Science.gov

Sample records for fast collisionless reconnection

  1. A new fast reconnection model in a collisionless regime

    SciTech Connect

    Tsiklauri, David

    2008-11-15

    Based on the first principles [i.e., (i) by balancing the magnetic field advection with the term containing electron pressure tensor nongyrotropic components in the generalized Ohm's law; (ii) using the conservation of mass; and (iii) assuming that the weak magnetic field region width, where electron meandering motion supports electron pressure tensor off-diagonal (nongyrotropic) components, is of the order of electron Larmor radius] a simple model of magnetic reconnection in a collisionless regime is formulated. The model is general, resembling its collisional Sweet-Parker analog in that it is not specific to any initial configuration, e.g., Harris-type tearing unstable current sheet, X-point collapse or otherwise. In addition to its importance from the fundamental point of view, the collisionless reconnection model offers a much faster reconnection rate [M{sub c{sup '}}{sub less}=(c/{omega}{sub pe}){sup 2}/(r{sub L,e}L)] than Sweet-Parker's classical one (M{sub sp}=S{sup -1/2}). The width of the diffusion region (current sheet) in the collisionless regime is found to be {delta}{sub c{sup '}}{sub less}=(c/{omega}{sub pe}){sup 2}/r{sub L,e}, which is independent of the global reconnection scale L and is only prescribed by microphysics (electron inertial length, c/{omega}{sub pe}, and electron Larmor radius, r{sub L,e}). Amongst other issues, the fastness of the reconnection rate alleviates, e.g., the problem of interpretation of solar flares by means of reconnection, as for the typical solar coronal parameters the obtained collisionless reconnection time can be a few minutes, as opposed to Sweet-Parker's equivalent value of less than a day. The new theoretical reconnection rate is compared to the Magnetic Reconnection Experiment device experimental data by Yamada et al. [Phys. Plasmas 13, 052119 (2006)] and Ji et al. [Geophys. Res. Lett. 35, 13106 (2008)], and a good agreement is obtained.

  2. Does the Rate of Collisionless Magnetic Reconnection Depend on the Dissipation Mechanism?

    NASA Technical Reports Server (NTRS)

    Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, Maria

    2012-01-01

    The importance of the electron dissipation effect on the reconnection rate is investigated in the general case of asymmetric collisionless magnetic reconnection. Contrary to the standard collisionless reconnection model, it is found that the reconnection rate, and the macroscopic evolution of the reconnecting system, crucially depend on the nature of the dissipation mechanism and that the Hall effect alone is not able to sustain fast reconnection.

  3. Does the Rate of Collisionless Reconnection Depend on the Dissipation Mechanism?

    NASA Technical Reports Server (NTRS)

    Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, maria

    2012-01-01

    The importance of the electron dissipation effect on the reconnection rate is investigated in the general case of asymmetric collisionless magnetic reconnection. Contrary to the standard collisionless reconnection model, it is found that the reconnection rate, and them acroscopic evolution of the reconnecting system, crucially depend on the nature of the dissipation mechanism and that the Hall effect alone is not able to sustain fast reconnection.

  4. Collisionless Reconnection and Electron Demagnetization

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.

    Observable, dimensionless properties of the electron diffusion region of collisionless magnetic reconnection are motivated and benchmarked in two and three dimensional Particle In Cell (PIC) simulations as appropriate for measurements with present state of the art spacecraft. The dimensionless quantities of this paper invariably trace their origin to breaking the magnetization of the thermal electrons. Several observable proxies are also motivated for the rate of frozen flux violation and a parameter \\varLambda _{\\varPhi } that when greater than unity is associated with close proximity to the analogue of the saddle point region of 2D reconnection usually called the electron diffusion region. Analogous regions to the electron diffusion region of 2D reconnection with \\varLambda _{\\varPhi } > 1 have been identified in 3D simulations. 10-20 disjoint diffusion regions are identified and the geometrical patterns of their locations illustrated. First examples of associations between local observables based on electron demagnetization and global diagnostics (like squashing) are also presented. A by product of these studies is the development of a single spacecraft determinations of gradient scales in the plasma.

  5. Collisionless Reconnection in an Electron-Positron Plasma

    SciTech Connect

    Bessho, N.; Bhattacharjee, A.

    2005-12-09

    Electromagnetic particle-in-cell simulations of fast collisionless reconnection in a two-dimensional electron-positron plasma (without an equilibrium guide field) are presented. A generalized Ohm's law in which the Hall current cancels out exactly is given. It is suggested that the key to fast reconnection in this plasma is the localization caused by the off-diagonal components of the pressure tensors, which produce an effect analogous to a spatially localized resistivity.

  6. New Expression for Collisionless Magnetic Reconnection Rate

    NASA Technical Reports Server (NTRS)

    Klimas, Alexander J.

    2014-01-01

    For 2D, symmetric, anti-parallel, collisionless magnetic reconnection, a new expression for the reconnection rate in the electron diffusion region is introduced. It is shown that this expression can be derived in just a few simple steps from a physically intuitive starting point; the derivation is given in its entirety and the validity of each step is confirmed. The predictions of this expression are compared to the results of several long-duration, open-boundary PIC reconnection simulations to demonstrate excellent agreement.

  7. New expression for collisionless magnetic reconnection rate

    SciTech Connect

    Klimas, Alex

    2015-04-15

    For 2D, symmetric, anti-parallel, collisionless magnetic reconnection, new expressions for the reconnection rate in the electron diffusion region are introduced. It is shown that these expressions can be derived in just a few simple steps from a physically intuitive starting point; the derivations are given in their entirety, and the validity of each step is confirmed. The predictions of these expressions are compared to the results of several long-duration, open-boundary particle-in-cell reconnection simulations to demonstrate excellent agreement.

  8. Collisionless Magnetic Reconnection in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2013-12-01

    Magnetic reconnection, the merging of oppositely directed magnetic fields that leads to field reconfiguration, plasma heating, jetting and acceleration, is one of the most celebrated processes in collisionless plasmas. It requires the violation of the frozen-in condition which ties gyrating charged particles to the magnetic field inhibiting diffusion. Ongoing reconnection has been identified in near-Earth space as being responsible for the excitation of substorms, magnetic storms, generation of field aligned currents and their consequences, the wealth of auroral phenomena. Its theoretical understanding is now on the verge of being completed. Reconnection takes place in thin current sheets. Analytical concepts proceeded gradually down to the microscopic scale, the scale of the electron skin depth or inertial length, recognizing that current layers that thin do preferentially undergo spontaneous reconnection. Thick current layers start reconnecting when being forced by plasma inflow to thin. For almost half a century the physical mechanism of reconnection has remained a mystery. Spacecraft in situ observations in combination with sophisticated numerical simulations in two and three dimensions recently clarified the mist, finding that reconnection produces a specific structure of the current layer inside the electron inertial (also called electron diffusion) region around the reconnection site, the X line. Onset of reconnection is attributed to pseudo-viscous contributions of the electron pressure tensor aided by electron inertia and drag, creating a complicated structured electron current sheet, electric fields, and an electron exhaust extended along the current layer. We review the general background theory and recent developments in numerical simulation on collisionless reconnection. It is impossible to cover the entire field of reconnection in a short space-limited review. The presentation necessarily remains cursory, determined by our taste, preferences, and kn

  9. Spontaneous magnetic reconnection. Collisionless reconnection and its potential astrophysical relevance

    NASA Astrophysics Data System (ADS)

    Treumann, R. A.; Baumjohann, W.

    2015-10-01

    The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) "diffusion region", where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as {<}10^{-5} per current sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape W_b∝ k^{-α } in wavenumber k with power becoming as

  10. Effects of electron inertia in collisionless magnetic reconnection

    SciTech Connect

    Andrés, Nahuel Gómez, Daniel; Martin, Luis; Dmitruk, Pablo

    2014-07-15

    We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.

  11. Effects of electron inertia in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Andrés, Nahuel; Martin, Luis; Dmitruk, Pablo; Gómez, Daniel

    2014-07-01

    We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.

  12. Nonlinear gyrofluid simulations of collisionless reconnection

    SciTech Connect

    Grasso, D.; Tassi, E.; Waelbroeck, F. L.

    2010-08-15

    The Hamiltonian gyrofluid model recently derived by Waelbroeck et al. [Phys. Plasmas 16, 032109 (2009)] is used to investigate nonlinear collisionless reconnection with a strong guide field by means of numerical simulations. Finite ion Larmor radius gives rise to a cascade of the electrostatic potential to scales below both the ion gyroradius and the electron skin depth. This cascade is similar to that observed previously for the density and current in models with cold ions. In addition to density cavities, the cascades create electron beams at scales below the ion gyroradius. The presence of finite ion temperature is seen to modify, inside the magnetic island, the distribution of the velocity fields that advect two Lagrangian invariants of the system. As a consequence, the fine structure in the electron density is confined to a layer surrounding the separatrix. Finite ion Larmor radius effects produce also a different partition between the electron thermal, potential, and kinetic energy, with respect to the cold-ion case. Other aspects of the dynamics such as the reconnection rate and the stability against Kelvin-Helmholtz modes are similar to simulations with finite electron compressibility but cold ions.

  13. Reconnection properties in collisionless plasma with open boundary conditions

    SciTech Connect

    Sun, H. E.; Ma, Z. W.; Huang, J.

    2014-07-15

    Collisionless magnetic reconnection in a Harris current sheet with different initial thicknesses is investigated using a 21/2 -D Darwin particle-in-cell simulation with the magnetosonic open boundary condition. It is found that the thicknesses of the ion dissipation region and the reconnection current sheet, when the reconnection rate E{sub r} reaches its first peak, are independent of the initial thickness of the current sheet; while the peak reconnection rate depends on it. The peak reconnection rate increases with decrease of the current sheet thickness as E{sub r}∼a{sup −1/2}, where a is the initial current sheet half-thickness.

  14. Self-regulation of solar coronal heating process via the collisionless reconnection condition.

    PubMed

    Uzdensky, Dmitri A

    2007-12-31

    I propose a new paradigm for solar coronal heating viewed as a self-regulating process keeping the plasma marginally collisionless. The mechanism is based on the coupling between two effects. First, coronal density controls the plasma collisionality and hence the transition between the slow collisional Sweet-Parker and the fast collisionless reconnection regimes. In turn, coronal energy release leads to chromospheric evaporation, increasing the density and thus inhibiting subsequent reconnection of the newly reconnected loops. As a result, statistically, the density fluctuates around some critical level, comparable to that observed in the corona. In the long run, coronal heating can be represented by repeating cycles of fast reconnection events (nanoflares), evaporation episodes, and long periods of slow magnetic stress buildup and radiative cooling of the coronal plasma.

  15. Electron nongyrotropy in the context of collisionless magnetic reconnection

    SciTech Connect

    Aunai, Nicolas; Hesse, Michael; Kuznetsova, Maria

    2013-09-15

    Collisionless magnetized plasmas have the tendency to isotropize their velocity distribution function around the local magnetic field direction, i.e., to be gyrotropic, unless some spatial and/or temporal fluctuations develop at the particle gyroscales. Electron gyroscale inhomogeneities are well known to develop during the magnetic reconnection process. Nongyrotropic electron velocity distribution functions have been observed to play a key role in the dissipative process breaking the field line connectivity. In this paper, we present a new method to quantify the deviation of a particle population from gyrotropy. The method accounts for the full 3D shape of the distribution and its analytical formulation allows fast numerical computation. Regions associated with a significant degree of nongyrotropy are shown, as well as the kinetic origin of the nongyrotropy and the fluid signature it is associated with. Using the result of 2.5D Particle-In-Cell simulations of magnetic reconnection in symmetric and asymmetric configurations, it is found that neither the reconnection site nor the topological boundaries are generally associated with a maximized degree of nongyrotropy. Nongyrotropic regions do not correspond to a specific fluid behavior as equivalent nongyrotropy is found to extend over the electron dissipation region as well as in non-dissipative diamagnetic drift layers. The localization of highly nongyrotropic regions in numerical models and their correlation with other observable quantities can, however, improve the characterization of spatial structures explored by spacecraft missions.

  16. A multi-model plasma simulation of collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Datta, I. A. M.; Shumlak, U.; Ho, A.; Miller, S. T.

    2016-10-01

    Collisionless magnetic reconnection is a process relevant to many areas of plasma physics in which energy stored in magnetic fields within highly conductive plasmas is rapidly converted to plasma energy. A full understanding of this phenomenon, however, is currently incomplete as models developed to date have difficulty explaining the fast reconnection rates often seen in nature, such as in the case of solar flares. Therefore, this behavior represents an area of much research in which various plasma models have been tested in order to understand the proper physics explaining the reconnection process. In this research, the WARPXM code developed at the University of Washington is used to study the problem using a hybrid multi-model simulation employing Hall-MHD and two-fluid plasma models. The simulation is performed on a decomposed domain where different plasma models are solved in different regions, depending on a trade-off between each model's physical accuracy and associated computational expense in each region. The code employs a discontinuous Galerkin (DG) finite element spatial discretization coupled with a Runge-Kutta scheme for time advancement and uses boundary conditions to couple the different plasma models. This work is supported by a Grant from the United States Air Force Office of Scientific Research.

  17. Fast, purely growing collisionless reconnection as an eigenfunction problem related to but not involving linear whistler waves

    SciTech Connect

    Bellan, Paul M.

    2014-10-15

    If either finite electron inertia or finite resistivity is included in 2D magnetic reconnection, the two-fluid equations become a pair of second-order differential equations coupling the out-of-plane magnetic field and vector potential to each other to form a fourth-order system. The coupling at an X-point is such that out-of-plane even-parity electric and odd-parity magnetic fields feed off each other to produce instability if the scale length on which the equilibrium magnetic field changes is less than the ion skin depth. The instability growth rate is given by an eigenvalue of the fourth-order system determined by boundary and symmetry conditions. The instability is a purely growing mode, not a wave, and has growth rate of the order of the whistler frequency. The spatial profile of both the out-of-plane electric and magnetic eigenfunctions consists of an inner concave region having extent of the order of the electron skin depth, an intermediate convex region having extent of the order of the equilibrium magnetic field scale length, and a concave outer exponentially decaying region. If finite electron inertia and resistivity are not included, the inner concave region does not exist and the coupled pair of equations reduces to a second-order differential equation having non-physical solutions at an X-point.

  18. Vlasov simulations of collisionless magnetic reconnection without background density

    NASA Astrophysics Data System (ADS)

    Schmitz, H.; Grauer, R.

    2008-02-01

    A standard starting point for the simulation of collisionless reconnection is the Harris equilibrium which is made up of a current sheet that separates two regions of opposing magnetic field. Magnetohydrodynamic simulations of collisionless reconnection usually include a homogeneous background density for reasons of numerical stability. While, in some cases, this is a realistic assumption, the background density may introduce new effects both due to the more involved structure of the distribution function or due to the fact that the Alfvèn speed remains finite far away from the current sheet. We present a fully kinetic Vlasov simulation of the perturbed Harris equilibrium using a Vlasov code. Parameters are chosen to match the Geospace Environment Modeling (GEM) Magnetic Reconnection Challenge but excluding the background density. This allows to compare with earlier simulations [Schmitz H, Grauer R. Kinetic Vlasov simulations of collisionless magnetic reconnection. Phys Plasmas 2006;13:092309] which include the background density. It is found that the absence of a background density causes the reconnection rate to be higher. On the other hand, the time until the onset of reconnection is hardly affected. Again the off diagonal elements of the pressure tensor are found to be important on the X-line but with modified importance for the individual terms.

  19. New Measure of the Dissipation Region in Collisionless Magnetic Reconnection

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha

    2011-05-13

    A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.

  20. New Measure of the Dissipation Region in Collisionless Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha

    2012-01-01

    A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron s rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.

  1. The Diffusion Region in Collisionless Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Neukirch, Thomas; Schindler, Karl; Kuznetsova, Masha; Zenitani, Seiji

    2011-01-01

    A review of present understanding of the dissipation region in magnetic reconnection is presented. The review focuses on results of the thermal inertia-based dissipation mechanism but alternative mechanisms are mentioned as well. For the former process, a combination of analytical theory and numerical modeling is presented. Furthermore, a new relation between the electric field expressions for anti-parallel and guide field reconnection is developed.

  2. Kinetic simulations of collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Aunai, N.; Dargent, J.; Lavraud, B.; Ciardi, A.; Drouin, M.; Smets, R.

    2016-12-01

    This paper focuses on magnetic reconnection and its role in magnetospheric physics, where collisions are inexistant. In this context, the presence of a very cold ion population of ionospheric origin is known to have an important contribution to the particle density at the magnetopause. However, besides this mass loading effect, consequences of their extremely low temperature, and therefore of their must smaller gyroscale, have not yet been addressed from a modeling viewpoint. This study presents two fully kinetic simulations with and without cold ions in the magnetosphere and highlights how their small Larmor radius can change signatures expected to be proxy of the X line in spacecraft measurements. In a second part, this paper addresses shortly the problem of the X line orientation in an asymmetric system. Using this time hybrid kinetic simulations, we show the X line aligned with the bisector of upstream magnetic field vectors results in faster reconnection rate. This have consequences regarding where reconnection at the magnetopause, although models here do not include large scale dynamics. We conclude with perspectives regarding future developments to address multi-scale magnetic reconnection dynamics at the magnetopause.

  3. Collisionless Reconnection with Weak Slow Shocks Under Anisotropic MHD Approximation

    NASA Astrophysics Data System (ADS)

    Hirabayashi, K.; Hoshino, M.

    2014-12-01

    Magnetic reconnection accompanied by a pair of slow-mode shock waves, known as Petschek's theory, has been widely studied as an efficient mechanism to convert magnetically stored energy to thermal and/or kinetic energy in plasmas. Satellite observations in the Earth's magnetotail, on the other hand, report that the detection of slow shocks is rare compared with the theory. As an important step to bridge the gap between the observational fact and the Petschek-type reconnection, we performed one- and two- dimensional collisionless magnetohydrodynamic (MHD) simulations of magnetic reconnection paying special attention to the effect of temperature anisotropy. In high-beta plasmas such as a plasma sheet in the magnetotail, it is expected that even weak temperature anisotropy can greatly modify the dynamics. We demonstrate that the slow shocks do exist in the reconnection layer even under the anisotropic temperature. The resultant shocks, however, are weaker than those in isotropic MHD in terms of plasma compression. In addition, the amount of magnetic energy released across the shock is extremely small, that is, the shock is no longer switch-off type. In spite of the weakness of the shocks, the reconnection rates measured by the inflow velocities are kept at the same level as the isotropic cases. Once the slow shock forms, the downstream plasma is heated in highly anisotropic manner, and the firehose-sense anisotropy affects the wave structure in the system. In particular, it is remarkable that the sequential order of propagation of slow shocks and rotational discontinuities reverses depending upon the magnitude of a superposed guide field. Our result is consistent with the rareness of the slow shock detection in the magnetotail, and implies that shocks do not necessarily play an important role. Furthermore, a variety of wave structure of a reconnection layer shown here will help interpretation of observational data in collisionless reconnection.

  4. Turbulent transport in 2D collisionless guide field reconnection

    NASA Astrophysics Data System (ADS)

    Muñoz, P. A.; Büchner, J.; Kilian, P.

    2017-02-01

    Transport in hot and dilute, i.e., collisionless, astrophysical and space, plasmas is called "anomalous." This transport is due to the interaction between the particles and the self-generated turbulence by their collective interactions. The anomalous transport has very different and not well known properties compared to the transport due to binary collisions, dominant in colder and denser plasmas. Because of its relevance for astrophysical and space plasmas, we explore the excitation of turbulence in current sheets prone to component- or guide-field reconnection, a process not well understood yet. This configuration is typical for stellar coronae, and it is created in the laboratory for which a 2.5D geometry applies. In our analysis, in addition to the immediate vicinity of the X-line, we also include regions outside and near the separatrices. We analyze the anomalous transport properties by using 2.5D Particle-in-Cell code simulations. We split off the mean slow variation (in contrast to the fast turbulent fluctuations) of the macroscopic observables and determine the main transport terms of the generalized Ohm's law. We verify our findings by comparing with the independently determined slowing-down rate of the macroscopic currents (due to a net momentum transfer from particles to waves) and with the transport terms obtained by the first order correlations of the turbulent fluctuations. We find that the turbulence is most intense in the "low density" separatrix region of guide-field reconnection. It is excited by streaming instabilities, is mainly electrostatic and "patchy" in space, and so is the associated anomalous transport. Parts of the energy exchange between turbulence and particles are reversible and quasi-periodic. The remaining irreversible anomalous resistivity can be parametrized by an effective collision rate ranging from the local ion-cyclotron to the lower-hybrid frequency. The contributions to the parallel and the perpendicular (to the magnetic

  5. Three-dimensional outflow jets generated in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Fujimoto, Keizo

    2016-10-01

    The present study proposes a new theoretical model generating three-dimensional (3-D) outflow jets in collisionless magnetic reconnection by means of a large-scale particle-in-cell simulation. The key mechanism is the formation of 3-D flux ropes arising in the turbulent electron current layer formed around the magnetic x line. The scale of the flux ropes along the current density is determined by the wavelength of an electron flow shear mode which is a macroscopic scale larger than the typical kinetic scales. The 3-D flux ropes are intermittently ejected from the current layer and regulates the outflow jets into three dimensions. The gross reconnection rate is sufficiently large, since reconnection takes place almost uniformly along the x line.

  6. ONSET OF FAST MAGNETIC RECONNECTION IN PARTIALLY IONIZED GASES

    SciTech Connect

    Malyshkin, Leonid M.; Zweibel, Ellen G. E-mail: zweibel@astro.wisc.edu

    2011-10-01

    We consider quasi-stationary two-dimensional magnetic reconnection in a partially ionized incompressible plasma. We find that when the plasma is weakly ionized and the collisions between the ions and the neutral particles are significant, the transition to fast collisionless reconnection due to the Hall effect in the generalized Ohm's law is expected to occur at much lower values of the Lundquist number, as compared to a fully ionized plasma case. We estimate that these conditions for fast reconnection are satisfied in molecular clouds and in protostellar disks.

  7. Momentum transport near a magnetic X line in collisionless reconnection

    NASA Technical Reports Server (NTRS)

    Cai, H. J.; Ding, D. Q.; Lee, L. C.

    1994-01-01

    Plasma dynamics and momentum transport near an X line during time-dependent magnetic reconnection in a collisionless plasma are investigated based on two-dimensional particle simulations. We find that a weakly skewed velocity distribution is formed near the magnetic X line, leading to the presence of off-diagonal elements of the plasma pressure tensor. Let the reconnection electric field be in the y direction. The gradients of the off-diagonal elements of the pressure tensor can provide a transport of the y momentum. During the normal magnetic reconnection, the momentum transport associated with the off-diagonal terms of the pressure tensor mediates a transfer of the y momentum from the region near the X line to regions outside the X line. A period of 'reverse magnetic reconnection,' during which the plasma kinetic energy is converted into magnetic energy, is also observed in the simulation. When reverse reconnection occurs, the gradients of the off-diagonal pressure tensor elements can mediate a transfer of y momentum into the X line. It is found that the inertial term also plays a significant role in the force balance near the magnetic X line. An explanation for the origin of the off-diagonal pressure terms is also given in this paper.

  8. Kinetic Vlasov simulations of collisionless magnetic reconnection

    SciTech Connect

    Schmitz, H.; Grauer, R.

    2006-09-15

    A fully kinetic Vlasov simulation of the Geospace Environment Modeling Magnetic Reconnection Challenge is presented. Good agreement is found with previous kinetic simulations using particle in cell (PIC) codes, confirming both the PIC and the Vlasov code. In the latter the complete distribution functions f{sub k} (k=i,e) are discretized on a numerical grid in phase space. In contrast to PIC simulations, the Vlasov code does not suffer from numerical noise and allows a more detailed investigation of the distribution functions. The role of the different contributions of Ohm's law are compared by calculating each of the terms from the moments of the f{sub k}. The important role of the off-diagonal elements of the electron pressure tensor could be confirmed. The inductive electric field at the X line is found to be dominated by the nongyrotropic electron pressure, while the bulk electron inertia is of minor importance. Detailed analysis of the electron distribution function within the diffusion region reveals the kinetic origin of the nongyrotropic terms.

  9. Structures of diffusion regions in collisionless magnetic reconnection

    SciTech Connect

    Umeda, Takayuki; Togano, Kentaro; Ogino, Tatsuki

    2010-05-15

    Detailed structures of diffusion regions in two-dimensional collisionless magnetic reconnection are studied by using an electromagnetic Vlasov simulation. It has been well known that plasma number density decreases near the X-point of the reconnection. However, numerical thermal fluctuations exist in particle-in-cell simulations, and there is a possibility that detailed structures near the X-point diffuse numerically when the number of particles per cell is not enough. In the present study, a high-resolution two-dimensional Vlasov simulation is performed. It is found that electron number density in the electron diffusion region decreases to a hundredth of the initial value. Structures of electron diffusion region are determined by the local electron inertial length.

  10. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  11. The Impact of Geometrical Constraints on Collisionless Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Aunai, Nico; Kuznetsova, Masha; Frolov, Rebekah; Black, Carrrie

    2012-01-01

    One of the most often cited features associated with collisionless magnetic reconnection is a Hall-type magnetic field, which leads, in antiparallel geometries, to a quadrupolar magnetic field signature. The combination of this out of plane magnetic field with the reconnection in-plane magnetic field leads to angling of magnetic flux tubes out of the plane defined by the incoming magnetic flux. Because it is propagated by Whistler waves, the quadrupolar field can extend over large distances in relatively short amounts of time - in fact, it will extend to the boundary of any modeling domain. In reality, however, the surrounding plasma and magnetic field geometry, defined, for example, by the overall solar wind flow, will in practice limit the extend over which a flux tube can be angled out of the main plain. This poses the question to what extent geometric constraints limit or control the reconnection process and this is the question investigated in this presentation. The investigation will involve a comparison of calculations, where open boundary conditions are set up to mimic either free or constrained geometries. We will compare momentum transport, the geometry of the reconnection regions, and the acceleration if ions and electrons to provide the current sheet in the outflow jet.

  12. On the relationship between quadrupolar magnetic field and collisionless reconnection

    SciTech Connect

    Smets, R. Belmont, G.; Aunai, N.; Boniface, C.

    2014-06-15

    Using hybrid simulations, we investigate the onset of fast reconnection between two cylindrical magnetic shells initially close to each other. This initial state mimics the plasma structure in High Energy Density Plasmas induced by a laser-target interaction and the associated self-generated magnetic field. We clearly observe that the classical quadrupolar structure of the out-of-plane magnetic field appears prior to the reconnection onset. Furthermore, a parametric study reveals that, with a non-coplanar initial magnetic topology, the reconnection onset is delayed and possibly suppressed. The relation between the out-of-plane magnetic field and the out-of-plane electric field is discussed.

  13. Asymmetric evolution of magnetic reconnection in collisionless accretion disk

    SciTech Connect

    Shirakawa, Keisuke Hoshino, Masahiro

    2014-05-15

    An evolution of a magnetic reconnection in a collisionless accretion disk is investigated using a 2.5 dimensional hybrid code simulation. In astrophysical disks, magnetorotational instability (MRI) is considered to play an important role by generating turbulence in the disk and contributes to an effective angular momentum transport through a turbulent viscosity. Magnetic reconnection, on the other hand, also plays an important role on the evolution of the disk through a dissipation of a magnetic field enhanced by a dynamo effect of MRI. In this study, we developed a hybrid code to calculate an evolution of a differentially rotating system. With this code, we first confirmed a linear growth of MRI. We also investigated a behavior of a particular structure of a current sheet, which would exist in the turbulence in the disk. From the calculation of the magnetic reconnection, we found an asymmetric structure in the out-of-plane magnetic field during the evolution of reconnection, which can be understood by a coupling of the Hall effect and the differential rotation. We also found a migration of X-point whose direction is determined only by an initial sign of J{sub 0}×Ω{sub 0}, where J{sub 0} is the initial current density in the neutral sheet and Ω{sub 0} is the rotational vector of the background Keplerian rotation. Associated with the migration of X-point, we also found a significant enhancement of the perpendicular magnetic field compared to an ordinary MRI. MRI-Magnetic reconnection coupling and the resulting magnetic field enhancement can be an effective process to sustain a strong turbulence in the accretion disk and to a transport of angular momentum.

  14. Asymmetric evolution of magnetic reconnection in collisionless accretion disk

    NASA Astrophysics Data System (ADS)

    Shirakawa, Keisuke; Hoshino, Masahiro

    2014-05-01

    An evolution of a magnetic reconnection in a collisionless accretion disk is investigated using a 2.5 dimensional hybrid code simulation. In astrophysical disks, magnetorotational instability (MRI) is considered to play an important role by generating turbulence in the disk and contributes to an effective angular momentum transport through a turbulent viscosity. Magnetic reconnection, on the other hand, also plays an important role on the evolution of the disk through a dissipation of a magnetic field enhanced by a dynamo effect of MRI. In this study, we developed a hybrid code to calculate an evolution of a differentially rotating system. With this code, we first confirmed a linear growth of MRI. We also investigated a behavior of a particular structure of a current sheet, which would exist in the turbulence in the disk. From the calculation of the magnetic reconnection, we found an asymmetric structure in the out-of-plane magnetic field during the evolution of reconnection, which can be understood by a coupling of the Hall effect and the differential rotation. We also found a migration of X-point whose direction is determined only by an initial sign of J0×Ω0, where J0 is the initial current density in the neutral sheet and Ω0 is the rotational vector of the background Keplerian rotation. Associated with the migration of X-point, we also found a significant enhancement of the perpendicular magnetic field compared to an ordinary MRI. MRI-Magnetic reconnection coupling and the resulting magnetic field enhancement can be an effective process to sustain a strong turbulence in the accretion disk and to a transport of angular momentum.

  15. The Structure of the Separatix in Collisionless Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Daughton, W.; Scudder, J.; Karimabadi, H.

    2005-12-01

    Recent kinetic simulations of magnetic reconnection indicate the formation of intense electrostatic fields that start at the x-point and form sheet-like structures that extend outward for large distances along the separatrices. In the presence of a significant guide field, the characteristic thickness of these layers is on the order of the local electron gyroradius and there are significant deviations from charge neutrality within the layer. The resulting electrostatic fields are primarily perpendicular and may exceed the reconnection electric field by a factor of 20. A serious impediment to understanding the possible role of these structures is the use of periodic boundary conditions typically employed in kinetic simulations. In particular, the strong outward electron flow generated along one leg of a separatrix is allowed to circulate back through the system along the opposite side. This recirculation may artificially enhance beam driven instabilities and/or strongly modify the structure of the separatrix. In this work, we describe initial efforts to employ open boundary conditions in 2D fully kinetic PIC simulations, with the goal of better understanding the structure and role of the separatrix in collisionless magnetic reconnection.

  16. The Link Between Shocks, Turbulence, and Magnetic Reconnection in Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Roytershteyn, V.; Vu, H. X.; Omelchenko, Y. A.; Scudder, J.; Daughton, W.; Dimmock, A.; Nykyri, K.; Wan, M.; Sibeck, D.; Tatineni, M.; Majumdar, A.; Loring, B.; Geveci, B.

    2014-01-01

    Global hybrid (electron fluid, kinetic ions) and fully kinetic simulations of the magnetosphere have been used to show surprising interconnection between shocks, turbulence and magnetic reconnection. In particular collisionless shocks with their reflected ions that can get upstream before retransmission can generate previously unforeseen phenomena in the post shocked flows: (i) formation of reconnecting current sheets and magnetic islands with sizes up to tens of ion inertial length. (ii) Generation of large scale low frequency electromagnetic waves that are compressed and amplified as they cross the shock. These 'wavefronts' maintain their integrity for tens of ion cyclotron times but eventually disrupt and dissipate their energy. (iii) Rippling of the shock front, which can in turn lead to formation of fast collimated jets extending to hundreds of ion inertial lengths downstream of the shock. The jets, which have high dynamical pressure, 'stir' the downstream region, creating large scale disturbances such as vortices, sunward flows, and can trigger flux ropes along the magnetopause. This phenomenology closes the loop between shocks, turbulence and magnetic reconnection in ways previously unrealized. These interconnections appear generic for the collisionless plasmas typical of space, and are expected even at planar shocks, although they will also occur at curved shocks as occur at planets or around ejecta.

  17. Gyrokinetic simulations of collisionless reconnection in turbulent non-uniform plasmas

    SciTech Connect

    Kobayashi, Sumire; Rogers, Barrett N.; Numata, Ryusuke

    2014-04-15

    We present nonlinear gyrokinetic simulations of collisionless magnetic reconnection with non-uniformities in the plasma density, the electron temperature, and the ion temperature. The density gradient can stabilize reconnection due to diamagnetic effects but destabilize driftwave modes that produce turbulence. The electron temperature gradient triggers microtearing modes that drive rapid small-scale reconnection and strong electron heat transport. The ion temperature gradient destabilizes ion temperature gradient modes that, like the driftwaves, may enhance reconnection in some cases.

  18. Do dispersive waves play a role in collisionless magnetic reconnection?

    SciTech Connect

    Liu, Yi-Hsin; Daughton, W.; Li, H.; Karimabadi, H.; Peter Gary, S.

    2014-02-15

    Using fully kinetic simulations, we demonstrate that the properly normalized reconnection rate is fast ∼0.1 for guide fields up to 80× larger than the reconnecting field and is insensitive to both the system size and the ion to electron mass ratio. These results challenge conventional explanations of reconnection based on fast dispersive waves, which are completely absent for sufficiently strong guide fields. In this regime, the thickness of the diffusion layer is set predominantly by the electron inertial length with an inner sublayer that is controlled by finite gyro-radius effects. As the Alfvén velocity becomes relativistic for very strong guide fields, the displacement current becomes important and strong deviations from charge neutrality occur, resulting in the build-up of intense electric fields which absorb a portion of the magnetic energy release. Over longer time scales, secondary magnetic islands are generated near the active x-line while an electron inertial scale Kelvin-Helmholtz instability is driven within the outflow. These secondary instabilities give rise to time variations in the reconnection rate but do not alter the average value.

  19. Electron Scale Signatures of Asymmetric Collisionless Reconnection Obtained from Particle-in-Cel Models.

    NASA Astrophysics Data System (ADS)

    Aunai, N.; Hesse, M.; Kuznetsova, M. M.; Lavraud, B.

    2014-12-01

    The mechanisms controlling collisionless magnetic reconnection at electron scales are still poorly understood and the canonical symmetric 2D antiparallel reconnection configuration is quite limited in front of the great diversity of upstream plasma and field configurations reconnection can encounter. Therefore, efficient comparison between numerical simulations and in situ observations requires to look at features as generic as possible and to understand what can limit their generality. In this context, we will discuss the signatures of electron nongyrotropy, the impact of non kinetic equilibrium as an initial condition of asymmetric reconnection models, and of the orientation of the reconnection plane with respect to the upstream field in 2D models.

  20. Physics of collisionless reconnection in a stressed X-point collapse

    SciTech Connect

    Tsiklauri, D.; Haruki, T.

    2008-10-15

    Recently, magnetic reconnection during collisionless, stressed, X-point collapse was studied using kinetic, 2.5-dimensional, fully electromagnetic, relativistic particle-in-cell numerical code [D. Tsiklauri and T. Haruki, Phys. Plasmas 14, 112905 (2007)]. Here we finalize the investigation of this topic by addressing key outstanding physical questions: (i) Which term in the generalized Ohm's law is responsible for the generation of the reconnection electric field? (ii) How does the time evolution of the reconnected flux vary with the ion-electron mass ratio? (iii) What is the exact energy budget of the reconnection process; i.e., in which proportion initial (mostly magnetic) energy is converted into other forms of energy? (iv) Are there any anisotropies in the velocity distribution of the accelerated particles? The following points have been established. (i) A reconnection electric field is generated by the electron pressure tensor off-diagonal terms, resembling to the case of tearing unstable Harris current sheet studied by the GEM reconnection challenge. (ii) For m{sub i}/m{sub e}>>1, the time evolution of the reconnected flux is independent of ion-electron mass ratio. In addition, in the case of m{sub i}/m{sub e}=1, we show that reconnection proceeds slowly as the Hall term is zero; when m{sub i}/m{sub e}>>1 (i.e., the Hall term is nonzero) reconnection is fast and we conjecture that this is due to magnetic field being frozen into electron fluid, which moves significantly faster than ion fluid. (iii) Within one Alfven time, somewhat less than half ({approx}40%) of the initial total (roughly magnetic) energy is converted into the kinetic energy of electrons, and somewhat more than half ({approx}60%) into kinetic energy of ions (similar to solar flare observations). (iv) In the strongly stressed X-point case, in about one Alfven time, a full isotropy in all three spatial directions of the velocity distribution is seen for superthermal electrons (also commensurate

  1. Mechanisms for fast flare reconnection

    NASA Technical Reports Server (NTRS)

    Vanhoven, G.; Deeds, D.; Tachi, T.

    1988-01-01

    Normal collisional-resistivity mechanisms of magnetic reconnection have the drawback that they are too slow to explain the fast rise of solar flares. Two methods are examined which are proposed for the speed-up of the magnetic tearing instability: the anomalous enhancement of resistivity by the injection of MHD turbulence and the increase of Coulomb resistivity by radiative cooling. The results are described for nonlinear numerical simulations of these processes which show that the first does not provide the claimed effects, while the second yields impressive rates of reconnection, but low saturated energy outputs.

  2. Suppression of Collisionless Magnetic Reconnection in Asymmetric Current Sheets

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Hesse, Michael

    2016-01-01

    Using fully kinetic simulations, we study the suppression of asymmetric reconnection in the limit where the diamagnetic drift speed >> Alfven speed and the magnetic shear angle is moderate. We demonstrate that the slippage between electrons and the magnetic flux mitigates the suppression and can even result in fast reconnection that lacks one of the outflow jets. Through comparing a case where the diamagnetic drift is supported by the temperature gradient with a companion case that has a density gradient instead, we identify a robust suppression mechanism. The drift of the x-line is slowed down locally by the asymmetric nature of the x-line, and then the x-line is run over and swallowed by the faster-moving following flux.

  3. Influence of the dissipation mechanism on collisionless magnetic reconnection in symmetric and asymmetric current layers

    SciTech Connect

    Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, Maria

    2013-04-15

    Numerical studies implementing different versions of the collisionless Ohm's law have shown a reconnection rate insensitive to the nature of the non-ideal mechanism occurring at the X line, as soon as the Hall effect is operating. Consequently, the dissipation mechanism occurring in the vicinity of the reconnection site in collisionless systems is usually thought not to have a dynamical role beyond the violation of the frozen-in condition. The interpretation of recent studies has, however, led to the opposite conclusion that the electron scale dissipative processes play an important dynamical role in preventing an elongation of the electron layer from throttling the reconnection rate. This work re-visits this topic with a new approach. Instead of focusing on the extensively studied symmetric configuration, we aim to investigate whether the macroscopic properties of collisionless reconnection are affected by the dissipation physics in asymmetric configurations, for which the effect of the Hall physics is substantially modified. Because it includes all the physical scales a priori important for collisionless reconnection (Hall and ion kinetic physics) and also because it allows one to change the nature of the non-ideal electron scale physics, we use a (two dimensional) hybrid model. The effects of numerical, resistive, and hyper-resistive dissipation are studied. In a first part, we perform simulations of symmetric reconnection with different non-ideal electron physics. We show that the model captures the already known properties of collisionless reconnection. In a second part, we focus on an asymmetric configuration where the magnetic field strength and the density are both asymmetric. Our results show that contrary to symmetric reconnection, the asymmetric model evolution strongly depends on the nature of the mechanism which breaks the field line connectivity. The dissipation occurring at the X line plays an important role in preventing the electron current layer

  4. Influence of the dissipation mechanism on collisionless magnetic reconnection in symmetric and asymmetric current layers

    NASA Astrophysics Data System (ADS)

    Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, Maria

    2013-04-01

    Numerical studies implementing different versions of the collisionless Ohm's law have shown a reconnection rate insensitive to the nature of the non-ideal mechanism occurring at the X line, as soon as the Hall effect is operating. Consequently, the dissipation mechanism occurring in the vicinity of the reconnection site in collisionless systems is usually thought not to have a dynamical role beyond the violation of the frozen-in condition. The interpretation of recent studies has, however, led to the opposite conclusion that the electron scale dissipative processes play an important dynamical role in preventing an elongation of the electron layer from throttling the reconnection rate. This work re-visits this topic with a new approach. Instead of focusing on the extensively studied symmetric configuration, we aim to investigate whether the macroscopic properties of collisionless reconnection are affected by the dissipation physics in asymmetric configurations, for which the effect of the Hall physics is substantially modified. Because it includes all the physical scales a priori important for collisionless reconnection (Hall and ion kinetic physics) and also because it allows one to change the nature of the non-ideal electron scale physics, we use a (two dimensional) hybrid model. The effects of numerical, resistive, and hyper-resistive dissipation are studied. In a first part, we perform simulations of symmetric reconnection with different non-ideal electron physics. We show that the model captures the already known properties of collisionless reconnection. In a second part, we focus on an asymmetric configuration where the magnetic field strength and the density are both asymmetric. Our results show that contrary to symmetric reconnection, the asymmetric model evolution strongly depends on the nature of the mechanism which breaks the field line connectivity. The dissipation occurring at the X line plays an important role in preventing the electron current layer

  5. FAST MAGNETIC RECONNECTION AND SPONTANEOUS STOCHASTICITY

    SciTech Connect

    Eyink, Gregory L.; Lazarian, A.; Vishniac, E. T.

    2011-12-10

    Magnetic field lines in astrophysical plasmas are expected to be frozen-in at scales larger than the ion gyroradius. The rapid reconnection of magnetic-flux structures with dimensions vastly larger than the gyroradius requires a breakdown in the standard Alfven flux-freezing law. We attribute this breakdown to ubiquitous MHD plasma turbulence with power-law scaling ranges of velocity and magnetic energy spectra. Lagrangian particle trajectories in such environments become 'spontaneously stochastic', so that infinitely many magnetic field lines are advected to each point and must be averaged to obtain the resultant magnetic field. The relative distance between initial magnetic field lines which arrive at the same final point depends upon the properties of two-particle turbulent dispersion. We develop predictions based on the phenomenological Goldreich and Sridhar theory of strong MHD turbulence and on weak MHD turbulence theory. We recover the predictions of the Lazarian and Vishniac theory for the reconnection rate of large-scale magnetic structures. Lazarian and Vishniac also invoked 'spontaneous stochasticity', but of the field lines rather than of the Lagrangian trajectories. More recent theories of fast magnetic reconnection appeal to microscopic plasma processes that lead to additional terms in the generalized Ohm's law, such as the collisionless Hall term. We estimate quantitatively the effect of such processes on the inertial-range turbulence dynamics and find them to be negligible in most astrophysical environments. For example, the predictions of the Lazarian and Vishniac theory are unchanged in Hall MHD turbulence with an extended inertial range, whenever the ion skin depth {delta}{sub i} is much smaller than the turbulent integral length or injection-scale L{sub i} .

  6. Explosive magnetic reconnection caused by an X-shaped current-vortex layer in a collisionless plasma

    SciTech Connect

    Hirota, M.; Hattori, Y.; Morrison, P. J.

    2015-05-15

    A mechanism for explosive magnetic reconnection is investigated by analyzing the nonlinear evolution of a collisionless tearing mode in a two-fluid model that includes the effects of electron inertia and temperature. These effects cooperatively enable a fast reconnection by forming an X-shaped current-vortex layer centered at the reconnection point. A high-resolution simulation of this model for an unprecedentedly small electron skin depth d{sub e} and ion-sound gyroradius ρ{sub s}, satisfying d{sub e}=ρ{sub s}, shows an explosive tendency for nonlinear growth of the tearing mode, where it is newly found that the explosive widening of the X-shaped layer occurs locally around the reconnection point with the length of the X shape being shorter than the domain length and the wavelength of the linear tearing mode. The reason for the onset of this locally enhanced reconnection is explained theoretically by developing a novel nonlinear and nonequilibrium inner solution that models the local X-shaped layer, and then matching it to an outer solution that is approximated by a linear tearing eigenmode with a shorter wavelength than the domain length. This theoretical model proves that the local reconnection can release the magnetic energy more efficiently than the global one and the estimated scaling of the explosive growth rate agrees well with the simulation results.

  7. Erratum: A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex

    2011-01-01

    The following describes a list of errata in our paper, "A simple, analytical model of collisionless magnetic reconnection in a pair plasma." It supersedes an earlier erratum. We recently discovered an error in the derivation of the outflow-to-inflow density ratio.

  8. Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection

    SciTech Connect

    Divin, A.; Markidis, S.; Lapenta, G.; Semenov, V. S.; Erkaev, N. V.; Biernat, H. K.

    2010-12-15

    A new model of the electron pressure anisotropy in the electron diffusion region in collisionless magnetic reconnection is presented for the case of antiparallel configuration of magnetic fields. The plasma anisotropy is investigated as source of collisionless dissipation. By separating electrons in the vicinity of the neutral line into two broad classes of inflowing and accelerating populations, it is possible to derive a simple closure for the off-diagonal electron pressure component. The appearance of these two electron populations near the neutral line is responsible for the anisotropy and collisionless dissipation in the magnetic reconnection. Particle-in-cell simulations verify the proposed model, confirming first the presence of two particle populations and second the analytical results for the off-diagonal electron pressure component. Furthermore, test-particle calculations are performed to compare our approach with the model of electron pressure anisotropy in the inner electron diffusion region by Fujimoto and Sydora [Phys. Plasmas 16, 112309 (2009)].

  9. Physical mechanism of spontaneous fast reconnection evolution

    NASA Astrophysics Data System (ADS)

    Ugai, M.

    2001-06-01

    Large dissipative events, such as solar flares and geomagnetic substorms, result from sudden onset of magnetic reconnection, so that it is a long-standing problem to find the physical mechanism that makes magnetic reconnection explosive. As recognized by Petschek, standing slow shocks enable the effective magnetic energy conversion in space plasmas of extremely large magnetic Reynolds number. Hence, a basic question is how the fast reconnection mechanism involving slow shocks can be realized as an eventual solution? We have proposed the spontaneous fast reconnection model, which describes a new type of nonlinear instability that grows by the positive feedback between plasma microphysics (current-driven anomalous resistivity) and macrophysics (global reconnection flow). It is demonstrated that the fast reconnection mechanism explosively grows by the positive feedback in a variety of physical situations; for the larger threshold of anomalous resistivity, the fast reconnection evolves more drastically. Also, distinct plasma processes, such as large-scale plasmoid and magnetic loop dynamics, result directly from the fast reconnection evolution. Even in general asymmetric situations, the spontaneous fast reconnection model effectively works, giving rise to drastic magnetic flux transfer.

  10. Aspects of collisionless magnetic reconnection in asymmetric systems

    SciTech Connect

    Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim

    2013-06-15

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.

  11. Aspects of Collisionless Magnetic Reconnection in Asymmetric Systems

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Aunai, Nicolas; Zeitani, Seiji; Kuznetsova, Masha; Birn, Joachim

    2013-01-01

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with non-vanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.

  12. Aspects of Collisionless Magnetic Reconnection in Asymmetric Systems

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Aunai, Nicolas; Zenitani, Seiji; Kuznetsova, Masha; Birn, Joachim

    2013-01-01

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: The direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.

  13. Quasi-Separatrix Layers and Line-tied Reconnection in Collisionless Plasmas

    NASA Astrophysics Data System (ADS)

    Billey, Zachary; Zweibel, Ellen; Finn, John; Daughton, William

    2015-11-01

    Many plasmas undergoing magnetic reconnection have boundaries that have constant magnetic flux on the dynamical timescales of the system, such as coronal loops and planetary magnetospheres. Systems where the boundary magnetic flux is constant are called line-tied systems. We conduct collisionless fully 3D particle-in-cell simulations in slab geometry to study how line-tying changes the dynamics relative non-tied systems. We confirm Quasi-Separatrix Layers (QSLs) as a model for predicting potential reconnection sites in 3D systems. Based on this theory, we use line-integrated diagnostics to investigate the collisionless physics relating to the parallel electric field. Here we find non-gyrotopic terms in the pressure tensor are important at the center of the reconnection layer. We investigate the effect of varying the length of the line-tied plasma on the growth rate and reconnection process and compare oblique modes with equivalent periodic systems. We discuss the extension into collisionless regimes of the geometric width vs tearing width theory, developed to explain line-tied suppression of tearing in MHD reconnection. Work supported by the NSF and U.S. DoE through CMSO.

  14. Magnetic field generation, Weibel-mediated collisionless shocks, and magnetic reconnection in colliding laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Bhattacharjee, A.; Fiksel, G.

    2016-10-01

    Colliding plasmas are ubiquitous in astrophysical environments and allow conversion of kinetic energy into heat and, most importantly, the acceleration of particles to extremely high energies to form the cosmic ray spectrum. In collisionless astrophysical plasmas, kinetic plasma processes govern the interaction and particle acceleration processes, including shock formation, self-generation of magnetic fields by kinetic plasma instabilities, and magnetic field compression and reconnection. How each of these contribute to the observed spectra of cosmic rays is not fully understood, in particular both shock acceleration processes and magnetic reconnection have been proposed. We will review recent results of laboratory astrophysics experiments conducted at high-power, inertial-fusion-class laser facilities, which have uncovered significant results relevant to these processes. Recent experiments have now observed the long-sought Weibel instability between two interpenetrating high temperature plasma plumes, which has been proposed to generate the magnetic field necessary for shock formation in unmagnetized regimes. Secondly, magnetic reconnection has been studied in systems of colliding plasmas using either self-generated magnetic fields or externally applied magnetic fields, and show extremely fast reconnection rates, indicating fast destruction of magnetic energy and further possibilities to accelerate particles. Finally, we highlight kinetic plasma simulations, which have proven to be essential tools in the design and interpretation of these experiments.

  15. Magnetic field generation, Weibel-mediated collisionless shocks, and magnetic reconnection in colliding laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, William

    2015-08-01

    Colliding plasmas are ubiquitous in astrophysical environments and allow conversion of kinetic energy into heat and, most importantly, the acceleration of particles to extremely high energies to form the cosmic ray spectrum. In collisionless astrophysical plasmas, kinetic plasma processes govern the interaction and particle acceleration processes, including shock formation, self-generation of magnetic fields by kinetic plasma instabilities, and magnetic field compression and reconnection. How each of these contribute to the observed spectra of cosmic rays is not fully understood, in particular both shock acceleration processes and magnetic reconnection have been proposed. We will review recent results of laboratory astrophysics experiments conducted at high-power, inertial-fusion-class laser facilities, which have uncovered significant results relevant to these processes. Recent experiments have now observed the long-sought Weibel instability between two interpenetrating high temperature plasma plumes, which has been proposed to generate the magnetic field necessary for shock formation in unmagnetized regimes. A second set of experiments has demonstrated magnetized shock formation in pre-magnetized plasmas. Finally, magnetic reconnection has been studied in systems of colliding plasmas using either self-generated magnetic fields or externally applied magnetic fields, and show extremely fast reconnection rates, indicating fast destruction of magnetic energy and further possibilities to accelerate particles. Finally, we highlight kinetic plasma simulations, which have proven to be essential tools in the design and interpretation of these experiments.

  16. Chaos-induced resistivity of collisionless magnetic reconnection in the presence of a guide field

    NASA Astrophysics Data System (ADS)

    Shang, Meng; Wu, De-Jin; Chen, Ling; Chen, Peng-Fei

    2017-01-01

    One of the most puzzling problems in astrophysics is to understand the anomalous resistivity in collisionless magnetic reconnection that is believed extensively to be responsible for the energy release in various eruptive phenomena. The magnetic null point in the reconnecting current sheet, acting as a scattering center, can lead to chaotic motions of particles in the current sheet, which is one of the possible mechanisms for anomalous resistivity and is called chaos-induced resistivity. In many interesting cases, however, instead of the magnetic null point, there is a nonzero magnetic field perpendicular to the merging field lines, usually called the guide field, whose effect on chaos-induced resistivity has been an open problem. By use of the test particle simulation method and statistical analysis, we investigate chaos-induced resistivity in the presence of a constant guide field. The characteristics of particle motion in the reconnecting region, in particular, the chaotic behavior of particle orbits and evolving statistical features, are analyzed. The results show that as the guide field increases, the radius of the chaos region increases and the Lyapunov index decreases. However, the effective collision frequency, and hence the chaos-induced resistivity, reach their peak values when the guide field approaches half of the characteristic strength of the reconnection magnetic field. The presence of a guide field can significantly influence the chaos of the particle orbits and hence the chaos-induced resistivity in the reconnection sheet, which decides the collisionless reconnection rate. The present result is helpful for us to understand the microphysics of anomalous resistivity in collisionless reconnection with a guide field.

  17. Origins of effective resistivity in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra

    2014-07-01

    The mechanisms that provide effective resistivity for supporting collisonless magnetic reconnection have remained unsettled despite numerous studies. Some of these studies demonstrated that the electron pressure nongyrotropy generates the resistivity (ηnpg) in the electron diffusion region (EDR). We derive an analytical relation for the effective resistivity (ηkin) by momentum balance in a control volume in the EDR. Both ηnpg and ηkin mutually compare well and they also compare well with the resistivity required to support reconnection electric field Erec in multi-dimensional particle-in-cell simulations as well as in satellite observations when reconnection occurs in an EDR. But they are about an order of magnitude or so smaller than that required when the reconnection occurred in a much wider reconnecting current sheet (RCS) of half width (w) of the order of the ion skin depth (di), observed in the Earth magnetosphere. The chaos-induced resistivity reported in the literature is found to be even more deficient. We find that for reconnection in RCS with w ˜ di, anomalous diffusion, such as the universal Bhom diffusion and/or that arising from kinetic Alfven waves, could fairly well account for the required resistivity.

  18. Full Two-Fluid Collisionless Magnetic Reconnection Simulations

    NASA Astrophysics Data System (ADS)

    Gomez, D. O.; Andres, N.; Dmitruk, P.

    2015-12-01

    Magnetic reconnection is an important energy conversion process in space environments such as the solar corona or planetary magnetospheres. At the theoretical level of resistive one-fluid MHD, the Sweet-Parker model leads to extremely low reconnection rates for virtually all space physics applications. Kinetic plasma effects introduce new spatial and temporal scales into the theoretical description, which are expected to increase the reconnection rates. Within the theoretical framework of two-fluid MHD, we retain the effects of the Hall current and electron inertia and neglect dissipative effects such as viscosity and electric resistivity. This level of description brings two new spatial scales into play, namely, the ion and electron inertial scales. In absence of resistive dissipation, reconnection can only be attained by the action of electron inertia. We performed 2.5D two-fluid simulations using a pseudo-spectral code which yields exact conservation (to round-off errors) of the ideal invariants. Our simulations show that when the effects of electron inertia are retained, magnetic reconnection takes place. In a stationary regime, the reconnection rate is simply proportional to the ion inertial length, as also emerges from a scaling law derived from dimensional arguments.

  19. Origins of effective resistivity in collisionless magnetic reconnection

    SciTech Connect

    Singh, Nagendra

    2014-07-15

    The mechanisms that provide effective resistivity for supporting collisonless magnetic reconnection have remained unsettled despite numerous studies. Some of these studies demonstrated that the electron pressure nongyrotropy generates the resistivity (η{sub npg}) in the electron diffusion region (EDR). We derive an analytical relation for the effective resistivity (η{sub kin}) by momentum balance in a control volume in the EDR. Both η{sub npg} and η{sub kin} mutually compare well and they also compare well with the resistivity required to support reconnection electric field E{sub rec} in multi-dimensional particle-in-cell simulations as well as in satellite observations when reconnection occurs in an EDR. But they are about an order of magnitude or so smaller than that required when the reconnection occurred in a much wider reconnecting current sheet (RCS) of half width (w) of the order of the ion skin depth (d{sub i}), observed in the Earth magnetosphere. The chaos-induced resistivity reported in the literature is found to be even more deficient. We find that for reconnection in RCS with w ∼ d{sub i}, anomalous diffusion, such as the universal Bhom diffusion and/or that arising from kinetic Alfven waves, could fairly well account for the required resistivity.

  20. Three Dimensional Dynamics of Collisionless Magnetic Reconnection in Large-Scale Pair Plasmas

    NASA Astrophysics Data System (ADS)

    Yin, L.; Daughton, W.; Karimabadi, H.; Albright, B. J.; Bowers, K. J.; Margulies, J.

    2008-12-01

    Using the largest three dimensional particle-in-cell simulations to date, collisionless magnetic reconnection in large-scale electron-positron plasmas without a guide field is shown to involve complex interaction of tearing and kink modes. The reconnection onset is patchy and occurs at multiple sites which self-organize to form a single, large diffusion region. There is a basic tendency for the diffusion region to further elongate in the outflow direction and become unstable to secondary kinking and formation of "plasmoid-rope" structures with finite extent in the current direction. The secondary kink leads to folding of the reconnection current layer, while plasmoid ropes at times follow the folding of the current layer. The interplay among these secondary instabilities plays a key role in controlling the time dependent reconnection rate in large-scale systems.

  1. Particle-in-Cell Simulations of Collisionless Magnetic Reconnection with a Non-Uniform Guide Field

    NASA Astrophysics Data System (ADS)

    Wilson, Fiona; Neukirch, Thomas; Hesse, Michael

    2016-04-01

    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov-Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.

  2. Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field

    NASA Astrophysics Data System (ADS)

    Wilson, F.; Neukirch, T.; Hesse, M.; Harrison, M. G.; Stark, C. R.

    2016-03-01

    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov-Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.

  3. Global impact of collisionless magnetic reconnection on the structure of planetary magnetospheres

    NASA Astrophysics Data System (ADS)

    Dorelli, J.; Glocer, A.; Collinson, G.; Toth, G.

    2014-12-01

    While the local physics of collisionless magnetic reconnection has been well studied, the consequences for global magnetospheric structure remain largely unexplored. It is well known, for example, that Hall electric fields generate a new system of field-aligned currents propagating from the reconnection site along the magnetic separatrices; but it is not known how these currents contribute to the global region 1 and region 2 current systems or to auroral substorm features. In this presentation, we show that collisionless reconnection has a significant impact on the large scale structure of planetary magnetospheres. Using global Hall MHD simulations, we demonstrate that field-aligned currents generated at the reconnection sites (and carried by whistler or kinetic Alfven waves) extend all the way down to the surface of the magnetized body and must therefore be included in the magnetosphere-ionosphere coupling physics (e.g., Harang-like discontinuities in the ionospheric convection pattern -- absent in MHD -- are introduced, and the current densities are large enough to produce auroral emission). More surprisingly, ions and electrons pick up magnetic drifts (due to JxB forces in the ion diffusion regions) that significantly alter the global magnetospheric convection pattern. Ions in the plasma sheet drift duskward while electrons drift dawnward, producing large asymmetries in the plasma sheet structure even in the absense of solar wind asymmetry, asymmetric ionospheric conductance or co-rotation. We discuss the implications of these effects for the reconnection-driven magnetospheres of Ganymede, Mercury and Earth.

