of proteins since peak positions and their relative amplitude are affected by the number of hydrogen bridges that sustain this secondary structure. However, to our best knowledge, the method has not been used yet for identification of proteins within a complex matrix like a blood sample. The principal reason is the apparent similarity of protein infrared spectra with actual differences usually masked by the solvent contribution and other interactions. In this paper, we propose a novel machine learning based method that uses protein spectra for classification and identification of such proteins within a given sample. The proposed method uses principal component analysis (PCA) to identify most important linear combinations of original spectral components and then employs support vector machine (SVM) classification model applied on such identified combinations to categorize proteins into one of given groups. Our experiments have been performed on the set of four different proteins, namely: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor 2 and Osteopontin. Our proposed method of applying principal component analysis along with support vector machines exhibits excellent classification accuracy when identifying proteins using their infrared spectra.

  9. Solutions of nonlinear differential equations with feature detection using fast Walsh transforms

    NASA Astrophysics Data System (ADS)

    Gnoffo, Peter A.

    2017-06-01

    Walsh functions form an orthonormal basis set consisting of square waves. Square waves make the system well suited for detecting and representing functions with discontinuities. Given a uniform distribution of 2p cells on a one-dimensional element, it is proved that the inner product of the Walsh Root function for group p with every polynomial of degree ≤ (p - 1) across the element is identically zero. It is also proved that the magnitude and location of a discontinuous jump, as represented by a Heaviside function, are explicitly identified by its Fast Walsh Transform (FWT) coefficients. These two proofs enable an algorithm that quickly provides a Weighted Least Squares fit to distributions across the element that include a discontinuity. It is shown that flux reconstruction relative to the FWT fit in partial differential equations provides improved accuracy. The detection of a discontinuity further enables analytic relations to locally describe its evolution and provide increased accuracy. Examples are provided for time-accurate advection, Burgers' equation, and quasi-one-dimensional nozzle flow.

  10. Autonomic mechanism for complex fractionated atrial electrograms: evidence by fast fourier transform analysis.

    PubMed

    Lu, Zhibing; Scherlag, Benjamin J; Lin, Jiaxiong; Niu, Guodong; Ghias, Muhammad; Jackman, Warren M; Lazzara, Ralph; Jiang, Hong; Po, Sunny S

    2008-08-01

    The mechanism(s) underlying complex fractionated atrial electrograms (CFAE) is not well understood. We hypothesized that CFAE may be caused by enhanced activity of the intrinsic cardiac autonomic nervous system. In 35 anesthetized dogs, via a right or left thoracotomy, sustained atrial fibrillation was induced by local application of acetylcholine (ACh; 10, 100 mM) to the surface of the atrial appendage (AA) or by injection of ACh (10 mM) into the ganglionated plexi (GP). Fast Fourier transform analysis was performed from recordings at AA, atrial sites near the AA, mid portion of the atrium, atrial sites near the GP, and the pulmonary veins. After AF was induced with ACh either by topical application to the AA or by direct injection into the GP, CFAE exhibited a significant gradient of progressively decreasing dominant frequency and incidence of CFAE (CFAE%) from the GP toward distant sites, while regularity index progressively decreased in the opposite direction. Ablation of GP markedly attenuated CFAE and eliminated these gradients. These results suggest CFAE may result from activation of the intrinsic cardiac autonomic nervous system in these animal models of sustained AF. Ablation of GP attenuates CFAE and eliminates the DF gradient.

  11. Big Data in Reciprocal Space: Sliding Fast Fourier Transforms for Determining Periodicity

    SciTech Connect

    Vasudevan, Rama K.; Belianinov, Alex; Gianfrancesco, Anthony G.; Baddorf, Arthur P.; Tselev, Alexander; Kalinin, Sergei V.; Jesse, Stephen

    2015-03-03

    Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La5/8Ca3/8MnO3 films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) of the Sliding FFT dataset reveal the distinct changes in crystallography, step edges and boundaries between the multiple sub-lattices. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.

  12. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    NASA Technical Reports Server (NTRS)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  13. Fast Cell Segmentation Using Scalable Sparse Manifold Learning and Affine Transform-approximated Active Contour.

    PubMed

    Xing, Fuyong; Yang, Lin

    2015-10-01

    Efficient and effective cell segmentation of neuroendocrine tumor (NET) in whole slide scanned images is a difficult task due to a large number of cells. The weak or misleading cell boundaries also present significant challenges. In this paper, we propose a fast, high throughput cell segmentation algorithm by combining top-down shape models and bottom-up image appearance information. A scalable sparse manifold learning method is proposed to model multiple subpopulations of different cell shape priors. Followed by a shape clustering on the manifold, a novel affine transform-approximated active contour model is derived to deform contours without solving a large amount of computationally-expensive Euler-Lagrange equations, and thus dramatically reduces the computational time. To the best of our knowledge, this is the first report of a high throughput cell segmentation algorithm for whole slide scanned pathology specimens using manifold learning to accelerate active contour models. The proposed approach is tested using 12 NET images, and the comparative experiments with the state of the arts demonstrate its superior performance in terms of both efficiency and effectiveness.

  14. Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Bi, Renzhe; Ho, Jun Hui; Thong, Patricia S. P.; Soo, Khee-Chee; Lee, Kijoon

    2012-09-01

    Diffuse correlation spectroscopy (DCS) is an emerging noninvasive technique that probes the deep tissue blood flow, by using the time-averaged intensity autocorrelation function of the fluctuating diffuse reflectance signal. We present a fast Fourier transform (FFT)-based software autocorrelator that utilizes the graphical programming language LabVIEW (National Instruments) to complete data acquisition, recording, and processing tasks. The validation and evaluation experiments were conducted on an in-house flow phantom, human forearm, and photodynamic therapy (PDT) on mouse tumors under the acquisition rate of ˜400 kHz. The software autocorrelator in general has certain advantages, such as flexibility in raw photon count data preprocessing and low cost. In addition to that, our FFT-based software autocorrelator offers smoother starting and ending plateaus when compared to a hardware correlator, which could directly benefit the fitting results without too much sacrifice in speed. We show that the blood flow index (BFI) obtained by using a software autocorrelator exhibits better linear behavior in a phantom control experiment when compared to a hardware one. The results indicate that an FFT-based software autocorrelator can be an alternative solution to the conventional hardware ones in DCS systems with considerable benefits.

  15. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform.

    PubMed

    Zhang, Wang; Su, Tao

    2016-09-22

    In the field of fast Fourier transform (FFT)-based frequency invariant beamforming (FIB), there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI) over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL). The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed.

  16. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories.

    SciTech Connect

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A. , Tomsk, Russia); Kim, Alexandre A. , Tomsk, RUSSIA); Wakeland, Peter Eric; McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-04-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

  17. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform

    PubMed Central

    Zhang, Wang; Su, Tao

    2016-01-01

    In the field of fast Fourier transform (FFT)-based frequency invariant beamforming (FIB), there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI) over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL). The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed. PMID:27669242

  18. Fast Fourier transform to measure pressure coefficient of muons in the GRAPES-3 experiment

    NASA Astrophysics Data System (ADS)

    Mohanty, P. K.; Ahmad, S.; Antia, H. M.; Arunbabu, K. P.; Chandra, A.; Dugad, S. R.; Gupta, S. K.; Hariharan, B.; Hayashi, Y.; Jagadeesan, P.; Jain, A.; Kawakami, S.; Kojima, H.; Morris, S. D.; Nayak, P. K.; Oshima, A.; Rao, B. S.; Reddy, L. V.; Shibata, S.

    2016-06-01

    The GRAPES-3 large area (560 m2) tracking muon telescope is operating at Ooty in India since 2001. It records 4 × 109 muons of energy ≥ 1 GeV every day. These high statistics data have enabled extremely sensitive measurements of solar phenomena, including the solar anisotropies, Forbush decreases, coronal mass ejections etc. to be made. However, prior to such studies, the variation in observed muon rate caused by changes in atmospheric pressure needs to be corrected. Traditionally, the pressure coefficient (β) for the muon rate was derived from the observed data. But the influence of various solar effects makes the measurement of β somewhat difficult. In the present work, a different approach to circumvent this difficulty was used to measure β, almost independent of the solar activity. This approach exploits a small amplitude (∼1 hPa) periodic (12 h) variation of atmospheric pressure at Ooty that introduces a synchronous variation in the muon rate. By using the fast Fourier transform technique the spectral power distributions at 12 h from the atmospheric pressure, and muon rate were used to measure β. The value of pressure coefficient was found to be β =(- 0.128 ± 0.005) % hPa-1.

  19. 128-point memory-based architecture for a fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Chen, Chuen-Yau; Huang, Chun-Kai

    2013-02-01

    In this article, we take advantage of the merits of a one-sixteenth circle storage technique, radix-2 and radix-2/4/8 algorithms to implement a 128-point memory-based architecture for a fast Fourier transform processor. The one-sixteenth circle storage technique results in reducing 50% of the size of a look-up table (LUT) for storing the twiddle factors. The combination of radix-2 and radix-2/4/8 algorithms results in reducing the number of twiddle factors and allowing the processor to possess a regular architecture which is suitable for hardware implementation. This design has been synthesised by Altera Quartus II 6.0. The experimental results indicate that this design needs only 65,169 ALUTs for LUT. The operating frequency is 59.76 MHz. The signal-to-noise ratios for the real and imaginary parts of the output signal are 67.72 dB and 68.55 dB, respectively.

  20. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  1. Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres.

    PubMed

    Wang, Yongsheng; Moo, Ying Xin; Chen, Chunping; Gunawan, Poernomo; Xu, Rong

    2010-12-15

    Shape-controlled synthesis of calcium carbonate with specific polymorphs can be achieved by the assistance of organic additives. In this study, highly uniform nanosized calcium carbonate spheres were synthesized by a fast precipitation method in the presence of a simple polymer, poly(styrene sulfonate) (PSS). The polymorph of the synthesized calcium carbonate products changes from pure calcite in PSS-free reactions to vaterite in PSS-containing (1-50 g/L) reactions. The effect of PSS on the formation of vaterite can be attributed to the two aspects: decrease of driving force by reducing the interfacial energy, and phase stabilization effect caused by the adsorbed PSS. A higher PSS concentration (50 g/L) results in highly uniform vaterite nanospheres of 400-500 nm in diameter. Furthermore, PSS is found more effective to induce the formation of vaterite in the Ca(2+)-rich reaction condition (Ca(2+):CO(3)(2-)=5:1) than in the CO(3)(2-)-rich conditions (Ca(2+):CO(3)(2-)=1:5). It has also been found that different mixing mode of the calcium and carbonate precursor solutions has a significant influence on the size distribution of the products. Finally, with a controlled anion-exchange method, the as-prepared vaterite nanospheres can be easily transformed to hollow hydroxyapatite spheres, which exhibit great potential to be used as the drug carriers due to their considerably high surface area and biocompatibility.

  2. Big Data in Reciprocal Space: Sliding Fast Fourier Transforms for Determining Periodicity

    DOE PAGES

    Vasudevan, Rama K.; Belianinov, Alex; Gianfrancesco, Anthony G.; ...

    2015-03-03

    Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La5/8Ca3/8MnO3 films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) of themore » Sliding FFT dataset reveal the distinct changes in crystallography, step edges and boundaries between the multiple sub-lattices. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.« less

  3. Fast dose kernel interpolation using Fourier transform with application to permanent prostate brachytherapy dosimetry

    SciTech Connect

    Liu, Derek Sloboda, Ron S.

    2014-05-15

    Purpose: Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. Methods: The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Results: Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. Conclusions: A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.

  4. Feature Detection and Curve Fitting Using Fast Walsh Transforms for Shock Tracking: Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2017-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. Square waves make the system well suited for detecting and representing functions with discontinuities. Given a uniform distribution of 2p cells on a one-dimensional element, it has been proven that the inner product of the Walsh Root function for group p with every polynomial of degree < or = (p - 1) across the element is identically zero. It has also been proven that the magnitude and location of a discontinuous jump, as represented by a Heaviside function, are explicitly identified by its Fast Walsh Transform (FWT) coefficients. These two proofs enable an algorithm that quickly provides a Weighted Least Squares fit to distributions across the element that include a discontinuity. The detection of a discontinuity enables analytic relations to locally describe its evolution and provide increased accuracy. Time accurate examples are provided for advection, Burgers equation, and Riemann problems (diaphragm burst) in closed tubes and de Laval nozzles. New algorithms to detect up to two C0 and/or C1 discontinuities within a single element are developed for application to the Riemann problem, in which a contact discontinuity and shock wave form after the diaphragm bursts.

  5. Harmonic chirp imaging method for ultrasound contrast agent.

    PubMed

    Borsboom, Jerome M G; Chin, Chien Ting; Bouakaz, Ayache; Versluis, Michel; de Jong, Nico

    2005-02-01

    Coded excitation is currently used in medical ultrasound to increase signal-to-noise ratio (SNR) and penetration depth. We propose a chirp excitation method for contrast agents using the second harmonic component of the response. This method is based on a compression filter that selectively compresses and extracts the second harmonic component from the received echo signal. Simulations have shown a clear increase in response for chirp excitation over pulse excitation with the same peak amplitude. This was confirmed by two-dimensional (2-D) optical observations of bubble response with a fast framing camera. To evaluate the harmonic compression method, we applied it to simulated bubble echoes, to measured propagation harmonics, and to B-mode scans of a flow phantom and compared it to regular pulse excitation imaging. An increase of approximately 10 dB in SNR was found for chirp excitation. The compression method was found to perform well in terms of resolution. Axial resolution was in all cases within 10% of the axial resolution from pulse excitation. Range side-lobe levels were 30 dB below the main lobe for the simulated bubble echoes and measured propagation harmonics. However, side-lobes were visible in the B-mode contrast images.

  6. Detection and frequency tracking of chirping signals

    SciTech Connect

    Elliott, G.R.; Stearns, S.D.

    1990-08-01

    This paper discusses several methods to detect the presence of and track the frequency of a chirping signal in broadband noise. The dynamic behavior of each of the methods is described and tracking error bounds are investigated in terms of the chirp rate. Frequency tracking and behavior in the presence of varying levels of noise are illustrated in examples. 11 refs., 29 figs.

  7. Constant envelope chirped OFDM power efficiency

    NASA Astrophysics Data System (ADS)

    Dida, Mussa A.; Hao, Huan; Anjum, M. R.; Ran, Tao

    2016-10-01

    Fractional Fourier OFDM or simply chirped OFDM performs better in time-frequency selective channel than its convectional OFDM. Although chirped OFDM outperforms OFDM it still inherits Peak to Average Power Ratio (PAPR) drawback as a convectional OFDM. To eliminate PAPR drawback Constant Envelope OFDM was developed and for better performance in time frequency selective channel Constant Envelope Fractional Fourier OFDM (CE-COFDM) is used. Its BER performance is analyzed and compared to chirped OFDM and OFDM in AWGN and Rayleigh channel. The simulations show the BER performance of CE-COFDM is the same as chirped OFDM and OFDM. The power efficiency of CE-COFDM is also studied and different simulations performed shows CE-COFDM is more power efficient than chirped OFDM and convectional OFDM for class A and class B Linear Power Amplifier (LPA).

  8. Population inversion by chirped pulses

    SciTech Connect

    Lu Tianshi

    2011-09-15

    In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific accuracy thresholds.

  9. Coherent chirped pulse laser network with Mickelson phase conjugator.

    PubMed

    Okulov, A Yu

    2014-04-10

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to the most suitable configuration for a coherent coupling of thousands of fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that a Michelson phase-conjugating configuration with double passage through an array of fiber amplifiers has the definite advantage compared to a one-way fiber array coupled in a Mach-Zehnder configuration. Regardless of the amount of synchronized fiber amplifiers, the Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on an entrance/output beam splitter. In both configurations, the nonlinear transformation of the stretched pulse envelope, due to gain saturation, is capable of randomizing the position of chirp inside an envelope; thus it may reduce the visibility of the interference pattern at an output beam splitter. Certain advantages are inherent to the sech-form temporal envelope because of the exponential precursor and self-similar propagation in gain medium. The Gaussian envelope is significantly compressed in a deep gain saturation regime, and the frequency chirp position inside pulse envelope is more deformed.

  10. An improved processing sequence for uncorrelated Chirp sonar data

    NASA Astrophysics Data System (ADS)

    Baradello, Luca

    2014-12-01

    Chirp sonar systems can be used to obtain high resolution seismic reflection images of the sub-seafloor during marine surveys. The exact knowledge of the Chirp signature allows the use of deterministic algorithms to process the data, similarly to that applied to Vibroseis data on land. Here, it is described an innovative processing sequence to be applied to uncorrelated Chirp data, which can improve vertical and lateral resolution compared to conventional methods. It includes application of a Wiener filter to transform a frequency-modulated sweep into a minimum-phase pulse sequence. In this way, the data become causal and can undergo predictive deconvolution to reduce ringing and enhance vertical resolution. Afterwards, FX-deconvolution and Stolt migration can be applied to obtain an improved imaging of the subsurface. The result of this procedure is a seismic reflection image with higher resolution than traditional ones, which are normally represented using the envelope function of the signal. This technique can be particularly useful for engineering-geotechnical surveys and archaeological investigations that require a fine detail imaging of the uppermost meters of the sub-seafloor.

  11. Fast calculation method of computer generated hologram animation for viewpoint parallel shift and rotation using Fourier transform optical system.

    PubMed

    Watanabe, Ryosuke; Yamaguchi, Kazuhiro; Sakamoto, Yuji

    2016-01-20

    Computer generated hologram (CGH) animations can be made by switching many CGHs on an electronic display. Some fast calculation methods for CGH animations have been proposed, but one for viewpoint movement has not been proposed. Therefore, we designed a fast calculation method of CGH animations for viewpoint parallel shifts and rotation. A Fourier transform optical system was adopted to expand the viewing angle. The results of experiments were that the calculation time of our method was over 6 times faster than that of the conventional method. Furthermore, the degradation in CGH animation quality was found to be sufficiently small.

  12. On the application of a fast polynomial transform and the Chinese remainder theorem to compute a two-dimensional convolution

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Lipes, R.; Reed, I. S.; Wu, C.

    1980-01-01

    A fast algorithm is developed to compute two dimensional convolutions of an array of d sub 1 X d sub 2 complex number points, where d sub 2 = 2(M) and d sub 1 = 2(m-r+) for some 1 or = r or = m. This algorithm requires fewer multiplications and about the same number of additions as the conventional fast fourier transform method for computing the two dimensional convolution. It also has the advantage that the operation of transposing the matrix of data can be avoided.

  13. Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.

    PubMed

    Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven

    2014-11-01

    Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without

  14. Long-term Seismicity Comparisons from Oceanic Transforms Bounded by Slow, Intermediate, and Fast Mid-ocean Ridge Spreading Segments

    NASA Astrophysics Data System (ADS)

    Haxel, J. H.; Dziak, R. P.; Matsumoto, H.; Fowler, M. J.; Lau, T. K.

    2007-12-01

    Long-term observations of seismicity along oceanic transform faults have traditionally been difficult due to limited coverage provided by land based seismic networks. More recently, hydroacoustically recorded earthquakes have been catalogued along the East Pacific Rise (EPR), Mid Atlantic Ridge (MAR), and in the northeast Pacific by the NOAA/PMEL and Oregon State University Acoustic Monitoring Program. These catalogs reduce earthquake detection thresholds by nearly 2 orders of magnitude for the slow spreading MAR, the intermediate spreading Juan de Fuca system, and the fast spreading EPR allowing for a more complete long-term time series of seismic activity along the associated transforms in each spreading regime. Using these hydroacoustically derived earthquake catalogs from 1996-2005, this study examines the long-term temporal and spatial seismicity rate patterns of oceanic transform faults bounded by slow, intermediate, and fast mid-ocean ridge spreading. Our analysis includes 5 MAR transforms, 1 northeast Pacific, and 7 EPR tranform faults. Using standard time series analysis techniques in addition to empirical orthogonal functions (EOF), we describe time space patterns along each transform, characterize seismic behavior between transforms within each spreading regime, and finally compare seismicity time series between transforms bounded by different spreading rates. Through our analysis we anticipate the development of an oceanic tranform fault index parameterized by background seismicity rate, seismicity rate variability during seismic events, fault length, degree of tranform segmentation, and rate of spreading along bounding ridge segments. Utilizing a more complete hydroacoustically derived earthquake catalog provides an unprecedented and comprehensive approach for examining long-term seismicity patterns in transform faulting within these 3 mid-ocean ridge settings.

  15. Fast quality control of Herba Epimedii by using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Pei, Li-Kuan; Sun, Su-Qin; Guo, Bao-Lin; Huang, Wen-Hua; Xiao, Pei-Gen

    2008-07-01

    Herba Epimedii is a well-known traditional Chinese medicine (TCM) having the effect of nourishing the kidney and strengthening the 'Yang'. Its primary effective constituents are considered to be the 8-prenyl flavonols, which can be assorted into 4'-methoxyl-prenylflavonols (MPFs) and 4'-hydroxyl-prenylflavonols (HPFs), according to the group (methoxyl or hydroxyl) located at 4' in their structures. The Fourier transform infrared spectroscopy (FT-IR) has been widely used in the researches of TCMs. In the present study, the FT-IR was attempted to be applied in the quality control of Herba Epimedii. We compared the IR spectra of 17 pure flavonoids, of which eight were derived from Herba Epimedii, and found a characteristic absorption peak at 1259 ± 1 cm -1, corresponding to the MPFs, the major 8-prenyl flavonols in the aerial parts of the Epimedium species. This peak could also be found in the IR spectra of both the herbal samples and their 70% ethanol extracts. Moreover, the intensity of this peak was in the direct correlation with the total content of MPFs. The correlation values, representing the semblance of two spectra, of the IR spectrum of herbal sample and icariin, in the range of 1280-1200 cm -1, had been established to be a good index for the quality control of the herbs. Accordingly, a correlation value of not less than 0.50 could be used as the essential screening criteria for the herbs. The FT-IR could be used for the fast and effective quality control of Herba Epimedii.

  16. Comparison of fast Fourier transform and convolution in wavelength scanning interferometry

    NASA Astrophysics Data System (ADS)

    Muhamedsalih, H.; Jiang, X.; Gao, F.

    2011-05-01

    The assessment of surface finish has become increasingly important in the field of precision engineering. Optical interferometry has been widely used for surface measurement due to the advantages of non-contact and high accuracy interrogation. In spite of the 2π phase ambiguity that can limit the measurement scale in monochromatic interferometry, other optical interferomtry have succeeded to overcome this problem and to measure both rough and smooth surfaces such as white light interferometry and wavelength scanning interferometry (WSI). The WSI can be used to measure large discontinuous surface profiles by producing phase shifts without any mechanical scanning process. Where the WSI produces the phase shifts by altering the wavelength of a broadband light source and capturing the produced interferograms by a CCD. This paper introduces an optical setup and operation principle of a WSI that used a halogen white light as a broadband illumination source and an acousto-optic tunable filter (AOTF) as a wavelength scanning device. This setup can provide a wide scan range in the visible region. The scanned range is being operated from 682.8 nm to 552.8nm and the number of captured frames is 128. Furthermore, the obtained interferograms from a Linnik interferometer have been analyzed by two methods, Fast Fourier Transform and Convolution. A mathematical description of both methods is presented then a comparison in results accuracy is made between them. The Areal measurement of a standard 4.707μm step height sample shows that FFT and convolution methods could provide a nanometer measurement resolution for the surface finish inspection.

  17. Modeling the viscoplastic micromechanical response of two-phase materials using fast Fourier transforms

    SciTech Connect

    Lebensohn, Ricardo A; Lee, Sukbin; Rollett, Anthony D

    2009-01-01

    A viscoplastic approach using the Fast Fourier Transform (FFT) method for obtaining local mechanical response is utilized to study microstructure-property relationships in composite materials. Specifically, three-dimensional, two-phase digital materials containing isotropically coarsened particles surrounded by a matrix phase, generated through a Kinetic Monte Carlo Potts model for Ostwald ripening, are used as instantiations in order to calculate the stress and strain rate fields under uniaxial tension. The effects of the morphology of the matrix phase, the volume fraction and the contiguity of particles, and the polycrystallinity of matrix phase, on the stress and strain rate fields under uniaxial tension are examined. It is found that the first moments of the stress and strain rate fields have a different dependence on the particle volume fraction and the particle contiguity from their second moments. The average stresses and average strain rates of both phases and of the overall composite have rather simple relationships with the particle volume fraction whereas their standard deviations vary strongly, especially when the particle volume fraction is high, and the contiguity of particles has a noticeable effect on the mechanical response. It is also found that the shape of stress distribution in the BCC hard particle phase evolves as the volume fraction of particles in the composite varies, such that it agrees with the stress field in the BCC polycrystal as the volume of particles approaches unity. Finally, it is observed that the stress and strain rate fields in the microstructures with a polycrystalline matrix are less sensitive to changes in volume fraction and contiguity of particles.

  18. Energy efficient low power shared-memory Fast Fourier Transform (FFT) processor with dynamic voltage scaling

    NASA Astrophysics Data System (ADS)

    Fitrio, D.; Singh, J.; Stojcevski, A.

    2005-12-01

    Reduction of power dissipations in CMOS circuits needs to be addressed for portable battery devices. Selection of appropriate transistor library to minimise leakage current, implementation of low power design architectures, power management implementation, and the choice of chip packaging, all have impact on power dissipation and are important considerations in design and implementation of integrated circuits for low power applications. Energy-efficient architecture is highly desirable for battery operated systems, which operates in a wide variation of operating scenarios. Energy-efficient design aims to reconfigure its own architectures to scale down energy consumption depending upon the throughput and quality requirement. An energy efficient system should be able to decide its minimum power requirements by dynamically scaling its own operating frequency, supply voltage or the threshold voltage according to a variety of operating scenarios. The increasing product demand for application specific integrated circuit or processor for independent portable devices has influenced designers to implement dedicated processors with ultra low power requirements. One of these dedicated processors is a Fast Fourier Transform (FFT) processor, which is widely used in signal processing for numerous applications such as, wireless telecommunication and biomedical applications where the demand for extended battery life is extremely high. This paper presents the design and performance analysis of a low power shared memory FFT processor incorporating dynamic voltage scaling. Dynamic voltage scaling enables power supply scaling into various supply voltage levels. The concept behind the proposed solution is that if the speed of the main logic core can be adjusted according to input load or amount of processor's computation "just enough" to meet the requirement. The design was implemented using 0.12 μm ST-Microelectronic 6-metal layer CMOS dual- process technology in Cadence Analogue

  19. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    SciTech Connect

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Sheng, Y.

