Sample records for fast collision detection

  1. 6-DoF Haptic Rendering Using Continuous Collision Detection between Points and Signed Distance Fields.

    PubMed

    Hongyi Xu; Barbic, Jernej

    2017-01-01

    We present an algorithm for fast continuous collision detection between points and signed distance fields, and demonstrate how to robustly use it for 6-DoF haptic rendering of contact between objects with complex geometry. Continuous collision detection is often needed in computer animation, haptics, and virtual reality applications, but has so far only been investigated for polygon (triangular) geometry representations. We demonstrate how to robustly and continuously detect intersections between points and level sets of the signed distance field. We suggest using an octree subdivision of the distance field for fast traversal of distance field cells. We also give a method to resolve continuous collisions between point clouds organized into a tree hierarchy and a signed distance field, enabling rendering of contact between rigid objects with complex geometry. We investigate and compare two 6-DoF haptic rendering methods now applicable to point-versus-distance field contact for the first time: continuous integration of penalty forces, and a constraint-based method. An experimental comparison to discrete collision detection demonstrates that the continuous method is more robust and can correctly resolve collisions even under high velocities and during complex contact.

  2. Fast intersection detection algorithm for PC-based robot off-line programming

    NASA Astrophysics Data System (ADS)

    Fedrowitz, Christian H.

    1994-11-01

    This paper presents a method for fast and reliable collision detection in complex production cells. The algorithm is part of the PC-based robot off-line programming system of the University of Siegen (Ropsus). The method is based on a solid model which is managed by a simplified constructive solid geometry model (CSG-model). The collision detection problem is divided in two steps. In the first step the complexity of the problem is reduced in linear time. In the second step the remaining solids are tested for intersection. For this the Simplex algorithm, which is known from linear optimization, is used. It computes a point which is common to two convex polyhedra. The polyhedra intersect, if such a point exists. Regarding the simplified geometrical model of Ropsus the algorithm runs also in linear time. In conjunction with the first step a resultant collision detection algorithm is found which requires linear time in all. Moreover it computes the resultant intersection polyhedron using the dual transformation.

  3. Fast and Exact Continuous Collision Detection with Bernstein Sign Classification

    PubMed Central

    Tang, Min; Tong, Ruofeng; Wang, Zhendong; Manocha, Dinesh

    2014-01-01

    We present fast algorithms to perform accurate CCD queries between triangulated models. Our formulation uses properties of the Bernstein basis and Bézier curves and reduces the problem to evaluating signs of polynomials. We present a geometrically exact CCD algorithm based on the exact geometric computation paradigm to perform reliable Boolean collision queries. Our algorithm is more than an order of magnitude faster than prior exact algorithms. We evaluate its performance for cloth and FEM simulations on CPUs and GPUs, and highlight the benefits. PMID:25568589

  4. Radar system components to detect small and fast objects

    NASA Astrophysics Data System (ADS)

    Hülsmann, Axel; Zech, Christian; Klenner, Mathias; Tessmann, Axel; Leuther, Arnulf; Lopez-Diaz, Daniel; Schlechtweg, Michael; Ambacher, Oliver

    2015-05-01

    Small and fast objects, for example bullets of caliber 5 to 10 mm, fired from guns like AK-47, can cause serious problems to aircrafts in asymmetric warfare. Especially slow and big aircrafts, like heavy transport helicopters are an easy mark of small caliber hand fire weapons. These aircrafts produce so much noise, that the crew is not able to recognize an attack unless serious problems occur and important systems of the aircraft fail. This is just one of many scenarios, where the detection of fast and small objects is desirable. Another scenario is the collision of space debris particles with satellites.

  5. Fast transient analysis and first-stage collision-induced dissociation with the flowing atmospheric-pressure afterglow ionization source to improve analyte detection and identification.

    PubMed

    Shelley, Jacob T; Hieftje, Gary M

    2010-04-01

    The recent development of ambient desorption/ionization mass spectrometry (ADI-MS) has enabled fast, simple analysis of many different sample types. The ADI-MS sources have numerous advantages, including little or no required sample pre-treatment, simple mass spectra, and direct analysis of solids and liquids. However, problems of competitive ionization and limited fragmentation require sample-constituent separation, high mass accuracy, and/or tandem mass spectrometry (MS/MS) to detect, identify, and quantify unknown analytes. To maintain the inherent high throughput of ADI-MS, it is essential for the ion source/mass analyzer combination to measure fast transient signals and provide structural information. In the current study, the flowing atmospheric-pressure afterglow (FAPA) ionization source is coupled with a time-of-flight mass spectrometer (TOF-MS) to analyze fast transient signals (<500 ms FWHM). It was found that gas chromatography (GC) coupled with the FAPA source resulted in a reproducible (<5% RSD) and sensitive (detection limits of <6 fmol for a mixture of herbicides) system with analysis times of ca. 5 min. Introducing analytes to the FAPA in a transient was also shown to significantly reduce matrix effects caused by competitive ionization by minimizing the number and amount of constituents introduced into the ionization source. Additionally, MS/MS with FAPA-TOF-MS, enabling analyte identification, was performed via first-stage collision-induced dissociation (CID). Lastly, molecular and structural information was obtained across a fast transient peak by modulating the conditions that caused the first-stage CID.

  6. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    PubMed

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Simplified bionic solutions: a simple bio-inspired vehicle collision detection system.

    PubMed

    Hartbauer, Manfred

    2017-02-15

    Modern cars are equipped with both active and passive sensor systems that can detect potential collisions. In contrast, locusts avoid collisions solely by responding to certain visual cues that are associated with object looming. In neurophysiological experiments, I investigated the possibility that the 'collision-detector neurons' of locusts respond to impending collisions in films recorded with dashboard cameras of fast driving cars. In a complementary modelling approach, I developed a simple algorithm to reproduce the neuronal response that was recorded during object approach. Instead of applying elaborate algorithms that factored in object recognition and optic flow discrimination, I tested the hypothesis that motion detection restricted to a 'danger zone', in which frontal collisions on the motorways are most likely, is sufficient to estimate the risk of a collision. Furthermore, I investigated whether local motion vectors, obtained from the differential excitation of simulated direction-selective networks, could be used to predict evasive steering maneuvers and prevent undesired responses to motion artifacts. The results of the study demonstrate that the risk of impending collisions in real traffic scenes is mirrored in the excitation of the collision-detecting neuron (DCMD) of locusts. The modelling approach was able to reproduce this neuronal response even when the vehicle was driving at high speeds and image resolution was low (about 200  ×  100 pixels). Furthermore, evasive maneuvers that involved changing the steering direction and steering force could be planned by comparing the differences in the overall excitation levels of the simulated right and left direction-selective networks. Additionally, it was possible to suppress undesired responses of the algorithm to translatory movements, camera shake and ground shadows by evaluating local motion vectors. These estimated collision risk values and evasive steering vectors could be used as input for a driving assistant, converting the first into braking force and the latter into steering responses to avoid collisions. Since many processing steps were computed on the level of pixels and involved elements of direction-selective networks, this algorithm can be implemented in hardware so that parallel computations enhance the processing speed significantly.

  8. Simplified bionic solutions: a simple bio-inspired vehicle collision detection system

    PubMed Central

    Hartbauer, Manfred

    2018-01-01

    Modern cars are equipped with both active and passive sensor systems that can detect potential collisions. In contrast, locusts avoid collisions solely by responding to certain visual cues that are associated with object looming. In neurophysiological experiments, I investigated the possibility that the ‘collision-detector neurons’ of locusts respond to impending collisions in films recorded with dashboard cameras of fast driving cars. In a complementary modelling approach, I developed a simple algorithm to reproduce the neuronal response that was recorded during object approach. Instead of applying elaborate algorithms that factored in object recognition and optic flow discrimination, I tested the hypothesis that motion detection restricted to a ‘danger zone’, in which frontal collisions on the motorways are most likely, is sufficient to estimate the risk of a collision. Furthermore, I investigated whether local motion vectors, obtained from the differential excitation of simulated direction-selective networks, could be used to predict evasive steering maneuvers and prevent undesired responses to motion artifacts. The results of the study demonstrate that the risk of impending collisions in real traffic scenes is mirrored in the excitation of the collision-detecting neuron (DCMD) of locusts. The modelling approach was able to reproduce this neuronal response even when the vehicle was driving at high speeds and image resolution was low (about 200 × 100 pixels). Furthermore, evasive maneuvers that involved changing the steering direction and steering force could be planned by comparing the differences in the overall excitation levels of the simulated right and left direction-selective networks. Additionally, it was possible to suppress undesired responses of the algorithm to translatory movements, camera shake and ground shadows by evaluating local motion vectors. These estimated collision risk values and evasive steering vectors could be used as input for a driving assistant, converting the first into braking force and the latter into steering responses to avoid collisions. Since many processing steps were computed on the level of pixels and involved elements of direction-selective networks, this algorithm can be implemented in hardware so that parallel computations enhance the processing speed significantly. PMID:28091394

  9. Fast Neutron Detection using Pixelated CdZnTe Spectrometers

    DOE PAGES

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; ...

    2017-05-29

    One important important signature of special nuclear materials (SNM) are fast neutrons. Fast neutrons have a low natural background rate and readily penetrate high atomic number materials which easily shield gamma-ray signatures. Thus, fast neutrons provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the smallmore » signals from these recoils. Here, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9 keV x-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally-sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.« less

  10. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Breizman, Boris; Nyqvist, Robert; Lilley, Matthew

    2012-10-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behavior of phase space holes and clumps is analyzed, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  11. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Nyqvist, R. M.; Lilley, M. K.; Breizman, B. N.

    2012-09-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behaviour of phase space holes and clumps is analysed in the absence of diffusion, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  12. Ionization, evaporation and fragmentation of C60 in collisions with highly charged C, O and F ions—effect of projectile charge state.

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Misra, D.; Tribedi, L. C.

    2007-09-01

    We study the various inelastic processes such ionization, fragmentation and evaporation of C60 molecule in collisions with fast heavy ions. We have used 2.33 MeV/u C, O and F projectile ion beams. Various ionization and fragmentation products were detected using time-of-flight mass spectrometer. The multiply charged C60r+ ions were detected for maximum r = 4. The projectile charge state (qp) dependence of the single and double ionization cross sections is well reproduced by a model based on the giant dipole plasmon resonance (GDPR). The qp-dependence of the fragmentation yields, was found to be linear. Variation of relative yields of the evaporation products of C602+ (i.e. C582+, C562+ etc) and C603+ (i.e. C583+, C563+ etc) with qp has also been investigated for various projectiles.

  13. Ultrafast laser-collision-induced fluorescence in atmospheric pressure plasma

    DOE PAGES

    Barnat, E. V.; Fierro, A.

    2017-03-07

    The implementation and demonstration of laser-collision-induced fluorescence (LCIF) generated in atmospheric pressure helium environments is presented in this communication. As collision times are observed to be fast (~10 ns), ultrashort pulse laser excitation (<100 fs) of the 2 3S to 3 3P (388.9 nm) is utilized to initiate the LCIF process. Both neutral-induced and electron-induced components of the LCIF are observed in the helium afterglow plasma as the reduced electric field (E/N) is tuned from <0.1 Td to over 5 Td. Under the discharge conditions presented in this study (640 Torr He), the lower limit of electron density detection ismore » ~10 12 e cm -3. Lastly, the spatial profiles of the 2 3S helium metastable and electrons are presented as functions of E/N to demonstrate the spatial resolving capabilities of the LCIF method.« less

  14. Development Of Performance Specifications For Collision Avoidance Systems For Lane Change Merging And Backing, Task 2 - Interim Report: Functional Goals Establishment

    DOT National Transportation Integrated Search

    1995-02-01

    ">IN ADDITION TO THE MOST BASIC GOAL OF ELIMINATING THE "BLIND SPOT", SIGNIFICANT CRASH AVOIDANCEOPPORTUNITIES CAN BE REALIZED BY GUARDING AGAINST "FAST CLOSING" VEHICLES DURING LANE CHANGE AND MERGING. THESE "FAST APPROACH" COLLISIONS, THOUGH INFREQ...

  15. Fast Computation of High Energy Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation (Conference Paper with Briefing Charts)

    DTIC Science & Technology

    2016-07-10

    Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play significant role in typical electric propulsion ...by ANSI Std. 239.18 Fast Computation of High Energy Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation∗ Samuel J. Araki1

  16. Fast Neutron Detection Using Pixelated CdZnTe Spectrometers

    NASA Astrophysics Data System (ADS)

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; Brown, Steven; Kiff, Scott; He, Zhong

    2017-07-01

    Fast neutrons are an important signature of special nuclear materials (SNMs). They have a low natural background rate and readily penetrate high atomic number materials that easily shield gamma-ray signatures. Therefore, they provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the small signals from these recoils. In this paper, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9-keV X-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.

  17. A new robust algorithm for computation of a triangle circumscribed sphere in E3 and a hypersphere simplex

    NASA Astrophysics Data System (ADS)

    Skala, Vaclav

    2016-06-01

    There are many applications in which a bounding sphere containing the given triangle E3 is needed, e.g. fast collision detection, ray-triangle intersecting in raytracing etc. This is a typical geometrical problem in E3 and it has also applications in computational problems in general. In this paper a new fast and robust algorithm of circumscribed sphere computation in the n-dimensional space is presented and specification for the E3 space is given, too. The presented method is convenient for use on GPU or with SSE or Intel's AVX instructions on a standard CPU.

  18. Rubble-pile Simulations Using The Open Dynamics Engine

    NASA Astrophysics Data System (ADS)

    Korycansky, Donald; Asphaug, E.

    2008-09-01

    We describe a series of calculations of low-speed collisions of km-scale rubble piles (i.e. asteroids or planetesimals), similar to previous work (Korycansky and Asphaug 2006). The rubble piles are aggregates of polyhedra held together by gravity and friction. Collision velocities are typically of order 1 to 100 m/sec.In this work we make use of a so-called "physics engine" to solve the equations of rigid-body motion and collisions of the polyhedra. Such code libraries have been primarily developed for computer simulations and games. The chief advantage of these libraries is the inclusion of sophisticated algorithms for collision detection, which we have found to be the main computational bottleneck in our calculations. The package we have used is the Open Dynamics Engine, a freely available open-source library (www.ode.org). It solves the equations of motion to first-order accuracy in time and utilizes a fast algorithm for collision detection. We have found a factor of approximately 30 speed-up for our calculations, allowing the exploration of a much larger range of parameter space and the running of multiple calculations in order to sample the stochasticity of the results. For the calculations we report on here, the basic model is the collision of an impactor in the range 0.1--1 km in diameter with a target of 1 km diameter.argets are modeled with 1000 polyhedral elements and impactors modeled with 1 to 1000 elements depending on mass. Collisions of objects with both equal-mass elements, and elements chosen from a power-law distribution, are studied. We concentrate on determining the energy required for catastrophic disruption (Q*D) as a function of impactor/target mass atio and impactor parameter for off-center collisions. This work has been supported by NASA Planetary Geology and Geophysics Program grant NNX07AQ04G.

  19. Characterization of epoxy carotenoids by fast atom bombardment collision-induced dissociation MS/MS.

    PubMed

    Maoka, Takashi; Fujiwara, Yasuhiro; Hashimoto, Keiji; Akimoto, Naoshige

    2004-02-01

    The characterization and structure of epoxy carotenoids possessing 5,6-epoxy, 5,8-epoxy and 3,6-epoxy end groups conjugated to the polyene chain were investigated using high-energy fast atom bombardment collision-induced dissociation MS/MS methods. In addition to [M - 80](+*), a characteristic fragment ion of an epoxy carotenoid, product ions resulting from the cleavage of C-C bonds in the polyene chain from the epoxy end group, such as m/z 181 (b ion) and 121 (c ion), were detected. On the other hand, diagnostic ions of m/z 286 (e-H ion) and 312 (f-H ion) were observed, not in the 5,6-epoxy or 5,8-epoxy carotenoid but in the 3,6-epoxy carotenoid. These fragmentation patterns can be used to distinguish 3,6-epoxy carotenoids from 5,6-epoxy or 5,8-epoxy carotenoids. The structure of an epoxy carotenoid, 3,6-epoxy-5,6-dihydro-7',8'-didehydro-beta,beta-carotene-5,3'-diol (8), isolated from oyster, was characterized using FAB CID-MS/MS by comparing fragmentation patterns with those of related known compounds.

  20. Fast computation of high energy elastic collision scattering angle for electric propulsion plume simulation

    NASA Astrophysics Data System (ADS)

    Araki, Samuel J.

    2016-11-01

    In the plumes of Hall thrusters and ion thrusters, high energy ions experience elastic collisions with slow neutral atoms. These collisions involve a process of momentum exchange, altering the initial velocity vectors of the collision pair. In addition to the momentum exchange process, ions and atoms can exchange electrons, resulting in slow charge-exchange ions and fast atoms. In these simulations, it is particularly important to accurately perform computations of ion-atom elastic collisions in determining the plume current profile and assessing the integration of spacecraft components. The existing models are currently capable of accurate calculation but are not fast enough such that the calculation can be a bottleneck of plume simulations. This study investigates methods to accelerate an ion-atom elastic collision calculation that includes both momentum- and charge-exchange processes. The scattering angles are pre-computed through a classical approach with ab initio spin-orbit free potential and are stored in a two-dimensional array as functions of impact parameter and energy. When performing a collision calculation for an ion-atom pair, the scattering angle is computed by a table lookup and multiple linear interpolations, given the relative energy and randomly determined impact parameter. In order to further accelerate the calculations, the number of collision calculations is reduced by properly defining two cut-off cross-sections for the elastic scattering. In the MCC method, the target atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play a significant role in typical electric propulsion plume simulations such that the sampling process is unnecessary. With these implementations, the computational run-time to perform a collision calculation is reduced significantly compared to previous methods, while retaining the accuracy of the high fidelity models.

  1. Molecular three-body Brauner-Briggs-Klar theory for ion-impact ionization of molecules

    NASA Astrophysics Data System (ADS)

    Ghanbari-Adivi, E.

    2016-12-01

    Molecular three-body Brauner-Briggs-Klar (M3BBK) theory is developed to study the single ionization of diatomic molecules by ion impact. The orientation-averaged molecular orbital (OAMO) approximation is used to reduce the required computer time without sacrificing the performance of the method. The post-collision interaction (PCI) between the scattered projectile and the ejected electron is included. The theory is applied to collision of protons with hydrogen molecules. Results are obtained for two different kinematical regimes: i) fast collisions and low emission energies, and ii) not so fast collisions and higher emission energies. For both considered regimes, experimental fully differential cross-sections as well as different theoretical calculations are available for comparison. These comparisons are carried out and discussed.

  2. The Sawtooth Oscillation Effect on Fast-Ion Energy Spectra in ITER Plasma and Neutral Particle Analyzer Measurements

    NASA Astrophysics Data System (ADS)

    Zaitsev, F. S.; Gorelenkov, N. N.; Petrov, M. P.; Afanasyev, V. I.; Mironov, M. I.

    2018-03-01

    ITER plasma with parameters close to those with the inductive scenario is considered. The distribution functions of fast ions of deuterium D and tritium T are calculated while taking into account the elastic nuclear collisions with alpha particles 4He using the code FPP-3D. The D and T energy spectra detected by the neutral-particle analyzer (NPA) are determined. The plasma mixing effect on these spectra during sawtooth oscillations is studied. It is shown that the NPA makes it possible to detect sawtooth plasma oscillations in ITER and determine the percentage composition of the D‒T mixture in it both with the presence of instabilities and without them. A conclusion is drawn on the prospects of using NPA data in automatic controllers of thermonuclear fuel isotopic composition control and plasma oscillation regulation in ITER.

  3. Mesure des champs de radiation dans le detecteur ATLAS et sa caverne avec les detecteurs au silicium a pixels ATLAS-MPX

    NASA Astrophysics Data System (ADS)

    Bouchami, Jihene

    The LHC proton-proton collisions create a hard radiation environment in the ATLAS detector. In order to quantify the effects of this environment on the detector performance and human safety, several Monte Carlo simulations have been performed. However, direct measurement is indispensable to monitor radiation levels in ATLAS and also to verify the simulation predictions. For this purpose, sixteen ATLAS-MPX devices have been installed at various positions in the ATLAS experimental and technical areas. They are composed of a pixelated silicon detector called MPX whose active surface is partially covered with converter layers for the detection of thermal, slow and fast neutrons. The ATLAS-MPX devices perform real-time measurement of radiation fields by recording the detected particle tracks as raster images. The analysis of the acquired images allows the identification of the detected particle types by the shapes of their tracks. For this aim, a pattern recognition software called MAFalda has been conceived. Since the tracks of strongly ionizing particles are influenced by charge sharing between adjacent pixels, a semi-empirical model describing this effect has been developed. Using this model, the energy of strongly ionizing particles can be estimated from the size of their tracks. The converter layers covering each ATLAS-MPX device form six different regions. The efficiency of each region to detect thermal, slow and fast neutrons has been determined by calibration measurements with known sources. The study of the ATLAS-MPX devices response to the radiation produced by proton-proton collisions at a center of mass energy of 7 TeV has demonstrated that the number of recorded tracks is proportional to the LHC luminosity. This result allows the ATLAS-MPX devices to be employed as luminosity monitors. To perform an absolute luminosity measurement and calibration with these devices, the van der Meer method based on the LHC beam parameters has been proposed. Since the ATLAS-MPX devices response and the luminosity are correlated, the results of measuring radiation levels are expressed in terms of particle fluences per unit integrated luminosity. A significant deviation has been obtained when comparing these fluences with those predicted by GCALOR, which is one of the ATLAS detector simulations. In addition, radiation measurements performed at the end of proton-proton collisions have demonstrated that the decay of radionuclides produced during collisions can be observed with the ATLAS-MPX devices. The residual activation of ATLAS components can be measured with these devices by means of ambient dose equivalent calibration. Keywords: pattern recognition, charge sharing effect, neutron detection efficiency, luminosity, van der Meer method, particle fluences, GCALOR simulation, residual activation, ambient dose equivalent.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnat, E. V.; Fierro, A.

    The implementation and demonstration of laser-collision-induced fluorescence (LCIF) generated in atmospheric pressure helium environments is presented in this communication. As collision times are observed to be fast (~10 ns), ultrashort pulse laser excitation (<100 fs) of the 2 3S to 3 3P (388.9 nm) is utilized to initiate the LCIF process. Both neutral-induced and electron-induced components of the LCIF are observed in the helium afterglow plasma as the reduced electric field (E/N) is tuned from <0.1 Td to over 5 Td. Under the discharge conditions presented in this study (640 Torr He), the lower limit of electron density detection ismore » ~10 12 e cm -3. Lastly, the spatial profiles of the 2 3S helium metastable and electrons are presented as functions of E/N to demonstrate the spatial resolving capabilities of the LCIF method.« less

  5. Modeling of long range frequency sweeping for energetic particle modes

    NASA Astrophysics Data System (ADS)

    Nyqvist, R. M.; Breizman, B. N.

    2013-04-01

    Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.

  6. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles.

    PubMed

    Dasari, Radhika; Robinson, Donald A; Stevenson, Keith J

    2013-01-16

    Here we describe a very simple, reliable, low-cost electrochemical approach to detect single nanoparticles (NPs) and evaluate NP size distributions and catalytic activity in a fast and reproducible manner. Single NPs are detected through an increase in current caused by electrocatalytic oxidation of N(2)H(4) at the surface of the NP when it contacts a Hg-modified Pt ultramicroelectrode (Hg/Pt UME). Once the NP contacts the Hg/Pt UME, Hg poisons the Pt NP, deactivating the N(2)H(4) oxidation reaction. Hence, the current response is a "spike" that decays to the background current level rather than a stepwise "staircase" response as previously described for a Au UME. The use of Hg as an electrode material has several quantitative advantages including suppression of the background current by 2 orders of magnitude over a Au UME, increased signal-to-noise ratio for detection of individual collisions, precise integration of current transients to determine charge passed and NP size, reduction of surface-induced NP aggregation and electrode fouling processes, and reproducible and renewable electrodes for routine detection of catalytic NPs. The NP collision frequency was found to scale linearly with the NP concentration (0.016 to 0.024 pM(-1)s(-1)). NP size distributions of 4-24 nm as determined from the current-time transients correlated well with theory and TEM-derived size distributions.

  7. Collision-free motion of two robot arms in a common workspace

    NASA Technical Reports Server (NTRS)

    Basta, Robert A.; Mehrotra, Rajiv; Varanasi, Murali R.

    1987-01-01

    Collision-free motion of two robot arms in a common workspace is investigated. A collision-free motion is obtained by detecting collisions along the preplanned trajectories using a sphere model for the wrist of each robot and then modifying the paths and/or trajectories of one or both robots to avoid the collision. Detecting and avoiding collisions are based on the premise that: preplanned trajectories of the robots follow a straight line; collisions are restricted to between the wrists of the two robots (which corresponds to the upper three links of PUMA manipulators); and collisions never occur between the beginning points or end points on the straight line paths. The collision detection algorithm is described and some approaches to collision avoidance are discussed.

  8. A model of fast radio bursts: collisions between episodic magnetic blobs

    NASA Astrophysics Data System (ADS)

    Li, Long-Biao; Huang, Yong-Feng; Geng, Jin-Jun; Li, Bing

    2018-06-01

    Fast radio bursts (FRBs) are bright radio pulses from the sky with millisecond durations and Jansky-level flux densities. Their origins are still largely uncertain. Here we suggest a new model for FRBs. We argue that the collision of a white dwarf with a black hole can generate a transient accretion disk, from which powerful episodicmagnetic blobs will be launched. The collision between two consecutive magnetic blobs can result in a catastrophic magnetic reconnection, which releases a large amount of free magnetic energy and forms a forward shock. The shock propagates through the cold magnetized plasma within the blob in the collision region, radiating through the synchrotron maser mechanism, which is responsible for a non-repeating FRB signal. Our calculations show that the theoretical energetics, radiation frequency, duration timescale and event rate can be very consistent with the observational characteristics of FRBs.

  9. Proof of Concept of Automated Collision Detection Technology in Rugby Sevens.

    PubMed

    Clarke, Anthea C; Anson, Judith M; Pyne, David B

    2017-04-01

    Clarke, AC, Anson, JM, and Pyne, DB. Proof of concept of automated collision detection technology in rugby sevens. J Strength Cond Res 31(4): 1116-1120, 2017-Developments in microsensor technology allow for automated detection of collisions in various codes of football, removing the need for time-consuming postprocessing of video footage. However, little research is available on the ability of microsensor technology to be used across various sports or genders. Game video footage was matched with microsensor-detected collisions (GPSports) in one men's (n = 12 players) and one women's (n = 12) rugby sevens match. True-positive, false-positive, and false-negative events between video and microsensor-detected collisions were used to calculate recall (ability to detect a collision) and precision (accurately identify a collision). The precision was similar between the men's and women's rugby sevens game (∼0.72; scale 0.00-1.00); however, the recall in the women's game (0.45) was less than that for the men's game (0.69). This resulted in 45% of collisions for men and 62% of collisions for women being incorrectly labeled. Currently, the automated collision detection system in GPSports microtechnology units has only modest utility in rugby sevens, and it seems that a rugby sevens-specific algorithm is needed. Differences in measures between the men's and women's game may be a result of physical size, and strength, and physicality, as well as technical and tactical factors.

  10. Automatic Tool Selection in V-bending Processes by Using an Intelligent Collision Detection Algorithm

    NASA Astrophysics Data System (ADS)

    Salem, A. A.

    2017-09-01

    V-bending is widely used to produce the sheet metal components. There are global Changes in the shape of the sheet metal component during progressive bending processes. Accordingly, collisions may be occurred between part and tool during bending. Collision-free is considered one of the feasibility conditions of V-bending process planning which the tool selection is verified by the absence of the collisions. This paper proposes an intelligent collision detection algorithm which has the ability to distinguish between 2D bent parts and the other bent parts. Due to this ability, 2D and 3D collision detection subroutines have been developed in the proposed algorithm. This division of algorithm’s subroutines could reduce the computational operations during collisions detecting.

  11. Fast and Accurate Cell Tracking by a Novel Optical-Digital Hybrid Method

    NASA Astrophysics Data System (ADS)

    Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Pérez-Careta, E.; Ambriz-Colín, F.; Tinoco, Verónica; Ibarra-Manzano, O. G.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Ibarra-Manzano, M. A.; Guzman-Cabrera, R.; Debeir, Olivier; Sánchez-Mondragón, J. J.

    2013-09-01

    An innovative methodology to detect and track cells using microscope images enhanced by optical cross-correlation techniques is proposed in this paper. In order to increase the tracking sensibility, image pre-processing has been implemented as a morphological operator on the microscope image. Results show that the pre-processing process allows for additional frames of cell tracking, therefore increasing its robustness. The proposed methodology can be used in analyzing different problems such as mitosis, cell collisions, and cell overlapping, ultimately designed to identify and treat illnesses and malignancies.

  12. Navigational Traffic Conflict Technique: A Proactive Approach to Quantitative Measurement of Collision Risks in Port Waters

    NASA Astrophysics Data System (ADS)

    Debnath, Ashim Kumar; Chin, Hoong Chor

    Navigational safety analysis relying on collision statistics is often hampered because of the low number of observations. A promising alternative approach that overcomes this problem is proposed in this paper. By analyzing critical vessel interactions this approach proactively measures collision risk in port waters. The proposed method is illustrated for quantitative measurement of collision risks in Singapore port fairways, and validated by examining correlations between the measured risks with those perceived by pilots. This method is an ethically appealing alternative to the collision-based analysis for fast, reliable and effective safety assessment, thus possessing great potential for managing collision risks in port waters.

  13. Beam test results of STS prototype modules for the future accelerator experiments FAIR/CBM and NICA/MPD projects

    NASA Astrophysics Data System (ADS)

    Kharlamov, Petr; Dementev, Dmitrii; Shitenkov, Mikhail

    2017-10-01

    High-energy heavy-ion collision experiments provide the unique possibility to create and investigate extreme states of strongly-interacted matter and address the fundamental aspects of QCD. The experimental investigation the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The reconstruction of the charged particles created in the nuclear collisions, including the determination of their momenta, is the central detection task in high-energy heavy-ion experiments. It is taken up by the Silicon Tracking System in CBM@FAIR and by Inner Tracker in MPD@NICA currently under development. These experiments requires very fast and radiation hard detectors, a novel data read-out and analysis concept including free streaming front-end electronics. Thermal and beam tests of prototype detector modules for these tracking systems showed the stability of sensors and readout electronics operation.

  14. Preliminary results of characteristic seismic anisotropy beneath Sunda-Banda subduction-collision zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiyono, Samsul H., E-mail: samsul.wiyono@bmkg.go.id; Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strongmore » correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.« less

  15. Person detection and tracking with a 360° lidar system

    NASA Astrophysics Data System (ADS)

    Hammer, Marcus; Hebel, Marcus; Arens, Michael

    2017-10-01

    Today it is easily possible to generate dense point clouds of the sensor environment using 360° LiDAR (Light Detection and Ranging) sensors which are available since a number of years. The interpretation of these data is much more challenging. For the automated data evaluation the detection and classification of objects is a fundamental task. Especially in urban scenarios moving objects like persons or vehicles are of particular interest, for instance in automatic collision avoidance, for mobile sensor platforms or surveillance tasks. In literature there are several approaches for automated person detection in point clouds. While most techniques show acceptable results in object detection, the computation time is often crucial. The runtime can be problematic, especially due to the amount of data in the panoramic 360° point clouds. On the other hand, for most applications an object detection and classification in real time is needed. The paper presents a proposal for a fast, real-time capable algorithm for person detection, classification and tracking in panoramic point clouds.

  16. Airport Traffic Conflict Detection and Resolution Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Chartrand, Ryan C.; Wilson, Sara R.; Commo, Sean A.; Ballard, Kathryn M.; Otero, Sharon D.; Barker, Glover D.

    2016-01-01

    Two conflict detection and resolution (CD&R) algorithms for the terminal maneuvering area (TMA) were evaluated in a fast-time batch simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. One CD&R algorithm, developed at NASA, was designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The second algorithm, Enhanced Traffic Situation Awareness on the Airport Surface with Indications and Alerts (SURF IA), was designed to increase flight crew awareness of the runway environment and facilitate an appropriate and timely response to potential conflict situations. The purpose of the study was to evaluate the performance of the aircraft-based CD&R algorithms during various runway, taxiway, and low altitude scenarios, multiple levels of CD&R system equipage, and various levels of horizontal position accuracy. Algorithm performance was assessed through various metrics including the collision rate, nuisance and missed alert rate, and alert toggling rate. The data suggests that, in general, alert toggling, nuisance and missed alerts, and unnecessary maneuvering occurred more frequently as the position accuracy was reduced. Collision avoidance was more effective when all of the aircraft were equipped with CD&R and maneuvered to avoid a collision after an alert was issued. In order to reduce the number of unwanted (nuisance) alerts when taxiing across a runway, a buffer is needed between the hold line and the alerting zone so alerts are not generated when an aircraft is behind the hold line. All of the results support RTCA horizontal position accuracy requirements for performing a CD&R function to reduce the likelihood and severity of runway incursions and collisions.

  17. A study on crustal shear wave splitting in the western part of the Banda arc-continent collision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syuhada, E-mail: hadda9@gmail.com; Research Centre for Physics - Indonesian Institute of Sciences; Hananto, Nugroho D.

    2016-03-11

    We analyzed shear wave splitting parameters from local shallow (< 30 km) earthquakes recorded at six seismic stations in the western part of the Banda arc-continent collision. We determined fast polarization and delay time for 195 event-stations pairs calculated from good signal-to-noise ratio waveforms. We observed that there is evidence for shear wave splitting at all stations with dominant fast polarization directions oriented about NE-SW, which are parallel to the collision direction of the Australian plate. However, minor fast polarization directions are oriented around NW-SE being perpendicular to the strike of Timor through. Furthermore, the changes in fast azimuths with themore » earthquake-station back azimuth suggest that the crustal anisotropy in the study area is not uniform. Splitting delay times are within the range of 0.05 s to 0.8 s, with a mean value of 0.29±0.18 s. Major seismic stations exhibit a weak tendency increasing of delay times with increasing hypocentral distance suggesting the main anisotropy contribution of the shallow crust. In addition, these variations in fast azimuths and delay times indicate that the crustal anisotropy in this region might not only be caused by extensive dilatancy anisotropy (EDA), but also by heterogeneity shallow structure such as the presence of foliations in the rock fabric and the fracture zones associated with active faults.« less

  18. A rapid method of estimating the collision frequencies between the earth and the earth-crossing bodies

    NASA Technical Reports Server (NTRS)

    Su, Shin-Yi; Kessler, Donald J.

    1991-01-01

    The present study examines a very fast method of calculating the collision frequency between two low-eccentricity orbiting bodies for evaluating the evolution of earth-orbiting objects such as space debris. The results are very accurate and the required computer time is negligible. The method is now applied without modification to calculate the collision frequencies for moderately and highly eccentric orbits.

  19. Fast quantifying collision strength index of ethylene-vinyl acetate copolymer coverings on the fields based on near infrared hyperspectral imaging techniques

    PubMed Central

    Chen, Y. M.; Lin, P.; He, Y.; He, J. Q.; Zhang, J.; Li, X. L.

    2016-01-01

    A novel strategy based on the near infrared hyperspectral imaging techniques and chemometrics were explored for fast quantifying the collision strength index of ethylene-vinyl acetate copolymer (EVAC) coverings on the fields. The reflectance spectral data of EVAC coverings was obtained by using the near infrared hyperspectral meter. The collision analysis equipment was employed to measure the collision intensity of EVAC materials. The preprocessing algorithms were firstly performed before the calibration. The algorithms of random frog and successive projection (SP) were applied to extracting the fingerprint wavebands. A correlation model between the significant spectral curves which reflected the cross-linking attributions of the inner organic molecules and the degree of collision strength was set up by taking advantage of the support vector machine regression (SVMR) approach. The SP-SVMR model attained the residual predictive deviation of 3.074, the square of percentage of correlation coefficient of 93.48% and 93.05% and the root mean square error of 1.963 and 2.091 for the calibration and validation sets, respectively, which exhibited the best forecast performance. The results indicated that the approaches of integrating the near infrared hyperspectral imaging techniques with the chemometrics could be utilized to rapidly determine the degree of collision strength of EVAC. PMID:26875544

  20. Theory of the stopping power of fast multicharged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yudin, G.L.

    1991-12-01

    The processes of Coulomb excitation and ionization of atoms by a fast charged particle moving along a classical trajectory are studied. The target electrons are described by the Dirac equation, while the field of the incident particle is described by the Lienard-Wiechert potential. The theory is formulated in the form most convenient for investigation of various characteristics of semiclassical atomic collisions. The theory of sudden perturbations, which is valid at high enough velocities for a high projectile charge, is employed to obtain probabilities and cross sections of the Coulomb excitation and ionization of atomic hydrogen by fast multiply charged ions.more » Based on the semiclassical sudden Born approximation, the ionization cross section and the average electronic energy loss of a fast ion in a single collision with an atom are investigated over a wide specific energy range from 500 keV/amu to 50 MeV/amu.« less

  1. Collision detection and modeling of rigid and deformable objects in laparoscopic simulator

    NASA Astrophysics Data System (ADS)

    Dy, Mary-Clare; Tagawa, Kazuyoshi; Tanaka, Hiromi T.; Komori, Masaru

    2015-03-01

    Laparoscopic simulators are viable alternatives for surgical training and rehearsal. Haptic devices can also be incorporated with virtual reality simulators to provide additional cues to the users. However, to provide realistic feedback, the haptic device must be updated by 1kHz. On the other hand, realistic visual cues, that is, the collision detection and deformation between interacting objects must be rendered at least 30 fps. Our current laparoscopic simulator detects the collision between a point on the tool tip, and on the organ surfaces, in which haptic devices are attached on actual tool tips for realistic tool manipulation. The triangular-mesh organ model is rendered using a mass spring deformation model, or finite element method-based models. In this paper, we investigated multi-point-based collision detection on the rigid tool rods. Based on the preliminary results, we propose a method to improve the collision detection scheme, and speed up the organ deformation reaction. We discuss our proposal for an efficient method to compute simultaneous multiple collision between rigid (laparoscopic tools) and deformable (organs) objects, and perform the subsequent collision response, with haptic feedback, in real-time.

  2. Micro air vehicle autonomous obstacle avoidance from stereo-vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Kuwata, Yoshiaki; Weiss, Stephan; Matthies, Lawrence

    2014-06-01

    We introduce a new approach for on-board autonomous obstacle avoidance for micro air vehicles flying outdoors in close proximity to structure. Our approach uses inverse-range, polar-perspective stereo-disparity maps for obstacle detection and representation, and deploys a closed-loop RRT planner that considers flight dynamics for trajectory generation. While motion planning is executed in 3D space, we reduce collision checking to a fast z-buffer-like operation in disparity space, which allows for significant speed-up compared to full 3d methods. Evaluations in simulation illustrate the robustness of our approach, whereas real world flights under tree canopy demonstrate the potential of the approach.

  3. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    NASA Astrophysics Data System (ADS)

    Sahawneh, Laith Rasmi

    The increasing demand to integrate unmanned aircraft systems (UAS) into the national airspace is motivated by the rapid growth of the UAS industry, especially small UAS weighing less than 55 pounds. Their use however has been limited by the Federal Aviation Administration regulations due to collision risk they pose, safety and regulatory concerns. Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS must be equipped with sense-and-avoid technology comparable to the see-and-avoid requirements for manned aircraft. The sense-and-avoid problem includes several important aspects including regulatory and system-level requirements, design specifications and performance standards, intruder detecting and tracking, collision risk assessment, and finally path planning and collision avoidance. In this dissertation, our primary focus is on developing an collision detection, risk assessment and avoidance framework that is computationally affordable and suitable to run on-board small UAS. To begin with, we address the minimum sensing range for the sense-and-avoid (SAA) system. We present an approximate close form analytical solution to compute the minimum sensing range to safely avoid an imminent collision. The approach is then demonstrated using a radar sensor prototype that achieves the required minimum sensing range. In the area of collision risk assessment and collision prediction, we present two approaches to estimate the collision risk of an encounter scenario. The first is a deterministic approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS) in manned aviation. We extend the approach to account for uncertainties of state estimates by deriving an analytic expression to propagate the error variance using Taylor series approximation. To address unanticipated intruders maneuvers, we propose an innovative probabilistic approach to quantify likely intruder trajectories and estimate the probability of collision risk using the uncorrelated encounter model (UEM) developed by MIT Lincoln Laboratory. We evaluate the proposed approach using Monte Carlo simulations and compare the performance with linearly extrapolated collision detection logic. For the path planning and collision avoidance part, we present multiple reactive path planning algorithms. We first propose a collision avoidance algorithm based on a simulated chain that responds to a virtual force field produced by encountering intruders. The key feature of the proposed approach is to model the future motion of both the intruder and the ownship using a chain of waypoints that are equally spaced in time. This timing information is used to continuously re-plan paths that minimize the probability of collision. Second, we present an innovative collision avoidance logic using an ownship centered coordinate system. The technique builds a graph in the local-level frame and uses the Dijkstra's algorithm to find the least cost path. An advantage of this approach is that collision avoidance is inherently a local phenomenon and can be more naturally represented in the local coordinates than the global coordinates. Finally, we propose a two step path planner for ground-based SAA systems. In the first step, an initial suboptimal path is generated using A* search. In the second step, using the A* solution as an initial condition, a chain of unit masses connected by springs and dampers evolves in a simulated force field. The chain is described by a set of ordinary differential equations that is driven by virtual forces to find the steady-state equilibrium. The simulation results show that the proposed approach produces collision-free plans while minimizing the path length. To move towards a deployable system, we apply collision detection and avoidance techniques to a variety of simulation and sensor modalities including camera, radar and ADS-B along with suitable tracking schemes. Keywords: unmanned aircraft system, small UAS, sense and avoid, minimum sensing range, airborne collision detection and avoidance, collision detection, collision risk assessment, collision avoidance, conflict detection, conflict avoidance, path planning.

  4. Quantifying the physical demands of collision sports: does microsensor technology measure what it claims to measure?

    PubMed

    Gabbett, Tim J

    2013-08-01

    The physical demands of rugby league, rugby union, and American football are significantly increased through the large number of collisions players are required to perform during match play. Because of the labor-intensive nature of coding collisions from video recordings, manufacturers of wearable microsensor (e.g., global positioning system [GPS]) units have refined the technology to automatically detect collisions, with several sport scientists attempting to use these microsensors to quantify the physical demands of collision sports. However, a question remains over the validity of these microtechnology units to quantify the contact demands of collision sports. Indeed, recent evidence has shown significant differences in the number of "impacts" recorded by microtechnology units (GPSports) and the actual number of collisions coded from video. However, a separate study investigated the validity of a different microtechnology unit (minimaxX; Catapult Sports) that included GPS and triaxial accelerometers, and also a gyroscope and magnetometer, to quantify collisions. Collisions detected by the minimaxX unit were compared with video-based coding of the actual events. No significant differences were detected in the number of mild, moderate, and heavy collisions detected via the minimaxX units and those coded from video recordings of the actual event. Furthermore, a strong correlation (r = 0.96, p < 0.01) was observed between collisions recorded via the minimaxX units and those coded from video recordings of the event. These findings demonstrate that only one commercially available and wearable microtechnology unit (minimaxX) can be considered capable of offering a valid method of quantifying the contact loads that typically occur in collision sports. Until such validation research is completed, sport scientists should be circumspect of the ability of other units to perform similar functions.

  5. Use of dc Ar microdischarge with nonlocal plasma for identification of metal samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryavtsev, A. A., E-mail: akud@ak2138.spb.edu; Stefanova, M. S.; Pramatarov, P. M.

    2015-04-07

    The possibility of using the collisional electron spectroscopy (CES) method for the detection of atoms from metal samples is experimentally verified. The detection and identification of metal atoms from a Pt sample in the nonlocal plasma of short (without positive column) dc Ar microdischarge at intermediate pressures (5–30 Torr) is realized in this work. Cathode sputtering is used for atomization of the metal under analysis. The identification of the analyzed metal is made from the energy spectra of groups of fast nonlocal electrons—characteristic electrons released in the Penning ionization of the Pt atoms by Ar metastable atoms and molecules. The acquisitionmore » of the electron energy spectra is performed using an additional electrode—a sensor located at the boundary of the discharge volume. The Pt characteristic Penning electrons form the maxima in the electron energy spectra at the energies of their appearance, which are 2.6 eV and 1.4 eV. From the measured energy of the maxima, identification of the metal atoms is accomplished. The characteristic Ar maxima due to pair collisions between Ar metastable atoms and molecules and super-elastic collisions are also recorded. This study demonstrates the possibility of creating a novel microplasma analyzer for atoms from metal samples.« less

  6. MO-FG-CAMPUS-TeP1-03: Pre-Treatment Surface Imaging Based Collision Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiant, D; Maurer, J; Liu, H

    2016-06-15

    Purpose: Modern radiotherapy increasingly employs large immobilization devices, gantry attachments, and couch rotations for treatments. All of which raise the risk of collisions between the patient and the gantry / couch. Collision detection is often achieved by manually checking each couch position in the treatment room and sometimes results in extraneous imaging if collisions are detected after image based setup has begun. In the interest of improving efficiency and avoiding extra imaging, we explore the use of a surface imaging based collision detection model. Methods: Surfaces acquired from AlignRT (VisionRT, London, UK) were transferred in wavefront format to a custommore » Matlab (Mathworks, Natick, MA) software package (CCHECK). Computed tomography (CT) scans acquired at the same time were sent to CCHECK in DICOM format. In CCHECK, binary maps of the surfaces were created and overlaid on the CT images based on the fixed relationship of the AlignRT and CT coordinate systems. Isocenters were added through a graphical user interface (GUI). CCHECK then compares the inputted surfaces to a model of the linear accelerator (linac) to check for collisions at defined gantry and couch positions. Note, CCHECK may be used with or without a CT. Results: The nominal surface image field of view is 650 mm × 900 mm, with variance based on patient position and size. The accuracy of collision detections is primarily based on the linac model and the surface mapping process. The current linac model and mapping process yield detection accuracies on the order of 5 mm, assuming no change in patient posture between surface acquisition and treatment. Conclusions: CCHECK provides a non-ionizing method to check for collisions without the patient in the treatment room. Collision detection accuracy may be improved with more robust linac modeling. Additional gantry attachments (e.g. conical collimators) can be easily added to the model.« less

  7. The COLA Collision Avoidance Method

    NASA Astrophysics Data System (ADS)

    Assmann, K.; Berger, J.; Grothkopp, S.

    2009-03-01

    In the following we present a collision avoidance method named COLA. The method has been designed to predict collisions for Earth orbiting spacecraft on any orbits, including orbit changes, with other space-born objects. The point in time of a collision and the collision probability are determined. To guarantee effective processing the COLA method uses a modular design and is composed of several components which are either developed within this work or deduced from existing algorithms: A filtering module, the close approach determination, the collision detection and the collision probability calculation. A software tool which implements the COLA method has been verified using various test cases built from sample missions. This software has been implemented in the C++ programming language and serves as a universal collision detection tool at LSE Space Engineering & Operations AG.

  8. Collision detection for spacecraft proximity operations

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin M.; Bergmann, Edward V.; Walker, Bruce K.

    1991-01-01

    A new collision detection algorithm has been developed for use when two spacecraft are operating in the same vicinity. The two spacecraft are modeled as unions of convex polyhedra, where the resulting polyhedron many be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. Contacts between the vertices, faces, and edges of the polyhedra representing the two spacecraft are shown to occur when the value of one or more of a set of functions is zero. The collision detection algorithm is then formulated as a search for the zeros (roots) of these functions. Special properties of the functions for the assumed relative trajectory are exploited to expedite the zero search. The new algorithm is the first algorithm that can solve the collision detection problem exactly for relative motion with constant angular velocity. This is a significant improvement over models of rotational motion used in previous collision detection algorithms.

  9. Collision Detection for Underwater ROV Manipulator Systems

    PubMed Central

    Rossi, Matija; Dooly, Gerard; Toal, Daniel

    2018-01-01

    Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations. PMID:29642396

  10. Collision Detection for Underwater ROV Manipulator Systems.

    PubMed

    Sivčev, Satja; Rossi, Matija; Coleman, Joseph; Omerdić, Edin; Dooly, Gerard; Toal, Daniel

    2018-04-06

    Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.

  11. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    DTIC Science & Technology

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  12. Fast emulation of track reconstruction in the CMS simulation

    NASA Astrophysics Data System (ADS)

    Komm, Matthias; CMS Collaboration

    2017-10-01

    Simulated samples of various physics processes are a key ingredient within analyses to unlock the physics behind LHC collision data. Samples with more and more statistics are required to keep up with the increasing amounts of recorded data. During sample generation, significant computing time is spent on the reconstruction of charged particle tracks from energy deposits which additionally scales with the pileup conditions. In CMS, the FastSimulation package is developed for providing a fast alternative to the standard simulation and reconstruction workflow. It employs various techniques to emulate track reconstruction effects in particle collision events. Several analysis groups in CMS are utilizing the package, in particular those requiring many samples to scan the parameter space of physics models (e.g. SUSY) or for the purpose of estimating systematic uncertainties. The strategies for and recent developments in this emulation are presented, including a novel, flexible implementation of tracking emulation while retaining a sufficient, tuneable accuracy.

  13. Open-source software for collision detection in external beam radiation therapy

    NASA Astrophysics Data System (ADS)

    Suriyakumar, Vinith M.; Xu, Renee; Pinter, Csaba; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Collision detection for external beam radiation therapy (RT) is important for eliminating the need for dryruns that aim to ensure patient safety. Commercial treatment planning systems (TPS) offer this feature but they are expensive and proprietary. Cobalt-60 RT machines are a viable solution to RT practice in low-budget scenarios. However, such clinics are hesitant to invest in these machines due to a lack of affordable treatment planning software. We propose the creation of an open-source room's eye view visualization module with automated collision detection as part of the development of an open-source TPS. METHODS: An openly accessible linac 3D geometry model is sliced into the different components of the treatment machine. The model's movements are based on the International Electrotechnical Commission standard. Automated collision detection is implemented between the treatment machine's components. RESULTS: The room's eye view module was built in C++ as part of SlicerRT, an RT research toolkit built on 3D Slicer. The module was tested using head and neck and prostate RT plans. These tests verified that the module accurately modeled the movements of the treatment machine and radiation beam. Automated collision detection was verified using tests where geometric parameters of the machine's components were changed, demonstrating accurate collision detection. CONCLUSION: Room's eye view visualization and automated collision detection are essential in a Cobalt-60 treatment planning system. Development of these features will advance the creation of an open-source TPS that will potentially help increase the feasibility of adopting Cobalt-60 RT.

  14. Effect of multiple plasmon excitation on single, double and multiple ionizations of C60 in collisions with fast highly charged Si ions

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, A.; Tribedi, L. C.

    2007-06-01

    We have investigated the single and multiple ionizations of the C60 molecule in collisions with fast Siq+ projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.

  15. Collision prediction software for radiotherapy treatments.

    PubMed

    Padilla, Laura; Pearson, Erik A; Pelizzari, Charles A

    2015-11-01

    This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient's treatment position and allow for its modification if necessary. A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the skanect software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0°, while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in pinnacle, and this information was exported to AlignRT (VisionRT, London, UK)--a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation -1.2°). The accuracy study for the Kinect-Skanect surface showed an average discrepancy between the CT external contour and the surface scan of 2.2 mm. This methodology provides fast and reliable collision predictions using surface imaging. The use of the Kinect-Skanect system allows for a comprehensive modeling of the patient topography including all the relevant anatomy and immobilization devices that may lead to collisions. The use of this tool at the treatment simulation stage may allow therapists to evaluate the clearance of a patient's treatment position and optimize it before the planning CT scan is performed. This can allow for safer treatments for the patients due to better collision predictions and improved clinical workflow by minimizing replanning and resimulations due to unforeseen clearance issues.

  16. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.

    2005-09-01

    To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.

  17. Integrated Collision Avoidance System for Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2013-01-01

    Collision with ground/water/terrain and midair obstacles is one of the common causes of severe aircraft accidents. The various data from the coremicro AHRS/INS/GPS Integration Unit, terrain data base, and object detection sensors are processed to produce collision warning audio/visual messages and collision detection and avoidance of terrain and obstacles through generation of guidance commands in a closed-loop system. The vision sensors provide more information for the Integrated System, such as, terrain recognition and ranging of terrain and obstacles, which plays an important role to the improvement of the Integrated Collision Avoidance System.

  18. ICCD: interactive continuous collision detection between deformable models using connectivity-based culling.

    PubMed

    Tang, Min; Curtis, Sean; Yoon, Sung-Eui; Manocha, Dinesh

    2009-01-01

    We present an interactive algorithm for continuous collision detection between deformable models. We introduce multiple techniques to improve the culling efficiency and the overall performance of continuous collision detection. First, we present a novel formulation for continuous normal cones and use these normal cones to efficiently cull large regions of the mesh as part of self-collision tests. Second, we introduce the concept of "procedural representative triangles" to remove all redundant elementary tests between nonadjacent triangles. Finally, we exploit the mesh connectivity and introduce the concept of "orphan sets" to eliminate redundant elementary tests between adjacent triangle primitives. In practice, we can reduce the number of elementary tests by two orders of magnitude. These culling techniques have been combined with bounding volume hierarchies and can result in one order of magnitude performance improvement as compared to prior collision detection algorithms for deformable models. We highlight the performance of our algorithm on several benchmarks, including cloth simulations, N-body simulations, and breaking objects.

  19. Coherent electron emission from O2 in collisions with fast electrons

    NASA Astrophysics Data System (ADS)

    Chowdhury, Madhusree Roy; Stia, Carlos R.; Tachino, Carmen A.; Fojón, Omar A.; Rivarola, Roberto D.; Tribedi, Lokesh C.

    2017-08-01

    Absolute double differential cross sections (DDCS) of secondary electrons emitted in ionization of O2 by fast electrons have been measured for different emission angles. Theoretical calculations of atomic DDCS were obtained using the first Born approximation with an asymptotic charge of Z T = 1. The measured molecular DDCS were divided by twice the theoretical atomic DDCS to detect the presence of interference effects which was the aim of the experiment. The experimental to theoretical DDCS ratios showed clear signature of first order interference oscillation for all emission angles. The ratios were fitted by a first order Cohen-Fano type model. The variation of the oscillation amplitudes as a function of the electron emission angle showed a parabolic behaviour which goes through a minimum at 90°. The single differential and total ionization cross sections have also been deduced, besides the KLL Auger cross sections. In order to make a comparative study, we have discussed these results along with our recent experimental data obtained for N2 molecule.

  20. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    NASA Astrophysics Data System (ADS)

    Särkimäki, K.; Hirvijoki, E.; Terävä, J.

    2018-01-01

    We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.

  1. Motor vehicle collisions caused by the 'super-strength' synthetic cannabinoids, MAM-2201, 5F-PB-22, 5F-AB-PINACA, 5F-AMB and 5F-ADB in Japan experienced from 2012 to 2014.

    PubMed

    Kaneko, Shuji

    2017-01-01

    From 2012 to 2014 in Japan, 214 cases of motor vehicle collisions were attributed to the use of illegal drugs. In 93 out of 96 investigated cases, the causative agents were a variety of synthetic cannabinoids (SCs). These SCs can be classified into three groups according to the lineage of the chemical structures: (1) naphthoyl indoles, such as MAM-2201, (2) quinolinyl ester indoles, such as 5F-PB-22, and (3) indazole carboxamides, such as 5F-AB-PINACA, 5F-AMB, and 5F-ADB. These SCs became available sequentially with increasing cannabinoid CB 1 agonist potencies and reached a nationwide outbreak in the summer of 2014. They caused acute intoxication with impaired consciousness, anterograde amnesia (impaired memory), catalepsy with muscle rigidity, tachycardia, and vomiting or drooling soon after smoking. Drivers who had abused one of these SCs might unexpectedly experience the acute intoxication that caused uncontrolled driving. These SCs were generally difficult to detect from body fluid samples. It is thought that the highly lipophilic SCs disappear from the blood via rapid degradation by liver enzymes and selective accumulation into adipose tissues. Thus, much effort should be directed to the development of fast and sensitive chemical detection of the drug usage.