  4. Observation of Ion Acceleration and Heating during Collisionless Magnetic Reconnection in a Laboratory Plasma

    SciTech Connect

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Myers, Clayton E.

    2012-12-10

    The ion dynamics in a collisionless magnetic reconnection layer are studied in a laboratory plasma. The measured in-plane plasma potential profile, which is established by electrons accelerated around the electron diffusion region, shows a saddle-shaped structure that is wider and deeper towards the outflow direction. This potential structure ballistically accelerates ions near the separatrices toward the outflow direction. Ions are heated as they travel into the high pressure downstream region.

  5. Design of a Magnetic Reconnection Experiment in the Collisionless Regime

    NASA Astrophysics Data System (ADS)

    Egedal, J.; Le, A.; Daughton, W. S.

    2012-12-01

    A new model for effective heating of electrons during reconnection is now gaining support from spacecraft observations, theoretical considerations and kinetic simulations [1]. The key ingredient in the model is the physics of trapped electrons whose dynamics causes the electron pressure tensor to be strongly anisotropic [2]. The heating mechanism becomes highly efficient for geometries with low upstream electron pressure, conditions relevant to the magnetotail. We propose a new experiment that will be optimized for the study of kinetic reconnection including the dynamics of trapped electrons and associated pressure anisotropy. This requires an experiment that accesses plasmas with much lower collisionality and lower plasma beta than are available in present reconnection experiments. The new experiment will be designed such that a large variety of magnetic configurations can be established and tailored for continuation of our ongoing study of spontaneous 3D reconnection [3]. The flexible design will also allow for configurations suitable for the study of merging magnetic islands, which may be a source of super thermal electrons in naturally occurring plasmas. [1] Egedal J et al., Nature Physics, 8, 321 (2012). [2] Le A et al., Phys. Rev. Lett. 102, 085001 (2009). [3] Katz N et al., Phys. Rev. Lett. 104, 255004 (2010).;

  6. Final Report for DOE Grant DE-FG02-03ER54712, Experimental Studies of Collisionless Reconnection Processes in Plasmas

    SciTech Connect

    Porkolab, Miklos; Egedal, Jan

    2007-11-30

    The Grant DE-FG-02-00ER54712, ?Experimental Studies of Collisionless Reconnection Processes in Plasmas?, financed within the DoE/NSF, spanned a period from September , 2003 to August, 2007. It partly supported an MIT Research scientist, two graduate students and material expenses. The grant enabled the operation of a basic plasma physics experiment (on magnetic reconnection) at the MIT Plasma Science and Fusion Center and the MIT Physics Department. A strong educational component characterized this work throughout, with the participation of a large number of graduate and undergraduate students and interns to the experimental activities. The study of the collisionless magnetic reconnection constituted the primary work carried out under this grant. The investigations utilized two magnetic configurations with distinct boundary conditions. Both configurations were based upon the Versatile Toroidal Facility (VTF). The first configuration is characterized by open boundary conditions where the magnetic field lines interface directly with the vacuum vessel walls. The reconnection dynamics for this configuration has been methodically characterized and it has been shown that kinetic effects related to trapped electron trajectories are responsible for the high rates of reconnection observed [7]. This type of reconnection has not been investigated before. Nevertheless, the results are directly relevant to observations by the Wind spacecraft of fast reconnection deep in the Earth magnetotail [9]. The second configuration was developed to be specifically relevant to numerical simulations of magnetic reconnection, allowing the magnetic field-lines to be contained inside the device. The configuration is compatible with the presence of large current sheets in the reconnection region and reconnection is observed in fast powerful bursts. These reconnection events facilitate the first experimental investigations of the physics governing the spontaneous onset of fast reconnection [12

  7. Secondary island formation in collisional and collisionless kinetic simulations of magnetic reconnection

    SciTech Connect

    Dayton, William S; Roytershteyn, Vadim; Gary, Peter; Yin, L; Albright, B J; Bowers, K J; Karimabadi, H

    2009-01-01

    The evolution of magnetic reconnection in large-scale systems often gives rise to extended current layers that are unstable to the formation of secondary magnetic islands. The role of these islands in the reconnection process and the conditions under which they form remains a subject of debate. In this work, we benchmark two different kinetic particle-in-cell codes to address the formation of secondary islands for several types of global boundary conditions. The influence on reconnection is examined for a range of conditions and collisionality limits. Although secondary islands are observed in all cases, their influence on reconnection may be different depending on the regime. In the collisional limit, the secondary islands playa key role in breaking away from the Sweet-Parker scaling and enabling faster reconnection. In the collisionless limit, their formation is one mechanism for controlling the length of the diffusion region. In both limits, the onset of secondary islands leads to a time dependent behavior in the reconnection rate. In all cases considered, the number of secondary islands increases for larger systems.

  8. The effect of guide-field and boundary conditions on collisionless magnetic reconnection in a stressed X-point collapse

    SciTech Connect

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-01-15

    Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ω{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform reveal that

  9. Fast Reconnection of Weak Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

  10. Electron acceleration in collisionless shocks and magnetic reconnection by laser-produced plasma ablation

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Spitkovksy, Anatoly; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    We perform particle-in-cell simulations of collisionless shocks and magnetic reconnection generated by ablated plasma expanding into a magnetized background plasma. We find: (1) The simulated proton radiography produces different morphology of the shock structure depending on the orientation of the magnetic field and can be used to identify a shock in the experiment. Electrons are accelerated by the whistler waves generated at oblique sites of the shock. (2) Forced collisionless magnetic reconnection is induced when the expanding plumes carry opposite magnetic polarities and interact with a background plasma. Electrons are accelerated at the reconnection X line and reveal a power-law distribution as the plasma beta is lowered, β = 0.08 . As the plasma beta is increased, β = 0.32 , the 1st order Fermi mechanism against the two plasma plumes contributes to the electron acceleration as well as the X line acceleration. Using 3-D simulations, we also explore the effect of 3-D instabilities (Weibel instability or drift-kink) on particle acceleration and magnetic field annihilation between the colliding magnetized plumes

  11. Particle heating and acceleration during collisionless reconnection in a laboratory plasma

    NASA Astrophysics Data System (ADS)

    Yoo, Jongsoo

    2013-10-01

    Particle heating and acceleration during magnetic reconnection is studied in the collisionless plasma of the Magnetic Reconnection Experiment (MRX). For ion heating and acceleration, the role of the in-plane (Hall) electric field is emphasized. An in-plane electrostatic potential profile is established by electron acceleration near the X-point. The potential profile shows a well structure along the direction normal to the reconnection current sheet that becomes deeper and wider downstream as its boundary expands along the separatrices where the in-plane electric field is strongest. The Hall electric field ballistically accelerates ions near the separatrices toward the outflow direction. After ions are accelerated, they are heated as they travel into the high-pressure downstream region due to an effect called re-magnetization. Electrons are also significantly heated during reconnection. The electron temperature sharply increases across the separatrices and peaks just outside of the electron diffusion region. Classical Ohmic dissipation based on the perpendicular Spitzer resistivity is too small to compensate for the energy loss by parallel heat conduction, indicating the presence of anomalous electron heating. Finally, a total energy inventory is calculated based on analysis of the Poynting, enthalpy, flow energy, and heat flux in the measured diffusion layer. More than half of the incoming magnetic energy is converted to particle energy during reconnection. The author thanks contributions from M. Yamada, H. Ji, J. Jara-Almonte, and C. E. Myers. This work is supported by DOE and NSF.

  12. HYBRID AND HALL-MHD SIMULATIONS OF COLLISIONLESS RECONNECTION: EFFECTS OF PLASMA PRESSURE TENSOR

    SciTech Connect

    L. YIN; D. WINSKE; ET AL

    2001-05-01

    In this study we performed two-dimensional hybrid (particle ions, massless fluid electrons) and Hall-MHD simulations of collisionless reconnection in a thin current sheet. Both calculations include the full electron pressure tensor (instead of a localized resistivity) in the generalized Ohm's law to initiate reconnection, and in both an initial perturbation to the Harris equilibrium is applied. First, electron dynamics from the two calculations are compared, and we find overall agreement between the two calculations in both the reconnection rate and the global configuration. To address the issue of how kinetic treatment for the ions affects the reconnection dynamics, we compared the fluid-ion dynamics from the Hall-MHD calculation to the particle-ion dynamics obtained from the hybrid simulation. The comparison demonstrates that off-diagonal elements of the ion pressure tensor are important in correctly modeling the ion out-of-plane momentum transport from the X point. It is that these effects can be modeled efficiently using a particle Hall-MHD simulation method in which particle ions used in a predictor/corrector to implement the ion gyro-radius corrections. We also investigate the micro- macro-scale coupling in the magnetotail dynamics by using a new integrated approach in which particle Hall-MHD calculations are embedded inside a MHD simulation. Initial results of the simulation concerning current sheet thinning and reconnection dynamics are discussed.

  13. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasma

    SciTech Connect

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2015-12-30

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law ${\\gamma }^{-\\alpha }$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.

  14. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasma

    DOE PAGES

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; ...

    2015-12-30

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power lawmore » $${\\gamma }^{-\\alpha }$$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.« less

  15. The inner structure of collisionless magnetic reconnection: The electron-frame dissipation measure and Hall fields

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha

    2011-12-15

    It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron's rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.

  16. EVIDENCE OF MAGNETIC FIELD SWITCH-OFF IN COLLISIONLESS MAGNETIC RECONNECTION

    SciTech Connect

    Innocenti, M. E.; Lapenta, G.; Goldman, M.; Newman, D.; Markidis, S. E-mail: giovanni.lapenta@wis.kuleuven.be E-mail: david.newman@colorado.edu

    2015-09-10

    The long-term evolution of large domain particle-in-cell simulations of collisionless magnetic reconnection is investigated following observations that show two possible outcomes for collisionless reconnection: toward a Petschek-like configuration or toward multiple X points. In the present simulation, a mixed scenario develops. At earlier time, plasmoids are emitted, disrupting the formation of Petschek-like structures. Later, an almost stationary monster plasmoid forms, preventing the emission of other plasmoids. A situation reminiscent of Petschek’s switch-off then ensues. Switch-off is obtained through a slow shock/rotational discontinuity compound structure. Two external slow shocks (SS) located at the separatrices reduce the in-plane tangential component of the magnetic field, but not to zero. Two transitions reminiscent of rotational discontinuities (RD) in the internal part of the exhaust then perform the final switch-off. Both the SS and the RD are characterized through analysis of their Rankine–Hugoniot jump conditions. A moderate guide field is used to suppress the development of the firehose instability in the exhaust.

  17. Evidence of Magnetic Field Switch-off in Collisionless Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Innocenti, M. E.; Goldman, M.; Newman, D.; Markidis, S.; Lapenta, G.

    2015-09-01

    The long-term evolution of large domain particle-in-cell simulations of collisionless magnetic reconnection is investigated following observations that show two possible outcomes for collisionless reconnection: toward a Petschek-like configuration or toward multiple X points. In the present simulation, a mixed scenario develops. At earlier time, plasmoids are emitted, disrupting the formation of Petschek-like structures. Later, an almost stationary monster plasmoid forms, preventing the emission of other plasmoids. A situation reminiscent of Petschek’s switch-off then ensues. Switch-off is obtained through a slow shock/rotational discontinuity compound structure. Two external slow shocks (SS) located at the separatrices reduce the in-plane tangential component of the magnetic field, but not to zero. Two transitions reminiscent of rotational discontinuities (RD) in the internal part of the exhaust then perform the final switch-off. Both the SS and the RD are characterized through analysis of their Rankine-Hugoniot jump conditions. A moderate guide field is used to suppress the development of the firehose instability in the exhaust.

  18. Particle-in-cell simulation of collisionless driven reconnection with open boundaries

    SciTech Connect

    Klimas, Alex; Zenitani, Seiji; Hesse, Michael; Kuznetsova, Maria

    2010-11-15

    First results are discussed from an ongoing study of driven collisionless reconnection using a 2(1/2)-dimensional electromagnetic particle-in-cell simulation model with open inflow and outflow boundaries. An extended electron diffusion region (EEDR) is defined as that region surrounding a reconnecting neutral line in which the out-of-plane nonideal electric field is positive. It is shown that the boundaries of this region in the directions of the outflow jets are at the positions where the electrons make the transition from unfrozen meandering motion in the current sheet to outward drifting with the magnetic field in the outflow jets; a turning length scale is defined to mark these positions. The initial width of the EEDR in the inflow directions is comparable to the electron bounce width. Later, as shoulders develop to form a two-scale structure, the EEDR width expands to the ion bounce width scale. The inner portion of the EEDR or the electron diffusion region proper remains at the electron bounce width. Two methods are introduced for predicting the reconnection electric field using the dimensions of the EEDR. These results are interpreted as further evidence that the EEDR is the region that is relevant to understanding the electron role in the neutral line vicinity.

  19. Three dimensional instabilities of an electron scale current sheet in collisionless magnetic reconnection

    SciTech Connect

    Jain, Neeraj; Büchner, Jörg

    2014-06-15

    In collisionless magnetic reconnection, electron current sheets (ECS) with thickness of the order of an electron inertial length form embedded inside ion current sheets with thickness of the order of an ion inertial length. These ECS's are susceptible to a variety of instabilities which have the potential to affect the reconnection rate and/or the structure of reconnection. We carry out a three dimensional linear eigen mode stability analysis of electron shear flow driven instabilities of an electron scale current sheet using an electron-magnetohydrodynamic plasma model. The linear growth rate of the fastest unstable mode was found to drop with the thickness of the ECS. We show how the nature of the instability depends on the thickness of the ECS. As long as the half-thickness of the ECS is close to the electron inertial length, the fastest instability is that of a translational symmetric two-dimensional (no variations along flow direction) tearing mode. For an ECS half thickness sufficiently larger or smaller than the electron inertial length, the fastest mode is not a tearing mode any more and may have finite variations along the flow direction. Therefore, the generation of plasmoids in a nonlinear evolution of ECS is likely only when the half-thickness is close to an electron inertial length.

  20. Micro-instabilities and anomalous transport effects in collisionless guide field reconnection

    NASA Astrophysics Data System (ADS)

    Munoz Sepulveda, Patricio Alejandro; Büchner, Jörg; Kilian, Patrick

    2016-07-01

    It is often the case that magnetic reconnection takes place in collisionless plasmas with a current aligned guide magnetic field, such as in the Solar corona. The general characteristics of this process have been exhaustively analyzed with theory and numerical simulations, under different approximations, since some time ago. However, some consequences and properties of the secondary instabilities arising spontaneously -other than tearing instability-, and their dependence on the guide field strength, have not been completely understood yet. For this sake, we use the results of fully kinetic 2D PIC numerical simulations of guide field reconnection. By using a mean field approach for the Generalized Ohm's law that explains the balance of the reconnected electric field, we find that some of the cross-streaming and gradient driven instabilities -in the guide field case- produce an additional anomalous transport term. The latter can be interpreted as a result of the enhanced correlated electromagnetic fluctuations, leading to a slow down of the current carriers and kinetic scale turbulence. We characterize these processes on dependence on the guide field strength, and explore the causal relation with the source of free energy driving the mentioned instabilities. Finally, we show the main consequences that a fully 3D approach have on all those phenomena in contrast to the reduced 2D description.

  1. Particle-in-Cell Simulation of Collisionless Driven Reconnection with Open Boundaries

    NASA Technical Reports Server (NTRS)

    Kimas, Alex; Hesse, Michael; Zenitani, Seiji; Kuznetsova, Maria

    2010-01-01

    First results are discussed from an ongoing study of driven collisionless reconnection using a 2 1/2-dimensional electromagnetic particle-in-cell simulation model with open inflow and outflow boundaries. An extended electron diffusion region (EEDR) is defined as that region surrounding a reconnecting neutral line in which the out-of-plane nonideal electric field is positive. It is shown that the boundaries of this region in the directions of the outflow jets are at the positions where the electrons make the transition from unfrozen meandering motion in the current sheet to outward drifting with the magnetic field in the outflow jets; a turning length scale is defined to mark these positions, The initial width of the EEDR in the inflow directions is comparable to the electron bounce width. Later. as shoulders develop to form a two-scale structure. thc EEDR width expands to the ion bounce width scale. The inner portion of the EEDR or the electron diffusion region proper remains at the electron bounce width. Two methods are introduced for predicting the reconnection electric field using the dimensions of the EEDR. These results are interpreted as further evidence that the EEDR is the region that is relevant to understanding the electron role in the neutral line vicinity.

  2. Fast magnetic reconnection with large guide fields

    DOE PAGES

    Stanier, A.; Simakov, Andrei N.; Chacón, L.; ...

    2015-01-09

    We domonstrate, using two-fluid simulations, that low-βmagnetic reconnection remains fast, regardless of the presence of fast dispersive waves, which have been previously suggested to play a critical role. In order to understand these results, a discrete model is constructed that offers scaling relationships for the reconnection rate and dissipation region (DR) thickness in terms of the upstream magnetic field and DR length. Moreover, we verify these scalings numerically and show how the DR self-adjusts to process magnetic flux at the same rate that it is supplied to a larger region where two-fluid effects become important. The rate is therefore independentmore » of the DR physics and is in good agreement with kinetic results.« less

  3. The structure of the electron outflow jet in collisionless magnetic reconnection

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji; Klimas, Alex

    2008-11-15

    Particle-in-cell simulations and analytic theory are applied to the study of the electron outflow jet in collisionless magnetic reconnection. In these jets, which have also been identified in spacecraft observations, electron flow speeds in thin layers exceed the ExB drift, suggesting that electrons are unmagnetized. In this study, we find the surprising result that the electron flow jets can be explained by a combination of ExB drifts and of diamagnetic effects through the combination of the gradients of particle pressure and of the magnetic field. In a suitably rotated coordinate system, the electron motion is readily decomposed into ExB drift and the motion to support the required current density, consistent with electron gyrotropy. This process appears to be nondissipative.

  4. The Structure of the Electron Outflow Jet in Collisionless Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Klimas, Alex

    2008-01-01

    Particle-in-cell simulations and analytic theory are applied to the study of the electron outflow jet in collisionless magnetic reconnection. In these jets, which have also been identified in spacecraft observations, electron flow speeds in thin layers exceed the ExB drift, suggesting that electrons are unmagnetized. In this study, we find the surprising result that the electron flow jets can be explained by a combination of EjcB drifts and of diamagnetic effects, through the combination of the gradients of particle pressure and of the magnetic field. In a suitably rotated coordinate system, the electron motion is readily decomposed into ExB drift and the motion to support the required current density, consistent with electron gyrotropy. This process appears to be nondissipative.

  5. Redistribution of fast ions during sawtooth reconnection

    NASA Astrophysics Data System (ADS)

    Jaulmes, F.; Westerhof, E.; de Blank, H. J.

    2014-10-01

    In a tokamak-based fusion power plant, possible scenarios may include regulated sawtooth oscillations to remove thermalized helium from the core of the plasma. During a sawtooth crash, the helium ash and other impurities trapped in the core are driven by the instability to an outer region. However, in a fusion plasma, high energy ions will represent a significant population. We thus study the behaviour of these energetic particles during a sawtooth. This paper presents the modelling of the redistribution of fast ions during a sawtooth reconnection event in a tokamak plasma. Along the lines of the model for the evolution of the flux surfaces during a sawtooth collapse described in Ya.I. Kolesnichenko and Yu.V. Yakovenko 1996 Nucl. Fusion 36 159, we have built a time-dependent electromagnetic model of a sawtooth reconnection. The trajectories of the ions are described by a complete gyro-orbit integration. The fast particles were evolved from specific initial parameters (given energy and uniform spread in pitch) or distributed initially according to a slowing-down distribution created by fusion reactions. Our modelling is used to understand the main equilibrium parameters driving the motions during the collapse and to determine the evolution of the distribution function of energetic ions when different geometries of reconnection are considered.

  6. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  7. A four-field model for collisionless reconnection: Hamiltonian structure and numerical simulations

    NASA Astrophysics Data System (ADS)

    Tassi, Emanuele; Grasso, Daniela; Pegoraro, Francesco

    2008-11-01

    A 4-field model for magnetic reconnection in collisionless plasmas is investigated both analytically and numerically. The model equations are shown to admit a non-canonical Hamiltonian formulation with four infinite families of Casimir invariants [1]. Numerical simulations show that, consistently with previously investigated models [2,3], in the absence of significant fluctuations along the toroidal direction, reconnection can lead to a macroscopic saturated state exhibiting filamentation on microsocopic scales, or to a secondary Kelvin-Helmholtz-like instability, depending on the value of a parameter measuring the compressibility of the electron fluid. The novel feature exhibited by the four-field model is the coexistence of significant filamentation with a secondary instability when magnetic and velocity perturbations along the toroidal direction are no longer negligible. An interpretation of this phenomenon in terms of Casimir invariants is given.[0pt] [1] E. Tassi et al., Plasma Phys. Contr. Fus., 50, 085014 (2008)[0pt] [2] D. Grasso et al., Phys. Rev. Lett. 86, 5051 (2001)[0pt] [3] D. Del Sarto, F. Califano and F. Pegoraro, Phys. Plasmas 12, 012317 (2005)

  8. Octupolar out-of-plane magnetic field structure generation during collisionless magnetic reconnection in a stressed X-point collapse

    SciTech Connect

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-06-15

    The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.

  9. Fast Magnetic Reconnection in the Plasmoid-Dominated Regime

    SciTech Connect

    Uzdensky, D. A.; Loureiro, N. F.; Schekochihin, A. A.

    2010-12-03

    A conceptual model of resistive magnetic reconnection via a stochastic plasmoid chain is proposed. The global reconnection rate is shown to be independent of the Lundquist number. The distribution of fluxes in the plasmoids is shown to be an inverse-square law. It is argued that there is a finite probability of emergence of abnormally large plasmoids, which can disrupt the chain (and may be responsible for observable large abrupt events in solar flares and sawtooth crashes). A criterion for the transition from the resistive magnetohydrodynamic to the collisionless regime is provided.

  10. Non-Maxwellian electron distribution functions due to self-generated turbulence in collisionless guide-field reconnection

    NASA Astrophysics Data System (ADS)

    Muñoz, P. A.; Büchner, J.

    2016-10-01

    Non-Maxwellian electron velocity space distribution functions (EVDFs) are useful signatures of plasma conditions and non-local consequences of collisionless magnetic reconnection. In the past, EVDFs were obtained mainly for antiparallel reconnection and under the influence of weak guide-fields in the direction perpendicular to the reconnection plane. EVDFs are, however, not well known, yet, for oblique (or component-) reconnection in case and in dependence on stronger guide-magnetic fields and for the exhaust (outflow) region of reconnection away from the diffusion region. In view of the multi-spacecraft Magnetospheric Multiscale Mission (MMS), we derived the non-Maxwellian EVDFs of collisionless magnetic reconnection in dependence on the guide-field strength bg from small ( b g ≈ 0 ) to very strong (bg = 8) guide-fields, taking into account the feedback of the self-generated turbulence. For this sake, we carried out 2.5D fully kinetic Particle-in-Cell simulations using the ACRONYM code. We obtained anisotropic EVDFs and electron beams propagating along the separatrices as well as in the exhaust region of reconnection. The beams are anisotropic with a higher temperature in the direction perpendicular rather than parallel to the local magnetic field. The beams propagate in the direction opposite to the background electrons and cause instabilities. We also obtained the guide-field dependence of the relative electron-beam drift speed, threshold, and properties of the resulting streaming instabilities including the strongly non-linear saturation of the self-generated plasma turbulence. This turbulence and its non-linear feedback cause non-adiabatic parallel electron acceleration. We further obtained the resulting EVDFs due to the non-linear feedback of the saturated self-generated turbulence near the separatrices and in the exhaust region of reconnection in dependence on the guide field strength. We found that the influence of the self-generated plasma turbulence

  11. Physical conditions for fast reconnection evolution in space plasmas

    SciTech Connect

    Ugai, M.

    2012-07-15

    The present paper studies physical conditions for fast reconnection mechanism involving slow shocks to evolve spontaneously in space (high-temperature) plasmas. This is fundamental for onset mechanisms of geomagnetic substorms and solar flares. It is demonstrated that reconnection evolution strongly depends on effective resistivity available in space plasmas as well as on dimensions of initial current sheet. If a current sheet is sufficiently thin, fast reconnection spontaneously evolves only when resistivity is locally enhanced around X reconnection point. This is because in space plasmas reconnection flows cause vital current concentration locally around X point. For current-driven anomalous resistivity, the resulting resistivity is automatically localized around X point, so fast reconnection mechanism can be realized. On the other hand, for uniform or Spitzer resistivity, any fast reconnection cannot grow; in particular, Spitzer resistivity is reduced around X point because of Joule heating. Regarding reconnection simulations (either fluid or particle), unless numerical resistivities are made negligibly small, they seriously mask the effects of physical resistivity, leading to a misleading conclusion that reconnection evolution is little influenced by plasma resistivity.

  12. A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Le, Ari; Daughton, William

    2013-06-01

    From spacecraft data, it is evident that electron pressure anisotropy develops in collisionless plasmas. This is in contrast to the results of theoretical investigations, which suggest this anisotropy should be limited. Common for such theoretical studies is that the effects of electron trapping are not included; simply speaking, electron trapping is a non-linear effect and is, therefore, eliminated when utilizing the standard methods for linearizing the underlying kinetic equations. Here, we review our recent work on the anisotropy that develops when retaining the effects of electron trapping. A general analytic model is derived for the electron guiding center distribution f¯(v∥,v⊥) of an expanding flux tube. The model is consistent with anisotropic distributions observed by spacecraft, and is applied as a fluid closure yielding anisotropic equations of state for the parallel and perpendicular components (relative to the local magnetic field direction) of the electron pressure. In the context of reconnection, the new closure accounts for the strong pressure anisotropy that develops in the reconnection regions. It is shown that for generic reconnection in a collisionless plasma nearly all thermal electrons are trapped, and dominate the properties of the electron fluid. A new numerical code is developed implementing the anisotropic closure within the standard two-fluid framework. The code accurately reproduces the detailed structure of the reconnection region observed in fully kinetic simulations. These results emphasize the important role of pressure anisotropy for the reconnection process. In particular, for reconnection geometries characterized by small values of the normalized upstream electron pressure, βe∞, the pressure anisotropy becomes large with p∥≫p⊥ and strong parallel electric fields develop in conjunction with this anisotropy. The parallel electric fields can be sustained over large spatial scales and, therefore, become important for

  13. A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection

    SciTech Connect

    Egedal, Jan; Le, Ari; Daughton, William

    2013-06-15

    From spacecraft data, it is evident that electron pressure anisotropy develops in collisionless plasmas. This is in contrast to the results of theoretical investigations, which suggest this anisotropy should be limited. Common for such theoretical studies is that the effects of electron trapping are not included; simply speaking, electron trapping is a non-linear effect and is, therefore, eliminated when utilizing the standard methods for linearizing the underlying kinetic equations. Here, we review our recent work on the anisotropy that develops when retaining the effects of electron trapping. A general analytic model is derived for the electron guiding center distribution f(v{sub ∥},v{sub ⊥}) of an expanding flux tube. The model is consistent with anisotropic distributions observed by spacecraft, and is applied as a fluid closure yielding anisotropic equations of state for the parallel and perpendicular components (relative to the local magnetic field direction) of the electron pressure. In the context of reconnection, the new closure accounts for the strong pressure anisotropy that develops in the reconnection regions. It is shown that for generic reconnection in a collisionless plasma nearly all thermal electrons are trapped, and dominate the properties of the electron fluid. A new numerical code is developed implementing the anisotropic closure within the standard two-fluid framework. The code accurately reproduces the detailed structure of the reconnection region observed in fully kinetic simulations. These results emphasize the important role of pressure anisotropy for the reconnection process. In particular, for reconnection geometries characterized by small values of the normalized upstream electron pressure, β{sub e∞}, the pressure anisotropy becomes large with p{sub ∥}≫p{sub ⊥} and strong parallel electric fields develop in conjunction with this anisotropy. The parallel electric fields can be sustained over large spatial scales and

  14. Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Choe, Gwangson; Lee, Junggi

    2016-04-01

    Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. It is found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  15. Particle description of the electron diffusion region in collisionless magnetic reconnection

    SciTech Connect

    Fujimoto, Keizo; Sydora, Richard D.

    2009-11-15

    The present study clarifies the dissipation mechanism of collisionless magnetic reconnection in two-dimensional system based on particle dynamics. The electrons are accelerated without thermalization in the electron diffusion region, carry out the meandering oscillation, and are ejected away from the X-line. This electron behavior not only generates the electron inertia resistivity based on the particle description, but also it can be the origin of the electron viscosity resulting in the off-diagonal pressure tensor term in the generalized Ohm's law near the X-line. We derive an analytical profile for the electron pressure tensor term and confirm that the profile is consistent with the particle-in-cell simulation. The present results demonstrate that the magnetic dissipation due to the electron viscosity in the fluid picture is equivalent to that due to the inertia resistivity in the particle description. It is also suggested that the width of the electron current sheet is on the order of the electron inertia length in the case without electron scattering and thermalization, while it is expected that the width is broadened if the electron scattering occurs in the current sheet.

  16. "Ideal" tearing and the transition to fast reconnection in the weakly collisional MHD and EMHD regimes

    NASA Astrophysics Data System (ADS)

    Del Sarto, Daniele; Pucci, Fulvia; Tenerani, Anna; Velli, Marco

    2016-03-01

    This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfvén time calculated on the macroscopic scale. For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are generalized to include the dependence on the ratio de2/L2, where de is the electron skin depth, and it is shown that there are limiting scalings which, as in the resistive case, result in reconnecting modes growing on ideal time scales. Finite Larmor radius effects are then included, and the rescaling argument at the basis of "ideal" reconnection is proposed to explain secondary fast reconnection regimes naturally appearing in numerical simulations of current sheet evolution.

  17. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    SciTech Connect

    Bhattacharjee, Amitava

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  18. Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection

    SciTech Connect

    Wang, Liang Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.

    2015-01-15

    We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.

  19. Evidence of magnetic field switch-off in Particle In Cell simulations of collisionless magnetic reconnection with guide field

    NASA Astrophysics Data System (ADS)

    Innocenti, M. E.; Goldman, M. V.; Newman, D. L.; Markidis, S.; Lapenta, G.

    2015-12-01

    The long term evolution of large domain Particle In Cell simulations of collisionless magnetic reconnection is investigated following observations that show two possible outcomes for collisionless reconnection: towards a Petschek-like configuration (Gosling 2007) or towards multiple X points (Eriksson et al. 2014). In the simulations presented here and described in [Innocenti2015*], a mixed scenario develops. At earlier time, plasmoids are emitted, disrupting the formation of Petschek-like structures. Later, an almost stationary monster plasmoid forms, preventing the emission of other plasmoids. A situation reminding of Petschek's switch-off then ensues. Switch-off is obtained through a slow shock / rotational discontinuity (SS/RD) compound structure, with the rotation discontinuity downstreamthe slow shock. Two external slow shocks located in correspondence of the separatrices reduce the in plane tangential component of the magnetic field, but not to zero. Two transitions reminding of rotational discontinuities in the internal part of the exhausts then perform the final switch-off. Both the slow shocks and the rotational discontinuities are characterized as such through the analysis of their Rankine-Hugoniot jump conditions. A moderate guide field is used to suppress the development of the firehose instability in the exhaust that prevented switch off in [Liu2012]. Compound SS/RD structures, with the RD located downstream the SS, have been observed in both the solar wind and the magnetosphere in Wind and Geotail data respectively [Whang1998, Whang2004]. Ion trajectiories across the SS/RD structure are followed and the kinetic origin of the SS/RD structure is investigated. * Innocenti, Goldman, Newman, Markidis, Lapenta, Evidence of magnetic field switch-off in collisionless magnetic reconnection, accepted in Astrophysical Journal Letters, 2015 Acknowledgements: NERSC, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of

  20. Trigger of Fast Reconnection via Collapsing Current Sheets

    NASA Astrophysics Data System (ADS)

    Tenerani, A.; Velli, M.; Rappazzo, A. F.; Pucci, F.

    2015-12-01

    It has been widely believed that reconnection is the underlying mechanism of many explosive processes observed both in astrophysical and laboratory plasmas. However, both the questions of how magnetic reconnection is triggered in high Lundquist (S) and Reynolds (R) number plasmas, and how it can then occur on fast, ideal, time-scales remain open. Indeed, it has been argued that fast reconnection rates could be achieved once kinetic scales are reached, or, alternatively, by the onset of the so-called plasmoid instability within Sweet-Parker current sheets. However, it has been shown recently that a tearing mode instability (the "ideal tearing") can grow on an ideal, i.e., S-independent, timescale once the width a of a current sheet becomes thin enough with respect to its macroscopic length L, a/L ~ S-1/3. This suggests that current sheet thinning down to such a threshold aspect ratio —much larger, for S>>1, than the Sweet-Parker one that scales as a/L ~ S-1/2— might provide the trigger for fast reconnection even within the fluid plasma framework. Here we discuss the transition to fast reconnection by studying with visco-resistive MHD simulations the onset and evolution of the tearing instability within a single collapsing current sheet. We indeed show that the transition to a fast tearing mode instability takes place when an inverse aspect ratio of the order of the threshold a/L ~ S-1/3 is reached, and that the secondary current sheets forming nonlinearly become the source of a succession of recursive tearing instabilities. The latter is reminiscent of the fractal reconnection model of flares, which we modify in the light of the "ideal tearing" scenario.

  1. Current disruption and its spreading in collision-less magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Jain, Neeraj; Buechner, Joerg; Dorfman, Seth; Ji, Hantao; Sharma, A. Surjalal; Max-Planck/Princeton CenterPlasma Physics Collaboration

    2013-10-01

    Recent magnetic reconnection experiments (MRX) [Dorfman et al., Geophys. Res. Lett. 40, 233 (2012)] have disclosed current disruption in the absence of guide field. During current disruption in MRX, current density and total out-of-reconnection-plane current drop simultaneous with a rise in out-of-reconnection-plane electric field. Here we show that current disruption is an intrinsic property of dynamic formation of X-point configuration of magnetic field in magnetic reconnection, independent of the model used for plasma description and of dimensionality (2-D or 3-D) of reconnection. An analytic expression for the current drop is derived from Ampere's equation and its predictions are verified by 2-D and 3-D electron-magnetohydrodynamic (EMHD) simulations. Three dimensional EMHD simulations show that the current disruption due to localized reconnection spreads along the direction of electron flow with a speed which depends on the wave number of the perturbation. The implications of these results for MRX and other reconnection experiments will be presented. This work was partially funded by the Max-Planck/Princeton Center for Plasma Physics.

  2. A simple, analytical model of collisionless magnetic reconnection in a pair plasma

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex

    2009-10-15

    A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region and to impart thermal energy to the plasma by means of quasiviscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative procedure. The solutions show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as combination of adiabatic and quasiviscous heating. Furthermore, the model predicts a maximum reconnection electric field of E{sup *}=0.4, normalized to the parameters at the inflow edge of the diffusion region.

  3. A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Kuznetova, Masha; Klimas, Alex

    2011-01-01

    A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region, and to impart thermal energy to the plasma by means of quasi-viscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative, procedure. The solutions show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as combination of adiabatic and quasi-viscous heating. Furthermore, the model predicts a maximum reconnection electric field of E(sup *)=0.4, normalized to the parameters at the inflow edge of the diffusion region.

  4. The kinetic scale structure of the Plasma Sheet Boundary Layer: Implications of collisionless magnetic reconnection and first MMS observations

    NASA Astrophysics Data System (ADS)

    Dorelli, J.; Gershman, D. J.; Avanov, L. A.; Pollock, C. J.; Giles, B. L.; Nakamura, R.; Chen, L. J.; Torbert, R. B.; Gliese, U.; Barrie, A. C.; Holland, M. P.; Chandler, M. O.; Coffey, V. N.; MacDonald, E.; Salo, C.; Dickson, C.; Saito, Y.; Russell, C. T.; Baumjohann, W.; Burch, J. L.

    2015-12-01

    The relationship between magnetic reconnection and the Plasma Sheet Boundary Layer (PSBL) is still an open problem in magnetospheric physics. While one can understand observed PSBL velocity distributions on the basis of a simple steady state drift-kinetic model with prescribed electric and magnetic fields (e.g., Onsager et al. [1990,1991]), such models do not incorporate the kinetic scale dynamics at the reconnection site. For example, Shay et al. [2011] have argued that the out-of-plane quadrupole magnetic field pattern at the reconnection site can be viewed as an obliquely propagating kinetic Alfvén wave with very large parallel group velocity, the implication being that the field-aligned current structure should quickly become global, though still confined to field lines connected to the ion diffusion region at the reconnection site. This raises the very interesting question: How would such a global wave structure appear in the PSBL on the kinetic scale? Here, we present some first observations of the PSBL by NASA's Magnetospheric Multiscale (MMS) mission where Fast Plasma Investigation (FPI) Burst Data (30 ms and 150 ms resolution for 3D electron and ion velocity distributions, respectively) is available during intervals where lower resolution (4.5 s) Fast Survey distributions showed evidence of connection to a remote reconnection site. This allows us to test for the first time whether the quadrupole magnetic field structure near the reconnection site -- a local structure already observed by previous spacecraft -- does indeed support a global field-aligned current pattern around the magnetic separatrix. We will also probe for the first time the electron kinetic scale sub-structure of the PSBL and compare with electron-scale features observed near the magnetic separatrix at the dayside magnetopause.

  5. Numerical evidence of undriven, fast reconnection in the solar-wind interaction with earth's magnetosphere: formation of electromagnetic coherent structures.

    PubMed

    Faganello, M; Califano, F; Pegoraro, F

    2008-09-05

    We give evidence for the first time of the onset of undriven fast, collisionless magnetic reconnection during the evolution of an initially homogeneous magnetic field advected in a sheared velocity field. We consider the interaction of the solar wind with the magnetospheric plasma at low latitude and show that reconnection takes place in the layer between adjacent vortices generated by the Kelvin-Helmholtz instability. This process generates coherent magnetic structures with a size comparable to the ion inertial scale, much smaller than the system dimensions but much larger than the electron inertial scale. These magnetic structures are further advected in the plasma in a complex pattern but remain stable over a time interval much longer than their formation time. These results can be crucial for the interpretation of satellite data showing coherent magnetic structures in the Earth's magnetosheath or the magnetotail.

  6. Secondary fast reconnecting instability in the sawtooth crash

    NASA Astrophysics Data System (ADS)

    Del Sarto, Daniele; Ottaviani, Maurizio

    2016-10-01

    We consider magnetic reconnection in thin current sheets with both resistive and electron inertia effects. By analysis of secondary instabilities we show that, when the current sheet is produced by a primary instability of the internal kink type (large Δ'), reconnection proceeds on a time scale much shorter than the primary instability characteristic time. We find that in the purely resistive regime our estimates agree with the numerical results obtained by for the internal kink instability in a cylindrical tokamak. We also find that, in the case of a sawtooth crash, non-collisional physics becomes important above a value of the Lundquist number which scales like S (R /de)12/5 , in terms of the tokamak major radius R and of the electron skin depth de. This value is commonly achieved in present day devices. As collisionality is further reduced, the characteristic rate increases, approaching Alfvenic values when the primary instability approaches the collisionless regime. All these results have been recently discussed in Ref..

  7. On the ions acceleration via collisionless magnetic reconnection in laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Cazzola, E.; Curreli, D.; Markidis, S.; Lapenta, G.

    2016-11-01

    This work presents an analysis of the ion outflow from magnetic reconnection throughout fully kinetic simulations with typical laboratory plasma values. A symmetric initial configuration for the density and magnetic field is considered across the current sheet. After analyzing the behavior of a set of nine simulations with a reduced mass ratio and with a permuted value of three initial electron temperatures and magnetic field intensity, the best ion acceleration scenario is further studied with a realistic mass ratio in terms of the ion dynamics and energy budget. Interestingly, a series of shock wave structures are observed in the outflow, resembling the shock discontinuities found in recent magnetohydrodynamic simulations. An analysis of the ion outflow at several distances from the reconnection point is presented, in light of possible laboratory applications. The analysis suggests that magnetic reconnection could be used as a tool for plasma acceleration, with applications ranging from electric propulsion to production of ion thermal beams.

  8. Particle-in-cell simulation of collisionless reconnection with open outflow boundaries

    SciTech Connect

    Klimas, Alex; Hesse, Michael; Zenitani, Seiji

    2008-08-15

    A new method for applying open boundary conditions in particle-in-cell (PIC) simulations is utilized to study magnetic reconnection. Particle distributions are assumed to have zero normal derivatives at the boundaries. Advantages and possible limitations of this method for PIC simulations are discussed. Results from a reconnection simulation study are presented. For the purpose of this investigation, a 2 (1/2)-dimensional electromagnetic PIC simulation using open conditions at the outflow boundaries and simple reflecting boundaries to the inflow regions is discussed. The electron diffusion region is defined as that region where the out-of-plane electron inertial electric field is positive indicating acceleration and flux transfer; the evolution of this region is analyzed. It is found that this region varies in the range 2.5-4 local electron inertial lengths in total width and in the range 10-15 local electron inertial lengths in total length for the mass ratio 25. The reconnection rate is investigated in terms of the aspect ratio of the electron diffusion region plus inflow and outflow measures at its boundaries. It is shown that a properly measured aspect ratio predicts the flux transfer rate, scaled to account for the decline in field strength and electron density at the inflow boundary to the electron diffusion region. It is concluded that this electron diffusion region either adjusts its aspect ratio for compatibility with the flux transfer rate that is set elsewhere, as in the Hall reconnection model, or that it is this region that controls the reconnection flux transfer rate.

  9. Fast magnetic reconnection due to anisotropic electron pressure

    SciTech Connect

    Cassak, P. A.; Baylor, R. N.; Fermo, R. L.; Beidler, M. T.; Shay, M. A.; Swisdak, M.; Drake, J. F.; Karimabadi, H.

    2015-02-15

    A new regime of fast magnetic reconnection with an out-of-plane (guide) magnetic field is reported in which the key role is played by an electron pressure anisotropy described by the Chew-Goldberger-Low gyrotropic equations of state in the generalized Ohm's law, which even dominates the Hall term. A description of the physical cause of this behavior is provided and two-dimensional fluid simulations are used to confirm the results. The electron pressure anisotropy causes the out-of-plane magnetic field to develop a quadrupole structure of opposite polarity to the Hall magnetic field and gives rise to dispersive waves. In addition to being important for understanding what causes reconnection to be fast, this mechanism should dominate in plasmas with low plasma beta and a high in-plane plasma beta with electron temperature comparable to or larger than ion temperature, so it could be relevant in the solar wind and some tokamaks.

  10. `Effective' collisions in weakly magnetized collisionless plasma: importance of Pitaevski's effect for magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev M.; Artemyev, Anton V.

    2016-02-01

    In this paper we revisit the paradigm of space science turbulent dissipation traditionally considered as myth (Coroniti, Space Sci. Rev., vol. 42, 1985, pp. 399-410). We demonstrate that due to approach introduced by Pitaevskii (Sov. J. Expl Theor. Phys., vol. 44, 1963, pp. 969-979 (in Russian)) (the effect of a finite Larmor radius on a classical collision integral) dissipation induced by effective interaction with microturbulence produces a significant effect on plasma dynamics, especially in the vicinity of the reconnection region. We estimate the multiplication factor of collision frequency in the collision integral for short wavelength perturbations. For waves propagating transverse to the background magnetic field, this factor is approximately ρekx)2 an electron gyroradius and where kx a transverse wavenumber. We consider recent spacecraft observations in the Earth's magnetotail reconnection region to the estimate possible impact of this multiplication factor. For small-scale reconnection regions this factor can significantly increase the effective collision frequency produced both by lower-hybrid drift turbulence and by kinetic Alfvén waves. We discuss the possibility that the Pitaevskii's effect may be responsible for the excitation of a resistive electron tearing mode in thin current sheets formed in the outflow region of the primary X-line.

  11. Collisionless Magnetic Reconnection as an Ion Acceleration Mechanism of Low- β Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Cazzola, Emanuele; Curreli, Davide; Lapenta, Giovanni

    2016-10-01

    In this work we present the results from a series of fully-kinetic simulations of magnetic reconnection under typical laboratory plasma conditions. The highly-efficient energy conversion obtained from this process is of great interest for applications such as future electric propulsion systems and ion beam accelerators. We analysed initial configurations in low-beta conditions with reduced mass ratio of mi = 512me at magnetic fields between 200G and 5000G and electron temperatures between 0.5 and 10eV. The initial ion density and temperature are kept uniform and equal to 1019 m-3 and 0.0215eV (room temperature) respectively. The analysis has shown that the reconnection process under these conditions can accelerate ions up to velocities as high as a significant fraction of the inflow Alfven speed. The configuration showing the best scenario is further studied with a realistic mass ratio in terms of energetics and outflow ion momentum, with the latter featured by the traditionally used specific impulse. Finally, a more detailed analysis of the reconnection outflow has revealed the formation of different interesting set of shock structures, also recently seen from MHD simulations of relativistic plasmas and certainly subject of future more careful attention. The present work has been possible thanks to the Illinois-KULeuven Faculty/PhD Candidate Exchange Program. Computational resources provided by the PRACE Tier-0 machines.

  12. How Does Collisionless Magnetic Reconnection Work in the Presence of a Guide Magnetic Field?

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2006-01-01

    The dissipation mechanism of guide field magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide-field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.

  13. New models for fast steady state magnetic reconnection

    NASA Technical Reports Server (NTRS)

    Priest, E. R.; Forbes, T. G.

    1986-01-01

    A new unified family of models for incompressible, steady-state magnetic reconnection in a finite region is presented. The models are obtained by expanding in powers of the Alfven Mach number and may be used to elucidate some of the puzzling properties of numerical experiments on reconnection which are not present in the classical models. The conditions imposed on the inflow boundary of the finite region determine which member of the family occurs. Petscheklien and Sonnerup like solutions are particular members. The Sonneruplike regime is a special case of a weak slow mode expansion in the inflow region, and it separates two classes of members with reversed currents. The Petscheklike regime is a singular case of a weak fast mode expansion, and it separates the hybrid regime from a regime of slow mode compressions. Care should be taken in deciding which type of reconnection is operating in a numerical experiment. Indeed, no experiment to date has used boundary conditions appropriate for demonstrating steady state Petschek reconnection.

  14. A Physical Relationship Between Electron-Proton Temperature Equilibration and Mach Number in Fast Collisionless Shocks

    DTIC Science & Technology

    2007-01-01

    PHYSICAL RELATIONSHIP BETWEEN ELECTRON-PROTON TEMPERATURE EQUILIBRATION AND MACH NUMBER IN FAST COLLISIONLESS SHOCKS Parviz Ghavamian,1 J. Martin Laming,2...neutrals have had little time to equilibrate with electrons and 1 Department of Physics and Astronomy, Johns Hopkins University, Balti- more, MD; parviz

  15. Effects of a Guide Field on the Larmor Electric Field in Collisionless Asymmetric Reconnection

    NASA Astrophysics Data System (ADS)

    Ruffolo, D. J.; Malakit, K.; Ek-In, S.; Shay, M. A.; Cassak, P.

    2014-12-01

    Recently it has been pointed out that when the inflow conditions of magnetic reconnection are asymmetric, a new in-plane electric field can arise from the physics of finite ion Larmor radius, called the Larmor electric field. It is located next to the Hall electric field structure, making it a potential indicator of proximity to the diffusion region. However, the properties of the Larmor electric field have not previously been explored for the case of a nonzero guide field, which could occur for many reconnection sites, including the day-side magnetopause. In this study, we therefore further explore the properties of the Larmor electric field by adding guide fields with different strengths into our simulations. The results show that the width of the Larmor electric field structure will be smaller, but the strength of the field will be stronger as the guide field increases, consistent with what we expect from the existing theory. Moreover, we show that in the region where the Larmor electric field occurs, there also appears an electron anisotropy. The widths of the electron anisotropy and Larmor electric field structures are found to be similar, suggesting that observing the combination of these two signatures provides a useful indicator of proximity to a reconnection site. Partially supported by a Mahidol University Postdoctoral Fellowship and the Thailand Research Fund. This research was supported by the postdoctoral research sponsorship of Mahidol University (K. M.), the Thailand Research Fund (D. R.), NSF Grants No. ATM-0645271 (M. A. S.) and No. AGS-0953463 (P.A. C.), NASA Grants No. NNX08A083G—MMS IDS, No. NNX11AD69G, and No. NNX13AD72G(M. A. S.).

  16. Finite Larmor radius effects in the nonlinear dynamics of collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Del Sarto, D.; Marchetto, C.; Pegoraro, F.; Califano, F.

    2011-03-01

    We provide numerical evidence of the role of finite Larmor radius effects in the nonlinear dynamics of magnetic field line reconnection in high-temperature, strong guide field plasmas in a slab configuration, in the large Δ' regime. Both ion and electron temperature effects introduce internal energy variations related to mechanical compression terms in the energy balance, thus contributing to regularize the gradients of the ion density with respect to the cold regimes. For values of the Larmor radii that are not asymptotically small, the two temperature effects are no longer interchangeable, in contrast to what is expected from linear theory, and the differences are measurable in the numerical growth rates and in the nonlinear evolution of the density layers. We interpret such differences in terms of the change, due to ion temperature effects, of the Lagrangian advection of the 'plasma invariants' that are encountered in the cold-ion, warm-electron regime. The different roles of the ion and ion-sound Larmor radii in the reconnection dynamics near the X- and O-points are evidenced by means of a local quadratic expansion of the fields.

  17. Characteristics of a current sheet shear mode in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Fujimoto, Keizo

    2016-05-01

    The current study shows the characteristics of the kink-type electromagnetic mode excited in the thin current layer formed around the x-line during the quasi-steady phase of magnetic reconnection. The linear wave analyses are carried out for the realistic current sheet profile which differs significantly from the Harris current sheet. It is found that the peak growth rate is very sensitive to the current sheet width even though the relative drift velocity at the center of the current sheet is fixed. This indicates that the mode is excited by the velocity shear rather than the relative drift velocity. Thus, the mode is termed here a current sheet shear mode. It is also shown that the wavenumber ky has a clear mass ratio dependency as ky λi ∝ (mi /me )1/4, implying the coupling of the ion and electron dynamics, where λi is the ion inertia length.

  18. Models of coronal heating, turbulence and fast reconnection

    NASA Astrophysics Data System (ADS)

    Velli, M.; Pucci, F.; Rappazzo, F.; Tenerani, A.

    2015-04-01

    Coronal heating is at the origin of the EUV and X-ray emission and mass loss from the sun and many other stars. While different scenarios have been proposed to explain the heating of magnetically confined and open regions of the corona, they must all rely on the transfer, storage and dissipation of the abundant energy present in photospheric motions, which, coupled to magnetic fields, give rise to the complex phenomenology seen at the chromosphere and transition region (i.e. spicules, jets, 'tornadoes'). Here we discuss models and numerical simulations which rely on magnetic fields and electric currents both for energy transfer and for storage in the corona. We will revisit the sources and frequency spectrum of kinetic and electromagnetic energies, the role of boundary conditions, and the routes to small scales required for effective dissipation. Because reconnection in current sheets has been, and still is, one of the most important processes for coronal heating, we will also discuss recent aspects concerning the triggering of reconnection instabilities and the transition to fast reconnection.

  19. Models of coronal heating, turbulence and fast reconnection.

    PubMed

    Velli, M; Pucci, F; Rappazzo, F; Tenerani, A

    2015-05-28

    Coronal heating is at the origin of the EUV and X-ray emission and mass loss from the sun and many other stars. While different scenarios have been proposed to explain the heating of magnetically confined and open regions of the corona, they must all rely on the transfer, storage and dissipation of the abundant energy present in photospheric motions, which, coupled to magnetic fields, give rise to the complex phenomenology seen at the chromosphere and transition region (i.e. spicules, jets, 'tornadoes'). Here we discuss models and numerical simulations which rely on magnetic fields and electric currents both for energy transfer and for storage in the corona. We will revisit the sources and frequency spectrum of kinetic and electromagnetic energies, the role of boundary conditions, and the routes to small scales required for effective dissipation. Because reconnection in current sheets has been, and still is, one of the most important processes for coronal heating, we will also discuss recent aspects concerning the triggering of reconnection instabilities and the transition to fast reconnection.

  20. Global Extended MHD Studies of Fast Magnetic Reconnection

    SciTech Connect

    Breslau J.A.; Jardin, S.C.

    2002-09-18

    Recent experimental and theoretical results have led to two lines of thought regarding the physical processes underlying fast magnetic reconnection. One is based on the traditional Sweet-Parker model but replaces the Spitzer resistivity with an enhanced resistivity caused by electron scattering by ion acoustic turbulence. The other includes the finite gyroradius effects that enter Ohm's law through the Hall and electron pressure gradient terms. A 2-D numerical study, conducted with a new implicit parallel two-fluid code, has helped to clarify the similarities and differences in predictions between these two models and provides some insight into their respective ranges of validity.

  1. Properties of the first-order Fermi acceleration in fast magnetic reconnection driven by turbulence in collisional magnetohydrodynamical flows

    NASA Astrophysics Data System (ADS)

    del Valle, Maria V.; de Gouveia Dal Pino, E. M.; Kowal, G.

    2016-12-01

    Fast magnetic reconnection can occur in different astrophysical sources, producing flare-like emission and particle acceleration. Currently, this process is being studied as an efficient mechanism to accelerate particles via a first-order Fermi process. In this paper, we analyse the acceleration rate and the energy distribution of test particles injected into three-dimensional magnetohydrodynamical (MHD) domains with large-scale current sheets where reconnection is made fast by the presence of turbulence. We study the dependence of the particle acceleration time with the relevant parameters of the embedded turbulence: the Alfvén speed VA, the injection power Pinj and scale kinj (kinj = 1/linj). We find that the acceleration time follows a power-law dependence with the particle kinetic energy: tacc ∝ Eα, with 0.2 < α < 0.6 for a vast range of values of c/VA ˜ 20-1000. The acceleration time decreases with the Alfvén speed (and therefore with the reconnection velocity) as expected, having an approximate dependence tacc ∝ (VA/c)-κ, with κ ˜ 2.1-2.4 for particles reaching kinetic energies between 1 and 100 mpc2, respectively. Furthermore, we find that the acceleration time is only weakly dependent on the Pinj and linj parameters of the turbulence. The particle spectrum develops a high-energy tail, which can be fitted by a hard power law already in the early times of the acceleration, consistent with the results of kinetic studies of particle acceleration by magnetic reconnection in collisionless plasmas.

  2. Turbulent Reconnection in the Magnetic Reconnection Experiment (MRX)

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Ji, H.; Yamada, M.; Oz, E.; Yoo, J.; Daughton, W.; Roytershteyn, V.

    2009-11-01

    One of the key open questions in Magnetic Reconnection is the nature of the mechanism that governs the reconnection rate in real astrophysical and laboratory systems. For collisonless plasmas, the Hall effect removes an important bottleneck to fast reconnection as the heavier ions exit the reconnection layer over a broader region [1]. However, the Hall term cannot balance the reconnection electric field at the layer center, and the 2-D, collisionless expression for the electric field due to particle dynamics [2] has been shown to be insufficient in the Magnetic Reconnection Experiment (MRX) [1,3]. Turbulent 3-D effects such as lower hybrid frequency range fluctuations [4] may play an important role in fast reconnection in MRX. These electromagnetic fluctuations tend to be associated with high local currents and a rapid local reconnection rate. The precise relation of these fluctuations and associated 3-D asymmetries to fast reconnection is a topic of active investigations; the most up to date results will be discussed. This work was supported by NDSEG, DOE, NASA, and NSF.[4pt] [1] Y. Ren, et al., Phys. Plasmas 15, 082113 (2008). [2] M. Hesse, et al., Phys. Plasmas, 6:1781 (1999). [3] S. Dorfman, et al., Phys. Plasmas 15, 102107 (2008). [4] H. Ji, et al., Phys.Rev.Lett. 92 (2004) 115001.

  3. PARTICLE ACCELERATION DURING MAGNETOROTATIONAL INSTABILITY IN A COLLISIONLESS ACCRETION DISK

    SciTech Connect

    Hoshino, Masahiro

    2013-08-20

    Particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk was investigated by using a particle-in-cell simulation. We discuss the important role that magnetic reconnection plays not only on the saturation of MRI but also on the relativistic particle generation. The plasma pressure anisotropy of p > p{sub ||} induced by the action of MRI dynamo leads to rapid growth in magnetic reconnection, resulting in the fast generation of nonthermal particles with a hard power-law spectrum. This efficient particle acceleration mechanism involved in a collisionless accretion disk may be a possible model to explain the origin of high-energy particles observed around massive black holes.

  4. Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited

    NASA Astrophysics Data System (ADS)

    Del Zanna, L.; Papini, E.; Landi, S.; Bugli, M.; Bucciantini, N.

    2016-08-01

    Fast reconnection operating in magnetically dominated plasmas is often invoked in models for magnetar giant flares, for magnetic dissipation in pulsar winds, or to explain the gamma-ray flares observed in the Crab nebula; hence, its investigation is of paramount importance in high-energy astrophysics. Here we study, by means of two-dimensional numerical simulations, the linear phase and the subsequent non-linear evolution of the tearing instability within the framework of relativistic resistive magnetohydrodynamics (MHD), as appropriate in situations where the Alfvén velocity approaches the speed of light. It is found that the linear phase of the instability closely matches the analysis in classical MHD, where the growth rate scales with the Lundquist number S as S-1/2, with the only exception of an enhanced inertial term due to the thermal and magnetic energy contributions. In addition, when thin current sheets of inverse aspect ratio scaling as S-1/3 are considered, the so-called ideal tearing regime is retrieved, with modes growing independently of S and extremely fast, on only a few light crossing times of the sheet length. The overall growth of fluctuations is seen to solely depend on the value of the background Alfvén velocity. In the fully non-linear stage, we observe an inverse cascade towards the fundamental mode, with Petschek-type supersonic jets propagating at the external Alfvén speed from the X-point, and a fast reconnection rate at the predicted value {R}˜ (ln S)^{-1}.