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  20. Chirped femtosecond pulse scattering by spherical particles

    NASA Astrophysics Data System (ADS)

    Kim, Dal-Woo; Xiao, Gang-Yao; Lee, Tong-Nyong

    1996-05-01

    Generalized Lorentz-Mie formulas are used to study the scattering characteristics when a chirped femtosecond pulse illuminates a spherical particle. For a linear chirped Gaussian pulse with the envelope function g( tau ) = exp[- pi (1 + ib) tau 2], dimensionless parameter b is defined as a chirp. The calculation illustrated that even for pulses with a constant carrier wavelength ( lambda 0 = 0.5 mu m) and pulse-filling coefficient (l0 = 1.98), the efficiencies for extinction and scattering differ very much between the carrier wave and the different chirped pulses. The slowly varying background of the extinction and the scattering curves is damped by the chirp. When the pulse is deeply chirped, the maxima and minima of the background curves reduce to the point where they disappear, and the efficiency curves illustrate a steplike dependence on the sphere size. Another feature is that the only on the amount of chirp (|b|), regardless of upchirp (b greater than 0) or downchirp (b less than 0).

  1. Transionospheric signal detection with chirped wavelets

    SciTech Connect

    Doser, A.B.; Dunham, M.E.

    1997-11-01

    Chirped wavelets are utilized to detect dispersed signals in the joint time scale domain. Specifically, pulses that become dispersed by transmission through the ionosphere and are received by satellites as nonlinear chirps are investigated. Since the dispersion greatly lowers the signal to noise ratios, it is difficult to isolate the signals in the time domain. Satellite data are examined with discrete wavelet expansions. Detection is accomplished via a template matching threshold scheme. Quantitative experimental results demonstrate that the chirped wavelet detection scheme is successful in detecting the transionospheric pulses at very low signal to noise ratios.

  2. Bioinspired irregularly chirped broadband reflecting multilayers

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio

    2017-08-01

    Dielectric multilayers consisting of alternating layers of two different materials with thicknesses irregularly decreasing with depth in the structure are included in the cuticle of some beetles whose shell exhibits broadband reflection in the optical wavelength range. Emulating these structures, we propose and numerically analyze irregularly chirped dielectric multilayers. Analysis was performed using a dedicated genetic algorithm (GA) that searches for the multilayer configurations maximizing the reflection for normal incidence over a large wavelength range. We found that the GA leads to the irregularly chirped reflectors that significantly outperform the regularly chirped ones proposed and analyzed in the literature.

  3. Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2012-07-01

    Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.

  4. Recordings of mucociliary activity in vivo: benefit of fast Fourier transformation of the photoelectric signal.

    PubMed

    Lindberg, S; Cervin, A; Runer, T; Thomasson, L

    1996-09-01

    Investigations of mucociliary activity in vivo are based on photoelectric recordings of light reflections from the mucosa. The alterations in light intensity produced by the beating cilia are picked up by a photodetector and converted to photoelectric signals. The optimal processing of these signals is not known, but in vitro recordings have been reported to benefit from fast Fourier transformation (FFT) of the signal. The aim of the investigation was to study the effect of FFT for frequency analysis of photoelectric signals originating from an artificial light source simulating mucociliary activity or from sinus or nasal mucosa in vivo, as compared to a conventional method of calculating mucociliary wave frequency, in which each peak in the signal is interpreted as a beat (old method). In the experiments with the artificial light source, the FFT system was superior to the conventional method by a factor of 50 in detecting weak signals. By using FFT signal processing, frequency could be correctly calculated in experiments with a compound signal. In experiments in the rabbit maxillary sinus, the spontaneous variations were greater when signals were processed by FFT. The correlation between the two methods was excellent: r = .92. The increase in mucociliary activity in response to the ciliary stimulant methacholine at a dosage of 0.5 microgram/kg was greater measured with the FFT than with the old method (55.3% +/- 8.3% versus 43.0% +/- 8.2%, p < .05, N = 8), and only with the FFT system could a significant effect of a threshold dose (0.05 microgram/kg) of methacholine be detected. In the human nose, recordings from aluminum foil placed on the nasal dorsum and from the nasal septa mucosa displayed some similarities in the lower frequency spectrum (< 5 Hz) attributable to artifacts. The predominant cause of these artifacts was the pulse beat, whereas in the frequency spectrum above 5 Hz, results differed for the two sources of reflected light, the mean frequency in

  5. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.

    PubMed

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.

  6. Fast Fourier and discrete wavelet transforms applied to sensorless vector control induction motor for rotor bar faults diagnosis.

    PubMed

    Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha

    2014-09-01

    This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Optical chirped beam amplification and propagation

    DOEpatents

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  8. Addendum to 'A new hybrid algorithm for computing a fast discrete Fourier transform'

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.; Benjauthrit, B.

    1981-01-01

    The reported investigation represents a continuation of a study conducted by Reed and Truong (1979), who proposed a hybrid algorithm for computing the discrete Fourier transform (DFT). The proposed technique employs a Winograd-type algorithm in conjunction with the Mersenne prime-number theoretic transform to perform a DFT. The implementation of the technique involves a considerable number of additions. The new investigation shows an approach which can reduce the number of additions significantly. It is proposed to use Winograd's algorithm for computing the Mersenne prime-number theoretic transform in the transform portion of the hybrid algorithm.

  9. Photon Counting Chirped Amplitude Modulation Ladar

    DTIC Science & Technology

    2008-03-01

    135 S. Taylor Ave., Room 103, Louisville, CO 80027-3025 14. ABSTRACT This work developed a method using Geiger - mode avalanche photodiode (GM-APD...effort to develop a method using Geiger - mode avalanche photodiode (GM-APD) photon counting detectors in the U.S. Army Research Laboratory’s chirped...architecture are discussed. 15. SUBJECT TERMS laser radar, ladar, avalanche photo-detectors, Geiger mode detectors, chirped amplitude modulation

  10. Modeling of a method of parallel hierarchical transformation for fast recognition of dynamic images

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid I.; Kokryatskaya, Nataliya I.; Shpakovych, Viktoriya V.

    2013-12-01

    Principles necessary to develop a method and computational facilities for the parallel hierarchical transformation based on high-performance GPUs are discussed in the paper. Mathematic models of the parallel hierarchical (PH) network training for the transformation and a PH network training method for recognition of dynamic images are developed.

  11. Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.

    2015-03-01

    In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.

  12. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).

  13. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography

    PubMed Central

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2014-01-01

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial)×1000(lateral). PMID:24977582

  14. Femtosecond Yb-fiber chirped-pulse-amplification system based on chirped-volume Bragg gratings.

    PubMed

    Chang, Guoqing; Rever, Matthew; Smirnov, Vadim; Glebov, Leonid; Galvanauskas, Almantas

    2009-10-01

    A 100 W amplified (75 W compressed) femtosecond (650 fs) Yb-fiber chirped-pulse-amplification system is demonstrated using broadband chirped-volume Bragg gratings (CVBGs) for the stretcher and compressor. With a 75% compression efficiency, the CVBG-based compressor exhibits an excellent average power handling capability and indicates the potential for further power scaling with this compact and robust technology.

  15. Transformation of the ordered internal structures during the acceleration of fast charged particles in a dense plasma focus

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2017-07-01

    The paper concerns important differences in the evolution of plasma column structures during the production of fusion neutrons in the first and subsequent neutron pulses, as observed for plasma-focus discharges performed with the deuterium filling. The first neutron pulse, of a more isotropic distribution, is usually produced during the formation of the first big plasmoid. The next neutron pulses can be generated by the fast deuterons moving dominantly in the downstream direction, at the instants of a disruption of the pinch constriction, when other plasmoids are formed during the constriction evolution. In both cases, the fusion neutrons are produced by a beam-target mechanism, and the acceleration of fast electron- and deuteron-beams can be interpreted by transformation and decay of the magnetic field associated with a filamentary structure of the current flow in the plasmoid.

  16. Tests show ability of vacuum circuit breaker to interrupt fast transient recovery voltage rates of rise of transformer secondary faults

    SciTech Connect

    Smith, R.K.

    1994-12-31

    A Vacuum Circuit Breaker demonstrated its ability to interrupt short circuits with faster than normal rates of rise of Transient Recovery Voltage (TRV) at levels greater than those produced by most transformer secondary faults. Two recent exploratory test programs evaluated the interrupting ability of a 15kV Vacuum Circuit Breaker containing interrupters of the rotating arc type with contacts made from a Chromium-Copper powder metal mixture. The interrupting conditions covered a wide range of currents from 10% to 130% of the 28kA rated short circuit current of the tested circuit breaker and a wide range of TRV rates of rise, including the relatively slow rate of rise, normally used in testing and found in most indoor circuit breaker applications; two faster rates of rise equaling and exceeding those found in a known power plant transformer secondary protection application; and the fastest rates of rise possible in the laboratory which exceed the requirements of most transformer secondary faults. These tests showed that the interrupting performance of the tested Vacuum Circuit Breaker was unaffected by the TRV rate of rise to the fastest rates available in the test lab. Such a Vacuum Circuit Breaker can therefore be used without TRV modifying capacitors to slow down the rate of rise provided by the power system. This ability is particularly important if analysis shows that the expected TRV from a transformer secondary fault has a fast rate of rise beyond the recognized ability of an older circuit breaker to acceptably interrupt.

  17. Tests show ability of vacuum circuit breaker to interrupt fast transient recovery voltage rates of rise of transformer secondary faults

    SciTech Connect

    Smith, R.K.

    1995-01-01

    A vacuum circuit breaker demonstrated its ability to interrupt short circuits with faster than normal rates of rise of transient recovery voltage (TRV) at levels greater than those produced by most transformer secondary faults. Two recent exploratory test programs evaluated the interrupting ability of a 15kV vacuum circuit breaker containing interrupters of the rotating arc type with contacts made from a chromium-copper powder metal mixture. The interrupting conditions covered a wide range of currents from 10% to 130% of the 28kA rated short circuit current of the tested circuit breaker and a wide range of TRV rates of rise, including the relatively slow rate of rise, normally used in testing and found in most indoor circuit breaker applications, two faster rates of rise equaling and exceeding those found in a known power plant transformer secondary protection application, and the fastest rates of rise possible in the laboratory which exceed the requirements of most transformer secondary faults. These tests showed that the interrupting performance of the tested vacuum circuit breaker was unaffected by the TRV rate of rise to the fastest rates available in the test lab. Such a vacuum circuit breaker can therefore be used without TRV modifying capacitors to slow down the rate of rise provided by the power system. This ability is particularly important if analysis shows that the expected TRV from a transformer secondary fault has a fast rate of rise beyond the recognized ability of an older circuit breaker to acceptably interrupt.

  18. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay

    2014-06-01

    We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.

  19. Investigating the nonlinear microbubble response to chirp encoded, multipulse sequences.

    PubMed

    Chetty, Kevin; Hajnal, Joseph V; Eckersley, Robert J

    2006-12-01

    A modified Rayleigh-Plesset model was used to investigate the nonlinear acoustic response of ultrasound contrast microbubbles to multipulse phase and amplitude modulated, chirp encoded sequences. Trade-offs between the signal-to-noise ratio (SNR) and axial resolution were quantified for differing chirp time-bandwidth products and methods for minimising the artifacts formed in the postprocessing stages were developed. It was found that the chirp length can be increased and bandwidth reduced to improve SNR, though resolution is sacrificed. Results from the simulated chirp, pulse inverted, amplitude modulated (chirp PIAM) sequences were also compared with equivalent short pulse PIAM sequences and it was found that the chirp sequences preserve their extra energy after scattering, which translates to an improved SNR after processing. Compression artifacts were reduced by using chirps with a centre frequency and bandwidth tuned to the frequency response of the microbubble and reversing the frequency sweep of one chirp in the sequence.

  20. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    SciTech Connect

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Beveren, V. van; Goede, A. P. H.; Graswinckel, M. F.; Schueller, F. C.; Oosterbeek, J. W.; Buerger, A.; Hennen, B. A.

    2009-10-15

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

  1. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    PubMed

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  2. sBWT: memory efficient implementation of the hardware-acceleration-friendly Schindler transform for the fast biological sequence mapping.

    PubMed

    Chang, Chia-Hua; Chou, Min-Te; Wu, Yi-Chung; Hong, Ting-Wei; Li, Yun-Lung; Yang, Chia-Hsiang; Hung, Jui-Hung

    2016-11-15

    The Full-text index in Minute space (FM-index) derived from the Burrows-Wheeler transform (BWT) is broadly used for fast string matching in large genomes or a huge set of sequencing reads. Several graphic processing unit (GPU) accelerated aligners based on the FM-index have been proposed recently; however, the construction of the index is still handled by central processing unit (CPU), only parallelized in data level (e.g. by performing blockwise suffix sorting in GPU), or not scalable for large genomes. To fulfill the need for a more practical, hardware-parallelizable indexing and matching approach, we herein propose sBWT based on a BWT variant (i.e. Schindler transform) that can be built with highly simplified hardware-acceleration-friendly algorithms and still suffices accurate and fast string matching in repetitive references. In our tests, the implementation achieves significant speedups in indexing and searching compared with other BWT-based tools and can be applied to a variety of domains. sBWT is implemented in C ++ with CPU-only and GPU-accelerated versions. sBWT is open-source software and is available at http://jhhung.github.io/sBWT/Supplementary information: Supplementary data are available at Bioinformatics online. chyee@ntu.edu.tw or jhhung@nctu.edu.tw (also juihunghung@gmail.com). © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  4. Transformed Governance and the Education for All-Fast Track Initiative. Policy Brief 2010-02

    ERIC Educational Resources Information Center

    Gartner, David

    2010-01-01

    The Education for All-Fast Track Initiative (FTI) grew out of the "New Focus on Education for All" communique of the G-8 when Canada hosted the summit in 2002 at Kananaskis. As Canada prepares again to host the G-8, and Korea assumes leadership of the newly-empowered G-20, it is a valuable moment to revisit and re-think the current…

  5. Transformed Governance and the Education for All-Fast Track Initiative. Policy Brief 2010-02

    ERIC Educational Resources Information Center

    Gartner, David

    2010-01-01

    The Education for All-Fast Track Initiative (FTI) grew out of the "New Focus on Education for All" communique of the G-8 when Canada hosted the summit in 2002 at Kananaskis. As Canada prepares again to host the G-8, and Korea assumes leadership of the newly-empowered G-20, it is a valuable moment to revisit and re-think the current…

  6. Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat.

    PubMed Central

    Gorza, L; Gundersen, K; Lømo, T; Schiaffino, S; Westgaard, R H

    1988-01-01

    1. Adult soleus muscles were denervated and stimulated directly for 2-130 days with 'fast' (short pulse trains at 100 Hz) or 'slow' (continuously at 10 Hz, or long pulse trains at 15 Hz) stimulus patterns. 2. At the end of the period of stimulation isometric twitches and tetani and isotonic shortening velocities were measured. Frozen cross-sections were later examined with antibodies against myosin heavy chains specific for adult fast, adult slow and fetal myosin. 3. Isometric twitch duration (twitch time-to-peak and half-relaxation time) decreased during intermittent 100 Hz stimulation to values that were almost as fast as in the normal extensor digitorum longus (EDL) (95 and 94% transformation). The major part of the decrease occurred between 2 and 21 days after the onset of stimulation, and was accompanied by post-tetanic potentiation of the twitch, 'sag' in tension during an unfused tetanus, lower twitch/tetanus ratio and marked shifts to the right (higher frequencies) of the tension-frequency curve of the muscle. In contrast, during 10 or 15 Hz stimulation the isometric twitch duration remained slow, the twitch continued to show post-tetanic depression and absence of 'sag', while the twitch/tetanus ratio increased. 4. Denervation per se led to a slight increase and, then, after about a month, to a moderate and gradual decrease in twitch duration. The twitch/tetanus ratio increased markedly and post-tetanic depression became less pronounced or disappeared. Muscle weight and particularly tetanic tension were markedly reduced and these reductions were to a large extent counteracted by electrical stimulation. 5. Implantation of sham electrodes had no effect on twitch duration of denervated or innervated control muscles, but reduced tetanic tension in the innervated control muscles. 6. Maximum isotonic shortening velocity of the whole muscle (mm/s) increased during intermittent 100 Hz stimulation to a value as fast as in the normal EDL (110% transformation). Since

  7. Chirped polymer optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Pereira, L.; Antunes, P.; Mergo, P.; Webb, D. J.; Pinto, J. L.; André, P.

    2017-05-01

    We report chirped fiber Bragg gratings (CFBGs) photo-inscribed in undoped PMMA polymer optical fibre (POF) for the first time. The chirped polymer optical fiber Bragg gratings (CPOFBGs) were inscribed using an UV KrF excimer laser operating at 248 nm. The rectangular gauss laser beam was expanded to 25 mm in horizontal direction along the fiber core by a cylindrical lens, giving a total of 25 mm grating length. A 25 mm long chirped phase mask chosen for 1550 nm grating inscription was used. The laser frequency was 1 Hz with an energy of 5 mJ per exposure, exposing few pulses for each grating inscription. The reflection amplitude spectrum evolution of a CPOFBG is investigated as a function of the applied strain and temperature. Also, some results regarding to group delay are collected and discussed. These results pave the way to further developments in different fields, where POFs could present some advantages preferably replacing their silica counterparts.

  8. Gravity data inversion to determine 3D topographycal density contrast of Banten area, Indonesia based on fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Windhari, Ayuty; Handayani, Gunawan

    2015-04-01

    The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.

  9. A parallel-pipeline architecture of the fast polynomial transform for computing a two-dimensional cyclic convolution

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Liu, K. Y.; Reed, I. S.

    1983-01-01

    It is pointed out that the two-dimensional cyclic convolution is a useful tool for many two-dimensional digital signal processing applications. Two important applications are related to spaceborne high-resolution synthetic aperture radar (SAR) processing and image processing. Nussbaumer and Quandalle (1978) showed that a radix-2 polynomial transform analogous to the conventional radix-2 FFT algorithm can be used to compute a two-dimensional cyclic convolution. On the basis of results reported by Arambepola and Rayner (1979), a radix-2 polynomial transform can be defined to compute a multidimensional cyclic convolution. Truong et al. (1981) used the considered ideas together with the Chinese Theorem to further reduce the complexity of the radix-2 fast polynomial transform (FPT). Reed et al. (1981) demonstrated that such a new FPT algorithm is significantly faster than the FFT algorithm for computing a two-dimensional convolution. In the present investigation, a parallel-pipeline architecture is considered for implementing the FPT developed by Truong et al.

  10. Above-threshold ionization by chirped laser pulses

    SciTech Connect

    Nakajima, Takashi

    2007-05-15

    We theoretically investigate above-threshold ionization by chirped laser pulses. By comparing the photoelectron energy spectra and the photoelectron angular distributions of Na for the laser pulses with different chirp rates but with the identical spectral profile, we find that the ionization processes have a clear dependence on the chirp rate. Further calculations without excited bound states during the time propagation of the wave function reveal practically no chirp dependence, which is clear evidence that the origin of the chirp dependence in above-threshold ionization is the excited bound states.

  11. A program for 2D modeling (cross) correlogram tables using fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Ma, Xianlin; Yao, Tingting

    2001-08-01

    An alternative to the traditional fitting of analytical correlogram models or of a linear model of coregionalization has been recently proposed, whereby the conditions for permissibility of a set of (cross) correlogram tables are imposed on their Fourier transforms, that is on the corresponding set of (cross) spectrum tables. The resulting model is entirely non-parametric and consists of a set of permissible (cross) correlogram tables from which gridded correlogram values can be read directly. This paper gives the suite of GSLIB-type programs to implement this correlogram modeling approach. Presentation of the program is backed by a case study using actual petroleum reservoir data (porosity and seismic reflection energy).

  12. Use of the fast Fourier transform method for analyzing linear and equispaced Fizeau fringes.

    PubMed

    Lai, G; Yatagai, T

    1994-09-01

    The Fourier transform method is applied to analyze the initial phase of linear and equispaced Fizeau fringes. We develop an algorithm for high-precision phase measurement by using the Fourier coefficient that corresponds to the spatial frequency of the Fizeau fringes, and we describe methods for determining the fringe carrier frequency. Errors caused by carrier frequency fluctuation and data truncation are studied theoretically and by computer simulation. To demonstrate the method we apply it to the real-time calibration of a piezoelectric transducer mirror in a Twyman-Green interferometer.

  13. Unbiased free energy estimates in fast nonequilibrium transformations using Gaussian mixtures

    SciTech Connect

    Procacci, Piero

    2015-04-21

    In this paper, we present an improved method for obtaining unbiased estimates of the free energy difference between two thermodynamic states using the work distribution measured in nonequilibrium driven experiments connecting these states. The method is based on the assumption that any observed work distribution is given by a mixture of Gaussian distributions, whose normal components are identical in either direction of the nonequilibrium process, with weights regulated by the Crooks theorem. Using the prototypical example for the driven unfolding/folding of deca-alanine, we show that the predicted behavior of the forward and reverse work distributions, assuming a combination of only two Gaussian components with Crooks derived weights, explains surprisingly well the striking asymmetry in the observed distributions at fast pulling speeds. The proposed methodology opens the way for a perfectly parallel implementation of Jarzynski-based free energy calculations in complex systems.

  14. Unbiased free energy estimates in fast nonequilibrium transformations using Gaussian mixtures

    NASA Astrophysics Data System (ADS)

    Procacci, Piero

    2015-04-01

    In this paper, we present an improved method for obtaining unbiased estimates of the free energy difference between two thermodynamic states using the work distribution measured in nonequilibrium driven experiments connecting these states. The method is based on the assumption that any observed work distribution is given by a mixture of Gaussian distributions, whose normal components are identical in either direction of the nonequilibrium process, with weights regulated by the Crooks theorem. Using the prototypical example for the driven unfolding/folding of deca-alanine, we show that the predicted behavior of the forward and reverse work distributions, assuming a combination of only two Gaussian components with Crooks derived weights, explains surprisingly well the striking asymmetry in the observed distributions at fast pulling speeds. The proposed methodology opens the way for a perfectly parallel implementation of Jarzynski-based free energy calculations in complex systems.

  15. Unbiased free energy estimates in fast nonequilibrium transformations using Gaussian mixtures.

    PubMed

    Procacci, Piero

    2015-04-21

    In this paper, we present an improved method for obtaining unbiased estimates of the free energy difference between two thermodynamic states using the work distribution measured in nonequilibrium driven experiments connecting these states. The method is based on the assumption that any observed work distribution is given by a mixture of Gaussian distributions, whose normal components are identical in either direction of the nonequilibrium process, with weights regulated by the Crooks theorem. Using the prototypical example for the driven unfolding/folding of deca-alanine, we show that the predicted behavior of the forward and reverse work distributions, assuming a combination of only two Gaussian components with Crooks derived weights, explains surprisingly well the striking asymmetry in the observed distributions at fast pulling speeds. The proposed methodology opens the way for a perfectly parallel implementation of Jarzynski-based free energy calculations in complex systems.

  16. Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.

    PubMed

    Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min

    2016-04-13

    Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena.

  17. pathChirp: Efficient Available Bandwidth Estimation for Network Paths

    SciTech Connect

    Cottrell, Les

    2003-04-30

    This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sender and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.

  18. Spectral analysis based on fast Fourier transformation (FFT) of surveillance data: the case of scarlet fever in China.

    PubMed

    Zhang, T; Yang, M; Xiao, X; Feng, Z; Li, C; Zhou, Z; Ren, Q; Li, X

    2014-03-01

    Many infectious diseases exhibit repetitive or regular behaviour over time. Time-domain approaches, such as the seasonal autoregressive integrated moving average model, are often utilized to examine the cyclical behaviour of such diseases. The limitations for time-domain approaches include over-differencing and over-fitting; furthermore, the use of these approaches is inappropriate when the assumption of linearity may not hold. In this study, we implemented a simple and efficient procedure based on the fast Fourier transformation (FFT) approach to evaluate the epidemic dynamic of scarlet fever incidence (2004-2010) in China. This method demonstrated good internal and external validities and overcame some shortcomings of time-domain approaches. The procedure also elucidated the cycling behaviour in terms of environmental factors. We concluded that, under appropriate circumstances of data structure, spectral analysis based on the FFT approach may be applicable for the study of oscillating diseases.

  19. Analysis of the propagation dynamics and Gouy phase of Airy beams using the fast Fresnel transform algorithm.

    PubMed

    Cottrell, Don M; Davis, Jeffrey A; Berg, Cassidy A; Freeman, Christopher Li

    2014-04-01

    There is great interest in Airy beams because they appear to propagate in a curved path. These beams are usually generated by inserting a cubic phase mask onto the input plane of a Fourier transform system. Here, we utilize a fast Fresnel diffraction algorithm to easily derive both the propagation dynamics and the Gouy phase shift for these beams. The trajectories of these beams can be modified by adding additional linear and quadratic phase terms onto the cubic phase mask. Finally, we have rewritten the equations regarding the propagating Airy beams completely in laboratory coordinates for use by experimentalists. Experimental results are included. We expect that these results will be of great importance in applications of Airy beams.

  20. SnO2-MOF-Fabry-Perot humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Lopez-Aldaba, A.; Lopez-Torres, D.; Ascorbe, J.; Rota-Rodrigo, S.; Elosua, C.; Lopez-Amo, M.; Arregui, F. J.; Corres, J. M.; Auguste, J.-L.; Jamier, R.; Roy, P.

    2016-05-01

    In this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Perot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.

  1. Proposed Application of Fast Fourier Transform in Near Infra Red Based Non Invasive Blood Glucose Monitoring System

    NASA Astrophysics Data System (ADS)

    Jenie, R. P.; Iskandar, J.; Kurniawan, A.; Rustami, E.; Syafutra, H.; Nurdin, N. M.; Handoyo, T.; Prabowo, J.; Febryarto, R.; Rahayu, M. S. K.; Damayanthi, E.; Rimbawan; Sukandar, D.; Suryana, Y.; Irzaman; Alatas, H.