  2. Radio Frequency Electromagnetic Radiation From Streamer Collisions

    NASA Astrophysics Data System (ADS)

    Luque, Alejandro

    2017-10-01

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  3. Radio Frequency Electromagnetic Radiation From Streamer Collisions.

    PubMed

    Luque, Alejandro

    2017-10-16

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  4. Space Dust Collisions as a Planetary Escape Mechanism.

    PubMed

    Berera, Arjun

    2017-12-01

    It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space. Key Words: Hypervelocity space dust-Collision-Planetary escape-Atmospheric constituents-Microbial life. Astrobiology 17, 1274-1282.

  5. Motorcyclists safety system to avoid rear end collisions based on acoustic signatures

    NASA Astrophysics Data System (ADS)

    Muzammel, M.; Yusoff, M. Zuki; Malik, A. Saeed; Mohamad Saad, M. Naufal; Meriaudeau, F.

    2017-03-01

    In many Asian countries, motorcyclists have a higher fatality rate as compared to other vehicles. Among many other factors, rear end collisions are also contributing for these fatalities. Collision detection systems can be useful to minimize these accidents. However, the designing of efficient and cost effective collision detection system for motorcyclist is still a major challenge. In this paper, an acoustic information based, cost effective and efficient collision detection system is proposed for motorcycle applications. The proposed technique uses the Short time Fourier Transform (STFT) to extract the features from the audio signal and Principal component analysis (PCA) has been used to reduce the feature vector length. The reduction of feature length, further increases the performance of this technique. The proposed technique has been tested on self recorded dataset and gives accuracy of 97.87%. We believe that this method can help to reduce a significant number of motorcycle accidents.

  6. COMPLEMENTARY MOLECULAR AND ELEMENTAL DETECTION OF SPECIATED THIOARSENICALS USING ESI-MS IN COMBINATION WITH A XENON-BASED COLLISION-CELL ICP-MS WITH APPLICATION TO FORTIFIED NIST FREEZE-DRIED URINE

    EPA Science Inventory

    The simultaneous detection of arsenic and sulfur in thio-arsenicals was achieved using xenonbased collision cell ICP-MS in combination with HPLC. In an attempt to minimize the 16O16O+ interference at m/z 32, both sample introduction and collision cell experimental parameters were...

  7. Amplitude modulation of alpha-band rhythm caused by mimic collision: MEG study.

    PubMed

    Yokosawa, Koichi; Watanabe, Tatsuya; Kikuzawa, Daichi; Aoyama, Gakuto; Takahashi, Makoto; Kuriki, Shinya

    2013-01-01

    Detection of a collision risk and avoiding the collision are important for survival. We have been investigating neural responses when humans anticipate a collision or intend to take evasive action by applying collision-simulating images in a predictable manner. Collision-simulating images and control images were presented in random order to 9 healthy male volunteers. A cue signal was also given visually two seconds before each stimulus to enable each participant to anticipate the upcoming stimulus. Magnetoencephalograms (MEG) were recorded with a 76-ch helmet system. The amplitude of alpha band (8-13 Hz) rhythm when anticipating the upcoming collision-simulating image was significantly smaller than that when anticipating control images even just after the cue signal. This result demonstrates that anticipating a negative (dangerous) event induced event-related desynchronization (ERD) of alpha band activity, probably caused by attention. The results suggest the feasibility of detecting endogenous brain activities by monitoring alpha band rhythm and its possible applications to engineering systems, such as an automatic collision evasion system for automobiles.

  8. An overheight vehicle bridge collision monitoring system using piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Song, G.; Olmi, C.; Gu, H.

    2007-04-01

    With increasing traffic volume follows an increase in the number of overheight truck collisions with highway bridges. The detection of collision impact and evaluation of the impact level is a critical issue in the maintenance of a concrete bridge. In this paper, an overheight collision detection and evaluation system is developed for concrete bridge girders using piezoelectric transducers. An electric circuit is designed to detect the impact and to activate a digital camera to take photos of the offending truck. Impact tests and a health monitoring test were conducted on a model concrete bridge girder by using three piezoelectric transducers embedded before casting. From the experimental data of the impact test, it can be seen that there is a linear relation between the output of sensor energy and the impact energy. The health monitoring results show that the proposed damage index indicates the level of damage inside the model concrete bridge girder. The proposed overheight truck-bridge collision detection and evaluation system has the potential to be applied to the safety monitoring of highway bridges.

  9. The Monotonic Lagrangian Grid for Fast Air-Traffic Evaluation

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Kaplan, Carolyn; Oran, Elaine; Boris, Jay

    2010-01-01

    This paper describes the continued development of a dynamic air-traffic model, ATMLG, intended for rapid evaluation of rules and methods to control and optimize transport systems. The underlying data structure is based on the Monotonic Lagrangian Grid (MLG), which is used for sorting and ordering positions and other data needed to describe N moving bodies, and their interactions. In ATMLG, the MLG is combined with algorithms for collision avoidance and updating aircraft trajectories. Aircraft that are close to each other in physical space are always near neighbors in the MLG data arrays, resulting in a fast nearest-neighbor interaction algorithm that scales as N. In this paper, we use ATMLG to examine how the ability to maintain a required separation between aircraft decreases as the number of aircraft in the volume increases. This requires keeping track of the primary and subsequent collision avoidance maneuvers necessary to maintain a five mile separation distance between all aircraft. Simulation results show that the number of collision avoidance moves increases exponentially with the number of aircraft in the volume.

  10. High Fidelity and Multiscale Algorithms for Collisional-radiative and Nonequilibrium Plasmas (Briefing Charts)

    DTIC Science & Technology

    2014-07-01

    of models for variable conditions: – Use implicit models to eliminate constraint of sequence of fast time scales: c, ve, – Price to pay: lack...collisions: – Elastic – Bragiinski terms – Inelastic – warning! Rates depend on both T and relative velocity – Multi-fluid CR model from...merge/split for particle management, efficient sampling, inelastic collisions … – Level grouping schemes of electronic states, for dynamical coarse

  11. Rear-end vision-based collision detection system for motorcyclists

    NASA Astrophysics Data System (ADS)

    Muzammel, Muhammad; Yusoff, Mohd Zuki; Meriaudeau, Fabrice

    2017-05-01

    In many countries, the motorcyclist fatality rate is much higher than that of other vehicle drivers. Among many other factors, motorcycle rear-end collisions are also contributing to these biker fatalities. To increase the safety of motorcyclists and minimize their road fatalities, this paper introduces a vision-based rear-end collision detection system. The binary road detection scheme contributes significantly to reduce the negative false detections and helps to achieve reliable results even though shadows and different lane markers are present on the road. The methodology is based on Harris corner detection and Hough transform. To validate this methodology, two types of dataset are used: (1) self-recorded datasets (obtained by placing a camera at the rear end of a motorcycle) and (2) online datasets (recorded by placing a camera at the front of a car). This method achieved 95.1% accuracy for the self-recorded dataset and gives reliable results for the rear-end vehicle detections under different road scenarios. This technique also performs better for the online car datasets. The proposed technique's high detection accuracy using a monocular vision camera coupled with its low computational complexity makes it a suitable candidate for a motorbike rear-end collision detection system.

  12. Reducing Runway Incursions: Can You Relate?

    DOT National Transportation Integrated Search

    1992-01-01

    Side object detection systems (SODS) are collision warning systems which alert drivers to the presence of traffic alongside their vehicle within defined detection zones. The intent of SODS is to reduce collisions during lane changes and merging maneu...

  13. Studies in search of selective detection of isomeric biogenic hexen-1-ols and hexanal by flowing afterglow tandem mass spectrometry using [H3O]+ and [NO]+ reagent ions.

    PubMed

    Dhooghe, Frederik; Vansintjan, Robbe; Schoon, Niels; Amelynck, Crist

    2012-08-30

    Plants emit a blend of oxygenated volatile C(6) compounds, known as green leaf volatiles (GLVs), in response to leaf tissue damage related to stress conditions. On-line chemical ionization mass spectrometry (CI-MS) techniques have often been used to study the dynamics of these emissions but they fail to selectively detect some important GLV compounds. A flowing afterglow tandem mass spectrometer (FA-TMS) was used to investigate the feasibility of selective on-line detection of isomeric hexen-1-ols and hexanal. Product ions at m/z 101 and 83 from chemical ionization (CI) of these compounds by [H(3)O](+), and product ions at m/z 100, 99, 83, 82 and 72 from CI by [NO](+), have been subjected to collision-induced dissociation (CID) in the collision cell of the TMS at center-of-mass energies ranging between 0 and 9 eV. CID of product ions at m/z 101 and 83 from CI of GLVs with [H(3)O](+) and of product ions at m/z 83, 82 and 72 from CI of GLVs with [NO](+) resulted in identical fragmentation patterns for all measured compounds, ruling out any selectivity. However, CID of product ions at m/z 100 and 99 from CI by [NO](+) led to CID product ions with abundances differing largely between the compounds, allowing the fast selective detection of 2-hexen-1-ols, 3-hexen-1-ols and hexanal with a chosen accuracy within a well-defined range of relative concentrations. This research illustrates that, in contrast to common CI-MS techniques, FA-TMS allows the selective detection of hexanal in a mixture of hexanal and hexen-1-ols with a chosen accuracy for a well-defined range of relative concentrations and represents a step forward in the search for selective detection of GLVs in CI-TMS. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Time-dependent calculations of transfer ionization by fast proton-helium collision in one-dimensional kinematics

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.; Kheifets, A. S.

    2014-12-01

    We analyze a transfer ionization (TI) reaction in the fast proton-helium collision H++He →H0+He2 ++ e- by solving a time-dependent Schrödinger equation (TDSE) under the classical projectile motion approximation in one-dimensional kinematics. In addition, we construct various time-independent analogs of our model using lowest-order perturbation theory in the form of the Born series. By comparing various aspects of the TDSE and the Born series calculations, we conclude that the recent discrepancies of experimental and theoretical data may be attributed to deficiency of the Born models used by other authors. We demonstrate that the correct Born series for TI should include the momentum-space overlap between the double-ionization amplitude and the wave function of the transferred electron.

  15. Collision prediction software for radiotherapy treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, Laura; Pearson, Erik A.; Pelizzari, Charles A., E-mail: c-pelizzari@uchicago.edu

    2015-11-15

    Purpose: This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient’s treatment position and allow for its modification if necessary. Methods: A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the SKANECT software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is thenmore » shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0° , while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in PINNACLE, and this information was exported to AlignRT (VisionRT, London, UK)—a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Results: Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation −1.2°). The accuracy study for the Kinect-Skanect surface showed an average discrepancy between the CT external contour and the surface scan of 2.2 mm. Conclusions: This methodology provides fast and reliable collision predictions using surface imaging. The use of the Kinect-Skanect system allows for a comprehensive modeling of the patient topography including all the relevant anatomy and immobilization devices that may lead to collisions. The use of this tool at the treatment simulation stage may allow therapists to evaluate the clearance of a patient’s treatment position and optimize it before the planning CT scan is performed. This can allow for safer treatments for the patients due to better collision predictions and improved clinical workflow by minimizing replanning and resimulations due to unforeseen clearance issues.« less

  16. Electron-electron interaction in ion-atom collisions studied by projectile state-resolved Auger-electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohyung Lee.

    This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KKL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O{sup q+} and F{sup q+} incident on H{sub 2} and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system, was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionizedmore » by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180{degree} Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross section of the electron-electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron-electron ionization (eeI) were determined. Projectile 2l capture with 1s {yields} 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory.« less

  17. A collision detection algorithm for telerobotic arms

    NASA Technical Reports Server (NTRS)

    Tran, Doan Minh; Bartholomew, Maureen Obrien

    1991-01-01

    The telerobotic manipulator's collision detection algorithm is described. Its applied structural model of the world environment and template representation of objects is evaluated. Functional issues that are required for the manipulator to operate in a more complex and realistic environment are discussed.

  18. A Collision Avoidance Strategy for a Potential Natural Satellite around the Asteroid Bennu for the OSIRIS-REx Mission

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda K.; Carpenter, J. Russell

    2016-01-01

    The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.

  19. A Collision Avoidance Strategy for a Potential Natural Satellite Around the Asteroid Bennu for the OSIRIS-REx Mission

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda; Carpenter, Russell

    2016-01-01

    The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.

  20. Equilibration in finite Bose systems

    NASA Astrophysics Data System (ADS)

    Wolschin, Georg

    2018-06-01

    The equilibration of a finite Bose system is modeled using a gradient expansion of the collision integral that leads to a nonlinear transport equation. For constant transport coefficients, it is solved in closed form through a nonlinear transformation. Using schematic initial conditions, the exact solution and the equilibration time are derived and compared to the corresponding case for fermions. Applications to the fast equilibration of the gluon system created initially in relativistic heavy-ion collisions, and to cold quantum gases are envisaged.

  1. Energy Deposition and Escape Fluxes Induced by Energetic Solar Wind Ions and ENAs Precipitating into Mars Atmosphere: Accurate Consideration of Energy Transfer Collisions

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. A.; Lewkow, N.; Gacesa, M.

    2014-12-01

    Formation and evolution of neutral fluxes of atoms and molecules escaping from the Mars atmosphere have been investigated for the sputtering and photo-chemical mechanisms. Energy and momentum transfer in collisions between the atmospheric gas and fast atoms and molecules have been considered using our recently obtained angular and energy dependent cross sections[1]. We have showed that accurate angular dependent collision cross sections are critical for the description of the energy relaxation of precipitating keV energetic ions/ENAs and for computations of altitude profiles of the fast atom and molecule production rates in recoil collisions. Upward and escape fluxes of the secondary energetic He and O atoms and H2, N2, CO and CO2 molecules, induced by precipitating ENAs, have been determined and their non-thermal energy distribution functions have been computed at different altitudes for different solar conditions. Precipitation and energy deposition of the energetic H2O molecules and products of their dissociations into the Mars atmosphere in the Comet C/2013 A1 (Siding Spring) - Mars interaction have been modeled using accurate cross sections. Reflection of precipitating ENAs by the Mars atmosphere has been analyzed in detail. [1] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere, ApJ, v.790, p.98 (2014).

  2. Development of three-dimensional patient face model that enables real-time collision detection and cutting operation for a dental simulator.

    PubMed

    Yamaguchi, Satoshi; Yamada, Yuya; Yoshida, Yoshinori; Noborio, Hiroshi; Imazato, Satoshi

    2012-01-01

    The virtual reality (VR) simulator is a useful tool to develop dental hand skill. However, VR simulations with reactions of patients have limited computational time to reproduce a face model. Our aim was to develop a patient face model that enables real-time collision detection and cutting operation by using stereolithography (STL) and deterministic finite automaton (DFA) data files. We evaluated dependence of computational cost and constructed the patient face model using the optimum condition for combining STL and DFA data files, and assessed the computational costs for operation in do-nothing, collision, cutting, and combination of collision and cutting. The face model was successfully constructed with low computational costs of 11.3, 18.3, 30.3, and 33.5 ms for do-nothing, collision, cutting, and collision and cutting, respectively. The patient face model could be useful for developing dental hand skill with VR.

  3. Space Dust Collisions as a Planetary Escape Mechanism

    NASA Astrophysics Data System (ADS)

    Berera, Arjun

    2017-12-01

    It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb -1 of Pb+Pb data and 4.0 pb -1 of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluatemore » the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. Finally, no significant dependence of modifications on jet p T and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.« less

  5. An integrated real-time health monitoring and impact/collision detection system for bridges in cold remote regions.

    DOT National Transportation Integrated Search

    2015-03-01

    This report presents a research examining the feasibility of creating an integrated structural health : monitoring and impact/collision detection system for bridges in remote cold regions, where in-person : inspection becomes formidable. The research...

  6. Behavioral training to improve collision detection

    PubMed Central

    DeLoss, Denton J.; Bian, Zheng; Watanabe, Takeo; Andersen, George J.

    2015-01-01

    Young drivers are a high-risk group for vehicle crashes due to inexperience in detecting an impending collision and are one group that may benefit from perceptual learning (PL) training. The present study assessed whether PL could be used to improve performance in collision detection. Ten college-aged subjects participated in the first experiment, which consisted of seven 1-hr sessions conducted on separate days. Thresholds at three observer/object speeds were measured prior to training using a two-alternative forced choice procedure during which they indicated whether an approaching object would result in a collision or noncollision event. Participants were then trained near threshold at one of these speeds for 5 days. After training, participants showed a significant reduction in the time needed to detect a collision at the trained speed. This improvement was also found to transfer to the higher observer speed condition. A second experiment was conducted to determine whether this improvement was due to training near threshold or whether this improvement was merely due to practice with the task. Training with stimuli well above threshold showed no significant improvement in performance, indicating that the improvement seen in the first experiment was not solely due to task practice. PMID:26230917

  7. A numerical framework for the direct simulation of dense particulate flow under explosive dispersal

    NASA Astrophysics Data System (ADS)

    Mo, H.; Lien, F.-S.; Zhang, F.; Cronin, D. S.

    2018-05-01

    In this paper, we present a Cartesian grid-based numerical framework for the direct simulation of dense particulate flow under explosive dispersal. This numerical framework is established through the integration of the following numerical techniques: (1) operator splitting for partitioned fluid-solid interaction in the time domain, (2) the second-order SSP Runge-Kutta method and third-order WENO scheme for temporal and spatial discretization of governing equations, (3) the front-tracking method for evolving phase interfaces, (4) a field function proposed for low-memory-cost multimaterial mesh generation and fast collision detection, (5) an immersed boundary method developed for treating arbitrarily irregular and changing boundaries, and (6) a deterministic multibody contact and collision model. Employing the developed framework, this paper further studies particle jet formation under explosive dispersal by considering the effects of particle properties, particulate payload morphologies, and burster pressures. By the simulation of the dispersal processes of dense particle systems driven by pressurized gas, in which the driver pressure reaches 1.01325× 10^{10} Pa (10^5 times the ambient pressure) and particles are impulsively accelerated from stationary to a speed that is more than 12000 m/s within 15 μ s, it is demonstrated that the presented framework is able to effectively resolve coupled shock-shock, shock-particle, and particle-particle interactions in complex fluid-solid systems with shocked flow conditions, arbitrarily irregular particle shapes, and realistic multibody collisions.

  8. Investigation Of Alternative Displays For Side Collision Avoidance Systems, Final Report

    DOT National Transportation Integrated Search

    1996-12-01

    DRIVER-VEHICLE INTERFACE OR DVI, HUMAN FACTORS, DRIVER PREFERENCES, INTELLIGENT VEHICLE INITIATIVE OR IVI : SIDE COLLISION AVOIDANCE SYSTEMS (SCAS) ARE DESIGNED TO WARN OF IMPENDING COLLISIONS AND CAN DETECT NOT ONLY ADJACENT VEHICLES BUT VEHICLES...

  9. FAST TRACK COMMUNICATION: Oscillation structures in elastic and electron capture cross sections for H+-H collisions in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, J. G.; Krstic, P. S.; Janev, R. K.

    2010-10-01

    We find that the number of vibrational states in the ground potential of a H2+ molecular ion embedded in the Debye plasma and the number of Regge oscillations in the resonant charge transfer cross section of the H+ + H collision system in the plasma are quasi-conserved when the Debye radius D is larger than 1.4a0. The elastic and resonant charge transfer processes in the H+ + H collision have been studied in the 0.1 meV-100 eV collision energy range for a wide range of Debye radii using a highly accurate calculation based on the modified ab initio multireference configuration interaction code. Remarkable plasma screening effects have been found in both the molecular structure and the collision dynamics of this system. Shape resonances, Regge and glory oscillations have been found in the integral cross sections in the considered energy range even for strong interaction screening, showing their ubiquitous nature.

  10. A fast conservative spectral solver for the nonlinear Boltzmann collision operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamba, Irene M.; Haack, Jeffrey R.; Hu, Jingwei

    2014-12-09

    We present a conservative spectral method for the fully nonlinear Boltzmann collision operator based on the weighted convolution structure in Fourier space developed by Gamba and Tharkabhushnanam. This method can simulate a broad class of collisions, including both elastic and inelastic collisions as well as angularly dependent cross sections in which grazing collisions play a major role. The extension presented in this paper consists of factorizing the convolution weight on quadrature points by exploiting the symmetric nature of the particle interaction law, which reduces the computational cost and memory requirements of the method to O(M{sup 2}N{sup 4}logN) from the O(N{supmore » 6}) complexity of the original spectral method, where N is the number of velocity grid points in each velocity dimension and M is the number of quadrature points in the factorization, which can be taken to be much smaller than N. We present preliminary numerical results.« less

  11. Explosives (and other threats) detection using pulsed neutron interrogation and optimized detectors

    NASA Astrophysics Data System (ADS)

    Strellis, Dan A.; Elsalim, Mashal; Gozani, Tsahi

    2011-06-01

    We have previously reported results from a human-portable system using neutron interrogation to detect contraband and explosives. We summarized our methodology for distinguishing threat materials such as narcotics, C4, and mustard gas in the myriad of backgrounds present in the maritime environment. We are expanding our mission for the Domestic Nuclear Detection Office (DNDO) to detect Special Nuclear Material (SNM) through the detection of multiple fission signatures without compromising the conventional threat detection performance. This paper covers our initial investigations into using neutrons from compact pulsed neutron generators via the d(D,n)3He or d(T,n)α reactions with energies of ~2.5 and 14 MeV, respectively, for explosives (and other threats) detection along with a variety of gamma-ray detectors. Fast neutrons and thermal neutrons (after successive collisions) can stimulate the emission of various threat detection signatures. For explosives detection, element-specific gamma-ray signatures via the (n,n'γ) inelastic scattering reaction and the (n,'γ) thermal capture reaction are detected. For SNM, delayed gamma-rays following fission can be measured with the same detector. Our initial trade-off investigations of several gamma-ray detectors types (NaI, CsI, LaBr3, HPGe) for measuring gamma-ray signatures in a pulsed neutron environment for potential application in a human-portable active interrogation system are covered in this paper.

  12. Pump-probe studies of radiation induced defects and formation of warm dense matter with pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Persaud, A.; Gua, H.; Seidl, P. A.; Waldron, W. L.; Gilson, E. P.; Kaganovich, I. D.; Davidson, R. C.; Friedman, A.; Barnard, J. J.; Minior, A. M.

    2014-10-01

    We report results from the 2nd generation Neutralized Drift Compression Experiment at Berkeley Lab. NDCX-II is a pulsed, linear induction accelerator designed to drive thin foils to warm dense matter (WDM) states with peak temperatures of ~ 1 eV using intense, short pulses of 1.2 MeV lithium ions. Tunability of the ion beam enables pump-probe studies of radiation effects in solids as a function of excitation density, from isolated collision cascades to the onset of phase-transitions and WDM. Ion channeling is an in situ diagnostic of damage evolution during ion pulses with a sensitivity of <0.1% displacements per atom. We will report results from damage evolution studies in thin silicon crystals with Li + and K + beams. Detection of channeled ions tracks lattice disorder evolution with a resolution of ~ 1 ns using fast current measurements. We will discuss pump-probe experiments with pulsed ion beams and the development of diagnostics for WDM and multi-scale (ms to fs) access to the materials physics of collision cascades e.g. in fusion reactor materials. Work performed under auspices of the US DOE under Contract No. DE-AC02-05CH11231.

  13. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badziak, J.; Rosiński, M.; Krousky, E.

    2015-03-15

    A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ∼ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of suchmore » pressure with other laser-based methods known so far.« less

  14. SU-F-BRB-05: Collision Avoidance Mapping Using Consumer 3D Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardan, R; Popple, R

    2015-06-15

    Purpose: To develop a fast and economical method of scanning a patient’s full body contour for use in collision avoidance mapping without the use of ionizing radiation. Methods: Two consumer level 3D cameras used in electronic gaming were placed in a CT simulator room to scan a phantom patient set up in a high collision probability position. A registration pattern and computer vision algorithms were used to transform the scan into the appropriate coordinate systems. The cameras were then used to scan the surface of a gantry in the treatment vault. Each scan was converted into a polygon mesh formore » collision testing in a general purpose polygon interference algorithm. All clinically relevant transforms were applied to the gantry and patient support to create a map of all possible collisions. The map was then tested for accuracy by physically testing the collisions with the phantom in the vault. Results: The scanning fidelity of both the gantry and patient was sufficient to produce a collision prediction accuracy of 97.1% with 64620 geometry states tested in 11.5 s. The total scanning time including computation, transformation, and generation was 22.3 seconds. Conclusion: Our results demonstrate an economical system to generate collision avoidance maps. Future work includes testing the speed of the framework in real-time collision avoidance scenarios. Research partially supported by a grant from Varian Medical Systems.« less

  15. The role of current sheet formation in driven plasmoid reconnection in laser-produced plasma bubbles

    NASA Astrophysics Data System (ADS)

    Lezhnin, Kirill; Fox, William; Bhattacharjee, Amitava

    2017-10-01

    We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using the PIC code PSC. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the results demonstrate a variety of reconnection behavior and show the coupling between magnetic reconnection and global fluid evolution of the system. We consider both collision of two radially expanding bubbles where reconnection is driven through an X-point, and collision of two parallel fields where reconnection must be initiated by the tearing instability. Under various conditions, we observe transitions between fast, collisionless reconnection to a Sweet-Parker-like slow reconnection to complete stalling of the reconnection. By varying plasma resistivity, we observe the transition between fast and slow reconnection at Lundquist number S 103 . The transition from plasmoid reconnection to a single X-point reconnection also happens around S 103 . We find that the criterion δ /di < 1 is necessary for fast reconnection onset. Finally, at sufficiently high background density, magnetic reconnection can be suppressed, leading to bouncing motion of the magnetized plasma bubbles.

  16. Development of Fast Deterministic Physically Accurate Solvers for Kinetic Collision Integral for Applications of Near Space Flight and Control Devices

    DTIC Science & Technology

    2015-08-31

    following functions were used: where are the Legendre polynomials of degree . It is assumed that the coefficient standing with has the form...enforce relaxation rates of high order moments, higher order polynomial basis functions are used. The use of high order polynomials results in strong...enforced while only polynomials up to second degree were used in the representation of the collision frequency. It can be seen that the new model

  17. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2002-12-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.

  18. Rapid Quantitative Analysis of Multiple Explosive Compound Classes on a Single Instrument via Flow-Injection Analysis Tandem Mass Spectrometry.

    PubMed

    Ostrinskaya, Alla; Kunz, Roderick R; Clark, Michelle; Kingsborough, Richard P; Ong, Ta-Hsuan; Deneault, Sandra

    2018-05-24

    A flow-injection analysis tandem mass spectrometry (FIA MSMS) method was developed for rapid quantitative analysis of 10 different inorganic and organic explosives. Performance is optimized by tailoring the ionization method (APCI/ESI), de-clustering potentials, and collision energies for each specific analyte. In doing so, a single instrument can be used to detect urea nitrate, potassium chlorate, 2,4,6-trinitrotoluene, 2,4,6-trinitrophenylmethylnitramine, triacetone triperoxide, hexamethylene triperoxide diamine, pentaerythritol tetranitrate, 1,3,5-trinitroperhydro-1,3,5-triazine, nitroglycerin, and octohy-dro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine with sensitivities all in the picogram per milliliter range. In conclusion, FIA APCI/ESI MSMS is a fast (<1 min/sample), sensitive (~pg/mL LOQ), and precise (intraday RSD < 10%) method for trace explosive detection that can play an important role in criminal and attributional forensics, counterterrorism, and environmental protection areas, and has the potential to augment or replace several of the existing explosive detection methods. © 2018 American Academy of Forensic Sciences.

  19. Oceanic microplate formation records the onset of India-Eurasia collision

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Dietmar Müller, R.; Sandwell, David T.

    2016-01-01

    Mapping of seafloor tectonic fabric in the Indian Ocean, using high-resolution satellite-derived vertical gravity gradient data, reveals an extinct Pacific-style oceanic microplate ('Mammerickx Microplate') west of the Ninetyeast Ridge. It is one of the first Pacific-style microplates to be mapped outside the Pacific basin, suggesting that geophysical conditions during formation probably resembled those that have dominated at eastern Pacific ridges. The microplate formed at the Indian-Antarctic ridge and is bordered by an extinct ridge in the north and pseudofault in the south, whose conjugate is located north of the Kerguelen Plateau. Independent microplate rotation is indicated by asymmetric pseudofaults and rotated abyssal hill fabric, also seen in multibeam data. Magnetic anomaly picks and age estimates calculated from published spreading rates suggest formation during chron 21o (∼47.3 Ma). Plate reorganizations can trigger ridge propagation and microplate development, and we propose that Mammerickx Microplate formation is linked with the India-Eurasia collision (initial 'soft' collision). The collision altered the stress regime at the Indian-Antarctic ridge, leading to a change in segmentation and ridge propagation from an establishing transform. Fast Indian-Antarctic spreading that preceded microplate formation, and Kerguelen Plume activity, may have facilitated ridge propagation via the production of thin and weak lithosphere; however both factors had been present for tens of millions of years and are therefore unlikely to have triggered the event. Prior to the collision, the combination of fast spreading and plume activity was responsible for the production of a wide region of undulate seafloor to the north of the extinct ridge and 'W' shaped lineations that record back and forth ridge propagation. Microplate formation provides a precise means of dating the onset of the India-Eurasia collision, and is completely independent of and complementary to timing constraints derived from continental geology or convergence histories.

  20. Calculation of the fast ion tail distribution for a spherically symmetric hot spot

    NASA Astrophysics Data System (ADS)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-01

    The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.

  1. Collision sensitive niche profile of the worst affected bird-groups at wind turbine structures in the Federal State of Brandenburg, Germany.

    PubMed

    Bose, Anushika; Dürr, Tobias; Klenke, Reinhard A; Henle, Klaus

    2018-02-28

    Biodiversity-related impacts at wind energy facilities have increasingly become a cause of conservation concern, central issue being the collision of birds. Utilizing spatial information of their carcass detections at wind turbines (WTs), we quantified the detections in relation to the metric distances of the respective turbines to different land-use types. We used ecological niche factor analysis (ENFA) to identify combinations of land-use distances with respect to the spatial allocation of WTs that led to higher proportions of collisions among the worst affected bird-groups: Buntings, Crows, Larks, Pigeons and Raptors. We also assessed their respective similarities to the collision phenomenon by checking for overlaps amongst their distance combinations. Crows and Larks showed the narrowest "collision sensitive niche"; a part of ecological niche under higher risk of collisions with turbines, followed by that of Buntings and Pigeons. Raptors had the broadest niche showing significant overlaps with the collision sensitive niches of the other groups. This can probably be attributed to their larger home range combined with their hunting affinities to open landscapes. Identification of collision sensitive niches could be a powerful tool for landscape planning; helping avoid regions with higher risks of collisions for turbine allocations and thus protecting sensitive bird populations.

  2. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation.

    PubMed

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-02-19

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver's EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver's vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  3. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation

    PubMed Central

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-01-01

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver’s EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver’s vigilance level . Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model. PMID:26907278

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodos, W.

    Collisions with wind turbines can be a problem for many species of birds. Of particular concern are collisions by eagles and other protected species. This research study used the laboratory methods of physiological optics, animal psychophysics, and retinal electrophysiology to analyze the causes of collisions and to evaluate visual deterrents based on the results of this analysis. Bird collisions with the seemingly slow-moving turbines seem paradoxical given the superb vision that most birds, especially raptors, possess. However, our optical analysis indicated that as the eye approaches the rotating blades, the retinal image of the blade (which is the information thatmore » is transmitted to the animal's brain) increases in velocity until it is moving so fast that the retina cannot keep up with it. At this point, the retinal image becomes a transparent blur that the bird probably interprets as a safe area to fly through, with disastrous consequences. This phenomenon is called"motion smear" or"motion blur."« less

  5. Collision detection for spacecraft proximity operations. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin M.

    1987-01-01

    The development of a new collision detection algorithm to be used when two spacecraft are operating in the same vicinity is described. The two spacecraft are modeled as unions of convex polyhedra, where the polyhedron resulting from the union may be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. The algorithm determines if a collision is possible and, if so, predicts the time when the collision will take place. The theoretical basis for the new collision detection algorithm is the C-function formulation of the configuration space approach recently introduced by researchers in robotics. Three different types of C-functions are defined that model the contacts between the vertices, edges, and faces of the polyhedra representing the two spacecraft. The C-functions are shown to be transcendental functions of time for the assumed trajectory of the moving spacecraft. The capabilities of the new algorithm are demonstrated for several example cases.

  6. Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles

    NASA Astrophysics Data System (ADS)

    Prokhorov, D. A.; Churazov, E. M.

    2017-09-01

    While rich clusters are powerful sources of X-rays, γ-ray emission from these large cosmic structures has not been detected yet. X-ray radiative energy losses in the central regions of relaxed galaxy clusters are so strong that one needs to consider special sources of energy, likely active galactic nucleus (AGN) feedback, to suppress catastrophic cooling of the gas. We consider a model of AGN feedback that postulates that the AGN supplies the energy to the gas by inflating bubbles of relativistic plasma, whose energy content is dominated by cosmic-ray (CR) hadrons. If most of these hadrons can quickly escape the bubbles, then collisions of CRs with thermal protons in the intracluster medium (ICM) should lead to strong γ-ray emission, unless fast diffusion of CRs removes them from the cluster. Therefore, the lack of detections with modern γ-ray telescopes sets limits on the confinement time of CR hadrons in bubbles and CR diffusive propagation in the ICM.

  7. Measurement of jet fragmentation in Pb+Pb and pp collisions at $$\\sqrt{s}$$$_ {NN}$$ = 2.76 TeV with the ATLAS detector at the LHC

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-06-08

    The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb -1 of Pb+Pb data and 4.0 pb -1 of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluatemore » the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. Finally, no significant dependence of modifications on jet p T and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.« less

  8. The variety of MHD shock waves interactions in the solar wind flow

    NASA Technical Reports Server (NTRS)

    Grib, S. A.

    1995-01-01

    Different types of nonlinear shock wave interactions in some regions of the solar wind flow are considered. It is shown, that the solar flare or nonflare CME fast shock wave may disappear as the result of the collision with the rotational discontinuity. By the way the appearance of the slow shock waves as the consequence of the collision with other directional discontinuity namely tangential is indicated. Thus the nonlinear oblique and normal MHD shock waves interactions with different solar wind discontinuities (tangential, rotational, contact, shock and plasmoidal) both in the free flow and close to the gradient regions like the terrestrial magnetopause and the heliopause are described. The change of the plasma pressure across the solar wind fast shock waves is also evaluated. The sketch of the classification of the MHD discontinuities interactions, connected with the solar wind evolution is given.

  9. Gaze movements and spatial working memory in collision avoidance: a traffic intersection task

    PubMed Central

    Hardiess, Gregor; Hansmann-Roth, Sabrina; Mallot, Hanspeter A.

    2013-01-01

    Street crossing under traffic is an everyday activity including collision detection as well as avoidance of objects in the path of motion. Such tasks demand extraction and representation of spatio-temporal information about relevant obstacles in an optimized format. Relevant task information is extracted visually by the use of gaze movements and represented in spatial working memory. In a virtual reality traffic intersection task, subjects are confronted with a two-lane intersection where cars are appearing with different frequencies, corresponding to high and low traffic densities. Under free observation and exploration of the scenery (using unrestricted eye and head movements) the overall task for the subjects was to predict the potential-of-collision (POC) of the cars or to adjust an adequate driving speed in order to cross the intersection without collision (i.e., to find the free space for crossing). In a series of experiments, gaze movement parameters, task performance, and the representation of car positions within working memory at distinct time points were assessed in normal subjects as well as in neurological patients suffering from homonymous hemianopia. In the following, we review the findings of these experiments together with other studies and provide a new perspective of the role of gaze behavior and spatial memory in collision detection and avoidance, focusing on the following questions: (1) which sensory variables can be identified supporting adequate collision detection? (2) How do gaze movements and working memory contribute to collision avoidance when multiple moving objects are present and (3) how do they correlate with task performance? (4) How do patients with homonymous visual field defects (HVFDs) use gaze movements and working memory to compensate for visual field loss? In conclusion, we extend the theory of collision detection and avoidance in the case of multiple moving objects and provide a new perspective on the combined operation of external (bottom-up) and internal (top-down) cues in a traffic intersection task. PMID:23760667

  10. Negative ion formation in potassium-nitromethane collisions.

    PubMed

    Antunes, R; Almeida, D; Martins, G; Mason, N J; Garcia, G; Maneira, M J P; Nunes, Y; Limão-Vieira, P

    2010-10-21

    Ion-pair formation in gaseous nitromethane (CH(3)NO(2)) induced by electron transfer has been studied by investigating the products of collisions between fast potassium atoms and nitromethane molecules using a crossed molecular-beam technique. The negative ions formed in such collisions were analysed using time-of-flight mass spectroscopy. The six most dominant product anions are NO(2)(-), O(-), CH(3)NO(2)(-), OH(-), CH(2)NO(2)(-) and CNO(-). By using nitromethane-d(3) (CD(3)NO(2)), we found that previous mass 17 amu assignment to O(-) delayed fragment, is in the present experiment may be unambiguously assigned to OH(-). The formation of CH(2)NO(2)(-) may be explained in terms of dissociative electron attachment to highly vibrationally excited molecules.

  11. Reaction and electronic excitation in crossed-beams collisions of low-energy O(3P) atoms with H2O and CO2

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.; Murad, E.

    1990-01-01

    Collisions of low-energy (5-20 eV), ground-state oxygen atoms with H2O and CO2 in a crossed-beams geometry lead to chemical reaction in the case of H2O to produce OH (A2Sigma+ - X2Pi) emissions; and to inelastic electronic excitation in the case of CO2 to produce CO2 flame bands. Species identifications are made through known wavelengths and emission intensities in the range 300-400 nm. The measured difference in threshold energies for the two processes confirm the channels involved. These are the first measurements in this energy range of optical emissions through collisions of fast neutral species.

  12. Selected Aspects of the eCall Emergency Notification System

    NASA Astrophysics Data System (ADS)

    Kaminski, Tomasz; Nowacki, Gabriel; Mitraszewska, Izabella; Niezgoda, Michał; Kruszewski, Mikołaj; Kaminska, Ewa; Filipek, Przemysław

    2012-02-01

    The article describes problems associated with the road collision detection for the purpose of the automatic emergency call. At the moment collision is detected, the eCall device installed in the vehicle will automatically make contact with Emergency Notification Centre and send the set of essential information on the vehicle and the place of the accident. To activate the alarm, the information about the deployment of the airbags will not be used, because connection of the eCall device might interfere with the vehicle’s safety systems. It is necessary to develop a method enabling detection of the road collision, similar to the one used in airbag systems, and based on the signals available from the acceleration sensors.

  13. Space Object Collision Probability via Monte Carlo on the Graphics Processing Unit

    NASA Astrophysics Data System (ADS)

    Vittaldev, Vivek; Russell, Ryan P.

    2017-09-01

    Fast and accurate collision probability computations are essential for protecting space assets. Monte Carlo (MC) simulation is the most accurate but computationally intensive method. A Graphics Processing Unit (GPU) is used to parallelize the computation and reduce the overall runtime. Using MC techniques to compute the collision probability is common in literature as the benchmark. An optimized implementation on the GPU, however, is a challenging problem and is the main focus of the current work. The MC simulation takes samples from the uncertainty distributions of the Resident Space Objects (RSOs) at any time during a time window of interest and outputs the separations at closest approach. Therefore, any uncertainty propagation method may be used and the collision probability is automatically computed as a function of RSO collision radii. Integration using a fixed time step and a quartic interpolation after every Runge Kutta step ensures that no close approaches are missed. Two orders of magnitude speedups over a serial CPU implementation are shown, and speedups improve moderately with higher fidelity dynamics. The tool makes the MC approach tractable on a single workstation, and can be used as a final product, or for verifying surrogate and analytical collision probability methods.

  14. SU-F-T-235: Optical Scan Based Collision Avoidance Using Multiple Stereotactic Cameras During Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardan, R; Popple, R; Dobelbower, M

    Purpose: To demonstrate the ability to quickly generate an accurate collision avoidance map using multiple stereotactic cameras during simulation. Methods: Three Kinect stereotactic cameras were placed in the CT simulation room and optically calibrated to the DICOM isocenter. Immediately before scanning, the patient was optically imaged to generate a 3D polygon mesh, which was used to calculate the collision avoidance area using our previously developed framework. The mesh was visually compared to the CT scan body contour to ensure accurate coordinate alignment. To test the accuracy of the collision calculation, the patient and machine were physically maneuvered in the treatmentmore » room to calculated collision boundaries. Results: The optical scan and collision calculation took 38.0 seconds and 2.5 seconds to complete respectively. The collision prediction accuracy was determined using a receiver operating curve (ROC) analysis, where the true positive, true negative, false positive and false negative values were 837, 821, 43, and 79 points respectively. The ROC accuracy was 93.1% over the sampled collision space. Conclusion: We have demonstrated a framework which is fast and accurate for predicting collision avoidance for treatment which can be determined during the normal simulation process. Because of the speed, the system could be used to add a layer of safety with a negligible impact on the normal patient simulation experience. This information could be used during treatment planning to explore the feasible geometries when optimizing plans. Research supported by Varian Medical Systems.« less

  15. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less

  16. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    DOE PAGES

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-04-25

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less

  17. A bioinspired collision detection algorithm for VLSI implementation

    NASA Astrophysics Data System (ADS)

    Cuadri, J.; Linan, G.; Stafford, R.; Keil, M. S.; Roca, E.

    2005-06-01

    In this paper a bioinspired algorithm for collision detection is proposed, based on previous models of the locust (Locusta migratoria) visual system reported by F.C. Rind and her group, in the University of Newcastle-upon-Tyne. The algorithm is suitable for VLSI implementation in standard CMOS technologies as a system-on-chip for automotive applications. The working principle of the algorithm is to process a video stream that represents the current scenario, and to fire an alarm whenever an object approaches on a collision course. Moreover, it establishes a scale of warning states, from no danger to collision alarm, depending on the activity detected in the current scenario. In the worst case, the minimum time before collision at which the model fires the collision alarm is 40 msec (1 frame before, at 25 frames per second). Since the average time to successfully fire an airbag system is 2 msec, even in the worst case, this algorithm would be very helpful to more efficiently arm the airbag system, or even take some kind of collision avoidance countermeasures. Furthermore, two additional modules have been included: a "Topological Feature Estimator" and an "Attention Focusing Algorithm". The former takes into account the shape of the approaching object to decide whether it is a person, a road line or a car. This helps to take more adequate countermeasures and to filter false alarms. The latter centres the processing power into the most active zones of the input frame, thus saving memory and processing time resources.

  18. Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B). A single intruder aircraft was used during all the flight testing, a NASA Gulfstream III (G-III). During the course of the testing, six geometrically different near-collision scenarios were evaluated. These six scenarios were each tested using various combinations of sensors and collision avoidance software. Of the 54 planned test points 49 were accomplished successfully. Proteus flew a total of 21.5 hours during the testing and the G-III flew 19.8 hours. The testing fully achieved all flight test objectives. The Flight IPT performed an analysis to determine the accuracy of the simulation model used to predict the location of the host aircraft downstream during an avoidance maneuver. The data collected by this flight program was delivered to the Access 5 Cooperative Collision Avoidance (CCA) Work Package Team who was responsible for reporting on their analysis of this flight data.

  19. Paths to equilibrium in non-conformal collisions

    NASA Astrophysics Data System (ADS)

    Attems, Maximilian; Bea, Yago; Casalderrey-Solana, Jorge; Mateos, David; Santos-Oliván, Daniel; Sopuerta, Carlos F.; Triana, Miquel; Zilhão, Miguel

    2018-03-01

    Ever since fast hydrodynamization has been observed in heavy ion collisions the understanding of the hot early out-of-equilibrium stage of such collisions has been a topic of intense research. We use the gauge/gravity duality to model the creation of a strongly coupled Quark-Gluon plasma in a non-conformal gauge theory. This numerical relativity study is the first non-conformal holographic simulation of a heavy ion collision and reveals the existence of new relaxation channels due to the presence of non-vanishing bulk viscosity. We study shock wave collisions at different energies in gauge theories with different degrees of non-conformality and compare three relaxation times which can occur in different orderings: the hydrodynamization time (when hydrodynamics becomes applicable), the EoSization time (when the average pressure approaches its equilibrium value) and the condensate relaxation time (when the expectation value of a scalar operator approaches its equilibrium value). We find that these processes can occur in several different orderings. In particular, the condensate can remain far from equilibrium even long after the plasma has hydrodynamized and EoSized.

  20. Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea

    NASA Astrophysics Data System (ADS)

    Hongsresawat, S.; Russo, R. M.

    2016-12-01

    We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that parallel the strike of the now-inoperative spreading center in the South China Sea. This transition appears to occur in the central portion of Peninsular Malaysia and may mark the boundary between Tethyan upper mantle extruded from the India-Asia collision zone and supra-subduction upper mantle of the Indonesian arc.

  1. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    NASA Astrophysics Data System (ADS)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  2. Ship-bridge collision monitoring system based on flexible quantum tunneling composite with cushioning capability

    NASA Astrophysics Data System (ADS)

    Zheng, Qiaofeng; Han, Baoguo; Ou, Jinping

    2018-07-01

    In this paper, a ship-bridge collision monitoring system based on flexible quantum tunneling composite (QTC) with cushioning capability is proposed by investigating the sensing capability and positioning capability of QTC to collisions. QTCs with different rubber matrix and thickness were fabricated, and collision tests between steel ball and QTCs sensors were designed to simulate ship-bridge collision. The results show that QTCs have a sensing range over 50 MPa with stress resolution ranging between 0.017 and 0.13 MPa, enough to achieve the full-time monitoring of ship-bridge collision. The system has instant and repeatable respond to impact load, and can accurately position the collisions. Moreover, QTC can remarkably absorb the kinetic energy during collisions, exhibiting excellent cushioning capability. These findings indicate the proposed ship-bridge collision monitoring system has great potential for application to detecting collision information such as collision occurrence and duration, impact load and collision location, as well as providing basis for citizen evacuation, post-accident damage estimation and rescue strategy.

  3. Error analysis in a stereo vision-based pedestrian detection sensor for collision avoidance applications.

    PubMed

    Llorca, David F; Sotelo, Miguel A; Parra, Ignacio; Ocaña, Manuel; Bergasa, Luis M

    2010-01-01

    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance.

  4. Error Analysis in a Stereo Vision-Based Pedestrian Detection Sensor for Collision Avoidance Applications

    PubMed Central

    Llorca, David F.; Sotelo, Miguel A.; Parra, Ignacio; Ocaña, Manuel; Bergasa, Luis M.

    2010-01-01

    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance. PMID:22319323

  5. Biophysics of object segmentation in a collision-detecting neuron

    PubMed Central

    Dewell, Richard Burkett

    2018-01-01

    Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation. Pharmacological block of HCN channels abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Additionally, our results suggest that the interaction of HCN and inactivating K+ channels within active dendrites produces neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns. PMID:29667927

  6. Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring

    PubMed Central

    Dick, Jeffrey E.; Hilterbrand, Adam T.; Boika, Aliaksei; Upton, Jason W.; Bard, Allen J.

    2015-01-01

    We report observations of stochastic collisions of murine cytomegalovirus (MCMV) on ultramicroelectrodes (UMEs), extending the observation of discrete collision events on UMEs to biologically relevant analytes. Adsorption of an antibody specific for a virion surface glycoprotein allowed differentiation of MCMV from MCMV bound by antibody from the collision frequency decrease and current magnitudes in the electrochemical collision experiments, which shows the efficacy of the method to size viral samples. To add selectivity to the technique, interactions between MCMV, a glycoprotein-specific primary antibody to MCMV, and polystyrene bead “anchors,” which were functionalized with a secondary antibody specific to the Fc region of the primary antibody, were used to affect virus mobility. Bead aggregation was observed, and the extent of aggregation was measured using the electrochemical collision technique. Scanning electron microscopy and optical microscopy further supported aggregate shape and extent of aggregation with and without MCMV. This work extends the field of collisions to biologically relevant antigens and provides a novel foundation upon which qualitative sensor technology might be built for selective detection of viruses and other biologically relevant analytes. PMID:25870261

  7. Disintegration of Dust Aggregates in Interstellar Shocks and the Lifetime of Dust Grains in the ISM

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Jones, A. P.; Tielens, A. G. G. M.; Cuzzi, Jeff (Technical Monitor)

    1994-01-01

    Interstellar grains are destroyed by shock waves moving through the ISM. In fact, the destruction of grains may be so effective that it is difficult to explain the observed abundance of dust in the ISM as a steady state between input of grains from stellar sources and destruction of grains in shocks. This is especially a problem for the larger grains. Therefore, the dust grains must be protected in some way. Jones et al. have already considered coatings and the increased post-shock drag effects for low density grains. In molecular clouds and dense clouds, coagulation of grains is an important process, and the largest interstellar grains may indeed be aggregates of smaller grains rather than homogeneous particles. This may provide a means to protect the larger grains, in that, in moderate velocity grain-grain collisions in a shock the aggregates may disintegrate rather than be vaporized. The released small particles are more resilient to shock destruction (except in fast shocks) and may reform larger grains later, recovering the observed size distribution. We have developed a model for the binding forces in grain aggregates and apply this model to the collisions between an aggregate and fast small grains. We discuss the results in the light of statistical collision probabilities and grain life times.

  8. Method development and application of offline two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry-fast data directed analysis for comprehensive characterization of the saponins from Xueshuantong Injection.

    PubMed

    Yang, Wenzhi; Zhang, Jingxian; Yao, Changliang; Qiu, Shi; Chen, Ming; Pan, Huiqin; Shi, Xiaojian; Wu, Wanying; Guo, Dean

    2016-09-05

    Xueshuantong Injection (XSTI), derived from Notoginseng total saponins, is a popular traditional Chinese medicine injection for the treatment of thrombus-resultant diseases. Current knowledge on its therapeutic basis is limited to five major saponins, whereas those minor ones are rarely investigated. We herein develop an offline two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry-fast data directed analysis (offline 2D LC/QTOF-Fast DDA) approach to systematically characterize the saponins contained in XSTI. Key parameters affecting chromatographic separation in 2D LC (including stationary phase, mobile phase, column temperature, and gradient elution program) and the detection by QTOF MS (involving spray voltage, cone voltage, and ramp collision energy) were optimized in sequence. The configured offline 2D LC system showed an orthogonality of 0.84 and a theoretical peak capacity of 8976. Total saponins in XSTI were fractionated into eleven samples by the first-dimensional hydrophilic interaction chromatography, which were further analyzed by reversed-phase UHPLC/QTOF-Fast DDA in negative ion mode. The fragmentation features evidenced from 36 saponin reference standards, high-accuracy MS and Fast-DDA-MS(2) data, elemental composition (C<80, H<120, O<50), double-bond equivalent (DBE 5-15), and searching an in-house library of Panax notoginseng, were simultaneously utilized for structural elucidation. Ultimately, 148 saponins were separated and characterized, and 80 have not been isolated from P. notoginseng. An in-depth depiction of the chemical composition of XSTI was achieved. The results obtained would benefit better understanding of the therapeutic basis and significant promotion on the quality standard of XSTI as well as other homologous products. Copyright © 2016. Published by Elsevier B.V.

  9. Towards high-speed autonomous navigation of unknown environments

    NASA Astrophysics Data System (ADS)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  10. Collision warning and avoidance considerations for the Space Shuttle and Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Collins, Michael F.; Kramer, Paul C.; Arndt, G. Dickey; Suddath, Jerry H.

    1990-01-01

    The increasing hazard of manmade debris in low earth orbit (LEO) has focused attention on the requirement for collision detection, warning and avoidance systems to be developed in order to protect manned (and unmanned) spacecraft. With the number of debris objects expected to be increasing with time, the impact hazard will also be increasing. The safety of the Space Shuttle and the Space Station Freedom from destructive or catastrophic collision resulting from the hypervelocity impact of a LEO object is of increasing concern to NASA. A number of approaches to this problem are in effect or under development. The collision avoidance procedures now in effect for the Shuttle are described, and detection and avoidance procedures presently being developed at the Johnson Space Center for the Space Station Freedom are discussed.

  11. Macroscopic descriptions of rarefied gases from the elimination of fast variables

    NASA Astrophysics Data System (ADS)

    Dellar, Paul J.

    2007-10-01

    The Boltzmann equation describing a dilute monatomic gas is equivalent to an infinite hierarchy of evolution equations for successive moments of the distribution function. The five moments giving the macroscopic mass, momentum, and energy densities are unaffected by collisions between atoms, while all other moments naturally evolve on a fast collisional time scale. We show that the macroscopic equations of Chen, Rao, and Spiegel [Phys. Lett. A 271, 87 (2000)], like the familiar Navier-Stokes-Fourier equations, emerge from using a systematic procedure to eliminate the higher moments, leaving closed evolution equations for the five moments unaffected by collisions. The two equation sets differ through their treatment of contributions from the temperature to the momentum and energy fluxes. Using moment equations offers a definitive treatment of the Prandtl number problem using model collision operators, greatly reduces the labor of deriving equations for different collision operators, and clarifies the role of solvability conditions applied to the distribution function. The original Chen-Rao-Spiegel approach offers greatly improved agreement with experiments for the phase speed of ultrasound, but when corrected to match the Navier-Stokes-Fourier equations at low frequencies, it then underestimates the phase speed at high frequencies. Our introduction of a translational temperature, as in the kinetic theory of polyatomic gases, motivates a distinction in the energy flux between advection of internal energy and the work done by the pressure. Exploiting this distinction yields macroscopic equations that offer further improvement in agreement with experimental data, and arise more naturally as an approximation to the infinite hierarchy of evolution equations for moments.

  12. Fully kinetic simulations of magnetic reconnction in semi-collisional plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daughton, William S; Roytershteyn, Vadim S; Albright, Brian J

    2009-01-01

    The influence of Coulomb collisions on the dynamics of magnetic reconnection is examined using fully kinetic simulations with a Monte-Carlo treatment of the Fokker-Planck collision operator. This powerful first-principles approach offers a bridge between kinetic and fluid regimes, which may prove useful for understanding the applicability of various fluid models. In order to lay the necessary groundwork, the collision algorithm is first carefully bench marked for a homogeneous plasma against theoretical predictions for beam-plasma interactions and electrical resistivity. Next, the collisional decay of a current layer is examined as a function of guide field, allowing direct comparisons with transport theorymore » for the parallel and perpendicular resistivity as well as the thermoelectric force. Finally, the transition between collisional and collision less reconnection is examined in neutral sheet geometry. For modest Lundquist numbers S {approx}< 1000, a distinct transition is observed when the thickness of the Sweet-Parker layers falls below the ion inertia length {delta}{sub sp} {approx}< d,. At higher Lundquist number, deviations from the Sweet-Parker scaling are observed due to the growth of plasmoids (secondary-islands) within the elongated resistive layer. In certain cases, this instability leads to the onset of fast reconnection sooner than expected from {delta}{sub sp} {approx} d, condition. After the transition to fast reconnection, elongated electron current layers are formed which are unstable to the formation of new plasmoids. The structure and time-dependence of the electron diffusion region in these semi-collisional regimes is profoundly different than reported in two-fluid simulations.« less

  13. Turbulent Transport of Fast Ions in the Large Plasma Device (LAPD)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu; Heidbrink, William; McWilliams, Roger; Boehmer, Heinrich; Carter, Troy; Popovich, Pavel; Tripathi, Shreekrishna; Vincena, Steve; Jenko, Frank

    2010-11-01

    Due to gyroradius averaging and drift-orbit averaging, the transport of fast ions by microturbulence is often smaller than for thermal ions. In this experiment, Strong drift wave turbulence is observed in LAPD on gradients produced by a plate obstacle. Energetic lithium ions orbit through the turbulent region. Scans with a collimated analyzer and with probes give detailed profiles of the fast ion spatial distribution and of the fluctuating fields. The fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Unlike the diffusive transport caused by Coulomb collisions, in this case the turbulent transport is non-diffusive. Analysis and simulation suggest that the fast ions interact ballistically with stationary two-dimensional electrostatic turbulence. The energy dependence of the transport is well explained by gyro-averaging theory. In new experiments, different sources and obstacles alter the drift-wave turbulence to modify the nature of the transport.