  5. Three-dimensional fast magnetic reconnection driven by relativistic ultraintense femtosecond lasers.

    PubMed

    Ping, Y L; Zhong, J Y; Sheng, Z M; Wang, X G; Liu, B; Li, Y T; Yan, X Q; He, X T; Zhang, J; Zhao, G

    2014-03-01

    Three-dimensional fast magnetic reconnection driven by two ultraintense femtosecond laser pulses is investigated by relativistic particle-in-cell simulation, where the two paralleled incident laser beams are shot into a near-critical plasma layer to form a magnetic reconnection configuration in self-generated magnetic fields. A reconnection X point and out-of-plane quadrupole field structures associated with magnetic reconnection are formed. The reconnection rate is found to be faster than that found in previous two-dimensional Hall magnetohydrodynamic simulations and electrostatic turbulence contribution to the reconnection electric field plays an essential role. Both in-plane and out-of-plane electron and ion accelerations up to a few MeV due to the magnetic reconnection process are also obtained.

  6. Measurements of Fast Magnetic Reconnection Driven by Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Raymond, Anthony; McKelvey, Andrew; Zulick, Calvin; Chuanfei, Dong; Maksimchuk, Anatoly; Thomas, Alexander; Yanovsky, Victor; Krushelnick, Karl; Willingale, Louise; Chykov, Vladimir; Nilson, Phil; Chen, Hui; Williams, Gerald; Bhattacharjee, Amitava; Fox, Will

    2015-11-01

    Magnetic reconnection is a process whereby opposing magnetic field lines are forced together and topologically rearrange, resulting in lower magnetic potential energy and in corresponding plasma heating. Such occurrences are ubiquitous in astrophysics as well as appearing in laboratory plasmas such as in ICF in the form of instabilities. We report measurements in the domain of ultra-fast, ultra-intense lasers, in which the mechanism responsible follows from radially expanding surface electrons with v ~ c . Results are compared from two laser facilities (HERCULES and Omega EP), both of which produced two relativistic intensity pulses focused within close proximity onto copper foils. A spherical X-ray crystal was used to image the Kα radiation induced by electron currents, revealing the midplane diffusion region wherein electrons are accelerated into the target by the electric field generated during reconnection. The characteristics of this signal are studied as a function of the focal spot separation, laser energy, and pulse duration. The results are then compared to 3D PIC simulations.

  7. Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks

    SciTech Connect

    Shibayama, Takuya Nakabou, Takashi; Kusano, Kanya; Miyoshi, Takahiro; Vekstein, Grigory

    2015-10-15

    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.

  8. Propagation and dispersion of whistler waves generated by fast reconnection onset

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra

    2013-02-01

    The role of whistler mode during the onset of magnetic reconnection (MR) has been widely suggested, but the manifestations of its highly dispersive and anisotropic propagation properties in reconnection events remain largely unclear. Comparing results from a recently developed theoretical model for reconnection in terms of whistler's dispersive behavior with those reported from laboratory experiments on fast spontaneous magnetic reconnection, we demonstrate that the onset of fast reconnection in electron current layers (ECLs) emits whistler wave packets. The time scale of the explosively fast reconnection events are inversely related to the whistler mode frequencies at the lower end of the whistler frequency band. The wave packets in this frequency band have a characteristic angular dispersion, which marks the initial opening of the reconnection exhaust angle. The multidimensional propagation of the whistler for the reconnection with a strong guide magnetic field is investigated, showing that the measured propagation velocities of the reconnection electric field along the guide field in the Versatile Toroidal Facility at MIT quantitatively compare with the group velocities of the whistler wave packets. The whistler mode dispersive properties measured in laboratory experiments without a guide magnetic field in the magnetic reconnection experiments at Princeton also compare well with the theoretically predicted dispersion of the wave packets depending on the ECL width. Fast normalized reconnection rates extending to ˜0.35 at the MR onset in thin ECLs imply whistler wave propagation away from the onset location. We also present evidences for the whistler wave packets being emitted from reconnection diffusion region as seen in simulations and satellite observations.

  9. Fast magnetic reconnection in low-density electron-positron plasmas

    SciTech Connect

    Bessho, Naoki; Bhattacharjee, A.

    2010-10-15

    Two-dimensional particle-in-cell simulations have been performed to study magnetic reconnection in low-density electron-positron plasmas without a guide magnetic field. Impulsive reconnection rates become of the order of unity when the background density is much smaller than 10% of the density in the initial current layer. It is demonstrated that the outflow speed is less than the upstream Alfven speed, and that the time derivative of the density must be taken into account in the definition of the reconnection rate. The reconnection electric fields in the low-density regime become much larger than the ones in the high-density regime, and it is possible to accelerate the particles to high energies more efficiently. The inertial term in the generalized Ohm's law is the most dominant term that supports a large reconnection electric field. An effective collisionless resistivity is produced and tracks the extension of the diffusion region in the late stage of the reconnection dynamics, and significant broadening of the diffusion region is observed. Because of the broadening of the diffusion region, no secondary islands, which have been considered to play a role to limit the diffusion region, are generated during the extension of the diffusion region in the outflow direction.

  10. FAST MAGNETIC FIELD AMPLIFICATION IN THE EARLY UNIVERSE: GROWTH OF COLLISIONLESS PLASMA INSTABILITIES IN TURBULENT MEDIA

    SciTech Connect

    Falceta-Gonçalves, D.; Kowal, G.

    2015-07-20

    In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.

  11. Direct evidence for kinetic effects associated with solar wind reconnection.

    PubMed

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-28

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed.

  12. Large-amplitude hydromagnetic waves in collisionless relativistic plasma - Exact solution for the fast-mode magnetoacoustic wave

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1983-01-01

    An exact nonlinear solution is found to the relativistic kinetic and electrodynamic equations (in their hydromagnetic limit) that describes the large-amplitude fast-mode magnetoacoustic wave propagating normal to the magnetic field in a collisionless, previously uniform plasma. It is pointed out that a wave of this kind will be generated by transverse compression of any collisionless plasma. The solution is in essence independent of the detailed form of the particle momentum distribution functions. The solution is obtained, in part, through the method of characteristics; the wave exhibits the familiar properties of steepening and shock formation. A detailed analysis is given of the ultrarelativistic limit of this wave.

  13. The evolution of the ion diffusion region during collisionless magnetic reconnection in a force-free current sheet

    SciTech Connect

    Zhou, Fushun; Huang, Can Lu, Quanming; Wang, Shui; Xie, Jinlin

    2015-09-15

    Two-dimensional particle-in-cell simulation is performed to investigate magnetic reconnection in a force-free current sheet. The results show that the evolution of the ion diffusion region has two different phases. In the first phase, the electrons flow toward the X line along one pair of separatrices and away from the X line along the other pair of separatrices. Therefore, in the ion diffusion region, a distorted quadrupole structure of the out-of-plane magnetic field is formed, which is similar to that of a typical guide field reconnection in the Harris current sheet. In the second phase, the electrons move toward the X line along the separatrices and then flow away from the X line at the inner side of the separatrices. In the ion diffusion region, the out-of-plane magnetic field exhibits a characteristic quadrupole pattern with a good symmetry, which is similar to that of antiparallel reconnection in the Harris current sheet.

  14. Fast gated imaging of the collisionless interaction of a laser-produced and magnetized ambient plasma

    NASA Astrophysics Data System (ADS)

    Heuer, P. V.; Schaeffer, D. B.; Knall, E. N.; Constantin, C. G.; Hofer, L. R.; Vincena, S.; Tripathi, S.; Niemann, C.

    2017-03-01

    The collisionless interaction between a laser-produced carbon plasma (LPP) and an ambient hydrogen plasma in a background magnetic field was studied in a high shot rate experiment which allowed large planar data sets to be collected. Plasma fluorescence was imaged with a fast-gated camera with and without carbon line filters. The resulting images were compared to high-resolution two dimensional (2D) data planes of measured magnetic field and electric potential. Several features in the fluorescence images coincide with features in the field data. Relative intensity was used to determine the initial angular velocity distribution of the LPP and the growth rate of instabilities. These observations may be applied to understand fluorescence images from similar experiments where 2D planes of field data are not available.

  15. Experimental Verification of the Role of Electron Pressure in Fast Magnetic Reconnection with a Guide Field.

    PubMed

    Fox, W; Sciortino, F; V Stechow, A; Jara-Almonte, J; Yoo, J; Ji, H; Yamada, M

    2017-03-24

    We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. These results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models of the importance of electron pressure gradients for obtaining fast magnetic reconnection.

  16. Experimental Verification of the Role of Electron Pressure in Fast Magnetic Reconnection with a Guide Field

    NASA Astrophysics Data System (ADS)

    Fox, W.; Sciortino, F.; Stechow, A. V.; Jara-Almonte, J.; Yoo, J.; Ji, H.; Yamada, M.

    2017-03-01

    We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. These results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models of the importance of electron pressure gradients for obtaining fast magnetic reconnection.

  17. Magnetic Reconnection: studies of collisionless momentum balance near an X-line with a guide magnetic field

    NASA Astrophysics Data System (ADS)

    Fox, William; Egedal, J.; Porkolab, M.; Plasma Science, Mit; Center, Fusion

    2004-11-01

    A long-standing problem in reconnection research is what provides balance for the reconnecting electric field along an X-line. Two different types of theories can account for momentum balance: turbulence theories invoke unstable waves which provide a non-linear force on the particle species, and laminar models invoke terms in the momentum equation which are typically subdominant, such as electron inertia. For a laminar theory with a strong guide field, we present a study of all these tems, and a kinetic study where we have relaxed the condition that the X-line must be a stagnation point of the reconnection plasma flow, i.e. we construct solutions with plasma flow across, not just into and out of, the X-line. We present experimental evidence from the VTF open cusp configuration that the X-line is indeed not a stagnation point, and discuss consequences for momentum balance. Second, we present the first measurements of plasma turbulence in the new VTF closed configuration and discuss their relevance for momentum balance. This work was funded by an Oak Ridge Fusion Energy Sciences Fellowship, and by NSF/DoE Award DE-FG02-03ER54712

  18. Magnetic field reconnection

    NASA Astrophysics Data System (ADS)

    Axford, W. I.

    The fundamental principles of particle acceleration by magnetic reconnection in cosmic plasmas are reviewed. The history of reconnection models is traced, and consideration is given to the Kelvin-Helmholtz theorem, the frozen-field theorem, the application of the Kelvin-Helmholtz theorem to a collisionless plasma, solutions to specific reconnection problems, and configurational instability. Diagrams and graphs are provided, and the objections raised by critics of the reconnection theory and/or its astrophysical applications are discussed.

  19. On the value of the reconnection rate

    NASA Astrophysics Data System (ADS)

    Comisso, L.; Bhattacharjee, A.

    2016-12-01

    Numerical simulations have consistently shown that the reconnection rate in certain collisionless regimes can be fast, of the order of ABu$ , where A$ and u$ are the Alfvén speed and the reconnecting magnetic field upstream of the ion diffusion region. This particular value has been reported in myriad numerical simulations under disparate conditions. However, despite decades of research, the reasons underpinning this specific value remain mysterious. Here, we present an overview of this problem and discuss the conditions under which the `0.1 value' is attained. Furthermore, we explain why this problem should be interpreted in terms of the ion diffusion region length.

  20. ON THE ROLE OF FAST MAGNETIC RECONNECTION IN ACCRETING BLACK HOLE SOURCES

    SciTech Connect

    Singh, C. B.; De Gouveia Dal Pino, E. M.; Kadowaki, L. H. S. E-mail: dalpino@iag.usp.br

    2015-01-30

    We attempt to explain the observed radio and gamma-ray emission produced in the surroundings of black holes by employing a magnetically dominated accretion flow model and fast magnetic reconnection triggered by turbulence. In earlier work, a standard disk model was used and we refine the model by focusing on the sub-Eddington regime to address the fundamental plane of black hole activity. The results do not change substantially with regard to previous work, ensuring that the details of accretion physics are not relevant in the magnetic reconnection process occurring in the corona. Rather, our work puts fast magnetic reconnection events as a powerful mechanism operating in the core region near the jet base of black hole sources on more solid ground. For microquasars and low-luminosity active galactic nuclei, the observed correlation between radio emission and the mass of the sources can be explained by this process. The corresponding gamma-ray emission also seems to be produced in the same core region. On the other hand, emission from blazars and gamma-ray bursts cannot be correlated to core emission based on fast reconnection.

  1. Reconnection-driven plasmoids in blazars: fast flares on a slow envelope

    NASA Astrophysics Data System (ADS)

    Giannios, Dimitrios

    2013-05-01

    TeV flares of a duration of ˜10 min have been observed in several blazars. The fast flaring requires compact regions in the jet that boost their emission towards the observer at an extreme Doppler factor of δem ≳ 50. For ˜100 GeV photons to avoid annihilation in the broad-line region of PKS 1222+216, the flares must come from large (pc) scales, challenging most models proposed to explain them. Here I elaborate on the magnetic reconnection minijet model for the blazar flaring, focusing on the inherently time-dependent aspects of the process of magnetic reconnection. I argue that, for the physical conditions prevailing in blazar jets, the reconnection layer fragments, leading to the formation a large number of plasmoids. Occasionally, a plasmoid grows to become a large, `monster' plasmoid. I show that radiation emitted from the reconnection event can account for the observed `envelope' of day-long blazar activity, while radiation from monster plasmoids can power the fastest TeV flares. The model is applied to several blazars with observed fast flaring. The inferred distance of the dissipation zone from the black hole and the typical size of the reconnection regions are Rdiss ˜ 0.3-1 pc and l' ≲ 1016 cm, respectively. The required magnetization of the jet at this distance is modest: σ ˜ a few. Such distance Rdiss and reconnection size l' are expected if the jet contains field structures with a size of the order of the black hole horizon.

  2. Modeling of traveling compression regions in the Earth's magnetotail by the spontaneous fast reconnection model

    SciTech Connect

    Ugai, M.; Zheng, L.

    2006-03-15

    The spontaneous fast reconnection model is applied to the traveling compression regions (TCRs) observed in the Earth's magnetotail lobe region in association with substorms. For this purpose, virtual satellites are located at spatial points in the (low-{beta}) magnetic field region in the three-dimenisonal simulation domain, so that each satellite directly observes the temporal variations of magnetic fields, obtained from simulations, in accordance with the growth and proceeding of the fast reconnection mechanism. If the virtual satellite is located ahead of the initial plasmoid formation, it observes a pulse-like field compression with the compression rate of more than 10% as well as the bipolar structure of the magnetic field component from northward to southward tilting, when the plasmoid center passes through the satellite location. On the other hand, if it is located behind the plasmoid formation, it observes the unipolar structure of the southward field component. The simulation results are shown to be, both quantitatively and qualitatively, in good agreement with the actual satellite observations. It is demonstrated that the TCR event is the fast reconnection mechanism itself that is seen in the ambient (low-{beta}) magnetic field (magnetotail lobe) region.

  3. Impulsive magnetic pulsations and electrojets in the loop footpoint driven by the fast reconnection jet

    SciTech Connect

    Ugai, M.

    2009-11-15

    It is well known that magnetic pulsations of long periods impulsively occur in accordance with the sudden onset of geomagnetic substorms and drastic enhancement of electrojets in the ionosphere. On the basis of the spontaneous fast reconnection model, the present paper examines the physical mechanism by which both magnetic pulsations and strong electrojets are impulsively driven by the fast (Alfvenic) reconnection jet. When a large-scale plasmoid [or traveling compression region (TCR)], directly caused by the fast reconnection jet, collides with the magnetic loop footpoint, strong electrojets are impulsively driven in a finite extent in the loop footpoint in accordance with the evolution of the current wedge and the generator current circuit. Simultaneously, magnetohydrodynamic (Alfven) waves, accompanied by the TCR, are reflected from the electrojet layer, leading to impulsive magnetic pulsations ahead of the loop footpoint because of the interaction (or resonance) between the reflected waves and the waves traveling toward the footpoint. The pulsations propagate outward in all directions from the source region of the wave reflection, and the pulsation periods are typically estimated to be of several tens of seconds.

  4. Spontaneous and chaotic fast reconnection in three dimensional current-sheets (Invited)

    NASA Astrophysics Data System (ADS)

    Bettarini, L.; Lapenta, G.

    2010-12-01

    Numerical experiments and analytical studies suggested that within the pure resistive magnetohydrodynamics framework it is not possible to have a magnetic field-line reconnecting dynamics that spontaneously evolves from a slow, resistive reconnection regime to a fast, high-power phase. The results presented here are the first able to show this transition in fully three dimensional volume-filling regions of macroscopic systems. It is provided a complete picture of the reconnecting dynamics of a current-sheet initially set in laminar conditions, which are representative of many laboratory and astrophysical plasmas. We show how the conversion of magnetic field energy via magnetic reconnection can progress in a fast, fully three-dimensional, volume-filling regime characterized by a chaotic evolution of the system. The process does not require any pre-existing turbulence seed which often is not observed in the host systems prior to the onset of the energy conversion. The two- and three-dimensional simulations presented here have an unprecedented low level of numerical diffusion that usually determines the dissipation of energy sources that otherwise can drive the instabilities sustaining the transition to the fast energy conversion process. Even though pre-existing two-dimensional simulation studies presented some signs of this transition, yet their limited dimensionality prevented them to correctly and completely describe the fully developed volume-filling energy conversion process. In fact this non-steady dynamics critically depends on the interplay of perturbations developing along the magnetic field lines and across them, a process possible only in three-dimensions. Examples and applications to astrophysical and solar plasmas are considered.

  5. PATTERNS OF X-RAY, CHROMOSPHERIC, AND RADIO EMISSION IN LOW-MASS STARS: FAST AND SLOW MAGNETIC RECONNECTION

    SciTech Connect

    Mullan, D. J.

    2010-10-01

    Magnetic reconnection events in the atmospheres of low-mass dwarf stars can be classified as either slow or fast, depending on whether ohmic diffusion or Hall currents dominate in the reconnection process. We suggest that the separation of reconnection into slow and fast categories can help to explain some systematics of low-mass dwarfs as regards their emissions in X-rays, H{alpha}, and radio. On the one hand, in the warmer dwarfs (fast reconnection is permitted, and this can explain the occurrence of flares and 'quiescent' coronal heating. On the other hand, the fact that the coolest dwarfs (>M7) are inefficient emitters in H{alpha} and X-rays but strong emitters in radio, may be understood in the context that only slow reconnection is permitted to occur in those stars, as a result of high electrical resistivity. However, even though only slow reconnection is permitted in the latter stars, the speed of the outflow jets from reconnection sites can serve as efficient sources of radio emission as a result of the electron cyclotron maser instability.

  6. Why does Steady-State Magnetic Reconnection have a Maximum Local Rate of Order 0.1?

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Hsin; Hesse, M.; Guo, F.; Daughton, W.; Li, H.; Cassak, P. A.; Shay, M. A.

    2017-02-01

    Simulations suggest collisionless steady-state magnetic reconnection of Harris-type current sheets proceeds with a rate of order 0.1, independent of dissipation mechanism. We argue this long-standing puzzle is a result of constraints at the magnetohydrodynamic (MHD) scale. We predict the reconnection rate as a function of the opening angle made by the upstream magnetic fields, finding a maximum reconnection rate close to 0.2. The predictions compare favorably to particle-in-cell simulations of relativistic electron-positron and nonrelativistic electron-proton reconnection. The fact that simulated reconnection rates are close to the predicted maximum suggests reconnection proceeds near the most efficient state allowed at the MHD scale. The rate near the maximum is relatively insensitive to the opening angle, potentially explaining why reconnection has a similar fast rate in differing models.

  7. FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY

    SciTech Connect

    Ni, Lei; Kliem, Bernhard; Lin, Jun; Wu, Ning

    2015-01-20

    Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼10{sup 6}-10{sup 7} in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s{sup –1}. Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 10{sup 4} K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.

  8. Fast Magnetic Reconnection and Particle Acceleration in Relativistic Low-density Electron-Positron Plasmas without Guide Field

    NASA Astrophysics Data System (ADS)

    Bessho, Naoki; Bhattacharjee, A.

    2012-05-01

    Magnetic reconnection and particle acceleration in relativistic Harris sheets in low-density electron-positron plasmas with no guide field have been studied by means of two-dimensional particle-in-cell simulations. Reconnection rates are of the order of one when the background density in a Harris sheet is of the order of 1% of the density in the current sheet, which is consistent with previous results in the non-relativistic regime. It has been demonstrated that the increase of the Lorentz factors of accelerated particles significantly enhances the collisionless resistivity needed to sustain a large reconnection electric field. It is shown analytically and numerically that the energy spectrum of accelerated particles near the X-line is the product of a power law and an exponential function of energy, γ-1/4exp (- aγ1/2), where γ is the Lorentz factor and a is a constant. However, in the low-density regime, while the most energetic particles are produced near X-lines, many more particles are energized within magnetic islands. Particles are energized in contracting islands by multiple reflection, but the mechanism is different from Fermi acceleration in magnetic islands for magnetized particles in the presence of a guide field. In magnetic islands, strong core fields are generated and plasma beta values are reduced. As a consequence, the fire-hose instability condition is not satisfied in most of the island region, and island contraction and particle acceleration can continue. In island coalescence, reconnection between two islands can accelerate some particles, however, many particles are decelerated and cooled, which is contrary to what has been discussed in the literature on particle acceleration due to reconnection in non-relativistic hydrogen plasmas.

  9. Experimental Study of Lower-hybrid Drift Turbulence in a Reconnecting Current Sheet

    SciTech Connect

    Carter, T. A.; Yamada, M.; Ji, H.; Kulsrud, R. M.; Trintchouck, F.

    2002-06-18

    The role of turbulence in the process of magnetic reconnection has been the subject of a great deal of study and debate in the theoretical literature. At issue in this debate is whether turbulence is essential for fast magnetic reconnection to occur in collisionless current sheets. Some theories claim it is necessary in order to provide anomalous resistivity, while others present a laminar fast reconnection mechanism based on the Hall term in the generalized Ohm's law. In this work, a thorough study of electrostatic potential fluctuations in the current sheet of the Magnetic Reconnection Experiment (MRX) [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)] was performed in order to ascertain the importance of turbulence in a laboratory reconnection experiment. Using amplified floating Langmuir probes, broadband fluctuations in the lower hybrid frequency range (fLH approximately 5-15 MHz) were measured which arise with the formation of the current sheet in MRX. The frequency spectrum, spatial amplitude profile, and spatial correlation characteristics of the measured turbulence were examined carefully, finding consistency with theories of the lower-hybrid drift instability (LHDI). The LHDI and its role in magnetic reconnection has been studied theoretically for decades, but this work represents the first detection and detailed study of the LHDI in a laboratory current sheet. The observation of the LHDI in MRX has provided the unique opportunity to uncover the role of this instability in collisionless reconnection. It was found that: (1) the LHDI fluctuations are confined to the low-beta edge of current sheets in MRX; (2) the LHDI amplitude does not correlate well in time or space with the reconnection electric field, which is directly related to the rate of reconnection; and (3) significant LHDI amplitude persists in high collisionality current sheets where the reconnection rate is classical. These findings suggest that the measured LHDI fluctuations do not play an

  10. Fast ion generation and runaway through magnetic reconnection events in MST

    NASA Astrophysics Data System (ADS)

    Kim, Jungha; Anderson, Jay; Capecchi, William; Bonofiglo, Phillip; Sears, Stephanie

    2016-10-01

    Fokker-Planck and full orbit modeling are used to investigate how global reconnection events in MST plasmas generate an anisotropic fast ion distribution. A multi-step process is hypothesized. First, thermal ions are heated by a perpendicular heating mechanism, possibly a stochastic process that relies on turbulent diffusion and strong radial electric fields, or ion cyclotron damping in the tearing-driven turbulent cascade. Second, a small fraction of the heated ions have sufficient speed to develop substantial guiding center drifts that are relatively immune to stochastic magnetic transport. In the RFP, these fast ion drift orbits are favorable to confinement. Finally, these fast ions are accelerated by a parallel inductive electric field (up to 80 V/m) associated with the abruptly changing magnetic equilibrium. This strong impulsive field does not include any magnetic-fluctuation-based contribution as experienced by thermal particles or electrons, which do not run away like fast ions. CQL3D, a Fokker-Planck solver, and RIO, a full orbit tracing code, are used to model this multi-step process that is responsible for anisotropy in fast ion distribution in MST. Work supported by US DOE. Supported by US DOE.

  11. Magnetic reconnection in the presence of externally driven and self-generated turbulence

    SciTech Connect

    Karimabadi, H.; Lazarian, A.

    2013-11-15

    Magnetic reconnection is an important process that violates flux freezing and induces change of magnetic field topology in conducting fluids and, as a consequence, converts magnetic field energy into particle energy. It is thought to be operative in laboratory, heliophysical, and astrophysical plasmas. These environments exhibit wide variations in collisionality, ranging from collisionless in the Earth's magnetosphere to highly collisional in molecular clouds. A common feature among these plasmas is, however, the presence of turbulence. We review the present understanding of the effects of turbulence on the reconnection rate, discussing both how strong pre-existing turbulence modifies Sweet-Parker reconnection and how turbulence may develop as a result of reconnection itself. In steady state, reconnection rate is proportional to the aspect ratio of the diffusion region. Thus, two general MHD classes of models for fast reconnection have been proposed, differing on whether they keep the aspect ratio finite by increasing the width due to turbulent broadening or shortening the length of the diffusion layer due to plasmoid instability. One of the consequences of the plasmoid instability model is the possibility that the current sheet thins down to collisionless scales where kinetic effects become dominant. As a result, kinetic effects may be of importance for many astrophysical applications which were considered to be in the realm of MHD. Whether pre-existing turbulence can significantly modify the transition to the kinetic regime is not currently known. Although most studies of turbulent reconnection have been based on MHD, recent advances in kinetic simulations are enabling 3D studies of turbulence and reconnection in the collisionless regime. A summary of these recent works, highlighting similarities and differences with the MHD models of turbulent reconnection, as well as comparison with in situ observations in the magnetosphere and in the solar wind, are presented

  12. Current sheets, reconnection and adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Marliani, Christiane

    1998-11-01

    Adaptive structured mesh refinement methods have proved to be an appropriate tool for the numerical study of a variety of problems where largely separated length scales are involved, e.g. [R. Grauer, C. Marliani, K. Germaschewski, PRL, 80, 4177, (1998)]. A typical example in plasma physics are the current sheets in magnetohydrodynamic flows. Their dynamics is investigated in the framework of incompressible MHD. We present simulations of the ideal and inviscid dynamics in two and three dimensions. In addition, we show numerical simulations for the resistive case in two dimensions. Specifically, we show simulations for the case of the reconnection.html>doubly periodic coalescence instability. At the onset of the reconnection process the kinetic energy rises and drops rapidly and afterwards settles into an oscillatory phase. The timescale of the magnetic reconnection process is not affected by these fast events but consistent with the Sweet-Parker model of stationary reconnection. Taking into account the electron inertia terms in the generalized Ohm's law the electron skin depth is introduced as an additional parameter. The modified equations allow for magnetic reconnection in the collisionless regime. Current density and vorticity concentrate in extremely long and thin sheets. Their dynamics becomes numerically accessible by means of adaptive mesh refinement.

  13. Final Report for DoE Grant DE-FG02-06ER54878, Laboratory Studies of Reconnection in Magnetically Confined Plasmas

    SciTech Connect

    Jan Egedal-Pedersen

    2010-01-29

    The study of the collisionless magnetic reconnection constituted the primary work carried out under this grant. The investigations utilized two magnetic configurations with distinct boundary conditions. Both configurations were based upon the Versatile Toroidal Facility (VTF). The first configuration is characterized by open boundary conditions where the magnetic field lines interface directly with the vacuum vessel walls. The reconnection dynamics for this configuration has been methodically characterized and it has been shown that kinetic effects related to trapped electron trajectories are responsible for the high rates of reconnection observed. This type of reconnection has not been investigated before. Nevertheless, the results are directly relevant to observations by the Wind spacecraft of fast reconnection deep in the Earth magnetotail. The second configuration was developed to be specifically relevant to numerical simulations of magnetic reconnection, allowing the magnetic field-lines to be contained inside the device. The configuration is compatible with the presence of large current sheets in the reconnection region and reconnection is observed in fast powerful bursts. These reconnection events facilitate the first experimental investigations of the physics governing the spontaneous onset of fast reconnection. In this Report we review the general motivation of this work, the experimental set-up, and the main physics results.

  14. Transient Reconnection as Observed in the Cusp by Cluster and FAST

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Dunlop, M. W.; Balogh, A.; Cargill, P.; Glassmeier, K.; Mussmann, G.; Thomsen, M. F.; Cattell, C. A.; Fazakerly, A.; Reme, H.

    2001-12-01

    In the interval from 23:10 UT on 20 February through at least 00:30 on 21 February, 2001, Cluster was inbound crossing the southern cusp. The four spacecraft were first in a northward magnetosheath field with |B| ~ 35 - 40 nT, BZ > 0, and BY < 0. However, lagged solar wind observations from ACE reveal that the magnetosheath field turned southward just before Cluster entered the cusp, identified as a region of lower average field strength (10 - 20 nT). Then the spacecraft entered the tail lobe, with southwardly-oriented field and velocity dispersed ions traveling tailward. The cusp traversal lasted roughly 15 minutes, during which large field excursions and significant ion flow changes occurred. Three distinct southward ion flow bursts (Δ VZ ~ 130 km/s) were observed, each lasting 2 - 3 minutes, each associated with northward field excursions (Δ BZ ~ 40 nT). In the first two bursts there are also large BY variations as well. The distinctive magnetic field and ion plasma flow changes suggest that these events may be related to transient reconnection due to the new southward orientation of the IMF. Between 2310 and 2350 UT, FAST crossed from the dayside plasma sheet through boundary layer/polar cap in the early afternoon sector at altitudes between 3000 and 4000 km. Though not at the cusp, the FAST magnetic stress/ionospheric convection observations qualitatively agree with the Weimer convection model for the southward IMF conditions at this time.

  15. Localized electron heating during magnetic reconnection in MAST

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Tanabe, H.; Watanabe, T. G.; Hayashi, Y.; Imazawa, R.; Inomoto, M.; Ono, Y.; Gryaznevich, M.; Scannell, R.; Michael, C.; The MAST Team

    2016-10-01

    Significant increase in the plasma temperature above 1 keV was measured during the kilogauss magnetic field reconnection of two merging toroidal plasmas under the high-guide field and collision-less conditions. The electron temperature was observed to peak significantly at the X-point inside the current sheet, indicating Joule heating caused by the toroidal electric field along the X-line. This peaked temperature increases significantly with the guide field, in agreement with the electron mean-free path calculation. The slow electron heating in the downstream suggests energy conversion from ions to electrons through ion-electron collisions in the bulk plasma as the second electron heating mechanism in the bulk plasma. The electron density profile clearly reveals the electron density pile-up / fast shock structures in the downstream of reconnection, suggesting energy conversion from ion flow energy to ion thermal energy as well as significant ion heating by reconnection outflow.

  16. Multi-Scale Modeling of Magnetospheric Reconnection

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Toth, G.; Dezeeuw, D.; Gomobosi, T.

    2007-01-01

    One of the major challenges in modeling the magnetospheric magnetic reconnection is to quantify the interaction between large-scale global magnetospheric dynamics and microphysical processes in diffusion regions near reconnection sites. There is still considerable debate as to what degree microphysical processes on kinetic scales affect the global evolution and how important it is to substitute numerical dissipation and/or ad hoc anomalous resistivity by a physically motivated model of dissipation. Comparative studies of magnetic reconnection in small scale geometries demonstrated that MHD simulations that included non-ideal processes in terms of a resistive term $\\eta J$ did not produce the fast reconnection rates observed in kinetic simulations. For a broad range of physical parameters in collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is non-gyrotropic effects with spatial scales comparable with the particle Larmor radius. We utilize the global MHD code BATSRUS and incorporate nongyrotropic effects in diffusion regions in terms of corrections to the induction equation. We developed an algorithm to search for magnetotail reconnection sites, specifically where the magnetic field components perpendicular to the local current direction approaches zero and form an X-type configuration. Spatial scales of the diffusion region and magnitude of the reconnection electric field are calculated selfconsistently using MHD plasma and field parameters in the vicinity of the reconnection site. The location of the reconnection sites is updated during the simulations. To clarify the role of nongyrotropic effects in diffusion region on the global magnetospheric dynamic we perform simulations with steady southward IMF driving of the magnetosphere. Ideal MHD simulations with magnetic reconnection supported by numerical resistivity produce steady configuration with almost stationary near-earth neutral

  17. Final Report: Laboratory Studies of Spontaneous Reconnection and Intermittent Plasma Objects

    SciTech Connect

    Egedal-Pedersen, Jan; Porkolab, Miklos

    2011-05-31

    The study of the collisionless magnetic reconnection constituted the primary work carried out under this grant. The investigations utilized two magnetic configurations with distinct boundary conditions. Both configurations were based upon the Versatile Toroidal Facility (VTF) at the MIT Plasma Science and Fusion Center and the MIT Physics Department. The NSF/DOE award No. 0613734, supported two graduate students (now Drs. W. Fox and N. Katz) and material expenses. The grant enabled these students to operate the VTF basic plasma physics experiment on magnetic reconnection. The first configuration was characterized by open boundary conditions where the magnetic field lines interface directly with the vacuum vessel walls. The reconnection dynamics for this configuration has been methodically characterized and it has been shown that kinetic effects related to trapped electron trajectories are responsible for the high rates of reconnection observed. This type of reconnection has not been investigated before. Nevertheless, the results are directly relevant to observations by the Wind spacecraft of fast reconnection deep in the Earth magnetotail. The second configuration was developed to be relevant to specifically to numerical simulations of magnetic reconnection, allowing the magnetic field-lines to be contained inside the device. The configuration is compatible with the presence of large current sheets in the reconnection region and reconnection is observed in fast powerful bursts. These reconnection events facilitate the first experimental investigations of the physics governing the spontaneous onset of fast reconnection. In the Report we review the general motivation of this work and provide an overview of our experimental and theoretical results enabled by the support through the awards.

  18. Solitary fast magnetosonic waves propagating obliquely to the magnetic field in cold collisionless plasma

    SciTech Connect

    Kichigin, G. N.

    2016-01-15

    Solutions describing solitary fast magnetosonic (FMS) waves (FMS solitons) in cold magnetized plasma are obtained by numerically solving two-fluid hydrodynamic equations. The parameter domain within which steady-state solitary waves can propagate is determined. It is established that the Mach number for rarefaction FMS solitons is always less than unity. The restriction on the propagation velocity leads to the limitation on the amplitudes of the magnetic field components of rarefaction solitons. It is shown that, as the soliton propagates in plasma, the transverse component of its magnetic field rotates and makes a complete turn around the axis along which the soliton propagates.

  19. Development of a fast EUV movie camera for study of magnetic reconnection in magnetically driven plasma jets

    NASA Astrophysics Data System (ADS)

    Chai, Kil-Byoung; Bellan, Paul

    2012-10-01

    The Caltech MHD driven jet experiment involves a low temperature (˜5 eV) and high density (˜10^21 m-3) plasma that travels at 10's of km/s. During and after formation, magnetic reconnections are observed together with kink and Rayleigh-Taylor instabilities [1]. It has also been observed that there are highly transient EUV emissions when there is magnetic reconnection. The first EUV peak occurs when flux tubes merge during formation and the second one occurs when a Rayleigh-Taylor instability causes the jet to break off from its source electrode. It would be helpful for understanding magnetic reconnection to investigate the spatial and temporal behaviors of these EUV bursts associated with magnetic reconnection. In order to achieve this, we are developing a high speed EUV movie camera. It consists of an Al coated YAG:Ce scintillator, an Au parabolic mirror (or a multilayer coated mirror for a specific EUV wavelength) and a fast framing camera (2x10^8 fps). We tested our system using visible light from the actual plasma jet and obtained image sequence with submicron time resolution.[4pt] [1] A. L. Moser and P. M. Bellan, Nature 482, 379 (2012).

  20. Multifractal dissipation of intermittent turbulence generated by the magnetic reconnection in the solar wind

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wei, F.; Feng, X.

    2013-12-01

    Recent observations revealed a scale-invariant dissipation process in the fast ambient solar wind, while numerical simulations indicated that the dissipation process in collisionless reconnection was multifractal. Here, we investigate the properties of turbulent fluctuations in the magnetic reconnection prevailed region. It is found that there are large magnetic field shear angle and obvious intermittent structures in these regions. The deduced scaling exponents in the dissipation subrange show a multifractal scaling. In comparison, in the nearby region where magnetic reconnection is less prevailed, we find smaller magnetic field shear angle, less intermittent structures, and most importantly, a monofractal dissipation process. These results provide additionally observational evidence for previous observation and simulation work, and they also imply that magnetic dissipation in the solar wind magnetic reconnection might be caused by the intermittent cascade as multifractal processes.

  1. Magnetic Reconnection

    SciTech Connect

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  2. Experimental demonstration of the role of electron pressure in fast magnetic reconnection with a guide field

    NASA Astrophysics Data System (ADS)

    Fox, W.; Sciortino, F.; von Stechow, A.; Jara-Almonte, J.; Yoo, J.; Ji, H.; Yamada, M.

    2016-10-01

    We report detailed laboratory observations of the structure of reconnection current sheets in a two-fluid plasma regime with a guide magnetic field, conducted on the Magnetic Reconnection Experiment. We observe in the laboratory for the first time the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended MHD simulation. We quantitatively analyze the parallel and perpendicular force balance, and observe the projection of the electron pressure gradient parallel to the B field balances the parallel electric field. The resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Electron density variations are observed to dominate temperature variations and may provide a new diagnostic of reconnection with finite guide field for fusion experiments and spacecraft missions. Supported by Max-Planck Princeton Center for Plasma Physics.

  3. Frontiers for Laboratory Research of Magnetic Reconnection

    SciTech Connect

    Ji, Hantao; Guo, Fan

    2015-07-16

    Magnetic reconnection occcurs throughout heliophysical and astrophysical plasmas as well as in laboratory fusion plasmas. Two broad categories of reconnection models exist: collisional MHD and collisionless kinetic. Eight major questions with respect to magnetic connection are set down, and past and future devices for studying them in the laboratory are described. Results of some computerized simulations are compared with experiments.

  4. Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly-driven laser-plasma experiments

    SciTech Connect

    Rosenberg, M.  J.; Li, C.  K.; Fox, W.; Zylstra, A.  B.; Stoeckl, C.; Séguin, F.  H.; Frenje, J.  A.; Petrasso, R. D.

    2015-05-20

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet~ 20VA) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.

  5. Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly-driven laser-plasma experiments

    DOE PAGES

    Rosenberg, M.  J.; Li, C.  K.; Fox, W.; ...

    2015-05-20

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet~ 20VA) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. Themore » absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.« less

  6. Nanoflare heating model for collisionless solar corona

    NASA Astrophysics Data System (ADS)

    Visakh Kumar, U. L.; Varghese, Bilin Susan; Kurian, P. J.

    2017-02-01

    The problem of coronal heating remains one of the greatest unresolved problems in space science. Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present paper deals with a model for reconnection occurring in the solar corona under steady state in collisionless regime. The model predicts that reconnection time in the solar corona varies inversely with the cube of magnetic field and varies directly with the Lindquist number. Our analysis shows that reconnections are occurring within a time interval of 600 s in the solar corona, producing nanoflares in the energy range 10 21-10 23 erg /s which matches with Yohkoh X-ray observations.

  7. Experimental Demonstration of Resistive Electron Plasmoids in a Reconnecting Current Sheet

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, Jonathan

    2016-10-01

    Magnetic reconnection is an important process occurring in nearly all magnetized plasmas that involves the complex coupling of multiple physical scales. Significant progress has been made in understanding the cross-scale physics of magnetic reconnection around localized reconnection sites, but how reconnection couples to global physics is still an open question. Recently, the spontaneous formation of plasmoids has been proposed as a mechanism for bridging widely disparate scales, thereby permitting fast reconnection in large systems. Numerous works have demonstrated the existence of collisionless plasmoids in both space and laboratory plasmas, however to-date, direct evidence for collisional plasmoids has been confined to numerical simulations and analytic theory, although remote-sensing observations of solar and fusion plasmas have provided some indirect evidence. However, it is known that many naturally occurring plasmas, such as the solar chromosphere or the interstellar medium, are both large and collisional, thus requiring collisional plasmoids. In part, the current lack of experimental or in situ observational evidence for collisional plasmoids is due to the large Lundquist numbers required for plasmoid formation within the resistive MHD framework. In this work, experimental evidence for resistive electron plasmoid formation during magnetic reconnection in the two-fluid regime is given. Using the Magnetic Reconnection Experiment (MRX), driven reconnection is studied in collisional current sheets wherein the electric field is balanced solely by classical Spitzer resistivity. Despite low Lundquist numbers, these collisional current sheets are observed to be unstable to the spontaneous formation of plasmoids, which is explained by the importance of electron physics when in the two-fluid regime. The number of plasmoids is observed to scale with the Lundquist number. Due to the onset of plasmoids, both the local reconnection electric field and the globally

  8. INFFTM: Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections

    NASA Astrophysics Data System (ADS)

    Caliari, Marco; Zuccher, Simone

    2017-04-01

    Although Fourier series approximation is ubiquitous in computational physics owing to the Fast Fourier Transform (FFT) algorithm, efficient techniques for the fast evaluation of a three-dimensional truncated Fourier series at a set of arbitrary points are quite rare, especially in MATLAB language. Here we employ the Nonequispaced Fast Fourier Transform (NFFT, by J. Keiner, S. Kunis, and D. Potts), a C library designed for this purpose, and provide a Matlab® and GNU Octave interface that makes NFFT easily available to the Numerical Analysis community. We test the effectiveness of our package in the framework of quantum vortex reconnections, where pseudospectral Fourier methods are commonly used and local high resolution is required in the post-processing stage. We show that the efficient evaluation of a truncated Fourier series at arbitrary points provides excellent results at a computational cost much smaller than carrying out a numerical simulation of the problem on a sufficiently fine regular grid that can reproduce comparable details of the reconnecting vortices.

  9. Laboratory Experiment of Magnetic Reconnection between Merging Flux Tubes with Strong Guide FIeld

    NASA Astrophysics Data System (ADS)

    Inomoto, M.; Kamio, S.; Kuwahata, A.; Ono, Y.

    2013-12-01

    Magnetic reconnection governs variety of energy release events in the universe, such as solar flares, geomagnetic substorms, and sawtooth crash in laboratory nuclear fusion experiments. Differently from the classical steady reconnection models, non-steady behavior of magnetic reconnection is often observed. In solar flares, intermittent enhancement of HXR emission is observed synchronously with multiple ejection of plammoids [1]. In laboratory reconnection experiments, the existence of the guide field, that is perpendicular to the reconnection field, makes significant changes on reconnection process. Generally the guide field will slow down the reconnection rate due to the increased magnetic pressure inside the current sheet. It also brings about asymmetric structure of the separatrices or effective particle acceleration in collisionless conditions. We have conducted laboratory experiments to study the behavior of the guide-field magnetic reconnection using plasma merging technique (push reconnection). Under substantial guide field even larger than the reconnection field, the reconnection generally exhibits non-steady feature which involves intermittent detachment of X-point and reconnection current center[2]. Transient enhancement of reconnection rate is observed simultaneously with the X-point motion[3]. We found two distinct phenomena associated with the guide-field non-steady reconnection. The one is the temporal and localized He II emission from X-point region, suggesting the production of energetic electrons which could excite the He ions in the vicinity of the X-point. The other is the excitation of large-amplitude electromagnetic waves which have similar properties with kinetic Alfven waves, whose amplitude show positive correlation with the enhancement of the reconnection electric field[4]. Electron beam instability caused by the energetic electrons accelerated to more than twice of the electron thermal velocity could be a potential driver of the

  10. THE ROLE OF FAST MAGNETIC RECONNECTION ON THE RADIO AND GAMMA-RAY EMISSION FROM THE NUCLEAR REGIONS OF MICROQUASARS AND LOW LUMINOSITY AGNs

    SciTech Connect

    Kadowaki, L. H. S.; Pino, E. M. de Gouveia Dal; Singh, C. B. E-mail: dalpino@iag.usp.br

    2015-04-01

    Fast magnetic reconnection events can be a very powerful mechanism operating in the core region of microquasars and active galactic nuclei (AGNs). In earlier work, it has been suggested that the power released by fast reconnection events between the magnetic field lines lifting from the inner accretion disk region and the lines anchored into the central black hole could accelerate relativistic particles and produce the observed radio emission from microquasars and low luminosity AGNs (LLAGNs). Moreover, it has been proposed that the observed correlation between the radio emission and the mass of these sources, spanning 10{sup 10} orders of magnitude in mass, might be related to this process. In the present work, we revisit this model comparing two different fast magnetic reconnection mechanisms, namely, fast reconnection driven by anomalous resistivity (AR) and by turbulence. We apply the scenario above to a much larger sample of sources (including also blazars, and gamma-ray bursts—GRBs), and find that LLAGNs and microquasars do confirm the trend above. Furthermore, when driven by turbulence, not only their radio but also their gamma-ray emission can be due to magnetic power released by fast reconnection, which may accelerate particles to relativistic velocities in the core region of these sources. Thus the turbulent-driven fast reconnection model is able to reproduce verywell the observed emission. On the other hand, the emission from blazars and GRBs does not follow the same trend as that of the LLAGNs and microquasars, indicating that the radio and gamma-ray emission in these cases is produced beyond the core, along the jet, by another population of relativistic particles, as expected.

  11. The Role of Fast Magnetic Reconnection on the Radio and Gamma-ray Emission from the Nuclear Regions of Microquasars and Low Luminosity AGNs

    NASA Astrophysics Data System (ADS)

    Kadowaki, L. H. S.; de Gouveia Dal Pino, E. M.; Singh, C. B.

    2015-04-01

    Fast magnetic reconnection events can be a very powerful mechanism operating in the core region of microquasars and active galactic nuclei (AGNs). In earlier work, it has been suggested that the power released by fast reconnection events between the magnetic field lines lifting from the inner accretion disk region and the lines anchored into the central black hole could accelerate relativistic particles and produce the observed radio emission from microquasars and low luminosity AGNs (LLAGNs). Moreover, it has been proposed that the observed correlation between the radio emission and the mass of these sources, spanning 1010 orders of magnitude in mass, might be related to this process. In the present work, we revisit this model comparing two different fast magnetic reconnection mechanisms, namely, fast reconnection driven by anomalous resistivity (AR) and by turbulence. We apply the scenario above to a much larger sample of sources (including also blazars, and gamma-ray bursts—GRBs), and find that LLAGNs and microquasars do confirm the trend above. Furthermore, when driven by turbulence, not only their radio but also their gamma-ray emission can be due to magnetic power released by fast reconnection, which may accelerate particles to relativistic velocities in the core region of these sources. Thus the turbulent-driven fast reconnection model is able to reproduce verywell the observed emission. On the other hand, the emission from blazars and GRBs does not follow the same trend as that of the LLAGNs and microquasars, indicating that the radio and gamma-ray emission in these cases is produced beyond the core, along the jet, by another population of relativistic particles, as expected.

  12. Origin of resistivity in reconnection

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.

    2001-06-01

    Resistivity is believed to play an important role in reconnection leading to the distinction between resistive and collisionless reconnection. The former is treated in the Sweet-Parker model of long current sheets, and the Petschek model of a small resistive region. Both models in spite of their different dynamics attribute to the violation of the frozen-in condition in their diffusion regions due to the action of resistivity. In collisionless reconnection there is little consensus about the processes breaking the frozen-in condition. The question is whether anomalous processes generate sufficient resistivity or whether other processes free the particles from slavery by the magnetic field. In the present paper we review processes that may cause anomalous resistivity in collisionless current sheets. Our general conclusion is that in space plasma boundaries accessible to in situ spacecraft, wave levels have always been found to be high enough to explain the existence of large enough local diffusivity for igniting local reconnection. However, other processes might take place as well. Non-resistive reconnection can be caused by inertia or diamagnetism.

  13. Experimental observation of 3-D, impulsive reconnection events in a laboratory plasma

    SciTech Connect

    Dorfman, S.; Ji, H.; Yamada, M.; Yoo, J.; Lawrence, E.; Myers, C.; Tharp, T. D.

    2014-01-15

    Fast, impulsive reconnection is commonly observed in laboratory, space, and astrophysical plasmas. In this work, impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The two-fluid, impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys Plasmas 4, 1936 (1997)] cannot be explained by 2-D models and are therefore fundamentally three-dimensional. Several signatures of flux ropes are identified with these events; 3-D high current density regions with O-point structure form during a slow buildup period that precedes a fast disruption of the reconnecting current layer. The observed drop in the reconnection current and spike in the reconnection rate during the disruption are due to ejection of these flux ropes from the layer. Underscoring the 3-D nature of the events, strong out-of-plane gradients in both the density and reconnecting magnetic field are found to play a key role in this process. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. An important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations is also revisited. The wider layers observed in MRX may be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a 3-D two-fluid model is proposed to explain how the observed out-of-plane variation may lead to a localized region of enhanced reconnection that spreads in the direction of the out-of-plane electron flow, ejecting flux ropes from the layer in a 3-D manner.

  14. Magnetotail Current Sheet Thinning and Magnetic Reconnection Dynamics in Global Modeling of Substorms

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; DeZeeuw, D. L.; Gombosi, T. I.

    2008-01-01

    Magnetotail current sheet thinning and magnetic reconnection are key elements of magnetospheric substorms. We utilized the global MHD model BATS-R-US with Adaptive Mesh Refinement developed at the University of Michigan to investigate the formation and dynamic evolution of the magnetotail thin current sheet. The BATSRUS adaptive grid structure allows resolving magnetotail regions with increased current density up to ion kinetic scales. We investigated dynamics of magnetotail current sheet thinning in response to southwards IMF turning. Gradual slow current sheet thinning during the early growth phase become exponentially fast during the last few minutes prior to nightside reconnection onset. The later stage of current sheet thinning is accompanied by earthward flows and rapid suppression of normal magnetic field component $B-z$. Current sheet thinning set the stage for near-earth magnetic reconnection. In collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is non-gyrotropic effects with spatial scales comparable with the particle Larmor radius. One of the major challenges in global MHD modeling of the magnetotail magnetic reconnection is to reproduce fast reconnection rates typically observed in smallscale kinetic simulations. Bursts of fast reconnection cause fast magnetic field reconfiguration typical for magnetospheric substorms. To incorporate nongyritropic effects in diffusion regions we developed an algorithm to search for magnetotail reconnection sites, specifically where the magnetic field components perpendicular to the local current direction approaches zero and form an X-type configuration. Spatial scales of the diffusion region and magnitude of the reconnection electric field are calculated self-consistently using MHD plasma and field parameters in the vicinity of the reconnection site. The location of the reconnection sites and spatial scales of the diffusion region are updated

  15. Experimental study of 3-D, impulsive reconnection events in a laboratory plasma

    NASA Astrophysics Data System (ADS)

    Dorfman, Seth Elliot

    Fast, impulsive reconnection is commonly observed in laboratory, space and astrophysical plasmas. Many existing models of reconnection attempt to explain this behavior without including variation in the third direction. However, the impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) which are described in this dissertation cannot be explained by 2-D models and are therefore fundamentally three-dimensional. These events include both a slow buildup phase and a fast current layer disruption phase. The buildup phase is characterized by a slow transition from collisional to collisionless reconnection and the formation of "flux rope" structures; these "flux ropes" are defined as 3-D high current density regions associated with an O point at the measurement location. In the disruption phase, the "flux ropes" are ejected from the reconnection layer as the total current drops and the reconnection rate spikes. Strong out-of-plane gradients in both the density and reconnecting magnetic field are another key feature of disruptive discharges; after finite upstream density is depleted by reconnection during the buildup phase, the out of plane magnetic field gradient flattens and this disruption spreads in the electron flow direction. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. Furthermore, an important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations persists when the fluctuations are small or absent, implying that they are not the cause of the wider electron layers observed in the experiment. These wider layers may instead be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope

  16. Electron Layer Dissipation Mechanisms in Driven Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Ji, H.; Yamada, M.; McGeehan, B.; Oz, E.; Schroeder, J.; Daughton, W.; Roytershteyn, V.; Ren, Y.

    2008-11-01

    An open question in magnetic reconnection is the nature of the dissipation mechanism(s) responsible for fast reconnection rates in laboratory and astrophysical plasmas. In 2-D collisionless particle in cell simulations, the off-diagonal terms in the electron pressure tensor provide the necessary force balance at the electron diffusion layer center [1]. Recent comparisons between the Magnetic Reconnection Experiment (MRX) and a well-matched PIC code have shown that this mechanism is insufficient to balance the reconnecting electric field in MRX [2,3]. Candidate mechanisms not present in the simulation are under investigation, including electromagnetic fluctuations and other 3-D effects such as layer distortions. The relationship between fluctuations and equilibrium parameters such as the outflow current and layer width is examined, and first investigations into the 3-D symmetry of the layer are presented. On the simulation side, analysis is underway to gain further insight into the nature of the off-diagonal pressure tensor terms, especially effects due to the driven nature of the simulation. [1] M. Hesse, et al., Phys. Plasmas, 6:1781 (1999). [2] S. Dorfman, et al., submitted to Phys. Plasmas (2008). [3] H. Ji, et al., Geophys. Res. Lett., 35, L13106 (2008). This work was supported by NDSEG, DOE, NASA, and NSF.

  17. Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Widmer, F.; Büchner, J.; Yokoi, N.

    2016-04-01

    Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could transport energy from large to small scales where binary particle collisions are rare. We have investigated the influence of small scale magnetohydrodynamics (MHD) turbulence on the reconnection rate in the framework of a compressible MHD approach including sub-grid-scale (SGS) turbulence. For this sake, we considered Harris-type and force-free current sheets with finite guide magnetic fields directed out of the reconnection plane. The goal is to find out whether unresolved by conventional simulations MHD turbulence can enhance the reconnection process in high-Reynolds-number astrophysical plasmas. Together with the MHD equations, we solve evolution equations for the SGS energy and cross-helicity due to turbulence according to a Reynolds-averaged turbulence model. The SGS turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. By this way, the feedback of the unresolved turbulence into the MHD reconnection process is taken into account. It is shown that the turbulence controls the regimes of reconnection by its characteristic timescale τt. The dependence on resistivity was investigated for large-Reynolds-number plasmas for Harris-type as well as force-free current sheets with guide field. We found that magnetic reconnection depends on the relation between the molecular and apparent effective turbulent resistivity. We found that the turbulence timescale τt decides whether fast reconnection takes place or whether the stored energy is just diffused away to small scale turbulence. If the amount of energy transferred from large to small scales is enhanced, fast reconnection can take place. Energy spectra allowed us to characterize the different regimes of reconnection. It was found that reconnection is even faster for larger Reynolds numbers controlled by the molecular resistivity η, as

  18. Perspectives on magnetic reconnection

    PubMed Central

    Yamada, Masaaki

    2016-01-01

    Magnetic reconnection is a topological rearrangement of magnetic field that occurs on time scales much faster than the global magnetic diffusion time. Since the field lines break on microscopic scales but energy is stored and the field is driven on macroscopic scales, reconnection is an inherently multi-scale process that often involves both magnetohydrodynamic (MHD) and kinetic phenomena. In this article, we begin with the MHD point of view and then describe the dynamics and energetics of reconnection using a two-fluid formulation. We also focus on the respective roles of global and local processes and how they are coupled. We conclude that the triggers for reconnection are mostly global, that the key energy conversion and dissipation processes are either local or global, and that the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection. PMID:28119547

  19. Perspectives on magnetic reconnection

    SciTech Connect

    Zweibel, Ellen G.; Yamada, Masaaki

    2016-12-07

    Magnetic reconnection is a topological rearrangement of magnetic field that occurs on time scales much faster than the global magnetic diffusion time. Since the field lines break on microscopic scales but energy is stored and the field is driven on macroscopic scales, reconnection is an inherently multi-scale process that often involves both magnetohydrodynamic (MHD) and kinetic phenomena. In this article, we begin with the MHD point of view and then describe the dynamics and energetics of reconnection using a two-fluid formulation. We also focus on the respective roles of global and local processes and how they are coupled. Here, we conclude that the triggers for reconnection are mostly global, that the key energy conversion and dissipation processes are either local or global, and that the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection.

  20. Perspectives on magnetic reconnection

    DOE PAGES

    Zweibel, Ellen G.; Yamada, Masaaki

    2016-12-07

    Magnetic reconnection is a topological rearrangement of magnetic field that occurs on time scales much faster than the global magnetic diffusion time. Since the field lines break on microscopic scales but energy is stored and the field is driven on macroscopic scales, reconnection is an inherently multi-scale process that often involves both magnetohydrodynamic (MHD) and kinetic phenomena. In this article, we begin with the MHD point of view and then describe the dynamics and energetics of reconnection using a two-fluid formulation. We also focus on the respective roles of global and local processes and how they are coupled. Here, wemore » conclude that the triggers for reconnection are mostly global, that the key energy conversion and dissipation processes are either local or global, and that the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection.« less

  1. The Reconnection Region With Fast Shock Fronts As A Source Of Microwave Spikes (Based On Soho And Yohkoh Data)

    NASA Astrophysics Data System (ADS)

    Chernov, G. P.; Fu, Q. J.; Lao, D. B.; Kosugi, T.; Hanaoka, Y.

    1999-10-01

    A new model for solar spike bursts is considered based on the interaction of Langmuir waves with ion-sound waves :l+s-->t. Such mechanism can operate in shock fronts, propagating from a magnetic reconnection region. New observations of microwave millisecond spikes are discussed. They have been observed in the event 1997.11.04 between 0552-0610 UT and 1997.11.28 event between 05:00-05:10 UT using multichannel spectrograph in the range 2,6-3.8 GHz of Beijing AO. The first time we describe very fast and narrowband microwave spikes: duration 8 ms, bandwidth 10 MHz. Yohkoh/SXTimages in AR and SOHO EIT images testify a reconstruction of bright loops after the escape of CME in Nov.4 event and X-ray jets in Nov.28 event. Fast shock fronts might be manifested as a narrow very bright line at Te SXT maps ( 18 MK) and as dense structures at Emission Mesure maps. Strong left polarization of spike emission from a source above the leader spot of south magnetic polarity in AR 8100 corresponds in this event to the extraordinary magnetoionic mode. The model gives the ordinary mode of spike emission, therefore we propose the depolarization of the emission in the transverse magnetic field and rather in the vanishing magnetic field in the middle of QT region. The scattering of O-mode into X-mode by whistlers just above the escape level of X-mode can also provide an additional depolarization. Duration and frequency band of isolated spikes are connected with parameters of fast particle beams and shock front.