    2017-03-01

    Worldwide emergence of glycaemic status related health disorders, such as diabetes and metabolic syndrome, is growing in alarming rate. The objective was to propose new methods for non invasive blood glucose level measurement system, based on implementation of Fast Fourier Transform methods. This was an initial-lab-scale-research. Data on non invasive blood glucose measurement are referred from Scopus, Medline, and Google Scholar, from 2011 until 2016, and was used as design references, combined with in house verification. System was developed in modular fashion, based on aforementioned compiled references. Several preliminary tests to understand relationship between LED and photo-diode responses have been done. Several references were used as non invasive blood glucose measurement tools design basis. Solution is developed in modular fashion. we have proven different sensor responses to water and glucose. Human test for non invasive blood glucose level measurement system is needed.

  2. Simple, fast, and accurate methodology for quantitative analysis using Fourier transform infrared spectroscopy, with bio-hybrid fuel cell examples.

    PubMed

    Mackie, David M; Jahnke, Justin P; Benyamin, Marcus S; Sumner, James J

    2016-01-01

    The standard methodologies for quantitative analysis (QA) of mixtures using Fourier transform infrared (FTIR) instruments have evolved until they are now more complicated than necessary for many users' purposes. We present a simpler methodology, suitable for widespread adoption of FTIR QA as a standard laboratory technique across disciplines by occasional users.•Algorithm is straightforward and intuitive, yet it is also fast, accurate, and robust.•Relies on component spectra, minimization of errors, and local adaptive mesh refinement.•Tested successfully on real mixtures of up to nine components. We show that our methodology is robust to challenging experimental conditions such as similar substances, component percentages differing by three orders of magnitude, and imperfect (noisy) spectra. As examples, we analyze biological, chemical, and physical aspects of bio-hybrid fuel cells.

  3. Eye pupil detection system using an ensemble of regression forest and fast radial symmetry transform with a near infrared camera

    NASA Astrophysics Data System (ADS)

    Jeong, Mira; Nam, Jae-Yeal; Ko, Byoung Chul

    2017-09-01

    In this paper, we focus on pupil center detection in various video sequences that include head poses and changes in illumination. To detect the pupil center, we first find four eye landmarks in each eye by using cascade local regression based on a regression forest. Based on the rough location of the pupil, a fast radial symmetric transform is applied using the previously found pupil location to rearrange the fine pupil center. As the final step, the pupil displacement is estimated between the previous frame and the current frame to maintain the level of accuracy against a false locating result occurring in a particular frame. We generated a new face dataset, called Keimyung University pupil detection (KMUPD), with infrared camera. The proposed method was successfully applied to the KMUPD dataset, and the results indicate that its pupil center detection capability is better than that of other methods and with a shorter processing time.

  4. Extension of harmonic cutoff in a multicycle chirped pulse combined with a chirp-free pulse

    SciTech Connect

    Xu Junjie; Zeng Bin; Yu Yongli

    2010-11-15

    We demonstrate high-order harmonic generation in a wave form synthesized by a multicycle 800-nm chirped laser pulse and a chirp-free laser pulse. Compared with the case of using only a chirped pulse, both the harmonic cutoff and the extreme ultraviolet supercontinuum can be extended when a weak chirp-free pulse is combined with the chirped pulse. When chirp-free pulse intensity grows, the cutoff energy and bandwidth of the supercontinuum grow as well. It is found that the broad supercontinuum can be achieved for a driving pulse with long duration even though the driving pulse reaches 10 optical cycles. An isolated attosecond pulse with duration of about 59 as is obtained, and after appropriate phase compensation with a duration of about 11 as. In addition, by performing time-frequency analyses and the classical trajectory simulation, the difference in supercontinuum generation between the preceding wave form and a similar wave form synthesized by an 800-nm fundamental pulse and a 1600-nm subharmonic pulse is investigated.

  5. Chirp excitation of ultrasonic guided waves.

    PubMed

    Michaels, Jennifer E; Lee, Sang Jun; Croxford, Anthony J; Wilcox, Paul D

    2013-01-01

    Most ultrasonic guided wave methods require tone burst excitations to achieve some degree of mode purity while maintaining temporal resolution. In addition, it is often desirable to acquire data using multiple frequencies, particularly during method development when the best frequency for a specific application is not known. However, this process is inconvenient and time-consuming, particularly if extensive signal averaging at each excitation frequency is required to achieve a satisfactory signal-to-noise ratio. Both acquisition time and data storage requirements may be prohibitive if responses from many narrowband tone burst excitations are measured. Here chirp excitations are utilized to address the need to both test at multiple frequencies and achieve a high signal-to-noise ratio to minimize acquisition time. A broadband chirp is used to acquire data at a wide range of frequencies, and deconvolution is applied to extract multiple narrowband responses. After optimizing the frequency and duration of the desired tone burst excitation, a long-time narrowband chirp is used as the actual excitation, and the desired tone burst response is similarly extracted during post-processing. Results are shown that demonstrate the efficacy of both broadband and narrowband chirp excitations.

  6. Unambiguous evaluation of a chirp measurement standard

    NASA Astrophysics Data System (ADS)

    Seewig, Jörg; Eifler, Matthias; Wiora, Georg

    2014-10-01

    This article describes an automated evaluation method for the chirp standard. Chirp calibration standards provide a way to describe the transfer behavior of different spatial frequencies as they contain sinusoidal functions of varying wavelengths (Krüger-Sehm et al 2007 chirp calibration standards for surface measuring instruments Tech. Mess. tm 74 572-76 Pehnelt et al 2011 Comparative analysis of optical surface measuring systems with a chip calibration standard Tech. Mess. tm 78 457-62). By introducing a new, automated evaluation method, an improvement for the application of the chirp standard can be achieved. The data-preprocessing for topography and profile measurement data and the fit of the geometric elements are described. Automated evaluation can reduce the labor required to evaluate measured data and make it easier to compare different evaluations in the course of standardization. The algorithm can be used to characterize the so-called ‘small scale fidelity’ of an optical instrument. The term ‘small scale fidelity’ is currently discussed in the optical group of working group no. 16 of the ISO technical committee 213.

  7. Synthetic-aperture chirp confocal imaging.

    PubMed

    Chien, Wei-Chen; Dilworth, D S; Liu, Elson; Leith, E N

    2006-01-20

    An imaging system that combines synthetic-aperture imaging, holography, and an optical chirp with confocal imaging is described and analyzed. Comparisons are made with synthetic-aperture radar systems. Adaptation of several synthetic-aperture radar techniques to the optical counterparts is suggested.

  8. Using Amino Acid Physicochemical Distance Transformation for Fast Protein Remote Homology Detection

    PubMed Central

    Liu, Bin; Wang, Xiaolong; Chen, Qingcai; Dong, Qiwen; Lan, Xun

    2012-01-01

    Protein remote homology detection is one of the most important problems in bioinformatics. Discriminative methods such as support vector machines (SVM) have shown superior performance. However, the performance of SVM-based methods depends on the vector representations of the protein sequences. Prior works have demonstrated that sequence-order effects are relevant for discrimination, but little work has explored how to incorporate the sequence-order information along with the amino acid physicochemical properties into the prediction. In order to incorporate the sequence-order effects into the protein remote homology detection, the physicochemical distance transformation (PDT) method is proposed. Each protein sequence is converted into a series of numbers by using the physicochemical property scores in the amino acid index (AAIndex), and then the sequence is converted into a fixed length vector by PDT. The sequence-order information can be efficiently included into the feature vector with little computational cost by this approach. Finally, the feature vectors are input into a support vector machine classifier to detect the protein remote homologies. Our experiments on a well-known benchmark show the proposed method SVM-PDT achieves superior or comparable performance with current state-of-the-art methods and its computational cost is considerably superior to those of other methods. When the evolutionary information extracted from the frequency profiles is combined with the PDT method, the profile-based PDT approach can improve the performance by 3.4% and 11.4% in terms of ROC score and ROC50 score respectively. The local sequence-order information of the protein can be efficiently captured by the proposed PDT and the physicochemical properties extracted from the amino acid index are incorporated into the prediction. The physicochemical distance transformation provides a general framework, which would be a valuable tool for protein-level study. PMID:23029559

  9. High-performance compression and double cryptography based on compressive ghost imaging with the fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Leihong, Zhang; Zilan, Pan; Luying, Wu; Xiuhua, Ma

    2016-11-01

    To solve the problem that large images can hardly be retrieved for stringent hardware restrictions and the security level is low, a method based on compressive ghost imaging (CGI) with Fast Fourier Transform (FFT) is proposed, named FFT-CGI. Initially, the information is encrypted by the sender with FFT, and the FFT-coded image is encrypted by the system of CGI with a secret key. Then the receiver decrypts the image with the aid of compressive sensing (CS) and FFT. Simulation results are given to verify the feasibility, security, and compression of the proposed encryption scheme. The experiment suggests the method can improve the quality of large images compared with conventional ghost imaging and achieve the imaging for large-sized images, further the amount of data transmitted largely reduced because of the combination of compressive sensing and FFT, and improve the security level of ghost images through ciphertext-only attack (COA), chosen-plaintext attack (CPA), and noise attack. This technique can be immediately applied to encryption and data storage with the advantages of high security, fast transmission, and high quality of reconstructed information.

  10. Isolated few-cycle radiation from chirped-pulse compression of a superradiant free-electron laser

    DOE PAGES

    Huang, Yen -Chieh; Zhang, Zhen; Chen, Chia -Hsiang; ...

    2015-08-31

    When a short electron bunch traverses an undulator to radiate a wavelength longer than the bunch length, intense superradiance from the electron bunch can quickly deplete the electron’s kinetic energy and lead to generation of an isolated chirped radiation pulse. Here, we develop a theory to describe this novel chirped pulse radiation in a superradiant free-electron laser and show the opportunity to generate isolated few-cycle high-power radiation through chirped-pulse compression after the undulator. The theory is completely characterized by how fast the electron energy is depleted for a given length of an undulator. We further present two design examples atmore » the THz and extreme-ultraviolet wavelengths and numerically generate isolated three- and nine-cycle radiation pulses, respectively.« less

  11. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  12. Multiplexing technique using amplitude-modulated chirped fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding

    2007-07-01

    We propose a new multiplexing technique using amplitude-modulated chirped fiber Bragg gratings that have an identical center Bragg wavelength. Each grating is inscribed with a unique amplitude modulation that allows them to be multiplexed with complete overlapping within a certain bandwidth. To demodulate the multiplexed signal, the discrete wavelet transform is employed. Concurrently, a wavelet denoising technique is used to reduce the noise. This proposed multiplexing technique has been verified through strain measurements. Experimental results showed that for strains applied up to 1250 μɛ the absolute error and cross-talk are within ±20 μɛ and 16 μɛ, respectively. A strain resolution of 4 μɛ is obtained.

  13. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  14. Single-shot-capable fast multichannel Fourier transform interferometer based on a microfabricated 3D multimirror array

    NASA Astrophysics Data System (ADS)

    Moser, H. O.; Heussler, S. P.; Kalaiselvi, S. M. P.

    2012-06-01

    We present a Fourier transform interferometer that is capable to record single short pulses and fast continuous transient spectra. This is achieved by spatially parallel instead of time serial processing by means of a micro/nanomanufactured multimirror array and a pixellated detector camera. The multimirror array is produced in excellent optical quality from poly(methyl methacrylate) by means of deep X-ray gray level lithography including multiple moving masks followed by sputter deposition of the gold reflecting surfaces. The crucial components such as the multimirror array and the pixellated camera are part of a straightforward optical system similar to a Czerny-Turner mount. Results demonstrate single shot measurements down to 320 μs, only limited by the camera shutter and the infrared source, and the time evolution of the absorption spectrum of an evaporating acetone layer that shows spectral changes during the first few seconds. While the spectral range of the multichannel Fourier transform interferometer (MC FTIR) as reported extends from near to mid infrared, multimirror arrays can be produced for spectra from visible to far infrared. Thus, the potential performance depends mostly on availability of detectors. The minimum pulse duration is determined by that photon number in the pulse which yields a sufficient signal to noise ratio, whereas the maximum acquisition rate of continuous transients is given by the frame rate of the detector.

  15. Efficient implementation of a multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    DOEpatents

    Bhanot, Gyan V.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

    2008-01-01

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  16. Efficient implementation of multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    DOEpatents

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2012-01-10

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  17. Machine vision: an incremental learning system based on features derived using fast Gabor transforms for the identification of textural objects

    NASA Astrophysics Data System (ADS)

    Clark, Richard M.; Adjei, Osei; Johal, Harpal

    2001-11-01

    This paper proposes a fast, effective and also very adaptable incremental learning system for identifying textures based on features extracted from Gabor space. The Gabor transform is a useful technique for feature extraction since it exhibits properties that are similar to biologically visual sensory systems such as those found in the mammalian visual cortex. Although two-dimensional Gabor filters have been applied successfully to a variety of tasks such as text segmentation, object detection and fingerprint analysis, the work of this paper extends previous work by incorporating incremental learning to facilitate easier training. The proposed system transforms textural images into Gabor space and a non-linear threshold function is then applied to extract feature vectors that bear signatures of the textural images. The mean and variance of each training group is computed followed by a technique that uses the Kohonen network to cluster these features. The centers of these clusters form the basis of an incremental learning paradigm that allows new information to be integrated into the existing knowledge. A number of experiments are conducted for real-time identification or discrimination of textural images.

  18. A dysprosium nanowire modified carbon paste electrode for determination of levodopa using fast Fourier transformation square-wave voltammetry method.

    PubMed

    Daneshgar, Parandis; Norouzi, Parviz; Ganjali, Mohammad Reza; Ordikhani-Seyedlar, Amin; Eshraghi, Hasan

    2009-01-01

    A new detection technique called the fast Fourier transform square-wave voltammetry (FFT-SWV) is based on the measurements of electrode admittance as a function of potential. The response of the detector (microelectrode) is fast, which makes the method suitable for most applications involving flowing electrolytes. The carbon paste electrode was modified by nanostructures to improve better sensitivity. The response is generated by a redox processes. The redox property of L-dopa was used for determination of it in human serum and urine samples. The support electrolyte that provided a more defined and intense peak current for L-dopa determination was at 0.05 mol l(-1) acetate buffer pH 7.0. Synthesized dysprosium nanowires make more effective surface like nanotubes [P.M. Ajayan, S. Iijima, Nature 361 (1993) 333; I.A. Merkoc, Microchim. Acta 152 (2006) 157; F.H. Wu, G.C. Zhao, X.W. Wei, Z.S. Yang, Microchim. Acta 144 (2004) 243; L. Liu, J. Song, Anal. Biochem. 354 (2006) 22] so they are good candidates for using as a modifier for electrochemical reactions. The drug presented one irreversible oxidation peaks at 360 mV versus Ag/AgCl by modified nanowire carbon paste electrode which produced high current and reduced the oxidation potential about 80 mV. Furthermore, signal-to-noise ratio has significantly increased by application of discrete fast Fourier transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. To obtain the much sensitivity the effective parameters such as frequency, amplitude and pH was optimized. As a result, C(DL) of 4.0 x 10(-9)M and an LOQ of 7.0 x 10(-9) M were found for determination for L-dopa. A good recovery was obtained for assay spiked urine samples and a good quantification of L-dopa was achieved in a commercial formulation.

  19. Fast and Accurate Calculation of Protein Depth by Euclidean Distance Transform

    PubMed Central

    Xu, Dong; Li, Hua; Zhang, Yang

    2014-01-01

    The depth of each atom/residue in a protein structure is a key attribution that has been widely used in protein structure modeling and function annotation. However, the accurate calculation of depth is time consuming. Here, we propose to use the Euclidean distance transform (EDT) to calculate the depth, which conveniently converts the protein structure to a 3D gray-scale image with each pixel labeling the minimum distance of the pixel to the surface of the molecule (i.e. the depth). We tested the proposed EDT method on a set of 261 non-redundant protein structures. The data show that the EDT method is 2.6 times faster than the widely used method by Chakravarty and Varadarajan. The depth value by EDT method is also highly accurate, which is almost identical to the depth calculated by exhaustive search (Pearson’s correlation coefficient≈1). We believe the EDT-based depth calculation program can be used as an efficient tool to assist the studies of protein fold recognition and structure-based function annotation. PMID:25035865

  20. The Climate Hazards group InfraRed Precipitation (CHIRP) with Stations (CHIRPS): Development and Validation

    NASA Astrophysics Data System (ADS)

    Peterson, P.; Funk, C. C.; Husak, G. J.; Pedreros, D. H.; Landsfeld, M.; Verdin, J. P.; Shukla, S.

    2013-12-01

    CHIRP and CHIRPS are new quasi-global precipitation products with daily to seasonal time scales, a 0.05° resolution, and a 1981 to near real-time period of record. Developed by the Climate Hazards Group at UCSB and scientists at the U.S. Geological Survey Earth Resources Observation and Science Center specifically for drought early warning and environmental monitoring, CHIRPS provides moderate latency precipitation estimates that place observed hydrologic extremes in their historic context. Three main types of information are used in the CHIRPS: (1) global 0.05° precipitation climatologies, (2) time-varying grids of satellite-based precipitation estimates, and (3) in situ precipitation observations. CHIRP: The global grids of long-term (1980-2009) average precipitation were estimated for each month based on station data, averaged satellite observations, and physiographic parameters. 1981-present time-varying grids of satellite precipitation were derived from spatially varying regression models based on pentadal cold cloud duration (CCD) values and TRMM V7 training data. The CCD time-series were derived from the CPC and NOAA B1 datasets. Pentadal CCD-percent anomaly values were multiplied by pentadal climatology fields to produce low bias pentadal precipitation estimates. CHIRPS: The CHG station blending procedure uses the satellite-observed spatial covariance structure to assign relative weights to neighboring stations and the CHIRP values. The CHIRPS blending procedure is based on the expected correlation between precipitation at a given target location and precipitation at the locations of the neighboring observation stations. These correlations are estimated using the CHIRP fields. The CHG has developed an extensive archive of in situ daily, pentadal and monthly precipitation totals. The CHG database has over half a billion daily rainfall observations since 1980 and another half billion before 1980. Most of these observations come from four sets of global

  1. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  2. Fast classification and compositional analysis of cornstover fractions using Fourier transform near-infrared techniques.

    PubMed

    Philip Ye, X; Liu, Lu; Hayes, Douglas; Womac, Alvin; Hong, Kunlun; Sokhansanj, Shahab

    2008-10-01

    The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.

  3. Inverse synthetic aperture radar imaging of maneuvering target based on cubic chirps model with time-varying amplitudes

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zhang, Qingxiang; Zhao, Bin

    2016-01-01

    Inverse synthetic aperture radar (ISAR) imaging of maneuvering target is a main topic in the field of radar signal processing, and the received signal in a range bin can usually be characterized as multicomponent cubic chirps with constant amplitudes after motion compensation. In fact, the phenomenon of migration through resolution cell (MTRC) often occurs for the target's complex motion, and this will induce the time-varying character for the amplitudes of cubic chirps. An algorithm for the parameters estimation of multicomponent cubic chirps with time-varying amplitudes based on the extension form of match Fourier transform is proposed, and by using it in ISAR imaging of maneuvering target, the quality of images can be improved significantly compared with the constant amplitudes model. Results of simulated and real data validate the effectiveness of the algorithm in this paper.

  4. Extension of High Harmonic Generation Cutoff via Coherent Control of Intense Few-Cycle Chirped Laser Pulses

    NASA Astrophysics Data System (ADS)

    Carrera, Juan J.; Chu, Shih-I.

    2007-06-01

    We present an ab initio quantum investigation of the high-order harmonic generation (HHG) cutoff extension using intense few-cycle chirped laser pulses. For few-cycle chirped driving laser pulse, it is shown that significant cutoff extension can be achieved through the optimization of the chirping rate parameters. The HHG power spectrum is calculated by solving accurately and efficiently the time-dependent Schr"odinger equation by means of the time-dependent generalized pseudospectral method. The time-frequency characteristics of the HHG power spectrum are analyzed in details by means of the wavelet transform of the time-dependent induced dipole acceleration. In addition, we perform classical trajectory simulation of the strong-field electron dynamics and electron return map. It is found that the quantum and classical results provide complementary and consistent information regarding the underlying mechanisms responsible for the substantial extension of the cutoff region.

  5. On the conditions for the onset of nonlinear chirping structures in NSTX

    NASA Astrophysics Data System (ADS)

    Duarte, Vinicius; Podesta, Mario; Berk, Herbert; Gorelenkov, Nikolai

    2015-11-01

    The nonlinear dynamics of phase space structures is a topic of interest in tokamak physics in connection with fast ion loss mechanisms. The onset of phase-space holes and clumps has been theoretically shown to be associated with an explosive solution of an integro-differential, nonlocal cubic equation that governs the early mode amplitude evolution in the weakly nonlinear regime. The existence and stability of the solutions of the cubic equation have been theoretically studied as a function of Fokker-Planck coefficients for the idealized case of a single resonant point of a localized mode. From realistic computations of NSTX mode structures and resonant surfaces, we calculate effective pitch angle scattering and slowing-down (drag) collisional coefficients and analyze NSTX discharges for different cases with respect to chirping experimental observation. Those results are confronted to the theory that predicts the parameters region that allow for chirping to take place.

  6. Numerical analysis of double chirp effect in tapered and linearly chirped fiber Bragg gratings.

    PubMed

    Markowski, Konrad; Jedrzejewski, Kazimierz; Osuch, Tomasz

    2016-06-10

    In this paper, a theoretical analysis of recently developed tapered chirped fiber Bragg gratings (TCFBG) written in co-directional and counter-directional configurations is presented. In particular, the effects of the synthesis of chirps resulting from both a fused taper profile and a linearly chirped fringe pattern of the induced refractive index changes within the fiber core are extensively examined. For this purpose, a numerical model based on the transfer matrix method (TMM) and the coupled mode theory (CMT) was developed for such a grating. The impact of TCFBG parameters, such as grating length and steepness of the taper transition, as well as the effect of the fringe pattern chirp rate on the spectral properties of the resulting gratings, are presented. Results show that, by using the appropriate design process, TCFBGs with reduced or enhanced resulting chirp, and thus with widely tailored spectral responses, can be easily achieved. In turn, it reveals a great potential application of such structures. The presented numerical approach provides an excellent tool for TCFBG design.

  7. Coherent control of ultracold collisions with chirped light: Direction matters

    SciTech Connect

    Wright, M. J.; Pechkis, J. A.; Carini, J. L.; Gould, P. L.; Kallush, S.; Kosloff, R.

    2007-05-15

    We demonstrate the ability to coherently control ultracold atomic Rb collisions using frequency-chirped light on the nanosecond time scale. For certain center frequencies of the chirp, the rate of inelastic trap-loss collisions induced by negatively chirped light is dramatically suppressed compared to the case of a positive chirp. We attribute this to a fundamental asymmetry in the system: an excited wave packet moves inward on the attractive molecular potential. For a positive chirp, the resonance condition moves outward in time, while for a negative chirp, it moves inward, in the same direction as the excited wave packet; this allows multiple interactions between the wave packet and the light, enabling the wave packet to be returned coherently to the ground state. Classical and quantum calculations support this interpretation.

  8. Chirped Pulse Microwave Spectroscopy on Methyl Butanoate

    NASA Astrophysics Data System (ADS)

    Hernandez-Castillo, Alicia O.; Hays, Brian M.; Abeysekera, Chamara; Zwier, Timothy S.

    2016-06-01

    The microwave spectrum of methyl butanoate has been taken from 8-18 GHz using a chirped pulse spectrometer. This molecule is a model biofuel, and its thermal decomposition products are of interest due to its many dissociation channels. As a preliminary step before such pyrolysis studies, we have examined the jet cooled spectrum of methyl butanoate in a chirped pulse spectrometer, which shows a very rich spectrum. Several conformers have been identified, each with tunneling splittings in the methyl ester group due to internal rotation. These spectra have been fit to obtain rotational constants, relative populations, and methyl rotor barriers for each conformational isomer. The results of these studies are compared to high level calculations.

  9. SAR processing with stepped chirps and phased array antennas.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  10. Amplitude-modulation chirp imaging for contrast detection.

    PubMed

    Li, Meng-Lin; Kuo, Yu-Chen; Yeh, Chih-Kuang

    2010-09-01

    We propose an amplitude-modulation chirp imaging method for contrast detection with high-frequency ultrasound. Our proposed method detects microbubbles by extracting and then selectively compressing the component of the backscattered chirp signal modulated by changes in the radii of microbubbles at their resonance frequency. Microbubbles are sonicated simultaneously with a narrowband, low-frequency pumping signal at their resonance frequency and a wideband, high-frequency imaging chirp signal. Changes in the radii of the resonant microbubbles result in periodic changes in their acoustic cross section that modulate the amplitude of the backscattered imaging chirp signal, forming pumping and imaging frequency sum-and-difference chirp terms. The frequency-sum or -difference chirp component is then extracted by a bandpass filter (BPF). Because a long imaging pulse duration is required to obtain a sufficient modulation depth on the chirp for contrast detection and to facilitate frequency-sum-and-difference signal extraction with the BPF, a chirp with a longer-than-usual waveform is used so pulse compression of the extracted chirp signal can then be performed to maintain the axial resolution, and even further improve the signal-to-noise ratio and contrast-to-tissue ratio. Experiments performed on flow phantoms with and without a speckle-generating background were performed to demonstrate the efficacy of the proposed technique. These results indicate that our proposed method can potentially provide high-resolution contrast detection in the microvasculature.

  11. Analysis of intrapulse chirp in CO2 oscillators

    NASA Technical Reports Server (NTRS)

    Moody, Stephen E.; Berger, Russell G.; Thayer, William J., III

    1987-01-01

    Pulsed single-frequency CO2 laser oscillators are often used as transmitters for coherent lidar applications. These oscillators suffer from intrapulse chirp, or dynamic frequency shifting. If excessive, such chirp can limit the signal-to-noise ratio of the lidar (by generating excess bandwidth), or limit the velocity resolution if the lidar is of the Doppler type. This paper describes a detailed numerical model that considers all known sources of intrapulse chirp. Some typical predictions of the model are shown, and simple design rules to minimize chirp are proposed.