  14. Extending birthday paradox theory to estimate the number of tags in RFID systems.

    PubMed

    Shakiba, Masoud; Singh, Mandeep Jit; Sundararajan, Elankovan; Zavvari, Azam; Islam, Mohammad Tariqul

    2014-01-01

    The main objective of Radio Frequency Identification systems is to provide fast identification for tagged objects. However, there is always a chance of collision, when tags transmit their data to the reader simultaneously. Collision is a time-consuming event that reduces the performance of RFID systems. Consequently, several anti-collision algorithms have been proposed in the literature. Dynamic Framed Slotted ALOHA (DFSA) is one of the most popular of these algorithms. DFSA dynamically modifies the frame size based on the number of tags. Since the real number of tags is unknown, it needs to be estimated. Therefore, an accurate tag estimation method has an important role in increasing the efficiency and overall performance of the tag identification process. In this paper, we propose a novel estimation technique for DFSA anti-collision algorithms that applies birthday paradox theory to estimate the number of tags accurately. The analytical discussion and simulation results prove that the proposed method increases the accuracy of tag estimation and, consequently, outperforms previous schemes.

  15. Extending Birthday Paradox Theory to Estimate the Number of Tags in RFID Systems

    PubMed Central

    Shakiba, Masoud; Singh, Mandeep Jit; Sundararajan, Elankovan; Zavvari, Azam; Islam, Mohammad Tariqul

    2014-01-01

    The main objective of Radio Frequency Identification systems is to provide fast identification for tagged objects. However, there is always a chance of collision, when tags transmit their data to the reader simultaneously. Collision is a time-consuming event that reduces the performance of RFID systems. Consequently, several anti-collision algorithms have been proposed in the literature. Dynamic Framed Slotted ALOHA (DFSA) is one of the most popular of these algorithms. DFSA dynamically modifies the frame size based on the number of tags. Since the real number of tags is unknown, it needs to be estimated. Therefore, an accurate tag estimation method has an important role in increasing the efficiency and overall performance of the tag identification process. In this paper, we propose a novel estimation technique for DFSA anti-collision algorithms that applies birthday paradox theory to estimate the number of tags accurately. The analytical discussion and simulation results prove that the proposed method increases the accuracy of tag estimation and, consequently, outperforms previous schemes. PMID:24752285

  16. Two arm robot path planning in a static environment using polytopes and string stretching. Thesis

    NASA Technical Reports Server (NTRS)

    Schima, Francis J., III

    1990-01-01

    The two arm robot path planning problem has been analyzed and reduced into components to be simplified. This thesis examines one component in which two Puma-560 robot arms are simultaneously holding a single object. The problem is to find a path between two points around obstacles which is relatively fast and minimizes the distance. The thesis involves creating a structure on which to form an advanced path planning algorithm which could ideally find the optimum path. An actual path planning method is implemented which is simple though effective in most common situations. Given the limits of computer technology, a 'good' path is currently found. Objects in the workspace are modeled with polytopes. These are used because they can be used for rapid collision detection and still provide a representation which is adequate for path planning.

  17. Aerial vehicles collision avoidance using monocular vision

    NASA Astrophysics Data System (ADS)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  18. OKCARS : Oklahoma Collision Analysis and Response System.

    DOT National Transportation Integrated Search

    2012-10-01

    By continuously monitoring traffic intersections to automatically detect that a collision or nearcollision : has occurred, automatically call for assistance, and automatically forewarn oncoming traffic, : our OKCARS has the capability to effectively ...

  19. Distributed and collaborative synthetic environments

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.; Bernardini, Fausto

    1995-01-01

    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

  20. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  1. Multi-property isotropic intermolecular potentials and predicted spectral lineshapes of collision-induced absorption (CIA), collision-induced light scattering (CILS) and collision-induced hyper-Rayleigh scattering (CIHR) for H2sbnd Ne, -Kr and -Xe

    NASA Astrophysics Data System (ADS)

    El-Kader, M. S. A.; Godet, J.-L.; Gustafsson, M.; Maroulis, G.

    2018-04-01

    Quantum mechanical lineshapes of collision-induced absorption (CIA), collision-induced light scattering (CILS) and collision-induced hyper-Rayleigh scattering (CIHR) at room temperature (295 K) are computed for gaseous mixtures of molecular hydrogen with neon, krypton and xenon. The induced spectra are detected using theoretical values for induced dipole moment, pair-polarizability trace and anisotropy, hyper-polarizability and updated intermolecular potentials. Good agreement is observed for all spectra when the literature and the present potentials which are constructed from the transport and thermo-physical properties are used.

  2. India-Eurasia collision triggers formation of an oceanic microplate

    NASA Astrophysics Data System (ADS)

    Matthews, Kara; Müller, Dietmar; Sandwell, David

    2016-04-01

    Detailed mapping of seafloor tectonic fabric in the Indian Ocean, using high-resolution satellite-derived vertical gravity gradient data, reveals an extinct Pacific-style oceanic microplate - the Mammerickx Microplate - west of the Ninetyeast Ridge. It is one of the first Pacific-style microplates to be mapped outside the Pacific basin, suggesting that geophysical conditions during formation probably resembled those that have dominated at eastern Pacific ridges. The microplate formed at the Indian-Antarctic ridge and is bordered by an extinct ridge in the north and pseudofault in the south, whose conjugate is located north of the Kerguelen Plateau. Independent microplate rotation is indicated by asymmetric pseudofaults and rotated abyssal hill fabric, also identified in multibeam data. Magnetic anomaly picks and age estimates calculated from published spreading rates suggest formation during chron 21o (~47.3 Ma). Plate reorganizations can trigger ridge propagation and microplate development, and we propose that formation of the Mammerickx Microplate is linked with the initial 'soft' stage of the India-Eurasia collision. The collision altered the stress regime at the Indian-Antarctic ridge, leading to a change in segmentation and ridge propagation from an establishing transform fault. Fast Indian-Antarctic spreading that preceded microplate formation, and Kerguelen Plume activity may have facilitated ridge propagation via the production of thin and weak lithosphere. However, both factors had been present for tens of millions of years and are therefore unlikely to have triggered the event. Prior to the collision, this combination of fast spreading and plume activity was responsible for the production of a wide region of undulate seafloor to the north of the extinct ridge and 'W' shaped lineations that record back and forth ridge propagation. Microplate formation provides a means of dating the onset of the India-Eurasia collision, and is completely independent of and complementary to timing constraints derived from continental geology or convergence histories.

  3. Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Zhang, Pengjie; Johnson, Matthew C.

    2015-06-01

    Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in the diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.

  4. Particle Filtering for Obstacle Tracking in UAS Sense and Avoid Applications

    PubMed Central

    Moccia, Antonio

    2014-01-01

    Obstacle detection and tracking is a key function for UAS sense and avoid applications. In fact, obstacles in the flight path must be detected and tracked in an accurate and timely manner in order to execute a collision avoidance maneuver in case of collision threat. The most important parameter for the assessment of a collision risk is the Distance at Closest Point of Approach, that is, the predicted minimum distance between own aircraft and intruder for assigned current position and speed. Since assessed methodologies can cause some loss of accuracy due to nonlinearities, advanced filtering methodologies, such as particle filters, can provide more accurate estimates of the target state in case of nonlinear problems, thus improving system performance in terms of collision risk estimation. The paper focuses on algorithm development and performance evaluation for an obstacle tracking system based on a particle filter. The particle filter algorithm was tested in off-line simulations based on data gathered during flight tests. In particular, radar-based tracking was considered in order to evaluate the impact of particle filtering in a single sensor framework. The analysis shows some accuracy improvements in the estimation of Distance at Closest Point of Approach, thus reducing the delay in collision detection. PMID:25105154

  5. Kinetic theory of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Leegwater, Jan A.

    1991-12-01

    A kinetic theory that describes the time evolution of a fluid consisting of Lennard-Jones particles at all densities is proposed. The kinetic equation assumes binary collisions, but takes into account the finite time duration of a collision. Furthermore, it is an extension of a kinetic equation for the square well fluid as well as the hard sphere Enskog theory. In the low density limit, the Boltzmann theory is obtained. It is shown that the proposed theory obeys all the conservation laws. The exchange of potential and kinetic energies is studied and it is shown that at high density this is a fast process. The dominant mechanism for energy exchange is found to be collisions at the strongly repulsive part of the potential that are disturbed by third particles. The kinetic equation is also used to calculate the Green-Kubo integrands for shear viscosity and heat conductivity. The major structures found in molecular dynamics simulations are reproduced at intermediate densities quantitatively and at high density semiquantitatively. It is found that at high density, not only correlated collisions have to be taken into account, but that even the concept of collisions in the sense of sudden changes in the velocity is no longer useful.

  6. Multilevel models for evaluating the risk of pedestrian-motor vehicle collisions at intersections and mid-blocks

    PubMed Central

    Quistberg, D. Alex; Howard, Eric J.; Ebel, Beth E.; Moudon, Anne V.; Saelens, Brian E.; Hurvitz, Philip M.; Curtin, James E.; Rivara, Frederick P.

    2015-01-01

    Walking is a popular form of physical activity associated with clear health benefits. Promoting safe walking for pedestrians requires evaluating the risk of pedestrian-motor vehicle collisions at specific roadway locations in order to identify where road improvements and other interventions may be needed. The objective of this analysis was to estimate the risk of pedestrian collisions at intersections and mid-blocks in Seattle, WA. The study used 2007-2013 pedestrian-motor vehicle collision data from police reports and detailed characteristics of the microenvironment and macroenvironment at intersection and mid-block locations. The primary outcome was the number of pedestrian-motor vehicle collisions over time at each location (incident rate ratio [IRR] and 95% confidence interval [95% CI]). Multilevel mixed effects Poisson models accounted for correlation within and between locations and census blocks over time. Analysis accounted for pedestrian and vehicle activity (e.g., residential density and road classification). In the final multivariable model, intersections with 4 segments or 5 or more segments had higher pedestrian collision rates compared to mid-blocks. Non-residential roads had significantly higher rates than residential roads, with principal arterials having the highest collision rate. The pedestrian collision rate was higher by 9% per 10 feet of street width. Locations with traffic signals had twice the collision rate of locations without a signal and those with marked crosswalks also had a higher rate. Locations with a marked crosswalk also had higher risk of collision. Locations with a one-way road or those with signs encouraging motorists to cede the right-of-way to pedestrians had fewer pedestrian collisions. Collision rates were higher in locations that encourage greater pedestrian activity (more bus use, more fast food restaurants, higher employment, residential, and population densities). Locations with higher intersection density had a lower rate of collisions as did those in areas with higher residential property values. The novel spatiotemporal approach used that integrates road/crossing characteristics with surrounding neighborhood characteristics should help city agencies better identify high-risk locations for further study and analysis. Improving roads and making them safer for pedestrians achieves the public health goals of reducing pedestrian collisions and promoting physical activity. PMID:26339944

  7. Complementary molecular and elemental detection of speciated thioarsenicals using ESI-MS in combination with a xenon-based collision-cell ICP-MS with application to fortified NIST freeze-dried urine.

    PubMed

    Ellis, Jenny L; Conklin, Sean D; Gallawa, Christina M; Kubachka, Kevin M; Young, Andrea R; Creed, Patricia A; Caruso, Joseph A; Creed, John T

    2008-04-01

    The simultaneous detection of arsenic and sulfur in thioarsenicals was achieved using xenon-based collision-cell inductively coupled plasma (ICP) mass spectrometry (MS) in combination with high-performance liquid chromatography. In an attempt to minimize the (16)O(16)O(+) interference at m/z 32, both sample introduction and collision-cell experimental parameters were optimized. Low flow rates (0.25 mL/min) and a high methanol concentration (8%) in the mobile phase produced a fourfold decrease in the m/z 32 background. A plasma sampling depth change from 3 to 7 mm produced a twofold decrease in background at m/z 32, with a corresponding fourfold increase in the signal associated with a high ionization surrogate for sulfur. The quadrupole bias and the octopole bias were used as a kinetic energy discriminator between background and analyte ions, but a variety of tuning conditions produced similar (less than twofold change) detection limits for sulfur ((32)S). A 34-fold improvement in the (32)S detection limit was achieved using xenon instead of helium as a collision gas. The optimized xenon-based collision cell ICP mass spectrometer was then used with electrospray ionization MS to provide elemental and molecular-based information for the analysis of a fortified sample of NIST freeze-dried urine. The 3sigma detection limits, based on peak height for dimethylthioarsinic acid (DMTA) and trimethylarsine sulfide (TMAS), were 15 and 12 ng/g, respectively. Finally, the peak area reproducibilities (percentage relative standard deviation) of a 5-ppm fortified sample of NIST freeze dried urine for DMTA and TMAS were 7.4 and 5.4%, respectively.

  8. Gravitation waves from QCD and electroweak phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Yidian; Huang, Mei; Yan, Qi-Shu

    2018-05-01

    We investigate the gravitation waves produced from QCD and electroweak phase transitions in the early universe by using a 5-dimension holographic QCD model and a holographic technicolor model. The dynamical holographic QCD model is to describe the pure gluon system, where a first order confinement-deconfinement phase transition can happen at the critical temperature around 250 MeV. The minimal holographic technicolor model is introduced to model the strong dynamics of electroweak, it can give a first order electroweak phase transition at the critical temperature around 100-360 GeV. We find that for both GW signals produced from QCD and EW phase transitions, in the peak frequency region, the dominant contribution comes from the sound waves, while away from the peak frequency region the contribution from the bubble collision is dominant. The peak frequency of gravitation wave determined by the QCD phase transition is located around 10-7 Hz which is within the detectability of FAST and SKA, and the peak frequency of gravitational wave predicted by EW phase transition is located at 0.002 - 0.007 Hz, which might be detectable by BBO, DECIGO, LISA and ELISA.

  9. FAST OPTICAL VARIABILITY OF A NAKED-EYE BURST-MANIFESTATION OF THE PERIODIC ACTIVITY OF AN INTERNAL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beskin, G.; Karpov, S.; Bondar, S.

    We imaged the position of the naked-eye burst, GRB080319B, before, during, and after its gamma-ray activity with sub-second temporal resolution using the TORTORA wide-field camera. The burst optical prompt emission, which reached 5.3 mag, has been detected, and its periodic optical variability has been discovered in the form of four equidistant flashes with a duration of several seconds. We also detected a strong correlation (r {approx} 0.82) between optical and gamma-ray light curves with a 2 s delay of the optical emission with respect to the gamma-ray emission. The revealed temporal structure of the optical light curve in comparison withmore » the gamma-ray light curve can be interpreted in the framework of the model of shell collisions in the ejecta containing a significant neutron component. All observed emission features reflect the non-stationary behavior of the burst internal engine-supposedly, a hyperaccreting solar-mass black hole formed in the collapse of a massive stellar core.« less

  10. Morphological and kinematic evolution of three interacting coronal mass ejections of 2011 February 13-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Wageesh; Srivastava, Nandita, E-mail: wageesh@prl.res.in

    2014-10-10

    During 2011 February 13-15, three Earth-directed coronal mass ejections (CMEs) launched in succession were recorded as limb CMEs by STEREO/SECCHI coronagraphs (COR). These CMEs provided an opportunity to study their geometrical and kinematic evolution from multiple vantage points. In this paper, we examine the differences in geometrical evolution of slow and fast CMEs during their propagation in the heliosphere. We also study their interaction and collision using STEREO/SECCHI COR and Heliospheric Imager (HI) observations. We have found evidence of interaction and collision between the CMEs of February 15 and 14 in the COR2 and HI1 field of view (FOV), respectively,more » while the CME of February 14 caught up with the CME of February 13 in the HI2 FOV. By estimating the true mass of these CMEs and using their pre- and post-collision dynamics, the momentum and energy exchange between them during the collision phase are studied. We classify the nature of the observed collision between the CMEs of February 14 and 15 as inelastic, reaching close to the elastic regime. Relating imaging observations with in situ WIND measurements at L1, we find that the CMEs move adjacent to each other after their collision in the heliosphere and are recognized as distinct structures in in situ observations. Our results highlight the significance of HI observations in studying CME-CME collision for the purpose of improved space weather forecasting.« less

  11. A novel representation for planning 3-D collision-free paths

    NASA Technical Reports Server (NTRS)

    Bonner, Susan; Kelley, Robert B.

    1990-01-01

    A new scheme for the representation of objects, the successive spherical approximation (SSA), facilitates the rapid planning of collision-free paths in a dynamic three-dimensional environment. The hierarchical nature of the SSA allows collisions to be determined efficiently while still providing an exact representation of objects. The rapidity with which collisions can be detected, less than 1 sec per environment object per path, makes it possible to use a generate-and-test path-planning strategy driven by human conceptual knowledge to determine collision-free paths in a matter of seconds on a Sun 3/180 computer. A hierarchy of rules, based on the concept of a free space cell, is used to find heuristically satisfying collision-free paths in a structured environment.

  12. Planning 3-D collision-free paths using spheres

    NASA Technical Reports Server (NTRS)

    Bonner, Susan; Kelley, Robert B.

    1989-01-01

    A scheme for the representation of objects, the Successive Spherical Approximation (SSA), facilitates the rapid planning of collision-free paths in a 3-D, dynamic environment. The hierarchical nature of the SSA allows collision-free paths to be determined efficiently while still providing for the exact representation of dynamic objects. The concept of a freespace cell is introduced to allow human 3-D conceptual knowledge to be used in facilitating satisfying choices for paths. Collisions can be detected at a rate better than 1 second per environment object per path. This speed enables the path planning process to apply a hierarchy of rules to create a heuristically satisfying collision-free path.

  13. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses

    PubMed Central

    Dick, Jeffrey E.; Hilterbrand, Adam T.; Strawsine, Lauren M.; Upton, Jason W.; Bard, Allen J.

    2016-01-01

    We report the specific collision of a single murine cytomegalovirus (MCMV) on a platinum ultramicroelectrode (UME, radius of 1 μm). Antibody directed against the viral surface protein glycoprotein B functionalized with glucose oxidase (GOx) allowed for specific detection of the virus in solution and a biological sample (urine). The oxidation of ferrocene methanol to ferrocenium methanol was carried out at the electrode surface, and the ferrocenium methanol acted as the cosubstrate to GOx to catalyze the oxidation of glucose to gluconolactone. In the presence of glucose, the incident collision of a GOx-covered virus onto the UME while ferrocene methanol was being oxidized produced stepwise increases in current as observed by amperometry. These current increases were observed due to the feedback loop of ferrocene methanol to the surface of the electrode after GOx reduces ferrocenium methanol back to ferrocene. Negative controls (i) without glucose, (ii) with an irrelevant virus (murine gammaherpesvirus 68), and (iii) without either virus do not display these current increases. Stepwise current decreases were observed for the prior two negative controls and no discrete events were observed for the latter. We further apply this method to the detection of MCMV in urine of infected mice. The method provides for a selective, rapid, and sensitive detection technique based on electrochemical collisions. PMID:27217569

  14. Ensuring Interoperability between UAS Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    The UAS community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. They were evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance systems in terms of: 1) the primary objective of restricting DAA vertical guidance before RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at a DAA alert when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region--during which DAA vertical guidance is restricted--when the time to closest point of approach is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  15. Ensuring Interoperability Between Unmanned Aircraft Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seungman

    2017-01-01

    The Unmanned Aircraft Systems (UAS) community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. Each definition was evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance in terms of how well it achieved: 1) the primary objective of restricting DAA vertical guidance prior to RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at DAA alerts when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region where DAA vertical guidance is restricted when the time to closest point of approach (CPA) is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  16. Performance Evaluation of FAST TCP Traffic-Flows in Multihomed MANETs

    NASA Astrophysics Data System (ADS)

    Mudassir, Mumajjed Ul; Akram, Adeel

    In Mobile Ad hoc Networks (MANETs) an efficient communication protocol is required at the transport layer. Mobile nodes moving around will have temporary and rather short-lived connectivity with each other and the Internet, thus requiring efficient utilization of network resources. Moreover the problems arising due to high mobility, collision and congestion must also be considered. Multihoming allows higher reliability and enhancement of network throughput. FAST TCP is a new promising transport layer protocol developed for high-speed high-latency networks. In this paper, we have analyzed the performance of FAST TCP traffic flows in multihomed MANETs and compared it with standard TCP (TCP Reno) traffic flows in non-multihomed MANETs.

  17. FAST TRACK COMMUNICATION: The origin of Bohm diffusion, investigated by a comparison of different modelling methods

    NASA Astrophysics Data System (ADS)

    Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.

    2010-07-01

    'Bohm diffusion' causes the electrons to diffuse perpendicularly to the magnetic field lines. However, its origin is not yet completely understood: low and high frequency electric field fluctuations are both named to cause Bohm diffusion. The importance of including this process in a Monte Carlo (MC) model is demonstrated by comparing calculated ionization rates with particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations. A good agreement is found with a Bohm diffusion parameter of 0.05, which corresponds well to experiments. Since the PIC/MCC method accounts for fast electric field fluctuations, we conclude that Bohm diffusion is caused by fast electric field phenomena.

  18. Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengjie; Johnson, Matthew C., E-mail: zhangpj@sjtu.edu.cn, E-mail: mjohnson@perimeterinstitute.ca

    2015-06-01

    Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in themore » diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.« less

  19. A plausible energy source and structure for quasi-stellar objects

    NASA Technical Reports Server (NTRS)

    Daltabuit, E.; Cox, D.

    1972-01-01

    If a collision of two large, massive, fast gas clouds occurs, their kinetic energy is converted to radiation in a pair of shock fronts at their interface. The resulting structure is described, and the relevance of this as a radiation source for quasi-stellar objects is considered.

  20. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions.

    PubMed

    Wan Chan Tseung, H; Ma, J; Beltran, C

    2015-06-01

    Very fast Monte Carlo (MC) simulations of proton transport have been implemented recently on graphics processing units (GPUs). However, these MCs usually use simplified models for nonelastic proton-nucleus interactions. Our primary goal is to build a GPU-based proton transport MC with detailed modeling of elastic and nonelastic proton-nucleus collisions. Using the cuda framework, the authors implemented GPU kernels for the following tasks: (1) simulation of beam spots from our possible scanning nozzle configurations, (2) proton propagation through CT geometry, taking into account nuclear elastic scattering, multiple scattering, and energy loss straggling, (3) modeling of the intranuclear cascade stage of nonelastic interactions when they occur, (4) simulation of nuclear evaporation, and (5) statistical error estimates on the dose. To validate our MC, the authors performed (1) secondary particle yield calculations in proton collisions with therapeutically relevant nuclei, (2) dose calculations in homogeneous phantoms, (3) recalculations of complex head and neck treatment plans from a commercially available treatment planning system, and compared with (GEANT)4.9.6p2/TOPAS. Yields, energy, and angular distributions of secondaries from nonelastic collisions on various nuclei are in good agreement with the (GEANT)4.9.6p2 Bertini and Binary cascade models. The 3D-gamma pass rate at 2%-2 mm for treatment plan simulations is typically 98%. The net computational time on a NVIDIA GTX680 card, including all CPU-GPU data transfers, is ∼ 20 s for 1 × 10(7) proton histories. Our GPU-based MC is the first of its kind to include a detailed nuclear model to handle nonelastic interactions of protons with any nucleus. Dosimetric calculations are in very good agreement with (GEANT)4.9.6p2/TOPAS. Our MC is being integrated into a framework to perform fast routine clinical QA of pencil-beam based treatment plans, and is being used as the dose calculation engine in a clinically applicable MC-based IMPT treatment planning system. The detailed nuclear modeling will allow us to perform very fast linear energy transfer and neutron dose estimates on the GPU.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanny, S; Bogue, J; Parsai, E

    Purpose: Potential collisions between the gantry head and the patient or table assembly are difficult to detect in most treatment planning systems. We have developed and implemented a novel software package for the representation of potential gantry collisions with the couch assembly at the time of treatment planning. Methods: Physical dimensions of the Varian Edge linear accelerator treatment head were measured and reproduced using the Visual Python display package. A script was developed for the Pinnacle treatment planning system to generate a file with the relevant couch, gantry, and isocenter positions for each beam in a planning trial. A pythonmore » program was developed to parse the information from the TPS and produce a representative model of the couch/gantry system. Using the model and the Visual Python libraries, a rendering window is generated for each beam that allows the planner to evaluate the possibility of a collision. Results: Comparison against heuristic methods and direct verification on the machine validated the collision model generated by the software. Encounters of <1 cm between the gantry treatment head and table were visualized as collisions in our virtual model. Visual windows were created depicting the angle of collision for each beam, including the anticipated table coordinates. Visual rendering of a 6 arc trial with multiple couch positions was completed in under 1 minute, with network bandwidth being the primary bottleneck. Conclusion: The developed software allows for quick examination of possible collisions during the treatment planning process and helps to prevent major collisions prior to plan approval. The software can easily be implemented on future planning systems due to the versatility and platform independence of the Python programming language. Further integration of the software with the treatment planning system will allow the possibility of patient-gantry collision detection for a range of treatment machines.« less

  2. Silica Debris Disk Evidence for Giant Planet Forming Impacts

    NASA Astrophysics Data System (ADS)

    Lisse, C.

    2014-04-01

    Giant impacts are major formation events in the history of our solar system. The final assembly of the planets, as we understand it, had to include massive fast collision events as the planets grew to objects with large escape velocities or in regions of high Keplerian velocities (Chambers 2004; Kenyon & Bromley 2004a,b, 2006; Fegley & Schaefer 2005). These massive impact events should create large amounts of glassy silica material derived from the rapid melting, vaporization, and refreezing of normal silicate rich primitive rocky material. We report here the detection of 4 bright silica-rich debris disks in the Spitzer IRS spectral archive, and the possible identification of 7 others. The stellar types of the system primaries span from A5V to G0V, their ages are 10 - 100 Myr, and the dust is warm, 280 - 480 K, and is located between 1.5 and 6 AU, well inside the systems' terrestrial planet regions. The minimum amount of detected 0.1 - 20 dust mass ranges from 10^21 - 10^23 kg; assuming < 10% dust formation efficiency (Benz 2009, 2011) this implies collisions involving impactors massing at least 10^22 - 10^24 kg, i.e. from Moon to Earth mass. We find possible trends in the mineralogy of the silica, with predominantly amorphous silica found in the 2 younger systems, and crystalline silica in the older systems. We speculate this is due higher velocity impacts found in younger, hotter systems, coupled with the effects of energetic photon annealing of small amorphous silica grains. All of these measures are consistent with the creation of silica rich rubble, or construction debris, during the terrestrial planet formation era of giant impacts.

  3. Crab Waist Collision at DAFNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milardi, C.; Alesini, D.; Biagini, M.E.

    DAFNE is an accelerator complex consisting of a double ring lepton collider working at the c.m. energy of the {Phi}-resonance (1.02 GeV) and an injection system. In its original configuration the collider consisted of two independent rings, each {approx}97 m long, sharing two 10 m long interaction regions (IR1 and IR2) where the KLOE and FINUDA or DEAR detectors were respectively installed. A full energy injection system, including an S-band linac, 180 m long transfer lines and an accumulator/damping ring, provides fast and high efficiency electron positron injection also in topping-up mode during collisions. Recently the DAFNE collider has beenmore » upgraded in order to implement a new collision scheme based on large Piwinski angle and cancellation of the synchro-betatron resonances by means of electromagnetic sextupoles (Crab-Waist compensation). The novel approach has proved to be effective in improving beam-beam interaction and collider luminosity.« less

  4. Importance of Thomas single-electron transfer in fast p-He collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.; Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1 D-69126; Gudmundsson, M.

    We report experimental angular differential cross sections for nonradiative single-electron capture in p-He collisions (p+ He -> H + He{sup +}) with a separate peak at the 0.47 mrad Thomas scattering angle for energies in the 1.3-12.5 MeV range. We find that the intensity of this peak scales with the projectile velocity as v{sub P}{sup -11}. This constitutes the first experimental test of the prediction from 1927 by L. H. Thomas [Proc. R. Soc. 114, 561 (1927)]. At our highest energy, the peak at the Thomas angle contributes with 13.5% to the total integrated nonradiative single-electron capture cross section.

  5. Low P sub T hadron-nucleus interactions

    NASA Technical Reports Server (NTRS)

    Holynski, R.; Wozniak, K.

    1985-01-01

    The possibility of describing hadron-nucleus (hA) interactions is discussed in terms of a number of independent collisions of the projectile inside the target nucleus. This multiple rescattering may occur on a particle or quark parton level. To investigate the characteristics of hA interactions as a function of antineutrinos advantage is taken of the correlation between the average number antineutrinos of collisions of the projectile inside the nucleus and the number Ng of fast protons ejected from the struck nucleus. The relation antineutrinos vs Ng obtained in antineutrinos was used. For a given target nucleus this allows the selection of interactions occurring at different impact parameters.

  6. Low energy electron spectroscopy of C60 in collisions with fast bare ions: Observation of GDPR peak and its angular distribution

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Misra, D.; Chatterjee, S.; Kasthurirangan, S.; Agnihotri, A.; Tribedi, L. C.

    2009-11-01

    We report the first direct measurement of GDPR peak in heavy ion (4 MeV/u F9+) induced secondary electron DDCS (double differential cross section) spectrum of C60 fullerene. A peak corresponding to GDPR is seen at all angles and the angular distribution, showing a dip at 90°, is in contrast with ion-atom collisions, indicating plasmon oscillations along beam direction. A comparison has also been done between C60 and other gaseous targets as well as with state-of-the art theoretical models, based on density functional methods.

  7. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  8. Collision recognition and direction changes for small scale fish robots by acceleration sensors

    NASA Astrophysics Data System (ADS)

    Na, Seung Y.; Shin, Daejung; Kim, Jin Y.; Lee, Bae-Ho

    2005-05-01

    Typical obstacles are walls, rocks, water plants and other nearby robots for a group of small scale fish robots and submersibles that have been constructed in our lab. Sonar sensors are not employed to make the robot structure simple enough. All of circuits, sensors and processor cards are contained in a box of 9 x 7 x 4 cm dimension except motors, fins and external covers. Therefore, image processing results are applied to avoid collisions. However, it is useful only when the obstacles are located far enough to give images processing time for detecting them. Otherwise, acceleration sensors are used to detect collision immediately after it happens. Two of 2-axes acceleration sensors are employed to measure the three components of collision angles, collision magnitudes, and the angles of robot propulsion. These data are integrated to calculate the amount of propulsion direction change. The angle of a collision incident upon an obstacle is the fundamental value to obtain a direction change needed to design a following path. But there is a significant amount of noise due to a caudal fin motor. Because caudal fin provides the main propulsion for a fish robot, there is a periodic swinging noise at the head of a robot. This noise provides a random acceleration effect on the measured acceleration data at the collision. We propose an algorithm which shows that the MEMS-type accelerometers are very effective to provide information for direction changes in spite of the intrinsic noise after the small scale fish robots have made obstacle collision.

  9. Real-time inextensible surgical thread simulation.

    PubMed

    Xu, Lang; Liu, Qian

    2018-03-27

    This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.

  10. Constituent quarks and systematic errors in mid-rapidity charged multiplicity dNch/dη distributions

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2018-01-01

    Centrality definition in A + A collisions at colliders such as RHIC and LHC suffers from a correlated systematic uncertainty caused by the efficiency of detecting a p + p collision (50 ± 5% for PHENIX at RHIC). In A + A collisions where centrality is measured by the number of nucleon collisions, Ncoll, or the number of nucleon participants, Npart, or the number of constituent quark participants, Nqp, the error in the efficiency of the primary interaction trigger (Beam-Beam Counters) for a p + p collision leads to a correlated systematic uncertainty in Npart, Ncoll or Nqp which reduces binomially as the A + A collisions become more central. If this is not correctly accounted for in projections of A + A to p + p collisions, then mistaken conclusions can result. A recent example is presented in whether the mid-rapidity charged multiplicity per constituent quark participant (dNch/dη)/Nqp in Au + Au at RHIC was the same as the value in p + p collisions.

  11. Multilevel models for evaluating the risk of pedestrian-motor vehicle collisions at intersections and mid-blocks.

    PubMed

    Quistberg, D Alex; Howard, Eric J; Ebel, Beth E; Moudon, Anne V; Saelens, Brian E; Hurvitz, Philip M; Curtin, James E; Rivara, Frederick P

    2015-11-01

    Walking is a popular form of physical activity associated with clear health benefits. Promoting safe walking for pedestrians requires evaluating the risk of pedestrian-motor vehicle collisions at specific roadway locations in order to identify where road improvements and other interventions may be needed. The objective of this analysis was to estimate the risk of pedestrian collisions at intersections and mid-blocks in Seattle, WA. The study used 2007-2013 pedestrian-motor vehicle collision data from police reports and detailed characteristics of the microenvironment and macroenvironment at intersection and mid-block locations. The primary outcome was the number of pedestrian-motor vehicle collisions over time at each location (incident rate ratio [IRR] and 95% confidence interval [95% CI]). Multilevel mixed effects Poisson models accounted for correlation within and between locations and census blocks over time. Analysis accounted for pedestrian and vehicle activity (e.g., residential density and road classification). In the final multivariable model, intersections with 4 segments or 5 or more segments had higher pedestrian collision rates compared to mid-blocks. Non-residential roads had significantly higher rates than residential roads, with principal arterials having the highest collision rate. The pedestrian collision rate was higher by 9% per 10 feet of street width. Locations with traffic signals had twice the collision rate of locations without a signal and those with marked crosswalks also had a higher rate. Locations with a marked crosswalk also had higher risk of collision. Locations with a one-way road or those with signs encouraging motorists to cede the right-of-way to pedestrians had fewer pedestrian collisions. Collision rates were higher in locations that encourage greater pedestrian activity (more bus use, more fast food restaurants, higher employment, residential, and population densities). Locations with higher intersection density had a lower rate of collisions as did those in areas with higher residential property values. The novel spatiotemporal approach used that integrates road/crossing characteristics with surrounding neighborhood characteristics should help city agencies better identify high-risk locations for further study and analysis. Improving roads and making them safer for pedestrians achieves the public health goals of reducing pedestrian collisions and promoting physical activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Anticipatory sensors for collision avoidance and crash protection as applied to vehicle safety research.

    DOT National Transportation Integrated Search

    1973-05-01

    Considerable effort has been expended in recent years to develop anticipatory crash sensors-effective means of detecting motor vehicle collisions immediately prior to occurrence. If the potential crash is sensed early enough, evasive action may be in...

  13. Interactive and Continuous Collision Detection for Avatars in Virtual Environments

    DTIC Science & Technology

    2007-01-01

    Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS collision detection Young Kim, Stephane Redon, Ming Lin, Dinesh Manocha, Jim...Redon1 Young J. Kim2 Ming C. Lin1 Dinesh Manocha1 Jim Templeman3 1 University of North Carolina at Chapel Hill 2 Ewha University, Korea 3 Naval...An offset spline approximation for plane cubic splines. Computer-Aided Design, 15(5):297– 299, 1983. [20] S. Kumar and D. Manocha. Efficient

  14. Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Bastow, I. D.; Gilligan, A.; Watson, E.; Darbyshire, F. A.; Levin, V. L.; Menke, W. H.; Lane, V.; Boyce, A.; Liddell, M. V.; Petrescu, L.; Hawthorn, D.

    2016-12-01

    Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (φ ) and the delay time between the fast and slow split shear waves (δt ) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (φ , δt ) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥ 100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of > 1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.

  15. Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Gilligan, Amy; Bastow, Ian D.; Watson, Emma; Darbyshire, Fiona A.; Levin, Vadim; Menke, William; Lane, Victoria; Hawthorn, David; Boyce, Alistair; Liddell, Mitchell V.; Petrescu, Laura

    2016-08-01

    Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (ϕ) and the delay time between the fast and slow split shear waves (δt) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (ϕ, δt) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of >1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.

  16. Signal enhancement of carboxylic acids by inclusion with β-cyclodextrin in negative high-voltage-assisted laser desorption ionization mass spectrometry.

    PubMed

    Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Sun, Jiamu; Luo, Hai

    2014-01-15

    It is difficult to directly analyze carboxylic acids in complex mixtures by ambient high-voltage-assisted laser desorption ionization mass spectrometry (HALDI-MS) in negative ion mode due to the low ionization efficiency of carboxylic acids. A method for the rapid detection of carboxylic acids in negative HALDI-MS has been developed based on their inclusion with β-cyclodextrin (β-CD). The negative HALDI-MS signal-to-noise ratios (S/Ns) of aliphatic, aromatic and hetero atom-containing carboxylic acids can all be significantly improved by forming 1:1 complexes with β-CD. These complexes are mainly formed by specific inclusion interactions which are verified by their collision-induced dissociation behaviors in comparison with that of their corresponding maltoheptaose complexes. A HALDI-MS/MS method has been successfully developed for the detection of α-lipoic acid in complex cosmetics and ibuprofen in a viscous drug suspension. The negative HALDI-MS S/Ns of carboxylic acids can be improved up to 30 times via forming non-covalent complexes with β-CD. The developed method shows the advantages of being rapid and simple, and is promising for rapid detection of active ingredients in complex samples or fast screening of drugs and cosmetics. Copyright © 2013 John Wiley & Sons, Ltd.

  17. COLREGS-Compliant Autonomous Collision Avoidance Using Multi-Objective Optimization with Interval Programming

    DTIC Science & Technology

    2014-06-01

    chasing our robots on the River as well as hiking out trying desperately not to capsize our super fast sailboat...again. To my unofficial advisors... Mario Bollini, Tan Yew (William) Teck, the Dan Codiga and the University of Rhode Island team, the MIT 2.680 course staff, and certainly the many

  18. Radar sensors for intersection collision avoidance

    NASA Astrophysics Data System (ADS)

    Jocoy, Edward H.; Phoel, Wayne G.

    1997-02-01

    On-vehicle sensors for collision avoidance and intelligent cruise control are receiving considerably attention as part of Intelligent Transportation Systems. Most of these sensors are radars and `look' in the direction of the vehicle's headway, that is, in the direction ahead of the vehicle. Calspan SRL Corporation is investigating the use of on- vehicle radar for Intersection Collision Avoidance (ICA). Four crash scenarios are considered and the goal is to design, develop and install a collision warning system in a test vehicle, and conduct both test track and in-traffic experiments. Current efforts include simulations to examine ICA geometry-dependent design parameters and the design of an on-vehicle radar and tracker for threat detection. This paper discusses some of the simulation and radar design efforts. In addition, an available headway radar was modified to scan the wide angles (+/- 90 degree(s)) associated with ICA scenarios. Preliminary proof-of-principal tests are underway as a risk reduction effort. Some initial target detection results are presented.

  19. Elastic collisions of classical point particles on a finite frictionless linear track with perfectly reflecting endpoints

    NASA Astrophysics Data System (ADS)

    DeLuca, R.

    2006-03-01

    Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.

  20. Fossil imprints of the Pan-African collision process revealed by seismic anisotropy in southern Madagasca

    NASA Astrophysics Data System (ADS)

    Tilmann, F. J.; Rindraharisaona, E. J.; Reiss, M. C.; Dreiling, J.; Rumpker, G.; Yuan, X.; Giese, J.; Priestley, K. F.; Wysession, M. E.; Barruol, G.; Rambolamanana, G.

    2017-12-01

    In the assembly of Pangaea during the Proterozoic Pan-African Orogeny and later rifting and break-up of Gondwanaland, Madagascar occupied a central position, sandwiched between East Africa and India-Seychelles. Today, its metamorphic terranes still bear witness to the collision process. In the SELASOMA project we have deployed a seismic array in southern Madagascar in order to determine the imprint of these events onto the present day-crustal structure. 25 broadband and 23 SP stations were deployed for a period of 1-2 years. We present an overview of the results of several studies (receiver functions, ambient noise surface wave analysis, SKS splitting) constraining the isotropic and anisotropic crustal structure of southern Madagascar based on this deployment, supplemented by permanent stations and the contemporaneous MACOMO and RHUM-RUM deployments. The upper and middle crust of the Archean and Proterozoic provinces is overall quite similar, but a remarkable difference is that the Archean crust shows clear signs of underplating; we surmise that the Proterozoic crust was lost in the Pan-African collision. Both horizontal (from shear-wave splitting) and radial (SH/SV from Love and Rayleigh discrepancy) anisotropy shows evidence of collisional processes. A 150 km-wide zone of anomalous splitting measurements (deviating from the APM-parallel fast directions in most of Madagascar) in the region, where several major fossil shear zones have been mapped, can be explained as a zone of extensive coherent deformation within the crust; fast directions here align with the dominant strike of the major fossil shear zones. Negative radial anisotropy (i.e., SV faster than SH) in the mid-crust, likewise interpreted to have been formed by the collision, highlights the likely role of vertical shearing, presumably caused by extensive folding. In the lower crust, however, positive radial anisotropy is found in most of the Proterozoic and Archean terranes, which, analogous to the Himalaya-Tibet collision, might have resulted from lower crustal flow. The crystalline crust below the sedimentary basin also exhibits positive radial anisotropy. In the western part of the Morondova basin the crust has been thinned to 13 km, apparently mostly by removal of the lower and mid-crust during the extension phase.

  1. Evidence of Light-by-Light Scattering with Real Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boege, J.

    2003-12-19

    In a new experiment at the Stanford Linear Accelerator Center, heretofore untested aspects of high field strength Quantum Electrodynamics were probed. Bunches of 46.6 GeV electrons available in the Final Focus Test Beam line were brought into collision with terawatt pulses of either 1.17 eV or 2.34 eV photons from a Nd:Glass laser system. Several physical process were investigated. This thesis describes the production of electron-positron pairs in photon-photon collisions. This is particularly interesting since it represents the generation of massive particles from massless particles. The bunch/pulse trajectories are approximately antiparallel. Due to the head-on nature of the collisions, themore » electrons see, in their rest frame, a transformed laser pulse electric field amplitude {bar {var_epsilon}}{sub 0} = 2{gamma}{var_epsilon}{sub 0}, and so a lab frame field {var_epsilon} {approx} 1.0 x 10{sup 11} V/cm corresponds to a 46.6 GeV electron rest frame field {bar {var_epsilon}}{sub 0} {approx} 1.8 x 10{sup 16} V/cm. For electric field amplitudes of this magnitude, perturbative QED is of limited validity. Multiphoton processes dominate collision results. The geometry of the experiments was such that any pairs produced came into existence in the midst of the electron/photon collision region. The electron from a produced pair was indistinguishable from the recoil electrons generated via other processes in collisions. Detecting the positron, then, was the only way to observe pair production. In data accumulated during the September 1994 Final Focus Test Beam run, positrons in excess of background were detected. Positron signals were extracted from an ensemble of data collected during electron bunch/laser pulse collisions. Calorimeter readings were used to measure the energy, and reconstruct the transverse displacement of positrons propagating downstream from the bunch/pulse collision region. Field maps of permanent magnets located downstream of the collision region but upstream of the calorimeter were used in implementing a cut of off-momentum background positrons. Effects of various cuts and the characteristics of the detected positrons are presented. Statistically significant positron production above background is reported. The rate for e{sup +} production is calculated, and the energy spectrum of the candidates is shown. The agreement of simulation results with these observations is described.« less

  2. A numerical investigation of continental collision styles

    NASA Astrophysics Data System (ADS)

    Ghazian, Reza Khabbaz; Buiter, Susanne J. H.

    2013-06-01

    Continental collision after closure of an ocean can lead to different deformation styles: subduction of continental crust and lithosphere, lithospheric thickening, folding of the unsubducted continents, Rayleigh-Taylor (RT) instabilities and/or slab break-off. We use 2-D thermomechanical models of oceanic subduction followed by continental collision to investigate the sensitivity of these collision styles to driving velocity, crustal and lithospheric temperature, continental rheology and the initial density difference between the oceanic lithosphere and the asthenosphere. We find that these parameters influence the collision system, but that driving velocity, rheology and lithospheric (rather than Moho and mantle) temperature can be classified as important controls, whereas reasonable variations in the initial density contrast between oceanic lithosphere and asthenosphere are not necessarily important. Stable continental subduction occurs over a relatively large range of values of driving velocity and lithospheric temperature. Fast and cold systems are more likely to show folding, whereas slow and warm systems can experience RT-type dripping. Our results show that a continent with a strong upper crust can experience subduction of the entire crust and is more likely to fold. Accretion of the upper crust at the trench is feasible when the upper crust has a moderate to weak strength, whereas the entire crust can be scraped-off in the case of a weak lower crust. We also illustrate that weakening of the lithospheric mantle promotes RT-type of dripping in a collision system. We use a dynamic collision model, in which collision is driven by slab pull only, to illustrate that adjacent plates can play an important role in continental collision systems. In dynamic collision models, exhumation of subducted continental material and sediments is triggered by slab retreat and opening of a subduction channel, which allows upward flow of buoyant materials. Exhumation continues after slab break-off by reverse motion of the subducting plate (`eduction') caused by the reduced slab pull. We illustrate how a simple force balance of slab pull, slab push, slab bending, viscous resistance and buoyancy can explain the different collision styles caused by variations in velocity, temperature, rheology, density differences and the interaction with adjacent plates.

  3. Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows

    NASA Astrophysics Data System (ADS)

    Njobuenwu, Derrick O.; Fairweather, Michael

    2017-08-01

    An efficient technique to simulate turbulent particle-laden flow at high mass loadings within the four-way coupled simulation regime is presented. The technique implements large-eddy simulation, discrete particle simulation, a deterministic treatment of inter-particle collisions, and an energy-balanced particle agglomeration model. The algorithm to detect inter-particle collisions is such that the computational costs scale linearly with the number of particles present in the computational domain. On detection of a collision, particle agglomeration is tested based on the pre-collision kinetic energy, restitution coefficient, and van der Waals' interactions. The performance of the technique developed is tested by performing parametric studies on the influence of the restitution coefficient (en = 0.2, 0.4, 0.6, and 0.8), particle size (dp = 60, 120, 200, and 316 μm), Reynolds number (Reτ = 150, 300, and 590), and particle concentration (αp = 5.0 × 10-4, 1.0 × 10-3, and 5.0 × 10-3) on particle-particle interaction events (collision and agglomeration). The results demonstrate that the collision frequency shows a linear dependency on the restitution coefficient, while the agglomeration rate shows an inverse dependence. Collisions among smaller particles are more frequent and efficient in forming agglomerates than those of coarser particles. The particle-particle interaction events show a strong dependency on the shear Reynolds number Reτ, while increasing the particle concentration effectively enhances particle collision and agglomeration whilst having only a minor influence on the agglomeration rate. Overall, the sensitivity of the particle-particle interaction events to the selected simulation parameters is found to influence the population and distribution of the primary particles and agglomerates formed.

  4. Relic gravitational waves and extended inflation

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1990-01-01

    In extended inflation, a new version of inflation where the transition from an inflationary to a radiation-dominated universe is accomplished by bubble nucleation, bubble collisions supply a potent - and potentially detectable - source of gravitational waves. The energy density in relic gravitons from bubble collisions is expected to be about 0.00005 of closure density. Their characteristic wavelength depends on the reheating temperature. If black holes are produced by bubble collisions, they will evaporate, producing shorter-wavelength gravitons.

  5. The environment of the wind-wind collision region of η Carinae

    NASA Astrophysics Data System (ADS)

    Panagiotou, C.; Walter, R.

    2018-02-01

    Context. η Carinae is a colliding wind binary hosting two of the most massive stars and featuring the strongest wind collision mechanical luminosity. The wind collision region of this system is detected in X-rays and γ-rays and offers a unique laboratory for the study of particle acceleration and wind magneto-hydrodynamics. Aim. Our main goal is to use X-ray observations of η Carinae around periastron to constrain the wind collision zone geometry and understand the reasons for its variability. Methods: We analysed 10 Nuclear Spectroscopic Telescope Array (NuSTAR) observations, which were obtained around the 2014 periastron. The NuSTAR array monitored the source from 3 to 30 keV, which allowed us to grasp the continuum and absorption parameters with very good accuracy. We were able to identify several physical components and probe their variability. Results: The X-ray flux varied in a similar way as observed during previous periastrons and largely as expected if generated in the wind collision region. The flux detected within 10 days of periastron is lower than expected, suggesting a partial disruption of the central region of the wind collision zone. The Fe Kα line is likely broadened by the electrons heated along the complex shock fronts. The variability of its equivalent width indicates that the fluorescence region has a complex geometry and that the source obscuration varies quickly with the line of sight.

  6. Uniform semiclassical sudden approximation for rotationally inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsch, H.J.; Schinke, R.

    1980-08-01

    The infinite-order-sudden (IOS) approximation is investigated in the semiclassical limit. A simplified IOS formula for rotationally inelastic differential cross sections is derived involving a uniform stationary phase approximation for two-dimensional oscillatory integrals with two stationary points. The semiclassical analysis provides a quantitative description of the rotational rainbow structure in the differential cross section. The numerical calculation of semiclassical IOS cross sections is extremely fast compared to numerically exact IOS methods, especially if high ..delta..j transitions are involved. Rigid rotor results for He--Na/sub 2/ collisions with ..delta..j< or approx. =26 and for K--CO collisions with ..delta..j< or approx. =70 show satisfactorymore » agreement with quantal IOS calculations.« less

  7. Sonic Simulation of Near Projectile Hits

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Rodemich, E. R.

    1988-01-01

    Measured frequencies identify projectiles and indicate miss distances. Developmental battlefield-simulation system for training soldiers uses sounds emitted by incoming projectiles to identify projectiles and indicate miss distances. Depending on projectile type and closeness of each hit, system generates "kill" or "near-kill" indication. Artillery shell simulated by lightweight plastic projectile launched by compressed air. Flow of air through groove in nose of projectile generates acoustic tone. Each participant carries audio receiver measure and process tone signal. System performs fast Fourier transforms of received tone to obtain dominant frequency during each succeeding interval of approximately 40 ms (an interval determined from practical signal-processing requirements). With modifications, system concept applicable to collision-warning or collision-avoidance systems.

  8. A collision history-based approach to Sensitivity/Perturbation calculations in the continuous energy Monte Carlo code SERPENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuseppe Palmiotti

    In this work, the implementation of a collision history-based approach to sensitivity/perturbation calculations in the Monte Carlo code SERPENT is discussed. The proposed methods allow the calculation of the eects of nuclear data perturbation on several response functions: the eective multiplication factor, reaction rate ratios and bilinear ratios (e.g., eective kinetics parameters). SERPENT results are compared to ERANOS and TSUNAMI Generalized Perturbation Theory calculations for two fast metallic systems and for a PWR pin-cell benchmark. New methods for the calculation of sensitivities to angular scattering distributions are also presented, which adopts fully continuous (in energy and angle) Monte Carlo estimators.

  9. Multiple ionization of C 60 in collisions with 2.33 MeV/u O-ions and giant plasmon excitation

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, Ajay; Tribedi, L. C.

    2007-03-01

    Single and multiple ionization of C60 in collisions with fast (v = 9.7 a.u.) Oq+ ions have been studied. Relative cross sections for production of C 601+ to C 604+ have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.

  10. Penning ionization electron spectroscopy of CO 2 clusters in collision with metastable rare gas atoms

    NASA Astrophysics Data System (ADS)

    Maruyama, Ryo; Tanaka, Hideyasu; Yamakita, Yoshihiro; Misaizu, Fuminori; Ohno, Koichi

    2000-09-01

    Penning ionization electron spectra (PIES) of CO 2 clusters have been observed for the first time. An unusually fast electron band with excess kinetic energies of 1.4-2.9 eV with respect to the monomer band for the ionic X state was observed for CO 2 clusters in collision with He*(2 3S) atoms. While for PIES with Ne*(3 3P), no such unusual band was observed. The unusual band is ascribed to autoionization into stable structures of ionic clusters to which direct ionization processes are almost impossible due to very small Franck-Condon overlaps associated with a very large geometry difference between the ionic and neutral clusters.

  11. I-MAC: an incorporation MAC for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jumin; Li, Yikun; Li, Dengao; Lin, Xiaojie

    2017-11-01

    This paper proposes an innovative MAC protocol called I-MAC. Protocol for wireless sensor networks, which combines the advantages of collision tolerance and collision cancellation. The protocol increases the number of antenna in wireless sensor nodes. The purpose is to monitor the occurrence of packet collisions by increasing the number of antenna in real time. The built-in identity structure is used in the frame structure in order to help the sending node to identify the location of the receiving node after a data packet collision is detected. Packets can be recovered from where the conflict occurred. In this way, we can monitor the conflict for a fixed period of time. It can improve the channel utilisation through changing the transmission probability of collision nodes and solve the problem of hidden terminal through collision feedback mechanism. We have evaluated our protocol. Our results show that the throughput of I-MAC is 5 percentage points higher than that of carrier sense multiple access/collision notification. The network utilisation of I-MAC is more than 92%.

  12. Constituent quarks and systematic errors in mid-rapidity charged multiplicity dN ch/dη distributions

    DOE PAGES

    Tannenbaum, M. J.

    2018-01-10

    Centrality definition in A + A collisions at colliders such as RHIC and LHC suffers from a correlated systematic uncertainty caused by the efficiency of detecting a p + p collision (50 ± 5% for PHENIX at RHIC). In A + A collisions where centrality is measured by the number of nucleon collisions, N coll, or the number of nucleon participants, N part, or the number of constituent quark participants, N qp, the error in the efficiency of the primary interaction trigger (Beam–Beam Counters) for a p + p collision leads to a correlated systematic uncertainty in N part, Nmore » coll or N qp which reduces binomially as the A + A collisions become more central. If this is not correctly accounted for in projections of A + A to p + p collisions, then mistaken conclusions can result. Finally, a recent example is presented in whether the mid-rapidity charged multiplicity per constituent quark participant d(N ch/dη)/N qp in Au + Au at RHIC was the same as the value in p + p collisions.« less

  13. Constituent quarks and systematic errors in mid-rapidity charged multiplicity dN ch/dη distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, M. J.

    Centrality definition in A + A collisions at colliders such as RHIC and LHC suffers from a correlated systematic uncertainty caused by the efficiency of detecting a p + p collision (50 ± 5% for PHENIX at RHIC). In A + A collisions where centrality is measured by the number of nucleon collisions, N coll, or the number of nucleon participants, N part, or the number of constituent quark participants, N qp, the error in the efficiency of the primary interaction trigger (Beam–Beam Counters) for a p + p collision leads to a correlated systematic uncertainty in N part, Nmore » coll or N qp which reduces binomially as the A + A collisions become more central. If this is not correctly accounted for in projections of A + A to p + p collisions, then mistaken conclusions can result. Finally, a recent example is presented in whether the mid-rapidity charged multiplicity per constituent quark participant d(N ch/dη)/N qp in Au + Au at RHIC was the same as the value in p + p collisions.« less

  14. First observational tests of eternal inflation.

    PubMed

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2011-08-12

    The eternal inflation scenario predicts that our observable Universe resides inside a single bubble embedded in a vast inflating multiverse. We present the first observational tests of eternal inflation, performing a search for cosmological signatures of collisions with other bubble universes in cosmic microwave background data from the WMAP satellite. We conclude that the WMAP 7-year data do not warrant augmenting the cold dark matter model with a cosmological constant with bubble collisions, constraining the average number of detectable bubble collisions on the full sky N(s) < 1.6 at 68% C.L. Data from the Planck satellite can be used to more definitively test the bubble-collision hypothesis.

  15. An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data

    NASA Astrophysics Data System (ADS)

    Ikeda, Kazushi; Mima, Hiroki; Inoue, Yuta; Shibata, Tomohiro; Fukaya, Naoki; Hitomi, Kentaro; Bando, Takashi

    The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations.