  2. Local and Global 3-D Effects in the Magnetic Reconnection Experiment (MRX)

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Ji, H.; Yamada, M.; Oz, E.; Yoo, J.; Daughton, W.; Roytershteyn, V.

    2009-11-01

    One of the key open questions in Magnetic Reconnection is the nature of the mechanism that governs the reconnection rate in real astrophysical and laboratory systems. Comparisons between fully kinetic 2-D simulations of the Magnetic Reconnection Experiment (MRX) and experimental data show that the 2-D, collisionless expression for the electric field due to particle dynamics [1] does not match MRX data; related to this is a factor of 3-5 discrepancy in the layer width [2,3]. Adding collisions to the simulation leads to a broadening of the layer, but the level of collisionality present in MRX may not be high enough to resolve the discrepancy. Ongoing research on MRX explores the role of fluctuations and 3-D effects in the force balance. Significant toroidal asymmetries have been found, manifested by regions of high inductive electric field moving in the electron flow direction within the layer. Electromagnetic fluctuations in the lower hybrid frequency range [4] tend to occur in discharges with high local currents and a rapid local reconnection rate. The precise relation of these phenomena to fast reconnection is actively being investigated. [1] M. Hesse, et al., Phys. Plasmas, 6:1781 (1999). [2] Y. Ren, et al., Phys. Plasmas 15, 082113 (2008). [3] S. Dorfman, et al., Phys. Plasmas 15, 102107 (2008). [4] H. Ji, et al., Phys.Rev.Lett. 92 (2004) 115001. Supported by NDSEG, DOE, NASA, and NSF.

  3. Laser-Driven Magnetized Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek

    2016-10-01

    Collisionless shocks - supersonic plasma flows in which the interaction length scale is much shorter than the collisional mean free path - are common phenomena in space and astrophysical systems, including the solar wind, coronal mass ejections, supernovae remnants, and the jets of active galactic nuclei. These systems have been studied for decades, and in many the shocks are believed to efficiently accelerate particles to some of the highest observed energies. Only recently, however, have laser and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of collisionless shocks over a large parameter regime. We present experiments that demonstrate the formation of collisionless shocks utilizing the Phoenix laser laboratory and the LArge Plasma Device (LAPD) at UCLA. We also show recent observations of magnetized collisionless shocks on the Omega EP laser facility that extend the LAPD results to higher laser energy, background magnetic field, and ambient plasma density, and that may be relevant to recent experiments on strongly driven magnetic reconnection. Lastly, we discuss a new experimental regime for shocks with results from high-repetition (1 Hz), volumetric laser-driven measurements on the LAPD. These large parameter scales allow us to probe the formation physics of collisionless shocks over several Alfvénic Mach numbers (MA), from shock precursors (magnetosonic solitons with MA < 1) to subcritical (MA < 3) and supercritical (MA > 3) shocks. The results show that collisionless shocks can be generated using a laser-driven magnetic piston, and agree well with both 2D and 3D hybrid and PIC simulations. Additionally, using radiation-hydrodynamic modeling and measurements from multiple diagnostics, the different shock regimes are characterized with dimensionless formation parameters, allowing us to place disparate experiments in a common and predictive framework.

  4. Quantitative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics.

    PubMed

    Simakov, Andrei N; Chacón, L

    2008-09-05

    Dissipation-independent, or "fast", magnetic reconnection has been observed computationally in Hall magnetohydrodynamics (MHD) and predicted analytically in electron MHD. However, a quantitative analytical theory of reconnection valid for arbitrary ion inertial lengths, d{i}, has been lacking and is proposed here for the first time. The theory describes a two-dimensional reconnection diffusion region, provides expressions for reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and d{i}. It also confirms the electron MHD prediction that both open and elongated diffusion regions allow fast reconnection, and reveals strong dependence of the reconnection rates on d{i}.

  5. Experimental Evidence for Cerenkov Emission of Whistler Waves by Electron Holes Associated with Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Eastwood, J. P.; Goldman, M. V.; Zhang, X.; Hietala, H.; Krupar, V.; Newman, D. L.; Angelopoulos, V.; Lapenta, G.

    2015-12-01

    Whistler waves are a ubiquitous plasma phenomenon, observed in a variety of space and laboratory plasma environments. They play a key role in many important and diverse processes, such as particle acceleration in the radiation belts and auroral acceleration region, the dissipation of plasma turbulence at small scales below the inertial range, collisionless shock physics, and magnetic reconnection. In reconnection they may modify the reconnection rate and also whistler physics is crucial to enabling fast reconnection in the Hall reconnection model. Consequently, understanding how whistler waves are generated and how they subsequently interact with the plasma is a problem of wide importance and application. It is well known that whistlers can arise as a result of kinetic instabilities, which grow exponentially from noise as a consequence of unstable electron distributions, for example temperature anisotropy. This is used ubiquitously to predict where and when whistler waves are likely to exist and therefore be of importance in many plasma phenomena. Recently it has been demonstrated theoretically and via computer simulations that whistler waves may also arise via Cerenkov emission from electron hole quasi-particles [Goldman et al., PRL, 2014]. Such wave emission can arise even when the temperature anisotropy leads to damping; in this case the system is analogous to a damped forced oscillator. Here we present novel experimental analysis from THEMIS showing for the first time evidence consistent with the generation of whistlers via Cerenkov emission during magnetotail reconnection. By considering the electromagnetic properties of the electron holes, the amplitude, phase speed and frequency of the associated whistlers, and also the available sub-spin observations of the electron distribution function, we find that the data are best explained by the Cerenkov emission theory rather than by kinetic instabilities due to the electron temperature anisotropy. Whilst the

  6. 3-D, Impulsive Magnetic Reconnection in a Laboratory Plasma (Invited)

    NASA Astrophysics Data System (ADS)

    Dorfman, S. E.; Ji, H.; Yamada, M.; Yoo, J.; Myers, C. E.; Roytershteyn, V.; Daughton, W. S.; Jara-Almonte, J.

    2013-12-01

    Magnetic reconnection is a fundamental plasma process involving the efficient conversion of magnetic field energy to plasma kinetic energy through changing field line topology. In many space and astrophysical systems, including the solar surface and the Earth's magnetotail, reconnection is not only fast, but also impulsive; in other words, a slow buildup phase is followed by a comparatively quick release of magnetic energy. An important question in the literature is if these examples of impulsive reconnection can be described by a two-dimensional model with no variation in the out-of-plane direction or if impulsive reconnection is fundamentally three-dimensional. Events observed on the Magnetic Reconnection Experiment (MRX) are characterized by large local gradients in the third direction and cannot be explained by 2-D models [1]. Detailed measurements show that the ejection of flux rope structures from the current sheet plays a key role in these events. By contrast, even though electromagnetic fluctuations in the lower hybrid frequency range are also observed concurrently with the impulsive behavior, they are not the key physics responsible. Furthermore, an important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations [2-4] persists when the fluctuations are small or absent, implying that they are not the cause of the wider electron layers observed in the experiment [5]. These wider layers may instead be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a qualitative, 3-D, two-fluid model is proposed to explain the observed disruptions. Many of the features observed in MRX including current disruptions [6], flux ropes [7], and electromagnetic fluctuations [8] have analogues in space observations. Thus, further detailed comparisons may enhance our understanding

  7. Reconnection layer dynamics in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, Ivo; Intrator, Thomas; Hemsing, Erik; Hsu, Scott; Lapenta, Giovanni; Ricci, Paolo

    2003-10-01

    Using the Reconnection Scaling Experiment (RSX) at Los Alamos National Laboratory, we are studying quasi-2D magnetic reconnection in a 3D linear geometry. RSX is a linear plasma device that relies on plasma gun technology to generate high density (>10^14 cm-3), high current (J 200A/cm^2) ohmically heated (Te 15eV) hydrogen plasma channels ( 2 cm radius). In RSX, magnetic reconnection is induced during the current ramp-up between two axially directed parallel current channels generating a reconnection magnetic field, B_rec, up to 40 Gauss. A set of 12 magnet coils induces an axial guide magnetic field Bz of up to 0.1 T allowing the reconnection field B_rec to be independently scaled from the guiding field B_z. Plasma collisionality can also be independently scaled by varying the plasma gun fill pressure. The formation and dynamics of the current sheet is studied using time and space resolved magnetic field measurements. To date, preliminary experiments in the collisional regime and in the presence of a strong guide magnetic field (B_z/B_rec>10) show the formation of a Sweet-Parker like Y-shaped current sheet. The axial electric field, as inferred from the measured magnetic flux annihilation rate, is also consistent with Sweet-Parker magnetic reconnection. In future experiments, more collisionless regimes will be explored, and the influence of the guide magnetic field on the dynamics of the current sheet and the reconnection rate will be investigated in truly 3D geometry.

  8. A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation

    SciTech Connect

    McKinney, Jonathan C.; Uzdensky, Dmitri A.

    2012-03-14

    Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the

  9. A Rosetta Stone for in situ Observations of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Daughton, W. S.; Karimabadi, H.; Roytershteyn, V.

    2015-12-01

    Local conditions that constrain the physics of magnetic reconnection in space in 3D will be discussed, including those observable conditions presently used and new ones that enhance experimental closure. Three classes of tests will be discussed: i) proxies for unmeasurable theoretical properties II) observable properties satisfied by all layers that pass mass flux, including those of the reconnection layer, and (iii) observable kinetic tests that are increasingly peculiar to collisionless magnetic reconnection. A Rosetta Stone of state of the art observables will be proposed, including proxies for unmeasurable theoretical local rate of frozen flux violation and measures of the significance of frozen flux encountered. A suite of kinetic observables involving properties peculiar to electrons will also be demonstrated as promising litmus tests for certifying sites of collisionless magnetic reconnection.

  10. Magnetic reconnection under anisotropic magnetohydrodynamic approximation

    SciTech Connect

    Hirabayashi, K.; Hoshino, M.

    2013-11-15

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p{sub ∥}>p{sub ⊥}) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

  11. Magnetic Reconnection

    NASA Video Gallery

    This science visualization shows a magnetospheric substorm, during which, magnetic reconnection causes energy to be rapidly released along the field lines in the magnetotail, that part of the magne...

  12. Reconnection and small-scale fields in 2D-3V hybrid-kinetic driven turbulence simulations

    NASA Astrophysics Data System (ADS)

    Cerri, S. S.; Califano, F.

    2017-02-01

    The understanding of the fundamental properties of turbulence in collisionless plasmas, such as the solar wind, is a frontier problem in plasma physics. In particular, the occurrence of magnetic reconnection in turbulent plasmas and its interplay with a fully-developed turbulent state is still a matter of great debate. Here we investigate the properties of small-scale electromagnetic fluctuations and the role of fast magnetic reconnection in the development of a quasi-steady turbulent state by means of 2D-3V high-resolution Vlasov–Maxwell simulations. At the largest scales turbulence is fed by external random forcing. We show that large-scale turbulent motions establish a -5/3 spectrum at {k}\\perp {d}i< 1 and, at the same time, feed the formation of current sheets where magnetic reconnection occurs. As a result coherent magnetic structures are generated which, together with the rise of the associated small-scale non-ideal electric field, mediate the transition between the inertial and the subproton-scale spectrum. A mechanism that boosts the magnetic reconnection process is identified, making the generation of coherent structures rapid enough to be competitive with wave mode interactions and leading to the formation of a fully-developed turbulent spectrum across the so-called ion break.

  13. Improved Magnetic Reconnection Experiment at FRC Device

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Zhou, Ruijie; Vasquez, Daniel; Huang, Tian-Sen; Prairie View Solar Observatory Team

    2014-10-01

    With experimental facility's improvement, magnetic reconnection has been further studied at Prairie View rotamak device. By adding one toroidal current in the central part of the rotamak device, the cutting of one magnetic field reverse configuration (FRC) as two FRCs in the experiment process becomes more obvious. Differing from the magnetic reconnection experiments conducted at other labs, where magnetic reconnection is formed with two ware-coiled currents buried in a chamber with large scale magnetic field, in our magnetic reconnection experiment the main source of the magnetic field is plasma current. Thus, the magnetic reconnection experiments conducted at rotamak device are closer to the one occurring in the space and on the sun. At the present stage, our experiments focus on the study of the change in electron temperature during the magnetic reconnection process. Furthermore, the ion temperature and plasma flow can be easily achieved from fast ion Doppler spectroscopy (IDS) diagnostic system, which makes the magnetic reconnection process more clearly.

  14. The Development of Drift Wave Turbulence in Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    McMurtrie, L.; Drake, J. F.; Swisdak, M. M.

    2013-12-01

    An important feature in collisionless magnetic reconnection is the development of sharp discontinuities along the separatrices bounding the Alfvenic outflow. The typical scale length of these features is ρs (the Larmor radius based on the sound speed) for guide field reconnection. Temperature gradients in the inflowing plasma (as might be found in the magnetopause) can lead to instabilities at these separatrices, specifically drift wave turbulence. We present standalone 2D and 3D PIC simulations of drift wave turbulence to investigate scaling properties and growth rates. Further investigations of the relative importance of drift wave turbulence in the development of reconnection will also be considered.

  15. Magnetic Reconnection by a Self-Retreating X Line

    SciTech Connect

    Oka, M.; Nishikawa, K.-I.; Fujimoto, M.; Nakamura, T. K. M.; Shinohara, I.

    2008-11-14

    Particle-in-cell simulations of collisionless magnetic reconnection are performed to study asymmetric reconnection in which an outflow is blocked by a hard wall while leaving sufficiently large room for the outflow of the opposite direction. This condition leads to a slow, roughly constant motion of the diffusion region away from the wall, the so-called 'X-line retreat'. The typical retreat speed is {approx}0.1 times the Alfven speed. At the diffusion region, ion flow pattern shows strong asymmetry and the ion stagnation point and the X line are not collocated. A surprise, however, is that the reconnection rate remains the same unaffected by the retreat motion.

  16. Chromospheric anemone jets and magnetic reconnection in partially ionized solar atmosphere

    SciTech Connect

    Singh, K. A. P.; Shibata, K.; Nishizuka, N.; Isobe, H.

    2011-11-15

    The solar optical telescope onboard Hinode with temporal resolution of less than 5 s and spatial resolution of 150 km has observed the lower solar atmosphere with an unprecedented detail. This has led to many important findings, one of them is the discovery of chromospheric anemone jets in the solar chromosphere. The chromospheric anemone jets are ubiquitous in solar chromosphere and statistical studies show that the typical length, life time and energy of the chromospheric anemone jets are much smaller than the coronal events (e.g., jets/flares/CMEs). Among various observational parameters, the apparent length and maximum velocity shows good correlation. The velocity of chromospheric anemone jets is comparable to the local Alfven speed in the lower solar chromosphere. Since the discovery of chromospheric anemone jets by Hinode, several evidences of magnetic reconnection in chromospheric anemone jets have been found and these observations are summarized in this paper. These observations clearly suggest that reconnection occurs quite rapidly as well as intermittently in the solar chromosphere. In the solar corona ({lambda}{sub i} > {delta}{sub SP}), anomalous resistivity arises due to various collisionless processes. Previous MHD simulations show that reconnection becomes fast as well as strongly time-dependent due to anomalous resistivity. Such processes would not arise in the solar chromosphere which is fully collisional and partially-ionized. So, it is unclear how the rapid and strongly time-dependent reconnection would occur in the solar chromosphere. It is quite likely that the Hall and ambipolar diffusion are present in the solar chromosphere and they could play an important role in driving such rapid, strongly time-dependent reconnection in the solar chromosphere.

  17. Quantitative analytical model for magnetic reconnection in hall magnetohydrodynamics

    SciTech Connect

    Simakov, Andrei N

    2008-01-01

    Magnetic reconnection is of fundamental importance for laboratory and naturally occurring plasmas. Reconnection usually develops on time scales which are much shorter than those associated with classical collisional dissipation processes, and which are not fully understood. While such dissipation-independent (or 'fast') reconnection rates have been observed in particle and Hall magnetohydrodynamics (MHD) simulations and predicted analytically in electron MHD, a quantitative analytical theory of fast reconnection valid for arbitrary ion inertial lengths d{sub i} has been lacking. Here we propose such a theory without a guide field. The theory describes two-dimensional magnetic field diffusion regions, provides expressions for the reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and di. It also demonstrates that both open X-point and elongated diffusion regions allow dissipation-independent reconnection and reveals a possibility of strong dependence of the reconnection rates on d{sub i}.

  18. Intuitive approach to magnetic reconnection

    SciTech Connect

    Kulsrud, Russell M.

    2011-11-15

    Two reconnection problems are considered. The first problem concerns global physics. The plasma in the global reconnection region is in magnetostatic equilibrium. It is shown that this equilibrium can be uniquely characterized by a set of constraints. During reconnection and independently of the local reconnection physics, these constraints can be uniquely evolved from any initial state. The second problem concerns Petschek reconnection. Petschek's model for fast reconnection, which is governed by resistive MHD equations with constant resistivity is not validated by numerical simulations. Malyshkin et al.[Phys. Plasmas 12, 102920 (2005)], showed that the reason for the discrepancy is that Petschek did not employ Ohm's law throughout the local diffusion region, but only at the X-point. A derivation of Petschek reconnection, including Ohm's law throughout the entire diffusion region, removes the discrepancy. This derivation is based largely on Petschek's original 1964 calculation [in AAS-NASA Symposium on Solar Flares (National Aeronautics and Space Administration, Washington, D.C., 1964), NASA SP50, p. 425]. A useful physical interpretation of the role which Ohm's law plays in the diffusion region is presented.

  19. Three Dimensional Dynamics of Magnetic Reconnection in Large-Scale Pair Plasmas

    NASA Astrophysics Data System (ADS)

    Yin, L.; Daughton, W.; Albright, B. J.; Bowers, K. J.; Karimabad, H.; Roytershteyn, V.

    2009-05-01

    Using the largest three dimensional particle-in-cell simulations to date, collisionless magnetic reconnection in large-scale electron-positron plasmas without a guide field is shown to involve complex interaction of tearing and kink modes. The reconnection onset is patchy and occurs at multiple sites which self-organize to form a single, large diffusion region. The diffusion region further expands in both outflow direction and current direction and become unstable to secondary kinking and formation of "plasmoid-rope" structures. The secondary kink leads to folding of the reconnection current layer, while plasmoid ropes at times follow the folding of the current layer. The interplay among these secondary instabilities plays a key role in controlling the time dependent reconnection rate in large-scale systems. These dynamics found in collisionless reconnection are compared with those in the collisional regime.

  20. Indeterminacy and instability in Petschek reconnection

    SciTech Connect

    Forbes, Terry G.; Priest, Eric R.; Seaton, Daniel B.; Litvinenko, Yuri E.

    2013-05-15

    We explain two puzzling aspects of Petschek's model for fast reconnection. One is its failure to occur in plasma simulations with uniform resistivity. The other is its inability to provide anything more than an upper limit for the reconnection rate. We have found that previously published analytical solutions based on Petschek's model are structurally unstable if the electrical resistivity is uniform. The structural instability is associated with the presence of an essential singularity at the X-line that is unphysical. By requiring that such a singularity does not exist, we obtain a formula that predicts a specific rate of reconnection. For uniform resistivity, reconnection can only occur at the slow, Sweet-Parker rate. For nonuniform resistivity, reconnection can occur at a much faster rate provided that the resistivity profile is not too flat near the X-line. If this condition is satisfied, then the scale length of the nonuniformity determines the reconnection rate.

  1. Magnetic Reconnection: A Fundamental Process in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2010-01-01

    For many years, collisionless magnetic reconnect ion has been recognized as a fundamental process, which facilitates plasma transport and energy release in systems ranging from the astrophysical plasmas to magnetospheres and even laboratory plasma. Beginning with work addressing solar dynamics, it has been understood that reconnection is essential to explain solar eruptions, the interaction of the solar wind with the magnetosphere, and the dynamics of the magnetosphere. Accordingly, the process of magnetic reconnection has been and remains a prime target for space-based and laboratory studies, as well as for theoretical research. Much progress has been made throughout the years, beginning with indirect verifications by studies of processes enabled by reconnection, such as Coronal Mass Ejections, Flux Transfer Events, and Plasmoids. Theoretical advances have accompanied these observations, moving knowledge beyond the Sweet-Parker theory to the recognition that other, collisionless, effects are available and likely to support much faster reconnect ion rates. At the present time we are therefore near a break-through in our understanding of how collisionless reconnect ion works. Theory and modeling have advanced to the point that two competing theories are considered leading candidates for explaining the microphysics of this process. Both theories predict very small spatial and temporal scales. which are. to date, inaccessible to space-based or laboratory measurements. The need to understand magnetic reconnect ion has led NASA to begin the implementation of a tailored mission, Magnetospheric MultiScale (MMS), a four spacecraft cluster equipped to resolve all relevant spatial and temporal scales. In this presentation, we present an overview of current knowledge as well as an outlook towards measurements provided by MMS.

  2. Magnetic reconnection from a multiscale instability cascade

    NASA Astrophysics Data System (ADS)

    Moser, Auna L.; Bellan, Paul M.

    2012-02-01

    Magnetic reconnection, the process whereby magnetic field lines break and then reconnect to form a different topology, underlies critical dynamics of magnetically confined plasmas in both nature and the laboratory. Magnetic reconnection involves localized diffusion of the magnetic field across plasma, yet observed reconnection rates are typically much higher than can be accounted for using classical electrical resistivity. It is generally proposed that the field diffusion underlying fast reconnection results instead from some combination of non-magnetohydrodynamic processes that become important on the `microscopic' scale of the ion Larmor radius or the ion skin depth. A recent laboratory experiment demonstrated a transition from slow to fast magnetic reconnection when a current channel narrowed to a microscopic scale, but did not address how a macroscopic magnetohydrodynamic system accesses the microscale. Recent theoretical models and numerical simulations suggest that a macroscopic, two-dimensional magnetohydrodynamic current sheet might do this through a sequence of repetitive tearing and thinning into two-dimensional magnetized plasma structures having successively finer scales. Here we report observations demonstrating a cascade of instabilities from a distinct, macroscopic-scale magnetohydrodynamic instability to a distinct, microscopic-scale (ion skin depth) instability associated with fast magnetic reconnection. These observations resolve the full three-dimensional dynamics and give insight into the frequently impulsive nature of reconnection in space and laboratory plasmas.

  3. Properties of asymmetric magnetic reconnection

    SciTech Connect

    Birn, J.; Borovsky, J. E.; Hesse, M.

    2008-03-15

    Properties of magnetic reconnection are investigated in two-dimensional, resistive magnetohydrodynamic (MHD) simulations of current sheets separating plasmas with different magnetic field strengths and densities. Specific emphasis is on the influence of the external parameters on the reconnection rate. The effect of the dissipation in the resistive MHD model is separated from this influence by evaluating resistivity dependence together with the dependence on the background parameters. Two scenarios are considered, which may be distinguished as driven and nondriven reconnection. In either scenario, the maximum reconnection rate (electric field) is found to depend on appropriate hybrid expressions based on a magnetic field strength and an Alfven speed derived from the characteristic values in the two inflow regions. The scaling compares favorably with an analytic formula derived recently by Cassak and Shay [Phys. Plasmas 14, 102114 (2007)] applied to the regime of fast reconnection. An investigation of the energy flow and conversion in the vicinity of the reconnection site revealed a significant role of enthalpy flux generation, in addition to the expected conversion of Poynting flux to kinetic energy flux. This enthalpy flux generation results from Ohmic heating as well as adiabatic, that is, compressional heating. The latter is found more important when the magnetic field strengths in the two inflow regions are comparable in magnitude.

  4. Global Simulations of Magnetotail Reconnection

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Toth, G.; Gombosi, T.

    2007-01-01

    There is a growing number of observational evidences of dynamic quasi-periodical magnetosphere response to continuously southward interplan etary magnetic field (IMF). However, traditional global MHD simulatio ns with magnetic reconnection supported by numerical dissipation and ad hoc anomalous resistivity driven by steady southward IMF often prod uce only quasi-steady configurations with almost stationary near-eart h neutral line. This discrepancy can be explained by the assumption that global MHD simulations significantly underestimate the reconnectio n rate in the magnetotail during substorm expansion phase. Indeed, co mparative studies of magnetic reconnection in small scale geometries demonstrated that traditional resistive MHD did not produce the fast r econnection rates observed in kinetic simulations. The major approxim ation of the traditional MHD approach is an isotropic fluid assumption) with zero off-diagonal pressure tensor components. The approximatio n, however, becomes invalid in the diffusion region around the reconn ection site where ions become unmagnetized and experience nongyrotropic behaviour. Deviation from gyrotropy in particle distribution functi on caused by kinetic effects manifests itself in nongyrotropic pressu re tensor with nonzero off-diagonal components. We use the global MHD code BATS-R-US and replace ad hoc parameters such as "critical curren t density" and "anomalous resistivity" with a physically motivated di ssipation model. The key element of the approach is to identify diffusion regions where the isotropic fluid MHD approximation is not applic able. We developed an algorithm that searches for locations of magnet otail reconnection sites. The algorithm takes advantage of block-based domain-decomposition technique employed by the BATS-R-US. Boundaries of the diffusion region around each reconnection site are estimated from the gyrotropic orbit threshold condition, where the ion gyroradius is equal to the distance to the

  5. Turbulent Reconnection Rates from Cluster Observations in the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre

    2011-01-01

    The role of turbulence in producing fast reconnection rates is an important unresolved question. Scant in situ analyses exist. We apply multiple spacecraft techniques to a case of nonlinear turbulent reconnection in the magnetosheath to test various theoretical results for turbulent reconnection rates. To date, in situ estimates of the contribution of turbulence to reconnection rates have been calculated from an effective electric field derived through linear wave theory. However, estimates of reconnection rates based on fully nonlinear turbulence theories and simulations exist that are amenable to multiple spacecraft analyses. Here we present the linear and nonlinear theories and apply some of the nonlinear rates to Cluster observations of reconnecting, turbulent current sheets in the magnetosheath. We compare the results to the net reconnection rate found from the inflow speed. Ultimately, we intend to test and compare linear and nonlinear estimates of the turbulent contribution to reconnection rates and to measure the relative contributions of turbulence and the Hall effect.

  6. Turbulent Reconnection Rates from Cluster Observations in the Magneto sheath

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre

    2011-01-01

    The role of turbulence in producing fast reconnection rates is an important unresolved question. Scant in situ analyses exist. We apply multiple spacecraft techniques to a case of nonlinear turbulent reconnection in the magnetosheath to test various theoretical results for turbulent reconnection rates. To date, in situ estimates of the contribution of turbulence to reconnection rates have been calculated from an effective electric field derived through linear wave theory. However, estimates of reconnection rates based on fully nonlinear turbulence theories and simulations exist that are amenable to multiple spacecraft analyses. Here we present the linear and nonlinear theories and apply some of the nonlinear rates to Cluster observations of reconnecting, turbulent current sheets in the magnetos heath. We compare the results to the net reconnection rate found from the inflow speed. Ultimately, we intend to test and compare linear and nonlinear estimates of the turbulent contribution to reconnection rates and to measure the relative contributions of turbulence and the Hall effect.

  7. Plasma physics. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave.

    PubMed

    Matsumoto, Y; Amano, T; Kato, T N; Hoshino, M

    2015-02-27

    Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.

  8. Stochastic electron acceleration during turbulent reconnection in strong shock waves

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yosuke

    2016-04-01

    Acceleration of charged particles is a fundamental topic in astrophysical, space and laboratory plasmas. Very high energy particles are commonly found in the astrophysical and planetary shocks, and in the energy releases of solar flares and terrestrial substorms. Evidence for relativistic particle production during such phenomena has attracted much attention concerning collisionless shock waves and magnetic reconnection, respectively, as ultimate plasma energization mechanisms. While the energy conversion proceeds macroscopically, and therefore the energy mostly flows to ions, plasma kinetic instabilities excited in a localized region have been considered to be the main electron heating and acceleration mechanisms. We present that efficient electron energization can occur in a much larger area during turbulent magnetic reconnection from the intrinsic nature of a strong collisionless shock wave. Supercomputer simulations have revealed a multiscale shock structure comprising current sheets created via an ion-scale Weibel instability and resulting energy dissipation through magnetic reconnection. A part of the upstream electrons undergoes first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. The dynamics has shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.

  9. Effects of Magnetic Reconnection Processes in the Near Magnetosphere

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Fletcher, A.

    2016-10-01

    Magnetic reconnection processes in collisionless plasmas on the Earth's dayside and nightside are shown to be capable of producing high energy populations of both ions and electrons. These particles can interact with the Radiation Belts and reach the regions close to the Earth where auroral substorms can be produced. The main theoretical issues faced in identifying plasma modes with realistic characteristics, given the scale distances and time scales, that can be responsible for the needed reconnection processes are pointed out. Solution of relevant equations obtained by a combined analytical and numerical approach. Sponsored in part by the U.S. D.O.E. and the N.S.F.

  10. Magnetic reconnection: from MHD to QED

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.

    2017-01-01

    The paper examines the prospects of using laser plasmas for studying novel regimes of the magnetic field line reconnection and charged particle acceleration. Basic features of plasma dynamics in the three-dimensional configurations relevant to the formation of current sheets in a plasma are addressed by analyzing exact self-similar solutions of the magneto-hydrodynamics and electron magneto-hydrodynamics equations. Then the magnetic field annihilation in the ultrarelativistic limit is considered, when the opposite polarity magnetic field is generated in collisionless plasma by multiple laser pulses, in the regime with a dominant contribution of the displacement current exciting a strong large-scale electric field. This field leads to the conversion of the magnetic energy into the kinetic energy of accelerated particles inside a thin current sheet. Charged particle acceleration during magnetic field reconnection is discussed when radiation friction and quantum electrodynamics effects become dominant.

  11. Gyrokinetic Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Pueschel, Moritz J.; Jenko, Frank; Told, Daniel; Buechner, Joerg

    2011-10-01

    Collisionless magnetic reconnection constitutes an effective mechanism for particle acceleration in astrophysical plasmas, in particular the solar corona. In addition, it is also of relevance to fusion experiments. Gyrokinetic simulations with the GENE code are performed to explore the temporal evolution of current sheets in two-dimensional slab geometry with a strong guide field. After successful code-code benchmarking, Extensive parameter studies are performed, covering a wide range of physical scenarios. In particular, differing findings regarding the influence of the ion temperature are explained. In its nonlinear phase, the characteristics of the reconnection process depend on whether the system is driven or decaying. Decaying turbulence sees an inverse cascade, and all energy is ultimately transferred to the largest radial scale. If driven by a Krook-type term, the system develops into a turbulent, quasi-stationary state. An important quantity to investigate in nonlinear simulations is the parallel electric field which is able to accelerate particles along the background magnetic field. The spatial structure of this field is studied for the different nonlinear cases, and its amplitude reported as a function of the drive frequency.

  12. Statistics of Reconnection-driven Turbulence

    NASA Astrophysics Data System (ADS)

    Kowal, Grzegorz; Falceta-Gonçalves, Diego A.; Lazarian, Alex; Vishniac, Ethan T.

    2017-04-01

    Magnetic reconnection is a process that changes magnetic field topology in highly conducting fluids. Within the standard Sweet–Parker model, this process would be too slow to explain observations (e.g., solar flares). In reality, the process must be ubiquitous as astrophysical fluids are magnetized and motions of fluid elements necessarily entail crossing of magnetic frozen-in field lines and magnetic reconnection. In the presence of turbulence, the reconnection is independent of microscopic plasma properties and may be much faster than previously thought, as proposed in Lazarian & Vishniac and tested in Kowal et al. However, the considered turbulence in the Lazarian–Vishniac model was imposed externally. In this work, we consider reconnection-driven magnetized turbulence in realistic three-dimensional geometry initiated by stochastic noise. We demonstrate through numerical simulations that the stochastic reconnection is able to self-generate turbulence through interactions between the reconnection outflows. We analyze the statistical properties of velocity fluctuations using power spectra and anisotropy scaling in the local reference frame, which demonstrates that the reconnection produces Kolmogorov-like turbulence, compatible with the Goldreich & Sridhar model. Anisotropy statistics are, however, strongly affected by the dynamics of flows generated by the reconnection process. Once the broad turbulent region is formed, the typical anisotropy scaling {l}\\parallel \\propto {l}\\perp 2/3 is formed, especially for high resolution models, where the broader range of scales is available. The decay of reconnection outflows to turbulent-like fluctuations, characterized by different anisotropy scalings, strongly depends on the β plasma parameter. Moreover, the estimated reconnection rates are weakly dependent on the model resolution, suggesting that no external processes are required to make reconnection fast.

  13. Simulation and Analysis of Magnetic Reconnection in an Experimental Geometry

    NASA Astrophysics Data System (ADS)

    Murphy, Nicholas Arnold; Sovinec, C. R.; Cassak, P. A.

    2009-01-01

    The process of magnetic reconnection is important in space, laboratory, and astrophysical plasmas. The Magnetic Reconnection Experiment (MRX) is designed to study controlled reconnection in collisional and marginally collisionless plasmas (Yamada et al. 1997). We present single and two-fluid simulations of MRX using the NIMROD extended MHD code (Sovinec et al. 2004). These simulations highlight the interrelationship between the small-scale physics of the reconnection layer and the global magnetic field geometry. The communication between small and large scales is dominated by pressure gradients that result from a pileup of reconnection outflow. Toroidicity leads to asymmetry in either the inflow direction or the outflow direction, depending on the experimental mode of operation. To explain effects observed during reconnection with asymmetry in the outflow direction, we present an extension of the Sweet-Parker model that takes into account asymmetric downstream pressure. This model is applicable to reconnection in coronal mass ejections, the Earth's magnetotail, and in circumstellar disks present in hot star winds. This research is supported by the NSF Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas.

  14. Gyro-induced acceleration of magnetic reconnection

    SciTech Connect

    Comisso, L.; Grasso, D.; Waelbroeck, F. L.; Borgogno, D.

    2013-09-15

    The linear and nonlinear evolution of magnetic reconnection in collisionless high-temperature plasmas with a strong guide field is analyzed on the basis of a two-dimensional gyrofluid model. The linear growth rate of the reconnecting instability is compared to analytical calculations over the whole spectrum of linearly unstable wave numbers. In the strongly unstable regime (large Δ′), the nonlinear evolution of the reconnecting instability is found to undergo two distinctive acceleration phases separated by a stall phase in which the instantaneous growth rate decreases. The first acceleration phase is caused by the formation of strong electric fields close to the X-point due to ion gyration, while the second acceleration phase is driven by the development of an open Petschek-like configuration due to both ion and electron temperature effects. Furthermore, the maximum instantaneous growth rate is found to increase dramatically over its linear value for decreasing diffusion layers. This is a consequence of the fact that the peak instantaneous growth rate becomes weakly dependent on the microscopic plasma parameters if the diffusion region thickness is sufficiently smaller than the equilibrium magnetic field scale length. When this condition is satisfied, the peak reconnection rate asymptotes to a constant value.

  15. VINETA II: A linear magnetic reconnection experiment

    SciTech Connect

    Bohlin, H. Von Stechow, A.; Rahbarnia, K.; Grulke, O.; Klinger, T.

    2014-02-15

    A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.

  16. A nonlocal fluid closure for antiparallel reconnection

    NASA Astrophysics Data System (ADS)

    Ng, Jonathan; Hakim, A.; Bhattacharjee, A.

    2016-10-01

    The integration of kinetic effects in fluid models is an important problem in global simulations of the Earth's magnetosphere and space weather modelling. In particular, it has been shown that ion kinetics play an important role in the dynamics of large reconnecting systems, and that fluid models can account of some of these effects. Here we introduce a new fluid model and closure for collisionless magnetic reconnection and more general applications. Taking moments of the kinetic equation, we evolve the full pressure tensor for electrons and ions, which includes the off diagonal terms necessary for reconnection. Kinetic effects are recovered by using a nonlocal heat flux closure, which approximates linear Landau damping in the fluid framework. Using the island coalescence problem as a test, we show how the nonlocal ion closure improves on the typical collisional closures used for ten-moment models and circumvents the need for a colllisional free parameter. Finally, we extend the closure to study guide-field reconnection and discuss the implementation of a twenty-moment model. Supported by: NSF Grant No. AGS-1338944, DOE Contract DE-AC02-09CH11466.

  17. Reconnection in thin current sheets

    NASA Astrophysics Data System (ADS)

    Tenerani, Anna; Velli, Marco; Pucci, Fulvia; Rappazzo, A. F.

    2016-05-01

    It has been widely believed that reconnection is the underlying mechanism of many explosive processes observed both in nature and laboratory, but the question of reconnection speed and initial trigger have remained mysterious. How is fast magnetic energy release triggered in high Lundquist (S) and Reynolds (R) number plasmas?It has been shown that a tearing mode instability can grow on an ideal timescale, i.e., independent from the the Lundquist number, once the current sheet thickness becomes thin enough, or rather the inverse aspect ratio a/L reaches a scale a/L~S-1/3. As such, the latter provides a natural, critical threshold for current sheets that can be formed in nature before they disrupt in a few Alfvén time units. Here we discuss the transition to fast reconnection extended to simple viscous and kinetic models and we propose a possible scenario for the transition to explosive reconnection in high-Lundquist number plasmas, that we support with fully nonlinear numerical MHD simulations of a collapsing current sheet.

  18. A Parallel Two-fluid Code for Global Magnetic Reconnection Studies

    SciTech Connect

    J.A. Breslau; S.C. Jardin

    2001-08-09

    This paper describes a new algorithm for the computation of two-dimensional resistive magnetohydrodynamic (MHD) and two-fluid studies of magnetic reconnection in plasmas. It has been implemented on several parallel platforms and shows good scalability up to 32 CPUs for reasonable problem sizes. A fixed, nonuniform rectangular mesh is used to resolve the different spatial scales in the reconnection problem. The resistive MHD version of the code uses an implicit/explicit hybrid method, while the two-fluid version uses an alternating-direction implicit (ADI) method. The technique has proven useful for comparing several different theories of collisional and collisionless reconnection.

  19. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  20. Three-dimensional Spontaneous Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey

    2017-01-01

    Magnetic reconnection is best known from observations of the Sun where it causes solar flares. Observations estimate the reconnection rate as a small, but non-negligible fraction of the Alfvén speed, so-called fast reconnection. Until recently, the prevailing pictures of reconnection were either of resistivity or plasma microscopic effects, which was contradictory to the observed rates. Alternative pictures were either of reconnection due to the stochasticity of magnetic field lines in turbulence or the tearing instability of the thin current sheet. In this paper we simulate long-term three-dimensional nonlinear evolution of a thin, planar current sheet subject to a fast oblique tearing instability using direct numerical simulations of resistive-viscous magnetohydrodynamics. The late-time evolution resembles generic turbulence with a ‑5/3 power spectrum and scale-dependent anisotropy, so we conclude that the tearing-driven reconnection becomes turbulent reconnection. The turbulence is local in scale, so microscopic diffusivity should not affect large-scale quantities. This is confirmed by convergence of the reconnection rate toward ∼ 0.015{v}{{A}} with increasing Lundquist number. In this spontaneous reconnection, with mean field and without driving, the dissipation rate per unit area also converges to ∼ 0.006ρ {v}{{A}}3, and the dimensionless constants 0.015 and 0.006 are governed only by self-driven nonlinear dynamics of the sheared magnetic field. Remarkably, this also means that a thin current sheet has a universal fluid resistance depending only on its length to width ratio and to {v}{{A}}/c.

  1. How Does the Electron Dynamics Affect the Reconnection Rate in a Typical Reconnection Layer?

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2009-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  2. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    SciTech Connect

    Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin

    2009-08-11

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test

  3. Debye scale turbulence within the electron diffusion layer during magnetic reconnection

    SciTech Connect

    Jara-Almonte, J.; Ji, H.

    2014-03-15

    During collisionless, anti-parallel magnetic reconnection, the electron diffusion layer is the region of both fieldline breaking and plasma mixing. Due to the in-plane electrostatic fields associated with collisionless reconnection, the inflowing plasmas are accelerated towards the X-line and form counter-streaming beams within the unmagnetized diffusion layer. This configuration is inherently unstable to in-plane electrostatic streaming instabilities provided that there is sufficient scale separation between the Debye length λ{sub D} and the electron skin depth c/ω{sub pe}. This scale separation has hitherto not been well resolved in kinetic simulations. Using both 2D fully kinetic simulations and a simple linear model, we demonstrate that these in-plane streaming instabilities generate Debye scale turbulence within the electron diffusion layer at electron temperatures relevant to magnetic reconnection both in the magnetosphere and in laboratory experiments.

  4. Magnetopause reconnection diffusion regions resolved by the NASA Magnetospheric Multiscale mission

    NASA Astrophysics Data System (ADS)

    Chen, Li-Jen

    2016-07-01

    Our understanding of how magnetic reconnection occurs in collisionless plasmas depends highly on our ability to resolve structures of the diffusion region. Unraveling the physical processes in the diffusion region is the primary goal of the NASA mission Magnetospheric Multiscale (MMS). With its first science phase began in September, 2015, the four MMS satellites have encountered both ion and electron diffusion regions during magnetopause reconnection. We will discuss a few diffusion region events including cases with negligible and finite guide fields, and compare the results with particle-in-cell (PIC) simulations. In particular, a close comparison between particle distribution functions observed by MMS and those predicted by PIC will be made to highlight how the unprecedented high-resolution MMS measurements advance the current state-of-knowledge on collisionless reconnection.

  5. Reconnection rates in driven magnetic reconnection

    SciTech Connect

    Birn, J.; Hesse, M.

    2007-08-15

    Using resistive magnetohydrodynamic simulations, we investigate the influence of various parameters on the reconnection rate in two scenarios of magnetic reconnection. The first scenario consists of the ''Newton Challenge'' problem [Birn et al., Geophys. Res. Lett. 32, L06105 (2005)]. In this scenario, reconnection is initiated in a plane Harris-type current sheet by temporally limited, spatially varying, inflow of magnetic flux. The second scenario consists of the well-studied island coalescence problem. This scenario starts from an equilibrium containing periodic magnetic islands with parallel current filaments. Due to the attraction between parallel currents, pairs of islands may move toward each other, forming a current sheet in between. This leads to reconnection and ultimately the merging of islands. In either scenario, magnetic reconnection may be considered as being driven by external or internal forcing. Consistent with that interpretation we find that in either case the maximum reconnection rate (electric field) depends approximately linearly on the maximum driving electric field, when other parameters remain unchanged. However, this can be understood mostly from the change of characteristic background parameters; particularly, the increase of the magnetic field strength in the inflow region due to the added magnetic flux. This interpretation is consistent with the result that the maximum of the reconnection electric field is assumed significantly later (tens of Alfven times) than the maximum driving and typically does not match the instantaneous driving electric field. Furthermore, the reconnection rate also depends on the resistivity and the time scale of the driving.

  6. RESISTIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-20

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvenic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the 'diamond-chain' structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  7. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  8. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvénic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  9. Dynamic Response of Magnetic Reconnection Due to Current Sheet Variability

    NASA Astrophysics Data System (ADS)

    George, D. E.; Jahn, J. M.; Burch, J. L.; Hesse, M.; Pollock, C. J.

    2014-12-01

    Magnetic reconnection is a process which regulates the interaction between regions of magnetized plasma. While many factors have an impact on the evolution of this process, there still remains a lack of understanding of the key behaviors involved in the triggering of fast reconnection. Despite an abundance of in-situ measurements, indicating the high degree of variability in the thickness, density and composition along the current sheet, no simulation studies exist which account for such current sheet variations. 2D and 3D simulations have a periodic boundary in the dimension along the current sheet and so tend to neglect these variations in the current sheet originating external to the modeled reconnection region. Here we focus on the effects on reconnection due to the variability in the thickness and density of the current sheet. Using 2.5D kinetic simulations of 2-species plasma, we isolate and explore the dynamic effects on reconnection associated with variations in the current sheet originating externally to the reconnection region. While periodic boundary conditions are still used, in the direction along the current sheet, a step-change perturbation in thickness or density of the current sheet is introduced once a stable reconnection rate is reached. The dynamic response of the overall system, after introducing the perturbation, is then evaluated, with a focus on the reconnection rate. When the reconnection rate is slowed significantly over time, loading of the inflow region occurs (a build-up of plasma and magnetic energy/pressure. This state is indicated by an asymptotic behavior in the reconnection rate over time. If a sudden variation in the current sheet is introduced under these conditions, a resultant triggering of fast reconnection may occur, which could lead to an episode of fast reconnection, saw-tooth-crash condition or even act as a trigger for sub-storms.

  10. High-Frequency Fluctuations During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Daughton, W. S.; Roytershteyn, V.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2014-12-01

    During collisionless reconnection, the decoupling of the field from the plasma is known to occur only within the localized ion and electron diffusion regions, however predictions from fully kinetic simulations do not agree with experimental observations on the size of the electron diffusion region, implying differing reconnection mechanisms. Previous experiments, along with 2D and 3D simulations, have conclusively shown that this discrepancy cannot be explained by either classical collisions or Lower-Hybrid Drift Instability (Roytershtyn 2010, 2013). Due to computational limitations, however, previous simulations were constrained to have minimal scale separation between the electron skin depth and the Debye length (de/λD ~ 10), much smaller than in experiments (de/λD ~ 300). This lack of scale-separation can drastically modify the electrostatic microphysics within the diffusion layer. Using 3D, fully explicit kinetic simulations with a realistic and unprecedentedly large separation between the Debye length and the electron skin depth, de/λD = 64, we show that high frequency electrostatic waves (ω >> ωLH) can exist within the electron diffusion region. These waves generate small-scale turbulence within the electron diffusion region which acts to broaden the layer. Anomalous resistivity is also generated by the turbulence and significantly modifies the force balance. In addition to simulation results, initial experimental measurements of high frequency fluctuations (electrostatic and electromagnetic, f ≤ 1 GHz) in the Magnetic Reconnection Experiment (MRX) will be presented.

  11. Magnetic diffusion and ion nonlinear dynamics in magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, S.; Shinohara, I.; Nagai, T.; Wada, T.

    2013-12-01

    Magnetic reconnection is a fundamental process in many plasma systems, ranging from laboratory and solar-terrestrial environments to extreme astrophysical settings. The reconnection process is controlled by magnetic dissipation physics in a small-scale region near the reconnection point (X-line), and therefore the structure of the reconnection site is of strong interest. According to the standard picture of collisionless reconnection, the X-line is surrounded by a compact electron diffusion region and by an outer ion diffusion region. While the electron region has been extensively studied, much less is known about the ion region. In this work, we examine key aspects of the ion region in magnetic reconnection. First, we evaluate the ''diffusion'' of magnetic field lines, going back to the topology theorems. Unlike in the MHD, the idealness, the frozen-in, magnetic diffusion, and the energy dissiation can be all different in a kinetic plasma. We will apply these concepts to the reconnection site in two-dimensional particle-in-cell (PIC) simulations. Importantly, in the outer part of the ion region, even though the ion ideal condition is violated, the magnetic fields are frozen to plasma fluids. This raises a serious question to the widespread definition of the ion diffusion region, based on the ion nonidealness. We further examine the ion velocity distribution function in the same region. The distribution function contains multiple populations such as global Speiser ions, local Speiser ions, and trapped ions. The particle motion of the local Speiser ions in an appropriately rotated frame explains the plasma nonidealness. The trapped ions are the first demonstration of the regular orbits in Chen & Palmadesso (1986), in self-consistent PIC simulations. They would be observational signatures in the ion current layer near reconnection sites.

  12. Experimental study of ion heating and acceleration during magnetic reconnection

    SciTech Connect

    Hsu, S.C.

    2000-01-28

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  13. Observations and models of magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Barta, Miroslav

    2015-08-01

    Magnetic reconnection is now almost unanimously considered to be a key plasma process for energy release in solar and stellar flares. Recent decade have seen rapid development in the theory, simulations and searching for observational evidences of magnetic reconnection being in action in the core of flares. Modern modeling approach involves many realistic aspects of magnetic reconnection such as intrinsically 3D nature of the process and, namely, its highly dynamic character connected with violent formation of plasmoids at many scales. The cascade of plasmoid formation represents natural process of fast, turbulent energy transfer to the kinetic dissipation scale. This concept, revealed by numerical simulations, has found its ground in the theory of (ideal) plasmoid instability in current layers with high aspect ratio. The plasmoid dominated reconnection regime is capable to account for many puzzling dilemmas in the flare physics ranging from the observation-demanded energy release rate vs. standard reconnection-regime timescales, observed organized large-scale structures vs. signatures of fragmented energy release etc. The talk aims at reviewing recent theoretical and simulation development in this direction and observational support for the concept of plasmoid-driven reconnection cascade namely in solar flares.

  14. Self-generated Turbulence in Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Oishi, Jeffrey S.; Mac Low, Mordecai-Mark; Collins, David C.; Tamura, Moeko

    2015-06-01

    Classical Sweet-Parker models of reconnection predict that reconnection rates depend inversely on the resistivity, usually parameterized using the dimensionless Lundquist number (S). We describe magnetohydrodynamic (MHD) simulations using a static, nested grid that show the development of a three-dimensional (3D) instability in the plane of a current sheet between reversing field lines without a guide field. The instability leads to rapid reconnection of magnetic field lines at a rate independent of S over at least the range 3.2× {{10}3}≲ S≲ 3.2× {{10}5} resolved by the simulations. We find that this instability occurs even for cases with S≲ {{10}4} that in our models appear stable to the recently described, two-dimensional, plasmoid instability. Our results suggest that 3D, MHD processes alone produce fast (resistivity independent) reconnection without recourse to kinetic effects or external turbulence. The unstable reconnection layers provide a self-consistent environment in which the extensively studied turbulent reconnection process can occur.

  15. What Can We Learn about Magnetotail Reconnection from 2D PIC Harris-Sheet Simulations?

    NASA Astrophysics Data System (ADS)

    Goldman, M. V.; Newman, D. L.; Lapenta, G.

    2016-03-01

    The Magnetosphere Multiscale Mission (MMS) will provide the first opportunity to probe electron-scale physics during magnetic reconnection in Earth's magnetopause and magnetotail. This article will address only tail reconnection—as a non-steady-state process in which the first reconnected field lines advance away from the x-point in flux pile-up fronts directed Earthward and anti-Earthward. An up-to-date microscopic physical picture of electron and ion-scale collisionless tail reconnection processes is presented based on 2-D Particle-In-Cell (PIC) simulations initiated from a Harris current sheet and on Cluster and Themis measurements of tail reconnection. The successes and limitations of simulations when compared to measured reconnection are addressed in detail. The main focus is on particle and field diffusion region signatures in the tail reconnection geometry. The interpretation of these signatures is vital to enable spacecraft to identify physically significant reconnection events, to trigger meaningful data transfer from MMS to Earth and to construct a useful overall physical picture of tail reconnection. New simulation results and theoretical interpretations are presented for energy transport of particles and fields, for the size and shape of electron and ion diffusion regions, for processes occurring near the fronts and for the j × B (Hall) electric field.

  16. Quantifying the tailward motion of reconnecting flux ropes at magnetopauses of Earth and other planets

    NASA Astrophysics Data System (ADS)

    Cassak, P.; Doss, C.; Palmroth, M.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Dorelli, J.

    2015-12-01

    Flux ropes caused by magnetic reconnection commonly form at the dayside magnetopauses of Earth and other planets, such as Mercury and Jupiter. They are convected tailward due to their interaction with the solar wind and as the result of reconnection. The leading model for their tailward propagation speed at Earth's magnetopause has been described using boundary layer physics (Cowley and Owen, Planet. Space Sci., 37, 1461, 1989). We revisit this topic, noting that during times when the reconnection at both X-lines bracketing the flux ropes remain active, there should be consistency with the scaling laws of asymmetric magnetic reconnection with a flow shear. The convection speed of an isolated reconnecting X-line as a function of arbitrary upstream plasma parameters, including the reconnecting magnetic fields, densities, and upstream flow in the plane of the fields, was recently calculated analytically and tested with two-fluid simulations (Doss et al., J. Geophys. Res., submitted). Here, we present fully electromagnetic kinetic particle-in-cell simulations of local asymmetric reconnection with a flow shear that confirm the prediction in collisionless plasmas relevant to planetary magnetospheres. It is notable that the X-line convects even for sub-Alfvenic flow shear and can reconnect even for flow speeds exceeding twice the magnetosheath Alfven speed, which counters previous models. The application of these results for flux rope motion in global magnetospheric simulations of Earth is discussed, as are applications to the magnetospheres of other planets.

  17. A New Electric Field in Asymmetric Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Malakit, K.; Shay, M. A.; Cassak, P.; Ruffolo, D. J.

    2013-12-01

    Magnetic reconnection is an important plasma process that drives the dynamics of the plasma in the magnetosphere and plays a crucial role in the interaction between magnetospheric and magnetosheath plasma. It has been shown that when a reconnection occurs in a collisionless plasma, it exhibits the Hall electric field, an in-plane electric field structure pointing toward the X-line. In this work, we show that when the reconnection has asymmetric inflow conditions such as the reconnection at the day-side magnetopause, a new in-plane electric field structure can exist. This electric field points away from the X-line and is distinct from the known Hall electric field. We argue that the origin of the electric field is associated with the physics of finite Larmor radius. A theory and predictions of the electric field properties are presented and backed up by results from fully kinetic particle-in-cell simulations of asymmetric reconnection with various inflow conditions. Under normal day-side reconnection inflow conditions, the electric field is expected to occur on the magnetospheric side of the X-line pointing Earthward. Hence, it has a potential to be used as a signature for satellites, such as the upcoming Magnetospheric Multi-Scale (MMS) mission, to locate the reconnection sites at the day-side magnetopause. This research was supported by the postdoctoral research sponsorship of Mahidol University (KM), NSF grants ATM-0645271 - Career Award (MAS) and AGS-0953463 (PAC), NASA grants NNX08A083G - MMS IDS, NNX11AD69G, and NNX13AD72G (MAS) and NNX10AN08A (PAC), and the Thailand Research Fund (DR).

  18. Transition in Electron Physics of Magnetic Reconnection in Weakly Collisional Plasma

    NASA Astrophysics Data System (ADS)

    Le, A.; Roytershteyn, V.; Karimabadi, H.; Daughton, W. S.; Egedal, J.; Forest, C.

    2013-12-01

    Using self-consistent fully kinetic simulations with a Monte-Carlo treatment of the Coulomb collision operator, we explore the transition between collisional and kinetic regimes of magnetic reconnection in high-Lundquist-number current sheets. Recent research in collisionless reconnection has shown that electron kinetic physics plays a key role in the evolution. Large-scale electron current sheets may form, leading to secondary island formation and turbulent flux rope interactions in 3D. The new collisional simulations demonstrate how increasing collisionality modifies or eliminates these electron structures in the kinetic regimes. Additional basic questions that are addressed include how the reconnection rate and the release of magnetic energy into electrons and ions vary with collisionality. The numerical study provides insight into reconnection in dense regions of the solar corona, the solar wind, and upcoming laboratory experiments at MRX (Princeton) and MPDX (UW-Madison). The implications of these results for studies of turbulence dissipation in weakly collisional plasmas are discussed.

  19. Spontaneous three-dimensional magnetic reconnection in merging toroidal plasma experiment

    SciTech Connect

    Ii, Toru; Ono, Yasushi

    2013-01-15

    We investigated a new phenomenon of three-dimensional (3D) magnetic reconnection in TS-4 torus plasma merging experiments by directly measuring the 3D structures of the current sheet. Removal of all toroidal asymmetry of the device reveals that a strong external drive of reconnection inflow increases the toroidal asymmetry of the current sheet only during the reconnection. This spontaneous 3D deformation of the current sheet increases the reconnection outflow as well as the reconnection electric field, probably because local compression of the current sheet to a thickness less than the ion gyroradius triggers its strong dissipation of the current sheet, responsible for the onset of 3D reconnection. These mechanisms indicate that the 3D reconnection is a newly observed spontaneous process of fast reconnection.

  20. Observed Aspects of Reconnection in Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    2010-01-01

    Signatures of reconnection in major CME (coronal mass ejection)/flare eruptions and in coronal X-ray jets are illustrated and interpreted. The signatures are magnetic field lines and their feet that brighten in flare emission. CME/flare eruptions are magnetic explosions in which: 1. The field that erupts is initially a closed arcade. 2. At eruption onset, most of the free magnetic energy to be released is not stored in field bracketing a current sheet, but in sheared field in the core of the arcade. 3. The sheared core field erupts by a process that from its start or soon after involves fast tether-cutting reconnection at an initially small current sheet low in the sheared core field. If the arcade has oppositely-directed field over it, the eruption process from its start or soon after also involves fast breakout reconnection at an initially small current sheet between the arcade and the overarching field. These aspects are shown by the small area of the bright field lines and foot-point flare ribbons in the onset of the eruption. 4. At either small current sheet, the fast reconnection progressively unleashes the erupting core field to erupt with progressively greater force. In turn, the erupting core field drives the current sheet to become progressively larger and to undergo progressively greater fast reconnection in the explosive phase of the eruption, and the flare arcade and ribbons grow to become comparable to the pre-eruption arcade in lateral extent. In coronal X-ray jets: 1. The magnetic energy released in the jet is built up by the emergence of a magnetic arcade into surrounding unipolar "open" field. 2. A simple jet is produced when a burst of reconnection occurs at the current sheet between the arcade and the open field. This produces a bright reconnection jet and a bright reconnection arcade that are both much smaller in diameter that the driving arcade. 3. A more complex jet is produced when the arcade has a sheared core field and undergoes an

  1. Kinetic simulation of magnetic reconnection in the presence of shear

    SciTech Connect

    Francis, G.E.; Hewett, D.W.; Max, C.E.

    1988-09-05

    The basic physical processes associated with collisionless magnetic reconnection are investigated using the implicit PIC code AVANTI. The code is based on a 2.5-D fully electromagnetic direct implicit algorithm which has proven stable for arbitrary time step. This stability makes it possible to separate out the respective roles of the highly magnetized electrons and the un-magnetized ions for large ion-electron mass ratios. It is found that the inclusion of a guide magnetic field (magnetic shear) severely slows the initial stages of reconnection and damps out the electrostatic ringing if local values of the guide field are above a threshold determined by questions of electron mobility. 9 refs., 6 figs.

  2. How Does the Electron Dynamics Affect the Global Reconnection Rate

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2012-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  3. Nonlinear regimes of forced magnetic reconnection

    SciTech Connect

    Vekstein, G.; Kusano, K.