  12. Callback response of dugongs to conspecific chirp playbacks.

    PubMed

    Ichikawa, Kotaro; Akamatsu, Tomonari; Shinke, Tomio; Adulyanukosol, Kanjana; Arai, Nobuaki

    2011-06-01

    Dugongs (Dugong dugon) produce bird-like calls such as chirps and trills. The vocal responses of dugongs to playbacks of several acoustic stimuli were investigated. Animals were exposed to four different playback stimuli: a recorded chirp from a wild dugong, a synthesized down-sweep sound, a synthesized constant-frequency sound, and silence. Wild dugongs vocalized more frequently after playback of broadcast chirps than that after constant-frequency sounds or silence. The down-sweep sound also elicited more vocal responses than did silence. No significant difference was found between the broadcast chirps and the down-sweep sound. The ratio of wild dugong chirps to all calls and the dominant frequencies of the wild dugong calls were significantly higher during playbacks of broadcast chirps, down-sweep sounds, and constant-frequency sounds than during those of silence. The source level and duration of dugong chirps increased significantly as signaling distance increased. No significant correlation was found between signaling distance and the source level of trills. These results show that dugongs vocalize to playbacks of frequency-modulated signals and suggest that the source level of dugong chirps may be manipulated to compensate for transmission loss between the source and receiver. This study provides the first behavioral observations revealing the function of dugong chirps.

  13. Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography.

    PubMed

    Chan, Kenny K H; Tang, Shuo

    2011-12-19

    Gridding based non-uniform fast Fourier transform (NUFFT) has recently been shown as an efficient method of processing non-linearly sampled data from Fourier-domain optical coherence tomography (FD-OCT). This method requires selecting design parameters, such as kernel function type, oversampling ratio and kernel width, to balance between computational complexity and accuracy. The Kaiser-Bessel (KB) and Gaussian kernels have been used independently on the NUFFT algorithm for FD-OCT. This paper compares the reconstruction error and speed for the optimization of these design parameters and justifies particular kernel choice for FD-OCT applications. It is found that for on-the-fly computation of the kernel function, the simpler Gaussian function offers a better accuracy-speed tradeoff. The KB kernel, however, is a better choice in the pre-computed kernel mode of NUFFT, in which the processing speed is no longer dependent on the kernel function type. Finally, the algorithm is used to reconstruct in-vivo images of a human finger at a camera limited 50k A-line/s.

  14. Sources of distortion product otoacoustic emissions revealed by suppression experiments and inverse fast Fourier transforms in normal ears.

    PubMed

    Konrad-Martin, D; Neely, S T; Keefe, D H; Dorn, P A; Gorga, M P

    2001-06-01

    Primary and secondary sources combine to produce the 2f1-f2 distortion product otoacoustic emission (DPOAE) measured in the ear canals of humans. DPOAEs were obtained in nine normal-hearing subjects using a fixed-f2 paradigm in which f1 was varied. The f2 was 2 or 4 kHz, and absolute and relative primary levels were varied. Data were obtained with and without a third tone (f3) placed 15.6 Hz below 2f1-f2. The level of f3 was varied in order to suppress the stimulus frequency otoacoustic emission (SFOAE) coming from the 2f1-f2 place. These data were converted from the complex frequency domain into an equivalent time representation using an inverse fast Fourier transform (IFFT). IFFTs of unsuppressed DPOAE data were characterized by two or more peaks. Relative amplitudes of these peaks depended on overall primary level and on primary-level differences. The suppressor eliminated later peaks, but early peaks remained relatively unaltered. Results are interpreted to mean that the DPOAE measured in humans includes components from the f2 place (intermodulation distortion) and DP place (in the form of a SFOAE). These findings build on previous work by providing evidence that multiple peaks in the IFFT are due to a secondary source at the DP place.

  15. Synchronous triple-optical-path digital speckle pattern interferometry with fast discrete curvelet transform for measuring three-dimensional displacements

    NASA Astrophysics Data System (ADS)

    Gu, Guoqing; Wang, Kaifu; Wang, Yanfang; She, Bin

    2016-06-01

    Digital speckle pattern interferometry (DSPI) is a well-established and widely used optical measurement technique for obtaining qualitative as well as quantitative measurements of objects deformation. The simultaneous measurement of an object's surface displacements in three dimensions using DSPI is of great interest. This paper presents a triple-optical-path DSPI based method for the simultaneous and independent measurement of three-dimensional (3D) displacement fields. In the proposed method, in-plane speckle interferometers with dual-observation geometry and an out-of-plane interferometer are optimally combined to construct an integrated triple-optical-path DSPI system employing the phase shift technique, which uses only a single laser source and three cameras. These cameras are placed along a single line to synchronously capture real-time visible speckle fringe patterns in three dimensions. In addition, a pre-filtering method based on the fast discrete curvelet transform (FDCT) is utilized for denoising the obtained wrapped phase patterns to improve measurement accuracy. Finally, the simultaneous measurement of the 3D displacement fields of a simple beam and a composite laminated plate respectively subjected to three-point and single-point bend loading are investigated to validate the feasibility and effectiveness of the proposed method.

  16. Fast Fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques.

    PubMed

    Eyben, P; Bisiaux, P; Schulze, A; Nazir, A; Vandervorst, W

    2015-09-04

    A new atomic force microscopy (AFM)-based technique named fast Fourier transform scanning spreading-resistance microscopy (FFT-SSRM) has been developed. FFT-SSRM offers the ability to isolate the local spreading resistance (Sr) from the parasitic series resistance (probe, bulk, and back contact). The parasitic series resistance limits the use of classical SSRM in confined volumes and on very highly doped materials, two increasingly important situations in nanoelectronic components. This is realized via a force modulation at controlled frequency (affecting the SR component) and the extraction of the resistance amplitude at the modulation frequency, performing an FFT-based lock-in deconvolution. A systematic evaluation of the FFT-SSRM performances (i.e., resolution, dynamic range, sensitivity, and repeatability) is presented. The impact of various parameters (i.e., modulation frequency and amplitude or cutoff frequency of the current amplifier) on the performances of FFT-SSRM has been evaluated. We demonstrate the possibility to overcome sensitivity losses due to tip saturation in highly doped material and the utility of the technique in two different structures, presenting isolated and confined volumes.

  17. Chirped pulse amplification in an all-normal-dispersion erbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Yiqin; Li, Lei; Zhao, Luming

    2017-03-01

    Chirped pulse amplification in an all-normal-dispersion erbium-doped fiber amplifier is presented. Wavelength dependent amplification is examined. It is found that gain dispersion limits the spectral profile of the amplified pulse. If the central wavelength of the seed pulse is far away from that of the gain profile of the amplifier, the gain profile partially shapes the spectrum of the amplified pulse while maintaining the characteristic steep spectral edge at one side. If the optical spectrum of the seed pulse is most covered by the gain profile, the characteristic steep spectral edges will be both maintained. The amplified pulse becomes deformed ultimately with increasing pump power, no matter whether the seed pulse is a transform-limited pulse or a chirped pulse.

  18. Analysis of radial and longitudinal force of plasma wakefield generated by a chirped pulse laser

    SciTech Connect

    Ghasemi, Leila; Afhami, Saeedeh; Eslami, Esmaeil

    2015-08-15

    In present paper, the chirp effect of an electromagnetic pulse via an analytical model of wakefield generation is studied. Different types of chirps are employed in this study. Our results show that by the use of nonlinear chirped pulse the longitudinal wakefield and focusing force is stronger than that of linear chirped pulse. It is indicated that quadratic nonlinear chirped pulses are globally much efficient than periodic nonlinear chirped pulses. Our calculations also predict that in nonlinear chirped pulse case, the overlap of focusing and accelerating regions is broader than that achieved in linear chirped pulse.

  19. Mathematical models for the reflection coefficients of lossy dielectric half-spaces with application to transient responses of chirped pulses

    NASA Technical Reports Server (NTRS)

    Evans, D. D.

    1977-01-01

    Reflection coefficients are found at normal incidence for a large class of homogeneous lossy half-spaces with a one-dimensionally inhomogeneous or stratified lossy layer on top. Solutions are in terms of Hankel functions of complex argument to decrease cancellation error at high frequencies. One special case is that of layers on a homogeneous half-space where the dielectric constant in each layer may vary in a quite general manner. A Wronskian is used to insure the critical computations are correct. The reflection of chirped pulses is considered. Solutions are obtained by applying the fast Fourier transform. It is found that for a typical relatively long normalized 'long' pulse the power reflected as a function of time is essentially the power reflection coefficient for the frequencies swept out, whereas for a relatively short 'long' pulse, with the same relative change in frequency and the same number of oscillations there is only the uniform attenuation by the power reflection coefficient of the center frequency. By a 'long' pulse we mean a pulse whose spatial length is long compared to the thickness of the reflecting layer.

  20. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers.

    PubMed

    Fu, Dan; Holtom, Gary; Freudiger, Christian; Zhang, Xu; Xie, Xiaoliang Sunney

    2013-04-25

    Raman microscopy is a quantitative, label-free, and noninvasive optical imaging technique for studying inhomogeneous systems. However, the feebleness of Raman scattering significantly limits the use of Raman microscopy to low time resolutions and primarily static samples. Recent developments in narrowband stimulated Raman scattering (SRS) microscopy have significantly increased the acquisition speed of Raman based label-free imaging by a few orders of magnitude, at the expense of reduced spectroscopic information. On the basis of a spectral focusing approach, we present a fast SRS hyperspectral imaging system using chirped femtosecond lasers to achieve rapid Raman spectra acquisition while retaining the full speed and image quality of narrowband SRS imaging. We demonstrate that quantitative concentration determination of cholesterol in the presence of interfering chemical species can be achieved with sensitivity down to 4 mM. For imaging purposes, hyperspectral imaging data in the C-H stretching region is obtained within a minute. We show that mammalian cell SRS hyperspectral imaging reveals the spatially inhomogeneous distribution of saturated lipids, unsaturated lipids, cholesterol, and protein. The combination of fast spectroscopy and label-free chemical imaging will enable new applications in studying biological systems and material systems.

  1. Reconfigurable optical-force-drive chirp and delay line in micro- or nanofiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Xu, Fei; Lu, Yan-qing

    2015-05-01

    The emergence of optical micro- or nanofibers (MNFs) with subwavelength diameter, which have ultralight mass and an intense light field, provides an opportunity for developing fiber-based optomechanical systems. In this study we show theoretically an optomechanical effect in silica MNF Bragg gratings (MNFBGs). The light-induced mechanical effect results in continuously distributed strain along the grating and the power-related strain introduces an optically reconfigurable chirp in the grating period. We develop optomechanical coupled-mode equations and analyze theoretically the influence of the optical-force-induced nonlinearity and chirp on the grating performance. Compared with the weak Kerr effect, the optomechanical effect dominates in the properties' evolution of MNFBGs. Significant group-velocity reduction and switching effect have been demonstrated theoretically at medium power level. This kind of optomechanical MNFBG with optically reconfigurable chirp may offer a path toward an all-optical tunable bandwidth of Bragg resonance and may lead to useful applications such as all-optical switching, optically controlled dispersion, and slow or fast light.

  2. Continuous heart rate variability monitoring through complex demodulation implemented with the fast Fourier transform and its inverse.

    PubMed

    Burguera, M; Gandía, R; Chorro, F J; García-Civera, R; Ruiz, R; López-Merino, V

    1995-07-01

    A new method for the analysis of 24-hour heart rate variability (HRV) using complex demodulation (CDM) implemented with the fast Fourier transform (FFT) and its inverse is described. In a control group with palpitations and dizzy spells (n = 30, 47.2 +/- 16.7 years) the relationship between HRV parameters and subject age was investigated. CDM was used to obtain the amplitude and frequency of the low frequency (LF) and high frequency (HF) oscillations for 8 diurnal hours and 4 nocturnal hours. Differences between the two periods were seen in the LF/HF ratio (2.2 +/- 0.6 vs 1.5 +/- 0.6; P < 0.0001), HF amplitudes (12 +/- 6 vs 17 +/- 7 normalized units, P < 0.05), and in the mean frequency of the LF oscillations (0.078 +/- 0.008 vs 0.073 +/- 0.007 Hz, P < 0.01). During the daytime, age was inversely correlated to HF amplitude (r = -0.60), directly correlated to HF mean central frequency (r = 0.40), inversely correlated to LF amplitude (r = -0.55), and likewise inversely correlated to LF mean central frequency (r = -0.74, P < 0.001). At night, age was only inversely correlated to HF amplitude and to LF mean central frequency. Continuous HRV monitoring through CDM implemented with the FFT and its inverse differentiates the periods of diurnal activity and nocturnal rest as an expression of two different activity states of the autonomic nervous system. It allows nonstationary analysis, and separately provides mean and instantaneous oscillation amplitude and frequency. Subject age is not equally related to mean amplitude and frequency of a given oscillation.

  3. Electron acceleration by a chirped Gaussian laser pulse in vacuum

    SciTech Connect

    Sohbatzadeh, F.; Mirzanejhad, S.; Ghasemi, M.

    2006-12-15

    Electron acceleration by a chirped Gaussian laser pulse is investigated numerically. A linear and negative chirp is employed in this study. At first, a simple analytical description for the chirp effect on the electron acceleration in vacuum is provided in one-dimensional model. The chirp mechanism is then extended to the interaction of a femtosecond laser pulse and electron. The electron final energy is obtained as a function of laser beam waist, laser intensity, chirp parameter, and initial phase of the laser pulse. It is shown that the electron final energy depends strongly on the chirp parameter and the initial phase of the laser pulse. There is an optimal value for the chirp parameter in which the electron acceleration takes place effectively. The energy gain increases with laser beam waist and intensity. It is also shown that the electron is accelerated within a few degrees to the axial direction. Emphasis is on the important aspect of the chirp effect on the energy gained by an electron from the electromagnetic wave.

  4. Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.

    PubMed

    Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo

    2016-09-01

    In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.

  5. Pulse distortion in single-mode fibers. 3: Chirped pulses.

    PubMed

    Marcuse, D

    1981-10-15

    The theory of pulse distortion in single-mode fibers is extended to include laser sources that suffer a linear wavelength sweep (chirp) during the duration of the pulse. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the chirp on the shape and rms width of the pulse. A somewhat paradoxical situation exists. A given input pulse can be made arbitrarily short by a sufficiently large amount of chirping, and, after a given fiber length, this chirped pulse returns to its original width. But at this particular distance an unchirped pulse would be only [equiation] times longer. Thus chirping can improve the rate of data transmission by only 40%.

  6. Near-field diffraction of chirped gratings.

    PubMed

    Sanchez-Brea, Luis Miguel; Torcal-Milla, Francisco Jose; Morlanes, Tomas

    2016-09-01

    In this Letter, we analyze the near-field diffraction pattern produced by chirped gratings. An intuitive analytical interpretation of the generated diffraction orders is proposed. Several interesting properties of the near-field diffraction pattern can be determined, such as the period of the fringes and its visibility. Diffraction orders present different widths and also, some of them present focusing properties. The width, location, and depth of focus of the converging diffraction orders are also determined. The analytical expressions are compared to numerical simulation and experimental results, showing a high agreement.

  7. Helium in chirped laser fields as a time-asymmetric atomic switch

    SciTech Connect

    Kaprálová-Žďánská, Petra Ruth; Moiseyev, Nimrod

    2014-07-07

    Tuning the laser parameters exceptional points in the spectrum of the dressed laser helium atom are obtained. The weak linearly polarized laser couples the ground state and the doubly excited P-states of helium. We show here that for specific chirped laser pulses that encircle an exceptional point one can get the time-asymmetric phenomenon, where for a negative chirped laser pulse the ground state is transformed into the doubly excited auto-ionization state, while for a positive chirped laser pulse the resonance state is not populated and the neutral helium atoms remains in the ground state as the laser pulse is turned off. Moreover, we show that the results are very sensitive to the closed contour we choose. This time-asymmetric state exchange phenomenon can be considered as a time-asymmetric atomic switch. The optimal time-asymmetric switch is obtained when the closed loop that encircles the exceptional point is large, while for the smallest loops, the time-asymmetric phenomenon does not take place. A systematic way for studying the effect of the chosen closed contour that encircles the exceptional point on the time-asymmetric phenomenon is proposed.

  8. Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT

    PubMed Central

    Zhang, Kang; Kang, Jin U.

    2010-01-01

    We implemented fast Gaussian gridding (FGG)-based non-uniform fast Fourier transform (NUFFT) on the graphics processing unit (GPU) architecture for ultrahigh-speed, real-time Fourier-domain optical coherence tomography (FD-OCT). The Vandermonde matrix-based non-uniform discrete Fourier transform (NUDFT) as well as the linear/cubic interpolation with fast Fourier transform (InFFT) methods are also implemented on GPU to compare their performance in terms of image quality and processing speed. The GPU accelerated InFFT/NUDFT/NUFFT methods are applied to process both the standard half-range FD-OCT and complex full-range FD-OCT (C-FD-OCT). GPU-NUFFT provides an accurate approximation to GPU-NUDFT in terms of image quality, but offers >10 times higher processing speed. Compared with the GPU-InFFT methods, GPU-NUFFT has improved sensitivity roll-off, higher local signal-to-noise ratio and immunity to side-lobe artifacts caused by the interpolation error. Using a high speed CMOS line-scan camera, we demonstrated the real-time processing and display of GPU-NUFFT-based C-FD-OCT at a camera-limited rate of 122 k line/s (1024 pixel/A-scan). PMID:21164690

  9. Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT.

    PubMed

    Zhang, Kang; Kang, Jin U

    2010-10-25

    We implemented fast Gaussian gridding (FGG)-based non-uniform fast Fourier transform (NUFFT) on the graphics processing unit (GPU) architecture for ultrahigh-speed, real-time Fourier-domain optical coherence tomography (FD-OCT). The Vandermonde matrix-based non-uniform discrete Fourier transform (NUDFT) as well as the linear/cubic interpolation with fast Fourier transform (InFFT) methods are also implemented on GPU to compare their performance in terms of image quality and processing speed. The GPU accelerated InFFT/NUDFT/NUFFT methods are applied to process both the standard half-range FD-OCT and complex full-range FD-OCT (C-FD-OCT). GPU-NUFFT provides an accurate approximation to GPU-NUDFT in terms of image quality, but offers >10 times higher processing speed. Compared with the GPU-InFFT methods, GPU-NUFFT has improved sensitivity roll-off, higher local signal-to-noise ratio and immunity to side-lobe artifacts caused by the interpolation error. Using a high speed CMOS line-scan camera, we demonstrated the real-time processing and display of GPU-NUFFT-based C-FD-OCT at a camera-limited rate of 122 k line/s (1024 pixel/A-scan).

  10. Chirped fiber Bragg grating detonation velocity sensing.

    PubMed

    Rodriguez, G; Sandberg, R L; McCulloch, Q; Jackson, S I; Vincent, S W; Udd, E

    2013-01-01

    An all optical-fiber-based approach to measuring high explosive detonation front position and velocity is described. By measuring total light return using an incoherent light source reflected from a linearly chirped fiber Bragg grating sensor in contact with the explosive, dynamic mapping of the detonation front position and velocity versus time is obtained. We demonstrate two calibration procedures and provide several examples of detonation front measurements: PBX 9502 cylindrical rate stick, radial detonation front in PBX 9501, and PBX 9501 detonation along curved meridian line. In the cylindrical rate stick measurement, excellent agreement with complementary diagnostics (electrical pins and streak camera imaging) is achieved, demonstrating accuracy in the detonation front velocity to below the 0.3% level when compared to the results from the pin data. Finally, an estimate on the linear spatial and temporal resolution of the system shows that sub-mm and sub-μs levels are attainable with proper consideration of the recording speed, detection sensitivity, spectrum, and chirp properties of the grating.

  11. Tailoring Chirp in Spin-Lasers

    NASA Astrophysics Data System (ADS)

    Lee, Jeongsu; Boeris, Guilhem; Vyborny, Karel; Zutic, Igor

    2012-02-01

    The interplay of spin injection in lasers and their nonlinear response leads to novel spintronic devices [1]. Such spin-lasers can enable desirable properties including threshold reduction, bandwidth enhancement, and low chirp [1-3]. These lasers can also be viewed as spin-amplifiers, since high circular polarization in the output can be achieved even with nearly spin-unpolarized injection [2,3]. In the present work, we study chirp in spin-lasers and suggest new modulation schemes to improve their performance. Supported by NSF-ECCS, U.S. ONR, AFOSR-DCT, and NSF-NEB 2020. [4pt] [1] M. Holub et al., Phys. Rev. Lett. 98, 146603 (2007); J. Rudolph et al., Appl. Phys. Lett. 87, 241117 (2005). [0pt] [2] J. Lee, W. Falls, R. Oszwadowski, and I. Zuti'c, Appl. Phys. Lett. 97, 041116 (2010).[0pt] [3] C. Gøthgen, R. Oszwadowski, A. Petrou, and I. Zuti'c, Appl. Phys. Lett. 93, 042513 (2008).[0pt] [4] G. Boeris, J. Lee, K. V'yborn'y, and I. Zuti'c, preprint (2011).

  12. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI.

    SciTech Connect

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A. , Tomsk, Russia); Kim, Alexandre A. , Tomsk, Russia); Wakeland, Peter Eric; McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Savage, Mark Edward; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-09-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores

  13. Determination of temperature dependent structure evolution by fast-Fourier transform at late stage spinodal decomposition in bicontinuous biopolymer mixtures

    NASA Astrophysics Data System (ADS)

    Lorén, Niklas; Langton, Maud; Hermansson, Anne-Marie

    2002-06-01

    The evolutions of the bicontinuous microstructures of aqueous phase separating gelatin/maltodextrin mixtures quenched to different end temperatures were determined by confocal laser scanning microscopy (CLSM). The growth of the bicontinuous microstructures was quantified by Fourier image analysis. Weighted least squares were applied in order to be able to use all the spectral information. The results of Fourier image analysis and weighted least squares were related to existing theories on coarsening. The mixtures were quenched from 60 °C to different end temperatures ranging between 10 °C and 37 °C and the concentration was held constant at 4.2 w/w % gelatin and 7.9 w/w % maltodextrin. The results showed that the mixture phase separated through spinodal decomposition at all temperatures. A crossover was found from structure growth governed by diffusion to structure growth governed by hydrodynamic flow. The results showed that the structure evolution at the beginning of the phase separation was temperature independent with a growth proportional to the time raised to one-third. After the crossover, the growth of the characteristic distance between the maltodextrin domains was temperature dependent with a growth proportional to the time raised to an exponent that varied from 0.75 to 1.58. It was found that the growth exponent increases with decreasing end temperature, i.e., increasing quench depth. The maximum intensity of the circularly averaged two-dimensional fast-Fourier transform of the CLSM micrographs was found to grow exponentially with time. The increases in the maximum intensity were proportional to the time raised to an exponent that varied from 1.98 to 4.97. It was found that this exponent increases with decreasing end temperature. Before the crossover, the relation between the growth exponent of the microstructure and the growth exponent of the maximum intensity, as compared with existing theories on coarsening, showed that the phase separation was in

  14. Ultrafast NMR diffusion measurements exploiting chirp spin echoes.

    PubMed

    Ahola, Susanna; Mankinen, Otto; Telkki, Ville-Veikko

    2017-04-01

    Standard diffusion NMR measurements require the repetition of the experiment multiple times with varying gradient strength or diffusion delay. This makes the experiment time-consuming and restricts the use of hyperpolarized substances to boost sensitivity. We propose a novel single-scan diffusion experiment, which is based on spatial encoding of two-dimensional data, employing the spin-echoes created by two successive adiabatic frequency-swept chirp π pulses. The experiment is called ultrafast pulsed-field-gradient spin-echo (UF-PGSE). We present a rigorous derivation of the echo amplitude in the UF-PGSE experiment, justifying the theoretical basis of the method. The theory reveals also that the standard analysis of experimental data leads to a diffusion coefficient value overestimated by a few per cent. Although the overestimation is of the order of experimental error and thus insignificant in many practical applications, we propose that it can be compensated by a bipolar gradient version of the experiment, UF-BP-PGSE, or by corresponding stimulated-echo experiment, UF-BP-pulsed-field-gradient stimulated-echo. The latter also removes the effect of uniform background gradients. The experiments offer significant prospects for monitoring fast processes in real time as well as for increasing the sensitivity of experiments by several orders of magnitude by nuclear spin hyperpolarization. Furthermore, they can be applied as basic blocks in various ultrafast multidimensional Laplace NMR experiments. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Interrogation and control of condensed phase chemical dynamics with linearly chirped pulses: I2 in solid Kr

    NASA Astrophysics Data System (ADS)

    Sterling, M.; Zadoyan, R.; Apkarian, V. A.

    1996-05-01

    The effect of linearly chirped pulses in condensed phase ultrafast pump-probe experiments is investigated by classical simulations for the model system of I2 isolated in a Kr matrix. The central frequency of the probe laser is selected to monitor exclusively the event of first collision and recoil of atoms from the host cage. It is shown that a chirped probe pulse enables characterization of the magnitude and sign of the momentum of the evolving trajectory flux. This can be understood by transforming the frequency-time profile of the probe pulse to coordinate-time space, and noting that the observable signal is a function of the relative group velocities of the traveling wave packet and the traveling window function. The effect of the pump pulse chirp, is a measure of the controllability of the evolving dynamics. In the particular case studied, breaking and remaking of the I2 bond near the dissociation limit of the bare molecule, it is shown that the memory of the system outlasts the collision with the cage. Negatively chirped pulses produce a more tightly focused wave packet during recoil, leading to a stronger population coherence in the subsequent dynamics.

  16. Click- and chirp-evoked human compound action potentials.

    PubMed

    Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie

    2010-05-01

    In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213-2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obtained from derived compound band action potentials provided by Eggermont [(1979). J. Acoust. Soc. Am. 65, 463-470]. CAPs were recorded from an electrode placed on the tympanic membrane (TM), and the acoustic signals were monitored with a probe tube microphone attached to the TM electrode. Results showed that the amplitude and latency of chirp-evoked N1 of the CAP differed from click-evoked CAPs in several regards. For the chirp-evoked CAP, the N1 amplitude was significantly larger than the click-evoked N1s. The latency-intensity function was significantly shallower for chirp-evoked CAPs as compared to click-evoked CAPs. This suggests that auditory nerve fibers respond with more unison to a chirp stimulus than to a click stimulus.