  16. Linear momentum, angular momentum and energy in the linear collision between two balls

    NASA Astrophysics Data System (ADS)

    Hanisch, C.; Hofmann, F.; Ziese, M.

    2018-01-01

    In an experiment of the basic physics laboratory, kinematical motion processes were analysed. The motion was recorded with a standard video camera having frame rates from 30 to 240 fps the videos were processed using video analysis software. Video detection was used to analyse the symmetric one-dimensional collision between two balls. Conservation of linear and angular momentum lead to a crossover from rolling to sliding directly after the collision. By variation of the rolling radius the system could be tuned from a regime in which the balls move away from each other after the collision to a situation in which they re-collide.

  17. Perseveration effects in detection tasks with correlated decision intervals. [applied to pilot collision avoidance

    NASA Technical Reports Server (NTRS)

    Gai, E. G.; Curry, R. E.

    1978-01-01

    An investigation of the behavior of the human decisionmaker is described for a task related to the problem of a pilot using a traffic situation display to avoid collisions. This sequential signal detection task is characterized by highly correlated signals with time varying strength. Experimental results are presented and the behavior of the observers is analyzed using the theory of Markov processes and classical signal detection theory. Mathematical models are developed which describe the main result of the experiment: that correlation in sequential signals induced perseveration in the observer response and a strong tendency to repeat their previous decision, even when they were wrong.

  18. Effective Vehicle-Based Kangaroo Detection for Collision Warning Systems Using Region-Based Convolutional Networks.

    PubMed

    Saleh, Khaled; Hossny, Mohammed; Nahavandi, Saeid

    2018-06-12

    Traffic collisions between kangaroos and motorists are on the rise on Australian roads. According to a recent report, it was estimated that there were more than 20,000 kangaroo vehicle collisions that occurred only during the year 2015 in Australia. In this work, we are proposing a vehicle-based framework for kangaroo detection in urban and highway traffic environment that could be used for collision warning systems. Our proposed framework is based on region-based convolutional neural networks (RCNN). Given the scarcity of labeled data of kangaroos in traffic environments, we utilized our state-of-the-art data generation pipeline to generate 17,000 synthetic depth images of traffic scenes with kangaroo instances annotated in them. We trained our proposed RCNN-based framework on a subset of the generated synthetic depth images dataset. The proposed framework achieved a higher average precision (AP) score of 92% over all the testing synthetic depth image datasets. We compared our proposed framework against other baseline approaches and we outperformed it with more than 37% in AP score over all the testing datasets. Additionally, we evaluated the generalization performance of the proposed framework on real live data and we achieved a resilient detection accuracy without any further fine-tuning of our proposed RCNN-based framework.

  19. Variation in bird-window collision mortality and scavenging rates within an urban landscape

    EPA Science Inventory

    Annual avian mortality from collisions with windows and buildings is estimated to range from a million to a billion birds in the United States alone. However, estimates of mortality based on carcass counts suffer from bias due to imperfect detection and carcass scavenging. We stu...

  20. Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions

    DOE PAGES

    Tuchin, Kirill

    2013-01-01

    I reviewmore » the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~ m π 2 at RHIC and ~ 10 m π 2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J / ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.« less

  1. Probing Ion Transfer across Liquid-Liquid Interfaces by Monitoring Collisions of Single Femtoliter Oil Droplets on Ultramicroelectrodes.

    PubMed

    Deng, Haiqiang; Dick, Jeffrey E; Kummer, Sina; Kragl, Udo; Strauss, Steven H; Bard, Allen J

    2016-08-02

    We describe a method of observing collisions of single femtoliter (fL) oil (i.e., toluene) droplets that are dispersed in water on an ultramicroelectrode (UME) to probe the ion transfer across the oil/water interface. The oil-in-water emulsion was stabilized by an ionic liquid, in which the oil droplet trapped a highly hydrophobic redox probe, rubrene. The ionic liquid also functions as the supporting electrolyte in toluene. When the potential of the UME was biased such that rubrene oxidation would be possible when a droplet collided with the electrode, no current spikes were observed. This implies that the rubrene radical cation is not hydrophilic enough to transfer into the aqueous phase. We show that current spikes are observed when tetrabutylammonium trifluoromethanesulfonate or tetrahexylammonium hexafluorophosphate are introduced into the toluene phase and when tetrabutylammonium perchlorate is introduced into the water phase, implying that the ion transfer facilitates electron transfer in the droplet collisions. The current (i)-time (t) behavior was evaluated quantitatively, which indicated the ion transfer is fast and reversible. Furthermore, the size of these emulsion droplets can also be calculated from the electrochemical collision. We further investigated the potential dependence on the electrochemical collision response in the presence of tetrabutylammonium trifluoromethanesulfonate in toluene to obtain the formal ion transfer potential of tetrabutylammonium across the toluene/water interface, which was determined to be 0.754 V in the inner potential scale. The results yield new physical insights into the charge balance mechanism in emulsion droplet collisions and indicate that the electrochemical collision technique can be used to probe formal ion transfer potentials between water and solvents with very low (ε < 5) dielectric constants.

  2. Antiproton production in central Si+Au collisions at 14.6A GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothschild, P.J.

    1994-05-01

    Antiproton measurements made by E802 have been extended to lower rapidities, while in those y-p{sub T} regions already studied the statistics have been improved by approximately an order of magnitude. The author presents the dn/dy distribution for antiproton production in central 14.6 A{center_dot}GeV/c Si+Au collisions in the rapidity range 0.8 < y < 1.8. In addition, antilambda production has been detected for the first time in these collisions at the AGS.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catoire, F.; Staicu-Casagrande, E. M.; Lahmam-Bennani, A.

    We describe new developments aimed to extend the capabilities and the sensitivity of the (e,2e)/(e,3e) multicoincidence spectrometer at Orsay University [Duguet et al., Rev. Sci. Instrum. 69, 3524 (1998)]. The spectrometer has been improved by the addition of a third multiangle detection channel for the fast ''scattered'' electron. The present system is unique in that it is the only system which combines three toroidal analyzers all equipped with position sensitive detectors, thus allowing the triple coincidence detection of the three electrons present in the final state of an electron impact double ionization process. The setup allows measurement of the angularmore » and energy distributions of the ejected electrons over almost the totality of the collision plane as well as that of the scattered electron over a large range of scattering angles in the forward direction. The resulting gain in sensitivity ({approx}25) has rendered feasible a whole class of experiments which could not be otherwise envisaged. The setup is described with a special emphasis on the new toroidal analyzer, data acquisition hardware, and data analysis procedures. The performances are illustrated by selected results of (e,2e) and (e,3e) experiments on the rare gases.« less

  4. Laboratory Measurements of Solar-Wind/Comet X-Ray Emission and Charge Exchange Cross Sections

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Cadez, I.; Greenwood, J. B.; Mawhorter, R. J.; Smith, S. J.; Lozano, J.

    2002-01-01

    The detection of X-rays from comets such as Hyakutake, Hale-Bopp, d Arrest, and Linear as they approach the Sun has been unexpected and exciting. This phenomenon, moreover, should be quite general, occurring wherever a fast solar or stellar wind interacts with neutrals in a comet, a planetary atmosphere, or a circumstellar cloud. The process is, O(+8) + H2O --> O(+7*) + H2O(+), where the excited O(+7*) ions are the source of the X-ray emissions. Detailed modeling has been carried out of X-ray emissions in charge-transfer collisions of heavy solar-wind Highly Charged Ions (HCIs) and interstellar/interplanetary neutral clouds. In the interplanetary medium the solar wind ions, including protons, can charge exchange with interstellar H and He. This can give rise to a soft X-ray background that could be correlated with the long-term enhancements seen in the low-energy X-ray spectrum of ROSAT. Approximately 40% of the soft X-ray background detected by Exosat, ROSAT, Chandra, etc. is due to Charge Exchange (CXE): our whole heliosphere is glowing in the soft X-ray due to CXE.

  5. Inorganic elemental compositions of commercial multivitamin/mineral dietary supplements: application of collision/reaction cell inductively coupled-mass spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Microwave digestion followed by analysis using ICP-MS has been shown to be a simple, fast reliable method for the multi-element determination in multivitamin/mineral dietary supplements (MVM). A study of 35 popular MVM dietary supplements revealed that composition and levels varied among products, a...

  6. Digital-Difference Processing For Collision Avoidance.

    NASA Technical Reports Server (NTRS)

    Shores, Paul; Lichtenberg, Chris; Kobayashi, Herbert S.; Cunningham, Allen R.

    1988-01-01

    Digital system for automotive crash avoidance measures and displays difference in frequency between two sinusoidal input signals of slightly different frequencies. Designed for use with Doppler radars. Characterized as digital mixer coupled to frequency counter measuring difference frequency in mixer output. Technique determines target path mathematically. Used for tracking cars, missiles, bullets, baseballs, and other fast-moving objects.

  7. State-to-state, multi-collision, energy transfer in H-H2 gas ensembles.

    PubMed

    McCaffery, Anthony J; Marsh, Richard J

    2013-12-21

    We use our recently developed computational model of energy flow in gas ensembles to study translation-to-internal energy conversion in an ensemble consisting of H2(0; 0) in a bath of H atoms. This mixture is found in plasmas of industrial importance and also in interstellar clouds. The storage of energy of relative motion as rovibrational energy of H2 represents a potential mechanism for cooling translation. This may have relevance in astrophysical contexts such as the post-recombination epoch of the early universe when hydrogenic species dominated and cooling was a precondition for the formation of structured objects. We find that conversion of translational motion to H2 vibration and rotation is fast and, in our closed system, is complete within around 100 cycles of ensemble collisions. Large amounts of energy become stored as H2 vibration and a tentative mechanism for this unequal energy distribution is suggested. The "structured dis-equilibrium" we observe is found to persist through many collision cycles. In contrast to the rapidity of excitation, the relaxation of H2(6; 10) in H is very slow and not complete after 10(5) collision cycles. The quasi-equilibrium modal temperatures of translation, rotation, and vibration are found to scale linearly with collision energy but at different rates. This may be useful in estimating the partitioning of energy within a given H + H2 ensemble.

  8. Animal reactions to oncoming vehicles: a conceptual review.

    PubMed

    Lima, Steven L; Blackwell, Bradley F; DeVault, Travis L; Fernández-Juricic, Esteban

    2015-02-01

    Animal-vehicle collisions (AVCs) are a substantial problem in a human-dominated world, but little is known about what goes wrong, from the animal's perspective, when a collision occurs with an automobile, boat, or aircraft. Our goal is to provide insight into reactions of animals to oncoming vehicles when collisions might be imminent. Avoiding a collision requires successful vehicle detection, threat assessment, and evasive behaviour; failures can occur at any of these stages. Vehicle detection seems fairly straightforward in many cases, but depends critically on the sensory capabilities of a given species. Sensory mechanisms for detection of collisions (looming detectors) may be overwhelmed by vehicle speed. Distractions are a likely problem in vehicle detection, but have not been clearly demonstrated in any system beyond human pedestrians. Many animals likely perceive moving vehicles as non-threatening, and may generally be habituated to their presence. Slow or minimal threat assessment is thus a likely failure point in many AVCs, but this is not uniformly evident. Animals generally initiate evasive behaviour when a collision appears imminent, usually employing some aspect of native antipredator behaviour. Across taxa, animals exhibit a variety of behaviours when confronted with oncoming vehicles. Among marine mammals, right whales Eubalaena spp., manatees Trichechus spp., and dugongs Dugong dugon are fairly unresponsive to approaching vehicles, suggesting a problem in threat assessment. Others, such as dolphins Delphinidae, assess vehicle approach at distance. Little work has been conducted on the behavioural aspects of AVCs involving large mammals and automobiles, despite their prevalence. Available observations suggest that birds do not usually treat flying aircraft as a major threat, often allowing close approach before taking evasive action, as they might in response to natural predators. Inappropriate antipredator behaviour (often involving immobility) is a major source of AVCs in amphibians and terrestrial reptiles. Much behavioural work on AVCs remains to be done across a wide variety of taxa. Such work should provide broad phylogenetic generalizations regarding AVCs and insights into managing AVCs. Published 2014. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  9. Radar-based collision avoidance for unmanned surface vehicles

    NASA Astrophysics Data System (ADS)

    Zhuang, Jia-yuan; Zhang, Lei; Zhao, Shi-qi; Cao, Jian; Wang, Bo; Sun, Han-bing

    2016-12-01

    Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.

  10. Massive collisions in debris disks: possible application to the beta Pic disc

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thébault, P.; Augereau, J.-C.; Boccaletti, A.; Charnoz, S.

    2014-09-01

    The new LIDT-DD code has been used to study massive collisions in debris discs. This new hybrid model is a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013). It models the full complexity of debris discs' physics such as high velocity collisions, radiation-pressure affected orbits, wide range of grains' dynamical behaviour, etc. LIDT-DD can be used on many possible applications. Our first test case concerns the violent breakup of a massive planetesimal such as the ones happening during the late stages of planetary formation or with the biggest bodies in debris belts. We investigate the duration, magnitude and spatial structure of the signature left by such a violent event, as well as its observational detectability. We find that the breakup of a Ceres-sized body creates an asymmetric dust disc that is homogenized, by the coupled action of collisions and dynamics. The luminosity excess in the breakup's aftermath should be detectable by mid-IR photometry, from a 30 pc distance. As for the asymmetric structures, we derive synthetic images for the SPHERE/VLT and MIRI/JWST instruments, showing that they should be clearly visible and resolved from a 10 pc distance. We explain the observational signature of such impacts and give scaling laws to extrapolate our results to different configurations. These first results confirm that our code can be used to study the massive collision scenario to explain some asymmetries in the Beta-Pic disc.

  11. 33 CFR 83.07 - Risk of collision (Rule 7).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exists. If there is any doubt such risk shall be deemed to exist. (b) Radar. Proper use shall be made of radar equipment if fitted and operational, including long-range scanning to obtain early warning of risk of collision and radar plotting or equivalent systematic observation of detected objects. (c) Scanty...

  12. 33 CFR 83.07 - Risk of collision (Rule 7).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exists. If there is any doubt such risk shall be deemed to exist. (b) Radar. Proper use shall be made of radar equipment if fitted and operational, including long-range scanning to obtain early warning of risk of collision and radar plotting or equivalent systematic observation of detected objects. (c) Scanty...

  13. 33 CFR 83.07 - Risk of collision (Rule 7).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exists. If there is any doubt such risk shall be deemed to exist. (b) Radar. Proper use shall be made of radar equipment if fitted and operational, including long-range scanning to obtain early warning of risk of collision and radar plotting or equivalent systematic observation of detected objects. (c) Scanty...

  14. 33 CFR 83.07 - Risk of collision (Rule 7).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exists. If there is any doubt such risk shall be deemed to exist. (b) Radar. Proper use shall be made of radar equipment if fitted and operational, including long-range scanning to obtain early warning of risk of collision and radar plotting or equivalent systematic observation of detected objects. (c) Scanty...

  15. 33 CFR 83.07 - Risk of collision (Rule 7).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exists. If there is any doubt such risk shall be deemed to exist. (b) Radar. Proper use shall be made of radar equipment if fitted and operational, including long-range scanning to obtain early warning of risk of collision and radar plotting or equivalent systematic observation of detected objects. (c) Scanty...

  16. Suppression of back-to-back hadron pairs at forward rapidity in d+Au collisions at √s(NN)=200 GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Angerami, A; Aoki, K; Apadula, N; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa del Valle, Z; Connors, M; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E J; Kim, Y-J; Kinney, E; Kiss, Á; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhou, S; Zolin, L

    2011-10-21

    Back-to-back hadron pair yields in d+Au and p+p collisions at √s(NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |η|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<η<3.8). Pairs were also detected with both hadrons measured at forward rapidity; in this case, the yield of back-to-back hadron pairs in d+Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p+p collisions. The kinematics of these pairs is expected to probe partons in the Au nucleus with a low fraction x of the nucleon momenta, where the gluon densities rise sharply. The observed suppression as a function of nuclear thickness, p(T), and η points to cold nuclear matter effects arising at high parton densities. © 2011 American Physical Society

  17. Advanced Whale Detection Methods to Improve Whale-Ship Collision Avoidance

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Tougher, B.

    2010-12-01

    Collisions between whales and ships are now estimated to account for fully a third of all whale deaths worldwide. Such collisions can incur costly ship repairs, and may damage or disable ship steering requiring costly response efforts from state and federal agencies. While collisions with rare whale species are problematic in further reducing their low population numbers, collisions with some of the more abundant whale species are also becoming more common as their populations increase. The problem is compounded as ship traffic likewise continues to grow, thus posing a growing risk to both whales and ships. Federal agencies are considering policies to alter shipping lanes to minimize whale-ship collisions off California and elsewhere. Similar efforts have already been undertaken for the Boston Harbor ship approach, where a bend in the shipping lane was introduced to reduce ship traffic through a favorite area of the highly endangered North Atlantic Right Whale. The Boston shipping approach lane was also flanked with a system of moorings with whale detection hydrophones which broadcast the presence of calling whales in or near the ship channel to approaching ships in real time. When so notified, ships can post lookouts to avoid whale collisions, and reduce speed to reduce the likelihood of whale death, which is highly speed dependent. To reduce the likelihood and seriousness of whale-ship collisions off California and Alaska in particular, there is a need to better know areas of particularly high use by whales, and consider implementation of reduced ship speeds in these areas. There is also an ongoing discussion of altering shipping lanes in the Santa Barbara Channel to avoid habitual Blue whales aggregation areas in particular. However, unlike the case for Boston Harbor, notification of ships that whales are nearby to reduce or avoid collisions is complicated because many California and Alaska whale species do not call regularly, and would thus be undetected by hydrophone arrays. We here discuss the possibility of using Ambient Noise Imaging (ANI) systems initially developed for location of non-calling sperm whales along high speed ferry routes in the Canary Islands. A ‘hybrid’ ANI system has also been developed which uses sound from calling whales to ‘illuminate’ non-calling whales. Such systems designed for sperm whales would require modification for Blue and fin whales along California shipping lanes, and Bowhead whales in Alaska. We discuss how ANI whale detection systems could be developed for California and Alaska by combining bottom moorings with autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs) as part of ocean observing systems. The mechanisms, challenges, and potential solutions for use of ANI whale detection systems along critical shipping lanes along the California and Alaska coast to reduce whale-ship collisions are discussed as a means that permit science to assist in development of integrated state and federal ocean management policies. The combination of new scientific technology with ocean policy decisions can improve coastal ocean management, improve the safety and reduce the cost of shipping, while at the same time protecting endangered whale species.

  18. Characterization of Heavy Oxide Inorganic Scintillator Crystals for Direct Detection of Fast Neutrons Based on Inelastic Scattering

    DTIC Science & Technology

    2015-03-01

    HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DIRECT DETECTION OF FAST NEUTRONS BASED ON INELASTIC SCATTERING by Philip R. Rusiecki...HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DIRECT DETECTION OF FAST NEUTRONS BASED ON INELASTIC SCATTERING 6. AUTHOR(S) Philip R. Rusiecki 7...ABSTRACT (maximum 200 words) Heavy oxide inorganic scintillators may prove viable in the detection of fast neutrons based on the mechanism of

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, A. S., E-mail: AntonBondarenko@ymail.com; Schaeffer, D. B.; Everson, E. T.

    The collision-less transfer of momentum and energy from explosive debris plasma to magnetized background plasma is a salient feature of various astrophysical and space environments. While much theoretical and computational work has investigated collision-less coupling mechanisms and relevant parameters, an experimental validation of the results demands the measurement of the complex, collective electric fields associated with debris-background plasma interaction. Emission spectroscopy offers a non-interfering diagnostic of electric fields via the Stark effect. A unique experiment at the University of California, Los Angeles, that combines the Large Plasma Device (LAPD) and the Phoenix laser facility has investigated the marginally super-Alfvénic, quasi-perpendicularmore » expansion of a laser-produced carbon (C) debris plasma through a preformed, magnetized helium (He) background plasma via emission spectroscopy. Spectral profiles of the He II 468.6 nm line measured at the maximum extent of the diamagnetic cavity are observed to intensify, broaden, and develop equally spaced modulations in response to the explosive C debris, indicative of an energetic electron population and strong oscillatory electric fields. The profiles are analyzed via time-dependent Stark effect models corresponding to single-mode and multi-mode monochromatic (single frequency) electric fields, yielding temporally resolved magnitudes and frequencies. The proximity of the measured frequencies to the expected electron plasma frequency suggests the development of the electron beam-plasma instability, and a simple saturation model demonstrates that the measured magnitudes are feasible provided that a sufficiently fast electron population is generated during C debris–He background interaction. Potential sources of the fast electrons, which likely correspond to collision-less coupling mechanisms, are briefly considered.« less

  20. The Effect of Symbology Location and Format on Attentional Deployment within a Cockpit Display of Traffic Information

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Liao, Min-Ju; Tse, Stephen

    2003-01-01

    The present experiment employed target detection tasks to investigate attentional deployment during visual search for target aircraft symbols on a cockpit display of traffic information (CDTI). Targets were defined by either a geometric property (aircraft on a collision course with Ownship) or a textual property (aircraft with associated altitude tags indicating an even altitude level). Effects of target location and target brightness (highlighting) were examined. Target location was systematically related to target detection time, and this interacted with the target's defining property (collision geometry or associated text). Highlighting (which was not linked to whether an aircraft symbol was the target) did not influence target detection time.

  1. Optimization of Collision Detection in Surgical Simulations

    NASA Astrophysics Data System (ADS)

    Custură-Crăciun, Dan; Cochior, Daniel; Neagu, Corneliu

    2014-11-01

    Just like flight and spaceship simulators already represent a standard, we expect that soon enough, surgical simulators should become a standard in medical applications. A simulations quality is strongly related to the image quality as well as the degree of realism of the simulation. Increased quality requires increased resolution, increased representation speed but more important, a larger amount of mathematical equations. To make it possible, not only that we need more efficient computers, but especially more calculation process optimizations. A simulator executes one of the most complex sets of calculations each time it detects a contact between the virtual objects, therefore optimization of collision detection is fatal for the work-speed of a simulator and hence in its quality

  2. Spectral Line-Shape Model to Replace the Voigt Profile in Spectroscopic Databases

    NASA Astrophysics Data System (ADS)

    Lisak, Daniel; Ngo, Ngoc Hoa; Tran, Ha; Hartmann, Jean-Michel

    2014-06-01

    The standard description of molecular line shapes in spectral databases and radiative transfer codes is based on the Voigt profile. It is well known that its simplified assumptions of absorber free motion and independence of collisional parameters from absorber velocity lead to systematic errors in analysis of experimental spectra, and retrieval of gas concentration. We demonstrate1,2 that the partially correlated quadratic speed-dependent hardcollision profile3. (pCqSDHCP) is a good candidate to replace the Voigt profile in the next generations of spectroscopic databases. This profile takes into account the following physical effects: the Doppler broadening, the pressure broadening and shifting of the line, the velocity-changing collisions, the speed-dependence of pressure broadening and shifting, and correlations between velocity- and phase/state-changing collisions. The speed-dependence of pressure broadening and shifting is incorporated into the pCqSDNGP in the so-called quadratic approximation. The velocity-changing collisions lead to the Dicke narrowing effect; however in many cases correlations between velocityand phase/state-changing collisions may lead to effective reduction of observed Dicke narrowing. The hard-collision model of velocity-changing collisions is also known as the Nelkin-Ghatak model or Rautian model. Applicability of the pCqSDHCP for different molecular systems was tested on calculated and experimental spectra of such molecules as H2, O2, CO2, H2O in a wide span of pressures. For all considered systems, pCqSDHCP is able to describe molecular spectra at least an order of magnitude better than the Voigt profile with all fitted parameters being linear with pressure. In the most cases pCqSDHCP can reproduce the reference spectra down to 0.2% or better, which fulfills the requirements of the most demanding remote-sensing applications. An important advantage of pCqSDHCP is that a fast algorithm for its computation was developedab4,5 and allows for its calculation only a few times slower than the standard Voigt profile. Moreover, the pCqSDHCP reduces to many simpler models commonly used in experimental spectra analysis simply by setting some parameters to zero, and it can be easily extended to incorporate the line-mixing effect in the first-order approximation. The idea of using pCqSDHCP as a standard profile to go beyond the Voigt profile for description of H2O line shapes was recently supported by the IUPAC task group6 which also recommended to call this profile with fast computation algorithm the HTP profile (for Hartmann-Tran).

  3. Dynamic of negative ions in potassium-D-ribose collisions.

    PubMed

    Almeida, D; Ferreira da Silva, F; García, G; Limão-Vieira, P

    2013-09-21

    We present negative ion formation from collisions of neutral potassium atoms with D-ribose (C5H10O5), the sugar unit in the DNA/RNA molecule. From the negative ion time-of-flight (TOF) mass spectra, OH(-) is the main fragment detected in the collision range 50-100 eV accounting on average for 50% of the total anion yield. Prominence is also given to the rich fragmentation pattern observed with special attention to O(-) (16 m/z) formation. These results are in sharp contrast to dissociative electron attachment experiments. The TOF mass spectra assignments show that these channels are also observed, albeit with a much lower relative intensity. Branching ratios of the most abundant fragment anions as a function of the collision energy are obtained, allowing to establish a rationale on the collision dynamics.

  4. Fast Simulation of Electromagnetic Showers in the ATLAS Calorimeter: Frozen Showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barberio, E.; /Melbourne U.; Boudreau, J.

    2011-11-29

    One of the most time consuming process simulating pp interactions in the ATLAS detector at LHC is the simulation of electromagnetic showers in the calorimeter. In order to speed up the event simulation several parametrisation methods are available in ATLAS. In this paper we present a short description of a frozen shower technique, together with some recent benchmarks and comparison with full simulation. An expected high rate of proton-proton collisions in ATLAS detector at LHC requires large samples of simulated events (Monte Carlo) to study various physics processes. A detailed simulation of particle reactions ('full simulation') in the ATLAS detectormore » is based on GEANT4 and is very accurate. However, due to complexity of the detector, high particle multiplicity and GEANT4 itself, the average CPU time spend to simulate typical QCD event in pp collision is 20 or more minutes for modern computers. During detector simulation the largest time is spend in the calorimeters (up to 70%) most of which is required for electromagnetic particles in the electromagnetic (EM) part of the calorimeters. This is the motivation for fast simulation approaches which reduce the simulation time without affecting the accuracy. Several of fast simulation methods available within the ATLAS simulation framework (standard Athena based simulation program) are discussed here with the focus on the novel frozen shower library (FS) technique. The results obtained with FS are presented here as well.« less

  5. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.

    PubMed

    Cicchino, Jessica B; McCartt, Anne T

    2015-01-01

    Crash avoidance technologies have the potential to prevent or mitigate many crashes, but their effectiveness depends on drivers' acceptance and proper use. Owners of 2011 Dodge Charger, Dodge Durango, and Jeep Grand Cherokee vehicles were interviewed about their experiences with their vehicles' technologies. Interviews were conducted in April 2013 with 215 owners of Dodge and Jeep vehicles with adaptive cruise control and forward collision warning and 215 owners with blind spot monitoring and rear cross-path detection. Most owners said that they always keep each collision avoidance technology turned on, and more than 90% of owners with each system would want the technology again on their next vehicle. The majority believed that the systems had helped prevent a collision; this ranged from 54% of drivers with forward collision warning to more than three-quarters with blind spot monitoring and rear cross-path detection. Some owners reported behavioral changes with the systems, but over-reliance on them is not prevalent. Reported use of the systems varied by the age and gender of the driver and duration of vehicle ownership to a greater degree than in previous surveys of luxury Volvo and Infiniti vehicles with collision avoidance technologies. Notably, drivers aged 40 and younger were most likely to report that forward collision warning had alerted them multiple times and that it had prevented a collision and that they follow the vehicle ahead less closely with adaptive cruise control. Reports of waiting for the alert from forward collision warning before braking were infrequent but increased with duration of ownership. However, these reports could reflect confusion of the system with adaptive cruise control, which alerts drivers when braking is necessary to maintain a preset speed or following distance but a crash is not imminent. Consistent with previous surveys of luxury vehicle owners with collision avoidance technologies, acceptance and use remains high among owners of more mainstream vehicles. Varying experiences with the technologies by driver age and gender suggest that safety benefits are not uniform for all drivers, and differential benefits may become increasingly apparent as collision avoidance technologies become available to a more heterogeneous population of drivers. The potential for over-reliance on the technologies should continue to be monitored, especially as drivers gain more experience with them.

  6. Simulations in support of the T4B experiment

    NASA Astrophysics Data System (ADS)

    Qerushi, Artan; Ross, Patrick; Lohff, Chriss; Raymond, Anthony; Montecalvo, Niccolo

    2017-10-01

    Simulations in support of the T4B experiment are presented. These include a Grad-Shafranov equilibrium solver and equilibrium reconstruction from flux-loop measurements, collision radiative models for plasma spectroscopy (determination of electron density and temperature from line ratios) and fast ion test particle codes for neutral beam - plasma coupling. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  7. Recoil-ion momentum distributions for transfer ionization in fast proton-He collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, H.T.; Reinhed, P.; Schuch, R.

    2005-07-15

    We present high-luminosity experimental investigations of the transfer ionization (TI:p+He{yields}H{sup 0}+He{sup 2+}+e{sup -}) process in collisions between fast protons and neutral helium atoms in the earlier inaccessibly high-energy range 1.4-5.8 MeV. The protons were stored in the heavy-ion storage and cooler ring CRYRING, where they intersected a narrow supersonic helium gas jet. We discuss the longitudinal recoil-ion momentum distribution, as measured by means of cold-target recoil-ion momentum spectroscopy and find that this distribution splits into two completely separated peaks at the high end of our energy range. These separate contributions are discussed in terms of the earlier proposed Thomas TImore » (TTI) and kinematic TI mechansims. The cross section of the TTI process is found to follow a {sigma}{proportional_to}v{sup -b} dependence with b=10.78{+-}0.27 in accordance with the expected v{sup -11} asymptotic behavior. Further, we discuss the probability for shake-off accompanying electron transfer and the relation of this TI mechanism to photodouble ionization. Finally the influence of the initial-state electron velocity distribution on the TTI process is discussed.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, J. J.; Huang, Y. F., E-mail: hyf@nju.edu.cn

    Fast radio bursts (FRBs) are newly discovered radio transient sources. Their high dispersion measures indicate an extragalactic origin. However, due to the lack of observational data in other wavelengths, their progenitors still remain unclear. Here we suggest that the collisions between neutron stars (NSs) and asteroids/comets are promising mechanisms for FRBs. During the impact process, a hot plasma fireball forms after the material of the small body penetrates into the NS surface. The ionized matter inside the fireball then expands along the magnetic field lines. Coherent radiation from the thin shell at the top of the fireball will account formore » the observed FRBs. Our scenario can reasonably explain the main features of FRBs, such as their durations, luminosities, and the event rate. We argue that for a single NS, FRBs are not likely to happen repeatedly in a forseeable timespan since such impacts are of low probability. We predict that faint remnant X-ray emissions should be associated with FRBs, but it may be too faint to be detected by detectors at work.« less

  9. Squeezed Back-to-Back Correlation of {D}^{0}{\\bar{D}}^{0} in Relativistic Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Yang, Ai-Geng; Zhang, Yong; Cheng, Luan; Sun, Hao; Zhang, Wei-Ning

    2018-05-01

    We investigate the squeezed back-to-back correlation (BBC) of $D^0\\!{\\bar D}^0$ in relativistic heavy-ion collisions, using the in-medium mass modification calculated with a self-energy in hot pion gas and the source space-time distributions provided by the viscous hydrodynamic code VISH2+1. It is found that the BBC of $D^0\\!{\\bar D}^0$ is significant in peripheral Au+Au collisions at the RHIC energy. A possible way to detect the BBC in experiment is presented.

  10. Collision avoidance in TV white spaces: a cross-layer design approach for cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Foukalas, Fotis; Karetsos, George T.

    2015-07-01

    One of the most promising applications of cognitive radio networks (CRNs) is the efficient exploitation of TV white spaces (TVWSs) for enhancing the performance of wireless networks. In this paper, we propose a cross-layer design (CLD) of carrier sense multiple access with collision avoidance (CSMA/CA) mechanism at the medium access control (MAC) layer with spectrum sensing (SpSe) at the physical layer, for identifying the occupancy status of TV bands. The proposed CLD relies on a Markov chain model with a state pair containing both the SpSe and the CSMA/CA from which we derive the collision probability and the achievable throughput. Analytical and simulation results are obtained for different collision avoidance and SpSe implementation scenarios by varying the contention window, back off stage and probability of detection. The obtained results depict the achievable throughput under different collision avoidance and SpSe implementation scenarios indicating thereby the performance of collision avoidance in TVWSs-based CRNs.

  11. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions.

  12. Acoustic signal detection of manatee calls

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-04-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disc. The detection method that provides the best overall performance is able to correctly identify ~=96% of the manatee vocalizations. However the system also results in a false positive rate of ~=16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  13. Acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-09-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disk. The detection method that provides the best overall performance is able to correctly identify ~96% of the manatee vocalizations. However, the system also results in a false alarm rate of ~16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  14. Small-size pedestrian detection in large scene based on fast R-CNN

    NASA Astrophysics Data System (ADS)

    Wang, Shengke; Yang, Na; Duan, Lianghua; Liu, Lu; Dong, Junyu

    2018-04-01

    Pedestrian detection is a canonical sub-problem of object detection with high demand during recent years. Although recent deep learning object detectors such as Fast/Faster R-CNN have shown excellent performance for general object detection, they have limited success for small size pedestrian detection in large-view scene. We study that the insufficient resolution of feature maps lead to the unsatisfactory accuracy when handling small instances. In this paper, we investigate issues involving Fast R-CNN for pedestrian detection. Driven by the observations, we propose a very simple but effective baseline for pedestrian detection based on Fast R-CNN, employing the DPM detector to generate proposals for accuracy, and training a fast R-CNN style network to jointly optimize small size pedestrian detection with skip connection concatenating feature from different layers to solving coarseness of feature maps. And the accuracy is improved in our research for small size pedestrian detection in the real large scene.

  15. Subthreshold neutron interrogator for detection of radioactive materials

    DOEpatents

    Evans, Michael L.; Menlove, Howard O.; Baker, Michael P.

    1980-01-01

    A device for detecting fissionable material such as uranium in low concentrations by interrogating with photoneutrons at energy levels below 500 keV, and typically about 26 keV. Induced fast neutrons having energies above 500 keV by the interrogated fissionable material are detected by a liquid scintillator or recoil proportional counter which is sensitive to the induced fast neutrons. Since the induced fast neutrons are proportional to the concentration of fissionable material, detection of induced fast neutrons indicate concentration of the fissionable material.

  16. Auditory displays as occasion setters.

    PubMed

    Mckeown, Denis; Isherwood, Sarah; Conway, Gareth

    2010-02-01

    The aim of this study was to evaluate whether representational sounds that capture the richness of experience of a collision enhance performance in braking to avoid a collision relative to other forms of warnings in a driving simulator. There is increasing interest in auditory warnings that are informative about their referents. But as well as providing information about some intended object, warnings may be designed to set the occasion for a rich body of information about the outcomes of behavior in a particular context. These richly informative warnings may offer performance advantages, as they may be rapidly processed by users. An auditory occasion setter for a collision (a recording of screeching brakes indicating imminent collision) was compared with two other auditory warnings (an abstract and an "environmental" sound), a speech message, a visual display, and no warning in a fixed-base driving simulator as interfaces to a collision avoidance system. The main measure was braking response times at each of two headways (1.5 s and 3 s) to a lead vehicle. The occasion setter demonstrated statistically significantly faster braking responses at each headway in 8 out of 10 comparisons (with braking responses equally fast to the abstract warning at 1.5 s and the environmental warning at 3 s). Auditory displays that set the occasion for an outcome in a particular setting and for particular behaviors may offer small but critical performance enhancements in time-critical applications. The occasion setter could be applied in settings where speed of response by users is of the essence.

  17. TU-FG-201-07: Development of SRS Conical Collimator Collision Prediction Software for Radiation Treatment Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutti, V; Morrow, A; Kim, S

    Purpose: Stereotactic radiosurgery (SRS) treatments using conical collimators can potentially result in gantry collision with treatment table due to limited collision-clear spaces. An in-house software was developed to help the SRS treatment planner mitigate potential SRS conical collimator (Varian Medical System, Palo Alto, CA) collisions with the treatment table. This software was designed to remove treatment re-planning secondary to unexpected collisions. Methods: A BrainLAB SRS ICT Frameless Extension used for SRS treatments in our clinic was mathematically modelled using surface points registered to the 3D co-ordinate space of the couch extension. The surface points are transformed based on the treatmentmore » isocenter point and potential collisions are determined in 3D space for couch and gantry angle combinations. The distance between the SRS conical collimators and LINAC isocenter is known. The collision detection model was programmed in MATLAB (Mathwork, Natick, MA) to display graphical plots of the calculations, and the plotted data is used to avoid the gantry and couch angle combinations that would likely result in a collision. We have utilized the cone collision tool for 23 SRS cone treatment plans (8 retrospective and 15 prospective for 10 patients). Results: Twenty one plans strongly agreed with the software tool prediction for collision. However, in two plans, a collision was observed with a 0.5 cm margin when the software predicted no collision. Therefore, additional margins were added to the clearance criteria in the program to achieve a lower risk of actual collisions. Conclusion: Our in-house developed collision check software successfully avoided SRS cone re-planning by 91.3% due to a reduction in cone collisions with the treatment table. Future developments to our software will include a CT image data set based collision prediction model as well as a beam angle optimization tool to avoid normal critical tissues as well as previously treated lesions.« less

  18. Massive Smash-up at Vega Artist Concept

    NASA Image and Video Library

    2005-01-10

    This artist concept illustrates how a massive collision of objects perhaps as large as the planet Pluto smashed together to create the dust ring around the nearby star Vega. New observations from NASA's Spitzer Space Telescope indicate the collision took place within the last one million years. Astronomers think that embryonic planets smashed together, shattered into pieces, and repeatedly crashed into other fragments to create ever finer debris. In the image, a collision is seen between massive objects that measured up to 2,000 kilometers (about 1,200 miles) in diameter. Scientists say the big collision initiated subsequent collisions that created dust particles around the star that were a few microns in size. Vega's intense light blew these fine particles to larger distances from the star, and also warmed them to emit heat radiation that can be detected by Spitzer's infrared detectors. http://photojournal.jpl.nasa.gov/catalog/PIA07217

  19. Orogeny can be very short

    PubMed Central

    Dewey, John F.

    2005-01-01

    In contrast to continent/continent collision, arc–continent collision generates very short-lived orogeny because the buoyancy-driven impedance of the subduction of continental lithosphere, accompanied by arc/suprasubduction-zone ophiolite obduction, is relieved by subduction polarity reversal (flip). This tectonic principle is illustrated by the early Ordovician Grampian Orogeny in the British and Irish Caledonides, in which a wealth of detailed sedimentologic, heavy mineral, and geochronologic data pin the Orogeny to a very short Arenig/Llanvirn event. The Orogeny, from the initial subduction of continental margin sediments to the end of postflip shortening, lasted ≈18 million years (my). The collisional shortening, prograde-metamorphic phase of the Orogeny lasted 8 my, extensional collapse and exhumation of midcrustal rocks lasted 1.5 my, and postflip shortening lasted 4.5 my. Strain rates were a typical plate-boundary-zone 10-15. Metamorphism, to the second sillimanite isograd, with extensive partial melting, occurred within a few my after initial collision, indicating that conductive models for metamorphic heat transfer in Barrovian terrains are incorrect and must be replaced by advective models in which large volumes of mafic/ultramafic magma are emplaced, syn-tectonically, below and into evolving nappe stacks. Arc/continent collision generates fast and very short orogeny, regional metamorphism, and exhumation. PMID:16126898

  20. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  1. Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China

    PubMed Central

    Fan, Yaxin; Zhu, Xinyan; Guo, Wei; Guo, Tao

    2018-01-01

    The analysis of traffic collisions is essential for urban safety and the sustainable development of the urban environment. Reducing the road traffic injuries and the financial losses caused by collisions is the most important goal of traffic management. In addition, traffic collisions are a major cause of traffic congestion, which is a serious issue that affects everyone in the society. Therefore, traffic collision analysis is essential for all parties, including drivers, pedestrians, and traffic officers, to understand the road risks at a finer spatio-temporal scale. However, traffic collisions in the urban context are dynamic and complex. Thus, it is important to detect how the collision hotspots evolve over time through spatio-temporal clustering analysis. In addition, traffic collisions are not isolated events in space. The characteristics of the traffic collisions and their surrounding locations also present an influence of the clusters. This work tries to explore the spatio-temporal clustering patterns of traffic collisions by combining a set of network-constrained methods. These methods were tested using the traffic collision data in Jianghan District of Wuhan, China. The results demonstrated that these methods offer different perspectives of the spatio-temporal clustering patterns. The weighted network kernel density estimation provides an intuitive way to incorporate attribute information. The network cross K-function shows that there are varying clustering tendencies between traffic collisions and different types of POIs. The proposed network differential Local Moran’s I and network local indicators of mobility association provide straightforward and quantitative measures of the hotspot changes. This case study shows that these methods could help researchers, practitioners, and policy-makers to better understand the spatio-temporal clustering patterns of traffic collisions. PMID:29672551

  2. A dynamical study on extrasolar comets

    NASA Astrophysics Data System (ADS)

    Loibnegger, B.; Dvorak, R.

    2017-09-01

    Since the detection of absorption features in spectra of beta Pictoris varying on short time scales it is known that comets exist in other stellar systems. We investigate the dynamics of comets in two differently build systems (HD 10180 and HIP 14810). The outcomes of the scattering process, as there are collisions with the planets, captures and ejections from the systems are analysed statistically. Collisions and close encounters with the planets are investigated in more detail in order to conclude about transport of water and organic material. We will also investigate the possibility of detection of comets in other planetary systems.

  3. CUDA-based real time surgery simulation.

    PubMed

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  4. Mechanisms underlying cognitive conspicuity in the detection of cyclists by car drivers.

    PubMed

    Rogé, Joceline; Ndiaye, Daniel; Aillerie, Isabelle; Aillerie, Stéphane; Navarro, Jordan; Vienne, Fabrice

    2017-07-01

    The aim of this study was to evaluate the visibility of cyclists for motorists in a simulated car driving task. In several cases involving collisions between cars and cyclists, car drivers failed to detect the latter in time to avoid collision because of their low conspicuity. 2 groups of motorists (29.2 years old), including 12 cyclist-motorists and 13 non-cyclist-motorists, performed a vulnerable road user detection task in a car-driving simulator. They had to detect cyclists and pedestrians in an urban setting and evaluate the realism of the cyclists, the traffic, the city, the infrastructure, the car driven and the situations. Cyclists appeared in critical situations derived from previous accounts given by injured cyclists and from cyclists' observations in real-life situations. Cyclist's levels of visibility for car drivers were either high or low in these situations according to the cyclists. Realism scores were similar and high in both groups. Cyclist-motorists had fewer collisions with cyclists and detected cyclists at a greater distance in all situations, irrespective of cyclist visibility. Several mechanisms underlying the cognitive conspicuity of cyclists for car drivers were considered. The attentional selection of a cyclist in the road environment during car driving depends on top-down processing. We consider the practical implications of these results for the safety of vulnerable road users and future directions of research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Electron-Molecule Col1isions: Quantitative Approaches, and the Legacy of Aaron Temkin

    NASA Technical Reports Server (NTRS)

    Schneider, B.I.

    2007-01-01

    This article, on electron-molecule collisions, is dedicated to the legacy of my good friend and sometime collaborator, Aaron Temkin on his retirement from the NASA-Goddard Space Flight Center after many years of work at the highest intellectual level in the theoretical treatment of electron-atom and electron-molecule scattering. Aaron's contributions to the manner in which we think about electron-molecule collisions is clear to all of us who have worked in this field. I doubt that the great progress that has occurred in the computational treatment of such complex collision problems could have happened without these contributions. For a brief historical account, see the discussion of Temkin's contribution to electron-molecule scattering in the first article of this volume by Dr. A. K. Bhatia. In this article, I will concentrate on the application of the so called, non-adiabatic R-matrix theory, to vibrational excitation and dissociative attachment, although I will also present some results applying the Linear Algebraic and Kohn-Variational methods to vibrational excitation. As a starting point for almost all computationally effective approaches to electron-molecule collisions, is the fixed nuclei approximation. That is, one recognizes, just as one does with molecular bound states, that there is a separation of electronic(fast) and nuclear(s1ow) degrees of freedom. This separation makes it possible to "freeze" the nuclei in space, calculate the collision parameters for the frozen molecule and then, somehow to add back the vibrations and rotations. The manner in which this is done, depends on the details of the collision problem. It is the work of Aaron and a number of other researchers that has provided the guidance necessary to resolve these issues.

  6. A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics

    DTIC Science & Technology

    2017-06-15

    Validation against experimental data •Nonequilibrium radiation transport: coupling with a collisional-radiative model •Inelastic collisions in a MF...for Public Release; Distribution is Unlimited. PA# 17383 Collisional Radiative (CR) Overview Updates • Investigated Quasi -Steady-State • Investigated...Techniques Quasi Stead-State (QSS) • Assumes fast kinetics between states within an ion distribution • Assumes longer diffusion/decay times than

  7. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-06-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. .

  8. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. Practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrowband signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat.

  9. Virtual reality-based navigation task to reveal obstacle avoidance performance in individuals with visuospatial neglect.

    PubMed

    Aravind, Gayatri; Darekar, Anuja; Fung, Joyce; Lamontagne, Anouk

    2015-03-01

    Persons with post-stroke visuospatial neglect (VSN) often collide with moving obstacles while walking. It is not well understood whether the collisions occur as a result of attentional-perceptual deficits caused by VSN or due to post-stroke locomotor deficits. We assessed individuals with VSN on a seated, joystick-driven obstacle avoidance task, thus eliminating the influence of locomotion. Twelve participants with VSN were tested on obstacle detection and obstacle avoidance tasks in a virtual environment that included three obstacles approaching head-on or 30 (°) contralesionally/ipsilesionally. Our results indicate that in the detection task, the contralesional and head-on obstacles were detected at closer proximities compared to the ipsilesional obstacle. For the avoidance task collisions were observed only for the contralesional and head-on obstacle approaches. For the contralesional obstacle approach, participants initiated their avoidance strategies at smaller distances from the obstacle and maintained smaller minimum distances from the obstacles. The distance at detection showed a negative association with the distance at the onset of avoidance strategy for all three obstacle approaches. We conclusion the observation of collisions with contralesional and head-on obstacles, in the absence of locomotor burden, provides evidence that attentional-perceptual deficits due to VSN, independent of post-stroke locomotor deficits, alter obstacle avoidance abilities.

  10. Tracking colliding cells in vivo microscopy.

    PubMed

    Nguyen, Nhat H; Keller, Steven; Norris, Eric; Huynh, Toan T; Clemens, Mark G; Shin, Min C

    2011-08-01

    Leukocyte motion represents an important component in the innate immune response to infection. Intravital microscopy is a powerful tool as it enables in vivo imaging of leukocyte motion. Under inflammatory conditions, leukocytes may exhibit various motion behaviors, such as flowing, rolling, and adhering. With many leukocytes moving at a wide range of speeds, collisions occur. These collisions result in abrupt changes in the motion and appearance of leukocytes. Manual analysis is tedious, error prone,time consuming, and could introduce technician-related bias. Automatic tracking is also challenging due to the noise inherent in in vivo images and abrupt changes in motion and appearance due to collision. This paper presents a method to automatically track multiple cells undergoing collisions by modeling the appearance and motion for each collision state and testing collision hypotheses of possible transitions between states. The tracking results are demonstrated using in vivo intravital microscopy image sequences.We demonstrate that 1)71% of colliding cells are correctly tracked; (2) the improvement of the proposed method is enhanced when the duration of collision increases; and (3) given good detection results, the proposed method can correctly track 88% of colliding cells. The method minimizes the tracking failures under collisions and, therefore, allows more robust analysis in the study of leukocyte behaviors responding to inflammatory conditions.

  11. Very fast motion planning for highly dexterous-articulated robots

    NASA Technical Reports Server (NTRS)

    Challou, Daniel J.; Gini, Maria; Kumar, Vipin

    1994-01-01

    Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.

  12. A General Simulation Method for Multiple Bodies in Proximate Flight

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    2003-01-01

    Methods of unsteady aerodynamic simulation for an arbitrary number of independent bodies flying in close proximity are considered. A novel method to efficiently detect collision contact points is described. A method to compute body trajectories in response to aerodynamic loads, applied loads, and inter-body collisions is also given. The physical correctness of the methods are verified by comparison to a set of analytic solutions. The methods, combined with a Navier-Stokes solver, are used to demonstrate the possibility of predicting the unsteady aerodynamics and flight trajectories of moving bodies that involve rigid-body collisions.

  13. An Intelligent Robotic Hospital Bed for Safe Transportation of Critical Neurosurgery Patients Along Crowded Hospital Corridors.

    PubMed

    Wang, Chao; Savkin, Andrey V; Clout, Ray; Nguyen, Hung T

    2015-09-01

    We present a novel design of an intelligent robotic hospital bed, named Flexbed, with autonomous navigation ability. The robotic bed is developed for fast and safe transportation of critical neurosurgery patients without changing beds. Flexbed is more efficient and safe during the transportation process comparing to the conventional hospital beds. Flexbed is able to avoid en-route obstacles with an efficient easy-to-implement collision avoidance strategy when an obstacle is nearby and to move towards its destination at maximum speed when there is no threat of collision. We present extensive simulation results of navigation of Flexbed in the crowded hospital corridor environments with moving obstacles. Moreover, results of experiments with Flexbed in the real world scenarios are also presented and discussed.

  14. Cluster formation in nuclear reactions from mean-field inhomogeneities

    NASA Astrophysics Data System (ADS)

    Napolitani, Paolo; Colonna, Maria; Mancini-Terracciano, Carlo

    2018-05-01

    Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbation, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10 ‑ 21s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which in its latest development unifies in a common approach the description of fluctuations in nuclear matter, and a predictive description of the disintegration of nuclei into nuclear fragments. After a theoretical introduction, a few practical examples will be illustrated. This paper resumes the extended analysis of fluctuations in nuclear matter of ref. [2] and briefly reviews applications to heavy-ion collisions.

  15. The 'shoulder' and the 'ridge' in PHENIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCumber, M. P.; Awes, Terry C; Cianciolo, Vince

    2008-01-01

    The observation of jet quenching in ultra-relativistic heavy ion collisions demonstrates significant energy loss of fast partons when passing through the created medium. Correlations between final-state particles at intermediate transverse momentum (1.0 {approx}< p{sub T} {approx}< 4.0 GeV/c) allow for study of the medium and its response to deposited energy. Comparison of these measurements in heavy ion collisions with measurements in proton collisions show strong modification of the correlation shape and particle yields. Two new structures are created, both extended in {Delta}{eta}, one centered at {Delta}{phi} = 0 ('ridge') and the other occurring at {Delta}{phi} {approx} {pi} {+-} 1.1 ('shoulder').more » In these proceedings, we describe the measurements of these structures that show consistency with a scenario of parton-medium interaction and response. We discuss a new analysis which selects on the angle of trigger particles relative to the reaction plane in Run7. New measurements of the centrality and p{sub T} dependencies of the structures raise the possibility that the same production mechanism may give rise to both phenomena.« less

  16. Experiments on 1,000 km/s flyer acceleration and collisions

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Serlin, V.; Obenschain, S. P.

    2012-10-01

    We will present results from follow-on experiments to the record-high velocities achieved using the ultra-uniform deep-uv drive of the Nike KrF laser [Karasik et al, Phys. Plasmas 17, 056317 (2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ˜1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Such velocities may indicate a path to lower minimum energy required for central ignition. Still higher velocities and higher target densities are required for impact fast ignition. New results give velocity of >1,100 km/s achieved through improvements in pulseshaping. Variation of second foil parameters results in significant change in fusion neutron production on impact. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Availability of pressures generated by collisions of such highly accelerated flyers may provide an experimental platform for study of matter at extreme conditions. Work is supported by US DOE (NNSA).

  17. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator.

    PubMed

    Cowan, T E; Fuchs, J; Ruhl, H; Kemp, A; Audebert, P; Roth, M; Stephens, R; Barton, I; Blazevic, A; Brambrink, E; Cobble, J; Fernández, J; Gauthier, J-C; Geissel, M; Hegelich, M; Kaae, J; Karsch, S; Le Sage, G P; Letzring, S; Manclossi, M; Meyroneinc, S; Newkirk, A; Pépin, H; Renard-LeGalloudec, N

    2004-05-21

    The laminarity of high-current multi-MeV proton beams produced by irradiating thin metallic foils with ultraintense lasers has been measured. For proton energies >10 MeV, the transverse and longitudinal emittance are, respectively, <0.004 mm mrad and <10(-4) eV s, i.e., at least 100-fold and may be as much as 10(4)-fold better than conventional accelerator beams. The fast acceleration being electrostatic from an initially cold surface, only collisions with the accelerating fast electrons appear to limit the beam laminarity. The ion beam source size is measured to be <15 microm (FWHM) for proton energies >10 MeV.

  18. Detection of Orbital Debris Collision Risks for the Automated Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Peret, L.; Legendre, P.; Delavault, S.; Martin, T.

    2007-01-01

    In this paper, we present a general collision risk assessment method, which has been applied through numerical simulations to the Automated Transfer Vehicle (ATV) case. During ATV ascent towards the International Space Station, close approaches between the ATV and objects of the USSTRACOM catalog will be monitored through collision rosk assessment. Usually, collision risk assessment relies on an exclusion volume or a probability threshold method. Probability methods are more effective than exclusion volumes but require accurate covariance data. In this work, we propose to use a criterion defined by an adaptive exclusion area. This criterion does not require any probability calculation but is more effective than exclusion volume methods as demonstrated by our numerical experiments. The results of these studies, when confirmed and finalized, will be used for the ATV operations.

  19. Quantitative detection of nitric oxide in exhaled human breath by extractive electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, Susu; Tian, Yong; Li, Ming; Zhao, Jiuyan; Zhu, Lanlan; Zhang, Wei; Gu, Haiwei; Wang, Haidong; Shi, Jianbo; Fang, Xiang; Li, Penghui; Chen, Huanwen

    2015-03-01

    Exhaled nitric oxide (eNO) is a useful biomarker of various physiological conditions, including asthma and other pulmonary diseases. Herein a fast and sensitive analytical method has been developed for the quantitative detection of eNO based on extractive electrospray ionization mass spectrometry (EESI-MS). Exhaled NO molecules selectively reacted with 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reagent, and eNO concentration was derived based on the EESI-MS response of 1-oxyl-2-phenyl-4, 4, 5, 5-tetramethylimidazoline (PTI) product. The method allowed quantification of eNO below ppb level (~0.02 ppbv) with a relative standard deviation (RSD) of 11.6%. In addition, eNO levels of 20 volunteers were monitored by EESI-MS over the time period of 10 hrs. Long-term eNO response to smoking a cigarette was recorded, and the observed time-dependent profile was discussed. This work extends the application of EESI-MS to small molecules (<30 Da) with low proton affinity and collision-induced dissociation efficiency, which are usually poorly visible by conventional ion trap mass spectrometers. Long-term quantitative profiling of eNO by EESI-MS opens new possibilities for the research of human metabolism and clinical diagnosis.

  20. Non-Invasive Detection of Respiration and Heart Rate with a Vehicle Seat Sensor.

    PubMed

    Wusk, Grace; Gabler, Hampton

    2018-05-08

    This study demonstrates the feasibility of using a seat sensor designed for occupant classification from a production passenger vehicle to measure an occupant’s respiration rate (RR) and heart rate (HR) in a laboratory setting. Relaying occupant vital signs after a crash could improve emergency response by adding a direct measure of the occupant state to an Advanced Automatic Collision Notification (AACN) system. Data was collected from eleven participants with body weights ranging from 42 to 91 kg using a Ford Mustang passenger seat and seat sensor. Using a ballistocardiography (BCG) approach, the data was processed by time domain filtering and frequency domain analysis using the fast Fourier transform to yield RR and HR in a 1-min sliding window. Resting rates over the 30-min data collection and continuous RR and HR signals were compared to laboratory physiological instruments using the Bland-Altman approach. Differences between the seat sensor and reference sensor were within 5 breaths per minute for resting RR and within 15 beats per minute for resting HR. The time series comparisons for RR and HR were promising with the frequency analysis technique outperforming the peak detection technique. However, future work is necessary for more accurate and reliable real-time monitoring of RR and HR outside the laboratory setting.