    2015-09-15

    This letter presents a self-consistent description of nonlinear forced magnetic reconnection in Taylor's model of this process. If external boundary perturbation is strong enough, nonlinearity in the current sheet evolution becomes important before resistive effects come into play. This terminates the current sheet shrinking that takes place at the linear stage and brings about its nonlinear equilibrium with a finite thickness. Then, in theory, this equilibrium is destroyed by a finite plasma resistivity during the skin-time, and further reconnection proceeds in the Rutherford regime. However, realization of such a scenario is unlikely because of the plasmoid instability, which is fast enough to develop before the transition to the Rutherford phase occurs. The suggested analytical theory is entirely different from all previous studies and provides proper interpretation of the presently available numerical simulations of nonlinear forced magnetic reconnection.

  4. Formation of Plasmoid Chains in Magnetic Reconnection

    SciTech Connect

    Samtaney, R.; Loureiro, N. F.; Uzdensky, D. A.; Schekochihin, A. A.; Cowley, S. C.

    2009-09-09

    A detailed numerical study of magnetic reconnection in resistive MHD for very large, previously inaccessible, Lundquist numbers (104 ≤ S ≤ 108) is reported. Large-aspect-ratio Sweet-Parker current sheets are shown to be unstable to super-Alfvenically fast formation of plasmoid (magnetic-island) chains. The plasmoid number scales as S3/8 and the instability growth rate in the linear stage as S1/4, in agreement with the theory by Loureiro et al. [Phys. Plasmas 14, 100703 (2007)]. In the nonlinear regime, plasmoids continue to grow faster than they are ejected and completely disrupt the reconnection layer. These results suggest that high-Lundquist-number reconnection is inherently time-dependent and hence call for a substantial revision of the standard Sweet-Parker quasistationary picture for S>104.

  5. Implications of RHESSI Flare Observations for Magnetic Reconnection Models

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Sui, Linhui; Dennis, Brian R.

    2004-01-01

    The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of the 2002 April 15 solar flare and related flares provide compelling evidence for the formation of a large-scale, reconnecting current sheet in at least some flares. We describe the observed evolution of the April 15 flare in terms of magnetic reconnection models. We argue that the flare most likely evolved through magnetic geometries associated with super-slow reconnection (early rise phase), fast reconnection (impulsive phase), and slow reconnection (gradual phase). We also provide evidence for X-ray brightenings within the evolving current sheet, possibly induced by the tearing mode instability. This work was supported in part by the RHESSI Program and NASA's Sun-Earth Connection Program. This work would not have been possible without the dedicated efforts of the entire RHESSI team.

  6. Small-Scale Magnetic Reconnection at Equatorial Coronal Hole Boundaries

    NASA Astrophysics Data System (ADS)

    Lamb, Derek; DeForest, C. E.

    2011-05-01

    Coronal holes have long been known to be the source of the fast solar wind at both high and low latitudes. The equatorial extensions of polar coronal holes have long been assumed to have substantial magnetic reconnection at their boundaries, because they rotate more rigidly than the underlying photosphere. However, evidence for this reconnection has been sparse until very recently. We present some evidence that reconnection due to the evolution of small-scale magnetic fields may be sufficient to drive coronal hole boundary evolution. We hypothesize that a bias in the direction of that reconnection is sufficient to give equatorial coronal holes their rigid rotation. We discuss the prospects for investigating this using FLUX, a reconnection-controlled coronal MHD simulation framework. This work was funded by the NASA SHP-GI program.

  7. Expansion techniques for collisionless stellar dynamical simulations

    SciTech Connect

    Meiron, Yohai; Li, Baile; Holley-Bockelmann, Kelly; Spurzem, Rainer

    2014-09-10

    We present graphics processing unit (GPU) implementations of two fast force calculation methods based on series expansions of the Poisson equation. One method is the self-consistent field (SCF) method, which is a Fourier-like expansion of the density field in some basis set; the other method is the multipole expansion (MEX) method, which is a Taylor-like expansion of the Green's function. MEX, which has been advocated in the past, has not gained as much popularity as SCF. Both are particle-field methods and optimized for collisionless galactic dynamics, but while SCF is a 'pure' expansion, MEX is an expansion in just the angular part; thus, MEX is capable of capturing radial structure easily, while SCF needs a large number of radial terms. We show that despite the expansion bias, these methods are more accurate than direct techniques for the same number of particles. The performance of our GPU code, which we call ETICS, is profiled and compared to a CPU implementation. On the tested GPU hardware, a full force calculation for one million particles took ∼0.1 s (depending on expansion cutoff), making simulations with as many as 10{sup 8} particles fast for a comparatively small number of nodes.

  8. Entropy conservation in simulations of magnetic reconnection

    SciTech Connect

    Birn, J.; Hesse, M.; Schindler, K.

    2006-09-15

    Entropy and mass conservation are investigated for the dynamic field evolution associated with fast magnetic reconnection, based on the 'Newton Challenge' problem [Birn et al., Geophys. Res. Lett. 32, L06105 (2005)]. In this problem, the formation of a thin current sheet and magnetic reconnection are initiated in a plane Harris-type current sheet by temporally limited, spatially varying, inflow of magnetic flux. Using resistive magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations, specifically the entropy and mass integrated along the magnetic flux tubes are compared between the simulations. In the MHD simulation these should be exactly conserved quantities, when slippage and Ohmic dissipation are negligible. It is shown that there is very good agreement between the conservation of these quantities in the two simulation approaches, despite the effects of dissipation, provided that the resistivity in the MHD simulation is strongly localized. This demonstrates that dissipation is highly localized in the PIC simulation also, and that heat flux across magnetic flux tubes has negligible effect as well, so that the entropy increase on a full flux tube remains small even during reconnection. The mass conservation also implies that the frozen-in flux condition of ideal MHD is a good integral approximation outside the reconnection site. This result lends support for using the entropy-conserving MHD approach not only before and after reconnection but even as a constraint connecting the two phases.

  9. Fluctuation dynamics in reconnecting current sheets

    NASA Astrophysics Data System (ADS)

    von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas

    2015-11-01

    During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.

  10. Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston

    SciTech Connect

    Schaeffer, D. B.; Everson, E. T.; Constantin, C. G.; Bondarenko, A. S.; Morton, L. A.; Niemann, C.; Winske, D.; Flippo, K. A.; Montgomery, D. S.; Gaillard, S. A.

    2012-07-15

    We present experiments on the Trident laser facility at Los Alamos National Laboratory which demonstrate key elements in the production of laser-driven, magnetized, laboratory-scaled astrophysical collisionless shocks. These include the creation of a novel magnetic piston to couple laser energy to a background plasma and the generation of a collisionless shock precursor. We also observe evidence of decoupling between a laser-driven fast ion population and a background plasma, in contrast to the coupling of laser-ablated slow ions with background ions through the magnetic piston. 2D hybrid simulations further support these developments and show the coupling of the slow to ambient ions, the formation of a magnetic and density compression pulses consistent with a collisionless shock, and the decoupling of the fast ions.

  11. "Smoking-Gun" Observables of Magnetic Reconnection: Spatiotemporal Evolution of Electron Characteristics Throughout the Diffusion Region

    NASA Astrophysics Data System (ADS)

    Shuster, Jason R.

    How does magnetic reconnection happen in a collisionless plasma? Knowledge of electron-scale dynamics is necessary to answer this outstanding question of plasma physics. Based on fully kinetic particle-in-cell (PIC) simulations of symmetric reconnection, the spatiotemporal evolution of velocity distribution functions in and around the electron diffusion region (EDR) elucidates how electrons are accelerated and heated by the cooperating reconnection electric and normal magnetic fields. The discrete, triangular structures characteristic of EDR distributions rotate and gyrotropize in velocity space as electrons remagnetize, forming multicomponent arc and ring structures. Further downstream, exhaust electrons are found to exhibit highly structured, time-dependent anisotropies that can be used to infer the temporal stage of reconnection. Cluster spacecraft measurements from a magnetotail reconnection exhaust region agree with these simulation predictions. In PIC simulations of asymmetric reconnection, EDR distributions acquire crescent-shaped populations, indicative of accelerated magnetosheath electrons mixing with electrons of magnetospheric origin. NASA's successfully launched Magnetospheric Multiscale (MMS) mission caught an EDR at the magnetopause and confirmed the signature crescent electron populations. A virtual spacecraft trajectory through the PIC domain is determined quantitatively by inputting MMS magnetic field measurements into an algorithm that outputs a trajectory along which the input measurements are matched. The crescent structures observed by MMS in the EDR are consistent with the simulation distributions at the corresponding time along the computed trajectory. This work demonstrates that electron characteristics can serve as "smoking-gun" observables of the EDR at the heart of the magnetic reconnection mystery.

  12. Opportunities in TREX, a New Terrestrial Reconnection EXperiment.

    NASA Astrophysics Data System (ADS)

    Egedal, J.; Olson, J.; Endrizzi, D.; Forest, C.

    2014-12-01

    In collisionless plasmas the electron diffusion region lies in different regimes depending on the pressure anisotropy, which is regulated by the properties of thermal electron orbits. In the presence of a guide magnetic field to magnetize the electrons, large scale current layers form extending to the system size [1]. In geometries with low upstream electron pressure the heating of the electrons becomes significant and relevant to observations in the magnetotail [2]. Utilizing the Madison Plasma Dynamo Experiment (MPDX) facility at UW-Madison a new reconnection experiment is now being implemented to address the role of electron pressure anisotropy in reconnection. This requires an experiment that accesses plasmas with much lower collisionality and lower plasma beta than are available in present experiments. The new experiment will be a major addition to the MPDX facility, including an insert with internal coils to drive reconnection. The insert is designed to supplement the ongoing dynamo experiments and to permit flexible reconfiguration of the magnetic geometry for a range of reconnection studies. [1] Le A et el., PRL 110, 135004 (2013). [2] Egedal J et al., Nature Physics, 8, 321 (2012).

  13. The Onset of Magnetic Reconnection in Tail-Like Equilibria

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Kuznetsova, Masha

    1999-01-01

    Magnetic reconnection is a fundamental mode of dynamics in the magnetotail, and is recognized as the basic mechanisms converting stored magnetic energy into kinetic energy of plasma particles. The effects of the reconnection process are well documented by spacecraft observations of plasmoids in the distant magnetotail, or bursty bulk flows, and magnetic field dipolarizations in the near Earth region. Theoretical and numerical analyses have, in recent years, shed new light on the way reconnection operates, and, in particular, which microscopic mechanism supports the dissipative electric field in the associated diffusion region. Despite this progress, however. the question of how magnetic reconnection initiates in a tail-like magnetic field with finite flux threading the current i.sheet remains unanswered. Instead, theoretical studies supported by numerical simulations support the point-of-view that such plasma and current sheets are stable with respect to collisionless tearing mode. In this paper, we will further investigate this conclusion, with emphasis on the question whether it remains valid in plasma sheets with embedded thin current sheets. For this purpose, we perform particle-in-cell simulations of the driven formation of thin current sheets, and their subsequent evolution either to equilibrium or to instability of a tearing-type mode. In the latter case we will pay particular attention to the nature of the electric field contribution which unmagnetizes the electrons.

  14. Plasma Compression in Magnetic Reconnection Regions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Provornikova, E.; Laming, J. M.; Lukin, V. S.

    2016-07-01

    It has been proposed that particles bouncing between magnetized flows converging in a reconnection region can be accelerated by the first-order Fermi mechanism. Analytical considerations of this mechanism have shown that the spectral index of accelerated particles is related to the total plasma compression within the reconnection region, similarly to the case of the diffusive shock acceleration mechanism. As a first step to investigate the efficiency of Fermi acceleration in reconnection regions in producing hard energy spectra of particles in the solar corona, we explore the degree of plasma compression that can be achieved at reconnection sites. In particular, we aim to determine the conditions for the strong compressions to form. Using a two-dimensional resistive MHD numerical model, we consider a set of magnetic field configurations where magnetic reconnection can occur, including a Harris current sheet, a force-free current sheet, and two merging flux ropes. Plasma parameters are taken to be characteristic of the solar corona. Numerical simulations show that strong plasma compressions (≥4) in the reconnection regions can form when the plasma heating due to reconnection is efficiently removed by fast thermal conduction or the radiative cooling process. The radiative cooling process that is negligible in the typical 1 MK corona can play an important role in the low corona/transition region. It is found that plasma compression is expected to be strongest in low-beta plasma β ˜ 0.01-0.07 at reconnection magnetic nulls.

  15. Shocks produced by impulsively driven reconnection. [during solar flares or emergence of magnetic flux from photosphere into corona

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.

    1988-01-01

    Shock waves produced by impulsively driven reconnection are investigated by carrying out numerical experiments using two-dimensional magnetohydrodynamics. The results of the numerical experiments imply that there are three different categories of shocks associated with impulsively driven reconnection: (1) fast-mode, blast waves which rapidly propagate away from the reconnection site; (2) slow-mode, Petschek shocks which are attached to the reconnection site; and (3) fast-mode, termination shocks which terminate the plasma jets flowing out from the reconnection site.

  16. THEMIS Sees Magnetic Reconnection

    NASA Video Gallery

    THEMIS observations confirm for the first time that magnetic reconnection in the magnetotail triggers the onset of substorms. Substorms are the sudden violent eruptions of space weather that releas...

  17. Earth Reconnect -- July 2012

    NASA Video Gallery

    A visualization of Earth's magnetosphere on July 15-16, 2012, shows how constant magnetic reconnection caused by an arriving coronal mass ejection, or CME, from the sun disrupted the magnetosphere,...

  18. Model of Hall Reconnection

    SciTech Connect

    Malyshkin, Leonid M.

    2008-11-28

    The rate of quasistationary, two-dimensional magnetic reconnection is calculated in the framework of incompressible Hall magnetohydrodynamics, which includes the Hall and electron pressure terms in Ohm's law. The Hall-magnetohydrodynamics equations are solved in a local region across the reconnection electron layer, including only the upstream region and the layer center. In the case when the ion inertial length d{sub i} is larger than the Sweet-Parker reconnection layer thickness, the dimensionless reconnection rate is found to be independent of the electrical resistivity and equal to d{sub i}/L, where L is the scale length of the external magnetic field in the upstream region outside the electron layer and the ion layer thickness is found to be d{sub i}.

  19. Model of Hall reconnection.

    PubMed

    Malyshkin, Leonid M

    2008-11-28

    The rate of quasistationary, two-dimensional magnetic reconnection is calculated in the framework of incompressible Hall magnetohydrodynamics, which includes the Hall and electron pressure terms in Ohm's law. The Hall-magnetohydrodynamics equations are solved in a local region across the reconnection electron layer, including only the upstream region and the layer center. In the case when the ion inertial length di is larger than the Sweet-Parker reconnection layer thickness, the dimensionless reconnection rate is found to be independent of the electrical resistivity and equal to di/L, where L is the scale length of the external magnetic field in the upstream region outside the electron layer and the ion layer thickness is found to be di.

  20. Time Scales for Energy Release in Hall Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Rudakov, L. I.

    2004-05-01

    We present a study of the time scales for energy release in 2D Hall magnetic reconnection. We use the NRL Hall MHD code VooDoo for this study. We consider a 2D reversed field current layer with a magnetic perturbation that initiates the reconnection process. We use boundary conditions that allow inflow and outflow (i.e., not periodic) and let the system reach a steady state. We find that the system goes through three stages: a relatively long current layer thinning process, a fast reconnection phase, and a final steady state phase. We define the time scale for energy release as the fast reconnection period: from onset to steady state. Preliminary results indicate that the time for energy release scales as the initial thickness of the current layer. We apply these results to the magnetotail and magnetopause. Research supported by NASA and ONR.

  1. Relativistic magnetic reconnection driven by intense lasers in preformed plasma

    NASA Astrophysics Data System (ADS)

    Campbell, Paul; Raymond, A.; McKelvey, A.; Maksimchuk, A.; Nees, J.; Yanovsky, V.; Krushelnick, K.; Dong, C. F.; Fox, W.; Zulick, C.; Wei, M. S.; Chen, H.; Chvykov, V.; Mileham, C.; Nilson, P. M.; Stoeckl, C.; Thomas, A. G. R.; Willingale, L.

    2016-10-01

    Experiments were performed with the OMEGA EP laser system focusing the two short pulse beams to high intensities on foil targets. Relativistic electrons drive fast reconnection self-generated magnetic fields. To investigate the effects of a preformed plasma on this relativistic magnetic reconnection, a long pulse UV beam was used to ablate the front surface of layered targets. The density and reconnection dynamics in the preformed copper or CH plasma were diagnosed with a 4 ω optical probe. A spherically bent crystal imaged characteristic copper Kα emission induced by fast electrons accelerated into the target in the reconnection diffusion region. This work was supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0002727.

  2. Explosive Turbulent Magnetic Reconnection: A New Approach of MHD-Turbulent Simulation

    NASA Astrophysics Data System (ADS)

    Hoshino, Masahiro; Yokoi, Nobumitsu; Higashimori, Katsuaki

    2013-04-01

    Turbulent flows are often observed in association with magnetic reconnection in space and astrophysical plasmas, and it is often hypothesized that the turbulence can contribute to the fast magnetic reconnection through the enhancement of magnetic dissipation. In this presentation, we demonstrate that an explosive turbulent reconnection can happen by using a new turbulent MHD simulation, in which the evolution of the turbulent transport coefficients are self-consistently solved together with the standard MHD equations. In our model, the turbulent electromotive force defined by the correlation of turbulent fluctuations between v and B is added to the Ohm's law. We discuss that the level of turbulent can control the topology of reconnection, namely the transition from the Sweet-Parker reconnection to the Petscheck reconnection occurs when the level of fluctuations becomes of order of the ambient physical quantities, and show that the growth of the turbulent Petscheck reconnection becomes much faster than the conventional one.

  3. Numerical simulations of multiple X-line reconnection in the dayside magnetopause

    NASA Astrophysics Data System (ADS)

    Kondoh, K.

    2015-12-01

    We study about the magnetic reconnection evolutions in the dayside geomagnetopause using the MHD numerical simulations on the basis of the spontaneous fast magnetic reconnection model. In this spontaneous reconnection model, the diffusion region is localized and the magnetic reconnection drastically evolves by the positive feedback between the growths of the macroscopic plasma flow and the microscopic resistivity. The localized diffusion region eventually becomes longer in the directions of the reconnection outflow. Then, the secondary reconnection occurs to divide into the two diffusion regions before forming the Sweet-Parker type diffusion region. In this term, background sheath flow helps stretching of the diffusion region and causes the difference of the strength of the reconnection rate at the each x-line.

  4. Generation of collisionless shock in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2015-08-01

    Collisionless shocks are ubiquitous in astrophysical environments and are tightly connected with magnetic-field amplification and particle acceleration. The fast progress in high-power laser technology is bringing the study of high Mach number shocks into the realm of laboratory plasmas, where in situ measurements can be made helping us understand the fundamental kinetic processes behind shocks. I will discuss the recent progress in laser-driven shock experiments at state-of-the-art facilities like NIF and Omega and how these results, together with ab initio massively parallel simulations, can impact our understanding of magnetic field amplification and particle acceleration in astrophysical plasmas.

  5. Collisionless microinstabilities in stellarators. II. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Proll, J. H. E.; Xanthopoulos, P.; Helander, P.

    2013-12-01

    Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations.

  6. Impact of Heavy Ions on Reconnection Rate and Dipolarization Fronts during Magnetotail Reconnection

    NASA Astrophysics Data System (ADS)

    Liang, H.; Ashour-Abdalla, M.; Lapenta, G.; Walker, R. J.

    2015-12-01

    Spacecraft observations show that near a magnetotail X-line, the concentration of oxygen (O+) ions varies greatly between storm-time and non-storm substorms. While O+ is a minor ion species during the non-storm substorms, it can become a major ion species during some storm-time substorms. It is important to understand how such a significant amount of O+ influences the onset of reconnection, the reconnection rate and the subsequent energy transfer at propagating dipolarization fronts (or reconnection jet fronts). In this work, we have studied the effects of O+ on the reconnection rate and DFs during magnetotail reconnection. We used a 2.5D implicit Particle-in-Cell simulation in a 2D Harris current sheet in the presence of H+ and O+ ions. We carried out a simulation with equal number densities of O+ and H+ (O+ Run) and compared the results with a simulation run using only H+ ions (H+ Run). We found that the reconnection rate in the O+ Run is much less than that in the H+ Run and identified two factors that contribute to this difference: (1) the O+ drag on the convective magnetic flux via an ambipolar electric field in O+ diffusion region; (2) the current sheet O+ inertia, which reduces the DF speed and delays the fast reconnection phase in the O+ Run. For factor (2) the O+ ions provide the main force contributions at the DFs and thereby determine the thickness of DFs provided the concentration of O+ is large enough. The velocity distribution functions of O+ have several peaks that result from ion reflection and acceleration near the DFs. These results illustrate some of the differences between the storm-time and non-storm substorms due to a significant concentration of heavy ions. They also are directly related to the expected observations by the Magnetospheric Multiscale (MMS) mission.

  7. Universal collisionless transport of graphene

    NASA Astrophysics Data System (ADS)

    Link, Julia M.; Orth, Peter P.; Sheehy, Daniel E.; Schmalian, Jörg

    2016-06-01

    The impact of the electron-electron Coulomb interaction on the optical conductivity of graphene has led to a controversy that calls into question the universality of collisionless transport in this and other Dirac materials. Using a lattice calculation that avoids divergences present in previous nodal Dirac approaches, our work settles this controversy and obtains results in quantitative agreement with experiment over a wide frequency range. We also demonstrate that dimensional regularization methods agree, if the regularization of the theory in modified dimensions is correctly implemented. Tight-binding lattice and nodal Dirac theory calculations are shown to coincide at low energies even when the nonzero size of the atomic orbital wave function is included, conclusively demonstrating the universality of the optical conductivity of graphene.

  8. Physics of collisionless phase mixing

    SciTech Connect

    Tsiklauri, D.; Haruki, T.

    2008-11-15

    Previous studies of phase mixing of ion cyclotron (IC), Alfvenic, waves in the collisionless regime have established the generation of parallel electric field and hence acceleration of electrons in the regions of transverse density inhomogeneity. However, outstanding issues were left open. Here we use the 2.5 D, relativistic, fully electromagnetic particle-in-cell code and an analytic magnetohydrodynamic (MHD) formulation, to establish the following points: (i) Using the generalized Ohm's law we find that the parallel electric field is supported mostly by the electron pressure tensor, with a smaller contribution from the electron inertia term. (ii) The generated parallel electric field and the fraction of accelerated electrons are independent of the IC wave frequency remaining at a level of six orders of magnitude larger than the Dreicer value and approximately 20%, respectively. The generated parallel electric field and the fraction of accelerated electrons increase with the increase of IC wave amplitude. The generated parallel electric field seems to be independent of plasma beta, while the fraction of accelerated electrons strongly increases with the decrease of plasma beta (for plasma beta of 0.0001 the fraction of accelerated electrons can be as large as 47%). (iii) In the collisionless regime IC wave dissipation length (that is defined as the distance over which the wave damps) variation with the driving frequency shows a deviation from the analytical MHD result, which we attribute to a possible frequency dependence of the effective resistivity. (iv) Effective anomalous resistivity, inferred from our numerical simulations, is at least four orders of magnitude larger than the classical Spitzer value.

  9. Formation of a collisionless shock wave in a multi-component plasma

    NASA Astrophysics Data System (ADS)

    Borisov, N.; Fraenz, M.

    2016-12-01

    We discuss the theory of the formation of a quasi-transverse collisionless shock wave in a multi-component plasma. We show that in a plasma with a significant admixture of cold heavy ions, a specific MHD mode can be excited. This mode plays the same role for the collisionless shock formation as a quasi-transverse fast magnetosonic wave in a plasma with one sort of ions. As a result of this mode excitation, the solar wind velocity threshold for the formation of a collisionless shock becomes significantly less than in the case of a plasma with only light ions. We derive a nonlinear differential equation which describes a shock wave when perturbations become strong enough. Based on our theoretical results, we argue that upstream of the magnetic pile-up region of Mars or Venus, an additional shock wave may be formed.

  10. A new magnetic reconnection paradigm: Stochastic plasmoid chains

    NASA Astrophysics Data System (ADS)

    Loureiro, Nuno

    2015-11-01

    Recent analytical and numerical research in magnetic reconnection has converged on the notion that reconnection sites (current sheets) are unstable to the formation of multiple magnetic islands (plasmoids), provided that the system is sufficiently large (or, in other words, that the Lundquist number of the plasma is high). Nonlinearly, plasmoids come to define the reconnection geometry. Their nonlinear dynamics is rather complex and best thought of as new form of turbulence whose properties are determined by continuous plasmoid formation and their subsequent ejection from the sheet, as well as the interaction (coalescence) between plasmoids of different sizes. The existence of these stochastic plasmoid chains has powerful implications for several aspects of the reconnection process, from determining the reconnection rate to the details and efficiency of the energy conversion and dissipation. In addition, the plasmoid instability may also directly bear on the little understood problem of the reconnection trigger, or onset, i.e., the abrupt transition from a slow stage of energy accumulation to a fast (explosive) stage of energy release. This talk will first provide a brief overview of these recent developments in the reconnection field. I will then discuss recent work addressing the onset problem in the context of a forming current sheet which becomes progressively more unstable to the plasmoid instability. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  11. Plasmoid Instabilities Mediated Three-Dimensional Magnetohydrodynamic Turbulent Reconnection

    SciTech Connect

    Huang, Yi-min; Guo, Fan

    2015-07-21

    After some introductory remarks on fast reconnection in resistive MHD due to plasmoid instability, oblique tearing modes in 3D, and previous studies on 3D turbulent reconnection, the subject is presented under the following topics: 3D simulation setup, time evolution of the 3D simulation, comparison with Sweet-Parker and 2D plasmoid reconnection, and diagnostics of the turbulent state (decomposition of mean fields and fluctuations, power spectra of energy fluctuations, structure function and eddy anisotropy with respect to local magnetic field). Three primary conclusions were reached: (1) The results suggest that 3D plasmoid instabilities can lead to self-generated turbulent reconnection (evidence of energy cascade and development of inertial range, energy fluctuations preferentially align with the local magnetic field, which is one of the characteristics of MHD turbulence); (2) The turbulence is highly inhomogeneous, due to the presence of magnetic shear and outflow jets (conventional MHD turbulence theories or phenomenologies may not be applicable – e.g. scale-dependent anisotropy as predicted by Goldreich & Sridhar is not found); (3) 3D turbulent reconnection is different from 2D plasmoid-dominated reconnection in many aspects. However, in fully developed state, reconnection rates in 2D and 3D are comparable — this result needs to be further checked in higher S.

  12. The mechanisms of electron heating and acceleration during magnetic reconnection

    SciTech Connect

    Dahlin, J. T. Swisdak, M.; Drake, J. F.

    2014-09-15

    The heating of electrons in collisionless magnetic reconnection is explored in particle-in-cell simulations with non-zero guide fields so that electrons remain magnetized. In this regime, electric fields parallel to B accelerate particles directly, while those perpendicular to B do so through gradient-B and curvature drifts. The curvature drift drives parallel heating through Fermi reflection, while the gradient B drift changes the perpendicular energy through betatron acceleration. We present simulations in which we evaluate each of these mechanisms in space and time in order to quantify their role in electron heating. For a case with a small guide field (20% of the magnitude of the reconnecting component), the curvature drift is the dominant source of electron heating. However, for a larger guide field (equal to the magnitude of the reconnecting component) electron acceleration by the curvature drift is comparable to that of the parallel electric field. In both cases, the heating by the gradient B drift is negligible in magnitude. It produces net cooling because the conservation of the magnetic moment and the drop of B during reconnection produce a decrease in the perpendicular electron energy. Heating by the curvature drift dominates in the outflow exhausts where bent field lines expand to relax their tension and is therefore distributed over a large area. In contrast, the parallel electric field is localized near X-lines. This suggests that acceleration by parallel electric fields may play a smaller role in large systems where the X-line occupies a vanishing fraction of the system. The curvature drift and the parallel electric field dominate the dynamics and drive parallel heating. A consequence is that the electron energy spectrum becomes extremely anisotropic at late time, which has important implications for quantifying the limits of electron acceleration due to synchrotron emission. An upper limit on electron energy gain that is substantially higher than

  13. Gyrotropy During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Swisdak, M.

    2015-12-01

    Gyrotropic particle distributions -- those that can be characterized completely by temperatures meausred parallel and perpendicular to the local magnetic field -- are the norm in many plasmas. However, near locations where magnetic topology suddenly changes, e.g., where magnetic reconnection occurs, gyrotropy can be expected to be violated. If these departures from gyrotropy are quantifiable they are useful as probes since magnetic topological changes are, in some sense, non-local while gyrotropy can be measured locally. I will discuss previously proposed measures of gyrotropy, give examples of cases where they give unphysical results, and propose a new measure. By applying this measure to particle-in-cell simulations of reconnection I will show that it does an excellent job of localizing reconnection sites. I will also show how gyrotropy can be quickly calculated in any case where the full pressure tensor is available. This has obvious applications to the interpretation of MMS data.

  14. Forced magnetic reconnection

    SciTech Connect

    Hahm, T.S.; Kulsrud, R.M.

    1984-11-01

    By studying a simple model problem, we examine the time evolution of magnetic field islands which are induced by perturbing the boundary surrounding an incompressible plasma with a resonant surface inside. We find that for sufficiently small boundary perturbations, the reconnection and island formation process occurs on the tearing mode time scale defined by Furth, Killeen, and Rosenbluth. For larger perturbations the time scale is that defined by Rutherford. The resulting asymptotic equilibrium is such that surface currents in the resonant region vanish. A detailed analytical picture of this reconnection process is presented.

  15. Anisotropic Electron Tail Generation during Tearing Mode Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    DuBois, Ami M.; Almagri, Abdulgader F.; Anderson, Jay K.; Den Hartog, Daniel J.; Lee, John David; Sarff, John S.

    2017-02-01

    The first experimental evidence of anisotropic electron energization during magnetic reconnection that favors a direction perpendicular to the guide magnetic field in a toroidal, magnetically confined plasma is reported in this Letter. Magnetic reconnection plays an important role in particle heating, energization, and transport in space and laboratory plasmas. In toroidal devices like the Madison Symmetric Torus, discrete magnetic reconnection events release large amounts of energy from the equilibrium magnetic field. Fast x-ray measurements imply a non-Maxwellian, anisotropic energetic electron tail is formed at the time of reconnection. The tail is well described by a power-law energy dependence. The expected bremsstrahlung from an electron distribution with an anisotropic energetic tail (v⊥>v∥ ) spatially localized in the core region is consistent with x-ray emission measurements. A turbulent process related to tearing fluctuations is the most likely cause for the energetic electron tail formation.

  16. Integrating Kinetic Effects into Global Models for Reconnection

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    Magnetic reconnection is the most striking example of how the coupling between global and kinetic scales can lead to fast energy release. Explosive solar activity, such as coronal mass ejections and flares for example, is widely believed to be due to the release of magnetic energy stored on global scales by magnetic reconnection operating on kinetic scales. Understanding how processes couple across spatial scales is one of the most difficult challenges in all of physics, and is undoubtedly the main obstacle to developing predictive models for the Sun's activity. Consequently, the NASA Living With a Star Program selected a Focused Science Team to attack the problem of cross-scale coupling in reconnection. In this talk I will present some of the results of the Team and review our latest theories and methods for modeling the global-local coupling in solar reconnection.

  17. TURBULENT GENERAL MAGNETIC RECONNECTION

    SciTech Connect

    Eyink, G. L.

    2015-07-10

    Plasma flows with a magnetohydrodynamic (MHD)-like turbulent inertial range, such as the solar wind, require a generalization of general magnetic reconnection (GMR) theory. We introduce the slip velocity source vector per unit arclength of field line, the ratio of the curl of the non-ideal electric field in the generalized Ohm’s Law and magnetic field strength. It diverges at magnetic nulls, unifying GMR with null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of quasi-potential (which is the integral of parallel electric field along magnetic field lines). In a turbulent inertial range, the non-ideal field becomes tiny while its curl is large, so that line slippage occurs even while ideal MHD becomes accurate. The resolution is that ideal MHD is valid for a turbulent inertial range only in a weak sense that does not imply magnetic line freezing. The notion of weak solution is explained in terms of renormalization group (RG) type theory. The weak validity of the ideal Ohm’s law in the inertial range is shown via rigorous estimates of the terms in the generalized Ohm’s Law. All non-ideal terms are irrelevant in the RG sense and large-scale reconnection is thus governed solely by ideal dynamics. We discuss the implications for heliospheric reconnection, in particular for deviations from the Parker spiral model. Solar wind observations show that reconnection in a turbulence-broadened heliospheric current sheet, which is consistent with Lazarian–Vishniac theory, leads to slip velocities that cause field lines to lag relative to the spiral model.

  18. Reconnection on the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Because the Sun is so close, it makes an excellent laboratory to study processes we cant examinein distant stars. One openquestion is that of how solar magnetic fields rearrange themselves, producing the tremendous releases of energy we observe as solar flares and coronal mass ejections (CMEs).What is Magnetic Reconnection?Magnetic reconnection occurs when a magnetic field rearranges itself to move to a lower-energy state. As field lines of opposite polarity reconnect, magnetic energy is suddenly converted into thermal and kinetic energy.This processis believed to be behind the sudden releases of energy from the solar surface in the form of solar flares and CMEs. But there are many different models for how magnetic reconnection could occur in the magnetic field at the Suns surface, and we arent sure which one of these reconnection types is responsible for the events we see.Recently, however, several studies have been published presenting some of the first observational support of specific reconnection models. Taken together, these observations suggest that there are likely several different types of reconnection happening on the solar surface. Heres a closer look at two of these recent publications:A pre-eruption SDO image of a flaring region (b) looks remarkably similar to a 3D cartoon for typical breakout configuration (a). Click for a closer look! [Adapted from Chen et al. 2016]Study 1:Magnetic BreakoutLed by Yao Chen (Shandong University in China), a team of scientists has presented observations made by the Solar Dynamics Observatory (SDO) of a flare and CME event that appears to have been caused by magnetic breakout.In the magnetic breakout model, a series of loops in the Suns lower corona are confined by a surrounding larger loop structure called an arcade higher in the corona. As the lower loops push upward, reconnection occurs in the upper corona, removing the overlying, confining arcade. Without that extra confinement, the lower coronal loops expand upward

  19. High power heating of magnetic reconnection in merging tokamak experiments

    SciTech Connect

    Ono, Y.; Tanabe, H.; Gi, K.; Watanabe, T.; Ii, T.; Yamada, T.; Gryaznevich, M.; Scannell, R.; Conway, N.; Crowley, B.; Michael, C.

    2015-05-15

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R∼10{sup 5}. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magnetic reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field B{sub rec}{sup 2}  ∼  B{sub p}{sup 2}. The guide toroidal field B{sub t} does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field B{sub t}, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with B{sub p} > 0.4 T will enables us to heat the plasma to the alpha heating regime: T{sub i} > 5 keV without using any additional heating facility.

  20. Streaming energetic electrons in reconnection events

    NASA Astrophysics Data System (ADS)

    Bieber, John W.

    Energetic electrons can be used to probe the large-scale topology of magnetic fields in Earth's magnetotail. In the plasma sheet region near the tail's midplane, these particles normally exhibit the trapped or isotropic angular distributions characteristic of closed magnetic field lines, but brief intervals of intense tailward streaming, indicative of open field lines, are occasionally observed. Such streaming events occur preferentially near the time of substorm onset as the observing spacecraft exits the thinning plasma sheet, and they are usually preceded by a 5-10 minute interval of fast tailward plasma flow and southward magnetic field. These correlated phenomena have been interpreted as evidence for magnetic reconnection at a transient magnetic X-line located ˜15 RE tailward of Earth. Recent studies of energetic electron streaming events report novel reconnection-related phenomena, including heating of plasma electrons, bump-in-tail electron velocity distributions, and possible rotational and tangential magnetic discontinuities.

  1. Streaming energetic electrons in reconnection events

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.

    Energetic electrons can be used to probe the large-scale topology of magnetic fields in earth's magnetotail. In the plasma sheet region near the tail's midplane, these particles normally exhibit the trapped or isotropic angular distributions characteristic of closed magnetic field lines, but brief intervals of intense tailward streaming, indicative of open field lines, are occasionally observed. Such streaming events occur preferentially near the time of substorm onset as the observing spacecraft exits the thinning plasma sheet, and they are usually preceded by a 5-10 minute interval of fast tailward plasma flow and southward magnetic field. These correlated phenomena have been interpreted as evidence for magnetic reconnection at a transient magnetic X-line located at 15 earth radii tailward of earth. Recent studies of energetic electron streaming events report novel reconnection-related phenomena, including heating of plasma electrons, bump-in-tail electron velocity distributions, and possible rotational and tangential magnetic discontinuities.

  2. Particle-in-cell simulations of particle energization from low Mach number fast mode shocks

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Workman, Jared C.; Blackman, Eric G.; Ren, Chuang; Siller, Robert

    2012-06-01

    Astrophysical shocks are often studied in the high Mach number limit but weakly compressive fast shocks can occur in magnetic reconnection outflows and are considered to be a site of particle energization in solar flares. Here we study the microphysics of such perpendicular, low Mach number collisionless shocks using two-dimensional particle-in-cell simulations with a reduced ion/electron mass ratio and employ a moving wall boundary method for initial generation of the shock. This moving wall method allows for more control of the shock speed, smaller simulation box sizes, and longer simulation times than the commonly used fixed wall, reflection method of shock formation. Our results, which are independent of the shock formation method, reveal the prevalence shock drift acceleration (SDA) of both electron and ions in a purely perpendicular shock with Alfvén Mach number MA=6.8 and ratio of thermal to magnetic pressure β=8. We determine the respective minimum energies required for electrons and ions to incur SDA. We derive a theoretical electron distribution via SDA that compares to the simulation results. We also show that a modified two-stream instability due to the incoming and reflecting ions in the shock transition region acts as the mechanism to generate collisionless plasma turbulence that sustains the shock.

  3. Kinetic simulaitons of astrophysical collisionless shocks (Invited)

    NASA Astrophysics Data System (ADS)

    Spitkovsky, A.

    2009-12-01

    Nonthermal emission from a variety of astrophysical sources, including relativistic jets and supernova remnants, is often attributed to collisionless shocks. These shocks are inferred to accelerate particles and in some cases strongly amplify magnetic fields. How this happens remains to be clarified through both theory and observations. In this talk, I will present a summary of recent progress in kinetic modeling of collisionless shocks using particle-in-cell simulations. I will discuss the internal structure of relativistic and non-relativistic shocks, concentrating on the conditions necessary for particle acceleration. Large-scale shock simulations show ab-initio Fermi acceleration of particles from the thermal pool to power-law distributions and can set constraints on the shock acceleration efficiency and geometry. Other results that will be discussed include the amplification of magnetic fields by accelerated particles through streaming instabilities, and the electron-ion temperature equilibration in collisionless shocks.

  4. Electron Weibel Instability Mediated Laser Driven Electromagnetic Collisionless Shock

    NASA Astrophysics Data System (ADS)

    Jia, Qing; Mima, Kunioki; Cai, Hong-Bo; Taguchi, Toshihiro; Nagatomo, Hideo; He, X. T.

    2015-11-01

    As a fundamental nonlinear structure, collisionless shock is widely studied in astrophysics. Recently, the rapidly-developing laser technology provides a good test-bed to study such shock physics in laboratory. In addition, the laser driven shock ion acceleration is also interested due to its potential applications. We explore the effect of external parallel magnetic field on the collisionless shock formation and resultant particle acceleration by using the 2D3V PIC simulations. We show that unlike the electrostatic shock generated in the unmagnetized plasma, the shock generated in the weakly-magnetized laser-driven plasma is mostly electromagnetic (EM)-like with higher Mach number. The generation mechanism is due to the stronger transverse magnetic field self-generated at the nonlinear stage of the electron Weibel instability which drastically scatters particles and leads to higher energy dissipation. Simulation results also suggest more ions are reflected by this EM shock and results in larger energy transfer rate from the laser to ions, which is of advantage for applications such as neutron production and ion fast ignition.

  5. High Frequency Plasma Waves Associated With Solar Wind Reconnection Exhausts: WIND/WAVES Observations

    NASA Astrophysics Data System (ADS)

    Huttunen, K. E.; Bale, S. D.; Phan, T. D.; Davis, M.; Gosling, J. T.

    2006-12-01

    Observations of strong plasma wave activity near reconnection X-line regions in THE laboratory and in the Earth's magnetosphere have suggested that plasma waves may play AN important role in the reconnection process by providing anomalous resistivity through wave-particle interactions and by accelerating electrons. Recent observations of quasi-steady magnetic reconnection in the solar wind introduces an important new environment to study the role of plasma waves in a collisionless plasma associated with the reconnection process. We have used observations by the WIND spacecraft to study high frequency plasma waves associated with 28 solar wind reconnection exhausts. The TNR (Thermal Noise Receiver) experiment included in the WAVES instrument on WIND measures electric spectral density from 4 to 256 kHz and the TDS (Time Domain Sampler) experiment also included in WAVES samples electric field waveforms at rates up to 120,000 samples/s. A large fraction (79%) of the investigated events showed significant enhancements in the wave power around ~ 4 kHz, while only about one third (39%) of the exhausts were associated with intensifications around THE local electron plasma frequency (few tens of kHz). TDS waveform samples revealed three different wave modes: electron solitary waves, ion acoustic waves and Langmuir waves. The intense plasma waves were most frequently observed close to the X-line and near the exhaust boundaries, although wave emissions were commonly observed elsewhere within the exhausts as well

  6. Comparison between hybrid and fully kinetic models of asymmetric magnetic reconnection: Coplanar and guide field configurations

    SciTech Connect

    Aunai, Nicolas; Hesse, Michael; Kuznetsova, Maria; Black, Carrie; Evans, Rebekah; Zenitani, Seiji; Smets, Roch

    2013-02-15

    Magnetic reconnection occurring in collisionless environments is a multi-scale process involving both ion and electron kinetic processes. Because of their small mass, the electron scales are difficult to resolve in numerical and satellite data, it is therefore critical to know whether the overall evolution of the reconnection process is influenced by the kinetic nature of the electrons, or is unchanged when assuming a simpler, fluid, electron model. This paper investigates this issue in the general context of an asymmetric current sheet, where both the magnetic field amplitude and the density vary through the discontinuity. A comparison is made between fully kinetic and hybrid kinetic simulations of magnetic reconnection in coplanar and guide field systems. The models share the initial condition but differ in their electron modeling. It is found that the overall evolution of the system, including the reconnection rate, is very similar between both models. The best agreement is found in the guide field system, which confines particle better than the coplanar one, where the locality of the moments is violated by the electron bounce motion. It is also shown that, contrary to the common understanding, reconnection is much faster in the guide field system than in the coplanar one. Both models show this tendency, indicating that the phenomenon is driven by ion kinetic effects and not electron ones.

  7. Colour reconnections in Herwig++

    NASA Astrophysics Data System (ADS)

    Gieseke, Stefan; Röhr, Christian; Siódmok, Andrzej

    2012-11-01

    We describe the implementation details of the colour reconnection model in the event generator Herwig++. We study the impact on final-state observables in detail and confirm the model idea from colour preconfinement on the basis of studies within the cluster hadronization model. Moreover, we show that the description of minimum bias and underlying event data at the LHC is improved with this model and present results of a tune to available data.

  8. Physics of collisionless shocks: theory and simulation

    NASA Astrophysics Data System (ADS)

    Stockem Novo, A.; Bret, A.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    Collisionless shocks occur in various fields of physics. In the context of space and astrophysics they have been investigated for many decades. However, a thorough understanding of shock formation and particle acceleration is still missing. Collisionless shocks can be distinguished into electromagnetic and electrostatic shocks. Electromagnetic shocks are of importance mainly in astrophysical environments and they are mediated by the Weibel or filamentation instability. In such shocks, charged particles gain energy by diffusive shock acceleration. Electrostatic shocks are characterized by a strong electrostatic field, which leads to electron trapping. Ions are accelerated by reflection from the electrostatic potential. Shock formation and particle acceleration will be discussed in theory and simulations.

  9. Acceleration during magnetic reconnection

    SciTech Connect

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  10. First Reconnected Flux Tubes

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Lapenta, G.; Newman, D. L.; Markidis, S.; Spanswick, E. L.; Baker, J. B.; Clausen, L. B.; Larson, D. E.; Ergun, R. E.; Frey, H. U.; Singer, H. J.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.; Glassmeier, K.; Wolfgang, B.

    2011-12-01

    THEMIS observations from the magnetic equator (the equatorial plane) in the near-earth tail reveal a great amount of information regarding the plasma environment in the vicinity of the first reconnected flux tubes (a subgroup of dipolarization fronts). Two sequential observations of dipolarization fronts are analyzed in detail using three of the THEMIS spacecraft. Particle acceleration to high energies (>50 keV) is observed together with a void region interpreted as a region to which the full electron distribution has incomplete access. Whistler waves, which are observed, could be driven by one of the two electron populations located in the wake of the first reconnected flux tubes. The detailed observations are compared with 2D and 3D implicit kinetic simulation of reconnection events. This presentation focuses on the similarity between observation and simulation. One key aspect of this presentation is a demonstration of how different the signature is when observing at vs off the magnetic equator, since most observations in the literature (unlike the observations presented here) are from off the equator. For this event, additional spacecraft and ground observations have been analyzed, which demonstrate that a reconfiguration of the magnetosphere is taking place. However, the focus of this presentation is on the small scale (<~10 di), rather than the large scale (~20 Re).

  11. Experimental Study of Current-Driven Turbulence During Magnetic Reconnection

    SciTech Connect

    Porkolab, Miklos; Egedal-Pedersen, Jan; Fox, William

    2010-08-31

    nonlinear solitary wave known to evolve from a strong beam-on-tail instability. We established that fast electrons were produced by magnetic reconnection. Overall, these instabilities were found to be a consequence of reconnection, specifically the strong energization of electrons, leading to steep gradients in both coordinate- and velocity-space. Estimates (using quasi-linear theory) of the anomalous resistivity due to these modes did not appear large enough to substantially impact the reconnection process. Relevant publications: W. Fox, M. Porkolab, et al, Phys. Rev. Lett. 101, 255003 (2008). W. Fox, M. Porkolab, et al, Phys. Plasmas 17, 072303, (2010).

  12. Collisionless electrostatic shock formation and ion acceleration in intense laser interactions with near critical density plasmas

    NASA Astrophysics Data System (ADS)

    Liu, M.; Weng, S. M.; Li, Y. T.; Yuan, D. W.; Chen, M.; Mulser, P.; Sheng, Z. M.; Murakami, M.; Yu, L. L.; Zheng, X. L.; Zhang, J.

    2016-11-01

    Laser-driven collisionless electrostatic shock formation and the subsequent ion acceleration have been studied in near critical density plasmas. Particle-in-cell simulations show that both the speed of laser-driven collisionless electrostatic shock and the energies of shock-accelerated ions can be greatly enhanced due to fast laser propagation in near critical density plasmas. However, a response time longer than tens of laser wave cycles is required before the shock formation in a near critical density plasma, in contrast to the quick shock formation in a highly overdense target. More important, we find that some ions can be reflected by the collisionless shock even if the electrostatic potential jump across the shock is smaller than the ion kinetic energy in the shock frame, which seems against the conventional ion-reflection condition. These anomalous ion reflections are attributed to the strong time-oscillating electric field accompanying the laser-driven collisionless shock in a near critical density plasma.

  13. Integrating kinetic effects in fluid models for magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Wang, Liang

    The integration of kinetic effects in global fluid models is a grand challenge in space plasma physics, and has implication for our ability to model space weather in collisionless plasma environments such as the Earth's magnetosphere. We propose an extensible multi-fluid moment model, with focus on the physics of magnetic reconnection. This model evolves the full Maxwell equations, and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like the Hall effect, the electron inertia, and the pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species, and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor. Particularly, the five-moment model reduces to the widely used Hall Magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. In this thesis, we first numerically confirm the reduction of five-moment to Hall MHD under the limit of vanishing electron inertia. Then, we compare ten-moment and fully kinetic Particle-In-Cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results, regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple closure towards a non-local, fully three-dimensional description are also discussed.

  14. Integrating kinetic effects in fluid models for magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Wang, L.; Hakim, A.; Bhattacharjee, A.; Germaschewski, K.

    2014-12-01

    The integration of kinetic effects in global fluid models is a grand challenge in space plasma physics, and has implication for our ability to model space weather in collisionless plasma environments such as the Earth's magnetosphere. We propose an extensible multi-fluid moment model, with focus on the physics of magnetic reconnection. This model evolves the full Maxwell equations, and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like the Hall effect, the electron inertia, and the pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressure for each species, and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor. Particularly, the five-moment model reduces to the widely used Hall Magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. In this presentation, we first compare ten-moment and fully kinetic Particle-In-Cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results, regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Preliminary results of application of the multi-fluid moment model to Ganymede are also discussed.

  15. Collisionless Electrostatic Shock Modeling and Simulation

    DTIC Science & Technology

    2016-10-21

    effects difficult for theoretical prediction, • Wave Dispersion • Wave-Particle Interaction • Various Wave Dissipation Mechanisms – Shock structure is an...unlimited. PA#16490 Details on Shock Physics Sources of Collisionless Wave Dissipation – Landau Damping: ● A form of wave-particle resonance. Resonant

  16. Transition from Collisionless to Collisional MRI

    SciTech Connect

    Prateek Sharma; Gregory W. Hammett; Eliot Quataert

    2003-07-24

    Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper, we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2*/k(sub)||. In the weak magnetic field regime where the Alfven and MRI frequencies w are small compared to the sound wave frequency k(sub)||c(sub)0, the dynamics are still effectively collisionless even if omega << v, so long as the collision frequency v << k(sub)||c(sub)0; for an accretion flow this requires n less than or approximately equal to *(square root of b). The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI.

  17. Processes setting the structure of the electron distribution function within the exhausts of anti-parallel reconnection

    NASA Astrophysics Data System (ADS)

    Egedal, J.; Wetherton, B.; Daughton, W.; Le, A.

    2016-12-01

    In situ spacecraft observations within the exhausts of magnetic reconnection document a large variation in the velocity space structure of the electron distribution function. Multiple mechanisms help govern the underlying electron dynamics, yielding a range of signatures for collisionless reconnection. These signatures include passing beams of electrons separated by well-defined boundaries from betatron heated/cooled trapped electrons. The present study emphasizes how localized regions of non-adiabatic electron dynamics can mix electrons across the trapped/passing boundaries and impact the form of the electron distributions in the full width of the exhaust. While our study is based on 2D simulations, the described principles shaping the velocity space distributions also apply to 3D geometries making our findings relevant to spacecraft observation of reconnection in the Earth's magnetosphere.

  18. High-energy Nd:glass laser facility for collisionless laboratory astrophysics

    NASA Astrophysics Data System (ADS)

    Niemann, C.; Constantin, C. G.; Schaeffer, D. B.; Tauschwitz, A.; Weiland, T.; Lucky, Z.; Gekelman, W.; Everson, E. T.; Winske, D.

    2012-03-01

    A kilojoule-class laser (Raptor) has recently been activated at the Phoenix-laser-facility at the University of California Los Angeles (UCLA) for an experimental program on laboratory astrophysics in conjunction with the Large Plasma Device (LAPD). The unique combination of a high-energy laser system and the 18 meter long, highly-magnetized but current-free plasma will support a new class of plasma physics experiments, including the first laboratory simulations of quasi-parallel collisionless shocks, experiments on magnetic reconnection, or advanced laser-based diagnostics of basic plasmas. Here we present the parameter space accessible with this new instrument, results from a laser-driven magnetic piston experiment at reduced power, and a detailed description of the laser system and its performance.

  19. Reconnections of Wave Vortex Lines

    ERIC Educational Resources Information Center

    Berry, M. V.; Dennis, M. R.

    2012-01-01

    When wave vortices, that is nodal lines of a complex scalar wavefunction in space, approach transversely, their typical crossing and reconnection is a two-stage process incorporating two well-understood elementary events in which locally coplanar hyperbolas switch branches. The explicit description of this reconnection is a pedagogically useful…

  20. Turbulent reconnection and its implications

    PubMed Central

    Lazarian, A.; Eyink, G.; Vishniac, E.; Kowal, G.

    2015-01-01

    Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes happening in magnetized plasmas. In most astrophysical environments, the Reynolds numbers corresponding to plasma flows are large and therefore the transition to turbulence is inevitable. This turbulence, which can be pre-existing or driven by magnetic reconnection itself, must be taken into account for any theory of magnetic reconnection that attempts to describe the process in the aforementioned environments. This necessity is obvious as three-dimensional high-resolution numerical simulations show the transition to the turbulence state of initially laminar reconnecting magnetic fields. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (Lazarian & Vishniac 1999 Astrophys. J. 517, 700–718 ()) reconnection model. We present numerical evidence supporting the model and demonstrate that it is closely connected to the experimentally proven concept of Richardson dispersion/diffusion as well as to more recent advances in understanding of the Lagrangian dynamics of magnetized fluids. We point out that the generalized Ohm's law that accounts for turbulent motion predicts the subdominance of the microphysical plasma effects for reconnection for realistically turbulent media. We show that one of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a cornerstone of most theories dealing with magnetized plasmas, and therefore its change induces fundamental shifts in accepted paradigms, for instance, turbulent reconnection entails reconnection diffusion process that is essential for understanding star formation. We argue that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares that are predicted by turbulent reconnection and relate this process to

  1. Turbulent reconnection and its implications.

    PubMed

    Lazarian, A; Eyink, G; Vishniac, E; Kowal, G

    2015-05-13

    Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes happening in magnetized plasmas. In most astrophysical environments, the Reynolds numbers corresponding to plasma flows are large and therefore the transition to turbulence is inevitable. This turbulence, which can be pre-existing or driven by magnetic reconnection itself, must be taken into account for any theory of magnetic reconnection that attempts to describe the process in the aforementioned environments. This necessity is obvious as three-dimensional high-resolution numerical simulations show the transition to the turbulence state of initially laminar reconnecting magnetic fields. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (Lazarian & Vishniac 1999 Astrophys. J. 517, 700-718 (doi:10.1086/307233)) reconnection model. We present numerical evidence supporting the model and demonstrate that it is closely connected to the experimentally proven concept of Richardson dispersion/diffusion as well as to more recent advances in understanding of the Lagrangian dynamics of magnetized fluids. We point out that the generalized Ohm's law that accounts for turbulent motion predicts the subdominance of the microphysical plasma effects for reconnection for realistically turbulent media. We show that one of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a cornerstone of most theories dealing with magnetized plasmas, and therefore its change induces fundamental shifts in accepted paradigms, for instance, turbulent reconnection entails reconnection diffusion process that is essential for understanding star formation. We argue that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares that are predicted by turbulent reconnection and relate

  2. Electron acceleration in three-dimensional magnetic reconnection with a guide field

    SciTech Connect

    Dahlin, J. T. Swisdak, M.; Drake, J. F.

    2015-10-15

    Kinetic simulations of 3D collisionless magnetic reconnection with a guide field show a dramatic enhancement of energetic electron production when compared with 2D systems. In the 2D systems, electrons are trapped in magnetic islands that limit their energy gain, whereas in the 3D systems the filamentation of the current layer leads to a stochastic magnetic field that enables the electrons to access volume-filling acceleration regions. The dominant accelerator of the most energetic electrons is a Fermi-like mechanism associated with reflection of charged particles from contracting field lines.

  3. New Dissipation Mechanism for Three-Dimensional Current Dissipation/Reconnection in Astrophysical Plasmas

    SciTech Connect

    Pellat, R.; Hurricane, O.; Luciani, J.

    1996-11-01

    A {open_quote}{open_quote}magnetohydrodynamiclike{close_quote}{close_quote} theory has been previously developed for chaotic nonintegrable proton orbits which occur in highly stressed magnetic configurations. In this paper we give the solution to the Vlasov equation to next order in expansion of the particle bounce motion. The new contribution, a Boltzmann-like operator, provides a collisionless dissipation mechanism which may destabilize drift or drift ballooning Alfv{acute e}n waves in high {beta} plasmas. We discuss a number of applications of this new, potentially reconnective, mechanism in the magnetosphere, in stellar wind formation, and in the galactic dynamo. {copyright} {ital 1996 The American Physical Society.}

  4. THEMIS Reconnection Animation

    NASA Technical Reports Server (NTRS)

    2006-01-01

    As the Sun's ionized and magnetized particles are passing by Earth they impart mechanical energy which is transformed into magnetic energy by compressing the tail. The tail field lines eventually merge (or 'reconnect') and slingshot particles towards and away from Earth, thereby converting magnetic into particle energy. This energy finds itself along field lines and powers the aurora on the one hand, and down the tail via the expulsion of a plasma blob, a plasmoid, on the other. This storage-and-release process of solar wind energy by the magnetosphere is called a substorm.

  5. The reconnection gun

    NASA Astrophysics Data System (ADS)

    Cowan, M.; Cnare, E. C.; Duggin, B. W.; Kaye, R. J.; Tucker, T. J.

    1986-11-01

    An electromagnetic launcher called the reconnection gun is introduced. Its potential performance is shown to be superior to that of a modern railgun for projectiles with mass greater than a few hundred grams. It has a 'characteristic velocity' which is an order of magnitude lower for much lower energy loss to ohmic heating. Also, it has several advantages for producing higher acceleration including; no barrel, no drop in acceleration with increase in projectile mass, higher peak pressure on the projectile and smaller differences between average and peak pressure. Experimental results and plans for high-performance, multi-stage designs are briefly discussed.

  6. Evidence of "Tether-Cutting" Reconnection in the Onset of a Quadrupolar Solar Magnetic Eruption

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Sterling, Alphonse C.; Moore, Ronald L.; Yurchyshyn, Vasyl

    2004-01-01

    Extensive study of the near-limb solar filament eruption event on 2000 February 26, involving coronal images from YOHKOH, SOHO EIT and photospheric magnetogram from MID have shown that that both "runaway-tether-cutting-type reconnection" and "fast breakout-type reconnection" may have occurred early in the fast phase of the eruption and may have played an important role in unleashing the explosion (Sterling & Moore 2004). That study did not identify which or if either of these types of reconnection actually triggered the fast phase. Here, together with a magnetogram and He1 10830 A filtergram from NSO/KP, we present Halpha filtergrams from Big Bear Solar Observatory, that show evidence of "tether-cutting-type reconnection" before and during the eruption of the southern filament, situated at one of the neutral lines of the quadrupole magnetic structure.

  7. Using Field-Particle Correlations to Diagnose the Collisionless Damping of Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Howes, Gregory; Klein, Kristropher

    2016-10-01

    Plasma turbulence occurs ubiquitously throughout the heliosphere, yet our understanding of how turbulence governs energy transport and plasma heating remains incomplete, constituting a grand challenge problem in heliophysics. In weakly collisional heliospheric plasmas, such as the solar corona and solar wind, damping of the turbulent fluctuations occurs due to collisionless interactions between the electromagnetic fields and the individual plasma particles. A particular challenge in diagnosing this energy transfer is that spacecraft measurements are typically limited to a single point in space. Here we present an innovative field-particle correlation technique that can be used with single-point measurements to estimate the energization of the plasma particles due to the damping of the electromagnetic fields, providing vital new information about this how energy transfer is distributed as a function of particle velocity. This technique has the promise to transform our ability to diagnose the kinetic plasma physical mechanisms responsible for not only the damping of turbulence, but also the energy conversion in both collisionless magnetic reconnection and particle acceleration. The work has been supported by NSF CAREER Award AGS-1054061, NSF AGS-1331355, and DOE DE-SC0014599.

  8. Impulsive reconnection: 3D onset and stagnation in turbulent paradigms

    SciTech Connect

    Sears, Jason A; Intrator, Thomas P; Weber, Tom; Lapenta, Giovanni; Lazarian, Alexander

    2010-12-14

    Reconnection processes are ubiquitous in solar coronal loops, the earth's magnetotail, galactic jets, and laboratory configurations such as spheromaks and Z pinches. It is believed that reconnection dynamics are often closely linked to turbulence. In these phenomena, the bursty onset of reconnection is partly determined by a balance of macroscopic MHD forces. In a turbulent paradigm, it is reasonable to suppose that there exist many individual reconnection sites, each X-line being finite in axial extent and thus intrinsically three-dimensional (3D) in structure. The balance between MHD forces and flux pile-up continuously shifts as mutually tangled flux ropes merge or bounce. The spatial scale and thus the rate of reconnection are therefore intimately related to the turbulence statistics both in space and in time. We study intermittent 3D reconnection along spatially localized X-lines between two or more flux ropes. The threshold of MHD instability which in this case is the kink threshold is varied by modifying the line-tying boundary conditions. For fast inflow speed of approaching ropes, there is merging and magnetic reconnection which is a well known and expected consequence of the 2D coalescence instability. On the other hand, for slower inflow speed the flux ropes bounce. The threshold appears to be the Sweet Parker speed v{sub A}/S{sup 1/2}, where v{sub A} is the Alfven speed and S is the Lundquist number. Computations by collaborators at University of Wisconsin, Madison, Katholieke Universiteit Leuven, and LANL complement the experiment.

  9. The Inner Workings of Magnetic Reconnection: Diffusion Region in the Balance

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2010-01-01

    The question of whether the micro scale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  10. Three dimensional reconnection in astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.

    1990-01-01

    Theoretical issues related to three-dimensional reconnection and its application to the space and astrophysical environment are reviewed. Consideration is given to the meaning of reconnection in three dimensions, the way in which periodic and nonperiodic magnetic topologies alter the physics of reconnections, and the effects of chaotic magnetic fields on the reconnection process.

  11. Study of Magnetic Reconnection in Plasma: how it works and energizes plasma particles

    NASA Astrophysics Data System (ADS)

    Yamada, Masaaki

    2015-11-01

    Magnetic reconnection is a phenomenon of nature in which magnetic field lines change their topology in plasma and convert magnetic energy to plasma particles by acceleration and heating. It is a fundamental process at work in laboratory, space and astrophysical plasmas. Magnetic reconnection occurs throughout the Universe: in star forming galaxies; around supernovae; in solar flares; in the earth's magnetosphere; and in fusion plasmas. One of the great challenges in reconnection research has been to understand why reconnection occurs so much faster than predicted by MHD theory. This talk begins with a review of recent discoveries and findings in the research of fast magnetic reconnection in laboratory plasmas and space astrophysical plasmas. I compare the experimental results and space observations with theory and numerical simulations. The collaboration between space and laboratory scientists in reconnection research has reached a point where we can directly compare measurements of the reconnection layer using recently-advanced numerical simulations. In spite of the huge difference in physical scales, we find remarkable commonality between the characteristics of the magnetic reconnection in laboratory and space-astrophysical plasmas. In this talk, I will focus especially on the energy flow, a key feature of reconnection process. We have recently reported our results on the energy conversion and partitioning in a laboratory reconnection layer. In Magnetic Reconnection Experiment (MRX) the mechanisms of ion acceleration and heating are identified and a systematic study of the quantitative inventory of converted energy within a reconnection layer has been made with a well-defined but variable boundary. The measured energy partition in a reconnection region of similar effective size (L ~ 3 ion skin depth) of the Earth's magneto-tail is remarkably consistent with the laboratory results. A more comprehensive study is proposed using MMS satellites very recently put into

  12. Explosive reconnection and particle acceleration in relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Komissarov, Sergey; Porth, Oliver; Sironi, Lorenzo

    2016-10-01

    We develop a model of particle acceleration in explosive reconnection events in relativistic magnetically-dominated plasmas. We identify two stages of particle acceleration: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization sigma. The model has all the ingredients needed for Crab flares: natural formation of highly magnetized regions, explosive dynamics on light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.

  13. Magnetic reconnection in incompressible fluids. [of solar atmosphere and interior

    NASA Technical Reports Server (NTRS)

    Deluca, Edward E.; Craig, Ian J.

    1992-01-01

    The paper investigates the dynamical relaxation of a disturbed X-type magnetic neutral point in a periodic geometry, with an ignorable coordinate, for an incompressible fluid. It is found that the properties of the current sheet cannot be understood in terms of steady state reconnection theory or more recent linear dynamical solutions. Accordingly, a new scaling law for magnetic reconnection is presented, consistent with fast energy dissipation (i.e., the dissipation rate at current maximum is approximately independent of magnetic diffusivity (eta)). The flux annihilation rate, however, scales at eta exp 1/4, faster than the Sweet-Parker rate of sq rt eta but asymptotically much slower than the dissipation rate. These results suggest a flux pile-up regime in which the bulk of the free magnetic energy is released as heat rather than as kinetic energy of mass motion. The implications of our results for reconnection in the solar atmosphere and interior are discussed.

  14. Magnetic reconnection launcher

    SciTech Connect

    Cowan, M.

    1989-04-04

    An electromagnetic launcher is described, which includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.

  15. Magnetic reconnection launcher

    DOEpatents

    Cowan, Maynard

    1989-01-01

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.

  16. Slip Running Reconnection in Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; Van Compernolle, B.; Vincena, S. T.; De Hass, T.

    2012-12-01

    Magnetic flux ropes are due to helical currents and form a dense carpet of arches on the surface of the sun. Occasionally one tears loose as a coronal mass ejection and its rope structure can be detected by satellites close to the earth. Current sheets can tear into filaments and these are nothing other than flux ropes. Ropes are not static, they exert mutual ěc{J}×ěc{B} forces causing them to twist about each other and eventually merge. Kink instabilities cause them to violently smash into each other and reconnect at the point of contact. We report on experiments on two adjacent ropes done in the large plasma device (LAPD) at UCLA ( ne ˜ 1012, Te ˜ 6 eV, B0z=330G, Brope}\\cong{10G,trep=1 Hz). The currents and magnetic fields form exotic shapes with no ignorable direction and no magnetic nulls. Volumetric space-time data (70,600 spatial locations) show multiple reconnection sites with time-dependent locations. The concept of a quasi-separatrix layer (QSL), a tool to understand and visualize 3D magnetic field lines reconnection without null points is introduced. Three-dimensional measurements of the QSL derived from magnetic field data are presented. Within the QSL field lines that start close to one another rapidly diverge as they pass through one or more reconnection regions. The motion of magnetic field lines are traced as reconnection proceeds and they are observed to slip through the regions of space where the QSL is largest. As the interaction proceeds we double the current in the ropes. This accompanied by intense heating as observed in uv light and plasma flows measured by Mach probes. The interaction of the ropes is clearly seen by vislaulizng magnetic field data , as well as in images from a fast framing camera. Work supported by the Dept. of Energy and The National Science Foundation, done at the Basic Plasma Science Facility at UCLA.Magnetic Field lines (measured) of three flux ropes and the plasma currents associated with them

  17. Colour Reconnection in WW Events

    NASA Astrophysics Data System (ADS)

    D'Hondt, J.

    2003-07-01

    Preliminary results are presented for a measurement of the κ parameter used in the JETSET SK-I model of Colour Reconnection in {W}+{W}^- -> qbar {q}'bar {q}q^' events at LEP2. An update on the investigation of Colour Reconnection effects in hadronic decays of W pairs, using the particle flow in DELPHI is presented. A second method is based on the observation that two different mW estimators have different sensitivity to the parametrised Colour Reconnection effect. Hence the difference between them is an observable with information content about κ.

  18. Observational Signatures of Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2014-01-01

    Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.

  19. Study of astrophysical collisionless shocks at NIF

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Higginson, D. P.; Huntington, C. M.; Pollock, B. B.; Remington, B. A.; Rinderknecht, H.; Ross, J. S.; Ryutov, D. D.; Swadling, G. F.; Wilks, S. C.; Sakawa, Y.; Spitkovsky, A.; Petrasso, R.; Li, C. K.; Zylstra, A. B.; Lamb, D.; Tzeferacos, P.; Gregori, G.; Meinecke, J.; Manuel, M.; Froula, D.; Fiuza, F.

    2016-10-01

    High Mach number astrophysical plasmas can create collisionless shocks via plasma instabilities and turbulence that are responsible for magnetic field generations and cosmic ray acceleration. Recently, many laboratory experiments were successful to observe the Weibel instabilities and self-generated magnetic fields using high-power lasers that generated interpenetrating plasma flows. In order to create a fully formed shock, a series of NIF experiments have begun. The characteristics of flow interaction have been diagnosed by the neutrons and protons generated via beam-beam deuteron interactions, the x-ray emission from the hot plasmas and proton probe generated by imploding DHe3 capsules. This paper will present the latest results from the NIF collisionless shock experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Collisional and collisionless expansion of Yukawa balls.

    PubMed

    Piel, Alexander; Goree, John A

    2013-12-01

    The expansion of Yukawa balls is studied by means of molecular dynamics simulations of collisionless and collisional situations. High computation speed was achieved by using the parallel computing power of graphics processing units. When the radius of the Yukawa ball is large compared to the shielding length, the expansion process starts with the blow-off of the outermost layer. A rarefactive wave subsequently propagates radially inward at the speed of longitudinal phonons. This mechanism is fundamentally different from Coulomb explosions, which employ a self-similar expansion of the entire system. In the collisionless limit, the outer layers carry away most of the available energy. The simulations are compared with analytical estimates. In the collisional case, the expansion process can be described by a nonlinear diffusion equation that is a special case of the porous medium equation.

  1. Spontaneous Reconnection Onset in the Magnetotail: Kinetic and MHD Pictures

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Merkin, V. G.

    2014-12-01

    The mechanism of the reconnection onset in planetary magnetotails has been a topic of hot debate for more than three decades. At the kinetic level of description the key problem is a seemingly universal stability of the collisionless tearing mode when electrons are magnetized by the magnetic field normal to the current sheet. This effect can be eliminated in 2D equilibria with magnetic flux accumulated at the anti-sunward end of the tail. However, the resulting instability seen in 2D PIC simulations with open boundaries differs from the classical tearing mode because its main effect is the formation of dipolarization fronts, i. e., regions of an enhanced normal magnetic field rather than the reversal of its sign. Strong tailward gradients of the normal magnetic field characteristic of fronts suggest that they can be destroyed in 3D by buoyancy and flapping instabilities. However, 3D PIC simulations show that buoyancy and flapping motions can neither destroy nor change critically the near-2D picture of the front evolution, although they do significantly disturb it. Modeling and understanding of this kinetic picture of the reconnection onset in MHD terms is critically important for incorporating the explosive reconnection physics into global models of the magnetosphere and solar corona. A key to this has become the recognition that tail current sheets with accumulated flux regions can also be unstable with respect to an ideal analog of the tearing mode, which has a similar structure of the electromagnetic field and plasma perturbations but preserves the original magnetic field topology. MHD simulations with high Lundquist number confirm the existence of such "pseudo-tearing" instability regimes. Non-MHD effects, including different motions of electron and ion species as well as the ion Landau dissipation transform these ideal MHD motions into the tearing/slippage instability obtained in PIC simulations.

  2. Role of electron inertia and reconnection dynamics in a stressed X-point collapse with a guide-field

    NASA Astrophysics Data System (ADS)

    Graf von der Pahlen, J.; Tsiklauri, D.

    2016-11-01

    Aims: In previous simulations of collisionless 2D magnetic reconnection it was consistently found that the term in the generalised Ohm's law that breaks the frozen-in condition is the divergence of the electron pressure tensor's non-gyrotropic components. The motivation for this study is to investigate the effect of the variation of the guide-field on the reconnection mechanism in simulations of X-point collapse, and the related changes in reconnection dynamics. Methods: A fully relativistic particle-in-cell (PIC) code was used to model X-point collapse with a guide-field in two and three spatial dimensions. Results: We show that in a 2D X-point collapse with a guide-field close to the strength of the in-plane field, the increased induced shear flows along the diffusion region lead to a new reconnection regime in which electron inertial terms play a dominant role at the X-point. This transition is marked by the emergence of a magnetic island - and hence a second reconnection site - as well as electron flow vortices moving along the current sheet. The reconnection electric field at the X-point is shown to exceed all lower guide-field cases for a brief period, indicating a strong burst in reconnection. By extending the simulation to three spatial dimensions it is shown that the locations of vortices along the current sheet (visualised by their Q-value) vary in the out-of-plane direction, producing tilted vortex tubes. The vortex tubes on opposite sides of the diffusion region are tilted in opposite directions, similarly to bifurcated current sheets in oblique tearing-mode reconnection. The tilt angles of vortex tubes were compared to a theoretical estimation and were found to be a good match. Particle velocity distribution functions for different guide-field runs, for 2.5D and 3D simulations, are analysed and compared.

  3. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    SciTech Connect

    Ng, Jonathan; Huang, Yi-Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai

    2015-11-15

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.

  4. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    SciTech Connect

    Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai

    2015-11-05

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.

  5. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    DOE PAGES

    Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; ...

    2015-11-05

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment modelmore » with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.« less

  6. Ion beta dependence on the development of Alfvénic fluctuations in reconnection jets

    NASA Astrophysics Data System (ADS)

    Higashimori, Katsuaki; Hoshino, Masahiro

    2015-03-01

    The generation of magneto-hydro-dynamic (MHD) to ion-scale fluctuations in collisionless magnetic reconnection is discussed using a two-dimensional electromagnetic hybrid code. It is shown that reconnection jets become turbulent specifically in low beta conditions, βi0<0.1-0.2 (where βi0 is the ion plasma beta in initial inflow regions). The fluctuations observed in reconnection jets consist of outgoing Alfvénic fluctuations. As probable candidates for the origin of Alfvénic fluctuations, this study focused on the dynamics in the plasma sheet boundary layer (PSBL) and a current sheet. We suggest that PSBL ion dynamics play an important part in excitation and suppression of waves. PSBL beam ions drive Alfvén waves in MHD to ion scale, kλi<0.5 (λi is ion inertial length), independent of βi0. On the other hand, because the beam temperature is highly correlated with that of inflowing ions, the waves decay by cyclotron damping as the value of the inflow ion beta increases. Local linear analysis suggests that this damping signature changes in βi0˜0.1-0.2 and suppresses the wave activity of Alfvén modes in high beta reconnection jets.

  7. Finite-dimensional collisionless kinetic theory

    NASA Astrophysics Data System (ADS)

    Burby, J. W.

    2017-03-01

    A collisionless kinetic plasma model may often be cast as an infinite-dimensional noncanonical Hamiltonian system. I show that, when this is the case, the model can be discretized in space and particles while preserving its Hamiltonian structure, thereby producing a finite-dimensional Hamiltonian system that approximates the original kinetic model. I apply the general theory to two example systems: the relativistic Vlasov-Maxwell system with spin and a gyrokinetic Vlasov-Maxwell system.

  8. Anomalous ion mixing within a Kelvin-Helmholtz vortex in a collisionless plasma

    NASA Technical Reports Server (NTRS)

    Terasawa, T.; Fujimoto, M.; Karimabadi, H.; Omidi, N.

    1992-01-01

    Anomalously fast ion mixing is observed in a hybrid code simulation (particle ions and a massless electron fluid) of the Kelvin-Helmholtz instability in a collisionless plasma. While the traditional view predicts that the ion mixing occurs on a time scale longer than the roll-up time T(v) of the Kelvin-Helmholtz vortex by a factor of (velocity shear scale length)/(ion Larmor radius), the simulation results show that the mixing occurs within a time scale comparable to T(v). It is shown that this fast mixing is due to the scattering of ions by unsteady electromagnetic fields.

  9. Energy exchanges in reconnection outflows

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Goldman, Martin V.; Newman, David L.; Markidis, Stefano

    2017-01-01

    Reconnection outflows are highly energetic directed flows that interact with the ambient plasma or with flows from other reconnection regions. Under these conditions the flow becomes highly unstable and chaotic, as any flow jets interacting with a medium. We report here massively parallel simulations of the two cases of interaction between outflow jets and between a single outflow with an ambient plasma. We find in both case the development of a chaotic magnetic field, subject to secondary reconnection events that further complicate the topology of the field lines. The focus of the present analysis is on the energy balance. We compute each energy channel (electromagnetic, bulk, thermal, for each species) and find where the most energy is exchanged and in what form. The main finding is that the largest energy exchange is not at the reconnection site proper but in the regions where the outflowing jets are destabilized.

  10. Geomagnetically Induced Currents From Reconnection

    NASA Video Gallery

    This animations shows a coronal mass ejections collide with Earth's magnetic fields and the fields change shape and strength. Reconnection in the magnetotail causes currents to follow the field lin...

  11. Reconnection AND Bursty Bulk Flow Associated Turbulence IN THE Earth'S Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Voros, Z.; Nakamura, R.; Baumjohann, W.; Runov, A.; Volwerk, M.; Jankovicova, D.; Balogh, A.; Klecker, B.

    2006-12-01

    Reconnection related fast flows in the Earth's plasma sheet can be associated with several accompanying phenomena, such as magnetic field dipolarization, current sheet thinning and turbulence. Statistical analysis of multi-scale properties of turbulence facilitates to understand the interaction of the plasma flow with the dipolar magnetic field and to recognize the remote or nearby temporal and spatial characteristics of reconnection. The main emphasis of this presentation is on differentiating between the specific statistical features of flow associated fluctuations at different distances from the reconnection site.

  12. Exploring Magnetopause Reconnection with MMS

    NASA Astrophysics Data System (ADS)

    Burch, J. L.; Torbert, R. B.; Moore, T. E.; Pollock, C. J.; Mauk, B.; Fuselier, S. A.; Nakamura, R.; Hesse, M.; Ergun, R.; Giles, B. L.; Phan, T.; Baker, D. N.

    2015-12-01

    Magnetospheric Multiscale is a NASA Solar-Terrestrial Probes mission that is designed to conduct a definitive experiment on magnetic reconnection in the boundary regions of the Earth's magnetoshere. Previous missions have established that reconnection occurs somewhere on the magnetopause and in the geomagnetic tail on a nearly continuous basis. Most of the predictions that have been made about reconnection on the MHD and ion scales have been confirmed and new questions posed, particularly at smaller scales. MMS is designed to probe reconnection down to the smallest scales possible thereby allowing the assessment of electron-scale pressure gradients and inertial effects as possible important drivers of magnetic reconnection. Multipoint measurements of 3D electric and magnetic fields and plasma distributions at the required spatial resolution are required along with plasma waves, energetic particles and ion composition to open this new window on reconnection and solve its remaining mysteries. With a wide range of new and vastly improved measurements at 4 locations with separations down to 10 km, MMS is fully operational and nearing the dayside magnetopause where its exploration begins. In this paper results obtained from the first three months of magnetopause crossings will be presented.

  13. Magnetic Reconnection in Solar Flares

    NASA Astrophysics Data System (ADS)

    Forbes, Terry G.

    2016-05-01

    Reconnection has at least three possible roles in solar flares: First, it may contribute to the build-up of magnetic energy in the solar corona prior to flare onset; second, it may directly trigger the onset of the flare; and third, it may allow the release of magnetic energy by relaxing the magnetic field configuration to a lower energy state. Although observational support for the first two roles is somewhat limited, there is now ample support for the third. Within the last few years EUV and X-ray instruments have directly observed the kind of plasma flows and heating indicative of reconnection. Continued improvements in instrumentation will greatly help to determine the detailed physics of the reconnection process in the solar atmosphere. Careful measurement of the reconnection outflows will be especially helpful in this regard. Current observations suggest that in some flares the jet outflows are accelerated within a short diffusion region that is more characteristic of Petschek-type reconnection than Sweet-Parker reconnection. Recent resistive MHD theoretical and numerical analyses predict that the length of the diffusion region should be just within the resolution range of current X-ray and EUV telescopes if the resistivity is uniform. On the other hand, if the resistivity is not uniform, the length of the diffusion region could be too short for the outflow acceleration region to be observable.

  14. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, Ivo

    2004-11-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (B_pol < 100 Gauss, L=90 cm, r < 3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / B_pol > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t < 20τ_Alfven), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  15. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, I.; Intrator, T.; Hemsing, E.; Hsu, S.; Lapenta, G.; Abbate, S.

    2004-12-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (Bθ ≤ 100 Gauss, L=90 cm, r≤3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / Bθ > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t≤ 20 τ Alfv´ {e}n), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  16. Formation of current sheets in magnetic reconnection

    SciTech Connect

    Boozer, Allen H.

    2014-07-15

    An ideal evolution of magnetic fields in three spatial dimensions tends to cause neighboring field lines to increase their separation exponentially with distance ℓ along the lines, δ(ℓ)=δ(0)e{sup σ(ℓ)}. The non-ideal effects required to break magnetic field line connections scale as e{sup −σ}, so the breaking of connections is inevitable for σ sufficiently large—even though the current density need nowhere be large. When the changes in field line connections occur rapidly compared to an Alfvén transit time, the constancy of j{sub ||}/B along the magnetic field required for a force-free equilibrium is broken in the region where the change occurs, and an Alfvénic relaxation of j{sub ||}/B occurs. Independent of the original spatial distribution of j{sub ||}/B, the evolution is into a sheet current, which is stretched by a factor e{sup σ} in width and contracted by a factor e{sup σ} in thickness with the current density j{sub ||} increasing as e{sup σ}. The dissipation of these sheet currents and their associated vorticity sheets appears to be the mechanism for transferring energy from a reconnecting magnetic field to a plasma. Harris sheets, which are used in models of magnetic reconnection, are shown to break up in the direction of current flow when they have a finite width and are in a plasma in force equilibrium. The dependence of the longterm nature of magnetic reconnection in systems driven by footpoint motion can be studied in a model that allows qualitative variation in the nature of that motion: slow or fast motion compared to the Alfvén transit time and the neighboring footpoints either exponentially separating in time or not.

  17. Particle-in-cell simulations of Magnetic Field Generation, Evolution, and Reconnection in Laser-driven Plasmas

    NASA Astrophysics Data System (ADS)

    Matteucci, Jack; Moissard, Clément; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    The advent of high-energy-density physics facilities has introduced the opportunity to experimentally investigate magnetic field dynamics relevant to both ICF and astrophysical plasmas. Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the plasma by the Biermann battery effect. In this study, we simulate these experiments from first principles using 2-D and 3-D particle-in-cell simulations. Simulations self-consistently demonstrate magnetic field generation by the Biermann battery effect, followed by advection by the Hall effect and ion flow. In 2-D simulations, we find in both the collisionless case and the semi-collisional case, defined by eVi × B >> Rei /ne (where Rei is the electron ion momentum transfer) that quantitative agreement with the generalized Ohm's law is only obtained with the inclusion of the pressure tensor. Finally, we document that significant field is destroyed at the reconnection site by the Biermann term, an inverse, `anti-Biermann' effect, which has not been considered previously in analysis of the experiment. The role of the anti-Biermann effect will be compared to standard reconnection mechanisms in 3-D reconnection simulations. This research used resources of the ORLC Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. DoE under Contract No. DE-AC05-00OR22725.

  18. Definitions of Reconnection Revisited: Distinction Between Magnetic Reconnection and Plasma Reconnection

    NASA Astrophysics Data System (ADS)

    Vasyliunas, V. M.

    2015-12-01

    The term "magnetic reconnection" has been used with several different meanings, and sometimes (particularly in discussions of observations) it is not clear which one of them (if any) is meant. Most common is a more or less literal definition of "cutting" and "reconnecting" two magnetic field lines (often illustrated by a sketch of field lines in two dimensions, or a perspective drawing of isolated spaghetti-like flux tubes); this concept can be formulated more precisely in terms of plasma flow across (or, equivalently, electric field in) a bounding surface (separatrix) between topologically distinct magnetic fields. The so-called "generalized reconnection" invokes only deviations from ideal MHD in a localized region; a more precise formulation is by integrals of the electric field along magnetic field lines. These two definitions can be related to two different physical processes, which I call magnetic reconnection and plasma reconnection, respectively. Magnetic reconnection involves field lines that change from one topological class to another (e.g., between open and closed). Its occurrence, requiring the presence of singular magnetic null points, can be identified (at least in principle, conceptually) from the magnetic field alone. When representing magnetic reconnection graphically, it is important to show all the singular points explicitly and to keep in mind that field lines are a continuum: between any two field lines, there is always another field line (even arbitrarily close to the singular points). Plasma reconnection involves plasma flow in which plasma elements initially located on a single field line do not remain on a field line, and this may occur without any changes in the topology or other properties of the magnetic field. To understand either one, the process must be visualized always in three dimensions and without special symmetries. Prototype of magnetic reconnection is the well-known open-magnetosphere model of Dungey (1961). Prototype of

  19. Particle-In-Cell Simulations of Particle Energization from Low Mach Number Fast Mode Shocks Using the Moving Wall Boundary Condition

    NASA Astrophysics Data System (ADS)

    Workman, Jared C.; Park, J.; Blackman, E.; Ren, C.; Siller, R.

    2012-05-01

    Astrophysical shocks are often studied in the high Mach number limit but weakly compressive fast shocks can occur in magnetic reconnection outflows and are considered to be a site of particle energization in solar flares. Here we study the microphysics of such perpendicular, low Mach number collisionless shocks using two-dimensional particle-in-cell (PIC) simulations with a reduced ion/electron mass ratio and employ a moving wall boundary method for initial generation the shock. This moving wall method allows for more control of the shock speed, smaller simulation box sizes, and longer simulation times than the commonly used fixed wall, reflection method of shock formation. Our results, which are independent of the shock formation method, reveal the prevalence shock drift acceleration (SDA) of both electron and ions in a purely perpendicular shock with Alfven Mach number MA = 6.8 and ratio of thermal to magnetic pressure β = 8. We determine the respective minimum energies required for electrons and ions to incur SDA. We derive an theoretical electron distribution via SDA that compares favorably to the simulation results. We also show that a modified two-stream instability due to the incoming and reflecting ions in the shock transition region acts as the mechanism to generate collisionless plasma turbulence that sustains the shock.

  20. Magnetohydrodynamic Numerical Simulations of Magnetic Reconnection in Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Tanuma, Syuniti

    2000-03-01

    reconnection, triggered by a supernova explosion, creates hot plasmas and magnetic islands (helical tubes), and how the magnetic islands confine the hot plasmas in Galaxy. The supernova shock is one of the possible mechanisms to trigger reconnection in Galaxy. We conclude that magnetic reconnection is able to heat the GRXE plasma if the magnetic field is localized in an intense flux tube with Blocal sim 30 muG. Part III This is the main part of the thesis. We examine the magnetic reconnection triggered by a supernova shock (or a point explosion) in interstellar medium, by performing 2D MHD numerical simulations with high spatial resolution. The magnetic reconnection starts long after the supernova shock (fast-mode MHD shock wave) passes a current sheet. The current sheet evolves as follows: (i) The tearing-mode instability is excited by the supernova shock. The current sheet becomes thin in the nonlinear phase of tearing instability. (ii) The current-sheet thinning is saturated when the current-sheet thickness becomes comparable to that of Sweet-Parker current sheet. After that, Sweet-Parker type reconnection starts, and the current-sheet length increases. (iii) The secondary tearing-mode instability occurs in the thin Sweet-Parker current sheet. (iv) As a result, further current-sheet thinning occurs, because gas density decreases in the current sheet. The anomalous resistivity sets in, and Petschek type reconnection starts. The interstellar gas is accelerated and heated. The magnetic energy is released quickly while magnetic islands are moving in the current sheet during Petschek type reconnection. (v) Magnetic reconnection stops because the gas pressure increases in the current sheet near left and right boundaries. The released magnetic energy is determined by the interstellar magnetic field strength, not by the energy of initial supernova nor distance between the supernova and the current sheet. We suggest that magnetic reconnection is a possible mechanism to generate X

  1. Undriven magnetic reconnection in magnetohydrodynamics and Hall magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Lottermoser, R.-F.; Scholer, M.

    1997-03-01

    Undriven magnetic reconnection in a one-dimensional current sheet is investigated by means of a two-dimensional compressible and resistive Hall MHD (HMHD) code. Reconnection is set up by applying a spatially limited resistivity in the center of an isothermal Harris sheet. Although the magnetic fields on the two sides of the initial current sheet are equal and exactly antiparallel, both magnetic field and flow velocity components out of the simulation plane are self-consistently generated in the course of the reconnection process. The quasi steady state exhibits all features of Petschek-like reconnection, such as two pairs of shock waves attached to the diffusion region, a strongly converging flow toward the field line reversal region, and a weak fast mode expansion of the inflowing plasma. The reconnection rate measured in terms of the Alfvén Mach number well upstream of the diffusion region is within the analytic limits for compressible Petschek reconnection and slightly higher than in the corresponding MHD case. In contrast to MHD, the shock in HMHD is a subfast, strong (2->4), intermediate shock; the thickness is ~=10ion inertial lengths, and the shocks exhibit an internal structure. The trailing left-handed slow mode wave train predicted from the integration of the stationary one-dimensional Hall MHD equations is not found. This is probably due to the fact that waves downstream of the shock are smeared out along the shock layer by the fast outflow jet. The shock waves generated during the decay of a current sheet are studied by a one-dimensional (1-D) Hall MHD simulation. In the 1-D case, the shocks are of slow mode type, and thus a left-handed intermediate mode wave train can form upstream of the shocks. The shock thickness is estimated to be at least a factor of 3 thicker than in 2-D HMHD fast reconnection. The intermediate shock in the 2-D HMHD simulation as well as the slow shock in the 1-D HMHD simulation exhibit an S-shaped hodogram. When starting the

  2. Nonlinear instability and intermittent nature of magnetic reconnection in solar chromosphere

    NASA Astrophysics Data System (ADS)

    Singh, K. A. P.; Hillier, Andrew; Isobe, Hiroaki; Shibata, Kazunari

    2015-10-01

    The recent observations of Singh et al. (2012, ApJ, 759, 33) have shown multiple plasma ejections and the intermittent nature of magnetic reconnection in the solar chromosphere, highlighting the need for fast reconnection to occur in highly collisional plasma. However, the physical process through which fast magnetic reconnection occurs in partially ionized plasma, like the solar chromosphere, is still poorly understood. It has been shown that for sufficiently high magnetic Reynolds numbers, Sweet-Parker current sheets can become unstable leading to tearing mode instability and plasmoid formation, but when dealing with a partially ionized plasma the strength of coupling between the ions and neutrals plays a fundamental role in determining the dynamics of the system. We propose that as the reconnecting current sheet thins and the tearing instability develops, plasmoid formation passes through strongly, intermediately, and weakly coupled (or decoupled) regimes, with the time scale for the tearing mode instability depending on the frictional coupling between ions and neutrals. We present calculations for the relevant time scales for fractal tearing in all three regimes. We show that as a result of the tearing mode instability and the subsequent non-linear instability due to the plasmoid-dominated reconnection, the Sweet-Parker current sheet tends to have a fractal-like structure, and when the chromospheric magnetic field is sufficiently strong the tearing instability can reach down to kinetic scales, which are hypothesized to be necessary for fast reconnection.

  3. Collisionless stellar hydrodynamics as an efficient alternative to N-body methods

    NASA Astrophysics Data System (ADS)

    Mitchell, Nigel L.; Vorobyov, Eduard I.; Hensler, Gerhard

    2013-01-01

    The dominant constituents of the Universe's matter are believed to be collisionless in nature and thus their modelling in any self-consistent simulation is extremely important. For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient and relatively simple to implement. However when extending simulations to include the effects of gas physics, mesh codes are at a distinct disadvantage compared to Smooth Particle Hydrodynamics (SPH) codes. Whereas implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. In this paper we propose the use of the collisionless Boltzmann moment equations as a means to model the collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH Adaptive Mesh Refinement (AMR) code. This approach which we term `collisionless stellar hydrodynamics' enables us to do away with the particle-mesh approach and since the parallelization scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find that the classic hydrodynamic equations and the Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. By deriving the relevant eigenvalues and eigenvectors of the Boltzmann moment equations, we are able to use high order

  4. Collisionless shocks in the heliosphere: A tutorial review

    NASA Technical Reports Server (NTRS)

    Stone, Robert G. (Editor); Tsurutani, Bruce T. (Editor)

    1985-01-01

    An update is presented on current knowledge of collisionless shocks in the heliosphere. The individual papers address: a quarter century of collisionless shock research, some macroscopic properties of shock waves in the heliosphere, microinstabilities and anomalous transport, and acceleration of energetic particles.

  5. Fluxon Modeling of Eruptive Events With and Without Reconnection

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Rachmeler, L.; Davey, A.; Kankelborg, C.

    2007-05-01

    Fluxon MHD models represent the coronal magnetic field as a "skeleton" of discretized field lines. This quasi-Lagrangian approach eliminates numerical resistivity and allows 3-D time-dependent plasma simulation in a desktop workstation.Using our fluxon code, FLUX, we have demonstrated that ideal MHD instabilities can drive fast eruptive events even in the complete absence of magnetic reconnection. The mechanism ("herniation") is probably not the main driver of fast CMEs but may be applicable to microjets, macrospicules, or other small scale events where vortical flows are present in the solar atmosphere. In this presentation, we use time-dependent simulations to demonstrate energy release in several idealized plasma systems with and without magnetic reconnection.This work was funded by NASA's LWS and SHP-SR&T programs.

  6. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  7. Magnetic Reconnection Dynamics in the Presence of Low-energy Ion Component: PIC Simulations of Hidden Particle Population

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Y. V.; Divin, A. V.; Toledo Redondo, S.; Andre, M.; Vaivads, A.; Markidis, S.; Lapenta, G.

    2015-12-01

    Magnetospheric and astrophysical plasmas are rarely in the state of thermal equilibrium. Plasma distribution functions may contain beams, supra-thermal tails, multiple ion and electron populations which are not thermalized over long time scales due to the lack of collisions between particles. In particular, the equatorial region of the dayside Earth's magnetosphere is often populated by plasma containing hot and cold ion components of comparable densities [Andre and Cully, 2012], and such ion distribution alters properties of the magnetic reconnection regions at the magnetopause [Toledo-Redondo et. al., 2015]. Motivated by these recent findings and also by fact that this region is one of the targets of the recently launched MMS mission, we performed 2D PIC simulations of magnetic reconnection in collisionless plasma with hot and cold ion components. We used a standard Harris current sheet, to which a uniform cold ion background is added. We found that introduction of the cold component modifies the structure of reconnection diffusion region. Diffusion region displays three-scale structure, with the cold Ion Diffusion Region (cIDR) scale appearing in-between the Electron Diffusion Region (EDR) and Ion Diffusion Region (IDR) scales. Structure and strength of the Hall magnetic field depends weakly on cold ion temperature or density, and is rather controlled by the conditions (B, n) upstream the reconnection region. The cold ions are accelerated predominantly transverse to the magnetic field by the Hall electric fields inside the IDR, leading to a large ion pressure anisotropy, which is unstable to ion Weibel-type or mirror-type mode. On the opposite, acceleration of cold ions is mostly field-aligned at the reconnection jet fronts downstream the X-line, producing intense ion phase-space holes there. Despite comparable reconnection rates produced , we find that the overall evolution of reconnection in presence of cold ion population is more dynamic compared to the case

  8. Observations of Magnetic Reconnection and Plasma Dynamics in Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    DiBraccio, Gina A.

    Mercury's magnetosphere is formed as a result of the supersonic solar wind interacting with the planet's intrinsic magnetic field. The combination of the weak planetary dipole moment and intense solar wind forcing of the inner heliosphere creates a unique space environment, which can teach us about planetary magnetospheres. In this work, we analyze the first in situ orbital observations at Mercury, provided by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Magnetic reconnection and the transport of plasma and magnetic flux are investigated using MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer measurements. Here, we report our results on the effect of magnetic reconnection and plasma dynamics on Mercury's space environment: (1) Mercury's magnetosphere is driven by frequent, intense magnetic reconnection observed in the form of magnetic field components normal to the magnetopause, BN, and as helical bundles of flux, called magnetic flux ropes, in the cross-tail current sheet. The high reconnection rates are determined to be a direct consequence of the low plasma beta, the ratio of plasma to magnetic pressure, in the inner heliosphere. (2) As upstream solar wind conditions vary, we find that reconnection occurs at Mercury's magnetopause for all orientations of the interplanetary magnetic field, independent of shear angle. During the most extreme solar wind forcing events, the influence of induction fields generated within Mercury's highly conducting core are negated by erosion due to persistent magnetopause reconnection. (3) We present the first observations of Mercury's plasma mantle, which forms as a result of magnetopause reconnection and allows solar wind plasma to enter into the high-latitude magnetotail through the dayside cusps. The energy dispersion observed in the plasma mantle protons is used to infer the cross-magnetosphere electric field, providing a direct measurement of solar wind momentum

  9. A review of astrophysical reconnection

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Magnetic reconnection is a basic plasma process involving rapid rearrangement of magnetic field topology. It often leads to violent release of magnetic energy and its conversion to the plasma thermal and kinetic energy as well as nonthermal particle acceleration. It is thus believed to power numerous types of explosive phenomena both inside and outside the Solar system, including various kinds of high-energy flares. In this talk I will first give an overview of astrophysical systems where reconnection is believed to play an important role. Examples include pulsed high-energy emission in pulsar magnetospheres; gamma-ray flares in pulsar wind nebulae and AGN/blazar jets; Gamma-Ray Bursts; and giant flares in magnetar systems. I will also analyze the physical conditions of the plasma in some of these astrophysical systems and will discuss the fundamental physical differences between various astrophysical instances of magnetic reconnection and the more familiar solar and space examples of reconnection. In particular, I will demonstrate the importance of including radiative effects in order to understand astrophysical magnetic reconnection and in order to connect our theoretical models with the observed radiation signatures.

  10. Multiple Spacecraft Study of the Impact of Turbulence on Reconnection Rates

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre; Goldstein, Melvyn; Figueroa-Vinas, Adolfo; Adrian, Mark; Sahraoui, Fouad

    2011-01-01

    Magnetic turbulence and secondary island formation have reemerged as possible explanations for fast reconnection. Recent three-dimensional simulations reveal the formation of secondary islands that serve to shorten the current sheet and increase the accelerating electric field, while both simulations and observations witness electron holes whose collapse energizes electrons. However, few data studies have explicitly investigated the effect of turbulence and islands on the reconnection rate. We present a more comprehensive analysis of the effect of turbulence and islands on reconnection rates observed in space. Our approach takes advantage of multiple spacecraft to find the location of the spacecraft relative to the inflow and the outflow, to estimate the reconnection electric field, to indicate the presence and size of islands, and to determine wave vectors indicating turbulence. A superposed epoch analysis provides independent estimates of spatial scales and a reconnection electric field. We apply k-filtering and a new method adopted from seismological analyses to identify the wavevectors. From several case studies of reconnection events, we obtain preliminary estimates of the spectral scaling law, identify wave modes, and present a method for finding the reconnection electric field associated with the wave modes.

  11. Magnetic reconnection process in transient coaxial helicity injection

    SciTech Connect

    Ebrahimi, F.; Hooper, E. B.; Sovinec, C. R.; Raman, R.

    2013-09-15

    The physics of magnetic reconnection and fast flux closure in transient coaxial helicity injection experiments in NSTX is examined using resistive MHD simulations. These simulations have been performed using the NIMROD code with fixed boundary flux (including NSTX poloidal coil currents) in the NSTX experimental geometry. Simulations show that an X point is formed in the injector region, followed by formation of closed flux surfaces within 0.5 ms after the driven injector voltage and injector current begin to rapidly decrease. As the injector voltage is turned off, the field lines tend to untwist in the toroidal direction and magnetic field compression exerts a radial J × B force and generates a bi-directional radial E{sub toroidal}×B{sub poloidal} pinch flow to bring oppositely directed field lines closer together to reconnect. At sufficiently low magnetic diffusivity (high Lundquist number), and with a sufficiently narrow injector flux footprint width, the oppositely directed field lines have sufficient time to reconnect (before dissipating), leading to the formation of closed flux surfaces. The reconnection process is shown to have transient Sweet-Parker characteristics.

  12. On the impact of fluctuations on the magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Nykyri, K.; Dimmock, A. P.; Wiltberger, M. J.

    2015-12-01

    When the cross-tail current sheet is sufficiently thin, any adequate perturbation can trigger a reconnection. In this presentation we discuss initial results of a statistical correlation study using 8+ years of THEMIS measurements between magnetosheath and plasma sheet fluctuations (magnetic and velocity fields, and mass flux) and in the ULF Pc2-Pc5 ranges for Southward, Northward, and Parker-Spiral IMF, and for fast and slow solar wind intervals. The statistical fluctuation properties are compared to the typical magnetotail reconnection characteristics such as reconnection flows, and electron to ion temperature and velocity ratios. Global LFM MHD simulations are used for studying how deeply into the plasma sheet the vorticity created by the magnetopause processes such as Kelvin-Helmholtz Instability can penetrate and what are the corresponding amplitudes. Local MHD simulations in a Modified Harris-sheet equilibrium are used for studying how the fluctuations in magnetic field and mass flux (with the observed amplitudes and frequencies from the THEMIS statistical study) impact the magnetotail reconnection characteristics.

  13. Modeling of magnetic reconnection in the magnetotail using global MHD simulation with an effective resistivity model

    NASA Astrophysics Data System (ADS)

    Den, M.; Horiuchi, R.; Fujita, S.; Tanaka, T.

    2011-12-01

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. Tanaka and Fujita reproduced substorm evolution process by numerical simulation with the global MHD code [1]. In the MHD framework, the dissipation model is introduced for modeling of the kinetic effects. They found that the normalized reconnection viscosity, one of the dissipation model employed there, gave a large effect for the dipolarization, central phenomenon in the substorm development process, though that viscosity was assumed to be a constant parameter. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow [2, 3]. Horiuchi and his collaborators showed that reconnection electric field generated by microscopic physics evolves inside ion meandering scale so as to balance the flux inflow rate at the inflow boundary, which is controlled by macroscopic physics [2]. That is, effective resistivity generated through this process can be expressed by balance equation between micro and macro physics. In this paper, we perform substorm simulation by using the global MHD code developed by Tanaka [3] with this effective resistivity instead of the empirical resistivity model. We obtain the AE indices from simulation data, in which substorm onset can be seen clearly, and investigate the relationship between the substorm development and the effective resistivity model. [1] T. Tanaka, A, Nakamizo, A. Yoshikawa, S. Fujita, H. Shinagawa, H. Shimazu, T. Kikuchi, and K. K. Hashimoto, J. Geophys. Res. 115 (2010) A05220,doi:10.1029/2009JA014676. [2] W. Pei, R. Horiuchi, and T. Sato, Physics of Plasmas,Vol. 8 (2001), pp. 3251-3257. [3] A. Ishizawa, and R. Horiuchi, Phys. Rev. Lett., Vol. 95, 045003 (2005). [4

  14. IRIS Si iv LINE PROFILES: AN INDICATION FOR THE PLASMOID INSTABILITY DURING SMALL-SCALE MAGNETIC RECONNECTION ON THE SUN

    SciTech Connect

    Innes, D. E.; Guo, L.-J.; Huang, Y.-M.; Bhattacharjee, A.

    2015-11-10

    Our understanding of the process of fast reconnection has undergone a dramatic change in the last 10 years driven, in part, by the availability of high-resolution numerical simulations that have consistently demonstrated the break-up of current sheets into magnetic islands, with reconnection rates that become independent of Lundquist number, challenging the belief that fast magnetic reconnection in flares proceeds via the Petschek mechanism which invokes pairs of slow-mode shocks connected to a compact diffusion region. The reconnection sites are too small to be resolved with images, but these reconnection mechanisms, Petschek and the plasmoid instability, have reconnection sites with very different density and velocity structures and so can be distinguished by high-resolution line-profile observations. Using IRIS spectroscopic observations we obtain a survey of typical line profiles produced by small-scale events thought to be reconnection sites on the Sun. Slit-jaw images are used to investigate the plasma heating and re-configuration at the sites. A sample of 15 events from 2 active regions is presented. The line profiles are complex with bright cores and broad wings extending to over 300 km s{sup −1}. The profiles can be reproduced with the multiple magnetic islands and acceleration sites that characterize the plasmoid instability but not by bi-directional jets that characterize the Petschek mechanism. This result suggests that if these small-scale events are reconnection sites, then fast reconnection proceeds via the plasmoid instability, rather than the Petschek mechanism during small-scale reconnection on the Sun.

  15. IRIS Si IV Line Profiles: An Indication for the Plasmoid Instability during Small-scale Magnetic Reconnection on the Sun

    NASA Astrophysics Data System (ADS)

    Innes, D. E.; Guo, L.-J.; Huang, Y.-M.; Bhattacharjee, A.

    2015-11-01

    Our understanding of the process of fast reconnection has undergone a dramatic change in the last 10 years driven, in part, by the availability of high-resolution numerical simulations that have consistently demonstrated the break-up of current sheets into magnetic islands, with reconnection rates that become independent of Lundquist number, challenging the belief that fast magnetic reconnection in flares proceeds via the Petschek mechanism which invokes pairs of slow-mode shocks connected to a compact diffusion region. The reconnection sites are too small to be resolved with images, but these reconnection mechanisms, Petschek and the plasmoid instability, have reconnection sites with very different density and velocity structures and so can be distinguished by high-resolution line-profile observations. Using IRIS spectroscopic observations we obtain a survey of typical line profiles produced by small-scale events thought to be reconnection sites on the Sun. Slit-jaw images are used to investigate the plasma heating and re-configuration at the sites. A sample of 15 events from 2 active regions is presented. The line profiles are complex with bright cores and broad wings extending to over 300 km s-1. The profiles can be reproduced with the multiple magnetic islands and acceleration sites that characterize the plasmoid instability but not by bi-directional jets that characterize the Petschek mechanism. This result suggests that if these small-scale events are reconnection sites, then fast reconnection proceeds via the plasmoid instability, rather than the Petschek mechanism during small-scale reconnection on the Sun.

  16. Electron jet of asymmetric reconnection

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; André, M.; Pritchett, P. L.; Retinò, A.; Phan, T. D.; Ergun, R. E.; Goodrich, K.; Lindqvist, P.-A.; Marklund, G. T.; Le Contel, O.; Plaschke, F.; Magnes, W.; Strangeway, R. J.; Russell, C. T.; Vaith, H.; Argall, M. R.; Kletzing, C. A.; Nakamura, R.; Torbert, R. B.; Paterson, W. R.; Gershman, D. J.; Dorelli, J. C.; Avanov, L. A.; Lavraud, B.; Saito, Y.; Giles, B. L.; Pollock, C. J.; Turner, D. L.; Blake, J. D.; Fennell, J. F.; Jaynes, A.; Mauk, B. H.; Burch, J. L.

    2016-06-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E∥ amplitudes reaching up to 300 mV m-1 and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  17. The collisionless magnetoviscous-thermal instability

    SciTech Connect

    Islam, Tanim

    2014-05-20

    It is likely that nearly all central galactic massive and supermassive black holes are nonradiative: their accretion luminosities are orders of magnitude below what can be explained by efficient black hole accretion within their ambient environments. These objects, of which Sagittarius A* is the best-known example, are also dilute (mildly collisional to highly collisionless) and optically thin. In order for accretion to occur, magnetohydrodynamic (MHD) instabilities must develop that not only transport angular momentum, but also gravitational energy generated through matter infall, outward. A class of new magnetohydrodynamical fluid instabilities—the magnetoviscous-thermal instability (MVTI)—was found to transport angular momentum and energy along magnetic field lines through large (fluid) viscosities and thermal conductivities. This paper describes the analog to the MVTI, the collisionless MVTI (CMVTI), that similarly transports energy and angular momentum outward, expected to be important in describing the flow properties of hot, dilute, and radiatively inefficient accretion flows around black holes. We construct a local equilibrium for MHD stability analysis in this differentially rotating disk. We then find and characterize specific instabilities expected to be important in describing their flow properties, and show their qualitative similarities to instabilities derived using the fluid formalism. We conclude with further work needed in modeling this class of accretion flow.

  18. Reformation and Microinstabilities at Perpendicular Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Umeda, T.; Kidani, Y.; Matsukiyo, S.; Yamazaki, R.

    2014-12-01

    Large-scale two-dimensional (2D) full particle-in-cell (PIC) simulations are carried out for studying the relationship between the dynamics of a perpendicular shock and microinstabilities generated at the shock foot. The structure and dynamics of collisionless shocks are generally determined by Alfven Mach number and plasma beta, while microinstabilities at the shock foot are controlled by the ratio of the upstream bulk velocity to the electron thermal velocity and the ratio of the plasma-to-cyclotron frequency. With a fixed Alfven Mach number and plasma beta, the ratio of the upstream bulk velocity to the electron thermal velocity is given as a function of the ion-to-electron mass ratio. The present 2D full PIC simulations with a relatively low Alfven Mach number (MA ˜ 6) show that the modified two-stream instability is dominant with higher ion-to-electron mass ratios. It is also confirmed that waves propagating downstream are more enhanced at the shock foot near the shock ramp as the mass ratio becomes higher. The result suggests that these waves play a role in the modification of the dynamics of collisionless shocks through the interaction with shock front ripples.

  19. Collisionless shock waves mediated by Weibel Instability

    NASA Astrophysics Data System (ADS)

    Naseri, Neda; Ruan, Panpan; Zhang, Xi; Khudik, Vladimir; Shvets, Gennady

    2015-11-01

    Relativistic collisionless shocks are common events in astrophysical environments. They are thought to be responsible for generating ultra-high energy particles via the Fermi acceleration mechanism. It has been conjectured that the formation of collisionless shocks is mediated by the Weibel instability that takes place when two initially cold, unmagnetized plasma shells counter-propagate into each other with relativistic drift velocities. Using a PIC code, VLPL, which is modified to suppress numerical Cherenkov instabilities, we study the shock formation and evolution for asymmetric colliding shells with different densities in their own proper reference frame. Plasma instabilities in the region between the shock and the precursor are also investigated using a moving-window simulation that advances the computational domain at the shock's speed. This method helps both to save computation time and avoid severe numerical Cherenkov instabilities, and it allows us to study the shock evolution in a longer time period. Project is supported by US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.

  20. Magnetic reconnection launcher

    DOEpatents

    Cowan, M.

    1987-04-06

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in the launcher with the passage of a projectiles. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils. The gap portion of the projectile permits substantially unrestricted distribution of the induced currents so that current densities are only high where the useful magnetic force is high. This allows designs which permit ohmic oblation from the rear surfaces of the gap portion of the projectile allowing much high velocities to be achieved. An electric power apparatus controls the electric power supplied to the opposing coils until the gap portion of the projectile substantially occupies the gap between the coils, at which time the coils are supplied with peak current quickly. 8 figs.

  1. A reconnectable multiway implantable connector.

    PubMed

    Rushton, D N; Tromans, A M; Donaldson, N de N

    2002-12-01

    A well-tried plug-and-socket connector system designed for connecting multichannel implanted cables was adapted so as to allow disconnection and reconnection during surgery. Five different sealing techniques were tested in vitro, and it was found that only one of them had the required qualities of high leakage path impedance (taken as more than one megaohm for the worst sample) after three months of saline soak, together with demountability under surgical conditions. The system has subsequently been successfully implemented in a patient in whom reconnection was required two years after implantation.

  2. MHD simulations of three-dimensional resistive reconnection in a cylindrical plasma column

    NASA Astrophysics Data System (ADS)

    Striani, E.; Mignone, A.; Vaidya, B.; Bodo, G.; Ferrari, A.

    2016-11-01

    Magnetic reconnection is a plasma phenomenon where a topological rearrangement of magnetic field lines with opposite polarity results in dissipation of magnetic energy into heat, kinetic energy and particle acceleration. Such a phenomenon is considered as an efficient mechanism for energy release in laboratory and astrophysical plasmas. An important question is how to make the process fast enough to account for observed explosive energy releases. The classical model for steady state magnetic reconnection predicts reconnection times scaling as S1/2 (where S is the Lundquist number) and yields time-scales several order of magnitude larger than the observed ones. Earlier two-dimensional MHD simulations showed that for large Lundquist number the reconnection time becomes independent of S (`fast reconnection' regime) due to the presence of the secondary tearing instability that takes place for S ≳ 1 × 104. We report on our 3D MHD simulations of magnetic reconnection in a magnetically confined cylindrical plasma column under either a pressure balanced or a force-free equilibrium and compare the results with 2D simulations of a circular current sheet. We find that the 3D instabilities acting on these configurations result in a fragmentation of the initial current sheet in small filaments, leading to enhanced dissipation rate that becomes independent of the Lundquist number already at S ≃ 1 × 103.

  3. Explosive reconnection of double tearing modes in relativistic plasmas: application to the Crab flares

    NASA Astrophysics Data System (ADS)

    Baty, H.; Petri, J.; Zenitani, S.

    2013-11-01

    Magnetic reconnection associated to the double tearing mode is investigated by means of resistive relativistic magnetohydrodynamic simulations. A linearly unstable double current sheet system in two-dimensional Cartesian geometry is considered. For initial perturbations of large enough longitudinal wavelengths, a fast reconnection event is triggered by a secondary instability that is structurally driven by the non-linear evolution of the magnetic islands. The latter reconnection phase and time-scale appear to weakly depend on the plasma resistivity and magnetization parameter. We discuss the possible role of such explosive reconnection dynamics to explain the MeV flares observed in the Crab Pulsar nebula. Indeed, the time-scale and the critical minimum wavelength give constraints on the Lorentz factor of the striped wind and on the location of the emission region, respectively.

  4. Observing the release of twist by magnetic reconnection in a solar filament eruption

    PubMed Central

    Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li

    2016-01-01

    Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist. PMID:27306479

  5. Firehose, Mirror, and Magnetorotational Instabilities in a Collisionless Shearing Plasma

    NASA Astrophysics Data System (ADS)

    Kunz, Matthew; Schekochihin, Alexander; Stone, James; Melville, Scott; Quataert, Eliot

    2015-11-01

    Describing the large-scale behavior of weakly collisional magnetized plasmas, such as the solar wind, black-hole accretion flows, or the intracluster medium of galaxy clusters, necessitates a detailed understanding of the kinetic-scale physics governing the dynamics of magnetic fields and the transport of momentum and heat. This physics is complicated by the fact that such plasmas are expected to exhibit particle distribution functions with unequal thermal pressures in the directions parallel and perpendicular to the local magnetic field. This pressure anisotropy can trigger fast Larmor-scale instabilities - namely, firehose and mirror - which solar-wind observations suggest to be effective at regulating the pressure anisotropy to marginally stable levels. Results from weakly nonlinear theory and hybrid-kinetic particle-in-cell simulations that address how marginal stability is achieved and maintained in a plasma whose pressure anisotropy is driven by a shearing magnetic field are presented. Fluctuation spectra and effective collisionality are highlighted. These results are placed in the context of our ongoing studies of magnetorotational turbulence in collisionless astrophysical accretion disks, in which microscale plasma instabilities regulate angular-momentum transport.

  6. A Field-Particle Correlation Technique to Explore the Collisionless Damping of Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Klein, Kristopher

    2016-10-01

    The nature of the dominant mechanisms which damp turbulent electromagnetic fluctuations remains an unanswered question in the study of a variety of collisionless plasma systems. Proposed damping mechanisms can be generally, but not exclusively, classified as resonant, e.g. Landau and cyclotron damping, non-resonant, e.g. stochastic ion heating, and intermittent, e.g. energization via current sheets or magnetic reconnection. To determine the role these mechanisms play in turbulent plasmas, we propose the application of field-particle correlations to time series of single spatial point observations of the type typically measured in the solar wind. This correlation, motivated by the form of the collisionless Vlasov equation, is the time averaged product of the factors comprising the nonlinear field-particle interaction term. The correlation both captures the secular transfer of energy between fields and perturbed plasma distributions by averaging out the conservative oscillatory energy transfer, and retains the velocity space structure of the secular transfer, allowing for observational characterization of the damping mechanism. Field-particle correlations are applied to a set of nonlinear kinetic numerical simulations of increasing complexity, including electrostatic, gyrokinetic, and hybrid Vlasov-Maxwell systems. These correlations are shown to capture the secular energy transfer between fields and particles and distinguish between the mechanisms accessible to the chosen system. We conclude with a discussion of the application of this general technique to data from current and upcoming spacecraft missions, including MMS, DSCOVR, Solar Probe Plus and THOR, which should help in determining which damping mechanisms operate in a variety of heliospheric plasmas. This work was performed in collaboration with Gregory Howes, Jason TenBarge, Nuno Loureiro, Ryusuke Numata, Francesco Valetini, Oreste Pezzi, Matt Kunz, Justin Kasper, and Chris Chen, with support from Grants

  7. The role of magnetic reconnection on astrophysical jets launching and particle acceleration

    NASA Astrophysics Data System (ADS)

    De Gouveia Dal Pino, Elisabete

    2012-07-01

    Magnetic reconnection events like those associated to solar flares can be also a very powerful mechanism operating on accretion disk/jet systems. We have recently found that the magnetic power released in fast reconnection flares is more than sufficient to accelerate relativistic plasmons and produce the observed radio luminosity of the nuclear jets associated both to galactic stellar mass black holes and low luminous active galactic nuclei (AGNs). The famous observed correlation between the radio luminosity and the black hole mass of these sources, spanning ^10^9 orders of magnitude in mass, can be naturally explained in this model as simply due to the magnetic reconnection activity at the jet launching region of the accretion disk coronae of these sources. A similar process may explain the observed x-ray flares in young stars (YSOs) as well. In this talk, we review this mechanism and show results of numerical MHD tests of its validity. Also, particle acceleration in the magnetic reconnection sites of these sources can be rather efficient . In this talk, we will also discuss this acceleration process showing the energy distribution evolution of several thousands of test particles injected in a three-dimensional MHD domain of magnetic reconnection with embedded turbulence. The particle acceleration rate, which depends on the reconnection rate, is highly enhanced in this case. This is because reconnection becomes fast and independent of magnetic resistivity in the presence of turbulence and allows the formation of a thick volume in the current sheet filled with multiple, simultaneously reconnecting magnetic fluxes. The particles trapped within this volume then suffer several head-on scatterings with the contracting magnetic fluctuations in a first-order Fermi process. Particles are thus exponentially accelerated to energies which are several orders of magnitude larger than their injected energy.

  8. Fundamental Concepts Associated with Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Gonzalez, W. D.; Parker, E. N.; Mozer, F. S.; Vasyliūnas, V. M.; Pritchett, P. L.; Karimabadi, H.; Cassak, P. A.; Scudder, J. D.; Yamada, M.; Kulsrud, R. M.; Koga, D.

    The chapter starts with a discussion about the importance of the concept of magnetic field lines in space plasmas and magnetic reconnection, followed by presentations on: (a) the meaning and validity of empirical constructs related with magnetic reconnection research, such as: "moving" magnetic field lines, "frozen-in" condition and "diffusion region" of reconnection; and (b) experimental evidence of the diffusion region and related energetics. Next, aims to link external (MHD) with internal (non-MHD) regions of reconnection are discussed in association with the so-called "Axford conjecture", followed by short presentations on: (a) global equilibria in reconnection; and (b) the role of the separatrices in global aspects of reconnection. In the last section, we present additional discussion about the concept of "diffusion region" and about the two fundamental questions associated with magnetic reconnection reviewed in this chapter.

  9. Magnetic Reconnection Onset and Energy Release at Current Sheets

    NASA Astrophysics Data System (ADS)

    DeVore, C. R.; Antiochos, Spiro K.

    2015-04-01

    Reconnection and energy release at current sheets are important at the Sun (coronal heating, coronal mass ejections, flares, and jets) and at the Earth (magnetopause flux transfer events and magnetotail substorms) and other magnetized planets, and occur also at the interface between the Heliosphere and the interstellar medium, the heliopause. The consequences range from relatively quiescent heating of the ambient plasma to highly explosive releases of energy and accelerated particles. We use the Adaptively Refined Magnetohydrodynamics Solver (ARMS) model to investigate the self-consistent formation and reconnection of current sheets in an initially potential 2D magnetic field containing a magnetic null point. Unequal stresses applied to the four quadrants bounded by the X-line separatrix distort the potential null into a double-Y-type current sheet. We find that this distortion eventually leads to onset of fast magnetic reconnection across the sheet, with copious production, merging, and ejection of magnetic islands due to plasmoid instability. In the absence of a mechanism for ideal instability or loss of equilibrium of the global structure, however, this reconnection leads to minimal energy release. Essentially, the current sheet oscillates about its force-free equilibrium configuration. When the structure is susceptible to a large-scale rearrangement of the magnetic field, on the other hand, the energy release becomes explosive. We identify the conditions required for reconnection to transform rapidly a large fraction of the magnetic free energy into kinetic and other forms of plasma energy, and to restructure the current sheet and its surrounding magnetic field dramatically. We discuss the implications of our results for understanding heliophysical activity, particularly eruptions, flares, and jets in the corona.Our research was supported by NASA’s Heliophysics Supporting Research and Living With a Star Targeted Research and Technology programs.

  10. Colour Reconnection at LEP2

    NASA Astrophysics Data System (ADS)

    Abreu, P.

    2002-03-01

    The preliminary results on the search of colour reconnection effects (CR) from the four experiments at LEP, Aleph, Delphi, L3 and Opal, are reviewed. Extreme models are excluded by studies of standard variables, and on going studies of a method first suggested by L3, the particle flow method1, are yet inconclusive.

  11. Oxygen acceleration in magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Liang, Haoming; Lapenta, Giovanni; Walker, Raymond J.; Schriver, David; El-Alaoui, Mostafa; Berchem, Jean

    2017-01-01

    Motivated by the observed high concentration of oxygen ions in the magnetotail during enhanced geomagnetic activity, we investigated the oxygen acceleration in magnetotail reconnection by using 2.5-D implicit particle-in-cell simulations. We found that lobe oxygen ions can enter the downstream outflow region, i.e., the outflow region downstream of the dipolarization fronts (DFs) or the reconnection jet fronts. Without entering the reconnection exhaust, they are accelerated by the Hall electric field. They can populate the downstream outflow region before the DFs arrive there. This acceleration is in addition to acceleration in the exhaust by the Hall and reconnection electric fields. Oxygen ions in the preexisting current sheet are reflected by the propagating DF creating a reflected beam with a hook shape in phase space. This feature can be applied to deduce a history of the DF speed. However, it is difficult to observe for protons because their typical thermal velocity in the plasma sheet is comparable those of the DF and the reflection speed. The oxygen ions from the lobes and the preexisting current sheet form multiple beams in the distribution function in front of the DF. By comparing oxygen concentrations of 50%, 5%, and 0% with the same current sheet thickness, we found that the DF thickness is proportional to the oxygen concentration in the preexisting current sheet. All the simulation results can be used to compare with the observations from the Magnetospheric Multiscale mission.

  12. Collisionless Dynamics and the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver

    2016-10-01

    I review the nature of three-dimensional collapse in the Zeldovich approximation, how it relates to the underlying nature of the three-dimensional Lagrangian manifold and naturally gives rise to a hierarchical structure formation scenario that progresses through collapse from voids to pancakes, filaments and then halos. I then discuss how variations of the Zeldovich approximation (based on the gravitational or the velocity potential) have been used to define classifications of the cosmic large-scale structure into dynamically distinct parts. Finally, I turn to recent efforts to devise new approaches relying on tessellations of the Lagrangian manifold to follow the fine-grained dynamics of the dark matter fluid into the highly non-linear regime and both extract the maximum amount of information from existing simulations as well as devise new simulation techniques for cold collisionless dynamics.

  13. A collisionless plasma thruster plume expansion model

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Cichocki, Filippo; Ahedo, Eduardo

    2015-06-01

    A two-fluid model of the unmagnetized, collisionless far region expansion of the plasma plume for gridded ion thrusters and Hall effect thrusters is presented. The model is integrated into two semi-analytical solutions valid in the hypersonic case. These solutions are discussed and compared against the results from the (exact) method of characteristics; the relative errors in density and velocity increase slowly axially and radially and are of the order of 10-2-10-3 in the cases studied. The plasma density, ion flux and ambipolar electric field are investigated. A sensitivity analysis of the problem parameters and initial conditions is carried out in order to characterize the far plume divergence angle in the range of interest for space electric propulsion. A qualitative discussion of the physics of the secondary plasma plume is also provided.

  14. The microphysics of collisionless shock waves.

    PubMed

    Marcowith, A; Bret, A; Bykov, A; Dieckman, M E; Drury, L O'C; Lembège, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  15. Using radiative energy losses to constrain the magnetization and magnetic reconnection rate at the base of black hole jets

    NASA Astrophysics Data System (ADS)

    Potter, William J.

    2017-02-01

    We calculate the severe radiative energy losses which occur at the base of black hole jets using a relativistic fluid jet model, including in situ acceleration of non-thermal leptons by magnetic reconnection. Our results demonstrate that including a self-consistent treatment of radiative energy losses is necessary to perform accurate magnetohydrodynamic simulations of powerful jets and that jet spectra calculated via post-processing are liable to vastly overestimate the amount of non-thermal emission. If no more than 95 per cent of the initial total jet power is radiated away by the plasma travels as it travels along the length of the jet, we can place a lower bound on the magnetization of the jet plasma at the base of the jet. For typical powerful jets, we find that the plasma at the jet base is required to be highly magnetized, with at least 10 000 times more energy contained in magnetic fields than in non-thermal leptons. Using a simple power-law model of magnetic reconnection, motivated by simulations of collisionless reconnection, we determine the allowed range of the large-scale average reconnection rate along the jet, by restricting the total radiative energy losses incurred and the distance at which the jet first comes into equipartition. We calculate analytic expressions for the cumulative radiative energy losses due to synchrotron and inverse-Compton emission along jets, and derive analytic formulae for the constraint on the initial magnetization.

  16. The Pressure Limitations on Flux Pile-Up Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Litvinenko, Y. E.

    1999-05-01

    Flux pile-up magnetic reconnection was thought to be able to provide fast energy dissipation a strongly magnetized plasma, for example, in solar flares. We examine the problem of the plasma pressure limitations on the rapidity of flux pile-up reconnection. It is shown that for a two-dimensional stagnation point flow with nonzero vorticity the magnetic merging rate cannot exceed the Sweet-Parker scaling in a low-beta plasma, which is too slow to explain flares. Moreover, the solution has some undesireable properties such as a diffusion layer at the external boundary and the massively increasing inflow speed. The pressure limitation appears to be somewhat less restrictive for three-dimensional flux pile-up. This work was supported by NSF grant ATM-9813933.

  17. Exploring Numerical (Naked) Singularity Formation with Collisionless Matter

    NASA Astrophysics Data System (ADS)

    Okounkova, Maria; Hemberger, Daniel; Scheel, Mark

    2017-01-01

    A proposed channel for the formation of naked singularities (singularities without event horizons) is the collapse of collisionless matter. In 1991, Shapiro and Teukolsky numerically investigated the collapse of prolate spheroids of collisionless matter in axisymmetry, and found that for certain initial configurations, a singularity formed on the domain without the appearance of an apparent horizon. While this may be a candidate for naked singularity formation, the role of the axisymmetry of the configuration and the termination of the simulation at singularity formation leave the question of generically forming an event horizon open. We have implemented (fully backreacting, fully 3-dimensional) collisionless matter evolution in SpEC, the Spectral Einstein Code, and present our results for the collapse of various configurations of collisionless matter. We expand on previous results by excising singularities, giving more time for the appearance of an apparent horizon, and by considering a variety of initial configurations.

  18. On phase diagrams of magnetic reconnection

    SciTech Connect

    Cassak, P. A.; Drake, J. F.

    2013-06-15

    Recently, “phase diagrams” of magnetic reconnection were developed to graphically organize the present knowledge of what type, or phase, of reconnection is dominant in systems with given characteristic plasma parameters. Here, a number of considerations that require caution in using the diagrams are pointed out. First, two known properties of reconnection are omitted from the diagrams: the history dependence of reconnection and the absence of reconnection for small Lundquist number. Second, the phase diagrams mask a number of features. For one, the predicted transition to Hall reconnection should be thought of as an upper bound on the Lundquist number, and it may happen for considerably smaller values. Second, reconnection is never “slow,” it is always “fast” in the sense that the normalized reconnection rate is always at least 0.01. This has important implications for reconnection onset models. Finally, the definition of the relevant Lundquist number is nuanced and may differ greatly from the value based on characteristic scales. These considerations are important for applications of the phase diagrams. This is demonstrated by example for solar flares, where it is argued that it is unlikely that collisional reconnection can occur in the corona.

  19. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2012-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. Our initial results of a jet-ambient interaction with anti-parallelmagnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in a transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  20. A MODEL OF ACCELERATION OF ANOMALOUS COSMIC RAYS BY RECONNECTION IN THE HELIOSHEATH

    SciTech Connect

    Lazarian, A.; Opher, M. E-mail: mopher@gmu.ed

    2009-09-20

    We discuss a model of cosmic ray acceleration that accounts for the observations of anomalous cosmic rays (ACRs) by Voyager 1 and 2. The model appeals to fast magnetic reconnection rather than shocks as the driver of acceleration. The ultimate source of energy is associated with magnetic field reversals that occur in the heliosheath. It is expected that the magnetic field reversals will occur throughout the heliosheath, but especially near the heliopause where the flows slow down and diverge with respect to the interstellar wind and also in the boundary sector in the heliospheric current sheet. While the first-order Fermi acceleration theory within reconnection layers is in its infancy, the predictions do not contradict the available data on ACR spectra measured by the spacecraft. We argue that the Voyager data are one of the first pieces of evidence favoring the acceleration within regions of fast magnetic reconnection, which we believe to be a widely spread astrophysical process.

  1. Localization and propagation of the energy release during 3D kinetic magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Markidis, Stefano; Goldman, Marty; Newman, David

    2013-04-01

    Reconnection is a key processes where energy is released: magnetic field lines break, merge in a new configuration. In the process some of the energy is released. Recent work by Shay and collaborators has pointed out that energy is released far and moving fast away from the reconnection site, at a speed exceeding several times the Alfven speed. We revisit this point, considering the release of energy from reconnection and considering both laminar processes and turbulent reconnection. We analyse the energy budget and the processes of energy transfer via Poynting flux and particle flows. The results are compared with the recent findings by Shay. The effect of the guide field can be very significant at even relatively weak strength, as our recent analysis shows. The effect on the life cycle of energy is considered. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement SWIFF (project n° 263340, www.swiff.eu). [1] M. A. Shay, J. F. Drake, J. P. Eastwood, and T. D. Phan, Super-Alfvénic Propagation of Substorm Reconnection Signatures and Poynting Flux, Phys. Rev. Lett. 107, 089901, 2011. [2] M.V. Goldman, G. Lapenta, D. L. Newman, S. Markidis, H. Che, Jet Deflection by Very Weak Guide Fields during Magnetic Reconnection, Physical Review Letters, 107, 135001, 2011.

  2. The Driving Magnetic Field and Reconnection in CME/Flare Eruptions and Coronal Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    2010-01-01

    Signatures of reconnection in major CME (coronal mass ejection)/flare eruptions and in coronal X-ray jets are illustrated and interpreted. The signatures are magnetic field lines and their feet that brighten in flare emission. CME/flare eruptions are magnetic explosions in which: 1. The field that erupts is initially a closed arcade. 2. At eruption onset, most of the free magnetic energy to be released is not stored in field bracketing a current sheet, but in sheared field in the core of the arcade. 3. The sheared core field erupts by a process that from its start or soon after involves fast "tether-cutting" reconnection at an initially small current sheet low in the sheared core field. If the arcade has oppositely-directed field over it, the eruption process from its start or soon after also involves fast "breakout" reconnection at an initially small current sheet between the arcade and the overarching field. These aspects are shown by the small area of the bright field lines and foot-point flare ribbons in the onset of the eruption. 4. At either small current sheet, the fast reconnection progressively unleashes the erupting core field to erupt with progressively greater force. In turn, the erupting core field drives the current sheet to become progressively larger and to undergo progressively greater fast reconnection in the explosive phase of the eruption, and the flare arcade and ribbons grow to become comparable to the pre-eruption arcade in lateral extent. In coronal X-ray jets: 1. The magnetic energy released in the jet is built up by the emergence of a magnetic arcade into surrounding unipolar "open" field. 2. A simple jet is produced when a burst of reconnection occurs at the current sheet between the arcade and the open field. This produces a bright reconnection jet and a bright reconnection arcade that are both much smaller in diameter that the driving arcade. 3. A more complex jet is produced when the arcade has a sheared core field and undergoes an

  3. The Plasmaspheric Plume and Magnetopause Reconnection

    NASA Technical Reports Server (NTRS)

    Walsh, B. M.; Phan, T. D.; Sibeck, D. G.; Souza, V. M.

    2014-01-01

    We present near-simultaneous measurements from two THEMIS spacecraft at the dayside magnetopause with a 1.5 h separation in local time. One spacecraft observes a high-density plasmaspheric plume while the other does not. Both spacecraft observe signatures of magnetic reconnection, providing a test for the changes to reconnection in local time along the magnetopause as well as the impact of high densities on the reconnection process. When the plume is present and the magnetospheric density exceeds that in the magnetosheath, the reconnection jet velocity decreases, the density within the jet increases, and the location of the faster jet is primarily on field lines with magnetosheath orientation. Slower jet velocities indicate that reconnection is occurring less efficiently. In the localized region where the plume contacts the magnetopause, the high-density plume may impede the solar wind-magnetosphere coupling by mass loading the reconnection site.

  4. Relativistic Magnetic Reconnection in Kerr Spacetime.

    PubMed

    Asenjo, Felipe A; Comisso, Luca

    2017-02-03

    The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.

  5. Relativistic Magnetic Reconnection in Kerr Spacetime

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.; Comisso, Luca

    2017-02-01

    The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.

  6. The extent of non-thermal particle acceleration in relativistic, electron-positron reconnection

    SciTech Connect

    Werner, Greg; Guo, Fan

    2015-07-21

    Reconnection is studied as an explanation for high-energy flares from the Crab Nebula. The production of synchrotron emission >100 MeV challenges classical models of acceleration. 3D simulation shows that reconnection, converting magnetic energy to kinetic energy, can accelerate beyond γrad. The power-law index and high-energy cutoff are important for understanding the radiation spectrum dN/dγ = f(γ) ∝ γ. α and cutoff were measured vs. L and σ, where L is system (simulation) size and σ is upstream magnetization (σ = B2/4πnmc2). α can affect the high-energy cutoff. In conclusion, for collisionless relativistic reconnection in electron-positron plasma, without guide field, nb/nd=0.1: (1) relativistic magnetic reconnection yields power-law particle spectra, (2) the power law index decreases as σ increases, approaching ≈1.2. (3) the power law is cut off at an energy related to acceleration within a single current layer, which is proportional to the current layer length (for small systems, that length is the system length, yielding γc2 ≈ 0.1 L/ρ0; for large systems, the layer length is limited by secondary tearing instability, yielding γc1 ≈ 4σ; the transition from small to large is around L/ρ0 = 40σ.). (4) although the large-system energy cutoff is proportional to the average energy per particle, it is significantly higher than the average energy per particle.

  7. Reconnection Diffusion in Turbulent Fluids and Its Implications for Star Formation

    NASA Astrophysics Data System (ADS)

    Lazarian, A.

    2014-05-01

    Astrophysical fluids are turbulent a fact which changes the dynamics of many key processes, including magnetic reconnection. Fast reconnection of magnetic field in turbulent fluids allows the field to change its topology and connections. As a result, the traditional concept of magnetic fields being frozen into the plasma is no longer applicable. Plasma associated with a given magnetic field line at one instant is distributed along a different set of magnetic field lines at the next instant. This diffusion of plasmas and magnetic field is enabled by reconnection and therefore is termed "reconnection diffusion". The astrophysical implications of this concept include heat transfer in plasmas, advection of heavy elements in interstellar medium, magnetic field generation etc. However, the most dramatic implications of the concept are related to the star formation process. The reason is that magnetic fields are dynamically important for most of the stages of star formation. The existing theory of star formation has been developed ignoring the possibility of reconnection diffusion. Instead, it appeals to the decoupling of mass and magnetic field arising from neutrals drifting in respect to ions entrained on magnetic field lines, i.e. through the process that is termed "ambipolar diffusion". The predictions of ambipolar diffusion and reconnection diffusion are very different. For instance, if the ionization of media is high, ambipolar diffusion predicts that the coupling of mass and magnetic field is nearly perfect. At the same time, reconnection diffusion is independent of the ionization but depends on the scale of the turbulent eddies and on the turbulent velocities. In the paper we explain the physics of reconnection diffusion both from macroscopic and microscopic points of view, i.e. appealing to the reconnection of flux tubes and to the diffusion of magnetic field lines. We make use of the Lazarian and Vishniac (Astrophys. J. 517:700, 1999) theory of magnetic

  8. Simulation study of magnetic reconnection in high magnetic Reynolds number plasmas

    NASA Astrophysics Data System (ADS)

    Nakabo, T.; Kusano, K.; Miyoshi, T.; Vekstein, G.

    2013-12-01

    Magnetic reconnection is an important process for dynamics in space and laboratory plasmas. Magnetic reconnection is basically dominated by magnetic diffusion at thin current sheet as proposed by Sweet (1958) and Parker (1963). According to their theory, the reconnection rate must be inversely proportional to the square root of the magnetic Reynolds number (S). In magnetosphere and the solar corona, however, in spite of high magnetic Reynolds number (>10^12), reconnection rate is measured to be about 10^-2 that is much higher than the Sweet and Parker's prediction. Although Petschek proposed that the slow mode shock may accelerate reconnection, numerical simulations suggested that the Petschek's type reconnection cannot be sustained with uniform resistivity. On the other hand, it is pointed out that in high magnetic Reynolds number, the thin current sheet becomes unstable to the so-called secondary tearing instability, which generates many plasmoids and drives a sort of fast reconnection. Although Baty (2012) recently investigated the possibility of Petschek-like structure in relatively high-S (~10^4) regime, it is still unclear whether and how the magnetic reconnection is able to be accelerated in higher-S regime (S>10^5). In this paper, we developed the high-resolution magnetohydrodynamics (MHD) simulation of magnetic reconnection for very high-S (S~10^4-10^6) aiming at revealing the acceleration mechanism of magnetic reconnection. We applied the HLLD Riemann solver, which was developed by Miyoshi and Kusano (2005), to the high resolution two-dimensional MHD simulation of current sheet dynamics. In our model, the initial state is given by the Harris sheet equilibrium plus perturbation. As a result, in the case for S=10^5, multiple X-line reconnection appears as a result of the secondary tearing instability and magnetic reconnection is accelerated through the formation of multiple magnetic islands as pointed out by the previous studies. Furthermore, we found that

  9. Reconnecting flux-rope dynamo.

    PubMed

    Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  10. Reconnecting flux-rope dynamo

    NASA Astrophysics Data System (ADS)

    Baggaley, Andrew W.; Barenghi, Carlo F.; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit Rm→∞ for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  11. Magnetic Reconnection-Powered Relativistic Particle Acceleration, High-Energy Gamma-Ray Emission, and Pair Production in Coronae of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    2015-11-01

    Magnetic reconnection is a fundamental plasma process believed to play an important role in energetics of magnetically-dominated coronae of various astrophysical objects including accreting black holes. Building up on recent advances in kinetic simulations of relativistic collisionless reconnection, we investigate nonthermal particle acceleration and its key observational consequences for these systems. We argue that reconnection can efficiently accelerate coronal electrons (as well as ions) up to hundreds of MeV or even GeV energies. In brightest systems, radiation back-reaction due to inverse-Compton (and/or synchrotron) emission becomes important at these energies and limits any further electron acceleration, thereby turning reconnection layers into powerful and efficient radiators of γ-rays. We then evaluate the rate of absorption of the resulting γ-ray photons by the ambient soft (X-ray) photon fields and show that it can be a significant source of pair production, with important implications for the composition of black-hole coronae and jets. Finally, we assess the prospects of laboratory studies of magnetic reconnection in the physical regimes relevant to black-hole accretion flows using modern and future laser-plasma facilities. This work is supported by DOE, NSF, and NASA.

  12. Comment on "Tail reconnection triggering substorm onset".

    PubMed

    Lui, A T Y

    2009-06-12

    Angelopoulos et al. (Research Articles, 15 August 2008, p. 931) reported that magnetic reconnection in Earth's magnetotail triggered the onset of a magnetospheric substorm. We provide evidence that (i) near-Earth current disruption, occurring before the conventional tail reconnection signatures, triggered the onset; (ii) the observed auroral intensification and tail reconnection are not causally linked; and (iii) the onset they identified is a continuation of earlier substorm activities.

  13. Magnetic reconnection in a compressible MHD plasma

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji; Birn, Joachim

    2011-04-15

    Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed.

  14. Magnetic Reconnection in a Compressible MHD Plasma

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Zenitani, Seiji

    2011-01-01

    Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed

  15. Collisionless relaxation in beam-plasma systems

    SciTech Connect

    Backhaus, Ekaterina Yu.

    2001-01-01

    This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics. Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters. The mechanism of relaxation is also considered within the framework of the CME system. It is discovered that the rapid relaxation or beam size oscillations can be attributed to a resonant coupling between different modes of the system. A simple analytical estimate of the relaxation time is developed. The final state of the system reached after the relaxation is complete is investigated. New and accurate analytical results for the second order moments in the phase-mixed state are obtained. Unlike previous results, these connect the final values of the second order moments with the initial beam mismatch. These analytical estimates are in good agreement with the CME model and PIC simulations. Predictions for the final density and temperature are developed that show

  16. Particle-acceleration by turbulent magnetohydrodynamic reconnection

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Ambrosiano, J. J.; Goldstein, M. L.

    1984-01-01

    Test particles in a two dimensional, turbulent MHD simulation are found to undergo significant acceleration. The magnetic field configuration is a periodic sheet pinch which undergoes reconnection. The test particles are trapped in the reconnection region for times of order an Alfven transit time in the large electric fields that characterize the turbulent reconnection process at the relatively large magnetic Reynolds number used in the simulation. The maximum speed attained by these particles is consistent with an analytic estimate which depends on the reconnection electric field, the Alfven speed, and the ratio of Larmor period to the Alfven transit time.

  17. Dissipation in Relativistic Pair-Plasma Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present an investigation of the relativistic dissipation in magnetic reconnection. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. We analyze a set of numerical simulations, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For anti-parallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  18. Dissipation in relativistic pair-plasma reconnection

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji

    2007-11-15

    An investigation into the relativistic dissipation in magnetic reconnection is presented. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. A set of numerical simulations is analyzed, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For antiparallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  19. Double-reconnected magnetic structures driven by Kelvin-Helmholtz vortices at the Earth's magnetosphere

    SciTech Connect

    Borgogno, D.; Califano, F.; Pegoraro, F.; Faganello, M.

    2015-03-15

    In an almost collisionless magnetohydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted, e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae (see, e.g., A. F. Rappazzo and E. N. Parker, Astrophys. J. 773, L2 (2013) and references therein) is a paradigmatic case. Here, we investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated double magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere.

  20. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  1. Turbulent dynamo in a collisionless plasma

    PubMed Central

    Rincon, François; Califano, Francesco; Schekochihin, Alexander A.; Valentini, Francesco

    2016-01-01

    Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas. PMID:27035981

  2. Turbulent dynamo in a collisionless plasma

    NASA Astrophysics Data System (ADS)

    Rincon, François; Califano, Francesco; Schekochihin, Alexander A.; Valentini, Francesco

    2016-04-01

    Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.

  3. Magnetopause-Foreshock Interactions Induced by Dayside Reconnection

    NASA Astrophysics Data System (ADS)

    Pfau-Kempf, Y.; Hietala, H.; Hoilijoki, S.; Palmroth, M.; Ganse, U.; Sandroos, A.; Hannuksela, O.; von Alfthan, S.; Vainio, R. O.

    2015-12-01

    We investigate the effects of dayside reconnection events on the bow shock in global hybrid-Vlasov simulations of the terrestrial magnetosphere. Using the Finnish Meteorological Institute's hybrid-Vlasov model Vlasiator (http://vlasiator.fmi.fi), which couples kinetic ions through Vlasov's equation with charge-neutralizing fluid electrons, the solar wind-magnetosphere interaction is modeled self-consistently in two spatial and three velocity dimensions. Recent polar plane simulations with southward IMF cover both the dayside and nightside reconnection sites, in a volume ranging from about 40 Earth radii (RE) upstream in the solar wind to about one hundred RE tailward.Dayside reconnection at the magnetopause results in the formation of the two-dimensional equivalents of flux transfer events. These magnetic islands are accelerated and move from the subsolar region towards the cusps and beyond. In doing so, they generate fast-mode waves which propagate throughout the magnetosheath and can lead to significant perturbations in the bow shock shape and position. We investigate such simulated events and their signatures in the magnetosheath, at the bow shock and in the foreshock. We also analyze observational data to find similar signatures in spacecraft measurements.

  4. Magnetopause-foreshock interactions induced by dayside reconnection

    NASA Astrophysics Data System (ADS)

    Pfau-Kempf, Yann; Hietala, Heli; Hoilijoki, Sanni; Palmroth, Minna; Ganse, Urs; Sandroos, Arto; Hannuksela, Otto; von Alfthan, Sebastian; Vainio, Rami

    2016-04-01

    We investigate the effects of dayside reconnection events on the bow shock in global hybrid-Vlasov simulations of the terrestrial magnetosphere. Using the Finnish Meteorological Institute's hybrid-Vlasov model Vlasiator (http://vlasiator.fmi.fi), which couples kinetic ions through Vlasov's equation with charge-neutralising fluid electrons, the solar wind-magnetosphere interaction is modelled self-consistently in two spatial and three velocity dimensions. Recent polar plane simulations with southward IMF cover both the dayside and nightside reconnection sites, in a volume ranging from about 40 Earth radii (RE) upstream to about one hundred RE downstream. Dayside reconnection at the magnetopause results in the formation of the two-dimensional equivalents of flux transfer events. These magnetic islands are accelerated and move from the subsolar region towards the cusps and beyond. In doing so, they generate fast-mode waves ahead and behind, which propagate throughout the magnetosheath and can lead to significant perturbations in the bow shock shape and position. We investigate such simulated events and their signatures in the magnetosheath, at the bow shock and in the foreshock. We also analyse observational data to find similar signatures in spacecraft measurements and discuss the requirements for THOR instruments if they were to be able to fully characterise such an event.

  5. Laboratory Experiments on the Generation of Perpendicular, Magnetized Collisionless Shocks by a Laser-Ablated Piston

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek

    2013-10-01

    Collisionless shocks occur ubiquitously in space plasmas and have been extensively studied insitu by spacecraft, though they are inherently limited in their flexibility. We present laboratory experiments utilizing a highly flexible laser geometry at UCLA to study the generation of magnetized, perpendicular collisionless shocks by a super-Alfvénic laser-ablated piston. Experiments were carried out on the LArge Plasma Device (LAPD), which can create a highly reproducible 20 m long by Ø1 m H or He magnetized (<= 2 kG) ambient plasma. The 100 J Raptor laser was used to ablate perpendicular to the background magnetic field a carbon target embedded in the LAPD plasma. Emission spectroscopy revealed a significant spread between laser debris charge states, consistent with 2D hybrid simulations that show fast-moving, highly ionized debris slipping through the ambient plasma, while slower, lower charge states drive a diamagnetic cavity. The cavity grew to several ion gyroradii and lasted around one gyroperiod, large and long enough to act like a piston by allowing laminar fields at the cavity edge to transfer energy from the debris to the background plasma. This is confirmed by spectroscopy, which shows a reduction in debris velocities relative to a non-magnetic case, and Thomson scattering, which shows an increase in electron densities and temperatures in the ambient plasma. An increase in the intensity of the ambient plasma seen by gated imaging also indicates an energetic population of electrons coincident with the cavity edge, while Stark-broadened ambient lines may indicate strong local electric fields. Magnetic flux probes reveal that the cavity launches whistler waves parallel to the background field, as well as a super-Alfvénic magnetosonic wave along the blowoff axis that has a magnetic field compression comparable to the Alfvenic Mach number, consistent with simulations that suggest a weak collisionless shock was formed. Supported by DOE and DTRA.

  6. MHD and Reconnection Activity During Local Helicity Injection

    NASA Astrophysics Data System (ADS)

    Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Reusch, J. A.; Richner, N. J.

    2016-10-01

    Scaling local helicity injection (LHI) to larger devices requires a validated, predictive model of its current drive mechanism. NIMROD simulations predict the injected helical current streams persist in the edge and periodically reconnect to form axisymmetric current rings that travel into the bulk plasma to grow Ip and poloidal flux. In simulation, these events result in discrete bursts of Alfvénic-frequency MHD activity and jumps in Ip of order ΔIp Iinj , in qualitative agreement with large n = 1 activity found in experiment. Fast imaging prior to tokamak formation supports the instability of, and apparent reconnection between, adjacent helical streams. The bursts exhibit toroidal amplitude asymmetries consistent with a kink structure singly line-tied to the injectors. Internal measurements localize this activity to the injector radial location. Pairwise correlations of poloidal Mirnov coil amplitude and phase match expectations of an edge-localized current stream carrying Iinj. Prior to tokamak formation, reconnection from both adjacent helical windings and co-injected current streams are shown to strongly heat impurity ions. After tokamak formation, strong anomalous ion heating in the plasma edge is attributed to continuous reconnection between colinear streams. The n = 1 bursts occur less frequently as Ip rises, likely caused by increased stream stability as Bv rises and qedge drops. This evidence supports the general NIMROD model of LHI, confirms the persistence and role of the edge current streams, and motivates experiments at higher Iinj and BT. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.

  7. Beaming of Particles and Synchrotron Radiation in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2016-08-01

    Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealized analytical models, reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with an isotropic electron velocity distribution in its rest frame, we find that the bulk motion of the particles in X-points is similar to their Lorentz factor γ, and the particles are beamed within ˜ 5/γ . On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropize after completing a full Larmor gyration and their radiation is no longer strongly beamed. The radiation pattern at a given frequency depends on where the corresponding emitting electrons radiate their energy. Lower-energy particles that cool slowly spend most of their time in the islands and their radiation is not highly beamed. Only particles that quickly cool at the edge of the X-points generate a highly beamed fan-like radiation pattern. The radiation emerging from these fast cooling particles is above the burn-off limit (˜100 MeV in the overall rest frame of the reconnecting plasma). This has significant implications for models of gamma-ray bursts and active galactic nuclei that invoke beaming in that frame at much lower energies.

  8. Shearing Box Simulations of the MRI in a Collisionless Plasma

    SciTech Connect

    Sharma, Prateek; Hammett, Gregory, W.; Quataert, Eliot; Stone, James, M.

    2005-08-31

    We describe local shearing box simulations of turbulence driven by the magnetorotational instability (MRI) in a collisionless plasma. Collisionless effects may be important in radiatively inefficient accretion flows, such as near the black hole in the Galactic Center. The MHD version of ZEUS is modified to evolve an anisotropic pressure tensor. A fluid closure approximation is used to calculate heat conduction along magnetic field lines. The anisotropic pressure tensor provides a qualitatively new mechanism for transporting angular momentum in accretion flows (in addition to the Maxwell and Reynolds stresses). We estimate limits on the pressure anisotropy due to pitch angle scattering by kinetic instabilities. Such instabilities provide an effective ''collision'' rate in a collisionless plasma and lead to more MHD-like dynamics. We find that the MRI leads to efficient growth of the magnetic field in a collisionless plasma, with saturation amplitudes comparable to those in MHD. In the saturated state, the anisotropic stress is comparable to the Maxwell stress, implying that the rate of angular momentum transport may be moderately enhanced in a collisionless plasma.

  9. Development of bifurcated current sheets in solar wind reconnection exhausts

    NASA Astrophysics Data System (ADS)

    Mistry, R.; Eastwood, J. P.; Phan, T. D.; Hietala, H.

    2015-12-01

    Petschek-type reconnection is expected to result in bifurcations of reconnection current sheets. In contrast, Hall reconnection simulations show smooth changes in the reconnecting magnetic field. Here we study three solar wind reconnection events where different spacecraft sample oppositely directed reconnection exhausts from a common reconnection site. The spacecraft's relative separations and measurements of the exhaust width are used to geometrically calculate each spacecraft's distance from the X line. We find that in all cases spacecraft farthest from the X line observe clearly bifurcated reconnection current sheets, while spacecraft nearer to the X line do not. These observations suggest that clear bifurcations of reconnection current sheets occur at large distances from the X line (~1000 ion skin depths) and that Petschek-type signatures are less developed close to the reconnection site. This may imply that fully developed bifurcations of reconnection current sheets are unlikely to be observed in the near-Earth magnetotail.

  10. Simulation of the 3-D Evolution of Electron Scale Magnetic Reconnection - Motivated by Laboratory Experiments Predictions for MMS

    NASA Astrophysics Data System (ADS)

    Buechner, J.; Jain, N.; Sharma, A.

    2013-12-01

    The four s/c of the Magnetospheric Multiscale (MMS) mission, to be launched in 2014, will use the Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes. One of them is magnetic reconnection, an essentially multi-scale process. While laboratory experiments and past theoretical investigations have shown that important processes necessary to understand magnetic reconnection take place at electron scales the MMS mission for the first time will be able to resolve these scales by in space observations. For the measurement strategy of MMS it is important to make specific predictions of the behavior of current sheets with a thickness of the order of the electron skin depth which play an important role in the evolution of collisionless magnetic reconnection. Since these processes are highly nonlinear and non-local numerical simulation is needed to specify the current sheet evolution. Here we present new results about the nonlinear evolution of electron-scale current sheets starting from the linear stage and using 3-D electron-magnetohydrodynamic (EMHD) simulations. The growth rates of the simulated instabilities compared well with the growth rates obtained from linear theory. Mechanisms and conditions of the formation of flux ropes and of current filamentation will be discussed in comparison with the results of fully kinetic simulations. In 3D the X- and O-point configurations of the magnetic field formed in reconnection planes alternate along the out-of-reconnection-plane direction with the wavelength of the unstable mode. In the presence of multiple reconnection sites, the out-of-plane magnetic field can develop nested structure of quadrupoles in reconnection planes, similar to the 2-D case, but now with variations in the out-of-plane direction. The structures of the electron flow and magnetic field in 3-D simulations will be compared with those in 2-D simulations to discriminate the essentially 3D features. We also discuss

  11. Observed Aspects of Reconnection in Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Gary, G. Allen; Cirtain, Jonathan W.; Falconer, David A.

    2011-10-01

    The observed magnetic field configuration and signatures of reconnection in the large solar magnetic eruptions that make major flares and coronal mass ejections and in the much smaller magnetic eruptions that make X-ray jets are illustrated with cartoons and representative observed eruptions. The main reconnection signatures considered are the imaged bright emission from the heated plasma on reconnected field lines. In any of these eruptions, large or small, the magnetic field that drives the eruption and/or that drives the buildup to the eruption is initially a closed bipolar arcade. From the form and configuration of the magnetic field in and around the driving arcade and from the development of the reconnection signatures in coordination with the eruption, we infer that (1) at the onset of reconnection the reconnection current sheet is small compared to the driving arcade, and (2) the current sheet can grow to the size of the driving arcade only after reconnection starts and the unleashed erupting field dynamically forces the current sheet to grow much larger, building it up faster than the reconnection can tear it down. We conjecture that the fundamental reason the quasi-static pre-eruption field is prohibited from having a large current sheet is that the magnetic pressure is much greater than the plasma pressure in the chromosphere and low corona in eruptive solar magnetic fields.

  12. The Onset of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Daldorff, Lars K. S.; Klimchuk, James A.; van der Holst, Bart

    2015-04-01

    A fundamental question concerning magnetic energy release on the Sun is why the release occurs only after substantial stresses have been built up in the field. If reconnection were to occur readily, the released energy would be insufficient to explain coronal heating, CMEs, flares, jets, spicules, etc. How can we explain this switch-on property? What is the physical nature of the onset conditions? One idea involves the "secondary instability" of current sheets, which switches on when the rotation of the magnetic field across a current sheet reaches a critical angle. Such conditions would occur at the boundaries of flux tubes that become tangled and twisted by turbulent photospheric convection, for example. Other ideas involve a critical thickness for the current sheet. We report here on the preliminary results of our investigation of reconnect onset. Unlike our earlier work on the secondary instability (Dahlburg, Klimchuk, and Antiochos 2005), we treat the coupled chromosphere-corona system. Using the BATS-R-US MHD code, we simulate a single current sheet in a sheared magnetic field that extends from the chromosphere into the corona. Driver motions are applied at the base of the model. The configuration and chromosphere are both idealized, but capture the essential physics of the problem. The advantage of this unique approach is that it resolves the current sheet to the greatest extent possible while maintaining a realistic solar atmosphere. It thus bridges the gap between "reconnection in a box" studies and studies of large-scale systems such as active regions. One question we will address is whether onset conditions are met first in the chromosphere or corona. We will report on the work done on the project.

  13. The Onset of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Daldorff, L. K. S.; Klimchuk, J. A.

    2015-12-01

    A fundamental question concerning magnetic energy release on the Sun is why the release occurs only after substantial stresses have been built up in the field. If reconnection were to occur readily, the released energy would be insufficient to explain coronal heating, CMEs, flares, jets, spicules, etc. How can we explain this switch-on property? What is the physical nature of the onset conditions? One idea involves the "secondary instability" of current sheets, which switches on when the rotation of the magnetic field across a current sheet reaches a critical angle. Such conditions would occur at the boundaries of flux tubes that become tangled and twisted by turbulent photospheric convection, for example. Other ideas involve a critical thickness for the current sheet. We report here on the preliminary results of our investigation of reconnect onset. Unlike our earlier work on the secondary instability (Dahlburg, Klimchuk, and Antiochos 2005), we treat the coupled chromosphere-corona system. Using the BATS-R-US MHD code, we simulate a single current sheet in a sheared magnetic field that extends from the chromosphere into the corona. Driver motions are applied at the base of the model. The configuration and chromosphere are both idealized, but capture the essential physics of the problem. The advantage of this unique approach is that it resolves the current sheet to the greatest extent possible while maintaining a realistic solar atmosphere. It thus bridges the gap between"reconnection in a box" studies and studies of large-scale systems such as active regions. One question we will address is whether onset conditions are met first in the chromosphere or corona. We will report on the work done on the project.

  14. Electron acceleration during guide field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Lapenta, Giovanni; Delzanno, Gian Luca; Egedal, Jan

    2008-03-01

    Particle-in-cell simulations of the guide field intermittent magnetic reconnection are performed to study electron acceleration and pitch angle distributions. During the growing stage of reconnection, the power-law distribution function for the high-energy electrons and the pitch angle distributions of the low-energy electrons are obtained and compare favorably with observations by the Wind spacecraft. Direct evidence is found for the secondary acceleration during the later reconnection stage. A correlation between the generation of energetic electrons and the induced reconnection electric field is found. Energetic electrons are accelerated first around the X line, and then in the region outside the diffusion region, when the reconnection electric field has a bipolar structure. The physical mechanisms of these accelerations are discussed. The in-plane electrostatic field that traps the low-energy electrons and causes the anisotropic pitch angle distributions has been observed.

  15. Scaling of asymmetric reconnection in compressible plasmas

    SciTech Connect

    Birn, J.; Borovsky, J. E.; Hesse, M.

    2010-05-15

    The scaling of the reconnection rate with external parameters is reconsidered for antiparallel reconnection in a single-fluid magnetohydrodynamic (MHD) model, allowing for compressibility as well as asymmetry between the plasmas and magnetic fields in the two inflow regions. The results show a modest dependence of the reconnection rate on the plasma beta (ratio of plasma to magnetic pressure) in the inflow regions and demonstrate the importance of the conversion of magnetic energy to enthalpy flux (that is, convected thermal energy) in the outflow regions. The conversion of incoming magnetic to outgoing thermal energy flux remains finite even in the limit of incompressibility, while the scaling of the reconnection rate obtained earlier [P. A. Cassak and M. A. Shay, Phys. Plasmas 14, 102114 (2007)] is recovered. The assumptions entering the scaling estimates are critically investigated on the basis of two-dimensional resistive MHD simulations, confirming and even strengthening the importance of the enthalpy flux in the outflow from the reconnection site.

  16. Synchrotron Cooling in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Fish, Jake; Werner, Gregory; Uzdensky, Dmitri

    2016-10-01

    Radiative processes are typically unimportant to the dynamics of plasmas investigated by most magnetic reconnection studies. However, some astrophysical phenomena exhibit conditions in which radiative cooling is significant over dynamic timescales. For example, strong synchrotron cooling controls the energetics of reconnection in magnetospheres of pulsars with strong magnetic fields, including the Crab pulsar. We performed a series of simulations of reconnection in the presence of radiative cooling using the particle-in-cell code Zeltron which self-consistently includes the synchrotron radiation reaction force. We examine the resulting global particle energy distribution, which is strongly cooled by radiation over time at high energies. Basic plasma parameters, such as the average particle energy and density in the reconnection layer and at magnetic O-points, are also measured as functions of radiative cooling's importance. Our results show strong plasma cooling and compression in plasmoids due to radiation well before the reconnecting layer is significantly affected. This work is supported by DOE and NASA.

  17. Stellar dynamics around a massive black hole - I. Secular collisionless theory

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Touma, Jihad R.

    2016-06-01

    We present a theory in three parts, of the secular dynamics of a (Keplerian) stellar system of mass M orbiting a black hole of mass M• ≫ M. Here we describe the collisionless dynamics; Papers II and III are on the (collisional) theory of resonant relaxation. The mass ratio, ε = M/M• ≪ 1, is a natural small parameter implying a separation of time-scales between the short Kepler orbital periods and the longer orbital precessional periods. The collisionless Boltzmann equation (CBE) for the stellar distribution function (DF) is averaged over the fast Kepler orbital phase using the method of multiple scales. The orbit-averaged system is described by a secular DF, F, in a reduced phase space. F obeys a secular CBE that includes stellar self-gravity, general relativistic corrections up to 1.5 post-Newtonian order, and external sources varying over secular times. Secular dynamics, even with general time dependence, conserves the semimajor axis of every star. This additional integral of motion promotes extra regularity of the stellar orbits, and enables the construction of equilibria, F0, through a secular Jeans theorem. A linearized secular CBE determines the response and stability of F0. Spherical, non-rotating equilibria may support long-lived, warp-like distortions. We also prove that an axisymmetric, zero-thickness, flat disc is secularly stable to all in-plane perturbations, when its DF, F0, is a monotonic function of the angular momentum at fixed energy.

  18. Laboratory astrophysical collisionless shock experiments with interpenetrating plasma flows on Omega and NIF

    NASA Astrophysics Data System (ADS)

    Ross, James; Park, H.-S.; Huntington, C.; Ryutov, D.; Drake, R. P.; Froula, D.; Gregori, G.; Levy, M.; Lamb, D.; Fiuza, F.; Petrasso, R.; Li, C.; Zylastra, A.; Rinderknecht, H.; Sakawa, Y.; Spitkovsky, A.

    2015-11-01

    Shock formation from high-Mach number plasma flows is observed in many astrophysical objects such as supernova remnants and gamma ray bursts. These are collisionless shocks as the ion-ion collision mean free path is much larger than the system size. It is believed that seed magnetic fields can be generated on a cosmologically fast timescale via the Weibel instability when such environments are initially unmagnetized. Here we present laboratory experiments using high-power lasers whose ultimate goal is to investigate the dynamics of collisionless shock formation in two interpenetrating plasma streams. Particle-in-cell numerical simulations have confirmed that the strength and structure of the generated magnetic field are consistent with the Weibel mediated electromagnetic nature and that the inferred magnetization level could be as high as ~ 1%. This paper will review recent experimental results from various laser facilities as well as the simulation results and the theoretical understanding of these observations. Taken together, these results imply that electromagnetic instabilities can be significant in both inertial fusion and astrophysical conditions. We will present results from initial NIF experiments, where we observe the neutrons and x-rays generated from the hot plasmas at the center of weakly collisional, counterstreaming flows. Prepared by LLNL under Contract DE-AC52-07NA27344.

  19. Collisionless loss-cone refilling: there is no final parsec problem

    NASA Astrophysics Data System (ADS)

    Gualandris, Alessia; Read, Justin I.; Dehnen, Walter; Bortolas, Elisa

    2017-01-01

    Coalescing massive black hole binaries, formed during galaxy mergers, are expected to be a primary source of low-frequency gravitational waves. Yet in isolated gas-free spherical stellar systems, the hardening of the binary stalls at parsec-scale separations owing to the inefficiency of relaxation-driven loss-cone refilling. Repopulation via collisionless orbit diffusion in triaxial systems is more efficient, but published simulation results are contradictory. While sustained hardening has been reported in simulations of galaxy mergers with N ˜ 106 stars and in early simulations of rotating models, in isolated non-rotating triaxial models the hardening rate continues to fall with increasing N, a signature of spurious two-body relaxation. We present a novel approach for studying loss-cone repopulation in galactic nuclei. Since loss-cone repopulation in triaxial systems owes to orbit diffusion, it is a purely collisionless phenomenon and can be studied with an approximated force calculation technique, provided the force errors are well behaved and sufficiently small. We achieve this using an accurate fast multipole method and define a proxy for the hardening rate that depends only on stellar angular momenta. We find that the loss cone is efficiently replenished even in very mildly triaxial models (with axis ratios 1:0.9:0.8). Such triaxiality is unavoidable following galactic mergers and can drive binaries into the gravitational wave regime. We conclude that there is no `final parsec problem'.

  20. An Introduction to the Physics of Collisionless Shocks

    SciTech Connect

    Russell, C.T.

    2005-08-01

    Collisionless shocks are important in astrophysical, heliospheric and magnetospheric settings. They deflect flows around obstacles; they heat the plasma, and they alter the properties of the flow as it intersects those obstacles. The physical processes occurring at collisionless shocks depend on the Mach number (strength) and beta (magnetic to thermal pressure) of the shocks and the direction of the magnetic field relative to the shock normal. Herein we review how the shock has been modeled in numerical simulations, the basic physical processes at work, including dissipation and thermalization, the electric potential drop at the shock, and the formation of the electron and ion foreshocks.

  1. A mean field Ohm`s law for collisionless plasmas

    SciTech Connect

    Biglari, H.; Diamond, P.H. |

    1993-06-01

    A mean field Ohm`s law valid for collisionless plasmas is derived kinetically. It is shown that contrary to conventional thinking, the resulting hyper-resistivity is significantly smaller than its fluid counterpart due to the fact that the turbulent decorrelation rate is linked to the rapid electron ballistic motion rather than the slower nonlinear mixing time. Moreover, the off-diagonal contributions to the parallel electron momentum flux are shown to result in Ohm`s law renormalizations that dwarf the current diffusivity and break radial parity symmetry. Thus, the conventional wisdom of tearing and twisting parity solutions appears to be vitiated in the turbulent collisionless regime.

  2. Magnetic reconnection, merging, and viscous interaction in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1990-01-01

    This paper discusses the historical development of the reconnection theory, with consideration given to the effects of a magnetic field within the plasma and the mechanisms of magnetic reconnection, merging, and viscouslike interaction. Particular attention is given to Dungey's (1958, 1961) steady-state reconnection model of the magnetosphere and to its criticism. Observational evidence supporting the reconnection model is presented.

  3. Comparison of Magnetospheric Multiscale Ion Jet Signatures with Predicted Reconnection Site Locations at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Petrinec, S. M.; Burch, J. L.; Fuselier, S. A.; Gomez, R. G.; Lewis, W.; Trattner, K. J.; Ergun, R.; Mauk, B.; Pollock, C. J.; Schiff, C.; Strangeway, R. J.; Russell, C. T.; Phan, T.-D.; Young, D.

    2016-01-01

    Magnetic reconnection at the Earths magnetopause is the primary process by which solar wind plasma and energy gains access to the magnetosphere. One indication that magnetic reconnection is occurring is the observation of accelerated plasma as a jet tangential to the magnetopause. The direction of ion jets along the magnetopause surface as observed by the Fast Plasma Instrument (FPI) and the Hot Plasma Composition Analyzer (HPCA) instrument on board the recently launched Magnetospheric Multiscale (MMS) set of spacecraft is examined. For those cases where ion jets are clearly discerned, the direction of origin compares well statistically with the predicted location of magnetic reconnection using convected solar wind observations in conjunction with the Maximum Magnetic Shear model.

  4. Progress on study of unusual structure of electrostatic solitary waves associated with magnetic reconnection in the near-Earth magnetotail

    NASA Astrophysics Data System (ADS)

    Li, Shiyou; Chen, Xiaoqian; Guo, Jianming

    2016-07-01

    The electrostatic solitary waves (ESWs) have been widely observed and studied for many years. In the magnetic reconnection process, ESWs are regarded as one kind of means for the fast energy release by outward propagating electrons along re-connecting magnetic field lines. In this report, we present observation evidences of two kinds of unusual structures of ESWs associated with magnetic reconnection in the near-Earth magnetotail, including the 2-D ESWs and the tri-polar ESWs. First of all, more than 300 of electrostatic solitary waves (ESWs) with large perpendicular component which is bi-polar waveform structure are observed in the boundary layer within magnetic reconnection diffusion region in the near-Earth magnetotail. Such kinds of ESWs are named as 2-D ESWs. Singe-Reconnection-Based-Statistical study of 2-D ESWs is performed. Secondly, more than 200 waveforms with clear tri-polar characteristics are differentiated along the plasma sheet boundary layer near the magnetic reconnection X-line in the near-Earth magnetotail. Within reconnection diffusion region, the tri-polar ESWs are ample and are continuously observed during one burst interval (8.75 seconds) of the Geotail/WFC in the neutral plasma sheet where and thus the tri-polar ESW is suggested to be one kind of steady-going solitary structure. Statistical analysis to the characteristics of tri-polar ESWs will also be carried out. The observation of 2-D ESWs and the tri-polar ESWs presents evidence of complex structure of electron holes within the reconnection diffusion region and is helpful to the understanding of the energy release process of reconnection.

  5. Role of Loss of Equilibrium and Magnetic Reconnection in Coronal Eruptions: Resistive and Hall MHD simulations

    NASA Astrophysics Data System (ADS)

    Yang, H.; Bhattacharjee, A.; Forbes, T. G.

    2008-12-01

    It has long been suggested that eruptive phenomena such as coronal mass ejections, prominence eruptions, and large flares might be caused by a loss of equilibrium in a coronal flux rope (Van Tend and Kuperus, 1978). Forbes et al. (1994) developed an analytical two-dimensional model in which eruptions occur due to a catastrophic loss of equilibrium and relaxation to a lower-energy state containing a thin current sheet. Magnetic reconnection then intervenes dynamically, leading to the release of magnetic energy and expulsion of a plasmoid. We have carried out high-Lundquist-number simulations to test the loss-of equilibrium mechanism, and demonstrated that it does indeed occur in the quasi-ideal limit. We have studied the subsequent dynamical evolution of the system in resistive and Hall MHD models for single as well as multiple arcades. The typical parallel electric fields are super-Dreicer, which makes it necessary to include collisionless effects via a generalized Ohm's law. It is shown that the nature of the local dissipation mechanism has a significant effect on the global geometry and dynamics of the magnetic configuration. The presence of Hall currents is shown to alter the length of the current sheet and the jets emerging from the reconnection site, directed towards the chromosphere. Furthermore, Hall MHD effects break certain symmetries of resistive MHD dynamics, and we explore their observational consequences.

  6. Onset and Evolution of Magnetic Reconnection in Line-Tied Systems

    NASA Astrophysics Data System (ADS)

    Daughton, W. S.; Akcay, C.; Billey, Z.; Finn, J.; Zweibel, E.; Gekelman, W. N.

    2014-12-01

    In space and astrophysical plasmas, current sheets arise spontaneously from the interaction of large-scale flows or magnetic structures. As these current layers approach kinetic scales, they may become unstable to the collisionless tearing instability, resulting in the formation and interaction of magnetic flux ropes. While theoretical treatments of the tearing instability have largely focused on 1D equilibria with periodic boundary conditions, current sheets in nature have a finite spatial extent and are embedded within larger open systems. In many applications, the field boundary conditions are line-tied as in the case of flux ropes on the dayside magnetopause where the ionosphere acts as a conducting surface. To assess the applicability of existing tearing theory to these more realistic configurations, we consider a series of 3D kinetic simulations of initially force-free current layers with line-tied boundary conditions for the fields, and open boundaries for the particles. The geometry and plasma parameters are motivated by a new laboratory experiment on the Large Plasma Device at UCLA. For sufficiently long systems, we demonstrate that key aspects of the theory remain valid, and a threshold condition is derived for the onset of reconnection in line-tied systems. To gain additional insight into the nonlinear evolution, field-line mapping diagnostics are employed to characterize the 3D structure of the magnetic field, the nonlinear reconnection rate and the dominant non-ideal terms in the generalized Ohm's law.

  7. Dipolarization Front: A Distinctive Feature of the Reconnection Onset in the Magnetotail

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Swisdak, M.; Divin, A. V.

    2008-12-01

    Recent particle simulations with open boundaries revealed interesting new effects in collisionless magnetic reconnection, including its intermittent regimes with the formation of the secondary plasmoids in the outflow regions. In this presentation we show that, apart from rather conventional plasmoids forming near the electron diffusion region of the central X-line, there is another group of the secondary reconnection structures that strongly resemble the dipolarization fronts, reported in Geotail, Cluster, and Themis observations of bursty bulk flows and substorm activations in the terrestrial magnetotail. These structures are characterized by a strong and quick increase of the original tail field Bz, normal to the neutral plane, up a half of the lobe field, in contrast to a relatively small and shallow negative dip of Bz in the front precursor, comparable in amplitude to the field Bz prior to the dipolarization onset. Both electrons and ions are magnetized at the front of the dipolarization wave. In contrast, in its trail, ions are unmagnetized and move slower compared to the ExB drift, whereas the magnetized electrons either follow that drift or move even faster, forming super-Alfvenic jets. In spite of drastically different motions of electrons and ions, the formation and growth of the dipolarization front is not accompanied by the corresponding growth of the electrostatic field. This suggests that the electron compressibility effect, stabilizing the ion tearing mode in the tail-like systems with trapped magnetized electrons [Lembege and Pellat, 1982], is strongly attenuated in open systems.

  8. Evidence for Gradual External Reconnection Before Explosive Eruption of a Solar Filament

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2003-01-01

    We observe a slowly-evolving quiet region solar eruption of 1999 April 18, using EUV images from the EUV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO), and soft X-ray images from the Soft X-ray Telescope (SXT) on Yohkoh. Using difference images, where an early image is subtracted from later images, we examine dimmings and brightenings in the region for evidence of the eruption mechanism. A filament rose slowly at about 1 kilometer per second for six hours before being rapidly ejected at about 16 kilometers per second, leaving flare brightenings and post-flare loops in its wake. Magnetograms from the Michelson Doppler Imager (MDI) on SOHO show that the eruption occurred in a large quadrupo1ar magnetic region, with the filament located on the neutral line of the quadrupole's central inner lobe, between the inner two of the four polarity domains. In step with the slow rise, subtle EIT dimmings commence and gradually increase over the two polarity domains on one side of the filament, i.e. in some of the loops of one of the two side lobes of the quadrupole. Concurrently, soft X-ray brightenings gradually increase in both side lobes. Both of these effects suggest heating in the side-lobe magnetic arcades, which gradually increase over several hours before the fast eruption. Also during the slow pre-eruption phase, SXT dimmings gradually increase in the feet and legs of the central lobe, indicating expansion of the central-lobe magnetic arcade enveloping the filament. During the rapid ejection, these dimmings rapidly grow in darkness and in area, especially in the ends of the sigmoid field that erupts with the filament, and flare brightenings begin underneath the fast-moving but still low-altitude filament. We consider two models for explaining the eruption: "breakout," which says that reconnection occurs high above the filament prior to eruption, and tether cutting, which says that the eruption is unleashed by reconnection beneath the filament

  9. Evidence for Gradual External Reconnection Before Explosive Eruption of a Solar Filament

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    We observe a slowly evolving quiet-region solar eruption of 1999 April 18, using extreme-ultraviolet (EUV) images from the EUV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) and soft X-ray images from the Soft X-ray Telescope (SXT) on Yohkoh. Using difference images, in which an early image is subtracted from later images, we examine dimmings and brightenings in the region for evidence of the eruption mechanism. A filament rose slowly at about 1 km/s for 6 hours before being rapidly ejected at about 16 km/s leaving flare brightenings and postflare loops in its wake. Magnetograms from the Michelson Doppler Imager (MDI) on SOHO show that the eruption occurred in a large quadrupolar magnetic region with the filament located on the neutral line of the quadrupole s central inner lobe between the inner two of the four polarity domains. In step with the slow rise, subtle EIT dimmings commence and gradually increase over the two polarity domains on one side of the filament, i.e., in some of the loops of one of the two sidelobes of the quadrupole. Concurrently, soft X-ray brightenings gradually increase in both sidelobes. Both of these effects suggest heating in the sidelobe magnetic arcades. which gradually increase over several hours before the fast eruption. Also, during the slow pre- eruption phase, SXT dimmings gradually increase in the feet and legs of the central lobe, indicating expansion of the central-lobe magnetic arcade enveloping the filament. During the rapid ejection. these dimmings rapidly grow in darkness and in area, especially in the ends of the sigmoid field that erupts with the filament. and flare brightenings begin underneath the fast-moving but still low-altitude filament. We consider two models for explaining the eruption: "breakout. which says that reconnection occurs high above the filament prior to eruption, and tether cutting, which says that the eruption is unleashed by reconnection beneath the filament. The pre

  10. DIRECT OBSERVATIONS OF MAGNETIC RECONNECTION OUTFLOW AND CME TRIGGERING IN A SMALL ERUPTING SOLAR PROMINENCE

    SciTech Connect

    Reeves, Katharine K.; McCauley, Patrick I.; Tian, Hui

    2015-07-01

    We examine a small prominence eruption that occurred on 2014 May 1 at 01:35 UT and was observed by the Interface Region Imaging Spectrometer (IRIS) and the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory. Pre- and post-eruption images were taken by the X-ray Telescope (XRT) on Hinode. Pre-eruption, a dome-like structure exists above the prominence, as demarcated by coronal rain. As the eruption progresses, we find evidence for reconnection between the prominence magnetic field and the overlying field. Fast flows are seen in AIA and IRIS, indicating reconnection outflows. Plane-of-sky flows of 300 km s{sup −1} are observed in the AIA 171 A channel along a potentially reconnected field line. IRIS detects intermittent fast line of sight flows of 200 km s{sup −1} coincident with the AIA flows. Differential emission measure calculations show heating at the origin of the fast flows. Post-eruption XRT images show hot loops probably due to reconfiguration of magnetic fields during the eruption and subsequent heating of plasma in these loops. Although there is evidence for reconnection above the prominence during the eruption, high spatial resolution images from IRIS reveal potential reconnection sites below the prominence. A height–time analysis of the erupting prominence shows a slow initial rise with a velocity of 0.4 km s{sup −1} followed by a rapid acceleration with a final velocity of 250 km s{sup −1}. Brightenings in IRIS during the transition between these two phases indicate the eruption trigger for the fast part of the eruption is likely a tether-cutting mechanism rather than a break-out mechanism.

  11. Nonthermally dominated electron acceleration during magnetic reconnection in a low-β plasma

    DOE PAGES

    Li, Xiaocan; Guo, Fan; Li, Hui; ...

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization.more » We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.« less

  12. Physics of forced magnetic reconnection in coaxial helicity injection experiments in National Spherical Torus Experiment

    SciTech Connect

    Ebrahimi, F.; Bhattacharjee, A.; Raman, R.; Hooper, E. B.; Sovinec, C. R.

    2014-05-15

    We numerically examine the physics of fast flux closure in transient coaxial helicity injection (CHI) experiments in National Spherical Torus Experiment (NSTX). By performing resistive Magnetohydrodynamics (MHD) simulations with poloidal injector coil currents held constant in time, we find that closed flux surfaces are formed through forced magnetic reconnection. Through a local Sweet-Parker type reconnection with an elongated current sheet in the injector region, closed flux surfaces expand in the NSTX global domain. Simulations demonstrate outflows approaching poloidally Alfvénic flows and reconnection times consistent with the Sweet-Parker model. Critical requirements for magnetic reconnection and flux closure are studied in detail. These primary effects, which are magnetic diffusivity, injector flux, injector flux footprint width, and rate of injector voltage reduction, are simulated for transient CHI experiments. The relevant time scales for effective reconnection are τ{sub V}<τ{sub rec}≈τ{sub A}√(S)(1+Pm){sup 1/4}<τ{sub R}, where τ{sub V} is the time for the injector voltage reduction, τ{sub A} is the poloidal Alfvén transit time, τ{sub R} is the global resistive diffusion time, and Pm and S are Prandtl and Lundquist numbers.

  13. IMAGING AND SPECTROSCOPIC OBSERVATIONS OF MAGNETIC RECONNECTION AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE

    SciTech Connect

    Tian, Hui; Reeves, Katharine K.; Raymond, John C.; Chen, Bin; Murphy, Nicholas A.; Li, Gang; Guo, Fan; Liu, Wei

    2014-12-20

    Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfvén speed. Yet, spectroscopic observations of such outflows, especially the downflows, are extremely rare. With observations of the newly launched Interface Region Imaging Spectrograph (IRIS), we report the detection of a greatly redshifted (∼125 km s{sup –1} along the line of sight) Fe XXI 1354.08 Å emission line with a ∼100 km s{sup –1} nonthermal width at the reconnection site of a flare. The redshifted Fe XXI feature coincides spatially with the loop-top X-ray source observed by RHESSI. We interpret this large redshift as the signature of downward-moving reconnection outflow/hot retracting loops. Imaging observations from both IRIS and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory also reveal the eruption and reconnection processes. Fast downward-propagating blobs along these loops are also found from cool emission lines (e.g., Si IV, O IV, C II, Mg II) and images of AIA and IRIS. Furthermore, the entire Fe XXI line is blueshifted by ∼260 km s{sup –1} at the loop footpoints, where the cool lines mentioned above all exhibit obvious redshift, a result that is consistent with the scenario of chromospheric evaporation induced by downward-propagating nonthermal electrons from the reconnection site.

  14. Spontaneous reconnection at a separator current layer: 2. Nature of the waves and flows

    NASA Astrophysics Data System (ADS)

    Stevenson, J. E. H.; Parnell, C. E.

    2015-12-01

    Sudden destabilizations of the magnetic field, such as those caused by spontaneous reconnection, will produce waves and/or flows. Here we investigate the nature of the plasma motions resulting from spontaneous reconnection at a 3-D separator. In order to clearly see these perturbations, we start from a magnetohydrostatic equilibrium containing two oppositely signed null points joined by a generic separator along which lies a twisted current layer. The nature of the magnetic reconnection initiated in this equilibrium as a result of an anomalous diffusivity is discussed in detail in Stevenson and Parnell (2015). The resulting sudden loss of force balance inevitably generates waves that propagate away from the diffusion region carrying the dissipated current. In their wake a twisting stagnation flow, in planes perpendicular to the separator, feeds flux back into the original diffusion site (the separator) in order to try to regain equilibrium. This flow drives a phase of slow weak impulsive bursty reconnection that follows on after the initial fast-reconnection phase.

  15. Nonthermally dominated electron acceleration during magnetic reconnection in a low-β plasma

    SciTech Connect

    Li, Xiaocan; Guo, Fan; Li, Hui; Li, Gang

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization. We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.

  16. Investigation of magnetic reconnection during a sawtooth crash in a high temperature tokamak

    SciTech Connect

    Yamada, M.; Pomphrey, N.; Budney, R.; Macickam, J.; Levinton, F.; Nagayama, Y.

    1994-09-01

    This paper reports on a recent laboratory investigation on magnetic reconnection in high temperature tokamak plasmas. The motional stark effect(MSE) diagnostic is employed to measure the pitch angle of magnetic field lines, and hence the q profile. An analytical expression that relates pitch angle to q profile has been developed for a toroidal plasma with circular cross section. During the crash phase of sawtooth oscillations in the plasma discharges, the ECE (electron cyclotron emission) diagnostic measures a fast flattening of the 2-D electron temperature profile in a poloidal plane, an observation consistent with the Kadomtsev reconnection theory. On the other hand motional the MSE measurements indicate that central q values do not relax to unity after the crash, but increase only by 5-10%, typically from 0.7 to 0.75. The latter result is in contradiction with the models of Kadomtsev and/or Wesson. The present study addresses this puzzle by a simultaneous analysis of electron temperature and q profile evolutions. Based on a heuristic model for the magnetic reconnection during the sawtooth crash, the small change of q, i.e. partial reconnection, is attributed to the precipitous drop of pressure gradients which drive the instability and the reconnection process as well as flux conserving plasma dynamics.

  17. Scaling Laws for Magnetic Reconnection when Electron Pressure Anisotropy is near the Firehose Threshold

    NASA Astrophysics Data System (ADS)

    Ohia, Obioma; Egedal, Jan; Lukin, Vyacheslav S.; Daughton, William; Le, Ari

    2015-11-01

    Magnetic reconnection in weakly-collisional, a process linked to solar flares, coronal mass ejections, and magnetic substorms, has been widely studied through fluid and kinetic simulations. While two-fluid models often reproduce the fast reconnection rate of kinetic simulations, significant differences are observed in the structure of the reconnection regions. Recently, new equations of state that accurately account for the development of anisotropic electron pressure due to the electric and magnetic trapping of electrons have been developed. Guide-field, fluid simulations using these equations of state have been shown to reproduce the detailed reconnection region observed in kinetic simulations. Implementing this two-fluid simulation using the HiFi framework, we describe a mechanism for regulation of electron pressure anisotropy as well as study force balance of the electron layers in guide-field reconnection. Scaling laws for the heating observed in these layers based on upstream conditions are derived. Formerly of U.S. Naval Research Laboratory. Any opinions, findings, conclusions and/or recommendations are those of author and do not necessarily reflect the views of the National Science Foundation.

  18. NONTHERMALLY DOMINATED ELECTRON ACCELERATION DURING MAGNETIC RECONNECTION IN A LOW-β PLASMA

    SciTech Connect

    Li, Xiaocan; Li, Gang; Guo, Fan; Li, Hui

    2015-10-01

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization. We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. The nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the  highly efficient electron acceleration in solar flares and other astrophysical systems.

  19. Study of reconnection events through Global MHD simulation and observational data

    NASA Astrophysics Data System (ADS)

    Cardoso, F. R.; Gonzalez, W. D.; Sibeck, D. G.; Kuznetsova, M. M.; Alves, M. V.

    2011-12-01

    Magnetic reconnection is the dominant mechanism for solar wind energy and momentum transfer to the magnetosphere. It can be a continuous or a transient process. Time-varying reconnection produces flux transfer events (FTEs) which can be identified by bipolar signatures in the component of the magnetic field normal to the magnetopause, deflections in the component tangential, and variations in the magnetic field magnitude. Some events exhibit the mixed magnetospheric and magnetosheath plasma populations expected for reconnection. Global magnetohydrodynamics (MHD) simulations are important tools to understand the relevant magnetic reconnection mechanisms. We have identified magnetic reconnection events, especially FTEs, in global MHD simulations and observations. We study their spatial and temporal characteristics as a function of solar wind parameters, in particular the interplanetary magnetic field orientation. We determine the origin of FTEs as well as the properties that describe them such as their dimension, extent and motion as a function of time. In particular, we track the motion of FTEs in an attempt to determine their point of origin, their destination, and how fast they move.

  20. Physics of Reconnection and MMS Mission

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Gombosi, T.

    2009-01-01

    Reconnection is the most important process driving the Earth's magnetosphere. Key to the success of the MMS science plan is the coupling of theory and observation. Determining the kinetic processes occurring in the diffusion region and physical parameters that control the rate of magnetic reconnection are among primary objectives of the MMS mission. Analysis of the role played by particle inertial effects in the diffusion region where the plasma is unmagnetized will be presented. The reconnection electric field in he diffusion region is supported primarily by particle non-gyrotropic effects. At the quasi-steady stage the reconnection electric field serves to accelerate and heat the incoming plasma population to maintain the current flow in the diffusion region the pressure balance. The primary mechanism controlling the dissipation in the vicinity of the reconnection site is incorporated into the fluid description in terms of non-gyrotropic corrections to the. induction and energy equations. The results of kinetic and fluid simulations illustrating the physics of magnetic reconnection will be presented. We will dem:tistrate that kinetic nongyrotropic effects can significantly alter the global magnetosphere evolution and location of reconnection sites.

  1. Reconnection in semicollisional, low-{beta} plasmas

    SciTech Connect

    Schmidt, S.; Guenter, S.; Lackner, K.

    2009-07-15

    Reconnection of semicollisional, low-{beta} plasmas is studied numerically for two model problems using a two-field description of the plasma including electron pressure effects (and hence kinetic Alfven-wave dynamics). The tearing unstable Harris sheet, with the global parameters of the Geospace Environment Modeling-challenge case, shows a linear growth of the peak reconnection rate with the drift parameter {rho}{sub s} when this scale is significantly larger than the resistive skin depth, and the island is smaller than the Harris sheet current layer width. As exemplary for a driven, rather than a spontaneous reconnection situation we study as second model system two coalescing islands, starting from a nonequilibrium situation. The peak reconnection rate again increases initially linearly with {rho}{sub s} but saturates and becomes {rho}{sub s} independent for larger values. In this saturated regime, no flux pileup occurs, and the reconnection is limited by the rate of approach of the two coalescing islands. The qualitative differences between spontaneous and driven reconnection cases and their scaling behavior are best understood by considering the reconnection rate as a triple product of outflow Mach number, outflow to inflow channel width ratio, and magnetic energy density at a height {rho}{sub s} above the X point.

  2. Magnetic reconnection in a weakly ionized plasma

    SciTech Connect

    Leake, James E.; Lukin, Vyacheslav S.; Linton, Mark G.

    2013-06-15

    Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al.[“Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” Astrophys. J. 760, 109 (2012)] by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling scale, and the neutral and ion fluids decouple upstream from the reconnection site. During this process of decoupling, we observe reconnection faster than the single-fluid Sweet-Parker prediction, with recombination and plasma outflow both playing a role in determining the reconnection rate. As the current sheet thins further and elongates, it becomes unstable to the secondary tearing instability, and plasmoids are seen. The reconnection rate, outflows, and plasmoids observed in this simulation provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.

  3. Kinetic Structure of the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yuri

    2016-04-01

    We present high-resolution multi-spacecraft observations of electromagnetic fields and particle distributions by Magnetospheric Multiscale (MMS) mission throughout a reconnection layer at the sub-solar magnetopause. We study which terms in the generalized Ohm's law balance the observed electric field throughout the region. We also study waves and particle distribution functions in order to identify kinetic boundaries created due to acceleration and trapping of electrons and ions as well as mixing of electron populations from different sides of the reconnecting layer. We discuss the interplay between particles, waves, and DC electric and magnetic fields, which clearly demonstrates kinetic and multi-scale nature of the reconnection diffusion region.

  4. On the Distribution of Particle Acceleration Sites in Plasmoid-dominated Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Nalewajko, Krzysztof; Uzdensky, Dmitri A.; Cerutti, Benoît; Werner, Gregory R.; Begelman, Mitchell C.

    2015-12-01

    We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical timescale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons: magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance: (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.

  5. ON THE DISTRIBUTION OF PARTICLE ACCELERATION SITES IN PLASMOID-DOMINATED RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Nalewajko, Krzysztof; Cerutti, Benoit; Begelman, Mitchell C.

    2015-12-20

    We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical timescale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons: magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance: (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.

  6. Scaled Laboratory Collisionless Shock Experiments in the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Clark, S. E.; Schaeffer, D.; Everson, E.; Bondarenko, A.; Winske, D.; Constantin, C.; Niemann, C.

    2013-12-01

    Collisionless shocks in space plasmas have been investigated since the fifties and are typically studied via in-situ satellite observations, which are limited due to the large structure of collisionless shocks in space environments relative to the satellite observation platform. Scaled, repeatable experiments in the Large Plasma Device (LAPD) at UCLA provide a test bed for studying collisionless shocks in the laboratory, where questions of ion and electron heating and acceleration can be addressed and examined in detail. The experiments are performed by ablating a graphite or plastic target using the Raptor kilojoule-class laser facility at UCLA. The laser provides an on-target energy in the range of 100-500 J that drives a super-Alfvénic (MA > 1) debris plasma across a background magnetic field (200-800 G) into the ambient, magnetized LAPD plasma. Typical plasma parameters in the LAPD consist of a H+ or He+ ambient plasma with a core column (diameter > 20 cm ) density ni ~ 1013 cm-3 and electron temperature Te ~ 10 eV embedded in a larger plasma discharge (diameter ~ 80 cm) of density ni ~ 1012 cm-3 and Te ~ 5 eV. The ambient ion temperature is Ti ~ 1 eV. Experimental results from the latest collisionless shock campaign will be presented and compared with two dimensional hybrid simulations of the experiment. Fielded diagnostics include Thomson scattering, ion spectroscopy, magnetic flux probes, Langmuir probes, and microwave reflectometry.

  7. Electron Acceleration and Structure in the Quasi-perpendicular Collisionless Shock

    SciTech Connect

    Burgess, D.

    2005-08-01

    Electron acceleration at quasi-perpendicular shocks is a key problem in collisionless shock physics, in the context of the Earth's bow shock and other astrophysical situations. Fast Fermi acceleration, or reflection by adiabatic mirroring is a robust mechanism, but predicts that the highest energies are produced over a very small shock angle range, close to perpendicular where the reflected flux is decreasingly small. Pitch angle scattering has been shown to be effective in broadening the parameter range where this process is important. Using 2D hybrid simulations and electron test particle simulations, we show that ripples and oscillations of the shock surface are efficient scatters of suprathermal electrons. The results indicate that power law energy distributions can be obtained for both upstream and downstream energetic electrons, over a reasonably wide range of shock angles.

  8. Understanding the dynamics and energetics of magnetic reconnection in a laboratory plasma: Review of recent progress on selected fronts

    DOE PAGES

    Yamada, Masaaki; Yoo, Jongsoo; Myers, Clayton E.

    2016-05-11

    Here, magnetic reconnection is a fundamental process at work in laboratory, space, and astrophysical plasmas, in which magnetic field lines change their topology and convert magnetic energy to plasma particles by acceleration and heating. One of the most important problems in reconnection research has been to understand why reconnection occurs so much faster than predicted by magnetohydrodynamics theory. Following the recent pedagogical review of this subject [Yamada et al., Rev. Mod. Phys. 82, 603 (2010)], this paper presents a review of more recent discoveries and findings in the research of fast magnetic reconnection in laboratory, space, and astrophysical plasmas. Inmore » spite of the huge difference in physical scales, we find remarkable commonality between the characteristics of the magnetic reconnection in laboratory and space plasmas. In this paper, we will focus especially on the energy flow, a key feature of the reconnection process. In particular, the experimental results on the energy conversion and partitioning in a laboratory reconnection layer [Yamada et al., Nat. Commun. 5, 4474 (2014)] are discussed and compared with quantitative estimates based on two-fluid analysis. In the Magnetic ReconnectionExperiment, we find that energy deposition to electrons is localized near the X-point and is mostly from the electric field component perpendicular to the magnetic field. The mechanisms of ion acceleration and heating are also identified, and a systematic and quantitative study on the inventory of converted energy within a reconnection layer with a well-defined but variable boundary. The measured energy partition in a reconnection region of similar effective size (L ≈ 3 ion skin depths) of the Earth's magneto-tail [Eastwood et al., Phys. Rev. Lett. 110, 225001 (2013)] is notably consistent with our laboratory results. Finally, to study the global aspects of magnetic reconnection, we have carried out a laboratory experiment on the stability criteria for

  9. Understanding the dynamics and energetics of magnetic reconnection in a laboratory plasma: Review of recent progress on selected fronts

    SciTech Connect

    Yamada, Masaaki; Yoo, Jongsoo; Myers, Clayton E.

    2016-05-11

    Here, magnetic reconnection is a fundamental process at work in laboratory, space, and astrophysical plasmas, in which magnetic field lines change their topology and convert magnetic energy to plasma particles by acceleration and heating. One of the most important problems in reconnection research has been to understand why reconnection occurs so much faster than predicted by magnetohydrodynamics theory. Following the recent pedagogical review of this subject [Yamada et al., Rev. Mod. Phys. 82, 603 (2010)], this paper presents a review of more recent discoveries and findings in the research of fast magnetic reconnection in laboratory, space, and astrophysical plasmas. In spite of the huge difference in physical scales, we find remarkable commonality between the characteristics of the magnetic reconnection in laboratory and space plasmas. In this paper, we will focus especially on the energy flow, a key feature of the reconnection process. In particular, the experimental results on the energy conversion and partitioning in a laboratory reconnection layer [Yamada et al., Nat. Commun. 5, 4474 (2014)] are discussed and compared with quantitative estimates based on two-fluid analysis. In the Magnetic ReconnectionExperiment, we find that energy deposition to electrons is localized near the X-point and is mostly from the electric field component perpendicular to the magnetic field. The mechanisms of ion acceleration and heating are also identified, and a systematic and quantitative study on the inventory of converted energy within a reconnection layer with a well-defined but variable boundary. The measured energy partition in a reconnection region of similar effective size (L ≈ 3 ion skin depths) of the Earth's magneto-tail [Eastwood et al., Phys. Rev. Lett. 110, 225001 (2013)] is notably consistent with our laboratory results. Finally, to study the global aspects of magnetic reconnection, we have carried out a laboratory experiment on the stability criteria for solar

  10. Rapid magnetic reconnection in the Earth's magnetosphere mediated by whistler waves.

    PubMed

    Deng, X H; Matsumoto, H

    2001-03-29

    Magnetic reconnection has a crucial role in a variety of plasma environments in providing a mechanism for the fast release of stored magnetic energy. During reconnection the plasma forms a 'magnetic nozzle', like the nozzle of a hose, and the rate is controlled by how fast plasma can flow out of the nozzle. But the traditional picture of reconnection has been unable to explain satisfactorily the short timescales associated with the energy release, because the flow is mediated by heavy ions with a slow resultant velocity. Recent theoretical work has suggested that the energy release is instead mediated by electrons in waves called 'whistlers', which move much faster for a given perturbation of the magnetic field because of their smaller mass. Moreover, the whistler velocity and associated plasma velocity both increase as the 'nozzle' becomes narrower. A narrower nozzle therefore no longer reduces the total plasma flow-the outflow is independent of the size of the nozzle. Here we report observations demonstrating that reconnection in the magnetosphere is driven by whistlers, in good agreement with the theoretical predictions.

  11. Magnetic Reconnection Models of Prominence Formation

    NASA Astrophysics Data System (ADS)

    Welsch, B. T.; DeVore, C. R.; Antiochos, S. K.

    2005-12-01

    To investigate the hypothesis that prominences form by magnetic reconnection between initially distinct flux systems in the solar corona, we simulate coronal magnetic field evolution when two flux systems are driven together by boundary motions. In particular, we focus on configurations similar to those in the quiescent prominence formation model of Martens & Zwaan. We find that reconnection proceeds very weakly, if at all, in configurations driven with global shear flows (i.e., differential rotation); reconnection proceeds much more efficiently in similar configurations that are driven to collide directly, with converging motions along the neutral line that lead to flux cancellation; reconnected fields from this process can exhibit sheared, dipped field lines along the neutral line, consistent with prominence observations. Our field configurations do not possess the ``breakout'' topology, and eruptions are not observed, even though a substantial amount of flux is canceled in some runs.

  12. Characterization of reconnecting vortices in superfluid helium

    PubMed Central

    Bewley, Gregory P.; Paoletti, Matthew S.; Sreenivasan, Katepalli R.; Lathrop, Daniel P.

    2008-01-01

    When two vortices cross, each of them breaks into two parts and exchanges part of itself for part of the other. This process, called vortex reconnection, occurs in classical and superfluids, and in magnetized plasmas and superconductors. We present the first experimental observations of reconnection between quantized vortices in superfluid helium. We do so by imaging micrometer-sized solid hydrogen particles trapped on quantized vortex cores and by inferring the occurrence of reconnection from the motions of groups of recoiling particles. We show that the distance separating particles on the just-reconnected vortex lines grows as a power law in time. The average value of the scaling exponent is approximately ½, consistent with the self-similar evolution of the vortices. PMID:18768790

  13. Evidence for reconnection at Saturn's magnetopause

    NASA Astrophysics Data System (ADS)

    McAndrews, H. J.; Owen, C. J.; Thomsen, M. F.; Lavraud, B.; Coates, A. J.; Dougherty, M. K.; Young, D. T.

    2008-04-01

    Observations of Saturn's magnetopause by the Cassini Plasma Spectrometer (CAPS) and magnetometer have revealed clear instances of magnetic reconnection signatures, two of which are described here. Both encounters occurred at the equator in the prenoon sector as Cassini was exiting the magnetosphere. Evidence of heating in the electrons and ions is highly suggestive of energization comparable to that associated with the reconnection process at Earth. In one case, the fields are strongly antiparallel and the magnetic data indicate the presence of a locally open magnetic field. In the other example, magnetic data indicate a locally closed magnetic field compatible with the field lines being locally parallel, but the particle signatures lead to the conclusion of a distant reconnection site poleward of the cusps being active. The reconnection voltage for the first case is calculated to be 48 kV, which is of the same order as previous estimates at Saturn. This is lower than the corotational voltage but is not insignificant.

  14. Forcing continuous reconnection in hybrid simulations

    SciTech Connect

    Laitinen, T. V. Janhunen, P.; Jarvinen, R.; Kallio, E.

    2014-07-15

    We have performed hybrid simulations of driven continuous reconnection with open boundary conditions. Reconnection is started by a collision of two subsonic plasma fronts with opposite magnetic fields, without any specified magnetic field configuration as initial condition. Due to continued forced plasma inflow, a current sheet co-located with a dense and hot plasma sheet develops. The translational symmetry of the current sheet is broken by applying a spatial gradient in the inflow speed. We compare runs with and without localized resistivity: reconnection is initiated in both cases, but localized resistivity stabilizes it and enhances its efficiency. The outflow speed reaches about half of Alfvén speed. We quantify the conversion of magnetic energy to kinetic energy of protons and to Joule heating and show that with localized resistivity, kinetic energy of protons is increased on average five-fold in the reconnection in our simulation case.

  15. Relativistic Magnetic Reconnection in the Laboratory

    NASA Astrophysics Data System (ADS)

    Krushelnick, Karl; Raymond, Anthony; Dong, Cf; McKelvey, A.; Zulick, C.; Alexander, N.; Bhattacharjee, A.; Campbell, Pt; Chen, H.; Chvykov, V.; Del Rio, E.; Fitzsimmons, P.; Fox, W.; Hou, Bx; Maksimchuk, A.; Mileham, C.; Nees, J.; Nilson, Pm; Stoekl, C.; Thomas, Agr; Wei, Ms; Yanovsky, V.; Willingale, L.

    2016-10-01

    Magnetic reconnection is a fundamental plasma process involving an exchange of magnetic energy to plasma kinetic energy through changes in the magnetic field topology. Here we present experimental measurements using the OMEGA EP laser at LLE and the HERCULES laser at the University of Michigan as well as numerical modeling which indicate that relativistic magnetic reconnection can be driven by short-pulse, high-intensity lasers that produce a relativistic plasma along with very strong magnetic fields. Evidence of magnetic reconnection was identified by the plasma's X-ray emission patterns, changes to the electron energy spectrum, and by measuring the time over which reconnection occurs. Funded by DOE Award No. DE-NA0002727.

  16. Relating magnetic reconnection to coronal heating.

    PubMed

    Longcope, D W; Tarr, L A

    2015-05-28

    It is clear that the solar corona is being heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are related--i.e. coronal reconnection generates heat. This attempt must address the fact that topological change of field lines does not automatically generate heat. We present one case of flux emergence where we have measured the rate of coronal magnetic reconnection and the rate of energy dissipation in the corona. The ratio of these two, [Formula: see text], is a current comparable to the amount of current expected to flow along the boundary separating the emerged flux from the pre-existing flux overlying it. We can generalize this relation to the overall corona in quiet Sun or in active regions. Doing so yields estimates for the contribution to coronal heating from magnetic reconnection. These estimated rates are comparable to the amount required to maintain the corona at its observed temperature.

  17. Relating magnetic reconnection to coronal heating

    PubMed Central

    Longcope, D. W.; Tarr, L. A.

    2015-01-01

    It is clear that the solar corona is being heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are related—i.e. coronal reconnection generates heat. This attempt must address the fact that topological change of field lines does not automatically generate heat. We present one case of flux emergence where we have measured the rate of coronal magnetic reconnection and the rate of energy dissipation in the corona. The ratio of these two, , is a current comparable to the amount of current expected to flow along the boundary separating the emerged flux from the pre-existing flux overlying it. We can generalize this relation to the overall corona in quiet Sun or in active regions. Doing so yields estimates for the contribution to coronal heating from magnetic reconnection. These estimated rates are comparable to the amount required to maintain the corona at its observed temperature. PMID:25897089

  18. The Role of Geometry in Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Aunai, Nicholas; Birn, Joachim; Zenitani, Seiji

    2012-01-01

    Magnetic reconnection is arguably the most effective energy conversion and transport process in plasmas. Reconnection is subject to topological considerations in two ways. First, the process itself involves a change in topology of the combined plasma-magnetic field system. This change in topology transcends that of the magnetic field alone and accounts for flux transport relative to the motion of the plasma in the system under investigation. The second way topology is important to magnetic reconnection is through modifications of the diffUSion/dissipation physics brought about by the structure of the reconnecting system. This presentation will present an overview and summary of both past and recent results pertaining to both aspects.

  19. The role of magnetic reconnection on jet/accretion disk systems

    NASA Astrophysics Data System (ADS)

    de Gouveia Dal Pino, E. M.; Piovezan, P. P.; Kadowaki, L. H. S.

    2010-07-01

    Context. It was proposed earlier that the relativistic ejections observed in microquasars could be produced by violent magnetic reconnection episodes at the inner disk coronal region (de Gouveia Dal Pino & Lazarian 2005). Aims: Here we revisit this model, which employs a standard accretion disk description and fast magnetic reconnection theory, and discuss the role of magnetic reconnection and associated heating and particle acceleration in different jet/disk accretion systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs). Methods: In microquasars and AGNs, violent reconnection episodes between the magnetic field lines of the inner disk region and those that are anchored in the black hole are able to heat the coronal/disk gas and accelerate the plasma to relativistic velocities through a diffusive first-order Fermi-like process within the reconnection site that will produce intermittent relativistic ejections or plasmons. Results: The resulting power-law electron distribution is compatible with the synchrotron radio spectrum observed during the outbursts of these sources. A diagram of the magnetic energy rate released by violent reconnection as a function of the black hole (BH) mass spanning 109 orders of magnitude shows that the magnetic reconnection power is more than sufficient to explain the observed radio luminosities of the outbursts from microquasars to low luminous AGNs. In addition, the magnetic reconnection events cause the heating of the coronal gas, which can be conducted back to the disk to enhance its thermal soft X-ray emission as observed during outbursts in microquasars. The decay of the hard X-ray emission right after a radio flare could also be explained in this model due to the escape of relativistic electrons with the evolving jet outburst. In the case of YSOs a similar magnetic configuration can be reached that could possibly produce observed X-ray flares in some sources and provide the heating at the

  20. Patchy reconnection in the solar corona

    NASA Astrophysics Data System (ADS)

    Guidoni, Silvina Esther

    2011-05-01

    Magnetic reconnection in plasmas, a process characterized by a change in connectivity of field lines that are broken and connected to other ones with different topology, owes its usefulness to its ability to unify a wide range of phenomena within a single universal principle. There are newly observed phenomena in the solar corona that cannot be reconciled with two-dimensional or steady-state standard models of magnetic reconnection. Supra-arcade downflows (SADs) and supra-arcade downflowing loops (SADLs) descending from reconnection regions toward solar post-flare arcades seem to be two different observational signatures of retracting, isolated reconnected flux tubes with irreducible three-dimensional geometries. This dissertation describes work in refining and improving a novel model of patchy reconnection, where only a small bundle of field lines is reconnected across a current sheet (magnetic discontinuity) and forms a reconnected thin flux tube. Traditional models have not been able to explain why some of the observed SADs appear to be hot and relatively devoid of plasma. The present work shows that plasma depletion naturally occurs in flux tubes that are reconnected across nonuniform current sheets and slide trough regions of decreasing magnetic field magnitude. Moreover, through a detailed theoretical analysis of generalized thin flux tube equations, we show that the addition to the model of pressure-driven parallel dynamics, as well as temperature-dependent, anisotropic viscosity and thermal conductivity is essential for self-consistently producing gas-dynamic shocks inside reconnected tubes that heat and compress plasma to observed temperatures and densities. The shock thickness can be as long as the entire tube and heat can be conducted along tube's legs, possibly driving chromospheric evaporation. We developed a computer program that solves numerically the thin flux tube equations that govern the retraction of reconnected tubes. Simulations carried out

  1. Turbulent magnetic fluctuations in laboratory reconnection

    NASA Astrophysics Data System (ADS)

    Von Stechow, Adrian; Grulke, Olaf; Klinger, Thomas

    2016-07-01

    The role of fluctuations and turbulence is an important question in astrophysics. While direct observations in space are rare and difficult dedicated laboratory experiments provide a versatile environment for the investigation of magnetic reconnection due to their good diagnostic access and wide range of accessible plasma parameters. As such, they also provide an ideal chance for the validation of space plasma reconnection theories and numerical simulation results. In particular, we studied magnetic fluctuations within reconnecting current sheets for various reconnection parameters such as the reconnection rate, guide field, as well as plasma density and temperature. These fluctuations have been previously interpreted as signatures of current sheet plasma instabilities in space and laboratory systems. Especially in low collisionality plasmas these may provide a source of anomalous resistivity and thereby contribute a significant fraction of the reconnection rate. We present fluctuation measurements from two complementary reconnection experiments and compare them to numerical simulation results. VINETA.II (Greifswald, Germany) is a cylindrical, high guide field reconnection experiment with an open field line geometry. The reconnecting current sheet has a three-dimensional structure that is predominantly set by the magnetic pitch angle which results from the superposition of the guide field and the in-plane reconnecting field. Within this current sheet, high frequency magnetic fluctuations are observed that correlate well with the local current density and show a power law spectrum with a spectral break at the lower hybrid frequency. Their correlation lengths are found to be extremely short, but propagation is nonetheless observed with high phase velocities that match the Whistler dispersion. To date, the experiment has been run with an external driving field at frequencies higher than the ion cyclotron frequency f_{ci}, which implies that the EMHD framework applies

  2. Impulsive Reconnection in the Sun's Atmosphere

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.

    2009-01-01

    Recent high-resolution observations from the Hinode mission show dramatically that the Sun's atmosphere is filled with explosive activity ranging from chromospheric explosions that reach heights of Mm, to coronal jets that can extend to solar radii, to giant coronal mass ejections (CME) that reach the edge of the heliosphere. The driver for all this activity is believed to be 3D magnetic reconnection. From the large variation observed in the temporal behavior of solar activity, it is clear that reconnection in the corona must take on a variety of distinct forms. The explosive nature of jets and CMEs requires that the reconnection be impulsive in that it stays off until a substantial store of free energy has been accumulated, but then turns on abruptly and stays on until much of this free energy is released. The key question, therefore, is what determines whether the reconnection is impulsive or not. We present some of the latest observations and numerical models of explosive and non-explosive solar activity. We argue that, in order for the reconnection to be impulsive, it must be driven by a quasi-ideal instability. We discuss the generality of our results for understanding 31) reconnection in other contexts.

  3. 3D Hall MHD Reconnection Dynamics

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Rudakov, L.

    2002-05-01

    A 3D Hall MHD simulation code (VooDoo) has recently been developed at the Naval Research Laboratory. We present preliminary results of a fully 3D magnetic reconnection study using this code. The initial configuration of the plasma system is as follows. The ambient, reversed magnetic field is in the x-direction and is proportional to B0 tanh(y/Ly) where Ly is the scale length of the current sheet. Perturbation fields δ Bx and δ By are introduced to initiate the reconnection process. This initial configuration is similar to that used in the 2D GEM reconnection study. However, the perturbation fields are localized in the z-direction. We consider two cases: no guide field (Bz = 0) and a weak guide field (Bz = 0.1B0). We find that the reconnection process is not stationary in the z-direction but propagates in the B x ∇ n direction consistent with Hall drift physics. Hence, an asymmetric disruption of the current sheet ensues. The flow structure of the plasma in the vicinity of the X-point is complex. We find that the `neutral line' (i.e, along the z-direction) is not an ignorable coordinate and is not periodic in Hall MHD reconnection dynamics; two assumptions that are often made in reconnection studies. \\ Research supported by NASA and ONR

  4. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasmoid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  5. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S. C.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasm! oid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  6. Turbulence structure of finite-beta perpendicular fast shocks

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1970-01-01

    In a finite-beta plasma ion cyclotron, radius dispersion which forms a trailing wave train for a perpendicular fast shock is examined. Collisionless dissipation is provided by the three wave decay of the wave train into very oblique fast and parallel Alfven waves. Particle thermalization results from Landau damping of oblique fast wave turbulence. The shock damping length to three wave decay is many ion cyclotron radii. Undamped Alfven turbulence should persist far downstream from the shock.

  7. Inferring proximity to the reconnection site via structural changes to the magnetopause caused by asymmetric reconnection.

    NASA Astrophysics Data System (ADS)

    Argall, M. R.; Chen, L. J.; Torbert, R. B.; Daughton, W. S.; Yoo, J.; Yamada, M.

    2014-12-01

    The mechanisms of field line breaking and magnetic energy dissipation that result in magnetic reconnection have yet to be determined by spacecraft observations. Many parameters have been proposed to locate the reconnection site, but they either fail to identify uniquely the reconnection site or have not been tested for asymmetric reconnection. We demonstrate that the change in magnetopause structure caused by reconnection can be used to locate and estimate proximity to the site of reconnection. Cluster observations of quiet magnetopause crossings, for which no evidence of reconnection is found, show no obvious spatial dependence of the DC electric field, while the plasma density and velocity make the transition from magnetosheath to magnetosphere values simultaneously with the tangential magnetic field (BL) reversal. Conversely, in-situ observations of several active crossings, for which signs of reconnection are evident, show that the density transition and BL reversal can occur simultaneously or be offset from one another by over 100 ion skin depths (λi) (assuming a constant magnetopause velocity), the outflow jet can occur anywhere from the BL reversal to several λi earthward of the density gradient, and the DC electric field changes sign on either side of the density gradient. Laboratory experiments and 2D and 3D particle-in-cell simulations of asymmetric reconnection reveal that the relative transition offsets are due to exhaust crossings at different proximities to the X-line. Only within the thin electron current layer surrounding the X-line do the transitions remain concurrent. We present one reconnection event during which the transitions in plasma density, DC electric field, and BL are simultaneous in two of the four Cluster spacecraft and offset in the other two spacecraft. The multiple satellite encounter allows us to examine spatial features in the region surrounding the X-line.

  8. CHAIN RECONNECTIONS OBSERVED IN SYMPATHETIC ERUPTIONS

    SciTech Connect

    Joshi, Navin Chandra; Magara, Tetsuya; Schmieder, Brigitte; Aulanier, Guillaume; Guo, Yang E-mail: njoshi98@gmail.com

    2016-04-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multiwavelength observations of sympathetic eruptions, associated flares, and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close active regions. Two filaments, i.e., F1 and F2, are observed in between the active regions. Successive magnetic reconnections, caused for different reasons (flux cancellation, shear, and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double-ribbon solar flare. During this phase, we observed the eruption of overlying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of filament F1. We suggest that this reconnection destabilized the equilibrium of filament F1, which further facilitated its eruption. The third stage of reconnection occurred in the wake of the erupting filament F1 between the legs of the overlying arcades. This may create a flux rope and the second double-ribbon flare and a second CME. The fourth reconnection was between the expanding arcades of the erupting filament F1 and the nearby ambient field, which produced the bi-directional plasma flows both upward and downward. Observations and a nonlinear force-free field extrapolation confirm the possibility of reconnection and the causal link between the magnetic systems.

  9. Generation of Quasi-Perpendicular Collisionless Shocks by a Laser-Driven Magnetic Piston

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek

    Collisionless shocks are ubiquitous in many space and astrophysical plasmas. However, since space shocks are largely steady-state, spacecraft are not well suited to studying shock formation in situ. This work is concerned with the generation and study in a laboratory setting of magnetized, quasi-perpendicular collisionless shocks relevant to space shocks. Experiments performed at the Large Plasma Device (LAPD) at UCLA and the Trident Laser Facility at Los Alamos National Laboratory (LANL) combined a magnetic piston driven by a high-energy laser (Raptor at UCLA or Trident at LANL) incident on a carbon target with a preformed, magnetized background plasma. Magnetic flux measurements and 2D hybrid simulations indicate that a magnetosonic pulse consistent with a low-Mach number collisionless shock was formed in the ambient plasma. The characteristics of the shock are analyzed and compared to other experiments in which no shock or a shock precursor formed. The results and simulations reveal that the various experimental conditions can be organized into weak and moderate coupling regimes, in which no shock forms, and a strong coupling regime, in which a full shock forms. A framework for studying these regimes and designing future shock experiments is devised. Early-time laser-plasma parameters necessary to characterize the different shock coupling regimes are studied through experiments performed at the LAPD and Phoenix laboratory at UCLA. In addition to spectroscopic and fast-gate filtered photography, the experiments utilize a custom Thomson scattering diagnostic, optimized for a novel electron density and temperature regime where the transition from collective to non-collective scattering could be spatially resolved. Data from the experiments and 3D analytic modeling indicate that the laser-plasma is best fit at early times with an isentropic, adiabatic fluid model and is consistent with a recombination-dominated plasma for which the electron temperature Te∝ t -1

  10. Collisionless shock experiments with lasers and observation of Weibel instabilitiesa)

    NASA Astrophysics Data System (ADS)

    Park, H.-S.; Huntington, C. M.; Fiuza, F.; Drake, R. P.; Froula, D. H.; Gregori, G.; Koenig, M.; Kugland, N. L.; Kuranz, C. C.; Lamb, D. Q.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R. D.; Pollock, B. B.; Remington, B. A.; Rinderknecht, H. G.; Rosenberg, M.; Ross, J. S.; Ryutov, D. D.; Sakawa, Y.; Spitkovsky, A.; Takabe, H.; Turnbull, D. P.; Tzeferacos, P.; Weber, S. V.; Zylstra, A. B.

    2015-05-01

    Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without pre-existing magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagnetic in nature with an inferred magnetization level as high as ˜1% [C. M. Huntington et al., "Observation of magnetic field generation via the weibel instability in interpenetrating plasma flows," Nat. Phys. 11, 173-176 (2015)]. These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.

  11. Exploring the nature of collisionless shocks under laboratory conditions

    PubMed Central

    Stockem, A.; Fiuza, F.; Bret, A.; Fonseca, R. A.; Silva, L. O.

    2014-01-01

    Collisionless shocks are pervasive in astrophysics and they are critical to understand cosmic ray acceleration. Laboratory experiments with intense lasers are now opening the way to explore and characterise the underlying microphysics, which determine the acceleration process of collisionless shocks. We determine the shock character – electrostatic or electromagnetic – based on the stability of electrostatic shocks to transverse electromagnetic fluctuations as a function of the electron temperature and flow velocity of the plasma components, and we compare the analytical model with particle-in-cell simulations. By making the connection with the laser parameters driving the plasma flows, we demonstrate that shocks with different and distinct underlying microphysics can be explored in the laboratory with state-of-the-art laser systems. PMID:24488212

  12. Evolution of velocity dispersion along cold collisionless flows

    SciTech Connect

    Banik, Nilanjan; Sikivie, Pierre

    2016-05-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components.

  13. Generalized Kinetic Description of Steady-State Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.; Krivorutsky, E. N.

    1997-01-01

    We present a general solution to the collisionless Boltzmann (Vlasov) equation for a free-flowing plasma along a magnetic field line using Liouville's theorem, allowing for an arbitrary potential structure including non-monotonicities. The constraints of the existing collisionless kinetic transport models are explored, and the need for a more general approach to the problem of self- consistent potential energy calculations is described. Then a technique that handles an arbitrary potential energy distribution along the field line is presented and discussed. For precipitation of magnetospherically trapped hot plasma, this model yields moment calculations that vary by up to a factor of two for various potential energy structures with the same total potential drop. The differences are much greater for the high-latitude outflow scenario, giving order of magnitude variations depending on the shape of the potential energy distribution.

  14. Evolution of velocity dispersion along cold collisionless flows

    DOE PAGES

    Banik, Nilanjan; Sikivie, Pierre

    2016-05-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results aremore » used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components.« less

  15. Collisionless shock experiments with lasers and observation of Weibel instabilities

    DOE PAGES

    Park, H. -S.; Huntington, C. M.; Fiuza, F.; ...

    2015-05-13

    Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without preexisting magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagneticmore » in nature with an inferred magnetization level as high as ~1% These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.« less

  16. Transport of parallel momentum by collisionless drift wave turbulence

    SciTech Connect

    Diamond, P. H.; McDevitt, C. J.; Guercan, Oe. D.; Hahm, T. S.; Naulin, V.

    2008-01-15

    This paper presents a novel, unified approach to the theory of turbulent transport of parallel momentum by collisionless drift waves. The physics of resonant and nonresonant off-diagonal contributions to the momentum flux is emphasized, and collisionless momentum exchange between waves and particles is accounted for. Two related momentum conservation theorems are derived. These relate the resonant particle momentum flux, the wave momentum flux, and the refractive force. A perturbative calculation, in the spirit of Chapman-Enskog theory, is used to obtain the wave momentum flux, which contributes significantly to the residual stress. A general equation for mean k{sub parallel} () is derived and used to develop a generalized theory of symmetry breaking. The resonant particle momentum flux is calculated, and pinch and residual stress effects are identified. The implications of the theory for intrinsic rotation and momentum transport bifurcations are discussed.

  17. Collisionless shock experiments with lasers and observation of Weibel instabilities

    SciTech Connect

    Park, H. -S.; Huntington, C. M.; Fiuza, F.; Drake, R. P.; Froula, D. H.; Gregori, G.; Koenig, M.; Kugland, N. L.; Kuranz, C. C.; Lamb, D. Q.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R. D.; Pollock, B. B.; Remington, B. A.; Rinderknecht, H. G.; Rosenberg, M.; Ross, J. S.; Ryutov, D. D.; Sakawa, Y.; Spitkovsky, A.; Takabe, H.; Turnbull, D. P.; Tzeferacos, P.; Weber, S. V.; Zylstra, A. B.

    2015-05-13

    Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without preexisting magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagnetic in nature with an inferred magnetization level as high as ~1% These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.

  18. Influence of Spontaneously Generated Turbulence on Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Daughton, William; Roytershteyn, Vadim; Karimabadi, Homa

    2012-10-01

    The 3D dynamics of reconnection is examined for electron-positron plasmas within Harris sheet geometry with a guide field. This configuration is unstable to tearing modes at resonant surfaces across the layer, corresponding to oblique angles relative to 2D models. Vlasov theory predicts a spectrum of oblique modes which can destroy the flux surfaces and produce interacting flux ropes. These structures coalesce to larger scales leading to the continual formation and break-up of new current sheets and the generation of turbulence. The fluctuation spectrum is highly anisotropic and is characterized by two power-laws with a break at k di˜1, where di is the inertial length. In the large 3D simulations, the dissipation rate is reduced by ˜40% relative to small 2D cases which are steady and laminar. In both limits, the reconnection remains fast (i.e. Alfv'enic), is insensitive to the system size and ultimately occurs within inertial-scale current sheets. These results imply that the physics responsible for setting the time scale is not radically altered by the turbulence. However, the results indicate that a larger fraction of the magnetic energy is accessible in 3D and that many more particles are accelerated into the high energy tails due to the turbulence.

  19. Discontinuous plasma flows near reconnecting current layers in solar flares

    NASA Astrophysics Data System (ADS)

    Bezrodnykh, S. I.; Kolesnikov, N. P.; Somov, B. V.

    2017-03-01

    A model for magnetic reconnection in high-conductivity plasma in the solar corona is analyzed in a strong-magnetic-field approximation. The model includes a Syrovatskii current layer and magnetohydrodynamic (MHD) discontinuities attached to the ends of the layer. A two-dimensional analytical solution for the magnetic field is used to compute the distributions of the plasma flow velocity and plasma density in the vicinity of the corresponding current configuration. The properties of jumps in the density and velocity along the attached discontinuities are studied. Based on the character of the variations of the magnetic field and plasma flows at the MHD discontinuities, it is shown that, with the parameter values considered, an MHDdiscontinuity can include regions of trans-Alfvénic, fast, and slowshocks. The results obtained could be useful to explain the presence of "super-hot" (with effective electron temperatures exceeding 10 keV) plasma in solar flares. Other possible applications of the theory of discontinuous flows near regions of magnetic reconnection to analogous non-stationary phenomena in astrophysical plasmas are noted.

  20. Intercomponent momentum transport and electrical conductivity of collisionless plasma

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1973-01-01

    Based on the Lenard-Balescu equation, the interaction integral for the intercomponent momentum transfer in a two-component, collisionless plasma is evaluated in closed form. The distribution functions of the electrons and ions are represented in the form of nonisothermal, displaced Maxwellians corresponding to the 5-moment approximation. As an application, the transport of electrical current in an electric field is discussed for infrasonic up to sonic electron-ion drift velocities.

  1. Cross-scale coupling at a perpendicular collisionless shock

    NASA Astrophysics Data System (ADS)

    Umeda, T.; Yamao, M.; Yamazaki, R.

    2009-12-01

    A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number (MA = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicular collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a twodimensional (2D) electromagnetic full particle simulation with a "shock-rest-frame model". The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to the quasi-stationary shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by highfrequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for parallel diffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless perpendicular

  2. Simulations of collisionless shocks - Some implications for particle acceleration

    NASA Astrophysics Data System (ADS)

    Burgess, D.

    1992-08-01

    The role of self-consistent plasma simulations is discussed with reference to collisionless shock structure and the extraction of thermal particles to supra-thermal energies. Examples are given from quasi-perpendicular and parallel shock geometries. The cyclic reformation behavior of the quasi-parallel shock, as revealed by simulations, is detailed, and some implications given. Finally, some recent advances are described in the techniques of simulation of strong particle acceleration.

  3. Cross-scale coupling at a perpendicular collisionless shock

    NASA Astrophysics Data System (ADS)

    Umeda, Takayuki; Yamao, Masahiro; Kidani, Yoshitaka; Yamazaki, Ryo

    A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number (MA = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicu-lar collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a two-dimensional (2D) electromagnetic full particle simulation with a "shock-rest-frame model". The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to a turbulent shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by high-frequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for paralleldiffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless perpendicular shock.

  4. Cross-scale coupling at a perpendicular collisionless shock

    NASA Astrophysics Data System (ADS)

    Umeda, Takayuki; Yamao, Masahiro; Yamazaki, Ryo

    2011-05-01

    A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number ( M A = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicular collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a two-dimensional (2D) electromagnetic full particle simulation with a "shock-rest-frame model". The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to the quasi-stationary shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by high-frequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for parallel diffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless

  5. Collisionless pitch-angle scattering of runaway electrons

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, Yulei; Qin, Hong

    2016-06-01

    It is discovered that the tokamak field geometry generates a toroidicity induced broadening of the pitch-angle distribution of runaway electrons. This collisionless pitch-angle scattering is much stronger than the collisional scattering and invalidates the gyro-center model for runaway electrons. As a result, the energy limit of runaway electrons is found to be larger than the prediction of the gyro-center model and to depend heavily on the background magnetic field.

  6. On the unconstrained expansion of a spherical plasma cloud turning collisionless: case of a cloud generated by a nanometre dust grain impact on an uncharged target in space

    NASA Astrophysics Data System (ADS)

    Pantellini, F.; Landi, S.; Zaslavsky, A.; Meyer-Vernet, N.

    2012-04-01

    Nano and micrometre sized dust particles travelling through the heliosphere at several hundreds of km s-1 have been repeatedly detected by interplanetary spacecraft. When such fast moving dust particles hit a solid target in space, an expanding plasma cloud is formed through the vaporization and ionization of the dust particles itself and part of the target material at and near the impact point. Immediately after the impact the small and dense cloud is dominated by collisions and the expansion can be described by fluid equations. However, once the cloud has reached μm dimensions, the plasma may turn collisionless and a kinetic description is required to describe the subsequent expansion. In this paper we explore the late and possibly collisionless spherically symmetric unconstrained expansion of a single ionized ion-electron plasma using N-body simulations. Given the strong uncertainties concerning the early hydrodynamic expansion, we assume that at the time of the transition to the collisionless regime the cloud density and temperature are spatially uniform. We also neglect the role of the ambient plasma. This is a reasonable assumption as long as the cloud density is substantially higher than the ambient plasma density. In the case of clouds generated by fast interplanetary dust grains hitting a solid target, some 107 electrons and ions are liberated and the in vacuum approximation is acceptable up to meter order cloud dimensions. As such a cloud can be estimated to become collisionless when its radius has reached μm order dimensions, both the collisionless approximation and the in vacuum approximation are expected to hold during a long lasting phase as the cloud grows by a factor 106. With these assumptions, we find that the transition from the collisional to the collisionless regime could occur when the electron Debye length λD within the cloud is much smaller than the cloud radius R0, i.e. Λ ≡ λD/R0 ≪ 1. This implies a quasi-neutral expansion regime

  7. Numerical Simulations of Collisionless Shock Formation in Merging Plasma Jet Experiments

    DTIC Science & Technology

    2013-06-01

    the interaction. I. INTRODUCTION Collisionless shocks play an important role in energy transport and evolution of charged-particle distribution...functions in space and astrophysical environments. Although collisionless shocks in plasmas were first predicted in the 1950s [1] and discovered in...laboratory collisionless shock experiments stems from the fact that modern laboratory plasmas can satisfy key physics criteria for the shocks to

  8. Parallel collisionless shocks forming in simulations of the LAPD experiment

    NASA Astrophysics Data System (ADS)

    Weidl, Martin S.; Jenko, Frank; Niemann, Chris; Winske, Dan

    2016-10-01

    Research on parallel collisionless shocks, most prominently occurring in the Earth's bow shock region, has so far been limited to satellite measurements and simulations. However, the formation of collisionless shocks depends on a wide range of parameters and scales, which can be accessed more easily in a laboratory experiment. Using a kJ-class laser, an ongoing experimental campaign at the Large Plasma Device (LAPD) at UCLA is expected to produce the first laboratory measurements of the formation of a parallel collisionless shock. We present hybrid kinetic/MHD simulations that show how beam instabilities in the background plasma can be driven by ablating carbon ions from a target, causing non-linear density oscillations which develop into a propagating shock front. The free-streaming carbon ions can excite both the resonant right-hand instability and the non-resonant firehose mode. We analyze their respective roles and discuss optimizing their growth rates to speed up the process of shock formation.

  9. Collisionless Zonal Flow Saturation for Weak Magnetic Shear

    NASA Astrophysics Data System (ADS)

    Lu, Zhixin; Wang, Weixing; Diamond, Patrick; Ashourvan, Arash; Tynan, George

    2015-11-01

    The damping of the zonal flow, either collisional or collisionless, plays an important role in regulating the drift wave-zonal flow system, and can affect the transport and confinement. The tertiary instability, e.g., a generalized Kelvin-Helmholtz (KH) instability driven by flow shear, has been suggested theoretically as a possible damping mechanism [Rogers 2000 PRL, Diamond 2005 PPCF]. The sensitivity of the tertiary mode to magnetic shear has not been quantified, especially in weak magnetic shear regimes. In this work, parametric scans using gyrokinetic simulation demonstrate that the zonal electric field energy normalized by the turbulence electric field energy decreases as magnetic shear decreases. With ITG drive artificially eliminated, the time evolution of the zonal structure indicates that the zonal electric field damps more rapidly at weak shear. This suggests larger collisionless zonal flow damping or larger effective turbulent viscosity at weak magnetic shear. The effects of the zonal components of specific variables, e.g., the parallel shear flow and the radial electric field, on tertiary instability, are also studied. Quantitative studies on the magnetic shear scaling of tertiary instability excitation and the collisionless zonal flow saturation are ongoing.

  10. Reconnection and Spire Drift in Coronal Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David

    2015-04-01

    It is observed that there are two morphologically-different kinds of X-ray/EUV jets in coronal holes: standard jets and blowout jets. In both kinds: (1) in the base of the jet there is closed magnetic field that has one foot in flux of polarity opposite that of the ambient open field of the coronal hole, and (2) in coronal X-ray/EUV images of the jet there is typically a bright nodule at the edge of the base. In the conventional scenario for jets of either kind, the bright nodule is a compact flare arcade, the downward product of interchange reconnection of closed field in the base with impacted ambient open field, and the upper product of this reconnection is the jet-outflow spire. It is also observed that in most jets of either kind the spire drifts sideways away from the bright nodule. We present the observed bright nodule and spire drift in an example standard jet and in two example blowout jets. With cartoons of the magnetic field and its reconnection in jets, we point out: (1) if the bright nodule is a compact flare arcade made by interchange reconnection, then the spire should drift toward the bright nodule, and (2) if the bright nodule is instead a compact flare arcade made, as in a filament-eruption flare, by internal reconnection of the legs of the erupting sheared-field core of a lobe of the closed field in the base, then the spire, made by the interchange reconnection that is driven on the outside of that lobe by the lobe’s internal convulsion, should drift away from the bright nodule. Therefore, from the observation that the spire usually drifts away from the bright nodule, we infer: (1) in X-ray/EUV jets of either kind in coronal holes the interchange reconnection that generates the jet-outflow spire usually does not make the bright nodule; instead, the bright nodule is made by reconnection inside erupting closed field in the base, as in a filament eruption, the eruption being either a confined eruption for a standard jet or a blowout eruption (as