  17. Parameter-adjusted stochastic resonance system for the aperiodic echo chirp signal in optimal FrFT domain

    NASA Astrophysics Data System (ADS)

    Lin, Li-feng; Yu, Lei; Wang, Huiqi; Zhong, Suchuan

    2017-02-01

    In order to improve the system performance for moving target detection and localization, this paper presents a new aperiodic chirp signal and additive noise driving stochastic dynamical system, in which the internal frequency has the linear variation matching with the driving frequency. By using the fractional Fourier transform (FrFT) operator with the optimal order, the proposed time-domain dynamical system is transformed into the equivalent FrFT-domain system driven by the periodic signal and noise. Therefore, system performance is conveniently analyzed from the view of output signal-to-noise ratio (SNR) in optimal FrFT domain. Simulation results demonstrate that the output SNR, as a function of system parameter, shows the different generalized SR behaviors in the case of various internal parameters of driving chirp signal and external parameters of the moving target.

  18. Differential processing for frequency chirp measurement using optical pulse synthesizer

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Ken; Seki, Satoshi; Tsuda, Hiroyuki; Takenouchi, Hirokazu; Kurokawa, Takashi

    2017-03-01

    In this study, we introduced an optical pulse synthesizer (OPS) to measure frequency chirps of optical pulses by differential processing. The OPS has a single-chip integrated structure of all elements for the differential filtering and enables stable measurement. Because the exact filter causes a large loss, we employed a phase-only filter, whose frequency response was only in phase. We measured chirp rates of pulses which were induced by propagating standard single mode fibers with different lengths. The retrieved chirp rates were comparable to calculated results. We simulated accuracy of the method and concluded that our experiment had phase control accuracy within 0.07π.

  19. Band limited chirp stimulation in vestibular evoked myogenic potentials.

    PubMed

    Walther, Leif Erik; Cebulla, Mario

    2016-10-01

    Air conducted vestibular evoked myogenic potentials (VEMP) can be elicited by various low frequency and intense sound stimuli, mainly clicks or short tone bursts (STB). Chirp stimuli are increasingly used in diagnostic audiological evaluations as an effective means to obtain acoustically evoked responses in narrowed or extended frequency ranges. We hypothesized in this study that band limited chirp stimulation, which covers the main sensitivity range of sound sensitive otolithic afferents (around 500 Hz), might be useful for application in cervical and ocular VEMP to air conduction. For this purpose we designed a chirp stimulus ranging 250-1000 Hz (up chirp). The chirp stimulus was delivered with a stimulus intensity of 100 dB nHL in normal subjects (n = 10) and patients with otolith involvement (vestibular neuritis) (n = 6). Amplitudes of the designed chirp ("CW-VEMP-chirp, 250-1000 Hz") were compared with amplitudes of VEMPs evoked by click stimuli (0.1 ms) and a short tone burst (STB, 1-2-1, 8 ms, 500 Hz). CVEMPs and oVEMPs were detectable in 9 of 10 normal individuals. Statistical evaluation in healthy patients revealed significantly larger cVEMP and oVEMP amplitudes for CW-VEMP-chirp (250-1000 Hz) stimuli. CVEMP amplitudes evoked by CW-VEMP-chirp (250-1000 Hz) showed a high stability in comparison with click and STB stimulation. CW-VEMP-chirp (250-1000 Hz) showed abnormal cVEMP and oVEMP amplitudes in patients with vestibular neuritis, with the same properties as click and STB stimulated VEMPs. We conclude that the designed CW-VEMP-chirp (250-1000 Hz) is an effective stimulus which can be further used in VEMP diagnostic. Since a chirp stimulus can be easily varied in its properties, in particular with regard to frequency, this might be a promising tool for further investigations.

  20. All-optical time-domain chirp switches.

    PubMed

    Islam, M N; Chen, C J; Soccolich, C E

    1991-04-01

    We describe a novel architecture for an all-optical time-domain chirp switch in which digital logic is based on timeshift keying. This architecture is a generalization of fiber soliton-dragging logic gates that have a switching energy approaching 1 pJ. By using solitons we separate the nonlinear chirping from the time shifting and, consequently, reduce the required phase shift during the nonlinear interaction. We discuss the scaling laws for energy and latency versus pulse width and show that the chirp switches have low switching energies for high-bit-rate applications.

  1. Tunable reflecting terahertz filter based on chirped metamaterial structure.

    PubMed

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-12-12

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping.

  2. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  3. Propagation of chirped laser pulses in a plasma channel

    SciTech Connect

    Jha, Pallavi; Malviya, Amita; Upadhyay, Ajay K.

    2009-06-15

    Propagation of an initially chirped, Gaussian laser pulse in a preformed parabolic plasma channel is analyzed. A variational technique is used to obtain equations describing the evolution of the phase shift and laser spot size. The effect of initial chirp on the laser pulse length and intensity of a matched laser beam propagating in a plasma channel has been analyzed. The effective pulse length and chirp parameter of the laser pulse due to its interaction with plasma have been obtained and graphically depicted. The resultant variation in laser frequency across the laser pulse is discussed.

  4. Tunable reflecting terahertz filter based on chirped metamaterial structure

    PubMed Central

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-01-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping. PMID:27941833

  5. Chirped Pulse and Cavity FT Microwave Spectroscopy of the Formic Acid - Trimethylamine Weakly Bound Complex

    NASA Astrophysics Data System (ADS)

    Mackenzie, Becca; Dewberry, Chris; Leopold, Ken

    2015-06-01

    Amine-carboxylic acid interactions are important in many biological systems and have recently received attention for their role in the formation of atmospheric aerosols. Here, we study the molecular and electronic structure of the formic acid - trimethylamine complex, using it as a model for amine-carboxylic acid interactions. The microwave spectrum of the complex has been observed using chirped pulse and conventional cavity-type Fourier transform microwave spectroscopy. The degree of proton transfer has been assessed using the 14N nuclear quadrupole hyperfine structure. Experimental results will be compared to DFT calculations.

  6. Finite difference time domain analysis of chirped dielectric gratings

    NASA Technical Reports Server (NTRS)

    Hochmuth, Diane H.; Johnson, Eric G.

    1993-01-01

    The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.

  7. Characterization of Silicon Sulfides by Chirped-Pulse Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Crabtree, Kyle N.; Martinez, Oscar; , Jr.

    2013-06-01

    Chirped-pulse Fourier transform microwave spectroscopy is used to characterize the electrical discharge products that are formed in a supersonic molecular beam through a dilute gas mixture of silane and hydrogen sulfide. The spectrum between 6 and 18 GHz is dominated by SiS: more than 175 transitions have been assigned to either its isotopic species, its vibrationally excited states, or both, on the basis of previous cavity measurements. Owing to the flat instrument response function and extensive vibrational excitation that has been observed, it is possible to derive a precise vibrational temperature for SiS, and determine the relative abundances of SiS, HSiS, and H_2SiS. Although rotational lines from more than 15 other silicon or sulfur molecules have been identified in the same discharge, more than 50% of lines that have been detected with a signal-to-noise ratio of three or greater are presently unassigned. Attempts to assign these many remaining lines, and efforts to benchmark the performance of our spectrometer will be highlighted as well.

  8. Chirped-Superlattice, Blocked-Intersubband QWIP

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Ting, David; Bandara, Sumith

    2004-01-01

    An Al(x)Ga(1-x)As/GaAs quantum-well infrared photodetector (QWIP) of the blocked-intersubband-detector (BID) type, now undergoing development, features a chirped (that is, aperiodic) superlattice. The purpose of the chirped superlattice is to increase the quantum efficiency of the device. A somewhat lengthy background discussion is necessary to give meaning to a brief description of the present developmental QWIP. A BID QWIP was described in "MQW Based Block Intersubband Detector for Low-Background Operation" (NPO-21073), NASA Tech Briefs Vol. 25, No. 7 (July 2001), page 46. To recapitulate: The BID design was conceived in response to the deleterious effects of operation of a QWIP at low temperature under low background radiation. These effects can be summarized as a buildup of space charge and an associated high impedance and diminution of responsivity with increasing modulation frequency. The BID design, which reduces these deleterious effects, calls for a heavily doped multiple-quantum-well (MQW) emitter section with barriers that are thinner than in prior MQW devices. The thinning of the barriers results in a large overlap of sublevel wave functions, thereby creating a miniband. Because of sequential resonant quantum-mechanical tunneling of electrons from the negative ohmic contact to and between wells, any space charge is quickly neutralized. At the same time, what would otherwise be a large component of dark current attributable to tunneling current through the whole device is suppressed by placing a relatively thick, undoped, impurity-free AlxGa1 x As blocking barrier layer between the MQW emitter section and the positive ohmic contact. [This layer is similar to the thick, undoped Al(x)Ga(1-x)As layers used in photodetectors of the blocked-impurity-band (BIB) type.] Notwithstanding the aforementioned advantage afforded by the BID design, the responsivity of a BID QWIP is very low because of low collection efficiency, which, in turn, is a result of low

  9. Dispersion compensation in chirped pulse amplification systems

    DOEpatents

    Bayramian, Andrew James; Molander, William A.

    2014-07-15

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  10. Optically tunable chirped fiber Bragg grating.

    PubMed

    Li, Zhen; Chen, Zhe; Hsiao, V K S; Tang, Jie-Yuan; Zhao, Fuli; Jiang, Shao-Ji

    2012-05-07

    This work presents an optically tunable chirped fiber Bragg grating (CFBG). The CFBG is obtained by a side-polished fiber Bragg grating (SPFBG) whose thickness of the residual cladding layer in the polished area (D(RC)) varies with position along the length of the grating, which is coated with a photoresponsive liquid crystal (LC) overlay. The reflection spectrum of the CFBG is tuned by refractive index (RI) modulation, which comes from the phase transition of the overlaid photoresponsive LC under ultraviolet (UV) light irradiation. The broadening in the reflection spectrum and corresponding shift in the central wavelength are observed with UV light irradiation density of 0.64mW/mm. During the phase transition of the photoresponsive LC, the RI increase of the overlaid LC leads to the change of the CFBG reflection spectrum and the change is reversible and repeatable. The optically tunable CFBGs have potential use in optical DWDM system and an all-fiber telecommunication system.

  11. Chirped pulse amplification: Present and future

    SciTech Connect

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm/sup 2/. These pulses will be associated with electric fields in excess of 100 e/a/sub o//sup 2/ and blackbody energy densities equivalent to 3 /times/ 10/sup 10/ J/cm/sup 3/. This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs.

  12. Giant-chirp oscillators for short-pulse fiber amplifiers.

    PubMed

    Renninger, William H; Chong, Andy; Wise, Frank W

    2008-12-15

    A new regime of pulse parameters in a normal-dispersion fiber laser is identified. Dissipative solitons exist with remarkably large pulse duration and chirp, along with large pulse energy. A low-repetition-rate oscillator that generates pulses with large and linear chirp can replace the standard oscillator, stretcher, pulse-picker, and preamplifier in a chirped-pulse fiber amplifier. The theoretical properties of such a giant-chirp oscillator are presented. A fiber laser designed to operate in the new regime generates approximately 150 ps pulses at a 3 MHz repetition rate. Amplification of these pulses to 1 microJ energy with pulse duration as short as 670 fs demonstrates the promise of this new approach.

  13. Spin-torque switching and control using chirped AC currents

    NASA Astrophysics Data System (ADS)

    Klughertz, Guillaume; Friedland, Lazar; Hervieux, Paul-Antoine; Manfredi, Giovanni

    2017-10-01

    We propose to use oscillating spin currents with slowly varying frequency (chirp) to manipulate and control the magnetization dynamics in a nanomagnet. By recasting the Landau–Lifshitz–Slonczewski equation in a quantum-like two-level formalism, we show that a chirped spin current polarized in the direction normal to the anisotropy axis can induce a stable precession of the magnetic moment at any angle (up to 90^\\circ ) with respect to the anisotropy axis. The drive current can be modest (10^6~A~cm-2 or lower) provided the chirp rate is sufficiently slow. The induced precession is stable against thermal noise, even for small nano-objects at room temperature. Complete reversal of the magnetization can be achieved by adding a small external magnetic field antiparallel to the easy axis. Alternatively, a combination of chirped ac and dc currents with different polarization directions can also be used to trigger the reversal.

  14. A theoretical investigation of chirp insonification of ultrasound contrast agents.

    PubMed

    Barlow, Euan; Mulholland, Anthony J; Gachagan, Anthony; Nordon, Alison

    2011-08-01

    A theoretical investigation of second harmonic imaging of an Ultrasound Contrast Agent (UCA) under chirp insonification is considered. By solving the UCA's dynamical equation analytically, the effect that the chirp signal parameters and the UCA shell parameters have on the amplitude of the second harmonic frequency are examined. This allows optimal parameter values to be identified which maximise the UCA's second harmonic response. A relationship is found for the chirp parameters which ensures that a signal can be designed to resonate a UCA for a given set of shell parameters. It is also shown that the shell thickness, shell viscosity and shell elasticity parameter should be as small as realistically possible in order to maximise the second harmonic amplitude. Keller-Herring, Second Harmonic, Chirp, Ultrasound Contrast Agent.

  15. Photon Counting Chirped AM Ladar: Concept, Simulation, and Experimental Results

    DTIC Science & Technology

    2006-11-01

    sensitivity. This noise is well above the signal shot noise limit. We are developing a method using Geiger - mode avalanche photodiode (Gm-APD) photon counting...shifted chirp waveform. The range to the target is recovered in the same way as for the chirped AM ladar with linear response mode detectors. In...output pulse from signal generator 1 also triggers the start of signal generator 2, which operates in burst mode to output trigger pulses to the

  16. Control of Ultracold Collisions with Frequency-Chirped Light

    SciTech Connect

    Wright, M.J.; Gould, P.L.; Gensemer, S.D.; Vala, J.; Kosloff, R.

    2005-08-05

    We report on ultracold atomic collision experiments utilizing frequency-chirped laser light. A rapid chirp below the atomic resonance results in adiabatic excitation to an attractive molecular potential over a wide range of internuclear separation. This leads to a transient inelastic collision rate which is large compared to that obtained with fixed-frequency excitation. The combination of high efficiency and temporal control demonstrates the benefit of applying the techniques of coherent control to the ultracold domain.

  17. Iterative direction-of-arrival estimation with wideband chirp signals

    NASA Astrophysics Data System (ADS)

    Wang, Genyuan; Xia, Xiang-Gen; Chen, Victor C.

    1999-11-01

    Amin et. al. recently developed a time-frequency MUSIC algorithm with narrow band models for the estimation of direction of arrival (DOA) when the source signals are chirps. In this research, we consider wideband models. The joint time-frequency analysis is first used to estimate the chirp rates of the source signals and then the DOA is estimated by the MUSIC algorithm with an iterative approach.

  18. Dual-frequency chirp imaging for contrast detection.

    PubMed

    Cheng, Chih-Hao; Shen, Che-Chou; Yeh, Chih-Kuang

    2011-05-07

    The method of dual-frequency (DF) difference excitation is capable of generating a low-frequency envelope component as the driving force of commercial contrast microbubbles by using a high-frequency pulse. Although the DF difference excitation method provides good lateral resolution in high-frequency contrast imaging, it suffers from degraded axial resolution because a longer-than-usual envelope component is required to induce the oscillation of microbubbles. In this study, a coded excitation technique (i.e. chirp waveform) is combined with the DF difference excitation method (also referred to as the DF chirp excitation method) to improve the axial resolution of contrast imaging while maintaining the impinging insonation energy. B-mode images were constructed to compare the performance of the DF chirp excitation method with the conventional tone-burst pulse method. Results indicate that the proposed DF chirp excitation method can provide better axial resolution after pulse compression. Moreover, as compared to the tone-burst pulse with the same pulse duration, the pulse compression results in a higher signal-to-noise ratio because of the temporal concentration of the received energy. Nevertheless, images with the DF chirp excitation method demonstrated noticeable image artefacts resulting from the range sidelobes. The DF chirp excitation method also produced obvious tissue harmonic generation that could degrade the contrast-to-tissue ratio at higher acoustic pressures.

  19. Simulation of Chirping Avalanche in Neighborhood of TAE gap

    NASA Astrophysics Data System (ADS)

    Berk, Herb; Breizman, Boris; Wang, Ge; Zheng, Linjin

    2016-10-01

    A new kinetic code, CHIRP, focuses on the nonlinear response of resonant energetic particles (EPs) that destabilize Alfven waves which then can produce hole and clump phase space chirping structures, while the background plasma currents are assumed to respond linearly to the generated fields. EP currents are due to the motion arising from the perturbed field that is time averaged over an equilibrium orbit. A moderate EP source produces TAE chirping structures that have a limited range of chirping that do not reach the continuum. When the source is sufficiently strong, an EPM is excited in the lower continuum and it chirps rapidly downward as its amplitude rapidly grows in time. This response resembles the experimental observation of an avalanche, which occurs after a series of successive chirping events with a modest frequency shift, and then suddenly a rapid large amplitude and rapid frequency burst to low frequency with the loss of EPs. From these simulation observations we propose that in the experiment the EP population is slowly increasing to the point where the EPM is eventually excited. Supported by SCIDAC Center for Nonlinear Simulation of Energetic Particles Burning Plasmas (CSEP).

  20. Dual-frequency chirp imaging for contrast detection

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hao; Shen, Che-Chou; Yeh, Chih-Kuang

    2011-05-01

    The method of dual-frequency (DF) difference excitation is capable of generating a low-frequency envelope component as the driving force of commercial contrast microbubbles by using a high-frequency pulse. Although the DF difference excitation method provides good lateral resolution in high-frequency contrast imaging, it suffers from degraded axial resolution because a longer-than-usual envelope component is required to induce the oscillation of microbubbles. In this study, a coded excitation technique (i.e. chirp waveform) is combined with the DF difference excitation method (also referred to as the DF chirp excitation method) to improve the axial resolution of contrast imaging while maintaining the impinging insonation energy. B-mode images were constructed to compare the performance of the DF chirp excitation method with the conventional tone-burst pulse method. Results indicate that the proposed DF chirp excitation method can provide better axial resolution after pulse compression. Moreover, as compared to the tone-burst pulse with the same pulse duration, the pulse compression results in a higher signal-to-noise ratio because of the temporal concentration of the received energy. Nevertheless, images with the DF chirp excitation method demonstrated noticeable image artefacts resulting from the range sidelobes. The DF chirp excitation method also produced obvious tissue harmonic generation that could degrade the contrast-to-tissue ratio at higher acoustic pressures.

  1. Image Display and Manipulation System (IDAMS) program documentation, Appendixes A-D. [including routines, convolution filtering, image expansion, and fast Fourier transformation

    NASA Technical Reports Server (NTRS)

    Cecil, R. W.; White, R. A.; Szczur, M. R.

    1972-01-01

    The IDAMS Processor is a package of task routines and support software that performs convolution filtering, image expansion, fast Fourier transformation, and other operations on a digital image tape. A unique task control card for that program, together with any necessary parameter cards, selects each processing technique to be applied to the input image. A variable number of tasks can be selected for execution by including the proper task and parameter cards in the input deck. An executive maintains control of the run; it initiates execution of each task in turn and handles any necessary error processing.

  2. Modeling of chirped pulse propagation through a mini-stop band in a two-dimensional photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Cao, Tun; Cryan, Martin J.; Ivanov, Pavel S.; Ho, Daniel; Ren, Bob; Craddock, Ian J.; Rorison, Judy M.; Railton, Chris J.

    2007-07-01

    The finite-difference time-domain (FDTD) and frequency-domain finite-element (FE) methods are used to study chirped pulse propagation in 2D photonic crystal (PhC) waveguides. Chirped pulse FDTD has been implemented, which allows the study of pulse propagation in a direct way. The carrier wavelength of the pulse is swept across the bandwidth of a mini-stop-band (MSB) feature, and pulse compression behavior is observed. Both round-hole and square-hole PhC waveguides are studied, with the latter giving increased pulse compression. A group-delay analysis is then used to understand the compression behavior, and this shows how the fast-light regime that occurs within the MSB plays an important role in the observed pulse compression.

  3. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  4. Ultrashort pulses from an all-fiber ring laser incorporating a pair of chirped fiber Bragg gratings.

    PubMed

    Duval, Simon; Olivier, Michel; Bernier, Martin; Vallée, Réal; Piché, Michel

    2014-02-15

    By incorporating two linearly chirped ultrabroadband fiber Bragg gratings of opposite dispersion in an all-fiber ring laser, we demonstrate a mode-locking regime in which a femtosecond pulse evolving in the normal dispersion gain segment is locally transformed into a highly chirped picosecond pulse that propagates in the remaining section of the cavity. By minimizing nonlinear effects and avoiding soliton pulse shaping in this anomalous-dispersion section, low repetition rate fiber lasers can be made to produce high-energy ultrashort pulses. Using this approach, 98 fs pulses with 0.96 nJ of energy are obtained from an erbium-doped fiber laser operated in the highly anomalous dispersion regime at a repetition rate of 9.4 MHz.

  5. Hundred-picosecond narrowband chirped-pulse generation in an Yb:YAG regenerative amplifier using transmission gratings

    NASA Astrophysics Data System (ADS)

    Hwang, SungIn; Tokita, Shigeki; Kawashima, Toshiyuki; Nishioka, Hajime; Kawanaka, Junji

    2016-12-01

    We have demonstrated a seed source for an optical parametric chirped pulse amplification pumping source through a cryogenically cooled Yb:YAG regenerative amplifier, which can vary the pulse duration depending on the number of passes and generate a very high chirp rate. The Fourier-transform-limited pulse duration of 10 ps was extended to a few hundred picoseconds (109 to 165 ps) to prevent damage to the gain medium in the subsequent high-pulse-energy pumping source, which was seeded by the regenerative amplifier. This was achieved by inserting a transmission diffraction grating pair inside the cavity of the regenerative amplifier. The variable pulse duration could be set between 109 and 165 ps by electronically adjusting the pass number of pulses inside the cavity. The stretched pulse duration and the spectral width as functions of the pass number were characterized by considering the dispersion from the grating stretcher as well as the gain narrowing effect.

  6. FD-CHIRP: hosted payload system engineering lessons

    NASA Astrophysics Data System (ADS)

    Schueler, Carl F.

    2012-10-01

    The Commercially Hosted Infrared Payload (CHIRP) Flight Demonstration (FD-CHIRP) launched 21 Sept 2011 was designated a "resounding success" as the first Wide Field-of-View (WFOV) staring infrared (IR) sensor flown in geostationary earth orbit (GEO) with a primary mission of Missile Warning (MW). FD-CHIRP was an Air Force research and development project initiated in July 2008 via an unsolicited industry proposal aimed to mature and reduce the risk of WFOV sensors and ground processing technologies. Unlike the Defense Support Program (DSP) and the Space Based Infrared System (SBIRS) which were acquired via traditional integrated sensor and satellite design, FDCHIRP was developed using the "commercially hosted" approach. The FD-CHIRP host spacecraft and sensor were independently designed, creating significant development risk to the industry proposer, especially under a Firm Fixed Price contract. Yet, within 39 months of contract initiation, FD-CHIRP was launched and successfully operated in GEO to 30 June 2012 at a total cost of 111M including the 82.9M CHIRP commercial-hosting contract and a $28M sensor upgrade. The commercial-hosting contract included sensor and spacecraft modifications, integration and test, design and development of secure Mission Operations and Analysis Centers, launch, and nearly a year of GEO operations with 70 Mbps secure data acquisition. The Air Force extended the contract for six months to continue operations through the end of calendar 2012. This paper outlines system engineering challenges FD-CHIRP overcame and key lessons to smooth development of future commercially hosted missions.

  7. Bounds on the minimum number of data transfers in WFTA and FFT programs. [Winograd Fourier Transform Algorithms and Fast Fourier Transform

    NASA Technical Reports Server (NTRS)

    Nawab, H.; Mcclellan, J. H.

    1979-01-01

    Bounds on the minimum number of data transfers (i.e., loads, stores, copies) required by WFTA and FFT programs are presented. The analysis is applicable to those general-purpose computers with M general processor registers, where M is equal to or greater than 4 but much less than the transform length. It is shown that the 1008-point WFTA requires about 21 percent more data transfers than the 1024-point radix-4 FFT; on the other hand, the 120-point WFTA has about the same number of data transfers as the mixed radix (4 x 4 x 4 x 2) version of the 128-point FFT and 22 percent fewer than the radix-2 version. Finally, comparisons of the 'total' program execution times (multiplications, additions, and data transfers, but not indexing or permutations) are presented.

  8. Dispersion measurement on chirped mirrors at arbitrary incidence angle and polarization state (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kovacs, Mate; Somoskoi, Tamas; Seres, Imre; Borzsonyi, Adam; Sipos, Aron; Osvay, Károly

    2017-05-01

    The optical elements of femtosecond high peak power lasers have to fulfill more and more strict requirements in order to support pulses with high intensity and broad spectrum. In most cases chirped pulse amplification scheme is used to generate high peak power ultrashort laser pulses, where a very precise control of spectral intensity and spectral phase is required in reaching transform-limited temporal shape at the output. In the case of few cycle regime, the conventional bulk glass, prism-, grating- and their combination based compressors are not sufficient anymore, due to undesirable nonlinear effects in their material and proneness to optical damages. The chirped mirrors are also commonly used to complete the compression after a beam transport system just before the target. Moreover, the manufacturing technology requires quality checks right after production and over the lifetime of the mirror as well, since undesired deposition on the surface can lead alteration from the designed value over a large part of the aperture. For the high harmonic generation, polarization gating technology is used to generate single attosecond pulses [1]. In this case the pulse to be compressed has various polarization state falling to the chirped mirrors. For this reason, it is crucial to measure the dispersion of the mirrors for the different polarization states. In this presentation we demonstrate a simple technique to measure the dispersion of arbitrary mirror at angles of incidence from 0 to 55 degree, even for a 12" optics. A large aperture 4" mirror has been scanned over with micrometer accuracy and the dispersion property through the surface has been investigated with a stable interference fringes in that robust geometry. We used Spectrally Resolved Interferometry, which is based on a Michaelson interferometer and a combined visible and infrared spectrometer. Tungsten halogen lamp with 10 mW coupled optical power was used as a white-light source so with the selected

  9. Chirped nonlinear resonance dynamics in phase space

    NASA Astrophysics Data System (ADS)

    Friedland, Lazar; Armon, Tsafrir

    2016-10-01

    Passage through and capture into resonance in systems with slowly varying parameters is one of the outstanding problems of nonlinear dynamics. Examples include resonant capture in planetary dynamics , resonant excitation of nonlinear waves, adiabatic resonant transitions in atomic and molecular systems and more. In the most common setting the problem involves a nonlinear oscillator driven by an oscillating perturbation with a slowly varying frequency, which passes through the resonance with the unperturbed oscillator. The process of resonant capture in this case involves crossing of separatrix and, therefore, the adiabatic theorem cannot be used in studying this problem no matter how slow is the variation of the driving frequency. It will be shown that if instead of analyzing complicated single orbit dynamics in passage through resonance, one considers the evolution of a distribution of initial conditions in phase space, simple adiabaticity and phase space incompressibility arguments yield a solution to the resonant capture probability problem. The approach will be illustrated in the case of a beam of charged particles driven by a chirped frequency wave passing through the Cherenkov resonance with the velocity distribution of the particles. Supported by Israel Science Foundation Grant 30/14.