  1. Whisker Contact Detection of Rodents Based on Slow and Fast Mechanical Inputs

    PubMed Central

    Claverie, Laure N.; Boubenec, Yves; Debrégeas, Georges; Prevost, Alexis M.; Wandersman, Elie

    2017-01-01

    Rodents use their whiskers to locate nearby objects with an extreme precision. To perform such tasks, they need to detect whisker/object contacts with a high temporal accuracy. This contact detection is conveyed by classes of mechanoreceptors whose neural activity is sensitive to either slow or fast time varying mechanical stresses acting at the base of the whiskers. We developed a biomimetic approach to separate and characterize slow quasi-static and fast vibrational stress signals acting on a whisker base in realistic exploratory phases, using experiments on both real and artificial whiskers. Both slow and fast mechanical inputs are successfully captured using a mechanical model of the whisker. We present and discuss consequences of the whisking process in purely mechanical terms and hypothesize that free whisking in air sets a mechanical threshold for contact detection. The time resolution and robustness of the contact detection strategies based on either slow or fast stress signals are determined. Contact detection based on the vibrational signal is faster and more robust to exploratory conditions than the slow quasi-static component, although both slow/fast components allow localizing the object. PMID:28119582

  2. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.

  3. A novel guidance law using fast terminal sliding mode control with impact angle constraints.

    PubMed

    Sun, Lianghua; Wang, Weihong; Yi, Ran; Xiong, Shaofeng

    2016-09-01

    This paper is concerned with the question of, for a missile interception with impact angle constraints, how to design a guidance law. Firstly, missile interception with impact angle constraints is modeled; secondly, a novel guidance law using fast terminal sliding mode control based on extended state observer is proposed to optimize the trajectory and time of interception; finally, for stationary targets, constant velocity targets and maneuvering targets, the guidance law and the stability of the closed loop system is analyzed and the stability of the closed loop system is analyzed, respectively. Simulation results show that when missile and target are on a collision course, the novel guidance law using fast terminal sliding mode control with extended state observer has more optimized trajectory and effectively reduces the time of interception which has a great significance in modern warfare. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Warning systems evaluation for overhead clearance detection : final report.

    DOT National Transportation Integrated Search

    2017-02-01

    This study reports on off-the-shelf systems designed to detect the heights of vehicles to minimize or eliminate collisions with roadway bridges. Implemented systems were identified, reviewed, and compared and relatively inexpensive options recommende...

  5. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.

    PubMed

    Li, Hua; Wan, Wen-Jian; Tan, Zhi-Yong; Fu, Zhang-Long; Wang, Hai-Xia; Zhou, Tao; Li, Zi-Ping; Wang, Chang; Guo, Xu-Guang; Cao, Jun-Cheng

    2017-06-14

    The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e., pyroelectric sensors and bolometers. This class of terahertz detectors is normally characterized by low modulation frequency (dozens or hundreds of Hz). Here we demonstrate the first fast semiconductor-based terahertz quantum well photodetectors by carefully designing the device structure and microwave transmission line for high frequency signal extraction. Modulation response bandwidth of gigahertz level is obtained. As an example, the 6.2-GHz modulated terahertz light emitted from a Fabry-Pérot terahertz quantum cascade laser is successfully detected using the fast terahertz quantum well photodetector. In addition to the fast terahertz detection, the technique presented in this work can also be used for optically characterizing the frequency stability of terahertz quantum cascade lasers, heterodyne detections and photomixing applications.

  6. Fast computation of close-coupling exchange integrals using polynomials in a tree representation

    NASA Astrophysics Data System (ADS)

    Wallerberger, Markus; Igenbergs, Katharina; Schweinzer, Josef; Aumayr, Friedrich

    2011-03-01

    The semi-classical atomic-orbital close-coupling method is a well-known approach for the calculation of cross sections in ion-atom collisions. It strongly relies on the fast and stable computation of exchange integrals. We present an upgrade to earlier implementations of the Fourier-transform method. For this purpose, we implement an extensive library for symbolic storage of polynomials, relying on sophisticated tree structures to allow fast manipulation and numerically stable evaluation. Using this library, we considerably speed up creation and computation of exchange integrals. This enables us to compute cross sections for more complex collision systems. Program summaryProgram title: TXINT Catalogue identifier: AEHS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12 332 No. of bytes in distributed program, including test data, etc.: 157 086 Distribution format: tar.gz Programming language: Fortran 95 Computer: All with a Fortran 95 compiler Operating system: All with a Fortran 95 compiler RAM: Depends heavily on input, usually less than 100 MiB Classification: 16.10 Nature of problem: Analytical calculation of one- and two-center exchange matrix elements for the close-coupling method in the impact parameter model. Solution method: Similar to the code of Hansen and Dubois [1], we use the Fourier-transform method suggested by Shakeshaft [2] to compute the integrals. However, we heavily speed up the calculation using a library for symbolic manipulation of polynomials. Restrictions: We restrict ourselves to a defined collision system in the impact parameter model. Unusual features: A library for symbolic manipulation of polynomials, where polynomials are stored in a space-saving left-child right-sibling binary tree. This provides stable numerical evaluation and fast mutation while maintaining full compatibility with the original code. Additional comments: This program makes heavy use of the new features provided by the Fortran 90 standard, most prominently pointers, derived types and allocatable structures and a small portion of Fortran 95. Only newer compilers support these features. Following compilers support all features needed by the program. GNU Fortran Compiler "gfortran" from version 4.3.0 GNU Fortran 95 Compiler "g95" from version 4.2.0 Intel Fortran Compiler "ifort" from version 11.0

  7. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole.

  8. Obstacle detection by recognizing binary expansion patterns

    NASA Technical Reports Server (NTRS)

    Baram, Yoram; Barniv, Yair

    1993-01-01

    This paper describes a technique for obstacle detection, based on the expansion of the image-plane projection of a textured object, as its distance from the sensor decreases. Information is conveyed by vectors whose components represent first-order temporal and spatial derivatives of the image intensity, which are related to the time to collision through the local divergence. Such vectors may be characterized as patterns corresponding to 'safe' or 'dangerous' situations. We show that essential information is conveyed by single-bit vector components, representing the signs of the relevant derivatives. We use two recently developed, high capacity classifiers, employing neural learning techniques, to recognize the imminence of collision from such patterns.

  9. Collision Avoidance for Airport Traffic Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III; Otero, Sharon D.; Barker, Glover D.

    2009-01-01

    An initial Collision Avoidance for Airport Traffic (CAAT) concept for the Terminal Maneuvering Area (TMA) was evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. CAAT is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate the initial concept for an aircraft-based method of conflict detection and resolution (CD&R) in the TMA focusing on conflict detection algorithms and alerting display concepts. This paper gives an overview of the CD&R concept, simulation study, and test results.

  10. Algorithms for Collision Detection Between a Point and a Moving Polygon, with Applications to Aircraft Weather Avoidance

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony; Hagen, George

    2016-01-01

    This paper proposes mathematical definitions of functions that can be used to detect future collisions between a point and a moving polygon. The intended application is weather avoidance, where the given point represents an aircraft and bounding polygons are chosen to model regions with bad weather. Other applications could possibly include avoiding other moving obstacles. The motivation for the functions presented here is safety, and therefore they have been proved to be mathematically correct. The functions are being developed for inclusion in NASA's Stratway software tool, which allows low-fidelity air traffic management concepts to be easily prototyped and quickly tested.

  11. Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane.

    PubMed Central

    Kawasaki, K; Yin, J J; Subczynski, W K; Hyde, J S; Kusumi, A

    2001-01-01

    A pulse saturation-recovery electron paramagnetic resonance (EPR) method has been developed that allows estimation of the exchange rates of a spin-labeled lipid between the bulk domain and the protein-rich membrane domain, in which the rate of collision between the spin label and molecular oxygen is reduced (slow-oxygen transport domain, or SLOT domain). It is based on the measurements of saturation-recovery signals of a lipid spin label as a function of concentrations of both molecular oxygen and the spin label. Influenza viral membrane, one of the simplest paradigms for the study of biomembranes, showed the presence of two membrane domains with slow and fast collision rates with oxygen (a 16-fold difference) at 30 degrees C. The outbound rate from and the inbound rate into the SLOT domain (or possibly the rate of the domain disintegration and formation) were estimated to be 7.7 x 10(4) and 4.6 x 10(4) s(-1), (15 micros residency time), respectively, indicating that the SLOT domain is highly dynamic and that the entire SLOT domain represents about one-third of the membrane area. Because the oxygen transport rate in the SLOT domain is a factor of two smaller than that in purple membrane, where bacteriorhodopsin is aggregated, we propose that the SLOT domain in the viral membrane is the cholesterol-rich raft domain stabilized by the trimers of hemagglutinin and/or the tetramers of neuraminidase. PMID:11159441

  12. a Time-Dependent Many-Electron Approach to Atomic and Molecular Interactions

    NASA Astrophysics Data System (ADS)

    Runge, Keith

    A new methodology is developed for the description of electronic rearrangement in atomic and molecular collisions. Using the eikonal representation of the total wavefunction, time -dependent equations are derived for the electronic densities within the time-dependent Hartree-Fock approximation. An averaged effective potential which ensures time reversal invariance is used to describe the effect of the fast electronic transitions on the slower nuclear motions. Electron translation factors (ETF) are introduced to eliminate spurious asymptotic couplings, and a local ETF is incorporated into a basis of traveling atomic orbitals. A reference density is used to describe local electronic relaxation and to account for the time propagation of fast and slow motions, and is shown to lead to an efficient integration scheme. Expressions for time-dependent electronic populations and polarization parameters are given. Electronic integrals over Gaussians including ETFs are derived to extend electronic state calculations to dynamical phenomena. Results of the method are in good agreement with experimental data for charge transfer integral cross sections over a projectile energy range of three orders of magnitude in the proton-Hydrogen atom system. The more demanding calculations of integral alignment, state-to-state integral cross sections, and differential cross sections are found to agree well with experimental data provided care is taken to include ETFs in the calculation of electronic integrals and to choose the appropriate effective potential. The method is found to be in good agreement with experimental data for the calculation of charge transfer integral cross sections and state-to-state integral cross sections in the one-electron heteronuclear Helium(2+)-Hydrogen atom system and in the two-electron system, Hydrogen atom-Hydrogen atom. Time-dependent electronic populations are seen to oscillate rapidly in the midst of collision event. In particular, multiple exchanges of the electron are seen to occur in the proton-Hydrogen atom system at low collision energies. The concepts and results derived from the approach provide new insight into the dynamics of nuclear screening and electronic rearrangement in atomic collisions.

  13. The dynamical evolution of transiting planetary systems including a realistic collision prescription

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders

    2018-05-01

    Planet-planet collisions are a common outcome of instability in systems of transiting planets close to the star, as well as occurring during in-situ formation of such planets from embryos. Previous N-body studies of instability amongst transiting planets have assumed that collisions result in perfect merging. Here, we explore the effects of implementing a more realistic collision prescription on the outcomes of instability and in-situ formation at orbital radii of a few tenths of an au. There is a strong effect on the outcome of the growth of planetary embryos, so long as the debris thrown off in collisions is rapidly removed from the system (which happens by collisional processing to dust, and then removal by radiation forces) and embryos are small (<0.1 M⊕). If this is the case, then systems form fewer detectable (≥1 M⊕) planets than systems evolved under the assumption of perfect merging in collisions. This provides some contribution to the "Kepler Dichotomy": the observed over-abundance of single-planet systems. The effects of changing the collision prescription on unstable mature systems of super-Earths are less pronounced. Perfect mergers only account for a minority of collision outcomes in such systems, but most collisions resulting in mass loss are grazing impacts in which only a few per cent. of mass is lost. As a result, there is little impact on the final masses and multiplicities of the systems after instability when compared to systems evolved under the assumption that collisions always result in perfect merging.

  14. Effects of retarded electrical fields on observables sensitive to the high-density behavior of the nuclear symmetry energy in heavy-ion collisions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Wei, Gao-Feng; Li, Bao-An; Yong, Gao-Chan; Ou, Li; Cao, Xin-Wei; Liu, Xu-Yang

    2018-03-01

    Within the isospin- and momentum-dependent transport model IBUU11, we examine the relativistic retardation effects of electrical fields on the π-/π+ ratio and neutron-proton differential transverse flow in heavy-ion collisions at intermediate energies. Compared to the static Coulomb fields, the retarded electric fields of fast-moving charges are known to be anisotropic and the associated relativistic corrections can be significant. They are found to increase the number of energetic protons in the participant region at the maximum compression by as much as 25% but that of energetic neutrons by less than 10% in 197Au+197Au reactions at a beam energy of 400 MeV/nucleon. Consequently, more π+ and relatively fewer π- mesons are produced, leading to an appreciable reduction of the π-/π+ ratio compared to calculations with the static Coulomb fields. Also, the neutron-proton differential transverse flow, as another sensitive probe of high-density symmetry energy, is also decreased appreciably due to the stronger retarded electrical fields in directions perpendicular to the velocities of fast-moving charges compared to calculations using the isotropic static electrical fields. Moreover, the retardation effects on these observables are found to be approximately independent of the reaction impact parameter.

  15. Observation of CH A 2X 2Πr and 2Σ--->X 2Πr emissions in gas-phase collisions of fast O(3P) atoms with acetylene

    NASA Astrophysics Data System (ADS)

    Orient, O. J.; Chutjian, A.; Murad, E.

    1995-03-01

    Optical emissions in single-collision, beam-beam reactions of fast (3-22-eV translational energy) O(3P) atoms with C2H2 have been measured in the wavelength range 300-850 nm. Two features were observed, one with a peak wavelength at 431 nm, corresponding to the CH A 2X 2Πr transition, and a second weaker emission in the range 380-400 nm corresponding to the B 2Σ--->X 2Πr transition. Both the A-->X and B-->X emissions were fit to a synthetic spectrum of CH(A) at a vibrational temperature Tv of 10 000 K (0.86 eV) and a rotational temperature Tr of approximately 5000 K (0.43 eV); and CH(B) to Tv=2500 K (0.22 eV) and Tr=1000 K (0.09 eV). The energy threshold for the A-->X emission was measured to be 7.3+/-0.4 eV (lab) or 4.5+/-0.2 eV (c.m.). This agrees with the energy threshold of 7.36 eV (lab) for the reaction O(3P)+C2H2-->CH(A)+HCO.

  16. Driving With Hemianopia: III. Detection of Stationary and Approaching Pedestrians in a Simulator

    PubMed Central

    Alberti, Concetta F.; Peli, Eli; Bowers, Alex R.

    2014-01-01

    Purpose. To compare blind-side detection performance of drivers with homonymous hemianopia (HH) for stationary and approaching pedestrians, initially appearing at small (4°) or large (14°) eccentricities in a driving simulator. While the stationary pedestrians did not represent an imminent threat, as their eccentricity increased rapidly as the vehicle advanced, the approaching pedestrians maintained a collision course with approximately constant eccentricity, walking or running, toward the travel lane as if to cross. Methods. Twelve participants with complete HH and without spatial neglect pressed the horn whenever they detected a pedestrian while driving along predetermined routes in two driving simulator sessions. Miss rates and reaction times were analyzed for 52 stationary and 52 approaching pedestrians. Results. Miss rates were higher and reaction times longer on the blind than the seeing side (P < 0.01). On the blind side, miss rates were lower for approaching than stationary pedestrians (16% vs. 29%, P = 0.01), especially at larger eccentricities (20% vs. 54%, P = 0.005), but reaction times for approaching pedestrians were longer (1.72 vs. 1.41 seconds; P = 0.03). Overall, the proportion of potential blind-side collisions (missed and late responses) was not different for the two paradigms (41% vs. 35%, P = 0.48), and significantly higher than for the seeing side (3%, P = 0.002). Conclusions. In a realistic pedestrian detection task, drivers with HH exhibited significant blind-side detection deficits. Even when approaching pedestrians were detected, responses were often too late to avoid a potential collision. PMID:24346175

  17. Mass spectrometry detection and imaging of inorganic and organic explosive device signatures using desorption electro-flow focusing ionization.

    PubMed

    Forbes, Thomas P; Sisco, Edward

    2014-08-05

    We demonstrate the coupling of desorption electro-flow focusing ionization (DEFFI) with in-source collision induced dissociation (CID) for the mass spectrometric (MS) detection and imaging of explosive device components, including both inorganic and organic explosives and energetic materials. We utilize in-source CID to enhance ion collisions with atmospheric gas, thereby reducing adducts and minimizing organic contaminants. Optimization of the MS signal response as a function of in-source CID potential demonstrated contrasting trends for the detection of inorganic and organic explosive device components. DEFFI-MS and in-source CID enabled isotopic and molecular speciation of inorganic components, providing further physicochemical information. The developed system facilitated the direct detection and chemical mapping of trace analytes collected with Nomex swabs and spatially resolved distributions within artificial fingerprints from forensic lift tape. The results presented here provide the forensic and security sectors a powerful tool for the detection, chemical imaging, and inorganic speciation of explosives device signatures.

  18. Assessment of IVHS countermeasures for collision avoidance : rear-end crashes

    DOT National Transportation Integrated Search

    1993-05-01

    This report describe an analysis of the application of Intelligent : Vehicle Highway System (IVHS) technology to the reduction of rear-end crashes. The : principal countermeasure concept examined is a headway detection (HD) system that : would detect...

  19. Total Probability of Collision as a Metric for Finite Conjunction Assessment and Collision Risk Management

    NASA Technical Reports Server (NTRS)

    Frigm, Ryan C.; Hejduk, Matthew D.; Johnson, Lauren C.; Plakalovic, Dragan

    2015-01-01

    On-orbit collision risk is becoming an increasing mission risk to all operational satellites in Earth orbit. Managing this risk can be disruptive to mission and operations, present challenges for decision-makers, and is time-consuming for all parties involved. With the planned capability improvements to detecting and tracking smaller orbital debris and capacity improvements to routinely predict on-orbit conjunctions, this mission risk will continue to grow in terms of likelihood and effort. It is very real possibility that the future space environment will not allow collision risk management and mission operations to be conducted in the same manner as it is today. This paper presents the concept of a finite conjunction assessment-one where each discrete conjunction is not treated separately but, rather, as a continuous event that must be managed concurrently. The paper also introduces the Total Probability of Collision as an analogous metric for finite conjunction assessment operations and provides several options for its usage in a Concept of Operations.

  20. Strangeness Production in the ALICE Experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Johnson, Harold; Fenner, Kiara; Harton, Austin; Garcia-Solis, Edmundo; Soltz, Ron

    2015-04-01

    The study of strange particle production is an important tool in understanding the properties of a hot and dense medium, the quark-gluon plasma, created in heavy-ion collisions at ultra-relativistic energies. This quark-gluon plasma (QGP) is believed to have been present just after the big bang. The standard model of physics contains six types of quarks. Strange quarks are not among the valence quarks found in protons and neutrons. Strange quark production is sensitive to the extremely high temperatures of the QGP. CERN's Large Hadron Collider accelerates particles to nearly the speed of light before colliding them to create this QGP state. In the results of high-energy particle collisions, hadrons are formed out of quarks and gluons when cooling from extremely high temperatures. Jets are a highly collimated cone of particles coming from the hadronization of a single quark or gluon. Understanding jet interactions may give us clues about the QGP. Using FastJet (a popular jet finder algorithm), we extracted strangeness, or strange particle characteristics of jets contained within proton-proton collisions during our research at CERN. We have identified jets with and without strange particles in proton-proton collisions and we will present a comparison of pT spectra in both cases. This material is based upon work supported by the National Science Foundation under grants PHY-1305280 and PHY-1407051.

  1. Malingering and PTSD: detecting malingering and war related PTSD by Miller Forensic Assessment of Symptoms Test (M-FAST).

    PubMed

    Ahmadi, Khodabakhsh; Lashani, Zeynab; Afzali, Mohammad Hassan; Tavalaie, S Abbas; Mirzaee, Jafar

    2013-05-29

    Malingering is prevalent in PTSD, especially in delayed-onset PTSD. Despite the attempts to detect it, indicators, tools and methods to accurately detect malingering need extensive scientific and clinical research. Therefore, this study was designed to validate a tool that can detect malingering of war-related PTSD by Miller Forensic Assessment of Symptoms Test (M-FAST). In this blind clinical diagnosis study, one hundred and twenty veterans referred to War Related PTSD Diagnosis Committee in Iran in 2011 were enrolled. In the first step, the clients received Psychiatry diagnosis and were divided into two groups based on the DSM-IV-TR, and in the second step, the participants completed M-FAST. The t-test score within two groups by M-FAST Scale showed a significant difference (t = 14.058, P < 0.0001), and 92% of malingering war-related PTSD participants scored more than 6 and %87 of PTSD group scored less than 6 in M-FAST Scale. M-FAST showed a significant difference between war-related PTSD and malingering participants. The ≥6 score cutoff was suggested by M-FAST to detect malingering of war-related PTSD.

  2. Development of an in-vehicle intersection collision countermeasure

    NASA Astrophysics Data System (ADS)

    Pierowicz, John A.

    1997-02-01

    Intersection collisions constitute approximately twenty-six percent of all accidents in the United States. Because of their complexity, and demands on the perceptual and decision making abilities of the driver, intersections present an increased risk of collisions between automobiles. This situation provides an opportunity to apply advanced sensor and processing capabilities to prevent these collisions. A program to determine the characteristics of intersection collisions and identify potential countermeasures will be described. This program, sponsored by the National Highway Traffic Safety Administration, utilized accident data to develop a taxonomy of intersection crashes. This taxonomy was used to develop a concept for an intersection collision avoidance countermeasure. The concept utilizes in-vehicle position, dynamic status, and millimeter wave radar system and an in-vehicle computer system to provide inputs to an intersection collision avoidance algorithm. Detection of potential violation of traffic control device, or proceeding into the intersection with inadequate gap will lead to the presentation of a warning to the driver. These warnings are presented to the driver primarily via a head-up display and haptic feedback. Roadside to vehicle communication provides information regarding phased traffic signal information. Active control of the vehicle's brake and steering systems are described. Progress in the development of the systems will be presented along with the schedule of future activities.

  3. Wald Sequential Probability Ratio Test for Space Object Conjunction Assessment

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Markley, F Landis

    2014-01-01

    This paper shows how satellite owner/operators may use sequential estimates of collision probability, along with a prior assessment of the base risk of collision, in a compound hypothesis ratio test to inform decisions concerning collision risk mitigation maneuvers. The compound hypothesis test reduces to a simple probability ratio test, which appears to be a novel result. The test satisfies tolerances related to targeted false alarm and missed detection rates. This result is independent of the method one uses to compute the probability density that one integrates to compute collision probability. A well-established test case from the literature shows that this test yields acceptable results within the constraints of a typical operational conjunction assessment decision timeline. Another example illustrates the use of the test in a practical conjunction assessment scenario based on operations of the International Space Station.

  4. Collision management utilizing CCD and remote sensing technology

    NASA Technical Reports Server (NTRS)

    Mcdaniel, Harvey E., Jr.

    1995-01-01

    With the threat of damage to aerospace systems (space station, shuttle, hypersonic a/c, solar power satellites, loss of life, etc.) from collision with debris (manmade/artificial), there exists an opportunity for the design of a novel system (collision avoidance) to be incorporated into the overall design. While incorporating techniques from ccd and remote sensing technologies, an integrated system utilized in the infrared/visible spectrum for detection, tracking, localization, and maneuvering from doppler shift measurements is achievable. Other analysis such as impact assessment, station keeping, chemical, and optical tracking/fire control solutions are possible through this system. Utilizing modified field programmable gated arrays (software reconfiguring the hardware) the mission and mission effectiveness can be varied. This paper outlines the theoretical operation of a prototype system as it applies to collision avoidance (to be followed up by research).

  5. STCA, TCAS, Airproxes and Collision Risk

    NASA Astrophysics Data System (ADS)

    Brooker, Peter

    2005-09-01

    The focus here is on the performance of and interaction between the Traffic Alert and Collision Avoidance System (TCAS) and the controller's short-term conflict alert (STCA) system. The data source used is UK Airprox Board Reports of close encounters between aircraft, and the focus is on commercial air transport aircraft using UK controlled airspace with a radar service. Do the systems work well together? Are controllers surprised when they find out that a pilot has received a TCAS resolution advisory? What do TCAS and STCA events say about collision risk? Generally, the systems seem to work together well. On most occasions, controllers are not surprised by TCAS advisories: either they have detected the problem themselves or STCA has alerted them to it. The statistically expected rate of future mid-air collisions is estimated by extrapolation of Airprox closest encounter distances.

  6. Approach to thermal equilibrium in atomic collisions.

    PubMed

    Zhang, P; Kharchenko, V; Dalgarno, A; Matsumi, Y; Nakayama, T; Takahashi, K

    2008-03-14

    The energy relaxation of fast atoms moving in a thermal bath gas is explored experimentally and theoretically. Two time scales characterize the equilibration, one a short time, in which the isotropic energy distribution profile relaxes to a Maxwellian shape at some intermediate effective temperature, and the second, a longer time in which the relaxation preserves a Maxwellian distribution and its effective temperature decreases continuously to the bath gas temperature. The formation and preservation of a Maxwellian distribution does not depend on the projectile to bath gas atom mass ratio. This two-stage behavior arises due to the dominance of small angle scattering and small energy transfer in the collisions of neutral particles. Measurements of the evolving Doppler profiles of emission from excited initially energetic nitrogen atoms traversing bath gases of helium and argon confirm the theoretical predictions.

  7. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole. These are alternate targets.

  8. Measurement of WZ and ZZ production in pp collisions at $$\\sqrt{s} = 8\\,\\text {TeV} $$ in final states with b-tagged jets

    DOE PAGES

    Chatrchyan, Serguei

    2014-08-07

    Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions atmore » $$\\sqrt{s}$$ = 8 TeV in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either $$W \\to e\

  9. ATLAS fast physics monitoring: TADA

    NASA Astrophysics Data System (ADS)

    Sabato, G.; Elsing, M.; Gumpert, C.; Kamioka, S.; Moyse, E.; Nairz, A.; Eifert, T.; ATLAS Collaboration

    2017-10-01

    The ATLAS experiment at the LHC has been recording data from proton-proton collisions with 13 TeV center-of-mass energy since spring 2015. The collaboration is using a fast physics monitoring framework (TADA) to automatically perform a broad range of fast searches for early signs of new physics and to monitor the data quality across the year with the full analysis level calibrations applied to the rapidly growing data. TADA is designed to provide fast feedback directly after the collected data has been fully calibrated and processed at the Tier-0. The system can monitor a large range of physics channels, offline data quality and physics performance quantities. TADA output is available on a website accessible by the whole collaboration. It gets updated twice a day with the data from newly processed runs. Hints of potentially interesting physics signals or performance issues identified in this way are reported to be followed up by physics or combined performance groups. The note reports as well about the technical aspects of TADA: the software structure to obtain the input TAG files, the framework workflow and structure, the webpage and its implementation.

  10. Odds of observing the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlen, A.

    2010-03-15

    Eternal inflation predicts that our observable universe lies within a bubble (or pocket universe) embedded in a volume of inflating space. The interior of the bubble undergoes inflation and standard cosmology, while the bubble walls expand outward and collide with other neighboring bubbles. The collisions provide either an opportunity to make a direct observation of the multiverse or, if they produce unacceptable anisotropy, a threat to inflationary theory. The probability of an observer in our bubble detecting the effects of collisions has an absolute upper bound set by the odds of being in the part of our bubble that liesmore » in the forward light cone of a collision; in the case of collisions with bubbles of identical vacua, this bound is given by the bubble nucleation rate times (H{sub O}/H{sub I}){sup 2}, where H{sub O} is the Hubble scale outside the bubbles and H{sub I} is the scale of the second round of inflation that occurs inside our bubble. Similar results were obtained by Freigovel et al. using a different method for the case of collisions with bubbles of much larger cosmological constant; here, it is shown to hold in the case of collisions with identical bubbles as well.« less

  11. Fast Flux Watch: A mechanism for online detection of fast flux networks.

    PubMed

    Al-Duwairi, Basheer N; Al-Hammouri, Ahmad T

    2014-07-01

    Fast flux networks represent a special type of botnets that are used to provide highly available web services to a backend server, which usually hosts malicious content. Detection of fast flux networks continues to be a challenging issue because of the similar behavior between these networks and other legitimate infrastructures, such as CDNs and server farms. This paper proposes Fast Flux Watch (FF-Watch), a mechanism for online detection of fast flux agents. FF-Watch is envisioned to exist as a software agent at leaf routers that connect stub networks to the Internet. The core mechanism of FF-Watch is based on the inherent feature of fast flux networks: flux agents within stub networks take the role of relaying client requests to point-of-sale websites of spam campaigns. The main idea of FF-Watch is to correlate incoming TCP connection requests to flux agents within a stub network with outgoing TCP connection requests from the same agents to the point-of-sale website. Theoretical and traffic trace driven analysis shows that the proposed mechanism can be utilized to efficiently detect fast flux agents within a stub network.

  12. GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application

    PubMed Central

    Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto

    2017-01-01

    The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision. PMID:29186851

  13. GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application.

    PubMed

    Sun, Rui; Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto

    2017-11-25

    The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision.

  14. Real causes of apparent abnormal results in heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; De Leo, V.; Fazio, G.; Giardina, G.

    2015-06-01

    We study the effect of the static characteristics of nuclei and dynamics of the nucleus-nucleus interaction in the capture stage of reaction, in the competition between quasifission and complete fusion processes, as well as the angular momentum dependence of the competition between fission and evaporation processes along the de-excitation cascade of the compound nucleus. The results calculated for the mass-asymmetric and less mass-asymmetric reactions in the entrance channel are analyzed in order to investigate the role of the dynamical effects on the yields of the evaporation residue nuclei. We also discuss about uncertainties at the extraction of such relevant physical quantities as Γn/Γtot ratio or also excitation functions from the experimental results due to the not always realistic assumptions in the treatment and analysis of the detected events. This procedure can lead to large ambiguity when the complete fusion process is strongly hindered or when the fast fission contribution is large. We emphasize that a refined multiparameter model of the reaction dynamics as well as a more detailed and checked data analysis are strongly needed in heavy-ion collisions.

  15. Formation of long-lived CDn2+ and CHn2+ dications

    NASA Astrophysics Data System (ADS)

    Levy, Y.; Bar-David, A.; Ben-Itzhak, I.; Gertner, I.; Rosner, B.

    1999-08-01

    A systematic study of the formation of CDn2+ and CHn2+ dications in fast charge-stripping collisions with Ar atoms was conducted. The experimental method was based on the detection of the D (or H) fragments of the molecular ion of interest, and thus reducing the effect of the fraction of molecular ions containing the 13C isotope and other beam impurities. We observed long-lived CD22+, CD42+, and CD52+ dications. In the same process neither long-lived CD2+ nor CD32+ were observed. The mean lifetime of CD22+ was determined to be 4.0±1.11.3 µs, and those of CD42+ and CD52+ were longer than 2.1 and 3.3 µs, respectively. The production cross sections of CDn2+ from different CDm+ beams were measured. Long-lived CD22+ was formed from all CDm+ beams (micons/Journals/Common/geq" ALT="geq" ALIGN="TOP"/>2) and also directly from the rf ion source. In contrast, CD42+ and CD52+ were formed only from CD4+ and CD5+, respectively.

  16. Sci-Thur PM – Brachytherapy 01: Fast brachytherapy dose calculations: Characterization of egs-brachy features to enhance simulation efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberland, Marc; Taylor, Randle E.P.; Rogers, Da

    2016-08-15

    Purpose: egs-brachy is a fast, new EGSnrc user-code for brachytherapy applications. This study characterizes egs-brachy features that enhance simulation efficiency. Methods: Calculations are performed to characterize efficiency gains from various features. Simulations include radionuclide and miniature x-ray tube sources in water phantoms and idealized prostate, breast, and eye plaque treatments. Features characterized include voxel indexing of sources to reduce boundary checks during radiation transport, scoring collision kerma via tracklength estimator, recycling photons emitted from sources, and using phase space data to initiate simulations. Bremsstrahlung cross section enhancement (BCSE), uniform bremsstrahlung splitting (UBS), and Russian Roulette (RR) are considered for electronicmore » brachytherapy. Results: Efficiency is enhanced by a factor of up to 300 using tracklength versus interaction scoring of collision kerma and by up to 2.7 and 2.6 using phase space sources and particle recycling respectively compared to simulations in which particles are initiated within sources. On a single 2.5 GHz Intel Xeon E5-2680 processor cor, simulations approximating prostate and breast permanent implant ((2 mm){sup 3} voxels) and eye plaque ((1 mm){sup 3}) treatments take as little as 9 s (prostate, eye) and up to 31 s (breast) to achieve 2% statistical uncertainty on doses within the PTV. For electronic brachytherapy, BCSE, UBS, and RR enhance efficiency by a factor >2000 compared to a factor of >10{sup 4} using a phase space source. Conclusion: egs-brachy features provide substantial efficiency gains, resulting in calculation times sufficiently fast for full Monte Carlo simulations for routine brachytherapy treatment planning.« less

  17. Collision count in rugby union: A comparison of micro-technology and video analysis methods.

    PubMed

    Reardon, Cillian; Tobin, Daniel P; Tierney, Peter; Delahunt, Eamonn

    2017-10-01

    The aim of our study was to determine if there is a role for manipulation of g force thresholds acquired via micro-technology for accurately detecting collisions in rugby union. In total, 36 players were recruited from an elite Guinness Pro12 rugby union team. Player movement profiles and collisions were acquired via individual global positioning system (GPS) micro-technology units. Players were assigned to a sub-category of positions in order to determine positional collision demands. The coding of collisions by micro-technology at g force thresholds between 2 and 5.5 g (0.5 g increments) was compared with collision coding by an expert video analyst using Bland-Altman assessments. The most appropriate g force threshold (smallest mean difference compared with video analyst coding) was lower for all forwards positions (2.5 g) than for all backs positions (3.5 g). The Bland-Altman 95% limits of agreement indicated that there may be a substantial over- or underestimation of collisions coded via GPS micro-technology when using expert video analyst coding as the reference comparator. The manipulation of the g force thresholds applied to data acquired by GPS micro-technology units based on incremental thresholds of 0.5 g does not provide a reliable tool for the accurate coding of collisions in rugby union. Future research should aim to investigate smaller g force threshold increments and determine the events that cause coding of false positives.

  18. Derivation of the collision probability between orbiting objects The lifetimes of Jupiter's outer moons

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1981-01-01

    A general form is derived for Opik's equations relating to the probability of collision between two orbiting objects to their orbital elements, and used to determine the collisional lifetime of the eight outer moons of Jupiter. The derivation is based on a concept of spatial density, or average number of objects found in a unit volume, and results in a set of equations that are easily applied to a variety of orbital collision problems. When applied to the outer satellites, which are all in irregular orbits, the equations predict a relatively long collisional lifetime for the four retrograde moons (about 270 billon years on the average) and a shorter time for the four posigrade moons (0.9 billion years). This short time is suggestive of a past collision history, and may account for the orbiting dust detected by Pioneers 10 and 11.

  19. Earthquake detection through computationally efficient similarity search

    PubMed Central

    Yoon, Clara E.; O’Reilly, Ossian; Bergen, Karianne J.; Beroza, Gregory C.

    2015-01-01

    Seismology is experiencing rapid growth in the quantity of data, which has outpaced the development of processing algorithms. Earthquake detection—identification of seismic events in continuous data—is a fundamental operation for observational seismology. We developed an efficient method to detect earthquakes using waveform similarity that overcomes the disadvantages of existing detection methods. Our method, called Fingerprint And Similarity Thresholding (FAST), can analyze a week of continuous seismic waveform data in less than 2 hours, or 140 times faster than autocorrelation. FAST adapts a data mining algorithm, originally designed to identify similar audio clips within large databases; it first creates compact “fingerprints” of waveforms by extracting key discriminative features, then groups similar fingerprints together within a database to facilitate fast, scalable search for similar fingerprint pairs, and finally generates a list of earthquake detections. FAST detected most (21 of 24) cataloged earthquakes and 68 uncataloged earthquakes in 1 week of continuous data from a station located near the Calaveras Fault in central California, achieving detection performance comparable to that of autocorrelation, with some additional false detections. FAST is expected to realize its full potential when applied to extremely long duration data sets over a distributed network of seismic stations. The widespread application of FAST has the potential to aid in the discovery of unexpected seismic signals, improve seismic monitoring, and promote a greater understanding of a variety of earthquake processes. PMID:26665176

  20. Monte Carlo Perturbation Theory Estimates of Sensitivities to System Dimensions

    DOE PAGES

    Burke, Timothy P.; Kiedrowski, Brian C.

    2017-12-11

    Here, Monte Carlo methods are developed using adjoint-based perturbation theory and the differential operator method to compute the sensitivities of the k-eigenvalue, linear functions of the flux (reaction rates), and bilinear functions of the forward and adjoint flux (kinetics parameters) to system dimensions for uniform expansions or contractions. The calculation of sensitivities to system dimensions requires computing scattering and fission sources at material interfaces using collisions occurring at the interface—which is a set of events with infinitesimal probability. Kernel density estimators are used to estimate the source at interfaces using collisions occurring near the interface. The methods for computing sensitivitiesmore » of linear and bilinear ratios are derived using the differential operator method and adjoint-based perturbation theory and are shown to be equivalent to methods previously developed using a collision history–based approach. The methods for determining sensitivities to system dimensions are tested on a series of fast, intermediate, and thermal critical benchmarks as well as a pressurized water reactor benchmark problem with iterated fission probability used for adjoint-weighting. The estimators are shown to agree within 5% and 3σ of reference solutions obtained using direct perturbations with central differences for the majority of test problems.« less

  1. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    PubMed

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  2. A real-time robot arm collision detection system

    NASA Technical Reports Server (NTRS)

    Shaffer, Clifford A.; Herb, Gregory M.

    1990-01-01

    A data structure and update algorithm are presented for a prototype real time collision detection safety system for a multi-robot environment. The data structure is a variant of the octree, which serves as a spatial index. An octree recursively decomposes 3-D space into eight equal cubic octants until each octant meets some decomposition criteria. The octree stores cylspheres (cylinders with spheres on each end) and rectangular solids as primitives (other primitives can easily be added as required). These primitives make up the two seven degrees-of-freedom robot arms and environment modeled by the system. Octree nodes containing more than a predetermined number N of primitives are decomposed. This rule keeps the octree small, as the entire environment for the application can be modeled using a few dozen primitives. As robot arms move, the octree is updated to reflect their changed positions. During most update cycles, any given primitive does not change which octree nodes it is in. Thus, modification to the octree is rarely required. Incidents in which one robot arm comes too close to another arm or an object are reported. Cycle time for interpreting current joint angles, updating the octree, and detecting/reporting imminent collisions averages 30 milliseconds on an Intel 80386 processor running at 20 MHz.

  3. Avian collision risk at an offshore wind farm

    PubMed Central

    Desholm, Mark; Kahlert, Johnny

    2005-01-01

    We have been the first to investigate whether long-lived geese and ducks can detect and avoid a large offshore wind farm by tracking their diurnal migration patterns with radar. We found that the percentage of flocks entering the wind farm area decreased significantly (by a factor 4.5) from pre-construction to initial operation. At night, migrating flocks were more prone to enter the wind farm but counteracted the higher risk of collision in the dark by increasing their distance from individual turbines and flying in the corridors between turbines. Overall, less than 1% of the ducks and geese migrated close enough to the turbines to be at any risk of collision. PMID:17148191

  4. Avian collision risk at an offshore wind farm.

    PubMed

    Desholm, Mark; Kahlert, Johnny

    2005-09-22

    We have been the first to investigate whether long-lived geese and ducks can detect and avoid a large offshore wind farm by tracking their diurnal migration patterns with radar. We found that the percentage of flocks entering the wind farm area decreased significantly (by a factor 4.5) from pre-construction to initial operation. At night, migrating flocks were more prone to enter the wind farm but counteracted the higher risk of collision in the dark by increasing their distance from individual turbines and flying in the corridors between turbines. Overall, less than 1% of the ducks and geese migrated close enough to the turbines to be at any risk of collision.

  5. Less efficient oculomotor performance is associated with increased incidence of head impacts in high school ice hockey.

    PubMed

    Kiefer, Adam W; DiCesare, Christopher; Nalepka, Patrick; Foss, Kim Barber; Thomas, Staci; Myer, Gregory D

    2018-01-01

    To evaluate associations between pre-season oculomotor performance on visual tracking tasks and in-season head impact incidence during high school boys ice hockey. Prospective observational study design. Fifteen healthy high school aged male hockey athletes (M=16.50±1.17years) performed two 30s blocks each of a prosaccade and self-paced saccade task, and two trials each of a slow, medium, and fast smooth pursuit task (90°s -1 ; 180°s -1 ; 360°s -1 ) during the pre-season. Regular season in-game collision data were collected via helmet-mounted accelerometers. Simple linear regressions were used to examine relations between oculomotor performance measures and collision incidence at various impact thresholds. The variability of prosaccade latency was positively related to total collisions for the 20g force cutoff (p=0.046, adjusted R 2 =0.28). The average self-paced saccade velocity (p=0.020, adjusted R 2 =0.37) and variability of smooth pursuit gaze velocity (p=0.012, adjusted R 2 =0.47) were also positively associated with total collisions for the 50g force cutoff. These results provide preliminary evidence that less efficient oculomotor performance on three different oculomotor tasks is associated with increased incidence of head impacts during a competitive ice hockey season. The variability of prosaccade latency, the average self-paced saccade velocity and the variability of gaze velocity during predictable smooth pursuit all related to increased head impacts. Future work is needed to further understand player initiated collisions, but this is an important first step toward understanding strategies to reduce incidence of injury risk in ice hockey, and potentially contact sports more generally. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Rapid glucosinolate detection and identification using accurate mass MS-MS

    USDA-ARS?s Scientific Manuscript database

    Currently, there is a demand for accurate evaluation of brassica plat species for their glucosinolate content. An optimized method has been developed for detecting and identifying glucosinolates in plant extracts using MS-MS fragmentation with ion trap collision induced dissociation (CID) and higher...

  7. A TCAS-II Resolution Advisory Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Narkawicz, Anthony; Chamberlain, James

    2013-01-01

    The Traffic Alert and Collision Avoidance System (TCAS) is a family of airborne systems designed to reduce the risk of mid-air collisions between aircraft. TCASII, the current generation of TCAS devices, provides resolution advisories that direct pilots to maintain or increase vertical separation when aircraft distance and time parameters are beyond designed system thresholds. This paper presents a mathematical model of the TCASII Resolution Advisory (RA) logic that assumes accurate aircraft state information. Based on this model, an algorithm for RA detection is also presented. This algorithm is analogous to a conflict detection algorithm, but instead of predicting loss of separation, it predicts resolution advisories. It has been formally verified that for a kinematic model of aircraft trajectories, this algorithm completely and correctly characterizes all encounter geometries between two aircraft that lead to a resolution advisory within a given lookahead time interval. The RA detection algorithm proposed in this paper is a fundamental component of a NASA sense and avoid concept for the integration of Unmanned Aircraft Systems in civil airspace.

  8. Comparative Analysis of ACAS-Xu and DAIDALUS Detect-and-Avoid Systems

    NASA Technical Reports Server (NTRS)

    Davies, Jason T.; Wu, Minghong G.

    2018-01-01

    The Detect and Avoid (DAA) capability of a recent version (Run 3) of the Airborne Collision Avoidance System-Xu (ACAS-Xu) is measured against that of the Detect and AvoID Alerting Logic for Unmanned Systems (DAIDALUS), a reference algorithm for the Phase 1 Minimum Operational Performance Standards (MOPS) for DAA. This comparative analysis of the two systems' alerting and horizontal guidance outcomes is conducted through the lens of the Detect and Avoid mission using flight data of scripted encounters from a recent flight test. Results indicate comparable timelines and outcomes between ACAS-Xu's Remain Well Clear alert and guidance and DAIDALUS's corrective alert and guidance, although ACAS-Xu's guidance appears to be more conservative. ACAS-Xu's Collision Avoidance alert and guidance occurs later than DAIDALUS's warning alert and guidance, and overlaps with DAIDALUS's timeline of maneuver to remain Well Clear. Interesting discrepancies between ACAS-Xu's directive guidance and DAIDALUS's "Regain Well Clear" guidance occur in some scenarios.

  9. Interactive collision detection for deformable models using streaming AABBs.

    PubMed

    Zhang, Xinyu; Kim, Young J

    2007-01-01

    We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.

  10. Charge-dependent azimuthal correlations in pPb collisions with CMS experiment

    NASA Astrophysics Data System (ADS)

    Tu, Zhoudunming; CMS Collaboration

    2017-11-01

    Charge-dependent azimuthal correlations relative to the event plane in AA collisions have been suggested as providing evidence for the chiral magnetic effect (CME) caused by local strong parity violation. However, the observation of the CME remains inconclusive because of several possible sources of background correlations that may account for part or all of the observed signals. This talk will present the first application of three-particle, charge-dependent azimuthal correlation analysis in proton-nucleus collisions, using pPb data collected with the CMS experiment at the LHC at √{sNN} = 5.02 TeV. The differences found in comparing same and opposite sign correlations are studied as a function of event multiplicity and the pseudorapidity gap between two of the particles detected in the CMS tracker detector. After selecting events with comparable charge-particle multiplicities, the results for pPb collisions are found to be similar to those for PbPb collisions collected at the same collision energy. With a reduced magnetic field strength and a random field orientation in high multiplicity pPb events, the CME contribution to any charge separation signal is expected to be much smaller than found in peripheral PbPb events. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

  11. A new strategy for fast radiofrequency CW EPR imaging: Direct detection with rapid scan and rotating gradients

    PubMed Central

    Subramanian, Sankaran; Koscielniak, Janusz W.; Devasahayam, Nallathamby; Pursley, Randall H.; Pohida, Thomas J.; Krishna, Murali C.

    2007-01-01

    Rapid field scan on the order of T/s using high frequency sinusoidal or triangular sweep fields superimposed on the main Zeeman field, was used for direct detection of signals without low-frequency field modulation. Simultaneous application of space-encoding rotating field gradients have been employed to perform fast CW EPR imaging using direct detection that could, in principle, approach the speed of pulsed FT EPR imaging. The method takes advantage of the well-known rapid-scan strategy in CW NMR and EPR that allows arbitrarily fast field sweep and the simultaneous application of spinning gradients that allows fast spatial encoding. This leads to fast functional EPR imaging and, depending on the spin concentration, spectrometer sensitivity and detection band width, can provide improved temporal resolution that is important to interrogate dynamics of spin perfusion, pharmacokinetics, spectral spatial imaging, dynamic oxymetry, etc. PMID:17350865

  12. Robot body self-modeling algorithm: a collision-free motion planning approach for humanoids.

    PubMed

    Leylavi Shoushtari, Ali

    2016-01-01

    Motion planning for humanoid robots is one of the critical issues due to the high redundancy and theoretical and technical considerations e.g. stability, motion feasibility and collision avoidance. The strategies which central nervous system employs to plan, signal and control the human movements are a source of inspiration to deal with the mentioned problems. Self-modeling is a concept inspired by body self-awareness in human. In this research it is integrated in an optimal motion planning framework in order to detect and avoid collision of the manipulated object with the humanoid body during performing a dynamic task. Twelve parametric functions are designed as self-models to determine the boundary of humanoid's body. Later, the boundaries which mathematically defined by the self-models are employed to calculate the safe region for box to avoid the collision with the robot. Four different objective functions are employed in motion simulation to validate the robustness of algorithm under different dynamics. The results also confirm the collision avoidance, reality and stability of the predicted motion.

  13. Collision avoidance in space

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Cour-Palais, B. G.; Taylor, R. E.; Landry, P. M.

    1980-01-01

    Collisions in earth orbital space between operational payloads and various forms of space debris (nonoperational payloads, nonfunctional mission-related objects and fragments resulting from collisions and explosions) are discussed and possible means of avoiding them are considered. From 10,000 to 15,000 objects are estimated to be in earth orbital space, most of which represent spacecraft fragments and debris too small to be detected and tracked by earth-based sensors, and it is considered likely that some of them will be or have already been involved in direct collisions with the ever increasing number of operational satellites and space stations. Means of protecting proposed large space structures and smaller spacecraft from significant damage by larger space objects, particularly in the 400-4000 km altitude range where most debris occurs, include structural redundancy and the double shielding of sensitive components. Other means of collision avoidance are the collection or relocation of satellites, rocket bodies and other objects by the Space Shuttle, the prevention of explosions and the disposal of spent rocket parts by reentry. Finally, a management structure would be required to administer guidelines for the prevention and elimination of space debris.

  14. Defining the Collision Avoidance Region for DAA Systems

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Park, Chunki; Lee, Seung Man; Santiago, Confesor

    2016-01-01

    Unmanned aircraft systems (UAS) will be required to equip with a detect-­-and-­-avoid (DAA) system in order to satisfy the federal aviation regulations to maintain well clear of other aircraft, some of which may be equipped with a Traffic Collision Avoidance System (TCAS) to mitigate the possibility of mid-­-air collisions. As such, the minimum operational performance standards (MOPS) for UAS DAA systems are being designed with TCAS interoperability in mind by a group of industry, government, and academic institutions named RTCA Special Committee-228 (SC-228). This document will discuss the development of the spatial-­-temporal volume known as the collision avoidance region in which the DAA system is not allowed to provide vertical guidance to maintain or regain DAA well clear that could conflict with resolution advisories (RAs) issued by the intruder aircraft's TCAS system. Three collision avoidance region definition candidates were developed based on the existing TCAS RA and DAA alerting definitions. They were evaluated against each other in terms of their interoperability with TCAS RAs and DAA alerts in an unmitigated factorial encounter analysis of 1.3 million simulated pairs.

  15. Lightwave-driven quasiparticle collisions on a subcycle timescale

    NASA Astrophysics Data System (ADS)

    Langer, F.; Hohenleutner, M.; Schmid, C. P.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.

    2016-05-01

    Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances—called quasiparticles—such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.

  16. Lightwave-driven quasiparticle collisions on a subcycle timescale.

    PubMed

    Langer, F; Hohenleutner, M; Schmid, C P; Poellmann, C; Nagler, P; Korn, T; Schüller, C; Sherwin, M S; Huttner, U; Steiner, J T; Koch, S W; Kira, M; Huber, R

    2016-05-12

    Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances--called quasiparticles--such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.

  17. Wavelet based detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Gur, Berke M.; Niezrecki, Christopher

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. Several boater warning systems, based upon manatee vocalizations, have been proposed to reduce the number of collisions. Three detection methods based on the Fourier transform (threshold, harmonic content and autocorrelation methods) were previously suggested and tested. In the last decade, the wavelet transform has emerged as an alternative to the Fourier transform and has been successfully applied in various fields of science and engineering including the acoustic detection of dolphin vocalizations. As of yet, no prior research has been conducted in analyzing manatee vocalizations using the wavelet transform. Within this study, the wavelet transform is used as an alternative to the Fourier transform in detecting manatee vocalizations. The wavelet coefficients are analyzed and tested against a specified criterion to determine the existence of a manatee call. The performance of the method presented is tested on the same data previously used in the prior studies, and the results are compared. Preliminary results indicate that using the wavelet transform as a signal processing technique to detect manatee vocalizations shows great promise.

  18. Multifaceted metabolomics approaches for characterization of lignocellulosic biomass degradation products formed during ammonia fiber expansion pretreatment

    NASA Astrophysics Data System (ADS)

    Vismeh, Ramin

    Lignocellulosic biomass represents a rather unused resource for production of biofuels, and it offers an alternative to food sources including corn starch. However, structural and compositional impediments limit the digestibility of sugar polymers in biomass cell walls. Thermochemical pretreatments improve accessibility of cellulose and hemicellulose to hydrolytic enzymes. However, most pretreatment methods generate compounds that either inhibit enzymatic hydrolysis or exhibit toxicity to fermentive microorganisms. Characterization and quantification of these products are essential for understanding chemistry of the pretreatment and optimizing the process efficiency to achieve higher ethanol yields. Identification of oligosaccharides released during pretreatment is also critical for choosing hydrolases necessary for cost-effective hydrolysis of cellulose and hemicellulose to fermentable monomeric sugars. Two chapters in this dissertation describe new mass spectrometry-based strategies for characterization and quantification of products that are formed during ammonia fiber expansion (AFEX) pretreatment of corn stover. Comparison of Liquid Chromatography Mass Spectrometry (LC/MS) profiles of AFEX-treated corn stover (AFEXTCS) and untreated corn stover (UTCS) extract shows that ammonolysis of lignin carbohydrate ester linkages generates a suite of nitrogenous compounds that are present only in the AFEXTCS extract and represent a loss of ammonia during processing. Several of these products including acetamide, feruloyl, coumaroyl and diferuloyl amides were characterized and quantified in the AFEXTCS extracts. The total amount of characterized and uncharacterized phenolic amides measured 17.4 mg/g AFEXTCS. Maillard reaction products including pyrazines and imidazoles were also identified and measured in the AFEXTCS extract totaling almost 1 mg/g AFEXTCS. The total of quantified nitrogenous products that are formed during AFEX was 43.4 mg/g AFEXTCS which was equivalent to 45-50 % of ammonia that is lost during the pretreatment. Methodology for identification, detection and quantification of various diferulate cross-linkers in forms of Di-Acids (Di-Ac), Acid-Amide (Ac-Am), and Di-Amides (Di-Am) in AFEX and NaOH treated corn stover using ultrahigh performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) is presented. Characterization of isomeric diferulates was based on the distinguishing fragments formed upon collision induced dissociation (CID) of [M+H]+ ions of each diferulate isomer. LC separations combined with quasi-simultaneous acquisition of mass spectra at multiple collision energies provide fast spectrum acquisition using a time-of-flight (TOF) mass analyzer. This approach, called mux-CID, generates molecular and fragment ion mass information at different collision energies for molecular and adduct ions of oligosaccharides in a single analysis. Non-selective CID facilitated characterization of glucans and arabinoxylans in the AFEXTCS extracts. A LC/MS gradient based on multiplexed-CID detection was developed and applied to profile oligosaccharides in AFEXTCS extract. This method detected glucans with degree of polymerization (DP) from 2 to 22 after solid phase extraction (SPE) enrichment using porous graphitized carbon (PGC), which proved essential for recoveries of specific oligosaccharides. Arabinoxylans were also detected and partially characterized using this strategy after hydrolysis using xylanase. A relative quantification based on peak areas showed removal of almost 85% of the acetate esters of arabinoxylans after AFEX.