  10. Segmented Chirped-Pulse Millimeter-Wave Spectroscopy for Astrochemistry

    NASA Astrophysics Data System (ADS)

    Arenas, Benjamin E.; Steber, Amanda; Gruet, Sébastien; Schnell, Melanie

    2016-06-01

    The ability to detect molecules in the interstellar medium (ISM) is afforded to us by the collaboration of state-of-the-art observations, like from the Atacama Large Millimeter/submillimeter Array (ALMA), and high-resolution laboratory spectra. Here, we present our use of a commercial segmented chirped-pulse Fourier transform millimeter-wave rotational spectrometer to study simple oxygen-containing organic molecules. Our spectrometer operates in the region 75 - 110 GHz, providing an overlap with ALMA's Band 3 and allowing direct comparison of our laboratory spectra with observational data. We have measured rotational spectra of 1,2-propanediol[1, 2, 3] and methyl acetate[4, 5] in this spectral range at room temperature - both have been previously studied in the microwave and millimeter-wave regions. The rotational spectrum of the former in the 3 mm region shows eight different conformers to date. Spectral bandwidth overlap with ALMA Band 3 will allow for easier detection of new chemicals in the ISM. [1] Caminati, W., J. Mol. Spectrosc., 86(1), 193-201, 1981. [2] Lovas, F. J., Plusquellic, D. F., Pate, B. H., Neill, J. T., Muckle, M. T. and Remijan, A. J., J. Mol. Spectrosc., 257(1), 82-93, 2009. [3] Bossa, J. -B., Ordu, M. H., Müller, H. S. P., Lewen, F. and Schlemmer, S., Astron. Astrophys., 570, A12, 2014. [4] Tudorie, M., Kleiner, I., Hougen, J. T., Melandri, S., Sutikdja, L. W. and Stahl, W., J. Mol. Spectrosc., 269, 211-225, 2011. [5] Nguyen, H. V. L., Kleiner, I., Shipman, S. T., Mae, Y., Hirose, K., Hatanaka, S. and Kobayashi, K., J. Mol. Spectrosc., 299, 17-21, 2014.

  11. Cpuf: Chirped-Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Suits, Arthur; Abeysekera, Chamara; Zack, Lindsay N.; Joalland, Baptiste; Ariyasingha, Nuwandi M.; Park, Barratt; Field, Robert W.; Sims, Ian

    2015-06-01

    Chirped-pulse Fourier-transform microwave spectroscopy has stimulated a resurgence of interest in rotational spectroscopy owing to the dramatic reduction in spectral acquisition time it enjoys when compared to cavity-based instruments. This suggests that it might be possible to adapt the method to study chemical reaction dynamics and even chemical kinetics using rotational spectroscopy. The great advantage of this would be clear, quantifiable spectroscopic signatures for polyatomic products as well as the possibility to identify and characterize new radical reaction products and transient intermediates. To achieve this, however, several conditions must be met: 1) products must be thermalized at low temperature to maximize the population difference needed to achieve adequate signal levels and to permit product quantification based on the rotational line strength; 2) a large density and volume of reaction products is also needed to achieve adequate signal levels; and 3) for kinetics studies, a uniform density and temperature is needed throughout the course of the reaction. These conditions are all happily met by the uniform supersonic flow produced from a Laval nozzle expansion. In collaboration with the Field group at MIT we have developed a new instrument we term a CPUF (Chirped-pulse/Uniform Flow) spectrometer in which we can study reaction dynamics, photochemistry and kinetics using broadband microwave and millimeter wave spectroscopy as a product probe. We will illustrate the performance of the system with a few examples of photodissociation and reaction dynamics, and also discuss a number of challenges unique to the application of chirped-pulse microwave spectroscopy in the collisional environment of the flow. Future directions and opportunities for application of CPUF will also be explored.

  12. Fast automatic registration of images using the phase of a complex wavelet transform: application to proteome gels.

    PubMed

    Woodward, Andrew M; Rowland, Jem J; Kell, Douglas B

    2004-06-01

    Image registration describes the process of manipulating a distorted version of an image such that its pixels overlay the equivalent pixels in a clean, master or reference image. The need for it has assumed particular prominence in the analysis of images of electrophoretic gels used in the analysis of protein expression levels in living cells, but also has fundamental applications in most other areas of image analysis. Much of the positional information of a data feature is carried in the phase of a complex transform, so a complex transform allows explicit specification of the phase, and hence of the position of features in the image. Registration of a test gel to a reference gel is achieved by using a multiresolution movement map derived from the phase of a complex wavelet transform (the Q-shift wavelet transform) to dictate the warping directly via movement of the nodes of a Delaunay-triangulated mesh of points. This warping map is then applied to the original untransformed image such that the absolute magnitude of the spots remains unchanged. The technique is general to any type of image. Results are presented for a simple computer simulated gel, a simple real gel registration between similar "clean" gels with local warping vectors distributed about one main direction, a hard problem between a reference gel and a "dirty" test gel with multi-directional warping vectors and many artifacts, and some typical gels of present interest in post-genomic biology. The method compares favourably with others, since it is computationally rapid, effective and entirely automatic.

  13. Generation of frequency-chirped optical pulses with felix

    SciTech Connect

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M.

    1995-12-31

    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  14. Exploring Agro-Climatic Trends in Ethiopia Using CHIRPS

    NASA Astrophysics Data System (ADS)

    Pedreros, D. H.; Funk, C. C.; Brown, M. E.; Korecha, D.; Seid, Y. M.

    2015-12-01

    The Famine Early Warning Systems Network (FEWS NET) uses the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) to monitor agricultural food production in different regions of the world. CHIRPS is a 1981-present, 5 day, approximately 5km resolution, rainfall product based on a combination of geostationary satellite observations, a high resolution climatology and in situ station observations. Furthermore, FEWS NET has developed a gridded implementation of the Water Requirement Satisfaction Index (WRSI), a water balance measurement indicator of crop performance. This study takes advantage of the CHIRPS' long term period of record and high spatial and temporal resolution to examine agro-climatic trends in Ethiopia. We use the CHIRPS rainfall dataset to calculate the WRSI for the boreal spring and summer crop seasons, as well as for spring-summer rangelands conditions. We find substantial long term rainfall declines in the spring and summer seasons across southeastern and northeastern Ethiopia. Crop Model results indicate that rainfall declines in the cropped regions have been associated with water deficits during the critical grain filling periods in well populated and/or highly vulnerable parts of eastern Ethiopia. WRSI results in the pastoral areas indicate substantial reductions in rangeland health during the later part of the growing seasons. These health declines correspond to the regions of Somaliland and Afar that have experienced chronic severe food insecurity since 2010. Key words: CHIRPS, satellite estimated rainfall, agricultural production

  15. Quasimonoenergic collimated electrons from the ionization of nitrogen by a chirped intense laser pulse

    SciTech Connect

    Singh, Kunwar Pal; Sajal, Vivek

    2009-04-15

    A scheme is proposed for quasimonoenergic collimated GeV electrons generated during ionization of nitrogen by a chirped intense laser pulse. The electrons accelerated by a laser pulse without a frequency chirp are known for poor-quality beams. If a suitable frequency chirp is introduced, then the energy of the electrons increases significantly. It is shown that quasimonoenergic collimated GeV electrons can be produced using a right choice of laser spot size, frequency chirp, and pulse duration.

  16. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    PubMed

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a <120 fs pulse duration and pulse energy of 0.45 nJ. The energy of generated 1064 nm pulses is 0.15 nJ, which is sufficient for the efficient seeding of high-contrast Nd:YVO chirped pulse regenerative amplifier/post amplifier systems generating 9 mJ pulses compressible to 16 ps duration. The power amplification stages, based on Nd:YAG crystals, provide 62 mJ pulses compressible to 20 ps pulse duration at a repetition rate of 1 kHz. Further energy scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  17. Neonate Auditory Brainstem Responses to CE-Chirp and CE-Chirp Octave Band Stimuli I: Versus Click and Tone Burst Stimuli.

    PubMed

    Cobb, Kensi M; Stuart, Andrew

    The purpose of the study was to generate normative auditory brainstem response (ABR) wave component peak latency and amplitude values for neonates with air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli (i.e., 500, 1000, 2000, and 4000 Hz). A second objective was to compare neonate ABRs to CE-Chirp stimuli with ABR responses to traditional click and tone burst stimuli with the same stimulus parameters. Participants were 168 healthy neonates. ABRs were obtained to air- and bone-conducted CE-Chirp and click stimuli and air-conducted CE-Chirp octave band and tone burst stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps and clicks. The effect of stimulus level was also examined with bone-conducted CE-Chirps and clicks and air-conducted CE-Chirp octave band stimuli. In general, ABR wave V amplitudes to air- and bone-conducted CE-Chirp stimuli were significantly larger (p < 0.05) than those evoked to traditional click and tone burst stimuli. Systematic statistically significant (p < 0.05) wave V latency differences existed between the air- and bone-conducted CE-Chirp and CE-Chirp octave band stimuli relative to traditional click and tone burst stimuli. ABRs to air- and bone-conducted CE-Chirps and CE-Chirp octave band stimuli may be valuable in the assessment of newborn infants. However, the prognostic value of such stimuli needs to be validated.

  18. Experimental investigation of chirp properties induced by signal amplification in quantum-dot semiconductor optical amplifiers.

    PubMed

    Matsuura, Motoharu; Ohta, Hiroaki; Seki, Ryota

    2015-03-15

    We experimentally show the dynamic frequency chirp properties induced by signal amplification in a quantum-dot semiconductor optical amplifier (QD-SOA) for the first time. We also compare the red and blue chirp peak values and temporal chirp changes while changing the gain and injected signal powers of the QD-SOA with those of a common SOA.

  19. Enhancing rock phosphate integration rate for fast bio-transformation of cow-dung waste-paper mixtures to organic fertilizer.

    PubMed

    Unuofin, F O; Siswana, M; Cishe, E N

    2016-01-01

    Rock phosphate (RP) addition in cow-dung waste-paper mixtures at rates above 2% P has been reported to increase the rate of bio-transformation and humification of organic waste mixtures during vermicomposting to produce organic fertilizer for organic farming. However, the optimization of RP for vermicomposting was not established. The objective of this study was to determine the optimal amount of RP integration rates for effective bio-transformation of cow-dung waste-paper mixtures. Arrays of RP integration degrees (0, 0.5, 1, 1.5, 2, and 4% P as RP) were thoroughly mixed with cow- dung waste-paper mixtures to achieve an optimized C:N ratio of 30 and allowed to vermidegrade following the introduction of earthworms at a stocking mass of 12.5 g-worms kg(-1). The bio-transformation of the waste mixtures was examined by measuring C:N ratios and humification index (HI) and per cent ash and volatile solids. Application of 1% P as RP resulted in fast bio-transformation and maturation of cow-dung waste-paper mixtures. A scanning electron microscopy (SEM) was used to evaluate the morphological properties of the different vermicomposts affected by rates of RP showing the degree of degradation of initial compacted aggregates of cellulose and protein fibres in the mixtures at maturity. A germination test was used to further determine phytotoxicity of the final composts and microbial biomass assessment. The final vermicompost (organic fertilizer) had a C:N ratio of 7, MBC of 900 mg kg(-1) and HI of 27.1%. The RP incorporation rate of 1% P of RP investigated is therefore, recommended for efficient vermidegradation and humification of cow-dung waste-paper mixtures. However, higher rates of RP incorporation should be considered where greater P enrichment of the final vermicompost (organic fertilizer) is desired.

  20. Thomson scattering in high-intensity chirped laser pulses

    SciTech Connect

    Holkundkar, Amol R.; Harvey, Chris Marklund, Mattias

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  1. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  2. Duobinary pulse shaping for frequency chirp enabled complex modulation.

    PubMed

    Che, Di; Yuan, Feng; Khodakarami, Hamid; Shieh, William

    2016-09-01

    The frequency chirp of optical direct modulation (DM) used to be a performance barrier of optical transmission system, because it broadens the signal optical spectrum, which becomes more susceptible to chromatic dispersion induced inter-symbol interference (ISI). However, by considering the chirp as frequency modulation, the single DM simultaneously generates a 2-D signal containing the intensity and phase (namely, the time integral of frequency). This complex modulation concept significantly increases the optical signal to noise ratio (OSNR) sensitivity of DM systems. This Letter studies the duobinary pulse shaping (DB-PS) for chirp enabled DM and its impact on the optical bandwidth and system OSNR sensitivity. DB-PS relieves the bandwidth requirement, at the sacrifice of system OSNR sensitivity. As DB-PS induces a controlled ISI, the receiver requires one more tap for maximum likelihood sequence estimation (MLSE). We verify this modified MLSE with a 10-Gbaud duobinary PAM-4 transmission experiment.

  3. Broadband interferometric characterization of divergence and spatial chirp.

    PubMed

    Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-09-01

    We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).

  4. Schwinger vacuum pair production in chirped laser pulses

    SciTech Connect

    Dumlu, Cesim K.

    2010-08-15

    The recent developments of high intensity ultrashort laser pulses have raised the hopes of observing Schwinger vacuum pair production which is one of the important nonperturbative phenomena in QED. The quantitative analysis of realistic high intensity laser pulses is vital for understanding the effect of the field parameters on the momentum spectrum of the produced particles. In this study, we analyze chirped laser pulses with a subcycle structure, and investigate the effects of the chirp parameter on the momentum spectrum of the produced particles. The combined effect of the chirp and carrier phase of the laser pulse is also analyzed. These effects are qualitatively explained by investigating the turning-point structure of the potential within the framework of the complex WKB scattering approach to pair production.

  5. Above threshold dissociation in HD+ using frequency chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Liu, Zheng-Tang; Cong, Shu-Lin

    2011-06-01

    We have theoretically studied the dynamics of above threshold dissociation (ATD) in molecular ions HD+ using frequency chirped femtosecond laser pulses from numerical solutions of the time-dependent Schrödinger equation by using the three-dimensional time-dependent quantum wave packet method. Energy-dependent distributions of ATD fragments are analyzed by an asymptotic-flow expression in momentum space. Linearly positive and negative frequency chirped laser pulses are adopted. It is found that varying frequency chirped parameters can change branching ratios of the 1sσ g and 2pσ u dissociations channels. The concept of a light-induced potential is used to interpret the ATD process. The angular resolved energy distributions of the photofragments are also illustrated.

  6. Molecular π pulses: Population inversion with positively chirped short pulses

    NASA Astrophysics Data System (ADS)

    Cao, Jianshu; Bardeen, Christopher J.; Wilson, Kent R.

    2000-08-01

    Detailed theoretical analysis and numerical simulation indicate that nearly complete electronic population inversion of molecular systems can be achieved with intense positively chirped broadband laser pulses. To provide a simple physical picture, a two-level model is used to examine the condition for the so-called π pulses and a four-level model is designed to demonstrate for molecular systems the correlation between the sign of the chirp and the excited state population. The proposed molecular π pulse is the combined result of vibrational coherence in the femtosecond regime and adiabatic inversion in the picosecond regime. Numerical results for a displaced oscillator, for LiH and for I2, show that the proposed molecular π pulse scheme is robust with respect to changes in field parameters such as the linear positive chirp rate, field intensity, bandwidth, and carrier frequency, and is stable with respect to thermal and condensed phase conditions including molecular rotation, rovibronic coupling, and electronic dephasing.

  7. Time-frequency signature sparse reconstruction using chirp dictionary

    NASA Astrophysics Data System (ADS)

    Nguyen, Yen T. H.; Amin, Moeness G.; Ghogho, Mounir; McLernon, Des

    2015-05-01

    This paper considers local sparse reconstruction of time-frequency signatures of windowed non-stationary radar returns. These signals can be considered instantaneously narrow-band, thus the local time-frequency behavior can be recovered accurately with incomplete observations. The typically employed sinusoidal dictionary induces competing requirements on window length. It confronts converse requests on the number of measurements for exact recovery, and sparsity. In this paper, we use chirp dictionary for each window position to determine the signal instantaneous frequency laws. This approach can considerably mitigate the problems of sinusoidal dictionary, and enable the utilization of longer windows for accurate time-frequency representations. It also reduces the picket fence by introducing a new factor, the chirp rate α. Simulation examples are provided, demonstrating the superior performance of local chirp dictionary over its sinusoidal counterpart.

  8. Rainbow trapping using chirped all-dielectric periodic structures

    NASA Astrophysics Data System (ADS)

    Kurt, H.; Yilmaz, D.

    2013-03-01

    We report a numerical investigation of rainbow trapping (light of different wavelengths) at different spatial locations in a newly designed two-dimensional photonic structure that is formed using chirping parameters in two-dimensional photonic crystals. Chirped parameters ensure trapping of certain light wavelengths inside these structures. To achieve broadband electromagnetic wave trapping, we properly adjust and chirp the position and dielectric filling factor of each unit cell within a photonic crystal structure. The low group velocity regions of the dielectric continuum bands at the Brillouin zone edge enable different wavelengths to be slowed and stopped along the propagation direction. The all-dielectric transparent material nature of the proposed structure realizes light trapping in different electromagnetic regions by spatially varying the effective refractive index of the structure.

  9. Applications of chirped Raman adiabatic rapid passage to atom interferometry

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Butts, David L.; Kinast, Joseph M.; Johnson, David M. S.; Radojevic, Antonije M.; Timmons, Brian P.; Stoner, Richard E.

    2012-02-01

    We present robust atom optics, based on chirped Raman adiabatic rapid passage (ARP), in the context of atom interferometry. Such ARP light pulses drive coherent population transfer between two hyperfine ground states by sweeping the frequency difference of two fixed-intensity optical fields with large single photon detunings. Since adiabatic transfer is less sensitive to atom temperature and non-uniform Raman beam intensity than standard Raman pulses, this approach should improve the stability of atom interferometers operating in dynamic environments. In such applications, chirped Raman ARP may also provide advantages over the previously demonstrated stimulated Raman adiabatic passage (STIRAP) technique, which requires precise modulation of beam intensity and zeroing of the single photon detuning. We demonstrate a clock interferometer with chirped Raman ARP pulses, and compare its stability to that of a conventional Raman pulse interferometer. We also discuss potential improvements to inertially sensitive atom interferometers. Copyright 2011 by The Charles Stark Draper Laboratory, Inc. All rights reserved.

  10. Chirped-cavity dispersion-compensation filter design.

    PubMed

    Li, Ya-Ping; Chen, Sheng-Hui; Lee, Cheng-Chung

    2006-03-01

    A new basic structure of a dispersive-compensation filter, called a chirped-cavity dispersion-compensator (CCDC) filter, was designed to offer the advantages of small ripples in both reflectance and group-delay dispersion (GDD). This filter provides a high dispersion compensation, like the Gires-Tournois interferometer (GTI) filter, and a wide working bandwidth, like the chirped mirror (CM). The structure of the CCDC is a cavity-type Fabry-Perot filter with a spacer layer (2 mH or 2 mL) and a chirped high reflector. The CCDC filter can provide a negative GDD of -50 fs2 over a bandwidth of 56 THz with half the optical thickness of the CM or the GTI.

  11. Chirped-cavity dispersion-compensation filter design

    NASA Astrophysics Data System (ADS)

    Li, Ya-Ping; Chen, Sheng-Hui; Lee, Cheng-Chung

    2006-03-01

    A new basic structure of a dispersive-compensation filter, called a chirped-cavity dispersion-compensator (CCDC) filter, was designed to offer the advantages of small ripples in both reflectance and group-delay dispersion (GDD). This filter provides a high dispersion compensation, like the Gires-Tournois interferometer (GTI) filter, and a wide working bandwidth, like the chirped mirror (CM). The structure of the CCDC is a cavity-type Fabry-Perot filter with a spacer layer (2 mH or 2 mL) and a chirped high reflector. The CCDC filter can provide a negative GDD of -50 fs2 over a bandwidth of 56 THz with half the optical thickness of the CM or the GTI.

  12. Chirped Laser Dispersion Spectroscopy: Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Plant, Genevieve B.

    The subject of this thesis is the fundamentals, implementation, and applications of Chirped Laser Dispersion Spectroscopy (CLaDS), an alternative dispersion spectroscopy technique that aims to overcome some limitations of absorption-based sensing. CLaDS preserves many of the benefits of dispersion sensing, namely baseline-free operation, immunity to received intensity, and linearity with sample concentration, and is fairly easy to implement without the need for stabilized interferometers, mode-locked lasers, and complex optical configurations required by many other dispersion-based sensors. First an introduction to CLaDS and a derivation of the spectroscopic signals are provided, highlighting fundamental similarities and differences to absorption-based sensing. Next the fundamental limit of CLaDS is investigated through analysis of the shot-noise limited performance under ideal operating conditions. This in turn allows for a theoretical and direct comparison to the shot-noise-limited performance of direct laser absorption spectroscopy (DLAS). This investigation shows that when full spectral scan fitting of realistic unknown parameters for each technique is used, both techniques demonstrate the same efficiency of parameter extraction. Following this theoretical investigation of ideal CLaDS performance, the technical details, methods of implementation, and component-introduced limitations of real-world CLaDS systems are discussed. Also included is a discussion of the first demonstration of an optical heterodyne enhanced CLaDS technique (HE-CLaDS). To overcome some of the technical limitations imposed by system instability, a modulation based technique (CM-CLaDS) was developed; the theory, optimization and noise characteristics of which are detailed. Finally, several applications of CLaDS are provided. These include atmospheric sensing, distributed sensor networks, and fiber dispersion characterization, all of which aim at demonstrating the technical advantages of the

  13. Feasibility study, software design, layout and simulation of a two-dimensional Fast Fourier Transform machine for use in optical array interferometry

    NASA Technical Reports Server (NTRS)

    Boriakoff, Valentin

    1994-01-01

    The goal of this project was the feasibility study of a particular architecture of a digital signal processing machine operating in real time which could do in a pipeline fashion the computation of the fast Fourier transform (FFT) of a time-domain sampled complex digital data stream. The particular architecture makes use of simple identical processors (called inner product processors) in a linear organization called a systolic array. Through computer simulation the new architecture to compute the FFT with systolic arrays was proved to be viable, and computed the FFT correctly and with the predicted particulars of operation. Integrated circuits to compute the operations expected of the vital node of the systolic architecture were proven feasible, and even with a 2 micron VLSI technology can execute the required operations in the required time. Actual construction of the integrated circuits was successful in one variant (fixed point) and unsuccessful in the other (floating point).

  14. Compensation of high-order phase distortions in chirped-pulse amplification system

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Jiang, Yong-Liang; Leng, Yu-xin; Chen, Xiao-Wei; Li, Ru-Xin; Xu, Zhi-Zhan

    2007-01-01

    Chirped-pulse amplification (CPA) technique has been widely used to generate ultra-intense femto-second pulses. In this scheme the seed pulses from an oscillator are stretched before amplification. The stretched pulses can support more energy extraction and effectively decrease the nonlinear effects in the gain media. The subsequent amplification in a CPA chain will result in a broadening of the output compressed pulses in temporal domain due to the gain narrowing and uncompensated phase distortions. In our experiment, using spectral modulation and phase pre-compensation system (Acoustic-Optics Programmable Dispersive Filter) between the oscillator and the stretcher, the effects of gain narrowing and high-order dispersions on the pulse duration in kHz chirped-pulse amplification system have been pre-compensated, and the spectral FWHM is expanded from 30nm to 50nm. The effects of GDD, TOD and FOD were investigated by scanning the four dispersion parameters respectively. By pre-compensating the high-order phase distortions with the phase measured by SPIDER, we successfully optimize the output duration from 51fs to 30fs, which is 1.07 times Fourier-transform-limitation.

  15. (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect

    NASA Astrophysics Data System (ADS)

    Jin-Yuan, Li; Nian-Qiao, Fang; Ji, Zhang; Yu-Long, Xue; Xue-Mu, Wang; Xiao-Bo, Yuan

    2016-04-01

    In the past few decades, the (1+1)-dimensional nonlinear Schrödinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrödinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given. Project supported by the National Natural Science Foundation of China (Grant No. 41406018).

  16. Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.

    2011-10-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.

  17. Moving chirped soliton under laser pulse interaction with gold nanorods

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.

    2017-05-01

    We investigate splitting and self-trapping of the femtosecond pulse by nanorods reshaping front at optical radiation propagation in a medium containing gold nanorods. We take into account multi-photon absorption of laser radiation by nanorods, and time-dependent nanorod aspect ratio changing due to their reshaping. On the basis of computer simulation we demonstrate appearance of slowing down soliton and superluminality effect simultaneously for various sub-pulses which form from incident Gaussian un-chirped pulse. These sub-pulses possess chirp and soliton shape which differs from a classical soliton of Schrödinger equation with cubic nonlinearity.

  18. Continuous fast Fourier transforms cyclic voltammetry as a new approach for investigation of skim milk k-casein proteolysis, a comparative study.