  19. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    PubMed

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  20. Ion-dust streaming instability with non-Maxwellian ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kählert, Hanno, E-mail: kaehlert@theo-physik.uni-kiel.de

    2015-07-15

    The influence of non-Maxwellian ions on the ion-dust streaming instability in a complex plasma is investigated. The ion susceptibility employed for the calculations self-consistently accounts for the acceleration of the ions by a homogeneous background electric field and their collisions with neutral gas particles via a Bhatnagar-Gross-Krook collision term [e.g., A. V. Ivlev et al., Phys. Rev. E 71, 016405 (2005)], leading to significant deviations from a shifted Maxwellian distribution. The dispersion relation and the properties of the most unstable mode are studied in detail and compared with the Maxwellian case. The largest deviations occur at low to intermediate ion-neutralmore » damping. In particular, the growth rate of the instability for ion streaming below the Bohm speed is found to be lower than in the case of Maxwellian ions, yet remains on a significant level even for fast ion flows above the Bohm speed.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Ung, E-mail: sunung@umich.edu; Monroe, Charles W., E-mail: cwmonroe@umich.edu

    The inverse problem of parameterizing intermolecular potentials given macroscopic transport and thermodynamic data is addressed. Procedures are developed to create arbitrary-precision algorithms for transport collision integrals, using the Lennard-Jones (12–6) potential as an example. Interpolation formulas are produced that compute these collision integrals to four-digit accuracy over the reduced-temperature range 0.3≤T{sup ⁎}≤400, allowing very fast computation. Lennard-Jones parameters for neon, argon, and krypton are determined by simultaneously fitting the observed temperature dependences of their viscosities and second virial coefficients—one of the first times that a thermodynamic and a dynamic property have been used simultaneously for Lennard-Jones parameterization. In addition tomore » matching viscosities and second virial coefficients within the bounds of experimental error, the determined Lennard-Jones parameters are also found to predict the thermal conductivity and self-diffusion coefficient accurately, supporting the value of the Lennard-Jones (12–6) potential for noble-gas transport-property correlation.« less

  2. Achievable space elevators for space transportation and starship acceleration

    NASA Technical Reports Server (NTRS)

    Pearson, Jerome

    1990-01-01

    Space elevator concepts for low-cost space launches are reviewed. Previous concepts suffered from requirements for ultra-high-strength materials, dynamically unstable systems, or from danger of collision with space debris. The use of magnetic grain streams solves these problems. Magnetic grain streams can support short space elevators for lifting payloads cheaply into Earth orbit, overcoming the material strength problem in building space elevators. Alternatively, the stream could support an international spaceport circling the Earth daily tens of miles above the equator, accessible to advanced aircraft. Mars could be equipped with a similar grain stream, using material from its moons Phobos and Deimos. Grain-stream arcs about the sun could be used for fast launches to the outer planets and for accelerating starships to near lightspeed for interstellar reconnaisance. Grain streams are essentially impervious to collisions, and could reduce the cost of space transportation by an order of magnitude.

  3. Structure of a magnetic flux annihilation layer formed by the collision of supersonic, magnetized plasma flows

    DOE PAGES

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; ...

    2016-05-31

    We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T i~¯ZT e, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilationmore » of the in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.« less

  4. Reducing the Handover Delay in FMIPv6 Using Proactive Care-of Address Scheme

    NASA Astrophysics Data System (ADS)

    Li, Yong; Jin, Depeng; Su, Li; Zeng, Lieguang

    To deal with the increasing number of mobile devices accessing the Internet and the increasing demands of mobility management, IETF has proposed Mobile IPv6 and its fast handover protocol FMIPv6. In FMIPv6, the possibility of Care-of Address (CoA) collision and the time for Return Routability (RR) procedure result in long handover delay, which makes it unsuitable for real-time applications. In this paper, we propose an improved handover scheme for FMIPv6, which reduces the handover delay by using proactive CoA acquisition, configuration and test method. In our proposal, collision-free CoA is proactively prepared, and the time for RR procedure does not contribute to the handover delay. Furthermore, we analyze our proposal's benefits and overhead tradeoff. The numerical results demonstrate that it outperforms the current schemes, such as FMIPv6 and enhanced FMIPv6, on the aspect of handover delay and packet transmission delay.

  5. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Auna L., E-mail: mosera@fusion.gat.com; Hsu, Scott C., E-mail: scotthsu@lanl.gov

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional andmore » the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  6. Structure of a magnetic flux annihilation layer formed by the collision of supersonic, magnetized plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.

    We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T i~¯ZT e, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilationmore » of the in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.« less

  7. Kinetic-energy release distributions of fragment anions from collisions of potassium atoms with D-Ribose and tetrahydrofuran*

    NASA Astrophysics Data System (ADS)

    Rebelo, André; Cunha, Tiago; Mendes, Mónica; da Silva, Filipe Ferreira; García, Gustavo; Limão-Vieira, Paulo

    2016-06-01

    Kinetic-energy release distributions have been obtained from the width and shapes of the time-of-flight (TOF) negative ion mass peaks formed in collisions of fast potassium atoms with D-Ribose (DR) and tetrahydrofuran (THF) molecules. Recent dissociative ion-pair formation experiments yielding anion formation have shown that the dominant fragment from D-Ribose is OH- [D. Almeida, F. Ferreira da Silva, G. García, P. Limão-Vieira, J. Chem. Phys. 139, 114304 (2013)] whereas in the case of THF is O- [D. Almeida, F. Ferreira da Silva, S. Eden, G. García, P. Limão-Vieira, J. Phys. Chem. A 118, 690 (2014)]. The results for DR and THF show an energy distribution profile reminiscent of statistical degradation via vibrational excitation and partly due to direct transformation of the excess energy in translational energy.

  8. Use of quadrupole time-of-flight mass spectrometry to determine proposed structures of transformation products of the herbicide bromacil after water chlorination.

    PubMed

    Ibáñez, María; Sancho, Juan V; Pozo, Oscar J; Hernández, Félix

    2011-10-30

    The herbicide bromacil has been extensively used in the Spanish Mediterranean region, and although plant protection products containing bromacil have been withdrawn by the European Union, this compound is still frequently detected in surface and ground water of this area. However, the fast and complete disappearance of this compound has been observed in water intended for human consumption, after it has been subjected to chlorination. There is a concern about the possible degradation products formed, since they might be present in drinking water and might be hazardous. In this work, the sensitive full-spectrum acquisition, high resolution and exact mass capabilities of hybrid quadrupole time-of-flight (QTOF) mass spectrometry have allowed the discovery and proposal of structures of transformation products (TPs) of bromacil in water subjected to chlorination. Different ground water samples spiked at 0.5 µg/mL were subjected to the conventional chlorination procedure applied to drinking waters, sampling 2-mL aliquots at different time intervals (1, 10 and 30 min). The corresponding non-spiked water was used as control sample in each experiment. Afterwards, 50 μL of the water was directly injected into an ultra-high-pressure liquid chromatography (UHPLC)/electrospray ionization (ESI)-(Q)TOF system. The QTOF instrument enabled the simultaneous recording of two acquisition functions at different collision energies (MS(E) approach): the low-energy (LE) function, fixed at 4 eV, and the high-energy (HE) function, with a collision energy ramp from 15 to 40 eV. This approach enables the simultaneous acquisition of both parent (deprotonated and protonated molecules) and fragment ions in a single injection. The low mass errors observed for the deprotonated and protonated molecules (detected in LE function) allowed the assignment of a highly probable molecular formula. Fragment ions and neutral losses were investigated in both LE and HE spectra to elucidate the structures of the TPs found. For those compounds that displayed poor fragmentation, product ion scan (MS/MS) experiments were also performed. On processing the data with specialized software (MetaboLynx), four bromacil TPs were detected and their structures were elucidated. To our knowledge, two of them had not previously been reported. Copyright © 2011 John Wiley & Sons, Ltd.

  9. 53rd Course Molecular Physics and Plasmas in Hypersonics 2

    DTIC Science & Technology

    2013-09-09

    between CO2 symmetric and bending modes ( 11 ) proceeds fast due to the Fermi resonance between the frequencies of these modes and can be considered as...of local maximization of the collision frequency given by Eq. ( 11 ) allows a strong reduction of the computational cost and it is verified a...called arc-jets or DC-Plasmatron [25, 26]. PWTs using Inductively Coupled Plasma (ICP) torch, based on Radio - Frequency (RF) discharge, are so- called

  10. Flight response to spatial and temporal correlates informs risk from wind turbines to the California Condor

    USGS Publications Warehouse

    Poessel, Sharon; Brandt, Joseph; Mendenhall, Laura C.; Braham, Melissa A.; Lanzone, Michael J.; McGann, Andrew J.; Katzner, Todd

    2018-01-01

    Wind power is a fast-growing energy resource, but wind turbines can kill volant wildlife, and the flight behavior of obligate soaring birds can place them at risk of collision with these structures. We analyzed altitudinal data from GPS telemetry of critically endangered California Condors (Gymnogyps californianus) to assess the circumstances under which their flight behavior may place them at risk from collision with wind turbines. Condor flight behavior was strongly influenced by topography and land cover, and birds flew at lower altitudes and closer to the rotor-swept zone of wind turbines when over ridgelines and steep slopes and over forested and grassland cover types. Condor flight behavior was temporally predictable, and birds flew lower and closer to the rotor-swept zone during early morning and evening hours and during the winter months, when thermal updrafts were weakest. Although condors only occasionally flew at altitudes that placed them in the rotor-swept zone of turbines, they regularly flew near or within wind resource areas preferred by energy developers. Practitioners aiming to mitigate collision risk to this and other soaring bird species of conservation concern can consider the manner in which flight behavior varies temporally and in response to areas of high topographic relief and proximity to nocturnal roosting sites. By contrast, collision risk to large soaring birds from turbines should be relatively lower over flatter and less rugged areas and in habitat used during daytime soaring.

  11. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewkow, N. R.; Kharchenko, V.

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of themore » energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.« less

  12. Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center d

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center during a low-level flyby at Las Cruces Airport in New Mexico. The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  13. LLE Review Quarterly Report (October - December 2007). Volume 113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuegel, Jonathan D.

    2007-12-01

    This volume of the LLE Review, covering October–December 2007, features “High-Intensity Laser–Plasma Interactions in the Refluxing Limit,” by P. M. Nilson, W. Theobald, J. Myatt, C. Stoeckl, M. Storm, O. V. Gotchev, J. D. Zuegel, R. Betti, D. D. Meyerhofer, and T. C. Sangster. In this article (p. 1), the authors report on target experiments using the Multi-Terawatt (MTW) Laser Facility to study isochoric heating of solid-density targets by fast electrons produced from intense, short-pulse laser irradiation. Electron refluxing occurs due to target-sheath field effects and contains most of the fast electrons within the target volume. This efficiently heats themore » solid-density plasma through collisions. X-ray spectroscopic measurements of absolute K α (x-radiation) photon yields and variations of the K β/K α b emission ratio both indicate that laser energy couples to fast electrons with a conversion efficiency of approximately 20%. Bulk electron temperatures of at least 200 eV are inferred for the smallest mass targets.« less

  14. Exploring Chemistry in Microcompartments Using Guided Droplet Collisions in a Branched Quadrupole Trap Coupled to a Single Droplet, Paper Spray Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Michael I.; Davies, James F.; Lee, Lance

    Recent studies suggest that reactions in aqueous microcompartments can occur at significantly different rates than those in the bulk. Most studies have used electrospray to generate a polydisperse source of highly charged microdroplets, leading to multiple confounding factors potentially influencing reaction rates (e.g., evaporation, charge, and size). Thus, the underlying mechanism for the observed enhancement remains unclear. We present a new type of electrodynamic balance - the branched quadrupole trap (BQT) - which can be used to study reactions in microdroplets in a controlled environment. The BQT allows for condensed phase chemical reactions to be initiated by colliding droplets withmore » different reactants and levitating the merged droplet indefinitely. The performance of the BQT is characterized in several ways. Sub-millisecond mixing times as fast as ~400 μs are measured for low velocity (~0.1 m/s) collisions of droplets with <40 μm diameters. The reaction of o-phthalaldehyde (OPA) with alanine in the presence of dithiolthreitol is measured using both fluorescence spectroscopy and single droplet paper spray mass spectrometry. The bimolecular rate constant for reaction of alanine with OPA is found to be 84 ± 10 and 67 ± 6 M -1s -1 in a 30 μm radius droplet and bulk solution, respectively, which demonstrates that bimolecular reaction rate coefficients can be quantified using merged microdroplets and that merged droplets can be used to study rate enhancements due to compartmentalization. Products of the reaction of OPA with alanine are detected in single droplets using paper spray mass spectrometry. Finally, we demonstrate that single droplets with <100 pg of analyte can easily be studied using single droplet mass spectrometry.« less

  15. Exploring Chemistry in Microcompartments Using Guided Droplet Collisions in a Branched Quadrupole Trap Coupled to a Single Droplet, Paper Spray Mass Spectrometer

    DOE PAGES

    Jacobs, Michael I.; Davies, James F.; Lee, Lance; ...

    2017-10-19

    Recent studies suggest that reactions in aqueous microcompartments can occur at significantly different rates than those in the bulk. Most studies have used electrospray to generate a polydisperse source of highly charged microdroplets, leading to multiple confounding factors potentially influencing reaction rates (e.g., evaporation, charge, and size). Thus, the underlying mechanism for the observed enhancement remains unclear. We present a new type of electrodynamic balance - the branched quadrupole trap (BQT) - which can be used to study reactions in microdroplets in a controlled environment. The BQT allows for condensed phase chemical reactions to be initiated by colliding droplets withmore » different reactants and levitating the merged droplet indefinitely. The performance of the BQT is characterized in several ways. Sub-millisecond mixing times as fast as ~400 μs are measured for low velocity (~0.1 m/s) collisions of droplets with <40 μm diameters. The reaction of o-phthalaldehyde (OPA) with alanine in the presence of dithiolthreitol is measured using both fluorescence spectroscopy and single droplet paper spray mass spectrometry. The bimolecular rate constant for reaction of alanine with OPA is found to be 84 ± 10 and 67 ± 6 M -1s -1 in a 30 μm radius droplet and bulk solution, respectively, which demonstrates that bimolecular reaction rate coefficients can be quantified using merged microdroplets and that merged droplets can be used to study rate enhancements due to compartmentalization. Products of the reaction of OPA with alanine are detected in single droplets using paper spray mass spectrometry. Finally, we demonstrate that single droplets with <100 pg of analyte can easily be studied using single droplet mass spectrometry.« less

  16. Detection of high energy muons with sub-20 ps timing resolution using L(Y)SO crystals and SiPM readout

    NASA Astrophysics Data System (ADS)

    Benaglia, A.; Gundacker, S.; Lecoq, P.; Lucchini, M. T.; Para, A.; Pauwels, K.; Auffray, E.

    2016-09-01

    Precise timing capability will be a key aspect of particle detectors at future high energy colliders, as the time information can help in the reconstruction of physics events at the high collision rate expected there. Other than being used in detectors for PET, fast scintillating crystals coupled to compact Silicon Photomultipliers (SiPMs) constitute a versatile system that can be exploited to realize an ad-hoc timing device to be hosted in a larger high energy physics detector. In this paper, we present the timing performance of LYSO:Ce and LSO:Ce codoped 0.4% Ca crystals coupled to SiPMs, as measured with 150 GeV muons at the CERN SPS H2 extraction line. Small crystals, with lengths ranging from 5 mm up to 30 mm and transverse size of 2 × 2mm2 or 3 × 3mm2 , were exposed to a 150 GeV muon beam. SiPMs from two different companies (Hamamatsu and FBK) were used to detect the light produced in the crystals. The best coincidence time resolution value of (14.5 ± 0.5) ps , corresponding to a single-detector time resolution of about 10 ps, is demonstrated for 5 mm long LSO:Ce,Ca crystals coupled to FBK SiPMs, when time walk corrections are applied.

  17. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  18. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  19. Vision-Based Haptic Feedback for Remote Micromanipulation in-SEM Environment

    NASA Astrophysics Data System (ADS)

    Bolopion, Aude; Dahmen, Christian; Stolle, Christian; Haliyo, Sinan; Régnier, Stéphane; Fatikow, Sergej

    2012-07-01

    This article presents an intuitive environment for remote micromanipulation composed of both haptic feedback and virtual reconstruction of the scene. To enable nonexpert users to perform complex teleoperated micromanipulation tasks, it is of utmost importance to provide them with information about the 3-D relative positions of the objects and the tools. Haptic feedback is an intuitive way to transmit such information. Since position sensors are not available at this scale, visual feedback is used to derive information about the scene. In this work, three different techniques are implemented, evaluated, and compared to derive the object positions from scanning electron microscope images. The modified correlation matching with generated template algorithm is accurate and provides reliable detection of objects. To track the tool, a marker-based approach is chosen since fast detection is required for stable haptic feedback. Information derived from these algorithms is used to propose an intuitive remote manipulation system that enables users situated in geographically distant sites to benefit from specific equipments, such as SEMs. Stability of the haptic feedback is ensured by the minimization of the delays, the computational efficiency of vision algorithms, and the proper tuning of the haptic coupling. Virtual guides are proposed to avoid any involuntary collisions between the tool and the objects. This approach is validated by a teleoperation involving melamine microspheres with a diameter of less than 2 μ m between Paris, France and Oldenburg, Germany.

  20. Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System

    NASA Astrophysics Data System (ADS)

    Hwang, Soon Sik

    This dissertation addresses three problems: 1) adaptive resampling technique (ART) for Particle Filters, 2) precise relative positioning using Global Positioning System (GPS) Carrier-Phase (CP) measurements applied to nonlinear integer resolution problem for GPS CP navigation using Particle Filters, and 3) collision detection system based on GPS CP broadcasts. First, Monte Carlo filters, called Particle Filters (PF), are widely used where the system is non-linear and non-Gaussian. In real-time applications, their estimation accuracies and efficiencies are significantly affected by the number of particles and the scheduling of relocating weights and samples, the so-called resampling step. In this dissertation, the appropriate number of particles is estimated adaptively such that the error of the sample mean and variance stay in bounds. These bounds are given by the confidence interval of a normal probability distribution for a multi-variate state. Two required number of samples maintaining the mean and variance error within the bounds are derived. The time of resampling is determined when the required sample number for the variance error crosses the required sample number for the mean error. Second, the PF using GPS CP measurements with adaptive resampling is applied to precise relative navigation between two GPS antennas. In order to make use of CP measurements for navigation, the unknown number of cycles between GPS antennas, the so called integer ambiguity, should be resolved. The PF is applied to this integer ambiguity resolution problem where the relative navigation states estimation involves nonlinear observations and nonlinear dynamics equation. Using the PF, the probability density function of the states is estimated by sampling from the position and velocity space and the integer ambiguities are resolved without using the usual hypothesis tests to search for the integer ambiguity. The ART manages the number of position samples and the frequency of the resampling step for real-time kinematics GPS navigation. The experimental results demonstrate the performance of the ART and the insensitivity of the proposed approach to GPS CP cycle-slips. Third, the GPS has great potential for the development of new collision avoidance systems and is being considered for the next generation Traffic alert and Collision Avoidance System (TCAS). The current TCAS equipment, is capable of broadcasting GPS code information to nearby airplanes, and also, the collision avoidance system using the navigation information based on GPS code has been studied by researchers. In this dissertation, the aircraft collision detection system using GPS CP information is addressed. The PF with position samples is employed for the CP based relative position estimation problem and the same algorithm can be used to determine the vehicle attitude if multiple GPS antennas are used. For a reliable and enhanced collision avoidance system, three dimensional trajectories are projected using the estimates of the relative position, velocity, and the attitude. It is shown that the performance of GPS CP based collision detecting algorithm meets the accuracy requirements for a precise approach of flight for auto landing with significantly less unnecessary collision false alarms and no miss alarms.

  1. Infrared video based gas leak detection method using modified FAST features

    NASA Astrophysics Data System (ADS)

    Wang, Min; Hong, Hanyu; Huang, Likun

    2018-03-01

    In order to detect the invisible leaking gas that is usually dangerous and easily leads to fire or explosion in time, many new technologies have arisen in the recent years, among which the infrared video based gas leak detection is widely recognized as a viable tool. However, all the moving regions of a video frame can be detected as leaking gas regions by the existing infrared video based gas leak detection methods, without discriminating the property of each detected region, e.g., a walking person in a video frame may be also detected as gas by the current gas leak detection methods.To solve this problem, we propose a novel infrared video based gas leak detection method in this paper, which is able to effectively suppress strong motion disturbances.Firstly, the Gaussian mixture model(GMM) is used to establish the background model.Then due to the observation that the shapes of gas regions are different from most rigid moving objects, we modify the Features From Accelerated Segment Test (FAST) algorithm and use the modified FAST (mFAST) features to describe each connected component. In view of the fact that the statistical property of the mFAST features extracted from gas regions is different from that of other motion regions, we propose the Pixel-Per-Points (PPP) condition to further select candidate connected components.Experimental results show that the algorithm is able to effectively suppress most strong motion disturbances and achieve real-time leaking gas detection.

  2. Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods

    PubMed Central

    Boaz, Segal M.; Champagne, Cory D.; Fowler, Melinda A.; Houser, Dorian H.; Crocker, Daniel E.

    2011-01-01

    Despite the importance of water-soluble vitamins to metabolism, there is limited knowledge of their serum availability in fasting wildlife. We evaluated changes in water-soluble vitamins in northern elephant seals, a species with an exceptional ability to withstand nutrient deprivation. We used a metabolomics approach to measure vitamins and associated metabolites under extended natural fasts for up to seven weeks in free-ranging lactating or developing seals. Water-soluble vitamins were not detected with this metabolomics platform, but could be measured with standard assays. Concentrations of measured vitamins varied independently, but all were maintained at detectable levels over extended fasts, suggesting that defense of vitamin levels is a component of fasting adaptation in the seals. Metabolomics was not ideal for generating complete vitamin profiles in this species, but gave novel insights into vitamin metabolism by detecting key related metabolites. For example, niacin level reductions in lactating females were associated with significant reductions in precursors suggesting downregulation of the niacin synthetic pathway. The ability to detect individual vitamins using metabolomics may be impacted by the large number of novel compounds detected. Modifications to the analysis platforms and compound detection algorithms used in this study may be required for improving water-soluble vitamin detection in this and other novel wildlife systems. PMID:21983145

  3. Commercial associative memory performance for applications in track-based triggers at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Webster, Jordan

    2017-01-01

    Dense track environments in pp collisions at the Large Hadron Collider (LHC) motivate the use of triggers with dedicated hardware for fast track reconstruction. The ATLAS Collaboration is in the process of implementing a Fast Tracker (FTK) trigger upgrade, in which Content Addressable Memories (CAMs) will be used to rapidly match hit patterns with large banks of simulated tracks. The FTK CAMs are produced primarily at the University of Pisa. However, commercial CAM technology is rapidly developing due to applications in computer networking devices. This poster presents new studies comparing FTK CAMs to cutting-edge ternary CAMs developed by Cavium. The comparison is intended to guide the design of future track-based trigger systems for the next Phase at the LHC.

  4. Anomalous effects of dense matter under rotation

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang; Nishimura, Kentaro; Yamamoto, Naoki

    2018-02-01

    We study the anomaly induced effects of dense baryonic matter under rotation. We derive the anomalous terms that account for the chiral vortical effect in the low-energy effective theory for light Nambu-Goldstone modes. The anomalous terms lead to new physical consequences, such as the anomalous Hall energy current and spontaneous generation of angular momentum in a magnetic field (or spontaneous magnetization by rotation). In particular, we show that, due to the presence of such anomalous terms, the ground state of the quantum chromodynamics (QCD) under sufficiently fast rotation becomes the "chiral soliton lattice" of neutral pions that has lower energy than the QCD vacuum and nuclear matter. We briefly discuss the possible realization of the chiral soliton lattice induced by a fast rotation in noncentral heavy ion collisions.

  5. Dynamic conductivity and plasmon profile of aluminum in the ultra-fast-matter regime

    NASA Astrophysics Data System (ADS)

    Dharma-wardana, M. W. C.

    2016-06-01

    We use an explicitly isochoric two-temperature theory to analyze recent x-ray laser scattering data for aluminum in the ultra-fast-matter (UFM) regime up to 6 eV. The observed surprisingly low conductivities are explained by including strong electron-ion scattering effects using the phase shifts calculated via the neutral-pseudo-atom model. The difference between the static conductivity for UFM-Al and equilibrium aluminum in the warm-dense matter state is clearly brought out by comparisons with available density-fucntional+molecular-dynamics simulations. Thus the applicability of the Mermin model to UFM is questioned. The static and dynamic conductivity, collision frequency, and the plasmon line shape, evaluated within the simplest Born approximation for UFM aluminum, are in good agreement with experiment.

  6. Vibration-rotation transfer in molecular super rotors

    NASA Astrophysics Data System (ADS)

    McCaffery, Anthony J.

    2000-12-01

    The collisional behavior of (X)6Li2 molecules in very high rotational levels of v=0 is considered. Highly efficient vibration-rotation transfer is predicted in these "super rotors" particularly when the conditions for quasiresonant transfer are fulfilled. This requires simultaneous near-resonance in energy and in angular momentum. Values of Δj for which quasiresonant vibration-rotation transfer (QRT) occurs become smaller as initial rotor state increases and transfer is likely to become particularly fast for Δj=2, predicted to occur when ji=130. This behavior is contrasted with the inefficiency of pure rotational transfer within the v=0 level for fast-rotating molecules. QRT will take place for quite cold collisions and thus will provide competition for the spinning-up process used to create the super rotors.

  7. DOUBLE code simulations of emissivities of fast neutrals for different plasma observation view-lines of neutral particle analyzers on the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Mitosinkova, K.; Tomes, M.; Stockel, J.; Varju, J.; Stano, M.

    2018-03-01

    Neutral particle analyzers (NPA) measure line-integrated energy spectra of fast neutral atoms escaping the tokamak plasma, which are a product of charge-exchange (CX) collisions of plasma ions with background neutrals. They can observe variations in the ion temperature T i of non-thermal fast ions created by additional plasma heating. However, the plasma column which a fast atom has to pass through must be sufficiently short in comparison with the fast atom’s mean-free-path. Tokamak COMPASS is currently equipped with one NPA installed at a tangential mid-plane port. This orientation is optimal for observing non-thermal fast ions. However, in this configuration the signal at energies useful for T i derivation is lost in noise due to the too long fast atoms’ trajectories. Thus, a second NPA is planned to be connected for the purpose of measuring T i. We analyzed different possible view-lines (perpendicular mid-plane, tangential mid-plane, and top view) for the second NPA using the DOUBLE Monte-Carlo code and compared the results with the performance of the present NPA with tangential orientation. The DOUBLE code provides fast-atoms’ emissivity functions along the NPA view-line. The position of the median of these emissivity functions is related to the location from where the measured signal originates. Further, we compared the difference between the real central T i used as a DOUBLE code input and the T iCX derived from the exponential decay of simulated energy spectra. The advantages and disadvantages of each NPA location are discussed.

  8. Fiber-Optic Array Scanning Technology (FAST) for Detection and Molecular Characterization of Circulating Tumor Cells.

    PubMed

    Ao, Zheng; Liu, Xiaohe

    2017-01-01

    Circulating tumor cell (CTC) as an important component in "liquid biopsy" holds crucial clinical relevance in cancer prognosis, treatment efficiency evaluation, prediction and potentially early detection. Here, we present a Fiber-optic Array Scanning Technology (FAST) that enables antigen-agnostic, size-agnostic detection of CTC. By immunofluorescence staining detection of a combination of a panel of markers, FAST technology can be applied to detect rare CTC in non-small cell lung cancer (NSCLC) setting with high sensitivity and specificity. In combination with Automated Digital Microscopy (ADM) platform, companion markers on CTC such as Vimentin and Programmed death-ligand 1 (PD-L1) can also be analyzed to further characterize these CTCs. FAST data output is also compatible with downstream single cell picking platforms. Single cell can be isolated post ADM confirmation and used for "actionable" genetic mutations analysis.

  9. The Fast Debris Evolution Model

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; Swinerd, Graham; Newland, Rebecca; Saunders, Arrun

    The ‘Particles-in-a-box' (PIB) model introduced by Talent (1992) removed the need for computerintensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FaDE), employs a first-order differential equation to describe the rate at which new objects (˜ 10 cm) are added and removed from the environment. Whilst Talent (1992) based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FaDE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FaDE model has been implemented as a client-side, web-based service using Javascript embedded within a HTML document. Due to the simple nature of the algorithm, FaDE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ˜ 10 cm low Earth orbit (LEO) debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FaDE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly, its speed and flexibility allows the user to explore and understand the evolution of the space debris environment.

  10. A fast iterative scheme for the linearized Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference between these results and those using the hard-sphere potential is discussed.

  11. CAESAR, French Probative Public Service for In-Orbit Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Laporte, Francois; Moury, Monique

    2013-08-01

    This paper starts by describing the conjunction analysis which has to be performed using CSM data provided by JSpOC. This description not only demonstrates that Collision Avoidance is a 2-step process (close approach detection followed by risk evaluation for collision avoidance decision) but also leads to the conclusion that there is a need for Middle Man role. After describing the Middle Man concept, it introduces the French response CAESAR and the need for collaborative work environment which is implied by Middle Man concept. It includes a description of the environment put in place for CAESAR (secure website and dedicated tools), the content of the service, the condition for the distribution of the CNES software JAC and the advantages for subscribers.

  12. CAESAR: An Initiative of Public Service for Collision Risks Mitigation

    NASA Astrophysics Data System (ADS)

    Laporte, Francois; Moury, Monique; Beaumet, Gregory

    2013-09-01

    This paper starts by describing the conjunction analysis which has to be performed using CSM data provided by JSpOC. This description not only demonstrates that Collision Avoidance is a 2-step process (close approach detection followed by risk evaluation for collision avoidance decision) but also leads to the conclusion that there is a need for Middle Man role.After describing the Middle Man concept, it introduces the French response CAESAR and the need for collaborative work environment which is implied by Middle Man concept. It includes a description of the environment put in place for CAESAR (secure website and dedicated tools), the content of the service, and the condition for the distribution of the CNES software JAC and the advantages for subscribers.

  13. Gastric marginal zone lymphoma of mucosa-associated lymphoid tissue and signet ring cell carcinoma, synchronous collision tumour of the stomach: a case report.

    PubMed

    George, Smiley Annie; Junaid, T A

    2014-01-01

    To report a rare case of synchronous marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) signet ring cell carcinoma occurring as a collision tumour in the stomach. A 53-year-old man was diagnosed initially with signet ring cell carcinoma of the stomach. The microscopy of the subsequent total gastrectomy revealed a collision tumour of MALT lymphoma and signet ring cell carcinoma associated with Helicobacter pylori gastritis. This case highlighted the importance of a careful evaluation of the accompanying lymphoid population in the biopsy samples of gastric adenocarcinoma and underlined the need for multiple endoscopic biopsies to detect these rare synchronous tumours. © 2013 S. Karger AG, Basel.

  14. Gastric Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue and Signet Ring Cell Carcinoma, Synchronous Collision Tumour of the Stomach: A Case Report

    PubMed Central

    George, Smiley Annie; Junaid, T.A.

    2014-01-01

    Objective To report a rare case of synchronous marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) signet ring cell carcinoma occurring as a collision tumour in the stomach. Clinical Presentation and Intervention A 53-year-old man was diagnosed initially with signet ring cell carcinoma of the stomach. The microscopy of the subsequent total gastrectomy revealed a collision tumour of MALT lymphoma and signet ring cell carcinoma associated with Helicobacter pylori gastritis. Conclusion This case highlighted the importance of a careful evaluation of the accompanying lymphoid population in the biopsy samples of gastric adenocarcinoma and underlined the need for multiple endoscopic biopsies to detect these rare synchronous tumours. PMID:24247357

  15. eFAST for Pneumothorax: Real-Life Application in an Urban Level 1 Center by Trauma Team Members.

    PubMed

    Maximus, Steven; Figueroa, Cesar; Whealon, Matthew; Pham, Jacqueline; Kuncir, Eric; Barrios, Cristobal

    2018-02-01

    The focused assessment with sonography for trauma (FAST) examination has become the standard of care for rapid evaluation of trauma patients. Extended FAST (eFAST) is the use of ultrasonography for the detection of pneumothorax (PTX). The exact sensitivity and specificity of eFAST detecting traumatic PTX during practical "real-life" application is yet to be investigated. This is a retrospective review of all trauma patients with a diagnosis of PTX, who were treated at a large level 1 urban trauma center from March 2013 through July 2014. Charts were reviewed for results of imaging, which included eFAST, chest X-ray, and CT scan. The requirement of tube thoracostomy and mechanism of injury were also analyzed. A total of 369 patients with a diagnosis of PTX were identified. A total of 69 patients were excluded, as eFAST was either not performed or not documented, leaving 300 patients identified with PTX. A total of 113 patients had clinically significant PTX (37.6%), requiring immediate tube thoracostomy placement. eFAST yielded a positive diagnosis of PTX in 19 patients (16.8%), and all were clinically significant, requiring tube thoracostomy. Chest X-ray detected clinically significant PTX in 105 patients (92.9%). The literature on the utility of eFAST for PTX in trauma is variable. Our data show that although specific for clinically significant traumatic PTX, it has poor sensitivity when performed by clinicians with variable levels of ultrasound training. We conclude that CT is still the gold standard in detecting PTX, and clinicians performing eFAST should have adequate training.

  16. Studying the response of drivers against different collision warning systems: a review

    NASA Astrophysics Data System (ADS)

    Muzammel, M.; Yusoff, M. Zuki; Malik, A. Saeed; Mohamad Saad, M. Naufal; Meriaudeau, F.

    2017-03-01

    The number of vehicle accidents is rapidly increasing and causing significant economic losses in many countries. According to the World Health Organization, road accidents will become the fifth major cause of death by the year 2030. To minimize these accidents different types of collision warning systems have been proposed for motor vehicle drivers. These systems can early detect and warn the drivers about the potential danger, up to a certain accuracy. Many researchers study the effectiveness of these systems by using different methods, including Electroencephalography (EEG). From the literature review, it has been observed that, these systems increase the drivers' response and can help to minimize the accidents that may occur due to drivers unconsciousness. For these collision warning systems, tactile early warnings are found more effective as compared to the auditory and visual early warnings. This review also highlights the areas, where further research can be performed to fully analyze the collision warning system. For example, some contradictions are found among researchers, about these systems' performance for drivers within different age groups. Similarly, most of the EEG studies focus on the front collision warning systems and only give beep sound to alert the drivers. Therefore, EEG study can be performed for the rear end collision warning systems, against proper auditory warning messages which indicate the types of hazards. This EEG study will help to design more friendly collision warning system and may save many lives.

  17. FAST TRACK COMMUNICATION: The nonlinear fragmentation equation

    NASA Astrophysics Data System (ADS)

    Ernst, Matthieu H.; Pagonabarraga, Ignacio

    2007-04-01

    We study the kinetics of nonlinear irreversible fragmentation. Here, fragmentation is induced by interactions/collisions between pairs of particles and modelled by general classes of interaction kernels, for several types of breakage models. We construct initial value and scaling solutions of the fragmentation equations, and apply the 'non-vanishing mass flux' criterion for the occurrence of shattering transitions. These properties enable us to determine the phase diagram for the occurrence of shattering states and of scaling states in the phase space of model parameters.

  18. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Ferguson, Carly N.; Gucinski-Ruth, Ashley C.

    2016-05-01

    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics.

  19. Resource sharing on CSMA/CD networks in the presence of noise. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dinschel, Duane Edward

    1987-01-01

    Resource sharing on carrier sense multiple access with collision detection (CSMA/CD) networks can be accomplished by using window-control algorithms for bus contention. The window-control algorithms are designed to grant permission to transmit to the station with the minimum contention parameter. Proper operation of the window-control algorithm requires that all stations sense the same state of the newtork in each contention slot. Noise causes the state of the network to appear as a collision. False collisions can cause the window-control algorithm to terminate without isolating any stations. A two-phase window-control protocol and approximate recurrence equation with noise as a parameter to improve the performance of the window-control algorithms in the presence of noise are developed. The results are compared through simulation, with the approximate recurrence equation yielding the best overall performance. Noise is even a bigger problem when it is not detected by all stations. In such cases it is possible for the window boundaries of the contending stations to become out of phase. Consequently, it is possible to isolate a station other than the one with the minimum contention parameter. To guarantee proper isolation of the minimum, a broadcast phase must be added after the termination of the algorithm. The protocol required to correct the window-control algorithm when noise is not detected by all stations is discussed.

  20. Construction of a High Temporal-spectral Resolution Spectrometer for Detection of Fast Transients from Observations of the Sun at 1.4 GHz.

    NASA Astrophysics Data System (ADS)

    Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.

    2014-12-01

    Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.

  1. Stratification of Seismic Anisotropy Beneath Hudson Bay

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Eaton, D. W.; Bastow, I. D.

    2012-12-01

    The Hudson Bay region has a complex tectonic history spanning ~4 Ga of Earth's evolution. During the ~1.8 Ga Trans-Hudson orogeny, the Archean Superior and Western Churchill cratons collided following the subduction of a Pacific-scale ocean. It is thought that a significant amount of juvenile material is preserved in the Trans-Hudson Orogen, in part due to the complex double-indentor geometry of the Superior-Churchill collision. In the region of interest, the orogen lies beneath a large but shallow Paleozoic intra-cratonic basin. Studies of the crust and upper mantle beneath this region have been enabled through the HuBLE (Hudson Bay Lithospheric Experiment) project, through the deployment of broadband seismographs around the Bay and across the islands to the north. A surface-wave tomography study has taken advantage of the data coverage, providing new information on phase velocity heterogeneity and anisotropy for wave periods of 25-200 seconds (equivalent to depths from the lower crust to ~300 km). On a large scale, our results show that the entire region is underlain by a seismically fast lithospheric lid corresponding to the continental keel. The lithospheric thickness ranges from ~180km in the northeast, beneath a zone of Paleozoic rifting, to ~280km beneath central Hudson Bay. Within the lithosphere, seismic velocities vary laterally, including high-velocity material wrapping around the Bay in the uppermost mantle. In the mid-lithosphere, two high-velocity cores are imaged, with a zone of lower velocity between them beneath the Bay. We interpret these high-velocity structures to represent the strongest central cores of the Superior and Churchill cratons, with more-juvenile material preserved between them. The near-vertical geometry of the lower-velocity zone suggests that it is only the effects of terminal collision of the cratonic cores, rather than any preceding subduction, that is preserved today. The lowermost lithosphere has a more uniform velocity, and may represent a pervasive zone of metasomatism or underplating. Anisotropy patterns across the region also vary with depth, suggesting ~3 layers of stratification of lithospheric fabric. At the shallowest depths, anisotropic fast directions wrap around the Bay in a similar fashion to the patterns of isotropic wavespeed. The upper lithospheric mantle below is characterized by relatively weak and incoherent anisotropy; however the mid-to-lower lithosphere shows stronger anisotropy, with a pattern of fast directions broadly consistent with the tectonics of the Superior-Churchill collision as inferred from potential-field data. This may suggest some degree of coherency of deformation between the crust, uppermost mantle and lower lithosphere. These models of seismic wavespeed variation beneath the Hudson Bay region reveal the preservation of a major collision zone during the assembly of the Laurentian continental mass, and also suggest that the Archean cratons can be subdivided into different lithospheric domains that reflect their tectonic history but do not necessarily correspond to surface geological boundaries.

  2. [Application value of Xpert MTB/RIF in diagnosis of spinal tuberculosis and detection of rifampin resistance].

    PubMed

    Jin, Yang-Hui; Shi, Shi-Yuan; Zheng, Qi; Shen, Jian; Ying, Xiao-Zhang; Wang, Yi-Fan

    2017-09-25

    To investigate the application value of Xpert MTB/RIF in diagnosis of spinal tuberculosis and detection of rifampin resistance. The 109 pus specimens were obtained from patients who were primaryly diagnosed as spinal tuberculosis. All of the pus specimens were detected by acid-fast stain, liquid fast culturing by BACTEC MGIT 960 and Xpert MTB/RIF assay to definite the differences in sensitivity and specificity of mycobacterium tuberculosis among detecting methods. Pus specimens obtained by different methods were deteceded by MTB/RIF test to analyze the self-influence on Xpert MTB/RIF test. The result of liquid fast culturing by BACTEC MGIT 960 was used as the gold standard; and the value of Xpert MTB/RIF assay in detecting rifampin resistance was analyzed. The sensitivity of acid-fast stain, liquid fast culturing by BACTEC MGIT 960 and Xpert MTB/RIF assay were 25.92%, 48.15%, 77.78%, respectively. The sensitivity of pus specimens obtained from open surgery, ultrasound positioning puncture and biopsy the sensitivity were 83.78%, 76.47%, 44.68% respectively deteceded by MTB/RIF test. According to the gold standard of the results of liquid fast culturing by BACTEC MGIT 960 assay, the sensitivity and specificity of Xpert MTB/RIF assay in detecting rifampin resistance were 80%(4/5) and 90.70%(39/43), respectively. Xpert MTB/RIF assay has higher value in diagnosis of spinal tuberculosi, and also can detect rifampin resistance. The number of mycobacterium tuberculosis in pus specimens has a great influence in the sensitivity of Xpert MTB/RIF assay.

  3. Progress in proton-detected solid-state NMR (SSNMR): Super-fast 2D SSNMR collection for nano-mole-scale proteins

    NASA Astrophysics Data System (ADS)

    Ishii, Yoshitaka; Wickramasinghe, Ayesha; Matsuda, Isamu; Endo, Yuki; Ishii, Yuji; Nishiyama, Yusuke; Nemoto, Takahiro; Kamihara, Takayuki

    2018-01-01

    Proton-detected solid-state NMR (SSNMR) spectroscopy has attracted much attention due to its excellent sensitivity and effectiveness in the analysis of trace amounts of amyloid proteins and other important biological systems. In this perspective article, we present the recent sensitivity limit of 1H-detected SSNMR using "ultra-fast" magic-angle spinning (MAS) at a spinning rate (νR) of 80-100 kHz. It was demonstrated that the high sensitivity of 1H-detected SSNMR at νR of 100 kHz and fast recycling using the paramagnetic-assisted condensed data collection (PACC) approach permitted "super-fast" collection of 1H-detected 2D protein SSNMR. A 1H-detected 2D 1H-15N correlation SSNMR spectrum for ∼27 nmol of a uniformly 13C- and 15N-labeled GB1 protein sample in microcrystalline form was acquired in only 9 s with 50% non-uniform sampling and short recycle delays of 100 ms. Additional data suggests that it is now feasible to detect as little as 1 nmol of the protein in 5.9 h by 1H-detected 2D 1H-15N SSNMR at a nominal signal-to-noise ratio of five. The demonstrated sensitivity is comparable to that of modern solution protein NMR. Moreover, this article summarizes the influence of ultra-fast MAS and 1H-detection on the spectral resolution and sensitivity of protein SSNMR. Recent progress in signal assignment and structural elucidation by 1H-detected protein SSNMR is outlined with both theoretical and experimental aspects.

  4. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.

    PubMed

    Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying

    2016-04-01

    As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Chapter 6 Quantum Mechanical Methods for Loss-Excitation and Loss-Ionization in Fast Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Belkic, Dzevad

    Inelastic collisions between bare nuclei and hydrogen-like atomic systems are characterized by three main channels: electron capture, excitation, and ionization. Capture dominates at lower energies, whereas excitation and ionization prevail at higher impact energies. At intermediate energies and in the region of resonant scattering near the Massey peak, all three channels become competitive. For dressed or clothed nuclei possessing electrons, such as hydrogen-like ions, several additional channels open up, including electron loss (projectile ionization or stripping). The most important aspect of electron loss is the competition between one- and two-electron processes. Here, in a typical one-electron process, the projectile emits an electron, whereas the target final and initial states are the same. A prototype of double-electron transitions in loss processes is projectile ionization accompanied with an alteration of the target state. In such a two-electron process, the target could be excited or ionized. The relative importance of these loss channels with single- and double-electron transitions involving collisions of dressed projectiles with atomic systems is also strongly dependent on the value of the impact energy. Moreover, impact energies determine which theoretical method is likely to be more appropriate to use for predictions of cross sections. At low energies, an expansion of total scattering wave functions in terms of molecular orbitals is adequate. This is because the projectile spends considerable time in the vicinity of the target, and as a result, a compound system comprised of the projectile and the target can be formed in a metastable molecular state which is prone to decay. At high energies, a perturbation series expansion is more appropriate in terms of powers of interaction potentials. In the intermediate energy region, atomic orbitals are often used with success while expanding the total scattering wave functions. The present work is focused on quantum mechanical perturbation theories applied to electron loss collisions involving two hydrogen-like atoms. Both the one- and two-electron transitions (target unaffected by collision, as well as loss-ionization) are thoroughly examined in various intervals of impact energies varying from the threshold via the Massey peak to the Bethe asymptotic region. Systematics are established for the fast, simple, and accurate computations of cross sections for loss-excitation and loss-ionization accounting for the entire spectra of all four particles, including two free electrons and two free protons. The expounded algorithmic strategy of quantum mechanical methodologies is of great importance for wide applications to particle transport physics, especially in fusion research and hadron radiotherapy. This should advantageously replace the current overwhelming tendency in these fields for using phenomenological modeling with artificial functions extracted from fitting the existing experimental/theoretical data bases for cross sections.

  6. Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Acharya, B.; Alexandre, J.; Baines, S.; Benes, P.; Bergmann, B.; Bernabéu, J.; Branzas, H.; Campbell, M.; Caramete, L.; Cecchini, S.; de Montigny, M.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Flores, J.; Frank, M.; Frekers, D.; Garcia, C.; Hirt, A. M.; Janecek, J.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; Kinoshita, K.; Korzenev, A.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Mamuzic, J.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Pǎvǎlaş, G. E.; Pinfold, J. L.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Ruiz de Austri, R.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Shaa, A.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Tuszyński, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.; Zgura, I. S.; MoEDAL Collaboration

    2017-02-01

    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV p p collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  7. Situation analysis for automotive pre-crash systems

    NASA Astrophysics Data System (ADS)

    Böhning, Marcus A.; Ritter, Henning; Rohling, Herrman

    2008-01-01

    According to the "World Report on Road Traffic Injury Prevention" jointly issued by the World Health Organization and the World Bank about 1.2 million people are killed and up to 50 million people are injured in road traffic accidents worldwide each year. While passive safety systems like the airbag are already deployed successfully to reduce fatalities and injuries, active safety systems assist the driver by issuing a warning or by taking corrective actions to either avoid a collision completely or, if impossible, to mitigate collision consequences. Today's radar sensors have the ability to detect and track objects with a high accuracy in range and velocity, therefore a collision warning system may consist of a radar sensor, a data processing unit and a model to describe possible evasion maneuvers. This allows to analyze the probability of a collision and to calculate the danger potential of the current situation. In this paper, such a system is proposed and it is verified with synthetic as well as real sensor data.

  8. Scattering of trajectories of hazardous asteroids

    NASA Astrophysics Data System (ADS)

    Sokolov, Leonid; Petrov, Nikita; Kuteeva, Galina; Vasilyev, Andrey

    2018-05-01

    Early detection of possible collisions of asteroids with the Earth is necessary to exept the asteroid-comet hazard. Many collisions associate with resonant returns after preceding approaches. The difficulty of collisions prediction is associated with a resonant returns after encounters with the Earth due to loss of precision in these predictions. On the other hand, we can use the fly-by effect to avoid hazardous asteroid from collision. The main research object is the asteroid Apophis (99942), for which we found about 100 orbits of possible impacts with the Earth and more than 10 - with the Moon. It is shown that the early (before 2029) change of the Apophis orbit allows to avoid all main impacts with the Earth in 21st century, associated with resonant returns, and such a change of the orbit, in principle, is feasible. The scattering of possible trajectories of Apophis after 2029 and after 2051, as well as 2015 RN35 and other dangerous objects, is discussed.

  9. Predictions of asteroid hazard to the Earth for the 21st century

    NASA Astrophysics Data System (ADS)

    Petrov, Nikita; Sokolov, Leonid; Polyakhova, Elena; Oskina, Kristina

    2018-05-01

    Early detection and investigation of possible collisions and close approaches of asteroids with the Earth are necessary to exept the asteroid-comet hazard. The difficulty of prediction of close approaches and collisions associated with resonant returns after encounters with the Earth due to loss of precision in these encounters. The main research object is asteroid Apophis (99942), for which we found many possible orbits of impacts associated with resonant returns. It is shown that the early orbit change of Apophis allows to avoid main impacts, associated with resonant returns. Such a change of the orbit, in principle, is feasible. We also study the possible impacts with the Ground asteroid 2015 RN35. We present 21 possible collisions in this century, including 7 collisions with large gaps presented in NASA website. The results of observations by the telescope ZA-320M at Pulkovo Obser-vatory of the three near-Earth asteroids, namely, 7822, 20826, 68216, two of which 7822 and 68216 are potentially hazardous, are presented.

  10. A fast-neutron detection detector based on fission material and large sensitive 4H silicon carbide Schottky diode detector

    NASA Astrophysics Data System (ADS)

    Liu, Linyue; Liu, Jinliang; Zhang, Jianfu; Chen, Liang; Zhang, Xianpeng; Zhang, Zhongbing; Ruan, Jinlu; Jin, Peng; Bai, Song; Ouyang, Xiaoping

    2017-12-01

    Silicon carbide radiation detectors are attractive in the measurement of the total numbers of pulsed fast neutrons emitted from nuclear fusion and fission devices because of high neutron-gamma discrimination and good radiation resistance. A fast-neutron detection system was developed based on a large-area 4H-SiC Schottky diode detector and a 235U fission target. Excellent pulse-height spectra of fission fragments induced by mono-energy deuterium-tritium (D-T) fusion neutrons and continuous energy fission neutrons were obtained. The detector is proven to be a good candidate for pulsed fast neutron detection in a complex radiation field.

  11. A Distonic Radical-Ion for Detection of Traces of Adventitious Molecular Oxygen (O2) in Collision Gases Used in Tandem Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Jariwala, Freneil B.; Hibbs, John A.; Weisbecker, Carl S.; Ressler, John; Khade, Rahul L.; Zhang, Yong; Attygalle, Athula B.

    2014-09-01

    We describe a diagnostic ion that enables rapid semiquantitative evaluation of the degree of oxygen contamination in the collision gases used in tandem mass spectrometers. Upon collision-induced dissociation (CID), the m/z 359 positive ion generated from the analgesic etoricoxib undergoes a facile loss of a methyl sulfone radical [•SO2(CH3); 79-Da] to produce a distonic radical cation of m/z 280. The product-ion spectrum of this m/z 280 ion, recorded under low-energy activation on tandem-in-space QqQ or QqTof mass spectrometers using nitrogen from a generator as the collision gas, or tandem-in-time ion-trap (LCQ, LTQ) mass spectrometers using purified helium as the buffer gas, showed two unexpected peaks at m/z 312 and 295. This enigmatic m/z 312 ion, which bears a mass-to-charge ratio higher than that of the precursor ion, represented an addition of molecular oxygen (O2) to the precursor ion. The exceptional affinity of the m/z 280 radical cation towards oxygen was deployed to develop a method to determine the oxygen content in collision gases.

  12. Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods.

    PubMed

    Boaz, Segal M; Champagne, Cory D; Fowler, Melinda A; Houser, Dorian H; Crocker, Daniel E

    2012-02-01

    Despite the importance of water-soluble vitamins to metabolism, there is limited knowledge of their serum availability in fasting wildlife. We evaluated changes in water-soluble vitamins in northern elephant seals, a species with an exceptional ability to withstand nutrient deprivation. We used a metabolomics approach to measure vitamins and associated metabolites under extended natural fasts for up to 7 weeks in free-ranging lactating or developing seals. Water-soluble vitamins were not detected with this metabolomics platform, but could be measured with standard assays. Concentrations of measured vitamins varied independently, but all were maintained at detectable levels over extended fasts, suggesting that defense of vitamin levels is a component of fasting adaptation in the seals. Metabolomics was not ideal for generating complete vitamin profiles in this species, but gave novel insights into vitamin metabolism by detecting key related metabolites. For example, niacin level reductions in lactating females were associated with significant reductions in precursors suggesting downregulation of the niacin synthetic pathway. The ability to detect individual vitamins using metabolomics may be impacted by the large number of novel compounds detected. Modifications to the analysis platforms and compound detection algorithms used in this study may be required for improving water-soluble vitamin detection in this and other novel wildlife systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Implementing a modeling software for animated protein-complex interactions using a physics simulation library.

    PubMed

    Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko

    2014-12-01

    To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.

  14. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images

    NASA Astrophysics Data System (ADS)

    Ghaffarian, Saman; Ghaffarian, Salar

    2014-11-01

    This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.

  15. Spacecraft Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, Charles

    The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed five days in advance. In particular, the PDF model is able to predict rapid enhancements in the solar wind speed. It was found that 60% of the positive predictions were correct, while 91% of the negative predictions were correct, and 20% to 33% of the peaks in the speed were found by the model. En-semble forecasts provide the forecasters with an estimation of the uncertainty in the prediction, which can be used to derive uncertainties in the atmospheric density and in the drag acceleration. The dissertation then demonstrates that uncertainties in the atmospheric density result in large uncertainties in the prediction of the probability of collision. As an example, the effects of a geomagnetic storm on the probability of collision are illustrated. The research aims at providing tools and analyses that help understand and predict the effects of uncertainties in the atmospheric density on the probability of collision. The ultimate motivation is to support mission operators in making the correct decision with regard to a potential collision avoidance maneuver by providing an uncertainty on the prediction of the probability of collision instead of a single value. This approach can help avoid performing unnecessary costly maneuvers, while making sure that the risk of collision is fully evaluated.

  16. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    PubMed Central

    Kim, Kwangsoo; Jin, Seong-il

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Elad; Sari, Re’em

    The Asteroid Belt and the Kuiper Belt are relics from the formation of our solar system. Understanding the size and spin distribution of the two belts is crucial for a deeper understanding of the formation of our solar system and the dynamical processes that govern it. In this paper, we investigate the effect of collisions on the evolution of the spin distribution of asteroids and KBOs. We find that the power law nature of the impactors’ size distribution leads to a Lévy distribution of the spin rates. This results in a power law tail in the spin distribution, in starkmore » contrast to the usually quoted Maxwellian distribution. We show that for bodies larger than 10 km, collisions alone lead to spin rates peaking at 0.15–0.5 revolutions per day. Comparing that to the observed spin rates of large asteroids (R > 50 km), we find that the spins of large asteroids, peaking at ∼1–2 revolutions per day, are dominated by a primordial component that reflects the formation mechanism of the asteroids. Similarly, the Kuiper Belt has undergone virtually no collisional spin evolution, assuming current densities. Collisions contribute a spin rate of ∼0.01 revolutions per day, thus the observed fast spin rates of KBOs are also primordial in nature.« less

  18. Characterization of xenon ion and neutral interactions in a well-characterized experiment

    NASA Astrophysics Data System (ADS)

    Patino, Marlene I.; Wirz, Richard E.

    2018-06-01

    Interactions between fast ions and slow neutral atoms are commonly dominated by charge-exchange and momentum-exchange collisions, which are important to understanding and simulating the performance and behavior of many plasma devices. To investigate these interactions, this work developed a simple, well-characterized experiment that accurately measures the behavior of high energy xenon ions incident on a background of xenon neutral atoms. By using well-defined operating conditions and a simple geometry, these results serve as canonical data for the development and validation of plasma models and models of neutral beam sources that need to ensure accurate treatment of angular scattering distributions of charge-exchange and momentum-exchange ions and neutrals. The energies used in this study are relevant for electric propulsion devices ˜1.5 keV and can be used to improve models of ion-neutral interactions in the plume. By comparing these results to both analytical and computational models of ion-neutral interactions, we discovered the importance of (1) accurately treating the differential cross-sections for momentum-exchange and charge-exchange collisions over a large range of neutral background pressures and (2) properly considering commonly overlooked interactions, such as ion-induced electron emission from nearby surfaces and neutral-neutral ionization collisions.

  19. Topics in electron capture by fast ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsin, S.H.

    1987-01-01

    The post-collision interaction (PCI) model was applied, together with the eikonal approximation, to study the (n = 2,3) capture cross sections in p + H(ls) collisions. The results indeed improve the previous eikonal calculations for l = 0 cases, and agree quite well with present experimental data. Calculations using the strong-potential Born (SPB) approximation, with the Sil and McGuire technique, for capture into the np, nd levels are also presented. While these cross sections are smaller than cross sections for capture into the ns levels at high velocities, nevertheless the Thomas peak is clearly evident in both the absolute valuemore » m = 2, absolute value m = 1 and m = 0 magnetic substates in p + H(ls) collisions. Also calculated were corrections to the SPB using the Distorted-Wave Born formalism of Taulbjerg and Briggs. In the sense of a plane-wave Born expansion, all terms of the third Born approximation and all single switching fourth Born terms are included, but a peaking approximation is needed to reduce the calculation to tractable form. Effects of the higher terms are most visible in the valley between the Thomas peak and the forward peak. The Thomas peak is visible in the correction term, even though it includes no second Born contributions.« less

  20. Energy distributions of H{sup +} fragments ejected by fast proton and electron projectiles in collision with H{sub 2}O molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barros, A. L. F. de; Lecointre, J.; Luna, H.

    Experimental measurements of the kinetic energy distribution spectra of H{sup +} fragment ions released during radiolysis of water molecules in collision with 20, 50, and 100 keV proton projectiles and 35, 200, 400, and 1000 eV electron projectiles are reported using a pulsed beam and drift tube time-of-flight based velocity measuring technique. The spectra show that H{sup +} fragments carrying a substantial amount of energy are released, some having energies well in excess of 20 eV. The majority of the ions lie within the 0-5 eV energy range with the proton spectra showing an almost constant profile between 1.5 andmore » 5 eV and, below this, increasing gradually with decreasing ejection energy up to the near zero energy value while the electron spectra, in contrast, show a broad maximum between 1 and 3 eV and a pronounced dip around 0.25 eV. Beyond 5 eV, both projectile spectra show a decreasing profile with the electron spectra decreasing far more rapidly than the proton spectra. Our measured spectra thus indicate that major differences are present in the collision dynamics between the proton and the electron projectiles interacting with gas phase water molecules.« less

  1. Branch-based centralized data collection for smart grids using wireless sensor networks.

    PubMed

    Kim, Kwangsoo; Jin, Seong-il

    2015-05-21

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  2. Speed kills: ineffective avian escape responses to oncoming vehicles

    PubMed Central

    DeVault, Travis L.; Blackwell, Bradley F.; Seamans, Thomas W.; Lima, Steven L.; Fernández-Juricic, Esteban

    2015-01-01

    Animal–vehicle collisions cause high levels of vertebrate mortality worldwide, and what goes wrong when animals fail to escape and ultimately collide with vehicles is not well understood. We investigated alert and escape behaviours of captive brown-headed cowbirds (Molothrus ater) in response to virtual vehicle approaches of different sizes and at speeds ranging from 60 to 360 km h−1. Alert and flight initiation distances remained similar across vehicle speeds, and accordingly, alert and flight initiation times decreased at higher vehicle speeds. Thus, avoidance behaviours in cowbirds appeared to be based on distance rather than time available for escape, particularly at 60–150 km h−1; however, at higher speeds (more than or equal to 180 km h−1) no trend in response behaviour was discernible. As vehicle speed increased, cowbirds did not have enough time to assess the approaching vehicle, and cowbirds generally did not initiate flight with enough time to avoid collision when vehicle speed exceeded 120 km h−1. Although potentially effective for evading predators, the decision-making process used by cowbirds in our study appears maladaptive in the context of avoiding fast-moving vehicles. Our methodological approach and findings provide a framework to assess how novel management strategies could affect escape rules, and the sensory and cognitive abilities animals use to avoid vehicle collisions. PMID:25567648

  3. Revealing the source of the radial flow patterns in proton-proton collisions using hard probes

    NASA Astrophysics Data System (ADS)

    Ortiz, Antonio; Bencédi, Gyula; Bello, Héctor

    2017-06-01

    In this work, we propose a tool to reveal the origin of the collective-like phenomena observed in proton-proton collisions. We exploit the fundamental difference between the underlying mechanisms, color reconnection and hydrodynamics, which produce radial flow patterns in Pythia 8 and Epos 3, respectively. Specifically, we proceed by examining the strength of the coupling between the soft and hard components which, by construction, is larger in Pythia 8 than in Epos 3. We study the transverse momentum ({p}{{T}}) distributions of charged pions, kaons and (anti) protons in inelastic pp collisions at \\sqrt{s}=7 TeV produced at mid-rapidity. Specific selections are made on an event-by-event basis as a function of the charged particle multiplicity and the transverse momentum of the leading jet ({p}{{T}}{jet}) reconstructed using the FastJet algorithm at mid-pseudorapidity (| η | < 1). From our studies, quantitative and qualitative differences between Pythia 8 and Epos 3 are found in the {p}{{T}} spectra when (for a given multiplicity class) the leading jet {p}{{T}} is increased. In addition, we show that for low-multiplicity events the presence of jets can produce radial flow-like behavior. Motivated by our findings, we propose to perform a similar analysis using experimental data from RHIC and LHC.

  4. Quantum dynamics of hydrogen atoms on graphene. II. Sticking.

    PubMed

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  5. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    NASA Astrophysics Data System (ADS)

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene; Martinazzo, Rocco

    2015-09-01

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (˜0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  6. Electron density and plasma dynamics of a colliding plasma experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor ofmore » 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.« less

  7. Counter-narcotic acoustic buoy (CNAB)

    NASA Astrophysics Data System (ADS)

    Bailey, Mark E.

    2004-09-01

    As a means to detect drug trafficking in a maritime environment, the Counter Narcotic Acoustic Buoy is part of an inexpensive system designed to detect "Go Fast" boats and report via satellite to a designated location. A go fast boat for this evaluation is defined as any boat with twin 200 horsepower outboard engines. The buoy is designed for deployment in salt water at depths ranging from 50 to 600 feet and can be easily deployed by one or two persons. Detections are based on noise energy exceeding a preset level within a frequency band associated with the go fast boat's acoustic signature. Detection ranges have been demonstrated to greater than three nautical miles.

  8. Using Distance Sensors to Perform Collision Avoidance Maneuvres on Uav Applications

    NASA Astrophysics Data System (ADS)

    Raimundo, A.; Peres, D.; Santos, N.; Sebastião, P.; Souto, N.

    2017-08-01

    The Unmanned Aerial Vehicles (UAV) and its applications are growing for both civilian and military purposes. The operability of an UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform autonomous missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other objects in the flight area. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other objects. "Sense and Avoid" algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a Light Detection and Ranging (LiDAR), to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board hardware, Pixhawk's flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications between Ground Control Station and UAV are made via Wi-Fi or cellular third or fourth generation (3G/4G). Some tests were made in order to evaluate the "Sense and Avoid" algorithm's overall performance. These tests were done in two different environments: A 3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and "Brake" mode on a real outdoor, proving its concepts.

  9. MRI of gallstones with different compositions.

    PubMed

    Tsai, Hong-Ming; Lin, Xi-Zhang; Chen, Chiung-Yu; Lin, Pin-Wen; Lin, Jui-Che

    2004-06-01

    Gallstones are usually recognized on MRI as filling defects of hypointensity. However, they sometimes may appear as hyperintensities on T1-weighted imaging. This study investigated how gallstones appear on MRI and how their appearance influences the detection of gallstones. Gallstones from 24 patients who had MRI performed before the removal of the gallstones were collected for study. The gallstones were classified either as cholesterol gallstone (n = 4) or as pigment gallstone (n = 20) according to their gross appearance and based on analysis by Fourier transform infrared spectroscopy. MRI included three sequences: single-shot fast spin-echo T2-weighted imaging, 3D fast spoiled gradient-echo T1-weighted imaging, and in-phase fast spoiled gradient-echo T1-weighted imaging. The signal intensity and the detection rate of gallstones on MRI were further correlated with the character of the gallstones. On T1-weighted 3D fast spoiled gradient-echo images, most of the pigment gallstones (18/20) were hyperintense and all the cholesterol gallstones (4/4) were hypointense. The mean ratio of the signal intensity of gallstone to bile was (+/- standard deviation) 3.36 +/- 1.88 for pigment gallstone and 0.24 +/- 0.10 for cholesterol gallstone on the 3D fast spoiled gradient-echo sequence (p < 0.001). Combining the 3D fast spoiled gradient-echo and single-shot fast spin-echo sequences achieved the highest gallstone detection rate (96.4%). Based on the differences of signal intensity of gallstones, the 3D fast spoiled gradient-echo T1-weighted imaging was able to diagnose the composition of gallstones. Adding the 3D fast spoiled gradient-echo imaging to the single-shot fast spin-echo T2-weighted sequence can further improve the detection rate of gallstones.

  10. Comparison of Fast Neutron Detector Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stange, Sy; Mckigney, Edward Allen

    2015-02-09

    This report documents the work performed for the Department of Homeland Security Domestic Nuclear Detection O ce as the project Fast Neutron Detection Evaluation under contract HSHQDC-14-X-00022. This study was performed as a follow-on to the project Study of Fast Neutron Signatures and Measurement Techniques for SNM Detection - DNDO CFP11-100 STA-01. That work compared various detector technologies in a portal monitor con guration, focusing on a comparison between a number of fast neutron detection techniques and two standard thermal neutron detection technologies. The conclusions of the earlier work are contained in the report Comparison of Fast Neutron Detector Technologies.more » This work is designed to address questions raised about assumptions underlying the models built for the earlier project. To that end, liquid scintillators of two di erent sizes{ one a commercial, o -the-shelf (COTS) model of standard dimensions and the other a large, planer module{were characterized at Los Alamos National Laboratory. The results of those measurements were combined with the results of the earlier models to gain a more complete picture of the performance of liquid scintillator as a portal monitor technology.« less

  11. The risk of pedestrian collisions with peripheral visual field loss.

    PubMed

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L; Goldstein, Robert B

    2016-12-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed to be moving in all directions with equal probability within a reasonable range of walking speeds. The risk density was found to be highly anisotropic. It peaked at ≈45° eccentricity. Increasing pedestrian speed range shifted the risk to higher eccentricities. The risk density is independent of time to collision. The model results were compared to the binocular residual peripheral island locations of 42 patients with forms of retinitis pigmentosa. The natural residual island prevalence also peaked nasally at about 45° but temporally at about 75°. This asymmetry resulted in a complementary coverage of the binocular field of view. Natural residual binocular island eccentricities seem well matched to the collision-risk density function, optimizing detection of other walking pedestrians (nasally) and of faster hazards (temporally). Field expansion prism devices will be most effective if they can create artificial peripheral islands at about 45° eccentricities. The collision risk and residual island findings raise interesting questions about normal visual development.

  12. Simulations On Pair Creation In Collision Of γ-Beams Produced With High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Jansen, Oliver; Ribeyre, Xavier; D'Humieres, Emmanuel; Lobet, Mathieu; Jequier, Sophie; Tikhonchuk, Vladimir

    2016-10-01

    Direct production of electron-positron pairs in two photon collisions, the Breit-Wheeler process, is one of the most basic processes in the universe. However, this process has never been directly observed in the laboratory due to the lack of high intensity γ sources. For a feasibility study and for the optimisation of experimental set-ups we developed a high-performance tree-code. Different possible set-ups with MeV photon sources were discussed and compared using collision detection for huge number of particles in a quantum-electrodynamic regime. The authors acknowledge the financial support from the French National Research Agency (ANR) in the framework of ''The Investments for the Future'' programme IdEx Bordeaux - LAPHIA (ANR-10IDEX-03-02)-Project TULIMA.

  13. Fast iterative censoring CFAR algorithm for ship detection from SAR images

    NASA Astrophysics Data System (ADS)

    Gu, Dandan; Yue, Hui; Zhang, Yuan; Gao, Pengcheng

    2017-11-01

    Ship detection is one of the essential techniques for ship recognition from synthetic aperture radar (SAR) images. This paper presents a fast iterative detection procedure to eliminate the influence of target returns on the estimation of local sea clutter distributions for constant false alarm rate (CFAR) detectors. A fast block detector is first employed to extract potential target sub-images; and then, an iterative censoring CFAR algorithm is used to detect ship candidates from each target blocks adaptively and efficiently, where parallel detection is available, and statistical parameters of G0 distribution fitting local sea clutter well can be quickly estimated based on an integral image operator. Experimental results of TerraSAR-X images demonstrate the effectiveness of the proposed technique.

  14. Mantle Discontinuities under Iranian Plateau and Turan Shield from the Modeling of Seismic Triplications

    NASA Astrophysics Data System (ADS)

    Tseng, Tai-Lin; Chi, Hui-Ching; Huang, Bor-Shouh; Godoladze, Tea; Javakhishvili, Zurab; Karakhanyan, Arkadi

    2015-04-01

    Recent studies of seismic tomography show velocity anomalies in the mantle transition zone (TZ) under Zagros and Iranian Plateau, which are created by active collision between Africa and Eurasia. Remnants of Neo-Tethys slab that subducted before the collision might had experienced a break-off and likely be rested in the deep mantle. In this study, we utilize triplicate arrivals of high-resolution P waveforms to investigate the velocity structure of mantle beneath this continental collision zone and the surroundings. By combining several broadband arrays in eastern Turkey and Caucasus, we construct a fan of profiles, each about 800 km long, which consist of triplicate waveforms generated from the 410- and 660-km discontinuities. The method is particularly sensitive to the size of the velocity contrast for the sampled regions, including the central Iranian Plateau, Turan shield and part of South Caspian basin. Our results show that the lower TZ under the stable Turan shield is fast. The corresponding 660-km contrast is about 4.5% only, smaller than the value in global average model IASP91, but fairly close to that under the northern Indian shield in Precambrian age. For profiles sampling Iran, we observe azimuthal changes in the waveforms which require further data division or grouping. The preliminary analysis suggests that the velocity near the bottom of the TZ is comparable to model appropriate for Turan and probably has a slightly shallower 660-km discontinuity. We hope the comparisons between velocity structures under different terranes can improve our understandings to the lithosphere-mantle dynamics under the process of continental collision.

  15. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on-line. The optimal avoidance trajectory is implemented as a receding-horizon model predictive control law. Therefore, at each time step, the optimal avoidance trajectory is found and the first time step of its acceleration is applied. At the next time step of the control computer, the problem is re-solved and the new first time step is again applied. This continual updating allows the RCA algorithm to adapt to a colliding spacecraft that is making erratic course changes.

  16. Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at √{s}=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Taurok, A.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Pieters, M.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Kalsi, A. K.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Trocino, D.; Tytgat, M.; Verbeke, W.; Vit, M.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correia Silva, G.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Wang, Y.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Assran, Y.; Elgammal, S.; Bhowmik, S.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Kucher, I.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Collard, C.; Conte, E.; Coubez, X.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Juillot, P.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Zhang, S.; Khvedelidze, A.; Lomidze, D.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Teroerde, M.; Wittmer, B.; Zhukov, V.; Albert, A.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Missiroli, M.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Stefaniuk, N.; Tholen, H.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Kasieczka, G.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Bhowmik, D.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Rout, P. K.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Singh, B.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Di Florio, A.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Marangelli, B.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Iemmi, F.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Tiko, A.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Solestizi, L. Alunni; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bianchini, L.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Castello, R.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Stolin, V.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Babaev, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Soares, M. S.; Triossi, A.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Duarte Campderros, J.; Fernandez, M.; Fernández Manteca, P. J.; Garcia-Ferrero, J.; García Alonso, A.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Prieels, C.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bocci, A.; Botta, C.; Camporesi, T.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pantaleo, F.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pitters, F. M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Brzhechko, D.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Neutelings, I.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Komurcu, Y.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Auzinger, G.; Bainbridge, R.; Bloch, P.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; Della Negra, M.; Di Maria, R.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Komm, M.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Strebler, T.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Morton, A.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Taylor, D.; Tos, K.; Tripathi, M.; Wang, Z.; Zhang, F.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Citron, M.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Bunn, J.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T. Q.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Macdonald, E.; Mulholland, T.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chaves, J.; Cheng, Y.; Chu, J.; Datta, A.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Savoy-Navarro, A.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, W.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Rogan, C.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Rebassoo, F.; Wright, D.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bauer, G.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Harris, P.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Golf, F.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Ling, T. Y.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Gutay, L.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Rekovic, V.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Woods, N.

    2018-05-01

    A search is presented for the decays of heavy exotic long-lived particles (LLPs) that are produced in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC and come to rest in the CMS detector. Their decays would be visible during periods of time well separated from proton-proton collisions. Two decay scenarios of stopped LLPs are explored: a hadronic decay detected in the calorimeter and a decay into muons detected in the muon system. The calorimeter (muon) search covers a period of sensitivity totaling 721 (744) hours in 38.6 (39.0) fb-1 of data collected by the CMS detector in 2015 and 2016. The results are interpreted in several scenarios that predict LLPs. Production cross section limits are set as a function of the mean proper lifetime and the mass of the LLPs, for lifetimes between 100 ns and 10 days. These are the most stringent limits to date on the mass of hadronically decaying stopped LLPs, and this is the first search at the LHC for stopped LLPs that decay to muons. [Figure not available: see fulltext.

  17. Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at $$ \\sqrt{s}=13 $$ TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-05-21

    Here, a search is presented for the decays of heavy exotic long-lived particles (LLPs) that are produced in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC and come to rest in the CMS detector. Their decays would be visible during periods of time well separated from proton-proton collisions. Two decay scenarios of stopped LLPs are explored: a hadronic decay detected in the calorimeter and a decay into muons detected in the muon system. The calorimeter (muon) search covers a period of sensitivity totaling 721 (744) hours in 38.6 (39.0) fbmore » $$^{-1}$$ of data collected by the CMS detector in 2015 and 2016. The results are interpreted in several scenarios that predict LLPs. Production cross section limits are set as a function of the mean proper lifetime and the mass of the LLPs, for lifetimes between 100 ns and 10 days. These are the most stringent limits to date on the mass of hadronically decaying stopped LLPs, and this is the first search at the LHC for stopped LLPs that decay to muons.« less

  18. Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at $$\\sqrt{s}=$$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    2018-05-21

    A search is presented for the decays of heavy exotic long-lived particles (LLPs) that are produced in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC and come to rest in the CMS detector. Their decays would be visible during periods of time well separated from proton-proton collisions. Two decay scenarios of stopped LLPs are explored: a hadronic decay detected in the calorimeter and a decay into muons detected in the muon system. The calorimeter (muon) search covers a period of sensitivity totaling 721 (744) hours in 38.6 (39.0) fbmore » $$^{-1}$$ of data collected by the CMS detector in 2015 and 2016. The results are interpreted in several scenarios that predict LLPs. Production cross section limits are set as a function of the mean proper lifetime and the mass of the LLPs, for lifetimes between 100 ns and 10 days. These are the most stringent limits to date on the mass of hadronically decaying stopped LLPs, and this is the first search at the LHC for stopped LLPs that decay to muons.« less

  19. Rotational relaxation of CF+(X1Σ) in collision with He(1S)

    NASA Astrophysics Data System (ADS)

    Denis-Alpizar, O.; Inostroza, N.; Castro Palacio, J. C.

    2018-01-01

    The carbon monofluoride cation (CF+) has been detected recently in Galactic and extragalactic regions. Therefore, excitation rate coefficients of this molecule in collision with He and H2 are necessary for a correct interpretation of the astronomical observations. The main goal of this work is to study the collision of CF+ with He in full dimensionality at the close-coupling level and to report a large set of rotational rate coefficients. New ab initio interaction energies at the CCSD(T)/aug-cc-pv5z level of theory were computed, and a three-dimensional potential energy surface was represented using a reproducing kernel Hilbert space. Close-coupling scattering calculations were performed at collisional energies up to 1600 cm-1 in the ground vibrational state. The vibrational quenching cross-sections were found to be at least three orders of magnitude lower than the pure rotational cross-sections. Also, the collisional rate coefficients were reported for the lowest 20 rotational states of CF+ and an even propensity rule was found to be in action only for j > 4. Finally, the hyperfine rate coefficients were explored. These data can be useful for the determination of the interstellar conditions where this molecule has been detected.

  20. Measurement of Longitudinal Single-Spin Asymmetry for W Boson Production in Polarized p+p Collisions at STAR

    NASA Astrophysics Data System (ADS)

    Kraishan, Amani; STAR Collaboration

    2017-09-01

    The production of W-bosons in longitudinally polarized p+p collisions at RHIC is an ideal tool to study the spin-flavor structure of the proton at a high momentum scale, Q MW . W - (+) bosons are produced in u + d (d + u) collisions and can be detected through their leptonic decays, e- +νe (e+ +νe) . The charged lepton can be detected by the Time Projection Chamber | η | < 1.3 and the Electromagnetic Calorimeters (Barrel | η | < 1.0 and EndCap 1 < η < 2). The parity-violating nature of the weak production process gives rise to large longitudinal single-spin asymmetries, AL. The measurement of AL of W-bosons as a function of lepton pseudorapidity ηe at STAR provides a unique probe to the valence and sea quark helicity distribution for the fractional momentum range of 0.05 < x < 0.2 .In 2013 the STAR experiment collected an integrated luminosity about 250 pb-1 at √{ s}= 510 GeV with an average beam polarization of 53 % . The preliminary results of W-bosons AL from 2013 data sample will be presented.

  1. Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at $$ \\sqrt{s}=13 $$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, a search is presented for the decays of heavy exotic long-lived particles (LLPs) that are produced in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC and come to rest in the CMS detector. Their decays would be visible during periods of time well separated from proton-proton collisions. Two decay scenarios of stopped LLPs are explored: a hadronic decay detected in the calorimeter and a decay into muons detected in the muon system. The calorimeter (muon) search covers a period of sensitivity totaling 721 (744) hours in 38.6 (39.0) fbmore » $$^{-1}$$ of data collected by the CMS detector in 2015 and 2016. The results are interpreted in several scenarios that predict LLPs. Production cross section limits are set as a function of the mean proper lifetime and the mass of the LLPs, for lifetimes between 100 ns and 10 days. These are the most stringent limits to date on the mass of hadronically decaying stopped LLPs, and this is the first search at the LHC for stopped LLPs that decay to muons.« less

  2. Activated recombinative desorption: A potential component in mechanisms of spacecraft glow

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1985-01-01

    The concept of activated recombination of atomic species on surfaces can explain the production of vibrationally and translationally excited desorbed molecular species. Equilibrium statistical mechanics predicts that the molecular quantum state distributions of desorbing molecules is a function of surface temperature only when the adsorption probability is unity and independent of initial collision conditions. In most cases, the adsorption probability is dependent upon initial conditions such as collision energy or internal quantum state distribution of impinging molecules. From detailed balance, such dynamical behavior is reflected in the internal quantum state distribution of the desorbing molecule. This concept, activated recombinative desorption, may offer a common thread in proposed mechanisms of spacecraft glow. Using molecular beam techniques and equipment available at Los Alamos, which includes a high translational energy 0-atom beam source, mass spectrometric detection of desorbed species, chemiluminescence/laser induced fluorescence detection of electronic and vibrationally excited reaction products, and Auger detection of surface adsorbed reaction products, a fundamental study of the gas surface chemistry underlying the glow process is proposed.

  3. Effect of rheological approximations on slab detachment in 3D numerical simulations of continental collision

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2017-04-01

    It is commonly accepted that slab detachment results from the development of extensional stresses within the subducting slab. Subduction slowdown due to arrival of buoyant continental material at the trench is considered to cause such stress build up in the slab. Following slab detachment, slab pull partially or completely loses its strength and hot asthenosphere may flow through the slab window, which can have major consequences for continental collision. The dynamics of slab detachment has been extensively studied in 2D (i.e. analytical and numerical), but 3D models of slab detachment during continental collision remain largely unexplored. Some of the previous 3D models have investigated the role of an asymmetric margin on the propagation of slab detachment (van Hunen and Allen, 2011), the impact of slab detachment on the curvature of orogenic belts (Capitanio and Replumaz, 2013), the role of the collision rate on slab detachment depth (Li et al., 2013) or the effect of along-trench variations on slab detachment (Duretz et al., 2014). However, rheology of mantle and lithosphere is known to have a major influence on the dynamics of subduction. Here, we explore a range of different rheological approximations to understand their sensitivity on the possible scenarios. We employ the code LaMEM (Kaus et al., 2016) to perform 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. The models exhibit a wide range of behaviours depending on the rheological law employed: from linear, to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow, dominated by viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, dominated by plastic breaking and inducing strong mantle flow in the slab window. Moreover, in models of viscous approximation, slab break-off starts in the slab interior due tot the nature of slab necking, while in models of non-linear visco-elasto-plastic rheology, slab tear will first occur at the edges of the continental collision.

  4. Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents

    PubMed Central

    Matatagui, Daniel; Fontecha, José Luis; Fernández, María Jesús; Gràcia, Isabel; Cané, Carles; Santos, José Pedro; Horrillo, María Carmen

    2014-01-01

    The following paper examines a time-efficient method for detecting biological warfare agents (BWAs). The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13), and the rabbit immunoglobulin (Rabbit IgG) has been detected using the polyclonal antibody goat anti-rabbit (GAR). Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved. PMID:25029282

  5. SKS Splitting and the Scale of Vertical Coherence of the Taiwan Mountain Belt

    NASA Astrophysics Data System (ADS)

    Kuo, Ban-Yuan; Lin, Shu-Chuan; Lin, Yi-Wei

    2018-02-01

    Many continental orogens feature a pattern of SKS shear wave splitting with fast polarization directions parallel to the mountain fabrics and delay times of 1-2 s, implying that the crust and lithosphere deform consistently. In the Taiwan arc-continent collision zone, similar pattern of SKS splitting exists, and thereby lithospheric scale deformation due to collision has been assumed. However, recent dynamic modeling demonstrated that the SKS splitting in Taiwan can be generated by the toroidal flow in the asthenosphere induced by the subduction of the Philippine Sea plate and the Eurasian plate. To further evaluate this hypothesis, we analyzed a new data set using a quantitative approach. The results show that models with slab geometries constrained by seismicity explain the observed fast splitting direction to within 25°, whereas the misfit grows to 50-60° if the toroidal flow is disrupted by the presence of a sizable aseismic slab beneath central Taiwan as often suggested by tomographic imaging. However, small sized aseismic slab or detached slab fragment can potentially reconcile the splitting observations. We estimated the scale of vertical coherence to be 10-40 km in the lithosphere and 100-150 km in the asthenosphere, making the former unfavorable for accumulating large delay times. The low coherence is caused by the subduction of the Eurasian plate that creates complex deformation different from what characterizes the compressional tectonics above the plate. This suggests that the mountain building in Taiwan is a shallow process, rather than lithospheric in scale.

  6. Observation of CH A (sup 2)Delta approaches X (sup 2)Pi(sub r) and B (sup 2)Sigma(sup -) approaches X (sup 2)Pi(sub r) emissions in gas-phase collisions of fast O((sup 3)P) atoms with acetylene

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.; Murad, E.

    1995-01-01

    Optical emissions in single-collision, beam-beam reactions of fast (3-22 eV translational energy) O(P-3) atoms with C2H2 have been measured in the wavelength range 300-850 nm. Two features were observed, one with a peak wavelength at 431 nm, corresponding to the CH A (sup 2)Delta yields X (sup 2)Pi(sub r) transition, and a second weaker emission in the range 380-400 nm corresponding to the B (sup 2)Sigma(sup -) yields X (sup 2)Pi(sub r) transition. Both the A yields X and B yields X emissions were fit to a synthetic spectrum of CH(A) at a vibrational temperature T(sub v) of 10,000 K (0.86 eV) and a rotational temperature T(r) of approximately 5000 K (0.43 eV); and CH(B) to T(sub v) = 2500 K (0.22 eV) and T(sub r) = 1000 K (0.09 eV). The energy threshold for the A yields X emission was measured to be 7.3 +/- 0.4 eV (lab) or 4.5 +/- 0.2 eV (c.m.). This agrees with the energy threshold of 7.36 eV (lab) for the reaction O(P-3) + C2H2 yields CH(A) + HCO.

  7. Injury and mortality of juvenile salmon entrained in a submerged jet entering still water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

    Juvenile salmon can be injured and killed when they pass through hydroelectric turbines and other downstream passage alternatives. The hydraulic conditions in these complex environments that pose a risk to the health of fish include turbulent shear flows, collisions with hydraulic structures, cavitation, and rapid change of pressure. Improvements in the understating of the biological responses of juvenile salmon in turbulent shear flows can reduce salmon injury and mortality. In a series of studies, juvenile fall Chinook salmon (Oncorhynchus tshawythscha) were exposed to turbulent shear flows in two mechanisms: 1) the slow-fish-to-fast-water mechanism, where test fish were introduced into amore » turbulent jet from slow-moving water through an introduction tube placed just outside the edge of the jet; 2) the fast-fish-to-slow-water mechanism, where test fish were carried by the fast-moving water of a submerged turbulent jet into the slow-moving water of a flume. All fish exposures to the water jet were recorded by two high-speed, high-resolution cameras. Motion-tracking analysis was then performed on the digital videos to quantify associated kinematic and dynamic parameters. The main results for the slow-fish-to-fast-water mechanism were described in Deng et al (2005). This chapter will discuss the test results of the fast-fish-to-slow-water mechanism and compare the results of the two mechanisms.« less

  8. Collisional quenching dynamics and reactivity of highly vibrationally excited molecules

    NASA Astrophysics Data System (ADS)

    Liu, Qingnan

    Highly excited molecules are of great importance in many areas of chemistry including photochemistry. The dynamics of highly excited molecules are affected by the intermolecular and intramolecular energy flow between many different kinds of motions. This thesis reports investigations of the collisional quenching and reactivity of highly excited molecules aimed at understanding the dynamics of highly excited molecules. There are several important questions that are addressed. How do molecules behave in collisions with a bath gas? How do the energy distributions evolve in time? How is the energy partitioned for both the donor and bath molecules after collisions? How do molecule structure, molecule state density and intermolecular potential play the role during collisional energy transfer? To answer these questions, collisional quenching dynamics and reactivity of highly vibrationally excited azabenzene molecules have been studied using high resolution transient IR absorption spectroscopy. The first study shows that the alkylated pyridine molecules that have been excited with Evib˜38,800 cm-1 impart less rotational and translational energy to CO2 than pyridine does. Comparison between the alkylated donors shows that the strong collisions are reduced for donors with longer alkyl chains by lowering the average energy per mode but longer alkyl chain have increased flexibility and higher state densities that enhance energy loss via strong collisions. In the second study, the role of hydrogen bonding interactions is explored in collision of vibrationally excited pyridines with H2O. Substantial difference in the rotational energy of H 2O is correlated with the structure of the global energy minimum. A torque-inducing mechanism is proposed that involves directed movement of H 2O between sigma and pi-hydrogen bonding interactions with the pyridine donors. In the third study the dynamics of strong and weak collisions for highly vibrationally excited methylated pyridine molecules with HOD are reported. Lower limits to the overall collision rate are directly determined from experimental measurements and compared to Lennard-Jones models which underestimate the collision rate for highly vibrationally excited azabenzenes with HOD. The fourth study explores reactive collisions of highly vibrationally excited pyridine molecules. D-atom abstraction reactions of highly vibrationally excited pyridine-d5 molecules and chlorine radical show a rate enhancement of ˜90 relative to the reaction of room temperature pyridine-d5 with chlorine radical. A single quantum of C-D stretching vibration is observed to be used for the vibrational driven reaction. Reactions of 2-picoline-d3 with chlorine radical do not show a similar enhancement. For this case, the fast rotation of --CD3 group in highly vibrationally excited 2-picoline-d3 inhibits the D-atom abstraction.

  9. The Use of Fast Neutron Detection for Materials Accountability

    NASA Astrophysics Data System (ADS)

    Nakae, L. F.; Chapline, G. F.; Glenn, A. M.; Kerr, P. L.; Kim, K. S.; Ouedraogo, S. A.; Prasad, M. K.; Sheets, S. A.; Snyderman, N. J.; Verbeke, J. M.; Wurtz, R. E.

    2014-02-01

    For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) inherent in man-portable systems. Historically, thermal neutron detectors (mainly 3He) were used, taking advantage of the high thermal neutron interaction cross-sections, but more recently we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics that respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production timescales of fission and neutron-induced fission are preserved and measured instead of being lost in the thermalization of thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of high efficiency counters. Faster detector response times and sensitivity to neutron momentum show promise in measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed neutron sources (e.g., Pu oxide or Mixed Cm and Pu). Here we report on measured results with our existing liquid scintillator array and promote the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator becomes competitive and even surpasses the precision of 3He counters measuring correlated pairs in modest (kg) samples of plutonium.

  10. Grasping objects autonomously in simulated KC-135 zero-g

    NASA Technical Reports Server (NTRS)

    Norsworthy, Robert S.

    1994-01-01

    The KC-135 aircraft was chosen for simulated zero gravity testing of the Extravehicular Activity Helper/retriever (EVAHR). A software simulation of the EVAHR hardware, KC-135 flight dynamics, collision detection and grasp inpact dynamics has been developed to integrate and test the EVAHR software prior to flight testing on the KC-135. The EVAHR software will perform target pose estimation, tracking, and motion estimation for rigid, freely rotating, polyhedral objects. Manipulator grasp planning and trajectory control software has also been developed to grasp targets while avoiding collisions.

  11. Detection of neutral oxygen and sulfur emissions near Io using IUE

    NASA Technical Reports Server (NTRS)

    Ballester, G. E.; Moos, H. W.; Feldman, P. D.; Strobel, D. F.; Summers, M. E.; Bertaux, J.-L.; Skinner, T. E.; Festou, M. C.; Lieske, J. H.

    1987-01-01

    IUE spectra have shown several O I and S I emissions near Io. The optical thickness of the S I 1814 A multiplet indicates that the S column density is greater than about 2 x 10 to the 12th/sq cm. The presence of an S I 1479 A feature suggests that electron collisions with SO2 could be a major source of the emissions. It is likely that particle excitation in the denser collision-dominated part of the atmosphere is also responsible for a substantial part of the observed emissions.

  12. ITS Architecture Development Program, Phase I; Summary Report

    DOT National Transportation Integrated Search

    1994-11-01

    IN-VEHICLE EMISSIONS DIAGNOSIS, COMMERCIAL VEHICLES OPERATIONS OR CVO, ADVANCED VEHICLE CONTROL AND SAFETY SYSTEMS OR AVCSS, ADVANCED PUBLIC TRANSPORTATION SYSTEMS OR APTS, INCIDENT MANAGEMENT/INCIDENT DETECTION, COLLISION AVOIDANCE SYSTEM, AUTOMATED...

  13. Flexible quality of service model for wireless body area sensor networks.

    PubMed

    Liao, Yangzhe; Leeson, Mark S; Higgins, Matthew D

    2016-03-01

    Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency ultra-wideband technology has developed substantially for physiological signal monitoring due to its advantages such as low-power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the prospect of collecting human vital signs, early detection of abnormal medical conditions, real-time healthcare data transmission and remote telemedicine support. However, due to the technical constraints of sensor batteries, the supply of power is a major bottleneck for healthcare system design. Moreover, medium access control (MAC) needs to support reliable transmission links that allow sensors to transmit data safely and stably. In this Letter, the authors provide a flexible quality of service model for ad hoc networks that can support fast data transmission, adaptive schedule MAC control, and energy efficient ubiquitous WBASN networks. Results show that the proposed multi-hop communication ad hoc network model can balance information packet collisions and power consumption. Additionally, wireless communications link in WBASNs can effectively overcome multi-user interference and offer high transmission data rates for healthcare systems.

  14. Inverse Bremsstrahlung in Shocked Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2000-01-01

    There has recently been interest in the role of inverse bremsstrahlung, the emission of photons by fast suprathermal ions in collisions with ambient electrons possessing relatively low velocities, in tenuous plasmas in various astrophysical contexts. This follows a long hiatus in the application of suprathermal ion bremsstrahlung to astrophysical models since the early 1970s. The potential importance of inverse bremsstrahlung relative to normal bremsstrahlung, i.e. where ions are at rest, hinges upon the underlying velocity distributions of the interacting species. In this paper, we identify the conditions under which the inverse bremsstrahlung emissivity is significant relative to that for normal bremsstrahlung in shocked astrophysical plasmas. We determine that, since both observational and theoretical evidence favors electron temperatures almost comparable to, and certainly not very deficient relative to proton temperatures in shocked plasmas, these environments generally render inverse bremsstrahlung at best a minor contributor to the overall emission. Hence inverse bremsstrahlung can be safely neglected in most models invoking shock acceleration in discrete sources such as supernova remnants. However, on scales approximately > 100 pc distant from these sources, Coulomb collisional losses can deplete the cosmic ray electrons, rendering inverse bremsstrahlung, and perhaps bremsstrahlung from knock-on electrons, possibly detectable.

  15. Real-time haptic cutting of high-resolution soft tissues.

    PubMed

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  16. ACTS: from ATLAS software towards a common track reconstruction software

    NASA Astrophysics Data System (ADS)

    Gumpert, C.; Salzburger, A.; Kiehn, M.; Hrdinka, J.; Calace, N.; ATLAS Collaboration

    2017-10-01

    Reconstruction of charged particles’ trajectories is a crucial task for most particle physics experiments. The high instantaneous luminosity achieved at the LHC leads to a high number of proton-proton collisions per bunch crossing, which has put the track reconstruction software of the LHC experiments through a thorough test. Preserving track reconstruction performance under increasingly difficult experimental conditions, while keeping the usage of computational resources at a reasonable level, is an inherent problem for many HEP experiments. Exploiting concurrent algorithms and using multivariate techniques for track identification are the primary strategies to achieve that goal. Starting from current ATLAS software, the ACTS project aims to encapsulate track reconstruction software into a generic, framework- and experiment-independent software package. It provides a set of high-level algorithms and data structures for performing track reconstruction tasks as well as fast track simulation. The software is developed with special emphasis on thread-safety to support parallel execution of the code and data structures are optimised for vectorisation to speed up linear algebra operations. The implementation is agnostic to the details of the detection technologies and magnetic field configuration which makes it applicable to many different experiments.

  17. Coarse-to-fine deep neural network for fast pedestrian detection

    NASA Astrophysics Data System (ADS)

    Li, Yaobin; Yang, Xinmei; Cao, Lijun

    2017-11-01

    Pedestrian detection belongs to a category of object detection is a key issue in the field of video surveillance and automatic driving. Although recent object detection methods, such as Fast/Faster RCNN, have achieved excellent performance, it is difficult to meet real-time requirements and limits the application in real scenarios. A coarse-to-fine deep neural network for fast pedestrian detection is proposed in this paper. Two-stage approach is presented to realize fine trade-off between accuracy and speed. In the coarse stage, we train a fast deep convolution neural network to generate most pedestrian candidates at the cost of a number of false positives. The detector can cover the majority of scales, sizes, and occlusions of pedestrians. After that, a classification network is introduced to refine the pedestrian candidates generated from the previous stage. Refining through classification network, most of false detections will be excluded easily and the final pedestrian predictions with bounding box and confidence score are produced. Competitive results have been achieved on INRIA dataset in terms of accuracy, especially the method can achieve real-time detection that is faster than the previous leading methods. The effectiveness of coarse-to-fine approach to detect pedestrians is verified, and the accuracy and stability are also improved.

  18. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence.

    PubMed

    Tahirbegi, Islam Bogachan; Ehgartner, Josef; Sulzer, Philipp; Zieger, Silvia; Kasjanow, Alice; Paradiso, Mirco; Strobl, Martin; Bouwes, Dominique; Mayr, Torsten

    2017-02-15

    The necessities of developing fast, portable, cheap and easy to handle pesticide detection platforms are getting attention of scientific and industrial communities. Although there are some approaches to develop microchip based pesticide detection platforms, there is no compact microfluidic device for the complementary, fast, cheap, reusable and reliable analysis of different pesticides. In this work, a microfluidic device is developed for in-situ analysis of pesticide concentration detected via metabolism/photosynthesis of Chlamydomonas reinhardtii algal cells (algae) in tap water. Algae are grown in glass based microfluidic chip, which contains integrated optical pH and oxygen sensors in a portable system for on-site detection. In addition, intrinsic algal fluorescence is detected to analyze the pesticide concentration in parallel to pH and oxygen sensors with integrated fluorescence detectors. The response of the algae under the effect of different concentrations of pesticides is evaluated and complementary inhibition effects depending on the pesticide concentration are demonstrated. The three different sensors allow the determination of various pesticide concentrations in the nanomolar concentration range. The miniaturized system provides the fast quantification of pesticides in less than 10min and enables the study of toxic effects of different pesticides on Chlamydomonas reinhardtii green algae. Consequently, the microfluidic device described here provides fast and complementary detection of different pesticides with algae in a novel glass based microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Protein electrochemistry using graphene-based nano-assembly: an ultrasensitive electrochemical detection of protein molecules via nanoparticle-electrode collisions.

    PubMed

    Li, Da; Liu, Jingquan; Barrow, Colin J; Yang, Wenrong

    2014-08-04

    We describe a new electrochemical detection approach towards single protein molecules (microperoxidase-11, MP-11), which are attached to the surface of graphene nanosheets. The non-covalently functionalized graphene nanosheets exhibit enhanced electroactive surface area, where amplified redox current is produced when graphene nanosheets collide with the electrode.

  20. Determination of the 1s2{\\ell }2{{\\ell }}^{\\prime } state production ratios {{}^{4}P}^{o}/{}^{2}P, {}^{2}D/{}^{2}P and {{}^{2}P}_{+}/{{}^{2}P}_{-} from fast (1{s}^{2},1s2s\\,{}^{3}S) mixed-state He-like ion beams in collisions with H2 targets

    NASA Astrophysics Data System (ADS)

    Benis, E. P.; Zouros, T. J. M.

    2016-12-01

    New results are presented on the ratio {R}m={σ }{T2p}( {}4P)/{σ }{T2p}({}2P) concerning the production cross sections of Li-like 1s2s2p quartet and doublet P states formed in energetic ion-atom collisions by single 2p electron transfer to the metastable 1s2s {}3S component of the He-like ion beam. Spin statistics predict a value of R m = 2 independent of the collision system in disagreement with most reported measurements of {R}m≃ 1{--}9. A new experimental approach is presented for the evaluation of R m having some practical advantages over earlier approaches. It also allows for the determination of the separate contributions of ground- and metastable-state beam components to the measured spectra. Applying our technique to zero-degree Auger projectile spectra from 4.5 MeV {{{B}}}3+ (Benis et al 2002 Phys. Rev. A 65 064701) and 25.3 MeV {{{F}}}7+ (Zamkov et al 2002 Phys. Rev. A 65 062706) mixed state (1{s}2 {}1S,1s2s {}3S) He-like ion collisions with H2 targets, we report new values of {R}m=3.5+/- 0.4 for boron and {R}m=1.8+/- 0.3 for fluorine. In addition, the ratios of {}2D/{}2P and {{}2P}+/{{}2P}- populations from either the metastable and/or ground state beam component, also relevant to this analysis, are evaluated and compared to previously reported results for carbon collisions on helium (Strohschein et al 2008 Phys. Rev. A 77 022706) including a critical comparison to theory.

  1. Transport Simulations for Fast Ignition on NIF

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Tabak, M.; Grote, D. P.; Town, R. P. J.; Kemp, A. J.

    2009-11-01

    Calculations of the transport and deposition of a relativistic electron beam into fast-ignition fuel configurations are presented. The hybrid PIC code LSP is used, run in implicit mode and with fluid background particles. The electron beam distribution is chosen based on explicit PIC simulations of the short-pulse LPI. These generally display two hot-electron temperatures, one close to the ponderomotive scaling and one that is much lower. Fast-electron collisions utilize the formulae of J. R. Davies [S. Atzeni et al., Plasma Phys. Controlled Fusion 51 (2009)], and are done with a conservative, relativistic grid-based method similar to Lemons et al., J. Comput. Phys. 228 (2009). We include energy loss off both bound and free electrons in partially-ionized media (such as a gold cone), and have started to use realistic ionization and non-ideal EOS models. We have found the fractional energy coupling into the dense fuel is higher for CD than DT targets, due to the enhanced resistivity and resulting magnetic fields. The coupling enhancement due to magnetic fields and beam characteristics (such as angular spectrum) will be quantified.

  2. Radiation Detection and Classification of Heavy Oxide Inorganic Scintillator Crystals for Detection of Fast Neutrons

    DTIC Science & Technology

    2016-06-01

    of these three pillars, yet current detectors for fast neutrons from nuclear weapons materials are bulky, expensive, and have low efficiencies, well...passive fast neutron emissions. Similarly, isotopes present in weapons grade Plutonium (which is predominantly Pu-239), especially Pu-240, are... weapons material, and the propensity of the neutrons resulting from their fission to inelastically scatter, defines the interactions of interest

  3. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes

    PubMed Central

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide

    2018-01-01

    In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms. PMID:29329225

  4. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    PubMed

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide

    2018-01-12

    In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  5. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets a)

    DOE PAGES

    Moser, Auna L.; Hsu, Scott C.

    2015-05-01

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  6. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.

    2007-09-01

    Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.

  7. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets a)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Auna L.; Hsu, Scott C.

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  8. Hadron-rich cosmic-ray families detected by emulsion chamber.

    NASA Astrophysics Data System (ADS)

    Navia, C. E.; Augusto, C. R. K.; Pinto, F. A.; Shibuya, H.

    1995-11-01

    Observed hadrons in excess, larger-than-expected charged mesons (pions) in cosmic-ray families detected in emulsion chamber experiment at mountain altitude and produced in a cosmic-ray hadronic interaction not far from the PeV energy region are studied. The hypothesis that these extra hadrons could be a bundle of surviving nuclear fragments (nucleons) is verified through a simulation method using a hybrid code composed of a superposition model to describe the number of interacting nucleon-nucleon pairs in a nucleus-nucleus collision. Together with the UA5 algorithm to describe a nucleon-nucleon collision, atmospheric propagation structure is also considered. A comparison between simulation output with experimental data shows that the surviving-nuclear-fragments hypothesis is not enough to explain the non-pionic hadron excess, even if a heavy dominance composition in the primary flux is considered.

  9. The role of looming and attention capture in drivers' braking responses.

    PubMed

    Terry, Hugh R; Charlton, Samuel G; Perrone, John A

    2008-07-01

    This study assessed the ability of drivers to detect the deceleration of a preceding vehicle in a simulated vehicle-following task. The size of the preceding vehicles (car, van, or truck) and following speeds (50, 70, or 100 km/h) were systematically varied. Participants selected a preferred following distance by engaging their vehicle's cruise control and when the preceding vehicle began decelerating (no brake lights were illuminated), the participant's braking latency and distances to the lead vehicle were recorded. The experiment also employed a secondary task condition to examine how the attention-capturing properties of a looming vehicle were affected by driver distraction. The results indicated that a looming stimulus is capable of redirecting a driver's attention in a vehicle following task and, as with detection of brake lights, a driver's detection of a looming vehicle is compromised in the presence of a distracting task. Interestingly, increases in vehicle size had the effect of decreasing drivers' braking latencies and drivers engaged in the secondary task were significantly closer to the lead vehicle when they began braking, regardless of the size of the leading vehicle. Performance decrements resulting from the secondary task were reflected in a time-to-collision measure but not in optic expansion rate, lending support to earlier arguments that time-to-collision estimates require explicit cognitive judgements while perception of optic expansion may function in a more automatic fashion to redirect a driver's attention when cognitive resources are low or collision is imminent.

  10. Methodology for Collision Risk Assessment of an Airspace Flow Corridor Concept

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin

    This dissertation presents a methodology to estimate the collision risk associated with a future air-transportation concept called the flow corridor. The flow corridor is a Next Generation Air Transportation System (NextGen) concept to reduce congestion and increase throughput in en-route airspace. The flow corridor has the potential to increase throughput by reducing the controller workload required to manage aircraft outside the corridor and by reducing separation of aircraft within corridor. The analysis in this dissertation is a starting point for the safety analysis required by the Federal Aviation Administration (FAA) to eventually approve and implement the corridor concept. This dissertation develops a hybrid risk analysis methodology that combines Monte Carlo simulation with dynamic event tree analysis. The analysis captures the unique characteristics of the flow corridor concept, including self-separation within the corridor, lane change maneuvers, speed adjustments, and the automated separation assurance system. Monte Carlo simulation is used to model the movement of aircraft in the flow corridor and to identify precursor events that might lead to a collision. Since these precursor events are not rare, standard Monte Carlo simulation can be used to estimate these occurrence rates. Dynamic event trees are then used to model the subsequent series of events that may lead to collision. When two aircraft are on course for a near-mid-air collision (NMAC), the on-board automated separation assurance system provides a series of safety layers to prevent the impending NNAC or collision. Dynamic event trees are used to evaluate the potential failures of these layers in order to estimate the rare-event collision probabilities. The results show that the throughput can be increased by reducing separation to 2 nautical miles while maintaining the current level of safety. A sensitivity analysis shows that the most critical parameters in the model related to the overall collision probability are the minimum separation, the probability that both flights fail to respond to traffic collision avoidance system, the probability that an NMAC results in a collision, the failure probability of the automatic dependent surveillance broadcast in receiver, and the conflict detection probability.

  11. icpTOF: a new way for the detection of synthetic nanoparticles in environmental systems

    NASA Astrophysics Data System (ADS)

    Borovinskaya, Olga; Tanner, Martin; Böhme, Steffi; Gondikas, Andreas

    2016-04-01

    Tons of engineered nanoparticles are yearly released into the environment as a result of human activity and utilization of nano-containing products. Driven by demand and innovations, the production volumes of nanomaterials are predicted to grow further and already in 2020 will reach >500000 tons [1]. The current challenge faced by society is the lack of information about the fate, behavior, and implications of nanomaterials. This gap has to be filled in order to develop an appropriate strategy for the regulation of nanotechnologies. This is not a simple task because we are still unable to detect and monitor nanoparticles once they have been released into the environment. The list of analytical techniques which can be applied for nanoparticle detection in complex media and at environmentally relevant concentrations (ppt-ppb) is very short and for most of the studies complementary approaches are applied. Single particle (sp)-ICP-MS is a new technique which provides an easy and routinely applied way to quantitatively determine size and number concentration of metal-containing nanoparticles [2]. Moreover, element-specific detection makes sp-ICP-MS more tolerant to high levels of natural background (e.g. organic matter, bacteria). The measurement of single particles implies the detection of extremely short signals (100-500 μm) and requires sensitive and fast instrumentation. Sequentially scanning instruments based on quadrupole or sector-field technology cannot accurately measure more than one isotope per particle and determine elemental composition of single particles. A new icpTOF mass spectrometer (TOFWERK AG, Switzerland) provides simultaneous detection over the whole mass range of elements at μs-time resolution and with >3000 mass resolving power. These unique features render the determination of multi-element composition of single nanoparticles possible [3]. This additional information is extremely valuable to study chemical transformations of particles once they have entered the real ecosystem. Besides, element ratios of single particles can be used as a specific merit for the identification of synthetic nanoparticles in the presence of naturally occurring particulate background [4]. In addition to higher mass resolving power, the instrument is equipped with a collision/reaction cell, which helps to improve detection limits for elements suffering from interferences (e.g. Fe, Ti, P, S). The icpTOF performance will be shown in combination with different sample introduction systems, including novel discrete microdroplet introduction. The single droplet introduction approach enables particle quantification without particulate reference materials and significantly simplifies the analysis. The advantages of fast simultaneous detection for the characterization of multi-component nanoparticles in environmental media will be demonstrated on several studies. [1] Nanoscience and Nanotechnologies: Nanoscience and nanotechnologies: opportunities and uncertainties, Final Report. Royal Society: London, 2004 [2] Degueldre et al. (2003), Coll. Surf. A, 217, 137-142. [3] Borovinskaya et al. (2014), Anal. Chem, 86, 8142-8148. [4] Von der Kammer et al. (2012), Env. Tox. and Chem., 31, 32-49.

  12. Measurement of the velocity of neutral fragments by the "correlated ion and neutral time of flight" method combined with "velocity-map imaging"

    NASA Astrophysics Data System (ADS)

    Berthias, F.; Feketeová, L.; Della Negra, R.; Dupasquier, T.; Fillol, R.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Märk, T. D.

    2017-08-01

    In the challenging field of imaging molecular dynamics, a novel method has been developed and implemented that allows the measurement of the velocity of neutral fragments produced in collision induced dissociation experiments on an event-by-event basis. This has been made possible by combining a correlated ion and neutral time of flight method with a velocity map imaging technique. This new method relies on a multiparametric correlated detection of the neutral and charged fragments from collision induced dissociation on one single detector. Its implementation on the DIAM device (Device for irradiation of biomolecular clusters) (Dispositif d'Irradiation d'Agrégats bioMoléculaires) allowed us to measure the velocity distribution of water molecules evaporated from collision induced dissociation of mass- and energy-selected protonated water clusters.

  13. Measurement of Drell-Yan longitudinal double spin asymmetry in polarized p + p collisions at PHENIX

    NASA Astrophysics Data System (ADS)

    Perera, Gonaduwage; Pate, Stephen; Phenix Collaboration

    2016-09-01

    Measurement of the longitudinal double spin asymmetry (ALL) in the Drell-Yan process in high energy polarized proton-proton collisions provides clean access to the anti-quark helicity distributions in the proton without involving quark fragmentation functions. In the PHENIX experiment at RHIC, the Forward Silicon Vertex Detector (FVTX) together with the forward muon spectrometers have been used to study the Drell-Yan process by detecting the muon pairs in the forward region (1.2 < η < 2.4). In this talk, the status of evaluating the Drell-Yan signal fraction and the ALL asymmetry in the intermediate mass region (4.5 GeV < M < 8 GeV) using the RHIC 2013 dataset of proton-proton collisions at a center of mass energy of 510 GeV are presented. DOE, NMSU, UVa.

  14. High throughput screening and antioxidant assay of dibenzo[a,c]cyclooctadiene lignans in modified-ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill by liquid chromatography--mass spectrometry and a free radical-scavenging method.

    PubMed

    Wang, Ming-Chih; Lai, Yih-Cherng; Chang, Chia-Lin

    2008-05-01

    Dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill are well known because of their hepatoprotective activity, antioxidant activity, and anticancer effect. For the isolation of the dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill two extraction methods were used: modified-ultrasonic extraction and supercritical fluid extraction. A specific and fast analytical method for structure identification is established for quality control because structure elucidation could be accomplished by means of liquid chromatography-mass spectrometry (LC-MS) technologies. The separation and identification of the compounds were completed by: (i) a water-acetonitrile gradient system using a C18 reversed-phase column; (ii) UV detection at 225 nm; (iii) MS/MS experiments with electrospray ionization interface (ESI) ion trap mass spectrometry in the positive mode. Normalized collision energy was used to obtain fragment ions of structural relevance in the LC-MS/MS. These results provided a reliable LC-MS/MS method for the determination of the dibenzo[a,c]cyclooctadiene lignans from Schisandra chinensis Baill. Finally, we also detected 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging effects (%) of the modified-ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill compared with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). The antioxidant activities of the modified-ultrasonic and supercritical fluid extracts were lower than that of trolox.

  15. A Probabilistic Model for Hydrokinetic Turbine Collision Risks: Exploring Impacts on Fish

    PubMed Central

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals. PMID:25730314

  16. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    DOE PAGES

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; ...

    2016-04-06

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion–molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N 2O 5, known to react with iodide at the collision limit, to constrain the combined effects of ion–molecule reaction time, which is strongly influenced by mixing and ion losses in the ion–molecule reaction drift tube. A mass spectrometric voltage scanningmore » procedure elucidates the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. Lastly, we describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.« less

  17. Polarization Spectroscopy and Collisions in NaK

    NASA Astrophysics Data System (ADS)

    Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.

    2009-05-01

    We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v=16, J) <- X^1&+circ;(v=0, J±1) transition, creating an orientation (non-uniform MJ level distribution) in both levels. The linear polarized probe laser is scanned over various 3^1π(v=8, J' ±1) <- A^1&+circ;(v=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). In addition to strong direct transitions (J' = J), we also observe weak collisional satellite lines (J' = J±n with n = 1, 2, 3, ...) indicating that orientation is transferred to adjacent rotational levels during a collision. An LIF experiment (with linear polarized pump and probe beams) gives information on the collisional transfer of population. From these data, cross sections for both processes can be determined. We experimentally distinguish collisions of NaK with argon atoms from collisions with alkali atoms.

  18. Design and hardware-in-loop implementation of collision avoidance algorithms for heavy commercial road vehicles

    NASA Astrophysics Data System (ADS)

    Rajaram, Vignesh; Subramanian, Shankar C.

    2016-07-01

    An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Hardware-in-Loop experimental results showed that the SMC and full state feedback controller were able to prevent the collision. However, when the discrepancies in the form of parametric variations were included, the SMC provided better results in terms of reduced stopping distance and lower controller effort compared to the full state feedback controller.

  19. A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.

    PubMed

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.

  20. Lightwave-driven quasiparticle collisions on a sub-cycle timescale

    PubMed Central

    Langer, F.; Hohenleutner, M.; Schmid, C.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.

    2016-01-01

    Ever since Ernest Rutherford first scattered α-particles from gold foils1, collision experiments have revealed unique insights into atoms, nuclei, and elementary particles2. In solids, many-body correlations also lead to characteristic resonances3, called quasiparticles, such as excitons, dropletons4, polarons, or Cooper pairs. Their structure and dynamics define spectacular macroscopic phenomena, ranging from Mott insulating states via spontaneous spin and charge order to high-temperature superconductivity5. Fundamental research would immensely benefit from quasiparticle colliders, but the notoriously short lifetimes of quasiparticles6 have challenged practical solutions. Here we exploit lightwave-driven charge transport7–24, the backbone of attosecond science9–13, to explore ultrafast quasiparticle collisions directly in the time domain: A femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying wave packet dynamics, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands17–19 of the optical excitation. A full quantum theory explains our observations microscopically. This approach opens the door to collision experiments with a broad variety of complex quasiparticles and suggests a promising new way of sub-femtosecond pulse generation. PMID:27172045

  1. Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks

    DOE PAGES

    Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; ...

    2017-12-12

    Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less

  2. Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks

    NASA Astrophysics Data System (ADS)

    Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.; Pace, D. C.; Podestà, M.; Van Zeeland, M. A.

    2017-12-01

    Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. The proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterion predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. The proposed criterion constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.

  3. Investigating the foil-generated deuteron beam interaction with a DT target in degenerate and classical plasma

    NASA Astrophysics Data System (ADS)

    Mehrangiz, M.; Ghasemizad, A.

    2017-06-01

    Deuteron fast ignition of a conically guided pre-compressed DT fuel is investigated. For this purpose, the acceleration of the deuterated thin foil by the intense laser beam is evaluated. The acceleration values and the number of foil-generated deuterons are calculated in terms of the laser pulse duration. Using the created deuterons as the fast ignitors, we investigate the fast ignition scheme by comparing fully degenerate, partial degenerate and classical types of DT plasma. The total energy gain of deuterons "beam fusion" is calculated to show the efficiency of beam reactions in increasing fusion rate. Besides, the stopping time and stopping range of incident deuterons are evaluated. Our numerical results indicate that degeneracy increases the beam-target collisions. Thus, it prepares the ignition situation sooner than the classical plasma. Moreover, the number of generated deuterons and their acceleration depend on the foil thickness and laser parameters. We show that when a 4ps laser with intensity of 10^{19} W/cm^2 focused onto a 20μm foil, 35× 10^{15} deuterons are generated. Moreover, under our analysis, in order to have a practicable fast ignition, 18% of the laser energy is necessary to convert into a deuteron driver.

  4. Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.

    Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less

  5. Fast detection of atrazine in corn using thermometric biosensors.

    PubMed

    Qie, Zhiwei; Ning, Baoan; Liu, Ming; Bai, Jialei; Peng, Yuan; Song, Nan; Lv, Zhiqiang; Wang, Ying; Sun, Siming; Su, Xuan; Zhang, Yihong; Gao, Zhixian

    2013-09-07

    Fast detection is important in screening large-scale samples. This study establishes a direct competitive ELISA method (dcTELISA) based on an enzyme thermistor for fast atrazine (ATZ) detection. ATZ competes with β-lactamase-labeled ATZ (ATZ-E) for the binding sites on anti-ATZ monoclonal antibody (mAb). The mAb are covalently bound to Controlled Pore Glass (CPG) in an immunoreactor to form immunocomplexes with ATZ and ATZ-E. Several parameters of biosensor performance were optimized, such as the ATZ-E concentration, concentration and nature of the substrate, flow rate, and effect of temperature on the sensor response. After optimization, the assay time for a single sample was 12 min. The work process and result were compared with those of high-performance liquid chromatography (HPLC). The detection results exhibited a recovery rate of 88% to 107% in ATZ-spiked fresh cut corn stalks and silage samples. The results obtained via dcTELISA had good correlation with that of HPLC, and the biosensor response was reproducible and stable even when used continuously for over 4 months. All these properties suggested that the fast detection method, dcTELISA, may be used to detect pesticide residue in large-scale samples.

  6. Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC.

    PubMed

    Acharya, B; Alexandre, J; Baines, S; Benes, P; Bergmann, B; Bernabéu, J; Branzas, H; Campbell, M; Caramete, L; Cecchini, S; de Montigny, M; De Roeck, A; Ellis, J R; Fairbairn, M; Felea, D; Flores, J; Frank, M; Frekers, D; Garcia, C; Hirt, A M; Janecek, J; Kalliokoski, M; Katre, A; Kim, D-W; Kinoshita, K; Korzenev, A; Lacarrère, D H; Lee, S C; Leroy, C; Lionti, A; Mamuzic, J; Margiotta, A; Mauri, N; Mavromatos, N E; Mermod, P; Mitsou, V A; Orava, R; Parker, B; Pasqualini, L; Patrizii, L; Păvălaş, G E; Pinfold, J L; Popa, V; Pozzato, M; Pospisil, S; Rajantie, A; Ruiz de Austri, R; Sahnoun, Z; Sakellariadou, M; Sarkar, S; Semenoff, G; Shaa, A; Sirri, G; Sliwa, K; Soluk, R; Spurio, M; Srivastava, Y N; Suk, M; Swain, J; Tenti, M; Togo, V; Tuszyński, J A; Vento, V; Vives, O; Vykydal, Z; Whyntie, T; Widom, A; Willems, G; Yoon, J H; Zgura, I S

    2017-02-10

    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  7. Measurement of the Total Cross Section of Uranium-Uranium Collisions at √{sNN} = 192 . 8 GeV

    NASA Astrophysics Data System (ADS)

    Baltz, A. J.; Fischer, W.; Blaskiewicz, M.; Gassner, D.; Drees, K. A.; Luo, Y.; Minty, M.; Thieberger, P.; Wilinski, M.; Pshenichnov, I. A.

    2014-03-01

    The total cross section of Uranium-Uranium at √{sNN} = 192 . 8 GeV has been measured to be 515 +/-13stat +/-22sys barn, which agrees with the calculated theoretical value of 487.3 barn within experimental error. That this total cross section is more than an order of magnitude larger than the geometric ion-ion cross section is primarily due to Bound-Free Pair Production (BFPP) and Electro-Magnetic Dissociation (EMD). Nearly all beam losses were due to geometric, BFPP and EMD collisions. This allowed the determination of the total cross section from the measured beam loss rates and luminosity. The beam loss rate is calculated from a time-dependent measurement of the total beam intensity. The luminosity is measured via the detection of neutron pairs in time-coincidence in the Zero Degree Calorimeters. Apart from a general interest in verifying the calculations experimentally, an accurate prediction of the losses created in the heavy ion collisions is of practical interest for the LHC, where collision products have the potential to quench cryogenically cooled magnets.

  8. Collision tumor of primary laryngeal mucosal melanoma and invasive squamous cell carcinoma with IL-17A and CD70 gene over-expression.

    PubMed

    Sirikanjanapong, Sasis; Lanson, Biana; Amin, Milan; Martiniuk, Frank; Kamino, Hideko; Wang, Beverly Y

    2010-12-01

    The most common primary malignancy of the larynx is the squamous cell carcinoma (SCC). The primary malignant melanoma is quite rare in this location. Less than 60 cases of laryngeal melanomas have been reported to date. To our knowledge, collision primary malignant melanoma and invasive squamous cell carcinoma in the vocal cords has not been reported. We report a 53-year-old male patient who was diagnosed with a collision tumor of laryngeal melanoma and invasive SCC. Multiple Th17 pathway related genes including CTLA-4, IL-17A-F, PLZF, FoxP3, RorγT, CD27, and CD70 were analyzed by reverse transcriptase-polymerase chain reaction (Rt-PCR) in this case. Both IL-17A and CD70 genes were detected in this case of collision tumor. The results may define useful biomarkers for early diagnosis of mucosal melanoma and open an immunotherapeutic field for clinical management with the potential benefit from the immunomodulators that enhance both genes.

  9. Topological defects from the multiverse

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander

    2015-05-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  10. Neutron coincidence measurements when nuclear parameters vary during the multiplication process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ming-Shih; Teichmann, T.

    1995-07-01

    In a recent paper, a physical/mathematical model was developed for neutron coincidence counting, taking explicit account of neutron absorption and leakage, and using dual probability generating function to derive explicit formulae for the single and multiple count-rates in terms of the physical parameters of the system. The results of this modeling proved very successful in a number of cases in which the system parameters (neutron reaction cross-sections, detection probabilities, etc.) remained the same at the various stages of the process (i.e. from collision to collision). However, there are practical circumstances in which such system parameters change from collision to collision,more » and it is necessary to accommodate these, too, in a general theory, applicable to such situations. For instance, in the case of the neutron coincidence collar (NCC), the parameters for the initial, spontaneous fission neutrons, are not the same as those for the succeeding induced fission neutrons, and similar situations can be envisaged for certain other experimental configurations. This present document shows how the previous considerations can be elaborated to embrace these more general requirements.« less

  11. Particle in cell/Monte Carlo collision analysis of the problem of identification of impurities in the gas by the plasma electron spectroscopy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusoglu Sarikaya, C.; Rafatov, I., E-mail: rafatov@metu.edu.tr; Kudryavtsev, A. A.

    2016-06-15

    The work deals with the Particle in Cell/Monte Carlo Collision (PIC/MCC) analysis of the problem of detection and identification of impurities in the nonlocal plasma of gas discharge using the Plasma Electron Spectroscopy (PLES) method. For this purpose, 1d3v PIC/MCC code for numerical simulation of glow discharge with nonlocal electron energy distribution function is developed. The elastic, excitation, and ionization collisions between electron-neutral pairs and isotropic scattering and charge exchange collisions between ion-neutral pairs and Penning ionizations are taken into account. Applicability of the numerical code is verified under the Radio-Frequency capacitively coupled discharge conditions. The efficiency of the codemore » is increased by its parallelization using Open Message Passing Interface. As a demonstration of the PLES method, parallel PIC/MCC code is applied to the direct current glow discharge in helium doped with a small amount of argon. Numerical results are consistent with the theoretical analysis of formation of nonlocal EEDF and existing experimental data.« less

  12. Hash function based on chaotic map lattices.

    PubMed

    Wang, Shihong; Hu, Gang

    2007-06-01

    A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.

  13. Collective Flow and Mach Cones with transport

    NASA Astrophysics Data System (ADS)

    Bouras, I.; El, A.; Fochler, O.; Reining, F.; Uphoff, J.; Wesp, C.; Xu, Z.; Greiner, C.

    2011-04-01

    Fast thermalization and a strong build up of elliptic flow of QCD matter were investigated within the pQCD based 3+1 dimensional parton transport model BAMPS including bremsstrahlung 2 ↔ 3 processes. Within the same framework quenching of gluonic jets in Au+Au collisions at RHIC can be understood. The development of conical structure by gluonic jets is investigated in a static box for the regimes of small and large dissipation. Furthermore we demonstrate two different approaches to extract the shear viscosity coefficient η from a microscopical picture.

  14. Hash function based on chaotic map lattices

    NASA Astrophysics Data System (ADS)

    Wang, Shihong; Hu, Gang

    2007-06-01

    A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.

  15. Ungulate Vehicle Collisions in a Peri-Urban Environment: Consequences of Transportation Infrastructures Planned Assuming the Absence of Ungulates

    PubMed Central

    Zuberogoitia, Iñigo; del Real, Javier; Torres, Juan José; Rodríguez, Luis; Alonso, María; Zabala, Jabi

    2014-01-01

    Ungulate vehicle collisions (UVC) provoke serious damage, including human casualties, and a large number of measures have been developed around the world to avoid collisions. We analyse the main factors involved in UVC in a road network built in the absence of ungulates, where mitigation structures to avoid UVC were not adequately considered. Ungulate population greatly increased during the last two decades and now Roe Deer and Wild Boars are widely distributed over the study area, but even after this increase, the road network was not adapted to avoid UVC. A total of 235 Roe Deer (RDVC) and 153 Wild Boar vehicle collisions (WBVC) were recorded between January 2008 and December 2011. We randomly selected 289 sample points (87 RDVC, 60 WBVC and 142 controls) separated by at least 500 metres from the next closest point and measured 19 variables that could potentially influence the vehicle collisions. We detected variations in the frequency of RDVC on a monthly basis, and WBVC was higher at weekends but no significant differences were detected on a monthly basis. UVC were more likely to occur at locations where sinuosity of the road, velocity, surface of shrub and deciduous forest area were greater, the presence of fences entered with positive relationship and distance to the nearest building was less. RDVC were more likely to occur at locations where timber forest area increased and distance to the nearest building decreased and WBVC was related to open fields cover and also to the presence of fences. Sinuosity and velocity entered in both cases as significant factors. Major roads, in which the traffic volume is greater and faster, caused more accidents with ungulates than secondary roads. Nowadays, the high frequency of ungulate road-kills deserves a new strategy in order to adapt infrastructure and adopt mitigation measures. PMID:25251376

  16. Ungulate vehicle collisions in a peri-urban environment: consequences of transportation infrastructures planned assuming the absence of ungulates.

    PubMed

    Zuberogoitia, Iñigo; del Real, Javier; Torres, Juan José; Rodríguez, Luis; Alonso, María; Zabala, Jabi

    2014-01-01

    Ungulate vehicle collisions (UVC) provoke serious damage, including human casualties, and a large number of measures have been developed around the world to avoid collisions. We analyse the main factors involved in UVC in a road network built in the absence of ungulates, where mitigation structures to avoid UVC were not adequately considered. Ungulate population greatly increased during the last two decades and now Roe Deer and Wild Boars are widely distributed over the study area, but even after this increase, the road network was not adapted to avoid UVC. A total of 235 Roe Deer (RDVC) and 153 Wild Boar vehicle collisions (WBVC) were recorded between January 2008 and December 2011. We randomly selected 289 sample points (87 RDVC, 60 WBVC and 142 controls) separated by at least 500 metres from the next closest point and measured 19 variables that could potentially influence the vehicle collisions. We detected variations in the frequency of RDVC on a monthly basis, and WBVC was higher at weekends but no significant differences were detected on a monthly basis. UVC were more likely to occur at locations where sinuosity of the road, velocity, surface of shrub and deciduous forest area were greater, the presence of fences entered with positive relationship and distance to the nearest building was less. RDVC were more likely to occur at locations where timber forest area increased and distance to the nearest building decreased and WBVC was related to open fields cover and also to the presence of fences. Sinuosity and velocity entered in both cases as significant factors. Major roads, in which the traffic volume is greater and faster, caused more accidents with ungulates than secondary roads. Nowadays, the high frequency of ungulate road-kills deserves a new strategy in order to adapt infrastructure and adopt mitigation measures.

  17. ZEA-TDMA: design and system level implementation of a TDMA protocol for anonymous wireless networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Debasmit; Dong, Bo; Biswas, Subir

    2013-05-01

    Wireless sensor network used in military applications may be deployed in hostile environments, where privacy and security is of primary concern. This can lead to the formation of a trust-based sub-network among mutually-trusting nodes. However, designing a TDMA MAC protocol is very challenging in situations where such multiple sub-networks coexist, since TDMA protocols require node identity information for slot assignments. This paper introduces a novel distributed TDMA MAC protocol, ZEA-TDMA (Zero Exposure Anonymous TDMA), for anonymous wireless networks. ZEA-TDMA achieves slot allocation with strict anonymity constraints, i.e. without nodes having to exchange any identity revealing information. By using just the relative time of arrival of packets and a novel technique of wireless collision-detection and resolution for fixed packetsizes, ZEA-TDMA is able to achieve MAC slot-allocation which is described as follows. Initially, a newly joined node listens to its one-hop neighborhood channel usage and creates a slot allocation table based on its own relative time, and finally, selects a slot that is collision free within its one-hop neighborhood. The selected slot can however cause hidden collisions with a two-hop neighbor of the node. These collisions are resolved by a common neighbor of the colliding nodes, which first detects the collision, and then resolve them using an interrupt packet. ZEA-TDMA provides the following features: a) it is a TDMA protocol ideally suited for highly secure or strictly anonymous environments b) it can be used in heterogeneous environments where devices use different packet structures c) it does not require network time-synchronization, and d) it is insensitive to channel errors. We have implemented ZEA-TDMA on the MICA2 hardware platform running TinyOS and evaluated the protocol functionality and performance on a MICA2 test-bed.

  18. Guilt by Association-Based Discovery of Botnet Footprints

    DTIC Science & Technology

    2010-11-01

    our fast flux database using our Fast Flux Monitor ( FFM ); a Web service application designed to detect whether a domain exhibits fast flux (FF) or...double flux (DF) behaviour. The primary technical components of FFM include: (1) sensors which perform real-time detection of FF service networks...sensors for our FFM active sensors: (1) FF Activity Index, (2) Footprint Index, and (3) Time To Live (TTL), and (4) Guilt by Association Score. In

  19. Automatic Dependent Surveillance Broadcast: [micro]ADS-B Detect-and-Avoid Flight Tests

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike

    2018-01-01

    The testing and demonstrations are necessary for both parties to further development and certification of the technology in three key areas; flights beyond line of sight, collision avoidance, and autonomous operations.

  20. Anticollision lights for the supersonic transport.

    DOT National Transportation Integrated Search

    1970-05-01

    For visual detection at night, the aircraft must display conspicuous light signals to indicate its presence and course at sufficient distance and time remaining for the pilot to avoid a collision. Considerations about the usefulness of anticollision ...

  1. Rapid identification and desorption mechanisms of nitrogen-based explosives by ambient micro-fabricated glow discharge plasma desorption/ionization (MFGDP) mass spectrometry.

    PubMed

    Tian, CaiYan; Yin, JinWei; Zhao, ZhongJun; Zhang, Yinchenxi; Duan, YiXiang

    2017-05-15

    A novel technique of micro-fabricated glow discharge plasma desorption/ionization mass spectrometry was investigated for the first time in negative ion mode in this study. Negative ion micro-fabricated glow discharge plasma desorption/ionization mass spectrometry (NI-MFGDP-MS) was successfully applied to identify trace explosives in open air. Six explosives and explosives-related compounds were directly analyzed in seconds with this ion source. The ions of [M-H] - were predominant for 2-methyl-1,3,5-trinitrobenzene (trinitrotoluene, TNT) and 2,4,6-trinitrophenol (picric acid), and [M+NO 3 ] - were dominant ions for 1,3,5-trinitro-perhydro-1,3,5-triazine (cyclonite, RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (octogen, HMX), 1,2,3-trinitroxypropane (nitroglycerin, NG), and pentaerythritol tetranitrate (PETN). The limits of detection (LOD) were from 87.5pgmm -2 to 0.4 fg mm -2 and the relative standard deviation (RSD) ranged between 5.8% and 16.8% for the explosives involved in this study. The reliability of NI-MFGDP-MS was characterized by the analysis of a picric acid-RDX-PETN mixture and a mixture of RDX-pond water. NI-MFGDP-MS and ESI-MS were compared with these explosives and along with collision induced dissociation (CID) experiments. The results showed that electron capture, proton abstraction reaction, nucleophilic attack, ion-molecule attachment, decomposition and anion attachment took place during the NI-MFGDP-MS measurement. These findings provide a guideline and a supplement to the chemical libraries for rapid and accurate detection of explosives. The method shows great potential for fast, in situ, on-line and high throughput detection of explosives in the field of antiterrorism. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Search for the 22 GHz water maser emission in selected comets

    NASA Astrophysics Data System (ADS)

    Cosmovici, C. B.; Pluchino, S.; Montebugnoli, S.; Pogrebenko, S.

    2014-06-01

    Following the first evidence of planetary water maser emission induced by the collision of comet Shoemaker/Levy with Jupiter and the puzzling detection of the 22 GHz water emission line in Comet Hyakutake we started in the period 2002-2008 systematic observations of selected comets at 22 GHz (1.35 cm) with the aim of clarifying the unusual behavior of the maser line in the cometary “scenario”. Using a fast multichannel spectrometer coupled to the 32 m dish of the Medicina (Bologna, Italy) Radio Telescope we investigated 6 bright or sungrazing comets down to a heliocentric distance of 0.11 AU: 96P/Machholz, 153P/ Ikeya-Zhang, C/2002 V1 (NEAT), C/2002 X5 (Kudo-Fujikawa), C/2002 T7 (Linear), and 73P/Schwassmann-Wachmann 3. All of them, similarly to Comet Hyakutake, demonstrate spectral features that, if real and due to the 1.35 cm water vapor transition, are strongly (up to tens of km/s) shifted relative to the radial velocity of the nucleus and, at least sometimes, seem to be present as two separate peaks. If our interpretation of these spectral peaks is correct, there must be some mechanism of acceleration of neutral water molecules up to the velocities of ions. We discuss here the results achieved and the possible explanation of the chemo-physical constraints. First possible detection of the water maser emission line at 22 GHz in sun-grazing comets Observed puzzling acceleration of neutral water molecules at ion velocities and split of the line in two components. Evidence of plasma-grain interaction in sun-grazing comets. Possible new detections in six peculiar comets.

  3. CAFNA{reg{underscore}sign}, coded aperture fast neutron analysis for contraband detection: Preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Lanza, R.C.

    1999-12-01

    The authors have developed a near field coded aperture imaging system for use with fast neutron techniques as a tool for the detection of contraband and hidden explosives through nuclear elemental analysis. The technique relies on the prompt gamma rays produced by fast neutron interactions with the object being examined. The position of the nuclear elements is determined by the location of the gamma emitters. For existing fast neutron techniques, in Pulsed Fast Neutron Analysis (PFNA), neutrons are used with very low efficiency; in Fast Neutron Analysis (FNS), the sensitivity for detection of the signature gamma rays is very low.more » For the Coded Aperture Fast Neutron Analysis (CAFNA{reg{underscore}sign}) the authors have developed, the efficiency for both using the probing fast neutrons and detecting the prompt gamma rays is high. For a probed volume of n{sup 3} volume elements (voxels) in a cube of n resolution elements on a side, they can compare the sensitivity with other neutron probing techniques. As compared to PFNA, the improvement for neutron utilization is n{sup 2}, where the total number of voxels in the object being examined is n{sup 3}. Compared to FNA, the improvement for gamma-ray imaging is proportional to the total open area of the coded aperture plane; a typical value is n{sup 2}/2, where n{sup 2} is the number of total detector resolution elements or the number of pixels in an object layer. It should be noted that the actual signal to noise ratio of a system depends also on the nature and distribution of background events and this comparison may reduce somewhat the effective sensitivity of CAFNA. They have performed analysis, Monte Carlo simulations, and preliminary experiments using low and high energy gamma-ray sources. The results show that a high sensitivity 3-D contraband imaging and detection system can be realized by using CAFNA.« less

  4. Rapid ultra-trace analysis of sucralose in multiple-origin aqueous samples by online solid-phase extraction coupled to high-resolution mass spectrometry.

    PubMed

    Batchu, Sudha Rani; Ramirez, Cesar E; Gardinali, Piero R

    2015-05-01

    Because of its widespread consumption and its persistence during wastewater treatment, the artificial sweetener sucralose has gained considerable interest as a proxy to detect wastewater intrusion into usable water resources. The molecular resilience of this compound dictates that coastal and oceanic waters are the final recipient of this compound with unknown effects on ecosystems. Furthermore, no suitable methodologies have been reported for routine, ultra-trace detection of sucralose in seawater as the sensitivity of traditional liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis is limited by a low yield of product ions upon collision-induced dissociation (CID). In this work, we report the development and field test of an alternative analysis tool for sucralose in environmental waters, with enough sensitivity for the proper quantitation and confirmation of this analyte in seawater. The methodology is based on automated online solid-phase extraction (SPE) and high-resolving-power orbitrap MS detection. Operating in full scan (no CID), detection of the unique isotopic pattern (100:96:31 for [M-H](-), [M-H+2](-), and [M-H+4](-), respectively) was used for ultra-trace quantitation and analyte identification. The method offers fast analysis (14 min per run) and low sample consumption (10 mL per sample) with method detection and confirmation limits (MDLs and MCLs) of 1.4 and 5.7 ng/L in seawater, respectively. The methodology involves low operating costs due to virtually no sample preparation steps or consumables. As an application example, samples were collected from 17 oceanic and estuarine sites in Broward County, FL, with varying salinity (6-40 PSU). Samples included the ocean outfall of the Southern Regional Wastewater Treatment Plant (WWTP) that serves Hollywood, FL. Sucralose was detected above MCL in 78% of the samples at concentrations ranging from 8 to 148 ng/L, with the exception of the WWTP ocean outfall (at pipe end, 28 m below the surface) where the measured concentration was 8418 ± 3813 ng/L. These results demonstrate the applicability of this monitoring tool for the trace-level detection of this wastewater marker in very dilute environmental waters.

  5. NanoRocks: Design and performance of an experiment studying planet formation on the International Space Station

    NASA Astrophysics Data System (ADS)

    Brisset, Julie; Colwell, Joshua; Dove, Adrienne; Maukonen, Doug

    2017-07-01

    In an effort to better understand the early stages of planet formation, we have developed a 1.5U payload that flew on the International Space Station (ISS) in the NanoRacks NanoLab facility between September 2014 and March 2016. This payload, named NanoRocks, ran a particle collision experiment under long-term microgravity conditions. The objectives of the experiment were (a) to observe collisions between mm-sized particles at relative velocities of < 1 cm/s and (b) to study the formation and disruption of particle clusters for different particle types and collision velocities. Four types of particles were used: mm-sized acrylic, glass, and copper beads and 0.75 mm-sized JSC-1 lunar regolith simulant grains. The particles were placed in sample cells carved out of an aluminum tray. This tray was attached to one side of the payload casing with three springs. Every 60 s, the tray was agitated, and the resulting collisions between the particles in the sample cells were recorded by the experiment camera. During the 18 months the payload stayed on ISS, we obtained 158 videos, thus recording a great number of collisions. The average particle velocities in the sample cells after each shaking event were around 1 cm/s. After shaking stopped, the inter-particle collisions damped the particle kinetic energy in less than 20 s, reducing the average particle velocity to below 1 mm/s, and eventually slowing them to below our detection threshold. As the particle velocity decreased, we observed the transition from bouncing to sticking collisions. We recorded the formation of particle clusters at the end of each experiment run. This paper describes the design and performance of the NanoRocks ISS payload.

  6. Modeling and Simulation of an UAS Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Oliveros, Edgardo V.; Murray, A. Jennifer

    2010-01-01

    This paper describes a Modeling and Simulation of an Unmanned Aircraft Systems (UAS) Collision Avoidance System, capable of representing different types of scenarios for UAS collision avoidance. Commercial and military piloted aircraft currently utilize various systems for collision avoidance such as Traffic Alert and Collision A voidance System (TCAS), Automatic Dependent Surveillance-Broadcast (ADS-B), Radar and ElectroOptical and Infrared Sensors (EO-IR). The integration of information from these systems is done by the pilot in the aircraft to determine the best course of action. In order to operate optimally in the National Airspace System (NAS) UAS have to work in a similar or equivalent manner to a piloted aircraft by applying the principle of "detect-see and avoid" (DSA) to other air traffic. Hence, we have taken these existing sensor technologies into consideration in order to meet the challenge of researching the modeling and simulation of an approximated DSA system. A Schematic Model for a UAS Collision Avoidance System (CAS) has been developed ina closed loop block diagram for that purpose. We have found that the most suitable software to carry out this task is the Satellite Tool Kit (STK) from Analytical Graphics Inc. (AGI). We have used the Aircraft Mission Modeler (AMM) for modeling and simulation of a scenario where a UAS is placed on a possible collision path with an initial intruder and then with a second intruder, but is able to avoid them by executing a right tum maneuver and then climbing. Radars have also been modeled with specific characteristics for the UAS and both intruders. The software provides analytical, graphical user interfaces and data controlling tools which allow the operator to simulate different conditions. Extensive simulations have been carried out which returned excellent results.

  7. NanoRocks: Design and performance of an experiment studying planet formation on the International Space Station.

    PubMed

    Brisset, Julie; Colwell, Joshua; Dove, Adrienne; Maukonen, Doug

    2017-07-01

    In an effort to better understand the early stages of planet formation, we have developed a 1.5U payload that flew on the International Space Station (ISS) in the NanoRacks NanoLab facility between September 2014 and March 2016. This payload, named NanoRocks, ran a particle collision experiment under long-term microgravity conditions. The objectives of the experiment were (a) to observe collisions between mm-sized particles at relative velocities of < 1 cm/s and (b) to study the formation and disruption of particle clusters for different particle types and collision velocities. Four types of particles were used: mm-sized acrylic, glass, and copper beads and 0.75 mm-sized JSC-1 lunar regolith simulant grains. The particles were placed in sample cells carved out of an aluminum tray. This tray was attached to one side of the payload casing with three springs. Every 60 s, the tray was agitated, and the resulting collisions between the particles in the sample cells were recorded by the experiment camera. During the 18 months the payload stayed on ISS, we obtained 158 videos, thus recording a great number of collisions. The average particle velocities in the sample cells after each shaking event were around 1 cm/s. After shaking stopped, the inter-particle collisions damped the particle kinetic energy in less than 20 s, reducing the average particle velocity to below 1 mm/s, and eventually slowing them to below our detection threshold. As the particle velocity decreased, we observed the transition from bouncing to sticking collisions. We recorded the formation of particle clusters at the end of each experiment run. This paper describes the design and performance of the NanoRocks ISS payload.

  8. Mathematical Modeling on the Growth and Removal of Non-metallic Inclusions in the Molten Steel in a Two-Strand Continuous Casting Tundish

    NASA Astrophysics Data System (ADS)

    Ling, Haitao; Zhang, Lifeng; Li, Hong

    2016-10-01

    In the current study, mathematical models were developed to predict the transient concentration and size distribution of inclusions in a two-strand continuous casting tundish. The collision and growth of inclusions were considered. The contribution of turbulent collision and Stokes collision was evaluated. The removal of inclusions from the top surface was modeled by considering the properties of inclusions and the molten steel, such as the wettability, density, size, and interfacial tension. The effect of composition of inclusions on the collision of inclusions was included through the Hamaker constant. Meanwhile, the effect of the turbulent fluctuation velocity on the removal of inclusions at the top surface was also studied. Inclusions in steel samples were detected using automatic SEM Scanning so that the amount, morphology, size, and composition of inclusions were achieved. In the simulation, the size distribution of inclusions at the end steel refining was used as the initial size distribution of inclusions at tundish inlet. The equilibrium time when the collision and coalescence of inclusions reached the steady state was equal to 3.9 times of the mean residence time. When Stokes collision, turbulent collision, and removal by floating were included, the removal fraction of inclusions was 16.4 pct. Finally, the removal of solid and liquid inclusions, such as Al2O3, SiO2, and 12CaO·7Al2O3, at the interface between the molten steel and slag was studied. Compared with 12CaO·7Al2O3 inclusions, the silica and alumina inclusions were much easier to be removed from the molten steel and their removal fractions were 36.5 and 39.2 pct, respectively.

  9. 49 CFR Appendix A to Part 209 - Statement of Agency Policy Concerning Enforcement of the Federal Railroad Safety Laws

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... exercise of jurisdiction. In this context, the presence of intrusion detection devices to alert one or both... about sufficient intrusion detection and related safety measures designed to avoid a collision between...). By “general railroad system of transportation,” FRA refers to the network of standard gage track over...

  10. 49 CFR Appendix A to Part 209 - Statement of Agency Policy Concerning Enforcement of the Federal Railroad Safety Laws

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... exercise of jurisdiction. In this context, the presence of intrusion detection devices to alert one or both... about sufficient intrusion detection and related safety measures designed to avoid a collision between...). By “general railroad system of transportation,” FRA refers to the network of standard gage track over...

  11. 49 CFR Appendix A to Part 209 - Statement of Agency Policy Concerning Enforcement of the Federal Railroad Safety Laws

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... exercise of jurisdiction. In this context, the presence of intrusion detection devices to alert one or both... about sufficient intrusion detection and related safety measures designed to avoid a collision between...). By “general railroad system of transportation,” FRA refers to the network of standard gage track over...

  12. Impact Detection for Characterization of Complex Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Chan, Wai Hong Ronald; Urzay, Javier; Mani, Ali; Moin, Parviz

    2016-11-01

    Multiphase flows often involve a wide range of impact events, such as liquid droplets impinging on a liquid pool or gas bubbles coalescing in a liquid medium. These events contribute to a myriad of large-scale phenomena, including breaking waves on ocean surfaces. As impacts between surfaces necessarily occur at isolated points, numerical simulations of impact events will require the resolution of molecular scales near the impact points for accurate modeling. This can be prohibitively expensive unless subgrid impact and breakup models are formulated to capture the effects of the interactions. The first step in a large-eddy simulation (LES) based computational methodology for complex multiphase flows like air-sea interactions requires effective detection of these impact events. The starting point of this work is a collision detection algorithm for structured grids on a coupled level set / volume of fluid (CLSVOF) solver adapted from an earlier algorithm for cloth animations that triangulates the interface with the marching cubes method. We explore the extension of collision detection to a geometric VOF solver and to unstructured grids. Supported by ONR/A*STAR. Agency of Science, Technology and Research, Singapore; Office of Naval Research, USA.

  13. Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ando, Shin'ichiro; Profumo, Stefano; Beacom, John F

    As suggested by some extensions of the standard model of particle physics, dark matter may be a super-weakly-interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and metastable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins and analyzemore » the dependence on the underlying particle physics set-up. We point out that, even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton-nucleon collisions and show that, for theoretically motivated and phenomenologically viable models, it is typically subdominant and below detectable rates.« less

  14. A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases

    PubMed Central

    Heberling, Tamra; Davis, Lisa; Gedeon, Jakub; Morgan, Charles; Gedeon, Tomáš

    2016-01-01

    In fast-transcribing prokaryotic genes, such as an rrn gene in Escherichia coli, many RNA polymerases (RNAPs) transcribe the DNA simultaneously. Active elongation of RNAPs is often interrupted by pauses, which has been observed to cause RNAP traffic jams; yet some studies indicate that elongation seems to be faster in the presence of multiple RNAPs than elongation by a single RNAP. We propose that an interaction between RNAPs via the torque produced by RNAP motion on helically twisted DNA can explain this apparent paradox. We have incorporated the torque mechanism into a stochastic model and simulated transcription both with and without torque. Simulation results illustrate that the torque causes shorter pause durations and fewer collisions between polymerases. Our results suggest that the torsional interaction of RNAPs is an important mechanism in maintaining fast transcription times, and that transcription should be viewed as a cooperative group effort by multiple polymerases. PMID:27517607

  15. Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography

    NASA Astrophysics Data System (ADS)

    Pandey, Shantanu; Yuan, Xiaohui; Debayle, Eric; Tilmann, Frederik; Priestley, Keith; Li, Xueqing

    2015-06-01

    Azimuthal anisotropy derived from multimode Rayleigh wave tomography in China exhibits depth-dependent variations in Tibet, which can be explained as induced by the Cenozoic India-Eurasian collision. In west Tibet, the E-W fast polarization direction at depths <100 km is consistent with the accumulated shear strain in the Tibetan lithosphere, whereas the N-S fast direction at greater depths is aligned with Indian Plate motion. In northeast Tibet, depth-consistent NW-SE directions imply coupled deformation throughout the whole lithosphere, possibly also involving the underlying asthenosphere. Significant anisotropy at depths of 225 km in southeast Tibet reflects sublithospheric deformation induced by northward and eastward lithospheric subduction beneath the Himalaya and Burma, respectively. The multilayer anisotropic surface wave model can explain some features of SKS splitting measurements in Tibet, with differences probably attributable to the limited back azimuthal coverage of most SKS studies in Tibet and the limited horizontal resolution of the surface wave results.

  16. The design of a fast Level 1 Track trigger for the ATLAS High Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Miller Allbrooke, Benedict Marc; ATLAS Collaboration

    2017-10-01

    The ATLAS experiment at the high-luminosity LHC will face a five-fold increase in the number of interactions per collision relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency, due to the increase in the likelihood of individual trigger thresholds being passed as a result of pile-up related activity. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper turn-on curves, b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, precise custom electronic device integrated in the hardware-based first trigger level of the experiment, with repercussions propagating as far as the detector read-out philosophy.

  17. Measurement of fast neutron detection efficiency with 6Li and 7Li enriched CLYC scintillators

    NASA Astrophysics Data System (ADS)

    Mentana, A.; Camera, F.; Giaz, A.; Blasi, N.; Brambilla, S.; Ceruti, S.; Gini, L.; Groppi, F.; Manenti, S.; Million, B.; Riboldi, S.

    2016-10-01

    The CLYC (Cs2LiYC6:Ce) crystal belongs to the elpasolite scintillator family, discovered about 15 years ago. It is a very interesting material because of its good energy resolution and its capability to identify and measure gamma rays and fast/thermal neutrons. In the present work, the fast neutron detection efficiency for two different CLYC cylindrical samples has been measured. These two crystals, both with dimension (thickness x diameter) 1”×1”, were respectively enriched with more than 99% of 7Li (CLYC-7) and with ∼ 95% of 6Li (CLYC-6). The presence of the 6Li isotope makes the CLYC-6 ideal to detect thermal neutrons. In order to compare the two scintillators, only the detection efficiency for fast neutrons was considered, neglecting the energy region associated to thermal neutrons in both the crystals. The measurement was performed at the L.A.S.A. Laboratory of INFN and University of Milano (Italy), using a 241Am-Be source.

  18. Spontaneous droplet trampolining on rigid superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.

  19. geant4 hadronic cascade models analysis of proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Waged, Khaled; Benha University, Faculty of Science, Physics Department; Felemban, Nuha

    2011-07-15

    We describe how various hadronic cascade models, which are implemented in the geant4 toolkit, describe proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c, recently measured in the hadron production (HARP) experiment at CERN. The Binary, ultrarelativistic quantum molecular dynamics (UrQMD) and modified FRITIOF (FTF) hadronic cascade models are chosen for investigation. The first two models are based on limited (Binary) and branched (UrQMD) binary scattering between cascade particles which can be either a baryon or meson, in the three-dimensional space of the nucleus, while the latter (FTF) considersmore » collective interactions between nucleons only, on the plane of impact parameter. It is found that the slow (p{sub T}{<=}0.3 GeV/c) proton spectra are quite sensitive to the different treatments of cascade pictures, while the fast (p{sub T}>0.3 GeV/c) proton spectra are not strongly affected by the differences between the FTF and UrQMD models. It is also shown that the UrQMD and FTF combined with Binary (FTFB) models could reproduce both proton and charged pion spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c with the same accuracy.« less

  20. CAMS newly detected meteor showers and the sporadic background

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from ∼700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large ∼7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grün et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 104-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve.

  1. Fast preparation of ultrafine monolayered transition-metal dichalcogenide quantum dots using electrochemical shock for explosive detection.

    PubMed

    Chen, Zhigang; Tao, Zhengxu; Cong, Shan; Hou, Junyu; Zhang, Dengsong; Geng, Fengxia; Zhao, Zhigang

    2016-09-15

    A simple, general and fast method called "electrochemical shock" is developed to prepare monolayered transition-metal dichalcogenide (TMD) QDs with an average size of 2-4 nm and an average thickness of 0.85 ± 0.5 nm with only about 10 min of ultrasonication. Just like nails hammered into a plate, the electrochemical shock with Al 3+ ions and the following extraction with the help of oleic acid can disintegrate bulk TMD crystals into ultrafine TMD QDs. The fast-prepared QDs are then applied to detect highly explosive molecules such as 2,4,6-trinitrophenol (TNP) with a low detection limit of 10 -6 M. Our versatile method could be broadly applicable for the fast production of ultrathin QDs of other materials with great promise for various applications.

  2. Vanishing points detection using combination of fast Hough transform and deep learning

    NASA Astrophysics Data System (ADS)

    Sheshkus, Alexander; Ingacheva, Anastasia; Nikolaev, Dmitry

    2018-04-01

    In this paper we propose a novel method for vanishing points detection based on convolutional neural network (CNN) approach and fast Hough transform algorithm. We show how to determine fast Hough transform neural network layer and how to use it in order to increase usability of the neural network approach to the vanishing point detection task. Our algorithm includes CNN with consequence of convolutional and fast Hough transform layers. We are building estimator for distribution of possible vanishing points in the image. This distribution can be used to find candidates of vanishing point. We provide experimental results from tests of suggested method using images collected from videos of road trips. Our approach shows stable result on test images with different projective distortions and noise. Described approach can be effectively implemented for mobile GPU and CPU.

  3. DANTi: Detect and Avoid iN The Cockpit

    NASA Technical Reports Server (NTRS)

    Chamberlain, James; Consiglio, Maria; Munoz, Cesar

    2017-01-01

    Mid-air collision risk continues to be a concern for manned aircraft operations, especially near busy non-towered airports. The use of Detect and Avoid (DAA) technologies and draft standards developed for unmanned aircraft systems (UAS), either alone or in combination with other collision avoidance technologies, may be useful in mitigating this collision risk for manned aircraft. This paper describes a NASA research effort known as DANTi (DAA iN The Cockpit), including the initial development of the concept of use, a software prototype, and results from initial flight tests conducted with this prototype. The prototype used a single Automatic Dependent Surveillance - Broadcast (ADS-B) traffic sensor and the own aircraft's position, track, heading and air data information, along with NASA-developed DAA software to display traffic alerts and maneuver guidance to manned aircraft pilots on a portable tablet device. Initial flight tests with the prototype showed a successful DANTi proof-of-concept, but also demonstrated that the traffic separation parameter set specified in the RTCA SC-228 Phase I DAA MOPS may generate excessive false alerts during traffic pattern operations. Several parameter sets with smaller separation values were also tested in flight, one of which yielded more timely alerts for the maneuvers tested. Results from this study may further inform future DANTi efforts as well as Phase II DAA MOPS development.

  4. Computer-aided trauma simulation system with haptic feedback is easy and fast for oral-maxillofacial surgeons to learn and use.

    PubMed

    Schvartzman, Sara C; Silva, Rebeka; Salisbury, Ken; Gaudilliere, Dyani; Girod, Sabine

    2014-10-01

    Computer-assisted surgical (CAS) planning tools have become widely available in craniomaxillofacial surgery, but are time consuming and often require professional technical assistance to simulate a case. An initial oral and maxillofacial (OM) surgical user experience was evaluated with a newly developed CAS system featuring a bimanual sense of touch (haptic). Three volunteer OM surgeons received a 5-minute verbal introduction to the use of a newly developed haptic-enabled planning system. The surgeons were instructed to simulate mandibular fracture reductions of 3 clinical cases, within a 15-minute time limit and without a time limit, and complete a questionnaire to assess their subjective experience with the system. Standard landmarks and linear and angular measurements between the simulated results and the actual surgical outcome were compared. After the 5-minute instruction, all 3 surgeons were able to use the system independently. The analysis of standardized anatomic measurements showed that the simulation results within a 15-minute time limit were not significantly different from those without a time limit. Mean differences between measurements of surgical and simulated fracture reductions were within current resolution limitations in collision detection, segmentation of computed tomographic scans, and haptic devices. All 3 surgeons reported that the system was easy to learn and use and that they would be comfortable integrating it into their daily clinical practice for trauma cases. A CAS system with a haptic interface that capitalizes on touch and force feedback experience similar to operative procedures is fast and easy for OM surgeons to learn and use. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. All rights reserved.

  5. Submillimeter Laboratory Investigations: Spectroscopy and Collisions

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; DeLucia, Frank C.

    2002-01-01

    Currently, millimeter-wave and submillimeter-wave spectroscopy is conducted in our laboratory on several different types of spectrometers. Our standard spectrometer utilizes the output of a phase-locked klystron operating in the 40-60 GHz region, which is sent into a crossed-waveguide harmonic generator, or "multiplier". The high frequency millimeter-and submillimeter-wave radiation is transmitted via quasi-optical techniques through an absorption cell and then onto a detector, which is either an InSb hot electron bolometer cooled to 1.4 K or a Si bolometer cooled to 0.3 K. The detector response is sent to a computer for measurement and analysis. The frequency range produced and detected in this manner goes from 80 GHz to upwards of 1 THz. Spectra are normally taken with source modulation, with line frequencies typically measured to an accuracy of 50-100 kHz. Higher accuracy is available when needed. Recently, we developed a new, broad-band spectrometer in our laboratory based on a free-running backward wave oscillator (BWO) of Russian manufacture as the primary source of radiation. The so-called FASSST (fast-scan submillimeter spectroscopic technique) system uses fast-scan and optical calibration methods rather than the traditional locking techniques. The output power from the BWO is split such that 90% goes into the absorption cell while 10% is coupled to a 40-meter Fabry-Perot cavity, which yields fringe? for frequency measurement. Results from this spectrometer on the spectrum of nitric acid (HNO3) show that 100 GHz of spectral data can be obtained in 5 seconds with a measurement accuracy of 50 kHz. Currently, the frequency range of the FASSST system in our laboratory is roughly 100-700 GHz.

  6. The fast debris evolution model

    NASA Astrophysics Data System (ADS)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FADE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly, its speed and flexibility allows the user to explore and understand the evolution of the space debris environment.

  7. Efficient blind search for similar-waveform earthquakes in years of continuous seismic data

    NASA Astrophysics Data System (ADS)

    Yoon, C. E.; Bergen, K.; Rong, K.; Elezabi, H.; Bailis, P.; Levis, P.; Beroza, G. C.

    2017-12-01

    Cross-correlating an earthquake waveform template with continuous seismic data has proven to be a sensitive, discriminating detector of small events missing from earthquake catalogs, but a key limitation of this approach is that it requires advance knowledge of the earthquake signals we wish to detect. To overcome this limitation, we can perform a blind search for events with similar waveforms, comparing waveforms from all possible times within the continuous data (Brown et al., 2008). However, the runtime for naive blind search scales quadratically with the duration of continuous data, making it impractical to process years of continuous data. The Fingerprint And Similarity Thresholding (FAST) detection method (Yoon et al., 2015) enables a comprehensive blind search for similar-waveform earthquakes in a fast, scalable manner by adapting data-mining techniques originally developed for audio and image search within massive databases. FAST converts seismic waveforms into compact "fingerprints", which are efficiently organized and searched within a database. In this way, FAST avoids the unnecessary comparison of dissimilar waveforms. To date, the longest duration of continuous data used for event detection with FAST was 3 months at a single station near Guy-Greenbrier, Arkansas, which revealed microearthquakes closely correlated with stages of hydraulic fracturing (Yoon et al., 2017). In this presentation we introduce an optimized, parallel version of the FAST software with improvements to the fingerprinting algorithm and the ability to detect events using continuous data from a network of stations (Bergen et al., 2016). We demonstrate its ability to detect low-magnitude earthquakes within several years of continuous data at locations of interest in California.

  8. Production of b and overlineb quarks by photon-gluon fusion in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hofmann, Ch.; Soff, G.; Schäfer, A.; Greiner, W.

    1991-06-01

    Electromagnetic Higgs production in ultrarelativistic heavy-ion collisions has been proposed as an alternative for detecting Higgs particles in the mass range mZ< mH<2 mW. We consider the fussion of a photon and a gluon into b and overlineb quarks as background to the b overlineb decay of the Higgs boson. This completely hides the Higgs signal. We also discuss the possibility of utilizing photon-gluon fusion into b overlineb and c overlinec as a sensitive tool to determine the gluon distribution of the nucleon inside the nucleus, e.g., at RHIC.

  9. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2010-01-01

    When facing a conjunction between space objects, decision makers must chose whether to maneuver for collision avoidance or not. We apply a well-known decision procedure, the sequential probability ratio test, to this problem. We propose two approaches to the problem solution, one based on a frequentist method, and the other on a Bayesian method. The frequentist method does not require any prior knowledge concerning the conjunction, while the Bayesian method assumes knowledge of prior probability densities. Our results show that both methods achieve desired missed detection rates, but the frequentist method's false alarm performance is inferior to the Bayesian method's

  10. [A Case of Collision Tumor of Gastric Malignant Lymphoma and Gastric Cancer].

    PubMed

    Inoue, Keisuke; Fujiwara, Yoshiyuki; Kogata, Shuhei; Kanaizumi, Hirofumi; Fukuda, Shuichi; Takeyama, Hiroshi; Kitani, Kotaro; Tsujie, Masanori; Yukawa, Masao; Wakasa, Tomoko; Ohta, Yoshio; Inoue, Masatoshi

    2016-11-01

    A 71-year-old man with anemia, weight loss, and loss of appetite was admitted. Ultrasound examination found thickening of the wall of the stomach. A type 3 gastric tumor was detected in the greater curvature of the gastric corpus via upper gastrointestinal endoscopy. Total gastrectomy, transverse colon resection, and Roux-en-Y anastomosis reconstruction was performed. In the postoperative pathological results, adenocarcinoma, tub2, and diffuse large B cell lymphoma collision was found. The patient underwent chemotherapy for malignant lymphoma and although it was a relatively advanced neoplasia, he is alive without a recurrence.

  11. Detecting Earthquakes over a Seismic Network using Single-Station Similarity Measures

    NASA Astrophysics Data System (ADS)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-03-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected move-out. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to two weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalog (including 95% of the catalog events), and less than 1% of these candidate events are false detections.

  12. Proteus in flight over Southern California

    NASA Image and Video Library

    2003-03-27

    Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.

  13. Proteus front view in flight

    NASA Image and Video Library

    2003-03-27

    Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.

  14. Estimating animal mortality from anthropogenic hazards

    EPA Science Inventory

    Carcass searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. Para...

  15. An Unexpected Detection of Bifurcated Blue Straggler Sequences in the Young Globular Cluster NGC 2173

    NASA Astrophysics Data System (ADS)

    Li, Chengyuan; Deng, Licai; de Grijs, Richard; Jiang, Dengkai; Xin, Yu

    2018-03-01

    The bifurcated patterns in the color–magnitude diagrams of blue straggler stars (BSSs) have attracted significant attention. This type of special (but rare) pattern of two distinct blue straggler sequences is commonly interpreted as evidence that cluster core-collapse-driven stellar collisions are an efficient formation mechanism. Here, we report the detection of a bifurcated blue straggler distribution in a young Large Magellanic Cloud cluster, NGC 2173. Because of the cluster’s low central stellar number density and its young age, dynamical analysis shows that stellar collisions alone cannot explain the observed BSSs. Therefore, binary evolution is instead the most viable explanation of the origin of these BSSs. However, the reason why binary evolution would render the color–magnitude distribution of BSSs bifurcated remains unclear. C. Li, L. Deng, and R. de Grijs jointly designed this project.

  16. UAS in the NAS Flight Test Series 4 Overview

    NASA Technical Reports Server (NTRS)

    Murphy, Jim

    2016-01-01

    Flight Test Series 4 (FT4) provides the researchers with an opportunity to expand on the data collected during the first flight tests. Following Flight Test Series 3, additional scripted encounters with different aircraft performance and sensors will be conducted. FT4 is presently planned for Spring of 2016 to ensure collection of data to support the validation of the final RTCA Phase 1 DAA (Detect and Avoid) Minimum Operational Performance Standards (MOPS). There are three research objectives associated with this goal: Evaluate the performance of the DAA system against cooperative and non-cooperative aircraft encounters Evaluate UAS (Unmanned Aircraft Systems) pilot performance in response to DAA maneuver guidance and alerting with live intruder encounters Evaluate TCAS/DAA (Traffic Alert and Collision Avoidance System/Detect and Avoid) interoperability. This flight test series will focus on only the Scripted Encounters configuration, supporting the collection of data to validate the interoperability of DAA and collision avoidance algorithms.

  17. Comparison of two MAC protocols based on LEO satellite networks

    NASA Astrophysics Data System (ADS)

    Guan, Mingxiang; Wang, Ruichun

    2009-12-01

    With the development of LEO satellite communication, it is the basic requirement that various kinds of services will be provided. Considering that weak channel collision detection ability, long propagation delay and heavy load in LEO satellite communication system, a valid adaptive access control protocol APRMA is proposed. Different access probability functions for different services are obtained and appropriate access probabilities for voice and data users are updated slot by slot based on the estimation of the voice traffic and the channel status. Finally simulation results demonstrate that the performance of system is improved by the APRMA compared with the conventional PRMA, with an acceptable trade-off between QoS of voice and delay of data. Also the APRMA protocol will be suitable for HAPS (high altitude platform station) with the characters of weak channel collision detection ability, long propagation delay and heavy load.

  18. Collision detection in complex dynamic scenes using an LGMD-based visual neural network with feature enhancement.

    PubMed

    Yue, Shigang; Rind, F Claire

    2006-05-01

    The lobula giant movement detector (LGMD) is an identified neuron in the locust brain that responds most strongly to the images of an approaching object such as a predator. Its computational model can cope with unpredictable environments without using specific object recognition algorithms. In this paper, an LGMD-based neural network is proposed with a new feature enhancement mechanism to enhance the expanded edges of colliding objects via grouped excitation for collision detection with complex backgrounds. The isolated excitation caused by background detail will be filtered out by the new mechanism. Offline tests demonstrated the advantages of the presented LGMD-based neural network in complex backgrounds. Real time robotics experiments using the LGMD-based neural network as the only sensory system showed that the system worked reliably in a wide range of conditions; in particular, the robot was able to navigate in arenas with structured surrounds and complex backgrounds.

  19. Electro-magnetic physics studies at RHIC: Neutral pion production, direct photon HBT, photon elliptic flow in gold-gold collisions at sqrt(s_NN) = 200 GeV and the Muon Telescope Detector simulation

    NASA Astrophysics Data System (ADS)

    Lin, Guoji

    Electro-magnetic (E&M) probes such as direct photons and muons (mu) are important tools to study the properties of the extremely hot and dense matter created in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). In this thesis, several topics of E&M physics will be addressed, including neutral pion (pi0) production, direct photon HBT, and photon elliptic flow (v2) in Au+Au collisions at sNN = 200 GeV. A discussion on the simulation study of the new Muon Telescope Detector (MTD) will also be presented. The pi0 production is a fundamental measurement of hadron production and prerequisite for the background study of direct photons. Neutral pions are reconstructed using the photons detected by the STAR Barrel Electro-magnetic Calorimeter (BEMC) and the Time Projection Chamber (TPC). Spectra of pi 0 are measured at transverse momentum 1 < pT < 12 GeV/c near mid-rapidity (0 < eta < 0.8) in 200 GeV Au+Au collisions. The spectra and nuclear modification factors RCP and RAA are compared to earlier pi+/- and pi0 results. Direct photon Hanbury-Brown and Twiss (HBT) correlations can reveal information of the system size throughout the whole collision. A first attempt of direct photon HBT study at RHIC in 200 GeV Au+Au collisions is done using photons detected by the STAR BEMC and TPC. All unknown correlation at small Qinv is observed, whose magnitude is much larger than the expected HBT signal, and possible causes of the correlation will be discussed. Direct photon elliptic flow (v2) at intermediate to high pT is sensitive to the source of direct photon production. Results of inclusive photon v2 in 200 GeV Au+Au collisions are presented. The v2 of pi0 decay photons is calculated from the previously published pi results. The comparison between inclusive and decay photon v 2 indicates that direct photon v2 is small. A new large-area Muon Telescope Detector at mid-rapidity at RHIC is proposed and under investigation, using the Long-strip Multi-Gap Resistive Plate Chamber (Long-MRPC). Simulations indicate that the MTD can effectively identify mu and reject hadron backgrounds, and it can serve as a mu trigger. A beam test result of the Long-MRPC at Fermi National Accelerator Laboratory (FNAL) is also discussed.

  20. Fast linear feature detection using multiple directional non-maximum suppression.

    PubMed

    Sun, C; Vallotton, P

    2009-05-01

    The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.

Top