    PubMed

    Shayeh, Javad Shabani; Sefidbakht, Yahya; Siadat, Seyed Omid Ranaei; Niknam, Kaveh

    2017-10-01

    Cheese production is relied upon the action of Rennet on the casein micelles of milk. Chymosin assay methods are usually time consuming and offline. Herein, we report a new electrochemical technique for studying the proteolysis of K-casein. The interaction of rennet and its substrate was studied by fast Fourier transform continuous cyclic voltammetry (FFTCCV) based on a determination of k-casein in aqueous solution. FFTCCV technique is a very useful method for studying the enzymatic procedures. Fast response, no need of modified electrodes or complex equipment is some of FFTCCV advantages. Various concentrations of enzyme and substrate were selected and the increase in the appearance of charged species in solution as a result of the addition of rennet was studied. Data obtained using FFTCCV technique were also confirmed by turbidity analysis. The results show that rennet proteolysis activity occurs in much shorter time scales compare with its aggregation. Hence, following the appearance of charged segments as a result of proteolysis could be under consideration as a rapid and online method. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A fast method for the detection of vascular structure in images, based on the continuous wavelet transform with the Morlet wavelet having a low central frequency

    NASA Astrophysics Data System (ADS)

    Postnikov, Eugene B.; Tsoy, Maria O.; Kurochkin, Maxim A.; Postnov, Dmitry E.

    2017-04-01

    A manual measurement of blood vessels diameter is a conventional component of routine visual assessment of microcirculation, say, during optical capillaroscopy. However, many modern optical methods for blood flow measurements demand the reliable procedure for a fully automated detection of vessels and estimation of their diameter that is a challenging task. Specifically, if one measure the velocity of red blood cells by means of laser speckle imaging, then visual measurements become impossible, while the velocity-based estimation has their own limitations. One of promising approaches is based on fast switching of illumination type, but it drastically reduces the observation time, and hence, the achievable quality of images. In the present work we address this problem proposing an alternative method for the processing of noisy images of vascular structure, which extracts the mask denoting locations of vessels, based on the application of the continuous wavelet transform with the Morlet wavelet having small central frequencies. Such a method combines a reasonable accuracy with the possibility of fast direct implementation to images. Discussing the latter, we describe in details a new MATLAB program code realization for the CWT with the Morlet wavelet, which does not use loops completely replaced with element-by-element operations that drastically reduces the computation time.

  20. A simplified implementation of edge detection in MATLAB is faster and more sensitive than fast fourier transform for actin fiber alignment quantification.

    PubMed

    Kemeny, Steven Frank; Clyne, Alisa Morss

    2011-04-01

    Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.

  1. Determination of trans Fat in Selected Fast Food Products and Hydrogenated Fats of India Using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy.

    PubMed

    Khan, Mohd Umar; Hassan, Mohammad Fahimul; Rauf, Abdul

    2017-01-01

    This paper reports the application of a simple and rapid method for the determination of trans fatty acid (TFA) content in some of the selected Indian fast food products and hydrogenated fats using Fourier transform infrared (FTIR) spectroscopy in conjunction with second derivative procedure. FTIR spectroscopy has been successfully applied to trans measurement using the absorbance bands at or near 966 cm(-1) in the FTIR spectra. It was found from the analysis that TFA content of fast food product was ranging from 1.57% to 3.83% of the total fat while for hydrogenated fats, comparatively large quantity of TFA was detected in the range of 3.31% to 4.73%. Since GC-FID is most widely used method for the determination of fatty acid (FA) composition, this method was used for the sake of comparison. Value of regression coefficient was found very close to one (0.99503) with standard deviation of 0.10247 showing a good agreement between GC-FID and proposed ATR-FTIR method.

  2. Measurement and control of the frequency chirp rate of high-order harmonic pulses

    SciTech Connect

    Mauritsson, J.; Johnsson, P.; Lopez-Martens, R.; Varju, K.; L'Huillier, A.; Kornelis, W.; Biegert, J.; Keller, U.; Gaarde, M.B.; Schafer, K.J.

    2004-08-01

    We measure the chirp rate of harmonics 13 to 23 in argon by cross correlation with a 12 femtosecond probe pulse. Under low ionization conditions, we directly measure the negative chirp due to the atomic dipole phase, and show that an additional chirp on the pump pulse is transferred to the qth harmonic as q times the fundamental chirp. Our results are in accord with simulations using the experimentally measured 815 nm pump and probe pulses. The ability to measure and manipulate the harmonic chirp rate is essential for the characterization and optimization of attosecond pulse trains.

  3. Fast Fourier Transform IR Characterization of Epoxy GY Systems Crosslinked with Aliphatic and Cycloaliphatic EH Polyamine Adducts

    PubMed Central

    Nikolic, Goran; Zlatkovic, Sasa; Cakic, Milorad; Cakic, Suzana; Lacnjevac, Caslav; Rajic, Zoran

    2010-01-01

    The use of fast FT-IR spectroscopy as a sensitive method to estimate a change of the crosslinking kinetics of epoxy resin with polyamine adducts is described in this study. A new epoxy formulation based on the use of polyamine adducts as the hardeners was analyzed. Crosslinking reactions of the different stoichiometric mixtures of the unmodified GY250 epoxy resin with the aliphatic EH606 and the cycloaliphatic EH637 polyamine adducts were studied using mid FT-IR spectroscopic techniques. As the crosslinking proceeded, the primary amine groups in polyamine adduct are converted to secondary and the tertiary amines. The decrease in the IR band intensity of epoxy groups at about 915 cm−1, as well as at about 3,056 cm−1, was observed due to process. Mid IR spectral analysis was used to calculate the content of the epoxy groups as a function of crosslinking time and the crosslinking degree of resin. The amount of all the epoxy species was estimated from IR spectra to changes during the crosslinking kinetics of epichlorhydrin. PMID:22315562

  4. Design and evaluation of a pulsed-jet chirped-pulse millimeter-wave spectrometer for the 70-102 GHz region.

    PubMed

    Park, G Barratt; Steeves, Adam H; Kuyanov-Prozument, Kirill; Neill, Justin L; Field, Robert W

    2011-07-14

    Chirped-pulse millimeter-wave (CPmmW) spectroscopy is the first broadband (multi-GHz in each shot) Fourier-transform technique for high-resolution survey spectroscopy in the millimeter-wave region. The design is based on chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy [G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, Rev. Sci. Instrum. 79, 053103 (2008)], which is described for frequencies up to 20 GHz. We have built an instrument that covers the 70-102 GHz frequency region and can acquire up to 12 GHz of spectrum in a single shot. Challenges to using chirped-pulse Fourier-transform spectroscopy in the millimeter-wave region include lower achievable sample polarization, shorter Doppler dephasing times, and problems with signal phase stability. However, these challenges have been partially overcome and preliminary tests indicate a significant advantage over existing millimeter-wave spectrometers in the time required to record survey spectra. Further improvement to the sensitivity is expected as more powerful broadband millimeter-wave amplifiers become affordable. The ability to acquire broadband Fourier-transform millimeter-wave spectra enables rapid measurement of survey spectra at sufficiently high resolution to measure diagnostically important electronic properties such as electric and magnetic dipole moments and hyperfine coupling constants. It should also yield accurate relative line strengths across a broadband region. Several example spectra are presented to demonstrate initial applications of the spectrometer.

  5. Fast and automatic algorithm for optic disc extraction in retinal images using principle-component-analysis-based preprocessing and curvelet transform.

    PubMed

    Shahbeig, Saleh; Pourghassem, Hossein

    2013-01-01

    Optic disc or optic nerve (ON) head extraction in retinal images has widespread applications in retinal disease diagnosis and human identification in biometric systems. This paper introduces a fast and automatic algorithm for detecting and extracting the ON region accurately from the retinal images without the use of the blood-vessel information. In this algorithm, to compensate for the destructive changes of the illumination and also enhance the contrast of the retinal images, we estimate the illumination of background and apply an adaptive correction function on the curvelet transform coefficients of retinal images. In other words, we eliminate the fault factors and pave the way to extract the ON region exactly. Then, we detect the ON region from retinal images using the morphology operators based on geodesic conversions, by applying a proper adaptive correction function on the reconstructed image's curvelet transform coefficients and a novel powerful criterion. Finally, using a local thresholding on the detected area of the retinal images, we extract the ON region. The proposed algorithm is evaluated on available images of DRIVE and STARE databases. The experimental results indicate that the proposed algorithm obtains an accuracy rate of 100% and 97.53% for the ON extractions on DRIVE and STARE databases, respectively.

  6. Laser control of electronic transitions of wave packet by using quadratically chirped pulses

    SciTech Connect

    Zou Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki

    2005-02-22

    An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H{sub 2}O) as examples.

  7. Reconfiguration of spectral absorption features using a frequency-chirped laser pulse.

    PubMed

    Tian, Mingzhen; Chang, Tiejun; Merkel, Kristian D; Babbitt, W Randall

    2011-12-20

    A technique is proposed to manipulate atomic population in an inhomogeneously broadened medium, which can set an arbitrary absorption spectrum to a uniform transparency (erasure) or to a nearly complete inversion. These reconfigurations of atomic spectral distribution are achieved through excitation of electronic transitions using a laser pulse with chirped frequency, which precisely affects selected spectral regions while leaving the rest of the spectrum unperturbed. An erasure operation sets the final atomic population inversion to zero and the inversion operation flips the population between the ground and the excited states, regardless of the previously existing population distribution. This technique finds important applications both in optical signal processing, where fast, recursive processing and high dynamic range are desirable and in quantum memory and quantum computing, which both require high efficiency and high fidelity in quantum state preparation of atomic ensembles. Proof-of-concept demonstrations were performed in a rare-earth doped crystal.

  8. Direct Digital Synthesis Chirped Pulse Microwave Spectrometers for the Classroom and Research

    NASA Astrophysics Data System (ADS)

    Blake, Geoffrey; Carroll, Brandon; Finneran, Ian A.

    2015-06-01

    By combining the rapid development in direct digital synthesis circuitry and Field Programmable Gate Arrays (FPGAs) coupled to fast A/D samplers, it is possible to construct high performance chirped pulse microwave spectrometers suitable for gas-phase rotational spectroscopy experiments in undergraduate physical chemistry labs as well as graduate level research. The technology is highly tailorable, and sufficiently robust that extensive experimentation is feasible in the teaching environment. The time domain nature of the experiment has strong ties to concepts in Nuclear Magnetic Resonance (NMR) widely discussed in undergraduate curricula, and the software environment for the instrument control and spectral assignment can be integrated with ab initio quantum chemistry predictions of molecular structure and dynamics.

  9. A Fast Hartley Transform based novel optical OFDM system for VLC indoor application with constant envelope PAPR reduction technique using frequency modulation

    NASA Astrophysics Data System (ADS)

    Singh, Vinay Kumar; Dalal, U. D.

    2017-10-01

    In this research literature we present a unique optical OFDM system for Visible Light Communication (VLC) intended for indoor application which uses a non conventional transform-Fast Hartley Transform and an effective method to reduce the peak to average power ratio (PAPR) of the OFDM signal based on frequency modulation leading to a constant envelope (CE) signal. The proposed system is analyzed by a complete mathematical model and verified by the concurrent simulations results. The use of the non conventional transform makes the system computationally more desirable as it does not require the Hermitian symmetry constraint to yield real signals. The frequency modulation of the baseband signal converge random peaks into a CE signal. This leads to alleviation of the non linearity effects of the LED used in the link for electrical to optical conversion. The PAPR is reduced to 2 dB by this technique in this work. The impact of the modulation index on the performance of the system is also investigated. An optimum modulation depth of 30% gives better results. The additional phase discontinuity incurring on the demodulated signal at the receiver is also significantly reduced. A comparison of the improvement in phase discontinuity of the proposed technique of combating the PAPR with the previously known phase modulation technique is also presented in this work. Based on the channel metrics we evaluate the system performance and report an improvement of 1.2 dB at the FEC threshold. The proposed system is simple in design and computationally efficient and this can be incorporated into the present VLC system without much alteration thereby making it a cost effective solution.

  10. A fast algorithm for parabolic PDE-based inverse problems based on Laplace transforms and flexible Krylov solvers

    SciTech Connect

    Bakhos, Tania; Saibaba, Arvind K.; Kitanidis, Peter K.

    2015-10-15

    We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method.

  11. Elimination of the chirp of narrowband terahertz pulses generated by chirped pulse beating using a tandem grating pair laser pulse stretcher.

    PubMed

    Yoshida, Tetsuya; Kamada, Shohei; Aoki, Takao

    2014-09-22

    We study the elimination of the chirp of narrowband terahertz pulses generated by chirped laser pulse beating using a laser pulse stretcher with two grating pairs that cancel out the third-order spectral phase. First, we show that positively chirped terahertz pulses can be generated using a pulse stretcher with a grating pair and internal lenses. We then combine this with a second grating pair, the spectral phase of which has the opposite sign to that of the first one. By varying the separation of the second grating pair, we experimentally verify that the chirp of the generated terahertz pulses can be eliminated.

  12. Injection and acceleration of electron bunch in a plasma wakefield produced by a chirped laser pulse

    SciTech Connect

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-06-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wakefield which can trap and accelerate charged particles up to GeV. One-dimensional analysis of electron injection, trapping, and acceleration by different chirped pulses propagating in plasma is investigated numerically. In this paper, we inject electron bunches in front of the chirped pulses. It is indicated that periodical chirped laser pulse can trap electrons earlier than other pulses. It is shown that periodical chirped laser pulses lead to decrease the minimum momentum necessary to trap the electrons. This is due to the fact that periodical chirped laser pulses are globally much efficient than nonchirped pulses in the wakefield generation. It is found that chirped laser pulses could lead to much larger electron energy than that of nonchirped pulses. Relative energy spread has a lower value in the case of periodical chirped laser pulses.

  13. Chirp dependence of wave packet motion in oxazine 1.

    PubMed

    Malkmus, Stephan; Dürr, Regina; Sobotta, Constanze; Pulvermacher, Horst; Zinth, Wolfgang; Braun, Markus

    2005-11-24

    The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.

  14. Coded multiple chirp spread spectrum system and overlay service

    NASA Technical Reports Server (NTRS)

    Kim, Junghwan; Pratt, Timothy; Ha, Tri T.

    1988-01-01

    An asynchronous spread-spectrum system called coded multiple chirp is proposed, and the possible spread-spectrum overlay over an analog FM-TV signal is investigated by computer simulation. Multiple single-sloped up and down chirps are encoded by a pseudonoise code and decoded by dechirpers (pulse-compression filters) followed by a digital code correlator. The performance of the proposed system, expressed in terms of in probability of bit error and code miss probability, is similar to that of FSK (frequency shift keying) using codewords if sufficient compression gain is used. When chirp is used to overlay an FM-TV channel, two chirp signals with data rate up to 25 kb/s could be overlaid in a 36-MHz satellite transponder without significant mutual interference. Performance estimates for a VSAT (very small aperture terminal) earth station operating at C-band show that a 2.4-m antenna and 300-mW transmitter could send a 2.4-kb/s signal to a large central earth station over an occupied channel.

  15. Chirped microlens arrays for diode laser circularization and beam expansion

    NASA Astrophysics Data System (ADS)

    Schreiber, Peter; Dannberg, Peter; Hoefer, Bernd; Beckert, Erik

    2005-08-01

    Single-mode diode lasers are well-established light sources for a huge number of applications but suffer from astigmatism, beam ellipticity and large manufacturing tolerances of beam parameters. To compensate for these shortcomings, various approaches like anamorphic prism pairs and cylindrical telescopes for circularization as well as variable beam expanders based on zoomed telescopes for precise adjustment of output beam parameters have been employed in the past. The presented new approach for both beam circularization and expansion is based on the use of microlens arrays with chirped focal length: Selection of lenslets of crossed cylindrical microlens arrays as part of an anamorphic telescope enables circularization, astigmatism correction and divergence tolerance compensation of diode lasers simultaneously. Another promising application of chirped spherical lens array telescopes is stepwise variable beam expansion for circular laser beams of fiber or solid-state lasers. In this article we describe design and manufacturing of beam shaping systems with chirped microlens arrays fabricated by polymer-on-glass replication of reflow lenses. A miniaturized diode laser module with beam circularization and astigmatism correction assembled on a structured ceramics motherboard and a modulated RGB laser-source for photofinishing applications equipped with both cylindrical and spherical chirped lens arrays demonstrate the feasibility of the proposed system design approach.

  16. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W [Albuquerque, NM

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  17. Coded tissue harmonic imaging with nonlinear chirp signals.

    PubMed

    Song, Jaehee; Chang, Jin Ho; Song, Tai-kyong; Yoo, Yangmo

    2011-05-01

    Coded tissue harmonic imaging with pulse inversion (CTHI-PI) based on a linear chirp signal can improve the signal-to-noise ratio with minimizing the peak range sidelobe level (PRSL), which is the main advantage over CTHI with bandpass filtering (CTHI-BF). However, the CTHI-PI technique could suffer from motion artifacts due to decreasing frame rate caused by two firings of opposite phase signals for each scanline. In this paper, a new CTHI method based on a nonlinear chirp signal (CTHI-NC) is presented, which can improve the separation of fundamental and harmonic components without sacrificing frame rate. The nonlinear chirp signal is designed to minimize the PRSL value by optimizing its frequency sweep rate and time duration. The performance of the CTHI-NC method was evaluated by measuring the PRSL and mainlobe width after compression. From the in vitro experiments, the CTHI-NC provided the PRSL of -40.6 dB and the mainlobe width of 2.1 μs for the transmit quadratic nonlinear chirp signal with the center frequency of 2.1 MHz, the fractional bandwidth at -6 dB of 0.6 and the time duration of 15 μs. These results indicate that the proposed method could be used for improving frame rates in CTHI while providing comparable image quality to CTHI-PI.

  18. Coded multiple chirp spread spectrum system and overlay service

    NASA Technical Reports Server (NTRS)

    Kim, Junghwan; Pratt, Timothy; Ha, Tri T.

    1988-01-01

    An asynchronous spread-spectrum system called coded multiple chirp is proposed, and the possible spread-spectrum overlay over an analog FM-TV signal is investigated by computer simulation. Multiple single-sloped up and down chirps are encoded by a pseudonoise code and decoded by dechirpers (pulse-compression filters) followed by a digital code correlator. The performance of the proposed system, expressed in terms of in probability of bit error and code miss probability, is similar to that of FSK (frequency shift keying) using codewords if sufficient compression gain is used. When chirp is used to overlay an FM-TV channel, two chirp signals with data rate up to 25 kb/s could be overlaid in a 36-MHz satellite transponder without significant mutual interference. Performance estimates for a VSAT (very small aperture terminal) earth station operating at C-band show that a 2.4-m antenna and 300-mW transmitter could send a 2.4-kb/s signal to a large central earth station over an occupied channel.

  19. Electron heating enhancement by frequency-chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Yazdani, E.; Sadighi-Bonabi, R.; Afarideh, H.; Riazi, Z.; Hora, H.

    2014-09-01

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a0 = 5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about ne ≈ 6nc, where nc is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  20. Linewidth enhancement factor and chirp in quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Oksanen, Jani; Tulkki, Jukka

    2003-08-01

    We have made a comparative study of the linewidth enhancement factor (LEF) and chirp in quantum dot (QDL's) and quantum well lasers (QWL's). The simulations are based on the quasiequilibrium approximation and on semiempirical transition energies and amplitudes of InGaAs quantum pyramid structures. We have accounted for the carriers confined in the active material as well as for the carriers in all the other material layers. It is found that in the quasiequilibrium approximation inhomogeneous broadening leads to asymmetric population of the quantum dot ground state. If the QDL is operated at the gain maximum, the asymmetry leads to nonzero chirp even for a single bound resonance state located at a large distance from other resonances. Our calculations show that, by detuning the laser emission to ˜15 nm shorter wavelengths with a frequency selective cavity and by tailoring the resonance energies and inhomogeneous broadening, the LEF and chirp of a QDL can be made very small. This detuning does not add a substantial penalty to the efficiency of the laser. For QWL's, a similar reduction of chirp is generally not feasible due to the fundamentally different density of states. Therefore QDL's have an important advantage over QWL's as directly modulated light sources in applications where the stability of the emission wavelength is critical.

  1. Electron heating enhancement by frequency-chirped laser pulses

    SciTech Connect

    Yazdani, E.; Afarideh, H.; Sadighi-Bonabi, R.; Riazi, Z.; Hora, H.

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  2. Momentum transfer using chirped standing-wave fields: Bragg scattering

    SciTech Connect

    Malinovsky, Vladimir S.; Berman, Paul R.

    2003-08-01

    We consider momentum transfer using frequency-chirped standing-wave fields. Atom-beam splitter and mirror schemes based on Bragg scattering are presented. It is shown that a predetermined number of photon momenta can be transferred to the atoms in a single interaction zone.

  3. Radar high-speed maneuvering target detection based on joint second-order keystone transform and modified integrated cubic phase function

    NASA Astrophysics Data System (ADS)

    Zhang, Jiancheng; Su, Tao; Li, Yanyan; Zheng, Jibin

    2016-07-01

    Long-time coherent integration is an effective means to improve the radar detection ability of high-speed maneuvering targets with jerk motion. However, the range migration (RM) and Doppler frequency migration (DFM) have a great impact on the integration performance. To overcome these problems, a unique method, called the second-order keystone transform modified integrated cubic phase function (SKT-MICPF), is proposed. In this method, the velocity compensation and SKT are jointly employed to correct the RM. After the RM correction, the azimuth echoes of a range cell where a target is located can be modeled as a cubic phase signal (CPS), whose chirp rate (CR) and quadratic CR are related to the target's radial acceleration and jerk, respectively. Thereafter, an effective parameters' estimation algorithm for CPS, called MICPF, is proposed and applied to compensate the DFM. After that, coherent integration and target detection are accomplished via the fast Fourier transform and constant false alarm rate technique, successively. Compared with the improved axis rotation discrete chirp Fourier transform, the SKT-MICPF achieves close detection performance, but greatly reduces the computational complexity. The results of simulation and real radar data demonstrate the validity of the proposed algorithm.

  4. Multiplexing technique using amplitude-modulated chirped fibre Bragg gratings with applications in two-parameter sensing

    NASA Astrophysics Data System (ADS)

    Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding

    2007-11-01

    A multiplexing technique using amplitude-modulated chirped fibre Bragg gratings (AMCFBGs) is presented. This technique realises the multiplexing of spectrally overlapped AMCFBGs with identical centre Bragg wavelength and bandwidth. Since it is fully compatible with the wavelength division multiplexing scheme, the number of gratings that can be multiplexed can be increased by several times. The discrete wavelet transform is used to demodulate such multiplexed signal. A wavelet denoising technique is applied to the multiplexed signal in conjunction with the demodulation. Strain measurements are performed to experimentally demonstrate the feasibility of this multiplexing technique. The absolute error and crosstalk are measured. An application to simultaneous two-parameter sensing is also demonstrated.

  5. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    PubMed

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  6. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    SciTech Connect

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  7. Calculation and manipulation of the chirp rates of high-order harmonics

    SciTech Connect

    Murakami, M.; Mauritsson, J.; Schafer, K.J.; Gaarde, M.B.; L'Huillier, A.

    2005-01-01

    We calculate the linear chirp rates of high-order harmonics in argon, generated by intense, 810 nm laser pulses, and explore the dependence of the chirp rate on harmonic order, driving laser intensity, and pulse duration. By using a time-frequency representation of the harmonic fields we can identify several different linear chirp contributions to the plateau harmonics. Our results, which are based on numerical integration of the time-dependent Schroedinger equation, are in good agreement with the adiabatic predictions of the strong field approximation for the chirp rates. Extending the theoretical analysis in the recent paper by Mauritsson et al. [Phys. Rev. A 70, 021801(R) (2004)], we also manipulate the chirp rates of the harmonics by adding a chirp to the driving pulse. We show that the chirp rate for harmonic q is given by the sum of the intrinsic chirp rate, which is determined by the new duration and peak intensity of the chirped driving pulse, and q times the external chirp rate.

  8. Controlling the femtosecond laser-driven transformation of dicyclopentadiene into cyclopentadiene

    PubMed Central

    Goswami, Tapas; Das, Dipak K.; Goswami, Debabrata

    2013-01-01

    Dynamics of the chemical transformation of dicyclopentadiene into cyclopentadiene in a supersonic molecular beam is elucidated using femtosecond time-resolved degenerate pump–probe mass spectrometry. Control of this ultrafast chemical reaction is achieved by using linearly chirped frequency modulated pulses. We show that negatively chirped femtosecond laser pulses enhance the cyclopentadiene photoproduct yield by an order of magnitude as compared to that of the unmodulated or the positively chirped pulses. This demonstrates that the phase structure of femtosecond laser pulse plays an important role in determining the outcome of a chemical reaction. PMID:24098059

  9. Orbit-based analysis of nonlinear energetic ion dynamics in tokamaks. II. Mechanisms for rapid chirping and convective amplification

    NASA Astrophysics Data System (ADS)

    Bierwage, Andreas; Shinohara, Kouji

    2016-04-01

    The nonlinear interactions between shear Alfvén modes and tangentially injected beam ions in the 150-400 keV range are studied numerically in realistic geometry for a JT-60U tokamak scenario. In Paper I, which was reported in the companion paper, the recently developed orbit-based resonance analysis method was used to track the resonant frequency of fast ions during their nonlinear evolution subject to large magnetic and electric drifts. Here, that method is applied to map the wave-particle power transfer from the canonical guiding center phase space into the frequency-radius plane, where it can be directly compared with the evolution of the fluctuation spectra of fast-ion-driven modes. Using this technique, we study the nonlinear dynamics of strongly driven shear Alfvén modes with low toroidal mode numbers n = 1 and n = 3. In the n = 3 case, both chirping and convective amplification can be attributed to the mode following the resonant frequency of the radially displaced particles, i.e., the usual one-dimensional phase locking process. In the n = 1 case, a new chirping mechanism is found, which involves multiple dimensions, namely, wave-particle trapping in the radial direction and phase mixing across velocity coordinates.

  10. Orbit-based analysis of nonlinear energetic ion dynamics in tokamaks. II. Mechanisms for rapid chirping and convective amplification

    SciTech Connect

    Bierwage, Andreas; Shinohara, Kouji

    2016-04-15

    The nonlinear interactions between shear Alfvén modes and tangentially injected beam ions in the 150–400 keV range are studied numerically in realistic geometry for a JT-60U tokamak scenario. In Paper I, which was reported in the companion paper, the recently developed orbit-based resonance analysis method was used to track the resonant frequency of fast ions during their nonlinear evolution subject to large magnetic and electric drifts. Here, that method is applied to map the wave-particle power transfer from the canonical guiding center phase space into the frequency-radius plane, where it can be directly compared with the evolution of the fluctuation spectra of fast-ion-driven modes. Using this technique, we study the nonlinear dynamics of strongly driven shear Alfvén modes with low toroidal mode numbers n = 1 and n = 3. In the n = 3 case, both chirping and convective amplification can be attributed to the mode following the resonant frequency of the radially displaced particles, i.e., the usual one-dimensional phase locking process. In the n = 1 case, a new chirping mechanism is found, which involves multiple dimensions, namely, wave-particle trapping in the radial direction and phase mixing across velocity coordinates.

  11. Fourier Transformation

    NASA Astrophysics Data System (ADS)

    Scherer, Philipp O. J.

    Fourier transformation is a very important tool for signal analysis but also helpful to simplify the solution of differential equations or the calculation of convolution integrals. An important numerical method is the discrete Fourier transformation which can be used for trigonometric interpolation and also as a numerical approximation to the continuous Fourier integral. It can be realized efficiently by Goertzel's algorithm or the family of fast Fourier transformation methods. For real valued even functions the computationally simpler discrete cosine transformation can be applied. Several computer experiments demonstrate the principles of trigonometric interpolation and nonlinear filtering.

  12. Using compute unified device architecture-enabled graphic processing unit to accelerate fast Fourier transform-based regression Kriging interpolation on a MODIS land surface temperature image

    NASA Astrophysics Data System (ADS)

    Hu, Hongda; Shu, Hong; Hu, Zhiyong; Xu, Jianhui

    2016-04-01

    Kriging interpolation provides the best linear unbiased estimation for unobserved locations, but its heavy computation limits the manageable problem size in practice. To address this issue, an efficient interpolation procedure incorporating the fast Fourier transform (FFT) was developed. Extending this efficient approach, we propose an FFT-based parallel algorithm to accelerate regression Kriging interpolation on an NVIDIA® compute unified device architecture (CUDA)-enabled graphic processing unit (GPU). A high-performance cuFFT library in the CUDA toolkit was introduced to execute computation-intensive FFTs on the GPU, and three time-consuming processes were redesigned as kernel functions and executed on the CUDA cores. A MODIS land surface temperature 8-day image tile at a resolution of 1 km was resampled to create experimental datasets at eight different output resolutions. These datasets were used as the interpolation grids with different sizes in a comparative experiment. Experimental results show that speedup of the FFT-based regression Kriging interpolation accelerated by GPU can exceed 1000 when processing datasets with large grid sizes, as compared to the traditional Kriging interpolation running on the CPU. These results demonstrate that the combination of FFT methods and GPU-based parallel computing techniques greatly improves the computational performance without loss of precision.

  13. Investigation of the variability of NIR in-line monitoring of roller compaction process by using Fast Fourier Transform (FFT) analysis.

    PubMed

    Feng, Tao; Wang, Feng; Pinal, Rodolfo; Wassgren, Carl; Carvajal, M Teresa

    2008-01-01

    The purpose of this research was to investigate the variability of the roller compaction process while monitoring in-line with near-infrared (NIR) spectroscopy. In this paper, a pragmatic method in determining this variability of in-line NIR monitoring roller compaction process was developed and the variability limits were established. Fast Fourier Transform (FFT) analysis was used to study the source of the systematic fluctuations of the NIR spectra. An off-line variability analysis method was developed as well to simulate the in-line monitoring process in order to determine the variability limits of the roller compaction process. For this study, a binary formulation was prepared composed of acetaminophen and microcrystalline cellulose. Different roller compaction parameters such as roll speed and feeding rates were investigated to understand the variability of the process. The best-fit line slope of NIR spectra exhibited frequency dependence only on the roll speed regardless of the feeding rates. The eccentricity of the rolling motion of rollers was identified as the major source of variability and correlated with the fluctuations of the slopes of NIR spectra. The off-line static and dynamic analyses of the compacts defined two different variability of the roller compaction; the variability limits were established. These findings were proved critical in the optimization of the experimental setup of the roller compaction process by minimizing the variability of NIR in-line monitoring.

  14. Feasibility study, software design, layout and simulation of a two-dimensional fast Fourier transform machine for use in optical array interferometry

    NASA Technical Reports Server (NTRS)

    Boriakoff, Valentin; Chen, Wei

    1990-01-01

    The NASA-Cornell Univ.-Worcester Polytechnic Institute Fast Fourier Transform (FFT) chip based on the architecture of the systolic FFT computation as presented by Boriakoff is implemented into an operating device design. The kernel of the system, a systolic inner product floating point processor, was designed to be assembled into a systolic network that would take incoming data streams in pipeline fashion and provide an FFT output at the same rate, word by word. It was thoroughly simulated for proper operation, and it has passed a comprehensive set of tests showing no operational errors. The black box specifications of the chip, which conform to the initial requirements of the design as specified by NASA, are given. The five subcells are described and their high level function description, logic diagrams, and simulation results are presented. Some modification of the Read Only Memory (ROM) design were made, since some errors were found in it. Because a four stage pipeline structure was used, simulating such a structure is more difficult than an ordinary structure. Simulation methods are discussed. Chip signal protocols and chip pinout are explained.

  15. A Comprehensive and Comparative Study of Wolfiporia extensa Cultivation Regions by Fourier Transform Infrared Spectroscopy and Ultra-Fast Liquid Chromatography.

    PubMed

    Li, Yan; Zhang, Ji; Li, Tao; Liu, Honggao; Wang, Yuanzhong

    2016-01-01

    Nowadays, Wolfiporia extensa as a popular raw material in food and medicine industry has received increasing interests. Due to supply shortage, this species of edible and medicinal mushroom has been cultivated in some provinces of China. In the present study, cultivated W. extensa collected from six regions in Yunnan Province of China were analyzed by an integrated method based on Fourier transform infrared (FT-IR) spectroscopy and ultra-fast liquid chromatography (UFLC) coupled with multivariate analysis including partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) in order to investigate the differences and similarities in different origins and parts. In the tested mushroom samples, characteristic FT-IR spectra were obtained for acquiring comprehensive fuzz chemical information and pachymic acid was determinated as a biomarker in the meantime. From the results, the comparison of samples was achieved successfully according to their geographical regions and different parts. All the samples displayed regional dependence and the inner parts showed better quality consistency. In addition, the chemical constituents of cultivated W. extensa could be also affected by the cultivation methods. Meanwhile, there was an interesting finding that the soil properties of cultivation regions may have a relationship with the chemical constituents of the epidermis of soil-cultured W. extensa, rather than the inner parts. Collectively, it demonstrated that the present study could provide comprehensive chemical evidence for the critical complement of quality evaluation on the cultivated W. extensa. Moreover, it may be available for the further researches of complicated mushrooms in practice.

  16. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry.

    PubMed

    Jafari, Safiye; Faridbod, Farnoush; Norouzi, Parviz; Dezfuli, Amin Shiralizadeh; Ajloo, Davood; Mohammadipanah, Fatemeh; Ganjali, Mohammad Reza

    2015-10-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO2NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy)3](2+/3+) redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy)3](2+/3+) FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10(-15) to 1 × 10(-8) mol L(-1). The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL(-1) with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy)3](2+/3+) interaction with ssDNA before and after hybridization.

  17. Performance of a Discrete Wavelet Transform for Compressing Plasma Count Data and its Application to the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Barrie, Alexander C.; Yeh, Penshu; Dorelli, John C.; Clark, George B.; Paterson, William R.; Adrian, Mark L.; Holland, Matthew P.; Lobell, James V.; Simpson, David G.; Pollock, Craig J.; hide

    2015-01-01

    Plasma measurements in space are becoming increasingly faster, higher resolution, and distributed over multiple instruments. As raw data generation rates can exceed available data transfer bandwidth, data compression is becoming a critical design component. Data compression has been a staple of imaging instruments for years, but only recently have plasma measurement designers become interested in high performance data compression. Missions will often use a simple lossless compression technique yielding compression ratios of approximately 2:1, however future missions may require compression ratios upwards of 10:1. This study aims to explore how a Discrete Wavelet Transform combined with a Bit Plane Encoder (DWT/BPE), implemented via a CCSDS standard, can be used effectively to compress count information common to plasma measurements to high compression ratios while maintaining little or no compression error. The compression ASIC used for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS) is used for this study. Plasma count data from multiple sources is examined: resampled data from previous missions, randomly generated data from distribution functions, and simulations of expected regimes. These are run through the compression routines with various parameters to yield the greatest possible compression ratio while maintaining little or no error, the latter indicates that fully lossless compression is obtained. Finally, recommendations are made for future missions as to what can be achieved when compressing plasma count data and how best to do so.

  18. Adaptive fusion method of visible light and infrared images based on non-subsampled shearlet transform and fast non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Kong, Weiwei; Lei, Yang; Zhao, Huaixun

    2014-11-01

    The issue of visible light and infrared images fusion has been an active topic in both military and civilian areas, and a great many relevant algorithms and techniques have been developed accordingly. This paper addresses a novel adaptive approach to the above two patterns of images fusion problem, employing multi-scale geometry analysis (MGA) of non-subsampled shearlet transform (NSST) and fast non-negative matrix factorization (FNMF) together. Compared with other existing conventional MGA tools, NSST owns not only better feature-capturing capabilities, but also much lower computational complexities. As a modification version of the classic NMF model, FNMF overcomes the local optimum property inherent in NMF to a large extent. Furthermore, use of the FNMF with a less complex structure and much fewer iteration numbers required leads to the enhancement of the overall computational efficiency, which is undoubtedly meaningful and promising in so many real-time applications especially the military and medical technologies. Experimental results indicate that the proposed method is superior to other current popular ones in both aspects of subjective visual and objective performance.

  19. Fast and nondestructive determination of protein content in rapeseeds (Brassica napus L.) using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS).

    PubMed

    Lu, Yuzhen; Du, Changwen; Yu, Changbing; Zhou, Jianmin

    2014-08-01

    Fast and non-destructive determination of rapeseed protein content carries significant implications in rapeseed production. This study presented the first attempt of using Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) to quantify protein content of rapeseed. The full-spectrum model was first built using partial least squares (PLS). Interval selection methods including interval partial least squares (iPLS), synergy interval partial least squares (siPLS), backward elimination interval partial least squares (biPLS) and dynamic backward elimination interval partial least squares (dyn-biPLS) were then employed to select the relevant band or band combination for PLS modeling. The full-spectrum PLS model achieved an ratio of prediction to deviation (RPD) of 2.047. In comparison, all interval selection methods produced better results than full-spectrum modeling. siPLS achieved the best predictive accuracy with an RPD of 3.215 when the spectrum was sectioned into 25 intervals, and two intervals (1198-1335 and 1614-1753 cm(-1) ) were selected. iPLS excelled biPLS and dyn-biPLS, and dyn-biPLS performed slightly better than biPLS. FTIR-PAS was verified as a promising analytical tool to quantify rapeseed protein content. Interval selection could extract the relevant individual band or synergy band associated with the sample constituent of interest, and then improve the prediction accuracy of the full-spectrum model. © 2013 Society of Chemical Industry.

  20. Neonate Auditory Brainstem Responses to CE-Chirp and CE-Chirp Octave Band Stimuli II: Versus Adult Auditory Brainstem Responses.

    PubMed

    Cobb, Kensi M; Stuart, Andrew

    The purpose of the study was to examine the differences in auditory brainstem response (ABR) latency and amplitude indices to the CE-Chirp stimuli in neonates versus young adults as a function of stimulus level, rate, polarity, frequency and gender. Participants were 168 healthy neonates and 20 normal-hearing young adults. ABRs were obtained to air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps. The effect of stimulus level was also examined with bone-conducted CE-Chirps and CE-Chirp octave band stimuli. The effect of gender was examined across all stimulus manipulations. In general, ABR wave V amplitudes were significantly larger (p < 0.0001) and latencies were significantly shorter (p < 0.0001) for adults versus neonates for all air-conducted CE-Chirp stimuli with all stimulus manipulations. For bone-conducted CE-Chirps, infants had significantly shorter wave V latencies than adults at 15 dB nHL and 45 dB nHL (p = 0.02). Adult wave V amplitude was significantly larger for bone-conducted CE-Chirps only at 30 dB nHL (p = 0.02). The effect of gender was not statistically significant across all measures (p > 0.05). Significant differences in ABR latencies and amplitudes exist between newborns and young adults using CE-Chirp stimuli. These differences are consistent with differences to traditional click and tone burst stimuli and reflect maturational differences as a function of age. These findings continue to emphasize the importance of interpreting ABR results using age-based normative data.

  1. Frequency-chirp rates of harmonics driven by a few-cycle pulse

    SciTech Connect

    Murakami, M.; Mauritsson, J.; Gaarde, M.B.

    2005-08-15

    We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. We also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time.

  2. Auditory brainstem responses to chirps delivered by an insert earphone with equalized frequency response

    PubMed Central

    Elberling, Claus; Don, Manuel; Kristensen, Sinnet G. B.

    2012-01-01

    Recently it has been demonstrated that auditory brainstem responses, ABRs, to chirps are larger with the ER-2 than with the ER-3A insert earphone due to differences between the corresponding amplitude-frequency responses. Therefore a modified chirp, which equalizes the amplitude-frequency response of the ER-3A, is constructed and subsequently compared to the unmodified chirp. ABRs are recorded from 20 normal-hearing subjects in response to the two chirps delivered by the ER-3A earphone at a wide range of levels. The results confirm that the modified chirp generates significantly larger ABRs than the unmodified chirp at levels below 60 dB nHL. PMID:22894314

  3. Auditory brainstem responses to chirps delivered by an insert earphone with equalized frequency response.

    PubMed

    Elberling, Claus; Don, Manuel; Kristensen, Sinnet G B

    2012-08-01

    Recently it has been demonstrated that auditory brainstem responses, ABRs, to chirps are larger with the ER-2 than with the ER-3A insert earphone due to differences between the corresponding amplitude-frequency responses. Therefore a modified chirp, which equalizes the amplitude-frequency response of the ER-3A, is constructed and subsequently compared to the unmodified chirp. ABRs are recorded from 20 normal-hearing subjects in response to the two chirps delivered by the ER-3A earphone at a wide range of levels. The results confirm that the modified chirp generates significantly larger ABRs than the unmodified chirp at levels below 60 dB nHL.

  4. Measuring acetylene concentrations using a frequency chirped continuous wave diode laser operating in the near infrared.

    PubMed

    Lindley, Ruth E; Pradhan, Manik; Orr-Ewing, Andrew J

    2006-06-01

    Two frequency chirped continuous wave diode lasers operating in the near infrared (IR) at wavelengths of lambda approximately 1.535 microm and lambda approximately 1.520 microm have been used to measure acetylene concentrations using the P(17) and R(9) rotational lines of the (nu1 + nu3) vibrational combination band. The diode lasers were frequency chirped by applying an electrical current pulse to the laser driver at a repetition rate of greater than 1 kHz. As the laser is operated at high repetition rates, more than 1000 spectra per second can, in principle, be acquired and summed, allowing fast accumulation of data, rapid averaging and consequent improvement of the signal to noise ratio and detection limit. Experiments were performed using a single-pass cell with a path length of 16.4 cm, and also an astigmatic multi-pass absorption cell aligned to give a path length of 56 m. Detection limits corresponding to minimum detectable absorption coefficients, alpha(min), of 5.6 x 10(-5) and 7.8 x 10(-8) cm(-1), respectively, were obtained over a 4 s detection bandwidth. These detection limits would correspond to mixing ratios of 21 parts per million by volume (ppmv) and 59 parts per billion by volume (ppbv) of acetylene at 1 atm in air, with the deleterious effects of pressure broadening accounted for. The single-pass cell was used to perform breakthrough volume (BTV) experiments for the low volume adsorbent traps used to pre-concentrate organic compounds in air, taking advantage of the capability of the system to measure concentrations in real time.

  5. Ultrafast tunable chirped phase-change metamaterial with a low power.

    PubMed

    Cao, Tun; Wei, Chenwei; Mao, Libang

    2015-02-23

    We numerically demonstrate an all-optical tunable dual-band double negative (DNG) index chirped metamaterial (MM) in the mid-infrared (M-IR) region. This MM possesses an ultrafast and significant tunability under low pump light power, realized by combining phase change material (PCM). It has a configuration of elliptical nanohole array (ENA) penetrating through metal/PCM/metal (Au-Ge(2)Sb(2)Te(5)-Au) films. Here, we consider the case when the chirp is introduced by displacing the positions of the ENA along the short axis of the elliptical apertures inside the primitive cell, which can achieve multiple internal surface-plasmon polariton (SPP) modes at the inner metal-dielectric interfaces of the structure and thus providing a dual-band negative index with simultaneous negative permittivity and permeability. The influence of amorphous and crystalline states of Ge(2)Sb(2)Te(5) on the effective optical parameters of the structure is analyzed. Switching between these states provides a large wavelength shift of the structure's effective optical parameters. A photothermal model is used to study the temporal variation of the temperature of the Ge(2)Sb(2)Te(5) layer to show a potential to switch the phase of Ge(2)Sb(2)Te(5) by optical heating. Generation of the tunable dual-band DNG index presents clear advantages as it possesses a fast tuning time of 0.4 ns, a low pump light intensity of 7.3μW/μm(2), and a large tunable wavelength range of 978 nm. We expect that our design may have potential applications in actively tunable multi-band nanodevices.

  6. Chirp optical coherence tomography of layered scattering media

    NASA Astrophysics Data System (ADS)

    Haberland, Udo; Blazek, Vladimir; Schmitt, Hans J.

    1998-07-01

    A new noninvasive technique that reveals cross sectional images of scattering media is presented. It is based on a continuous wave frequency modulated radar, but uses a tunable laser in the near infrared. As the full width at half maximum resolution of 16 micrometers is demonstrated with an external cavity laser, the chirp optical coherence tomography becomes an alternative to conventional short coherence tomography with the advantage of a simplified optical setup. The analysis of two-layer solid phantoms shows that the backscattered light gets stronger with decreasing anisotropic factor and increasing scattering coefficient, as predicted by Monte Carlo simulations. By introducing a two-phase chirp sequence, the combination of lateral resolved perfusion and depth resolved structure is shown.

  7. Velocity measurement using frequency domain interferometer and chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2017-02-01

    An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.

  8. Chirped soliton: new type of solitons for photonics

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.; Zakharova, Irina G.

    2017-05-01

    We investigate a novel type of solitons - chirped solitons- in the various problems of photonics which deals with the femtosecond laser pulse propagation in the media with nonlinear non-stationary absorption. This type of solitons is characterized by the complicated pulse chirp and allows self-similar propagation of laser radiation at the distances up to several dispersion lengths. In our analytical considerations, we develop approximate formulas which describe the nonlinear chip and the soliton shape. We confirm our analytical results by the numerical simulation of the considered problems: femtosecond laser pulse propagation in the media with nanorods or in the fused silica with taking into account non-stationary multi-photon absorption, nonlinear refraction, nanorods melting.

  9. Interaction of strongly chirped pulses with two-level atoms

    SciTech Connect

    Ibanez, S.; Peralta Conde, A.; Muga, J. G.; Guery-Odelin, D.

    2011-07-15

    We study the effect of ultrachirped pulses on the population inversion of two-level atoms. Ultrachirped pulses are defined as those for which the frequency chirp is of the order of the transition frequency of the two-level atom. When the chirp is large enough, the resonance may be crossed twice, for positive and negative frequencies. In fact the decomposition of the field into amplitude and phase factors, and the corresponding definition of the instantaneous frequency, are not unique. The interaction pictures for different decomposition are strictly equivalent, but only as long as approximations are not applied. The domain of validity of the formal rotating wave approximation is dramatically enhanced by a suitable choice, the so-called analytic signal representation.

  10. Chirped fiber Bragg grating sensor for pressure and position sensing

    NASA Astrophysics Data System (ADS)

    Swart, Pieter L.; Lacquet, Beatrys M.; Chtcherbakov, Anatolii A.

    2005-05-01

    We present a chirped fiber Bragg grating sensor that should be suitable for esophageal motility studies. The device uses the time-dependent group delay response of a chirped fiber Bragg grating to measure the peristaltic pressure wave that propagates down the esophagus with the transport of a bolus to the stomach. In contrast to existing transducers that only measure at discrete points, the output of this device is a continuous function of length along the esophagus. This paper presents ex-vivo experimental results. There is a linear relation between the wavelength location of the maximum phase perturbation and the position along the sensor where the perturbation occurred. The maximum phase change itself is directly proportional to the magnitude of the applied load at a specific position.

  11. Dense monoenergetic proton beams from chirped laser-plasma interaction.

    PubMed

    Galow, Benjamin J; Salamin, Yousef I; Liseykina, Tatyana V; Harman, Zoltán; Keitel, Christoph H

    2011-10-28

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).

  12. FAST: FAST Analysis of Sequences Toolbox

    PubMed Central

    Lawrence, Travis J.; Kauffman, Kyle T.; Amrine, Katherine C. H.; Carper, Dana L.; Lee, Raymond S.; Becich, Peter J.; Canales, Claudia J.; Ardell, David H.

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought. PMID:26042145

  13. Detection of linear features using a localized radon transform with a wavelet filter

    SciTech Connect

    Warrick, A L; Delaney, P A

    1999-12-13

    One problem of interest to the oceanic engineering community is the detection and enhancement of internal wakes in open water synthetic aperture radar (SAR) images. Internal wakes, which occur when a ship travels in a stratified medium, have a V shape extending from the ship, and a chirp-like feature across each arm. The Radon transform has been applied to the detection and the enhancement problems in internal wake images to account for the linear features while the wavelet transform has been applied to the enhancement problem in internal wake images to account for the chirp-like features. In this paper, a new transform, a localized Radon transform with a wavelet filter (LRTWF), is developed which accounts for both the linear and the chirp-like features of the internal wake. This transform is then incorporated into optimal and sub-optimal detection schemes for images (with these features) which are contaminated by additive Gaussian noise.

  14. Chirp and Click Evoked Auditory Steady State Responses

    DTIC Science & Technology

    2007-11-02

    state evoked potentials: A new tool for the accurate assessment of hearing in cochlear implant candidates. Advances in Otorhinolaryngology, 1993. 48...State Responses (ASSR) to 100 µsec clicks and 4 msec cochlear chirps are recorded in adult subjects at repetition rates of 20 to 100 Hz in 10 Hz...differences in the cochlea according to the DeBoer’s cochlear model [14] in order to determine if it will generate better ASSR. We also attempted to

  15. Theoretical analysis of chirp excitation of contrast agents

    NASA Astrophysics Data System (ADS)

    Barlow, Euan; Mulholland, Anthony J.; Nordon, Alison; Gachagan, Anthony

    2010-01-01

    Analytic expressions are found for the amplitude of the first and second harmonics of the Ultrasound Contrast Agent's (UCA's) dynamics when excited by a chirp. The dependency of the second harmonic amplitude on the system parameters, the UCA shell parameters, and the insonifying signal parameters is then investigated. It is shown that optimal parameter values exist which give rise to a clear increase in the second harmonic component of the UCA's motion.

  16. Hyper dispersion pulse compressor for chirped pulse amplification systems

    DOEpatents

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  17. Pulsing dynamics in Ytterbium based chirped-pulse oscillators.

    PubMed

    Siegel, Martin; Palmer, Guido; Emons, Moritz; Schultze, Marcel; Ruehl, Axel; Morgner, Uwe

    2008-09-15

    The properties of passively mode-locked laser oscillators based on Ytterbium doped gain media are studied theoretically along with experimental data. Based on the chirped-pulse approach limitations due to excessive non-linearities are avoided, opening up new routes for energy scaling of mode-locked solid-state oscillators. Predictions about potential future pulse energies are made and possible experimental problems are discussed.

  18. Spectral characteristics of draw-tower step-chirped fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Idrisov, Ravil F.; Varzhel, Sergey V.; Kulikov, Andrey V.; Meshkovskiy, Igor K.; Rothhardt, Manfred; Becker, Martin; Schuster, Kay; Bartelt, Hartmut

    2016-06-01

    This paper presents research results on the spectral properties of step-chirped fiber Bragg grating arrays written during the fiber drawing process into a birefringent optical fiber with an elliptical stress cladding. The dependences of resonance shift of the step-chirped fiber Bragg grating on bending, on applied tensile stress and on temperature have been investigated. A usage of such step-chirped fiber Bragg gratings in fiber-optic sensing elements creation has been considered.

  19. Chirped POLICRYPS gratings containing self-aligning liquid crystals

    NASA Astrophysics Data System (ADS)

    De Sio, Luciano; Liao, Zhi; Tabiryan, Nelson; Bunning, Timothy J.

    2017-05-01

    A novel chirped polymer/liquid crystal diffraction grating (POLICRYPS) structure with periods ranging from 10 µm to 100 µm is reported. The chirped gratings are realized by using a single beam curing process through a diffractive waveplate mask with varying periodicity. The quality of the nematic liquid crystal (NLC) alignment inside the chirped structures as a function of periodicity was investigated using a polarized optical microscope technique. The extent of phase separation between the polymer and the NLC improves as the average spacing between the polymeric walls gets smaller. In the regions where phase separation is most complete, the duty cycle of the grating is proportional to the initial concentration of the two main components (polymer and NLC). The degree of order of the NLC within the phase separated channels was measured with a Mueller Matrix Spectroscopic Polarimeter. There is strong experimental evidence that the orientation of the NLC molecular director inside the structure is perpendicular to the surface of the polymer phase separated walls. Electro-optic measurements reveal a strong correlation between the on-off response times and the average distance between the polymeric walls. Our findings opens new avenues to realize a new generation of LCs based devices without using surface treatment or functionalization.

  20. Chirped pulse Raman amplification in warm plasma: towards controlling saturation.

    PubMed

    Yang, X; Vieux, G; Brunetti, E; Ersfeld, B; Farmer, J P; Hur, M S; Issac, R C; Raj, G; Wiggins, S M; Welsh, G H; Yoffe, S R; Jaroszynski, D A

    2015-08-20

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10's - 100's fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies.