Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm approaches. Radiation tolerant FPGA's are a feasible option for reaching this goal.
Optoelectronic date acquisition system based on FPGA
NASA Astrophysics Data System (ADS)
Li, Xin; Liu, Chunyang; Song, De; Tong, Zhiguo; Liu, Xiangqing
2015-11-01
An optoelectronic date acquisition system is designed based on FPGA. FPGA chip that is EP1C3T144C8 of Cyclone devices from Altera corporation is used as the centre of logic control, XTP2046 chip is used as A/D converter, host computer that communicates with the date acquisition system through RS-232 serial communication interface are used as display device and photo resistance is used as photo sensor. We use Verilog HDL to write logic control code about FPGA. It is proved that timing sequence is correct through the simulation of ModelSim. Test results indicate that this system meets the design requirement, has fast response and stable operation by actual hardware circuit test.
NASA Astrophysics Data System (ADS)
Yang, C.; Zheng, W.; Zhang, M.; Yuan, T.; Zhuang, G.; Pan, Y.
2016-06-01
Measurement and control of the plasma in real-time are critical for advanced Tokamak operation. It requires high speed real-time data acquisition and processing. ITER has designed the Fast Plant System Controllers (FPSC) for these purposes. At J-TEXT Tokamak, a real-time data acquisition and processing framework has been designed and implemented using standard ITER FPSC technologies. The main hardware components of this framework are an Industrial Personal Computer (IPC) with a real-time system and FlexRIO devices based on FPGA. With FlexRIO devices, data can be processed by FPGA in real-time before they are passed to the CPU. The software elements are based on a real-time framework which runs under Red Hat Enterprise Linux MRG-R and uses Experimental Physics and Industrial Control System (EPICS) for monitoring and configuring. That makes the framework accord with ITER FPSC standard technology. With this framework, any kind of data acquisition and processing FlexRIO FPGA program can be configured with a FPSC. An application using the framework has been implemented for the polarimeter-interferometer diagnostic system on J-TEXT. The application is able to extract phase-shift information from the intermediate frequency signal produced by the polarimeter-interferometer diagnostic system and calculate plasma density profile in real-time. Different algorithms implementations on the FlexRIO FPGA are compared in the paper.
Region-Oriented Placement Algorithm for Coarse-Grained Power-Gating FPGA Architecture
NASA Astrophysics Data System (ADS)
Li, Ce; Dong, Yiping; Watanabe, Takahiro
An FPGA plays an essential role in industrial products due to its fast, stable and flexible features. But the power consumption of FPGAs used in portable devices is one of critical issues. Top-down hierarchical design method is commonly used in both ASIC and FPGA design. But, in the case where plural modules are integrated in an FPGA and some of them might be in sleep-mode, current FPGA architecture cannot be fully effective. In this paper, coarse-grained power gating FPGA architecture is proposed where a whole area of an FPGA is partitioned into several regions and power supply is controlled for each region, so that modules in sleep mode can be effectively power-off. We also propose a region oriented FPGA placement algorithm fitted to this user's hierarchical design based on VPR[1]. Simulation results show that this proposed method could reduce power consumption of FPGA by 38% on average by setting unused modules or regions in sleep mode.
Design of optical axis jitter control system for multi beam lasers based on FPGA
NASA Astrophysics Data System (ADS)
Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang
2018-02-01
A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.
A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA
NASA Astrophysics Data System (ADS)
Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao
2015-10-01
Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.
High speed FPGA-based Phasemeter for the far-infrared laser interferometers on EAST
NASA Astrophysics Data System (ADS)
Yao, Y.; Liu, H.; Zou, Z.; Li, W.; Lian, H.; Jie, Y.
2017-12-01
The far-infrared laser-based HCN interferometer and POlarimeter/INTerferometer\\break (POINT) system are important diagnostics for plasma density measurement on EAST tokamak. Both HCN and POINT provide high spatial and temporal resolution of electron density measurement and used for plasma density feedback control. The density is calculated by measuring the real-time phase difference between the reference beams and the probe beams. For long-pulse operations on EAST, the calculation of density has to meet the requirements of Real-Time and high precision. In this paper, a Phasemeter for far-infrared laser-based interferometers will be introduced. The FPGA-based Phasemeter leverages fast ADCs to obtain the three-frequency signals from VDI planar-diode Mixers, and realizes digital filters and an FFT algorithm in FPGA to provide real-time, high precision electron density output. Implementation of the Phasemeter will be helpful for the future plasma real-time feedback control in long-pulse discharge.
Fast Low-Cost Multiple Sensor Readout System
Carter-Lewis, David; Krennich, Frank; Le Bohec, Stephane; Petry, Dirk; Sleege, Gary
2004-04-06
A low resolution data acquisition system is presented. The data acquisition system has a plurality of readout modules serially connected to a controller. Each readout module has a FPGA in communication with analog to digital (A/D) converters, which are connected to sensors. The A/D converter has eight bit or lower resolution. The FPGA detects when a command is addressed to it and commands the A/D converters to convert analog sensor data into digital data. The digital data is sent on a high speed serial communication bus to the controller. A graphical display is used in one embodiment to indicate if a sensor reading is outside of a predetermined range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batista, Antonio J. N.; Santos, Bruno; Fernandes, Ana
The data acquisition and control instrumentation cubicles room of the ITER tokamak will be irradiated with neutrons during the fusion reactor operation. A Virtex-6 FPGA from Xilinx (XC6VLX365T-1FFG1156C) is used on the ATCA-IO-PROCESSOR board, included in the ITER Catalog of I and C products - Fast Controllers. The Virtex-6 is a re-programmable logic device where the configuration is stored in Static RAM (SRAM), functional data stored in dedicated Block RAM (BRAM) and functional state logic in Flip-Flops. Single Event Upsets (SEU) due to the ionizing radiation of neutrons causes soft errors, unintended changes (bit-flips) to the values stored in statemore » elements of the FPGA. The SEU monitoring and soft errors repairing, when possible, were explored in this work. An FPGA built-in Soft Error Mitigation (SEM) controller detects and corrects soft errors in the FPGA configuration memory. Novel SEU sensors with Error Correction Code (ECC) detect and repair the BRAM memories. Proper management of SEU can increase reliability and availability of control instrumentation hardware for nuclear applications. The results of the tests performed using the SEM controller and the BRAM SEU sensors are presented for a Virtex-6 FPGA (XC6VLX240T-1FFG1156C) when irradiated with neutrons from the Portuguese Research Reactor (RPI), a 1 MW nuclear fission reactor operated by IST in the neighborhood of Lisbon. Results show that the proposed SEU mitigation technique is able to repair the majority of the detected SEU errors in the configuration and BRAM memories. (authors)« less
A New FPGA Architecture of FAST and BRIEF Algorithm for On-Board Corner Detection and Matching.
Huang, Jingjin; Zhou, Guoqing; Zhou, Xiang; Zhang, Rongting
2018-03-28
Although some researchers have proposed the Field Programmable Gate Array (FPGA) architectures of Feature From Accelerated Segment Test (FAST) and Binary Robust Independent Elementary Features (BRIEF) algorithm, there is no consideration of image data storage in these traditional architectures that will result in no image data that can be reused by the follow-up algorithms. This paper proposes a new FPGA architecture that considers the reuse of sub-image data. In the proposed architecture, a remainder-based method is firstly designed for reading the sub-image, a FAST detector and a BRIEF descriptor are combined for corner detection and matching. Six pairs of satellite images with different textures, which are located in the Mentougou district, Beijing, China, are used to evaluate the performance of the proposed architecture. The Modelsim simulation results found that: (i) the proposed architecture is effective for sub-image reading from DDR3 at a minimum cost; (ii) the FPGA implementation is corrected and efficient for corner detection and matching, such as the average value of matching rate of natural areas and artificial areas are approximately 67% and 83%, respectively, which are close to PC's and the processing speed by FPGA is approximately 31 and 2.5 times faster than those by PC processing and by GPU processing, respectively.
Fast data transmission in dynamic data acquisition system for plasma diagnostics
NASA Astrophysics Data System (ADS)
Byszuk, Adrian; Poźniak, Krzysztof; Zabołotny, Wojciech M.; Kasprowicz, Grzegorz; Wojeński, Andrzej; Cieszewski, Radosław; Juszczyk, Bartłomiej; Kolasiński, Piotr; Zienkiewicz, Paweł; Chernyshova, Maryna; Czarski, Tomasz
2014-11-01
This paper describes architecture of a new data acquisition system (DAQ) targeted mainly at plasma diagnostic experiments. Modular architecture, in combination with selected hardware components, allows for straightforward reconfiguration of the whole system, both offline and online. Main emphasis will be put into the implementation of data transmission subsystem in said system. One of the biggest advantages of described system is modular architecture with well defined boundaries between main components: analog frontend (AFE), digital backplane and acquisition/control software. Usage of a FPGA chips allows for a high flexibility in design of analog frontends, including ADC <--> FPGA interface. Data transmission between backplane boards and user software was accomplished with the use of industry-standard PCI Express (PCIe) technology. PCIe implementation includes both FPGA firmware and Linux device driver. High flexibility of PCIe connections was accomplished due to use of configurable PCIe switch. Whenever it's possible, described DAQ system tries to make use of standard off-the-shelf (OTF) components, including typical x86 CPU & motherboard (acting as PCIe controller) and cabling.
A fast-locking all-digital delay-locked loop for phase/delay generation in an FPGA
NASA Astrophysics Data System (ADS)
Zhujia, Chen; Haigang, Yang; Fei, Liu; Yu, Wang
2011-10-01
A fast-locking all-digital delay-locked loop (ADDLL) is proposed for the DDR SDRAM controller interface in a field programmable gate array (FPGA). The ADDLL performs a 90° phase-shift so that the data strobe (DQS) can enlarge the data valid window in order to minimize skew. In order to further reduce the locking time and to prevent the harmonic locking problem, a time-to-digital converter (TDC) is proposed. A duty cycle corrector (DCC) is also designed in the ADDLL to adjust the output duty cycle to 50%. The ADDLL, implemented in a commercial 0.13 μm CMOS process, occupies a total of 0.017 mm2 of active area. Measurement results show that the ADDLL has an operating frequency range of 75 to 350 MHz and a total delay resolution of 15 ps. The time interval error (TIE) of the proposed circuit is 60.7 ps.
Real-time FPGA architectures for computer vision
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel; Torres-Huitzil, Cesar
2000-03-01
This paper presents an architecture for real-time generic convolution of a mask and an image. The architecture is intended for fast low level image processing. The FPGA-based architecture takes advantage of the availability of registers in FPGAs to implement an efficient and compact module to process the convolutions. The architecture is designed to minimize the number of accesses to the image memory and is based on parallel modules with internal pipeline operation in order to improve its performance. The architecture is prototyped in a FPGA, but it can be implemented on a dedicated VLSI to reach higher clock frequencies. Complexity issues, FPGA resources utilization, FPGA limitations, and real time performance are discussed. Some results are presented and discussed.
FPGA Implementation of Stereo Disparity with High Throughput for Mobility Applications
NASA Technical Reports Server (NTRS)
Villalpando, Carlos Y.; Morfopolous, Arin; Matthies, Larry; Goldberg, Steven
2011-01-01
High speed stereo vision can allow unmanned robotic systems to navigate safely in unstructured terrain, but the computational cost can exceed the capacity of typical embedded CPUs. In this paper, we describe an end-to-end stereo computation co-processing system optimized for fast throughput that has been implemented on a single Virtex 4 LX160 FPGA. This system is capable of operating on images from a 1024 x 768 3CCD (true RGB) camera pair at 15 Hz. Data enters the FPGA directly from the cameras via Camera Link and is rectified, pre-filtered and converted into a disparity image all within the FPGA, incurring no CPU load. Once complete, a rectified image and the final disparity image are read out over the PCI bus, for a bandwidth cost of 68 MB/sec. Within the FPGA there are 4 distinct algorithms: Camera Link capture, Bilinear rectification, Bilateral subtraction pre-filtering and the Sum of Absolute Difference (SAD) disparity. Each module will be described in brief along with the data flow and control logic for the system. The system has been successfully fielded upon the Carnegie Mellon University's National Robotics Engineering Center (NREC) Crusher system during extensive field trials in 2007 and 2008 and is being implemented for other surface mobility systems at JPL.
Diagnostic layer integration in FPGA-based pipeline measurement systems for HEP experiments
NASA Astrophysics Data System (ADS)
Pozniak, Krzysztof T.
2007-08-01
Integrated triggering and data acquisition systems for high energy physics experiments may be considered as fast, multichannel, synchronous, distributed, pipeline measurement systems. A considerable extension of functional, technological and monitoring demands, which has recently been imposed on them, forced a common usage of large field-programmable gate array (FPGA), digital signal processing-enhanced matrices and fast optical transmission for their realization. This paper discusses modelling, design, realization and testing of pipeline measurement systems. A distribution of synchronous data stream flows is considered in the network. A general functional structure of a single network node is presented. A suggested, novel block structure of the node model facilitates full implementation in the FPGA chip, circuit standardization and parametrization, as well as integration of functional and diagnostic layers. A general method for pipeline system design was derived. This method is based on a unified model of the synchronous data network node. A few examples of practically realized, FPGA-based, pipeline measurement systems were presented. The described systems were applied in ZEUS and CMS.
FPGA based charge fast histogramming for GEM detector
NASA Astrophysics Data System (ADS)
Poźniak, Krzysztof T.; Byszuk, A.; Chernyshova, M.; Cieszewski, R.; Czarski, T.; Dominik, W.; Jakubowska, K.; Kasprowicz, G.; Rzadkiewicz, J.; Scholz, M.; Zabolotny, W.
2013-10-01
This article presents a fast charge histogramming method for the position sensitive X-ray GEM detector. The energy resolved measurements are carried out simultaneously for 256 channels of the GEM detector. The whole process of histogramming is performed in 21 FPGA chips (Spartan-6 series from Xilinx) . The results of the histogramming process are stored in an external DDR3 memory. The structure of an electronic measuring equipment and a firmware functionality implemented in the FPGAs is described. Examples of test measurements are presented.
A Fast Event Preprocessor and Sequencer for the Simbol-X Low Energy Detector
NASA Astrophysics Data System (ADS)
Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.
2009-05-01
The Simbol-X Low Energy Detector (LED), a 128×128 pixel DEPFET (Depleted Field Effect Transistor) array, will be read out at a very high rate (8000 frames/second) and, therefore, requires a very fast on board electronics. We present an FPGA-based LED camera electronics consisting of an Event Preprocessor (EPP) for on board data preprocessing and filtering of the Simbol-X low-energy detector and a related Sequencer (SEQ) to generate the necessary signals to control the readout.
Data management software concept for WEST plasma measurement system
NASA Astrophysics Data System (ADS)
Zienkiewicz, P.; Kasprowicz, G.; Byszuk, A.; Wojeński, A.; Kolasinski, P.; Cieszewski, R.; Czarski, T.; Chernyshova, M.; Pozniak, K.; Zabolotny, W.; Juszczyk, B.; Mazon, D.; Malard, P.
2014-11-01
This paper describes the concept of data management software for the multichannel readout system for the GEM detector used in WEST Plasma experiment. The proposed system consists of three separate communication channels: fast data channel, diagnostics channel, slow data channel. Fast data channel is provided by the FPGA with integrated ARM cores providing direct readout data from Analog Front Ends through 10GbE with short, guaranteed intervals. Slow data channel is provided by multiple, fast CPUs after data processing with detailed readout data with use of GNU/Linux OS and appropriate software. Diagnostic channel provides detailed feedback for control purposes.
An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes
Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523
Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.
Evaluation and application of a fast module in a PLC based interlock and control system
NASA Astrophysics Data System (ADS)
Zaera-Sanz, M.
2009-08-01
The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of μseconds. Siemens has introduced a ``so called'' fast module (FM352-5 Boolean Processor). It provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This paper publishes the results of this study. As well, this paper could be useful for other applications requiring fast processing using a PLC.
Fast Fourier Transform Co-Processor (FFTC)- Towards Embedded GFLOPs
NASA Astrophysics Data System (ADS)
Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Wite, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland
2012-08-01
Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co- Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment.In frame of the ESA activity “Fast Fourier Transform DSP Co-processor (FFTC)” (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following:Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP.The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance.The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT- based processing tasks.A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses.The presentation will give and overview on the project, including the results of the validation of the FFTC ASIC prototypes.
Fast Fourier Transform Co-processor (FFTC), towards embedded GFLOPs
NASA Astrophysics Data System (ADS)
Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Witte, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland; Kopp, Nicholas
2012-10-01
Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co-Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment. In frame of the ESA activity "Fast Fourier Transform DSP Co-processor (FFTC)" (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following: • Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP. • The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance. The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT-based processing tasks. A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses. The paper will give an overview on the project, including the results of the validation of the FFTC ASIC prototypes.
Design of light-small high-speed image data processing system
NASA Astrophysics Data System (ADS)
Yang, Jinbao; Feng, Xue; Li, Fei
2015-10-01
A light-small high speed image data processing system was designed in order to meet the request of image data processing in aerospace. System was constructed of FPGA, DSP and MCU (Micro-controller), implementing a video compress of 3 million pixels@15frames and real-time return of compressed image to the upper system. Programmable characteristic of FPGA, high performance image compress IC and configurable MCU were made best use to improve integration. Besides, hard-soft board design was introduced and PCB layout was optimized. At last, system achieved miniaturization, light-weight and fast heat dispersion. Experiments show that, system's multifunction was designed correctly and worked stably. In conclusion, system can be widely used in the area of light-small imaging.
Fast helicity switching of x-ray circular polarization at beamline P09 at PETRA III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strempfer, J., E-mail: Joerg.Strempfer@desy.de; Mardegan, J. R. L.; Francoual, S.
At the resonant scattering and diffraction beamline P09 at PETRA III/DESY, polarization manipulation in the X-ray energy range 3-13 keV is possible using wave-plates. Recently, fast flipping of circular polarization helicity using the Raspberry Pi controlled FPGA (PiLC) device developed at DESY and dedicated piezo-electric flippers has been commissioned. Functionality of the PiLC for XMCD and first XMCD measurements at the Fe K-and Dy-L{sub 3} absorption edges are presented.
NASA Astrophysics Data System (ADS)
Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.
2013-07-01
High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.
Zhao, Ming; Li, Yu; Peng, Leilei
2014-01-01
We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778
Implementation of High Speed Distributed Data Acquisition System
NASA Astrophysics Data System (ADS)
Raju, Anju P.; Sekhar, Ambika
2012-09-01
This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high accuracy, high speed, real time monitoring.
The GANDALF 128-Channel Time-to-Digital Converter
NASA Astrophysics Data System (ADS)
Büchele, M.; Fischer, H.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.
The GANDALF 6U-VME64x/VXS module has been designed to cope with a variety of readout tasks in high energy and nuclear physics experiments, in particular the COMPASS experiment at CERN. The exchangeable mezzanine cards allow for an employment of the system in very different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition or fast trigger generation. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In this concept each input signal is continuously sampled by 16 flip-flops using equidistant phase-shifted clocks. Compared to previous FPGA designs, usually based on delay lines and comprising few TDC channels with resolutions in the order of 10 ps, our design permits the implementation of a large number of TDC channels with a resolution of 64 ps in a single FPGA. Predictable placement of logic components and uniform routing inside the FPGA fabric is a particular challenge of this design. We present measurement results for the time resolution and the nonlinearity of the TDC readout system.
Experiences on developing digital down conversion algorithms using Xilinx system generator
NASA Astrophysics Data System (ADS)
Xu, Chengfa; Yuan, Yuan; Zhao, Lizhi
2013-07-01
The Digital Down Conversion (DDC) algorithm is a classical signal processing method which is widely used in radar and communication systems. In this paper, the DDC function is implemented by Xilinx System Generator tool on FPGA. System Generator is an FPGA design tool provided by Xilinx Inc and MathWorks Inc. It is very convenient for programmers to manipulate the design and debug the function, especially for the complex algorithm. Through the developing process of DDC function based on System Generator, the results show that System Generator is a very fast and efficient tool for FPGA design.
Hardware Implementation of Lossless Adaptive and Scalable Hyperspectral Data Compression for Space
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh; Keymeulen, Didier; Bakhshi, Alireza; Klimesh, Matthew
2009-01-01
On-board lossless hyperspectral data compression reduces data volume in order to meet NASA and DoD limited downlink capabilities. The technique also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware. A modified form of the algorithm that is better suited for data from pushbroom instruments is generally appropriate for flight implementation. A scalable field programmable gate array (FPGA) hardware implementation was developed. The FPGA implementation achieves a throughput performance of 58 Msamples/sec, which can be increased to over 100 Msamples/sec in a parallel implementation that uses twice the hardware resources This paper describes the hardware implementation of the 'Modified Fast Lossless' compression algorithm on an FPGA. The FPGA implementation targets the current state-of-the-art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for space applications.
Central FPGA-based destination and load control in the LHCb MHz event readout
NASA Astrophysics Data System (ADS)
Jacobsson, R.
2012-10-01
The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.
High-Precision Pulse Generator
NASA Technical Reports Server (NTRS)
Katz, Richard; Kleyner, Igor
2011-01-01
A document discusses a pulse generator with subnanosecond resolution implemented with a low-cost field-programmable gate array (FPGA) at low power levels. The method used exploits the fast carry chains of certain FPGAs. Prototypes have been built and tested in both Actel AX and Xilinx Virtex 4 technologies. In-flight calibration or control can be performed by using a similar and related technique as a time interval measurement circuit by measuring a period of the stable oscillator, as the delays through the fast carry chains will vary as a result of manufacturing variances as well as the result of environmental conditions (voltage, aging, temperature, and radiation).
A programmable controller based on CAN field bus embedded microprocessor and FPGA
NASA Astrophysics Data System (ADS)
Cai, Qizhong; Guo, Yifeng; Chen, Wenhei; Wang, Mingtao
2008-10-01
One kind of new programmable controller(PLC) is introduced in this paper. The advanced embedded microprocessor and Field-Programmable Gate Array (FPGA) device are applied in the PLC system. The PLC system structure was presented in this paper. It includes 32 bits Advanced RISC Machines (ARM) embedded microprocessor as control core, FPGA as control arithmetic coprocessor and CAN bus as data communication criteria protocol connected the host controller and its various extension modules. It is detailed given that the circuits and working principle, IiO interface circuit between ARM and FPGA and interface circuit between ARM and FPGA coprocessor. Furthermore the interface circuit diagrams between various modules are written. In addition, it is introduced that ladder chart program how to control the transfer info of control arithmetic part in FPGA coprocessor. The PLC, through nearly two months of operation to meet the design of the basic requirements.
Real-time field programmable gate array architecture for computer vision
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel; Torres-Huitzil, Cesar
2001-01-01
This paper presents an architecture for real-time generic convolution of a mask and an image. The architecture is intended for fast low-level image processing. The field programmable gate array (FPGA)-based architecture takes advantage of the availability of registers in FPGAs to implement an efficient and compact module to process the convolutions. The architecture is designed to minimize the number of accesses to the image memory and it is based on parallel modules with internal pipeline operation in order to improve its performance. The architecture is prototyped in a FPGA, but it can be implemented on dedicated very- large-scale-integrated devices to reach higher clock frequencies. Complexity issues, FPGA resources utilization, FPGA limitations, and real-time performance are discussed. Some results are presented and discussed.
Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs
NASA Astrophysics Data System (ADS)
Cardinali, M.; Dzyhgadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Ugur, C.; Zühlsdorf, M.; Dodokhov, V. Kh.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Düren, M.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Rosner, G.; Achenbach, P.; Corell, O.; Ferretti Bondy, M. I.; Hoek, M.; Lauth, W.; Rosner, C.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.
2014-12-01
The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R&D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and fast discriminators. The discriminators also provide time-over-threshold information thus enabling walk corrections to improve the timing resolution. Two types of frontend electronics cards optimised for reading out 64-channel PHOTONIS Planacon MCP-PMTs were tested: one based on the NINO ASIC and the other, called PADIWA, on FPGA discriminators. Promising results were obtained in a full characterisation using a fast laser setup and in a test experiment at MAMI, Mainz, with a small scale DIRC prototype.
A hardware implementation of the discrete Pascal transform for image processing
NASA Astrophysics Data System (ADS)
Goodman, Thomas J.; Aburdene, Maurice F.
2006-02-01
The discrete Pascal transform is a polynomial transform with applications in pattern recognition, digital filtering, and digital image processing. It already has been shown that the Pascal transform matrix can be decomposed into a product of binary matrices. Such a factorization leads to a fast and efficient hardware implementation without the use of multipliers, which consume large amounts of hardware. We recently developed a field-programmable gate array (FPGA) implementation to compute the Pascal transform. Our goal was to demonstrate the computational efficiency of the transform while keeping hardware requirements at a minimum. Images are uploaded into memory from a remote computer prior to processing, and the transform coefficients can be offloaded from the FPGA board for analysis. Design techniques like as-soon-as-possible scheduling and adder sharing allowed us to develop a fast and efficient system. An eight-point, one-dimensional transform completes in 13 clock cycles and requires only four adders. An 8x8 two-dimensional transform completes in 240 cycles and requires only a top-level controller in addition to the one-dimensional transform hardware. Finally, through minor modifications to the controller, the transform operations can be pipelined to achieve 100% utilization of the four adders, allowing one eight-point transform to complete every seven clock cycles.
Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S
2014-01-01
Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.
NASA Astrophysics Data System (ADS)
Jackson, Christopher Robert
"Lucky-region" fusion (LRF) is a synthetic imaging technique that has proven successful in enhancing the quality of images distorted by atmospheric turbulence. The LRF algorithm selects sharp regions of an image obtained from a series of short exposure frames, and fuses the sharp regions into a final, improved image. In previous research, the LRF algorithm had been implemented on a PC using the C programming language. However, the PC did not have sufficient sequential processing power to handle real-time extraction, processing and reduction required when the LRF algorithm was applied to real-time video from fast, high-resolution image sensors. This thesis describes two hardware implementations of the LRF algorithm to achieve real-time image processing. The first was created with a VIRTEX-7 field programmable gate array (FPGA). The other developed using the graphics processing unit (GPU) of a NVIDIA GeForce GTX 690 video card. The novelty in the FPGA approach is the creation of a "black box" LRF video processing system with a general camera link input, a user controller interface, and a camera link video output. We also describe a custom hardware simulation environment we have built to test the FPGA LRF implementation. The advantage of the GPU approach is significantly improved development time, integration of image stabilization into the system, and comparable atmospheric turbulence mitigation.
NASA Astrophysics Data System (ADS)
Magazzù, G.; Borgese, G.; Costantino, N.; Fanucci, L.; Incandela, J.; Saponara, S.
2013-02-01
In many research fields as high energy physics (HEP), astrophysics, nuclear medicine or space engineering with harsh operating conditions, the use of fast and flexible digital communication protocols is becoming more and more important. The possibility to have a smart and tested top-down design flow for the design of a new protocol for control/readout of front-end electronics is very useful. To this aim, and to reduce development time, costs and risks, this paper describes an innovative design/verification flow applied as example case study to a new communication protocol called FF-LYNX. After the description of the main FF-LYNX features, the paper presents: the definition of a parametric SystemC-based Integrated Simulation Environment (ISE) for high-level protocol definition and validation; the set up of figure of merits to drive the design space exploration; the use of ISE for early analysis of the achievable performances when adopting the new communication protocol and its interfaces for a new (or upgraded) physics experiment; the design of VHDL IP cores for the TX and RX protocol interfaces; their implementation on a FPGA-based emulator for functional verification and finally the modification of the FPGA-based emulator for testing the ASIC chipset which implements the rad-tolerant protocol interfaces. For every step, significant results will be shown to underline the usefulness of this design and verification approach that can be applied to any new digital protocol development for smart detectors in physics experiments.
VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators
2016-01-01
Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors. PMID:27997930
Tlelo-Cuautle, Esteban; Quintas-Valles, Antonio de Jesus; de la Fraga, Luis Gerardo; Rangel-Magdaleno, Jose de Jesus
2016-01-01
Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors.
Serial data acquisition for GEM-2D detector
NASA Astrophysics Data System (ADS)
Kolasinski, Piotr; Pozniak, Krzysztof T.; Czarski, Tomasz; Linczuk, Maciej; Byszuk, Adrian; Chernyshova, Maryna; Juszczyk, Bartlomiej; Kasprowicz, Grzegorz; Wojenski, Andrzej; Zabolotny, Wojciech; Zienkiewicz, Pawel; Mazon, Didier; Malard, Philippe; Herrmann, Albrecht; Vezinet, Didier
2014-11-01
This article debates about data fast acquisition and histogramming method for the X-ray GEM detector. The whole process of histogramming is performed by FPGA chips (Spartan-6 series from Xilinx). The results of the histogramming process are stored in an internal FPGA memory and then sent to PC. In PC data is merged and processed by MATLAB. The structure of firmware functionality implemented in the FPGAs is described. Examples of test measurements and results are presented.
A Control System and Streaming DAQ Platform with Image-Based Trigger for X-ray Imaging
NASA Astrophysics Data System (ADS)
Stevanovic, Uros; Caselle, Michele; Cecilia, Angelica; Chilingaryan, Suren; Farago, Tomas; Gasilov, Sergey; Herth, Armin; Kopmann, Andreas; Vogelgesang, Matthias; Balzer, Matthias; Baumbach, Tilo; Weber, Marc
2015-06-01
High-speed X-ray imaging applications play a crucial role for non-destructive investigations of the dynamics in material science and biology. On-line data analysis is necessary for quality assurance and data-driven feedback, leading to a more efficient use of a beam time and increased data quality. In this article we present a smart camera platform with embedded Field Programmable Gate Array (FPGA) processing that is able to stream and process data continuously in real-time. The setup consists of a Complementary Metal-Oxide-Semiconductor (CMOS) sensor, an FPGA readout card, and a readout computer. It is seamlessly integrated in a new custom experiment control system called Concert that provides a more efficient way of operating a beamline by integrating device control, experiment process control, and data analysis. The potential of the embedded processing is demonstrated by implementing an image-based trigger. It records the temporal evolution of physical events with increased speed while maintaining the full field of view. The complete data acquisition system, with Concert and the smart camera platform was successfully integrated and used for fast X-ray imaging experiments at KIT's synchrotron radiation facility ANKA.
Design and construction of a high frame rate imaging system
NASA Astrophysics Data System (ADS)
Wang, Jing; Waugaman, John L.; Liu, Anjun; Lu, Jian-Yu
2002-05-01
A new high frame rate imaging method has been developed recently [Jian-yu Lu, ``2D and 3D high frame rate imaging with limited diffraction beams,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 839-856 (1997)]. This method may have a clinical application for imaging of fast moving objects such as human hearts, velocity vector imaging, and low-speckle imaging. To implement the method, an imaging system has been designed. The system consists of one main printed circuit board (PCB) and 16 channel boards (each channel board contains 8 channels), in addition to a set-top box for connections to a personal computer (PC), a front panel board for user control and message display, and a power control and distribution board. The main board contains a field programmable gate array (FPGA) and controls all channels (each channel has also an FPGA). We will report the analog and digital circuit design and simulations, multiplayer PCB designs with commercial software (Protel 99), PCB signal integrity testing and system RFI/EMI shielding, and the assembly and construction of the entire system. [Work supported in part by Grant 5RO1 HL60301 from NIH.
Techniques for Microwave Near-Field Quantum Control of Trapped Ions
2013-01-31
counts. Each DDS (Analog Devices AD9858) can generate signals at frequencies to 400 MHz with a frequency resolution of 0.233 Hz and phase resolution...fast, two- channel DAC is used to generate arbitrary waveforms with a 50-MHz update rate, a voltage range from −10 V to 10 V, and a resolution of 0.305...mV. This DAC is programed via USB and triggered by the data acquisition FPGA . We use three DDS modules as sources for three frequency octupling
A fast one-chip event-preprocessor and sequencer for the Simbol-X Low Energy Detector
NASA Astrophysics Data System (ADS)
Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.
2010-12-01
We present an FPGA-based digital camera electronics consisting of an Event-Preprocessor (EPP) for on-board data preprocessing and a related Sequencer (SEQ) to generate the necessary signals to control the readout of the detector. The device has been originally designed for the Simbol-X low energy detector (LED). The EPP operates on 64×64 pixel images and has a real-time processing capability of more than 8000 frames per second. The already working releases of the EPP and the SEQ are now combined into one Digital-Camera-Controller-Chip (D3C).
NASA Astrophysics Data System (ADS)
Yokoyama, Yoshiaki; Kim, Minseok; Arai, Hiroyuki
At present, when using space-time processing techniques with multiple antennas for mobile radio communication, real-time weight adaptation is necessary. Due to the progress of integrated circuit technology, dedicated processor implementation with ASIC or FPGA can be employed to implement various wireless applications. This paper presents a resource and performance evaluation of the QRD-RLS systolic array processor based on fixed-point CORDIC algorithm with FPGA. In this paper, to save hardware resources, we propose the shared architecture of a complex CORDIC processor. The required precision of internal calculation, the circuit area for the number of antenna elements and wordlength, and the processing speed will be evaluated. The resource estimation provides a possible processor configuration with a current FPGA on the market. Computer simulations assuming a fading channel will show a fast convergence property with a finite number of training symbols. The proposed architecture has also been implemented and its operation was verified by beamforming evaluation through a radio propagation experiment.
FPGA Implementation of the Coupled Filtering Method and the Affine Warping Method.
Zhang, Chen; Liang, Tianzhu; Mok, Philip K T; Yu, Weichuan
2017-07-01
In ultrasound image analysis, the speckle tracking methods are widely applied to study the elasticity of body tissue. However, "feature-motion decorrelation" still remains as a challenge for the speckle tracking methods. Recently, a coupled filtering method and an affine warping method were proposed to accurately estimate strain values, when the tissue deformation is large. The major drawback of these methods is the high computational complexity. Even the graphics processing unit (GPU)-based program requires a long time to finish the analysis. In this paper, we propose field-programmable gate array (FPGA)-based implementations of both methods for further acceleration. The capability of FPGAs on handling different image processing components in these methods is discussed. A fast and memory-saving image warping approach is proposed. The algorithms are reformulated to build a highly efficient pipeline on FPGA. The final implementations on a Xilinx Virtex-7 FPGA are at least 13 times faster than the GPU implementation on the NVIDIA graphic card (GeForce GTX 580).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong
The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving,more » so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.« less
Wang, Yonggang; Hui, Cong; Liu, Chong; Xu, Chao
2016-04-01
The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.
Dynamically Reconfigurable Systolic Array Accelerator
NASA Technical Reports Server (NTRS)
Dasu, Aravind; Barnes, Robert
2012-01-01
A polymorphic systolic array framework has been developed that works in conjunction with an embedded microprocessor on a field-programmable gate array (FPGA), which allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and a hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms, and is extendable to more complex applications in the area of aerospace embedded systems. FPGA chips can be responsive to realtime demands for changing applications needs, but only if the electronic fabric can respond fast enough. This systolic array framework allows for rapid partial and dynamic reconfiguration of the chip in response to the real-time needs of scalability, and adaptability of executables.
FPGA and USB based control board for quantum random number generator
NASA Astrophysics Data System (ADS)
Wang, Jian; Wan, Xu; Zhang, Hong-Fei; Gao, Yuan; Chen, Teng-Yun; Liang, Hao
2009-09-01
The design and implementation of FPGA-and-USB-based control board for quantum experiments are discussed. The usage of quantum true random number generator, control- logic in FPGA and communication with computer through USB protocol are proposed in this paper. Programmable controlled signal input and output ports are implemented. The error-detections of data frame header and frame length are designed. This board has been used in our decoy-state based quantum key distribution (QKD) system successfully.
LAPACKrc: Fast linear algebra kernels/solvers for FPGA accelerators
NASA Astrophysics Data System (ADS)
Gonzalez, Juan; Núñez, Rafael C.
2009-07-01
We present LAPACKrc, a family of FPGA-based linear algebra solvers able to achieve more than 100x speedup per commodity processor on certain problems. LAPACKrc subsumes some of the LAPACK and ScaLAPACK functionalities, and it also incorporates sparse direct and iterative matrix solvers. Current LAPACKrc prototypes demonstrate between 40x-150x speedup compared against top-of-the-line hardware/software systems. A technology roadmap is in place to validate current performance of LAPACKrc in HPC applications, and to increase the computational throughput by factors of hundreds within the next few years.
Remote monitoring and fault recovery for FPGA-based field controllers of telescope and instruments
NASA Astrophysics Data System (ADS)
Zhu, Yuhua; Zhu, Dan; Wang, Jianing
2012-09-01
As the increasing size and more and more functions, modern telescopes have widely used the control architecture, i.e. central control unit plus field controller. FPGA-based field controller has the advantages of field programmable, which provide a great convenience for modifying software and hardware of control system. It also gives a good platform for implementation of the new control scheme. Because of multi-controlled nodes and poor working environment in scattered locations, reliability and stability of the field controller should be fully concerned. This paper mainly describes how we use the FPGA-based field controller and Ethernet remote to construct monitoring system with multi-nodes. When failure appearing, the new FPGA chip does self-recovery first in accordance with prerecovery strategies. In case of accident, remote reconstruction for the field controller can be done through network intervention if the chip is not being restored. This paper also introduces the network remote reconstruction solutions of controller, the system structure and transport protocol as well as the implementation methods. The idea of hardware and software design is given based on the FPGA. After actual operation on the large telescopes, desired results have been achieved. The improvement increases system reliability and reduces workload of maintenance, showing good application and popularization.
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.
2004-11-01
Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.
Design and development progress of a LLRF control system for a 500 MHz superconducting cavity
NASA Astrophysics Data System (ADS)
Lee, Y. S.; Kim, H. W.; Song, H. S.; Lee, J. H.; Park, K. H.; Yu, I. H.; Chai, J. S.
2012-07-01
The LLRF (low-level radio-frequency) control system which regulates the amplitude and the phase of the accelerating voltage inside a RF cavity is essential to ensure the stable operation of charged particle accelerators. Recent advances in digital signal processors and data acquisition systems have allowed the LLRF control system to be implemented in digitally and have made it possible to meet the higher demands associated with the performance of LLRF control systems, such as stability, accuracy, etc. For this reason, many accelerator laboratories have completed or are completing the developments of digital LLRF control systems. The digital LLRF control system has advantages related with flexibility and fast reconfiguration. This paper describes the design of the FPGA (field programmable gate array) based LLRF control system and the status of development for this system. The proposed LLRF control system includes an analog front-end, a digital board (ADC (analog to digital converter), DAC (digital to analog converter), FPGA, etc.) and a RF & clock generation system. The control algorithms will be implemented by using the VHDL (VHSIC (very high speed integrated circuits) hardware description language), and the EPICS (experiment physics and industrial control system) will be ported to the host computer for the communication. In addition, the purpose of this system is to control a 500 MHz RF cavity, so the system will be applied to the superconducting cavity to be installed in the PLS storage ring, and its performance will be tested.
Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications
NASA Astrophysics Data System (ADS)
Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.
2014-12-01
Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.
Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement
NASA Astrophysics Data System (ADS)
Pałka, M.; Strzempek, P.; Korcyl, G.; Bednarski, T.; Niedźwiecki, Sz.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kajetanowicz, M.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohhamed, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.; Zgardzińska, B.; Moskal, P.
2017-08-01
In this article it is presented an FPGA based Multi-Voltage Threshold (MVT) system which allows of sampling fast signals (1-2 ns rising and falling edge) in both voltage and time domain. It is possible to achieve a precision of time measurement of 20 ps RMS and reconstruct charge of signals, using a simple approach, with deviation from real value smaller than 10%. Utilization of the differential inputs of an FPGA chip as comparators together with an implementation of a TDC inside an FPGA allowed us to achieve a compact multi-channel system characterized by low power consumption and low production costs. This paper describes realization and functioning of the system comprising 192-channel TDC board and a four mezzanine cards which split incoming signals and discriminate them. The boards have been used to validate a newly developed Time-of-Flight Positron Emission Tomography system based on plastic scintillators. The achieved full system time resolution of σ(TOF) ≈ 68 ps is by factor of two better with respect to the current TOF-PET systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bongers, W. A.; Beveren, V. van; Westerhof, E.
2011-06-15
An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototypemore » system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.« less
High performance embedded system for real-time pattern matching
NASA Astrophysics Data System (ADS)
Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.
2017-02-01
In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering) are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale images, depending on the application and thus increasing exponentially the processing requirements of the system. We present the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx Kintex Ultrascale FPGA device.
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.
2015-12-01
In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology. The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network. The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols. Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design.
NASA Astrophysics Data System (ADS)
Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng
In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.
Real-time plasma control based on the ISTTOK tomography diagnostica)
NASA Astrophysics Data System (ADS)
Carvalho, P. J.; Carvalho, B. B.; Neto, A.; Coelho, R.; Fernandes, H.; Sousa, J.; Varandas, C.; Chávez-Alarcón, E.; Herrera-Velázquez, J. J. E.
2008-10-01
The presently available processing power in generic processing units (GPUs) combined with state-of-the-art programmable logic devices benefits the implementation of complex, real-time driven, data processing algorithms for plasma diagnostics. A tomographic reconstruction diagnostic has been developed for the ISTTOK tokamak, based on three linear pinhole cameras each with ten lines of sight. The plasma emissivity in a poloidal cross section is computed locally on a submillisecond time scale, using a Fourier-Bessel algorithm, allowing the use of the output signals for active plasma position control. The data acquisition and reconstruction (DAR) system is based on ATCA technology and consists of one acquisition board with integrated field programmable gate array (FPGA) capabilities and a dual-core Pentium module running real-time application interface (RTAI) Linux. In this paper, the DAR real-time firmware/software implementation is presented, based on (i) front-end digital processing in the FPGA; (ii) a device driver specially developed for the board which enables streaming data acquisition to the host GPU; and (iii) a fast reconstruction algorithm running in Linux RTAI. This system behaves as a module of the central ISTTOK control and data acquisition system (FIRESIGNAL). Preliminary results of the above experimental setup are presented and a performance benchmarking against the magnetic coil diagnostic is shown.
FPGA cluster for high-performance AO real-time control system
NASA Astrophysics Data System (ADS)
Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.
2006-06-01
Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.
JTAG-based remote configuration of FPGAs over optical fibers
Deng, B.; Xu, H.; Liu, C.; ...
2015-01-28
In this study, a remote FPGA-configuration method based on JTAG extension over optical fibers is presented. The method takes advantage of commercial components and ready-to-use software such as iMPACT and does not require any hardware or software development. The method combines the advantages of the slow remote JTAG configuration and the fast local flash memory configuration. The method has been verified successfully and used in the Demonstrator of Liquid-Argon Trigger Digitization Board (LTDB) for the ATLAS liquid argon calorimeter Phase-I trigger upgrade. All components on the FPGA side are verified to meet the radiation tolerance requirements.
Photoelectric radar servo control system based on ARM+FPGA
NASA Astrophysics Data System (ADS)
Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun
2016-01-01
In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a large number of experiments verify the reliability of embedded servo control system's functions, the stability of the program and the stability of the hardware circuit. Meanwhile, the system can also achieve the satisfactory of user experience, to achieve a multi-mode motion, real-time motion status monitoring, online system parameter changes and other convenient features.
FPGA Coprocessor for Accelerated Classification of Images
NASA Technical Reports Server (NTRS)
Pingree, Paula J.; Scharenbroich, Lucas J.; Werne, Thomas A.
2008-01-01
An effort related to that described in the preceding article focuses on developing a spaceborne processing platform for fast and accurate onboard classification of image data, a critical part of modern satellite image processing. The approach again has been to exploit the versatility of recently developed hybrid Virtex-4FX field-programmable gate array (FPGA) to run diverse science applications on embedded processors while taking advantage of the reconfigurable hardware resources of the FPGAs. In this case, the FPGA serves as a coprocessor that implements legacy C-language support-vector-machine (SVM) image-classification algorithms to detect and identify natural phenomena such as flooding, volcanic eruptions, and sea-ice break-up. The FPGA provides hardware acceleration for increased onboard processing capability than previously demonstrated in software. The original C-language program demonstrated on an imaging instrument aboard the Earth Observing-1 (EO-1) satellite implements a linear-kernel SVM algorithm for classifying parts of the images as snow, water, ice, land, or cloud or unclassified. Current onboard processors, such as on EO-1, have limited computing power, extremely limited active storage capability and are no longer considered state-of-the-art. Using commercially available software that translates C-language programs into hardware description language (HDL) files, the legacy C-language program, and two newly formulated programs for a more capable expanded-linear-kernel and a more accurate polynomial-kernel SVM algorithm, have been implemented in the Virtex-4FX FPGA. In tests, the FPGA implementations have exhibited significant speedups over conventional software implementations running on general-purpose hardware.
FPGA Based High Speed Data Acquisition System for Electrical Impedance Tomography
Khan, S; Borsic, A; Manwaring, Preston; Hartov, Alexander; Halter, Ryan
2014-01-01
Electrical Impedance Tomography (EIT) systems are used to image tissue bio-impedance. EIT provides a number of features making it attractive for use as a medical imaging device including the ability to image fast physiological processes (>60 Hz), to meet a range of clinical imaging needs through varying electrode geometries and configurations, to impart only non-ionizing radiation to a patient, and to map the significant electrical property contrasts present between numerous benign and pathological tissues. To leverage these potential advantages for medical imaging, we developed a modular 32 channel data acquisition (DAQ) system using National Instruments’ PXI chassis, along with FPGA, ADC, Signal Generator and Timing and Synchronization modules. To achieve high frame rates, signal demodulation and spectral characteristics of higher order harmonics were computed using dedicated FFT-hardware built into the FPGA module. By offloading the computing onto FPGA, we were able to achieve a reduction in throughput required between the FPGA and PC by a factor of 32:1. A custom designed analog front end (AFE) was used to interface electrodes with our system. Our system is wideband, and capable of acquiring data for input signal frequencies ranging from 100 Hz to 12 MHz. The modular design of both the hardware and software will allow this system to be flexibly configured for the particular clinical application. PMID:24729790
Fpga based L-band pulse doppler radar design and implementation
NASA Astrophysics Data System (ADS)
Savci, Kubilay
As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed point arithmetic operations as it is fast and facilitates source requirement as it consumes less hardware than floating point arithmetic operations. The software uses floating point arithmetic operations, which ensure precision in processing at the expense of speed. The functionality of the radar system has been tested for experimental validation in the field with a moving car and the validation of submodules are tested with synthetic data simulated on MATLAB.
Novel intelligent real-time position tracking system using FPGA and fuzzy logic.
Soares dos Santos, Marco P; Ferreira, J A F
2014-03-01
The main aim of this paper is to test if FPGAs are able to achieve better position tracking performance than software-based soft real-time platforms. For comparison purposes, the same controller design was implemented in these architectures. A Multi-state Fuzzy Logic controller (FLC) was implemented both in a Xilinx(®) Virtex-II FPGA (XC2v1000) and in a soft real-time platform NI CompactRIO(®)-9002. The same sampling time was used. The comparative tests were conducted using a servo-pneumatic actuation system. Steady-state errors lower than 4 μm were reached for an arbitrary vertical positioning of a 6.2 kg mass when the controller was embedded into the FPGA platform. Performance gains up to 16 times in the steady-state error, up to 27 times in the overshoot and up to 19.5 times in the settling time were achieved by using the FPGA-based controller over the software-based FLC controller. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
A hybrid scanning mode for fast scanning ion conductance microscopy (SICM) imaging
Zhukov, Alex; Richards, Owen; Ostanin, Victor; Korchev, Yuri; Klenerman, David
2012-01-01
We have developed a new method of controlling the pipette for scanning ion conductance microscopy to obtain high-resolution images faster. The method keeps the pipette close to the surface during a single line scan but does not follow the exact surface topography, which is calculated by using the ion current. Using an FPGA platform we demonstrate this new method on model test samples and then on live cells. This method will be particularly useful to follow changes occurring on relatively flat regions of the cell surface at high spatial and temporal resolutions. PMID:22902298
NASA Astrophysics Data System (ADS)
Barros Marin, M.; Boccardi, A.; Donat Godichal, C.; Gonzalez, J. L.; Lefevre, T.; Levens, T.; Szuk, B.
2016-02-01
The Giga Bit Transceiver based Expandable Front-End (GEFE) is a multi-purpose FPGA-based radiation tolerant card. It is foreseen to be the new standard FMC carrier for digital front-end applications in the CERN BE-BI group. Its intended use ranges from fast data acquisition systems to slow control installed close to the beamlines, in a radioactive environment exposed to total ionizing doses of up to 750 Gy. This paper introduces the architecture of the GEFE, its features as well as examples of its application in different setups.
A FPGA embedded web server for remote monitoring and control of smart sensors networks.
Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique
2013-12-27
This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.
A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks
Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique
2014-01-01
This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology. PMID:24379047
Soleimani, Hamid; Drakakis, Emmanuel M
2017-06-01
Recent studies have demonstrated that calcium is a widespread intracellular ion that controls a wide range of temporal dynamics in the mammalian body. The simulation and validation of such studies using experimental data would benefit from a fast large scale simulation and modelling tool. This paper presents a compact and fully reconfigurable cellular calcium model capable of mimicking Hopf bifurcation phenomenon and various nonlinear responses of the biological calcium dynamics. The proposed cellular model is synthesized on a digital platform for a single unit and a network model. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed cellular model can mimic the biological calcium behaviors with considerably low hardware overhead. The approach has the potential to speed up large-scale simulations of slow intracellular dynamics by sharing more cellular units in real-time. To this end, various networks constructed by pipelining 10 k to 40 k cellular calcium units are compared with an equivalent simulation run on a standard PC workstation. Results show that the cellular hardware model is, on average, 83 times faster than the CPU version.
Bio-inspired motion detection in an FPGA-based smart camera module.
Köhler, T; Röchter, F; Lindemann, J P; Möller, R
2009-03-01
Flying insects, despite their relatively coarse vision and tiny nervous system, are capable of carrying out elegant and fast aerial manoeuvres. Studies of the fly visual system have shown that this is accomplished by the integration of signals from a large number of elementary motion detectors (EMDs) in just a few global flow detector cells. We developed an FPGA-based smart camera module with more than 10,000 single EMDs, which is closely modelled after insect motion-detection circuits with respect to overall architecture, resolution and inter-receptor spacing. Input to the EMD array is provided by a CMOS camera with a high frame rate. Designed as an adaptable solution for different engineering applications and as a testbed for biological models, the EMD detector type and parameters such as the EMD time constants, the motion-detection directions and the angle between correlated receptors are reconfigurable online. This allows a flexible and simultaneous detection of complex motion fields such as translation, rotation and looming, such that various tasks, e.g., obstacle avoidance, height/distance control or speed regulation can be performed by the same compact device.
Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation
Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie
2016-01-01
Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844
FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging
Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing
2016-01-01
In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830
FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.
Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing
2012-07-01
In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.
Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system
NASA Astrophysics Data System (ADS)
Manikandan, J.; Jayaraman, M.; Jayachandran, M.
2011-02-01
This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.
Research on NC motion controller based on SOPC technology
NASA Astrophysics Data System (ADS)
Jiang, Tingbiao; Meng, Biao
2006-11-01
With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.
A single FPGA-based portable ultrasound imaging system for point-of-care applications.
Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong
2012-07-01
We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.
Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system
NASA Astrophysics Data System (ADS)
Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen
2018-02-01
In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.
A Timing Synchronizer System for Beam Test Setups Requiring Galvanic Isolation
NASA Astrophysics Data System (ADS)
Meder, Lukas Dominik; Emschermann, David; Frühauf, Jochen; Müller, Walter F. J.; Becker, Jürgen
2017-07-01
In beam test setups detector elements together with a readout composed of frontend electronics (FEE) and usually a layer of field-programmable gate arrays (FPGAs) are being analyzed. The FEE is in this scenario often directly connected to both the detector and the FPGA layer what in many cases requires sharing the ground potentials of these layers. This setup can become problematic if parts of the detector need to be operated at different high-voltage potentials, since all of the FPGA boards need to receive a common clock and timing reference for getting the readout synchronized. Thus, for the context of the compressed baryonic matter experiment a versatile timing synchronizer (TS) system was designed providing galvanically isolated timing distribution links over twisted-pair cables. As an electrical interface the so-called timing data processing board FPGA mezzanine card was created for being mounted onto FPGA-based advanced mezzanine cards for mTCA.4 crates. The FPGA logic of the TS system connects to this card and can be monitored and controlled through IPBus slow-control links. Evaluations show that the system is capable of stably synchronizing the FPGA boards of a beam test setup being integrated into a hierarchical TS network.
Embedded algorithms within an FPGA-based system to process nonlinear time series data
NASA Astrophysics Data System (ADS)
Jones, Jonathan D.; Pei, Jin-Song; Tull, Monte P.
2008-03-01
This paper presents some preliminary results of an ongoing project. A pattern classification algorithm is being developed and embedded into a Field-Programmable Gate Array (FPGA) and microprocessor-based data processing core in this project. The goal is to enable and optimize the functionality of onboard data processing of nonlinear, nonstationary data for smart wireless sensing in structural health monitoring. Compared with traditional microprocessor-based systems, fast growing FPGA technology offers a more powerful, efficient, and flexible hardware platform including on-site (field-programmable) reconfiguration capability of hardware. An existing nonlinear identification algorithm is used as the baseline in this study. The implementation within a hardware-based system is presented in this paper, detailing the design requirements, validation, tradeoffs, optimization, and challenges in embedding this algorithm. An off-the-shelf high-level abstraction tool along with the Matlab/Simulink environment is utilized to program the FPGA, rather than coding the hardware description language (HDL) manually. The implementation is validated by comparing the simulation results with those from Matlab. In particular, the Hilbert Transform is embedded into the FPGA hardware and applied to the baseline algorithm as the centerpiece in processing nonlinear time histories and extracting instantaneous features of nonstationary dynamic data. The selection of proper numerical methods for the hardware execution of the selected identification algorithm and consideration of the fixed-point representation are elaborated. Other challenges include the issues of the timing in the hardware execution cycle of the design, resource consumption, approximation accuracy, and user flexibility of input data types limited by the simplicity of this preliminary design. Future work includes making an FPGA and microprocessor operate together to embed a further developed algorithm that yields better computational and power efficiency.
Baker, Zachary Kent; Power, John Fredrick; Tripp, Justin Leonard; Dunham, Mark Edward; Stettler, Matthew W; Jones, John Alexander
2014-10-14
Disclosed is a method and system for performing operations on at least one input data vector in order to produce at least one output vector to permit easy, scalable and fast programming of a petascale equivalent supercomputer. A PetaFlops Router may comprise one or more PetaFlops Nodes, which may be connected to each other and/or external data provider/consumers via a programmable crossbar switch external to the PetaFlops Node. Each PetaFlops Node has a FPGA and a programmable intra-FPGA crossbar switch that permits input and output variables to be configurably connected to various physical operators contained in the FPGA as desired by a user. This allows a user to specify the instruction set of the system on a per-application basis. Further, the intra-FPGA crossbar switch permits the output of one operation to be delivered as an input to a second operation. By configuring the external crossbar switch, the output of a first operation on a first PetaFlops Node may be used as the input for a second operation on a second PetaFlops Node. An embodiment may provide an ability for the system to recognize and generate pipelined functions. Streaming operators may be connected together at run-time and appropriately staged to allow data to flow through a series of functions. This allows the system to provide high throughput and parallelism when possible. The PetaFlops Router may implement the user desired instructions by appropriately configuring the intra-FPGA crossbar switch on each PetaFlops Node and the external crossbar switch.
Kalinin, Stanislav; Kühnemuth, Ralf; Vardanyan, Hayk; Seidel, Claus A M
2012-09-01
We present a fast hardware photon correlator implemented in a field-programmable gate array (FPGA) combined with a compact confocal fluorescence setup. The correlator has two independent units with a time resolution of 4 ns while utilizing less than 15% of a low-end FPGA. The device directly accepts transistor-transistor logic (TTL) signals from two photon counting detectors and calculates two auto- or cross-correlation curves in real time. Test measurements demonstrate that the performance of our correlator is comparable with the current generation of commercial devices. The sensitivity of the optical setup is identical or even superior to current commercial devices. The FPGA design and the optical setup both allow for a straightforward extension to multi-color applications. This inexpensive and compact solution with a very good performance can serve as a versatile platform for uses in education, applied sciences, and basic research.
A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor
Tayara, Hilal; Ham, Woonchul; Chong, Kil To
2016-01-01
This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714
A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.
Tayara, Hilal; Ham, Woonchul; Chong, Kil To
2016-12-15
This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.
NASA Astrophysics Data System (ADS)
Kalinin, Stanislav; Kühnemuth, Ralf; Vardanyan, Hayk; Seidel, Claus A. M.
2012-09-01
We present a fast hardware photon correlator implemented in a field-programmable gate array (FPGA) combined with a compact confocal fluorescence setup. The correlator has two independent units with a time resolution of 4 ns while utilizing less than 15% of a low-end FPGA. The device directly accepts transistor-transistor logic (TTL) signals from two photon counting detectors and calculates two auto- or cross-correlation curves in real time. Test measurements demonstrate that the performance of our correlator is comparable with the current generation of commercial devices. The sensitivity of the optical setup is identical or even superior to current commercial devices. The FPGA design and the optical setup both allow for a straightforward extension to multi-color applications. This inexpensive and compact solution with a very good performance can serve as a versatile platform for uses in education, applied sciences, and basic research.
FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar
NASA Astrophysics Data System (ADS)
Azim, Noor ul; Jun, Wang
2016-11-01
Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.
Dual Active Bridge based DC Transformer LabVIEW FPGA Control Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
In the area of power electronics control, Field Programmable Gate Arrays (FPGAs) have the capability to outperform their Digital Signal Processor (DSP) counterparts due to the FPGA’s ability to implement true parallel processing and therefore facilitate higher switching frequencies, higher control bandwidth, and/or enhanced functionality. National Instruments (NI) has developed two platforms, Compact RIO (cRIO) and Single Board RIO (sbRIO), which combine a real-time processor with an FPGA. The FPGA can be programmed with a subset of the well-known LabVIEW graphical programming language. The candidate software implements complete control algorithms in LabVIEW FPGA for a DC Transformer (DCX) based onmore » a dual active bridge (DAB). A DCX is an isolated bi-directional DC-DC converter designed to operate at unity conversion ratio, M, defined by where Vin is the primary-side DC bus voltage, Vout is the secondary-side DC bus voltage, and n is the turns ratio of the embedded high frequency transformer (HFX). The DCX based on a DAB incorporates two H-bridges, a resonant inductor, and an HFX to provide this functionality. The candidate software employs phase-shift modulation of the two H-bridges and a feedback loop to regulate the conversion ratio at unity. The software also includes alarm-handling capabilities as well as debugging and tuning tools. The software fits on the Xilinx Virtex V LX110 FPGA embedded in the NI cRIO-9118 FPGA chassis, and with a 40 MHz base clock, supports a modulation update rate of 40 MHz, and user-settable switching frequencies and synchronized control loop update rates of tens of kHz.« less
Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator
Asaad, Sameth W.; Kapur, Mohit
2016-01-05
A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.
Novel Algorithm/Hardware Partnerships for Real-Time Nonlinear Control
2014-02-28
Investigate Tempest Technologies 28 February 2014 Abstract The real-time implementation of controls in nonlinear systems remains one of the great...button for resetting the FPGA board in Max-Plus MVM FPGA system. We utilize the built-in 32MB BPI flash as storage for the Tempest Max-Plus MVM
High-Speed Current dq PI Controller for Vector Controlled PMSM Drive
Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu
2014-01-01
High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era. PMID:24574913
A low power flash-FPGA based brain implant micro-system of PID control.
Lijuan Xia; Fattah, Nabeel; Soltan, Ahmed; Jackson, Andrew; Chester, Graeme; Degenaar, Patrick
2017-07-01
In this paper, we demonstrate that a low power flash FPGA based micro-system can provide a low power programmable interface for closed-loop brain implant inter- faces. The proposed micro-system receives recording local field potential (LFP) signals from an implanted probe, performs closed-loop control using a first order control system, then converts the signal into an optogenetic control stimulus pattern. Stimulus can be implemented through optoelectronic probes. The long term target is for both fundamental neuroscience applications and for clinical use in treating epilepsy. Utilizing our device, closed-loop processing consumes only 14nJ of power per PID cycle compared to 1.52μJ per cycle for a micro-controller implementation. Compared to an application specific digital integrated circuit, flash FPGA's are inherently programmable.
The TOTEM T1 read out card motherboard
NASA Astrophysics Data System (ADS)
Minutoli, S.; Lo Vetere, M.; Robutti, E.
2010-12-01
This article describes the Read Out Card (ROC) motherboard, which is the main component of the T1 forward telescope front-end electronic system. The ROC main objectives are to acquire tracking data and trigger information from the detector. It performs data conversion from electrical to optical format and transfers the data streams to the next level of the system and it implements Slow Control modules which are able to receive, decode and distribute the LHC machine low jitter clock and fast command. The ROC also provides a spy mezzanine connection based on programmable FPGA and USB2.0 for laboratory and portable DAQ debugging system.
FPGA platform for prototyping and evaluation of neural network automotive applications
NASA Technical Reports Server (NTRS)
Aranki, N.; Tawel, R.
2002-01-01
In this paper we present an FPGA based reconfigurable computing platform for prototyping and evaluation of advanced neural network based applications for control and diagnostics in an automotive sub-systems.
Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device.
Picone, Rico A R; Davis, Solomon; Devine, Cameron; Garbini, Joseph L; Sidles, John A
2017-04-01
We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.
Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device
NASA Astrophysics Data System (ADS)
Picone, Rico A. R.; Davis, Solomon; Devine, Cameron; Garbini, Joseph L.; Sidles, John A.
2017-04-01
We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.
Tethered Forth system for FPGA applications
NASA Astrophysics Data System (ADS)
Goździkowski, Paweł; Zabołotny, Wojciech M.
2013-10-01
This paper presents the tethered Forth system dedicated for testing and debugging of FPGA based electronic systems. Use of the Forth language allows to interactively develop and run complex testing or debugging routines. The solution is based on a small, 16-bit soft core CPU, used to implement the Forth Virtual Machine. Thanks to the use of the tethered Forth model it is possible to minimize usage of the internal RAM memory in the FPGA. The function of the intelligent terminal, which is an essential part of the tethered Forth system, may be fulfilled by the standard PC computer or by the smartphone. System is implemented in Python (the software for intelligent terminal), and in VHDL (the IP core for FPGA), so it can be easily ported to different hardware platforms. The connection between the terminal and FPGA may be established and disconnected many times without disturbing the state of the FPGA based system. The presented system has been verified in the hardware, and may be used as a tool for debugging, testing and even implementing of control algorithms for FPGA based systems.
Moving Horizon Estimation on a Chip
2014-06-26
description, e.g. VHDL or Verilog, for FPGA implementation . Especially for those whose main expertise is in control system design, writing algorithms in C...ditional Kalman Filter(KF) where recursive solution is available. We devel- oped various MHE designs and implemented them on the Xilinx Zynq ZC702 FPGA...practical deployment of the MHE technology. 2.2 Implementation of MHE on FPGA The next paper demonstrated the feasibility of implementing MHE algo
Computer vision camera with embedded FPGA processing
NASA Astrophysics Data System (ADS)
Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel
2000-03-01
Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.
NASA Astrophysics Data System (ADS)
Deliparaschos, Kyriakos M.; Michail, Konstantinos; Zolotas, Argyrios C.; Tzafestas, Spyros G.
2016-05-01
This work presents a field programmable gate array (FPGA)-based embedded software platform coupled with a software-based plant, forming a hardware-in-the-loop (HIL) that is used to validate a systematic sensor selection framework. The systematic sensor selection framework combines multi-objective optimization, linear-quadratic-Gaussian (LQG)-type control, and the nonlinear model of a maglev suspension. A robustness analysis of the closed-loop is followed (prior to implementation) supporting the appropriateness of the solution under parametric variation. The analysis also shows that quantization is robust under different controller gains. While the LQG controller is implemented on an FPGA, the physical process is realized in a high-level system modeling environment. FPGA technology enables rapid evaluation of the algorithms and test designs under realistic scenarios avoiding heavy time penalty associated with hardware description language (HDL) simulators. The HIL technique facilitates significant speed-up in the required execution time when compared to its software-based counterpart model.
Design of transient light signal simulator based on FPGA
NASA Astrophysics Data System (ADS)
Kang, Jing; Chen, Rong-li; Wang, Hong
2014-11-01
A design scheme of transient light signal simulator based on Field Programmable gate Array (FPGA) was proposed in this paper. Based on the characteristics of transient light signals and measured feature points of optical intensity signals, a fitted curve was created in MATLAB. And then the wave data was stored in a programmed memory chip AT29C1024 by using SUPERPRO programmer. The control logic was realized inside one EP3C16 FPGA chip. Data readout, data stream cache and a constant current buck regulator for powering high-brightness LEDs were all controlled by FPGA. A 12-Bit multiplying CMOS digital-to-analog converter (DAC) DAC7545 and an amplifier OPA277 were used to convert digital signals to voltage signals. A voltage-controlled current source constituted by a NPN transistor and an operational amplifier controlled LED array diming to achieve simulation of transient light signal. LM3405A, 1A Constant Current Buck Regulator for Powering LEDs, was used to simulate strong background signal in space. Experimental results showed that the scheme as a transient light signal simulator can satisfy the requests of the design stably.
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Morookian, John M.; Monacos, Steve P.; Lam, Raymond K.; Lebaw, C.; Bond, A.
2004-04-01
Eyetracking is one of the latest technologies that has shown potential in several areas including human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals. Current non-invasive eyetracking methods achieve a 30 Hz rate with possibly low accuracy in gaze estimation, that is insufficient for many applications. We propose a new non-invasive visual eyetracking system that is capable of operating at speeds as high as 6-12 KHz. A new CCD video camera and hardware architecture is used, and a novel fast image processing algorithm leverages specific features of the input CCD camera to yield a real-time eyetracking system. A field programmable gate array (FPGA) is used to control the CCD camera and execute the image processing operations. Initial results show the excellent performance of our system under severe head motion and low contrast conditions.
Hardware Implementation of Lossless Adaptive Compression of Data From a Hyperspectral Imager
NASA Technical Reports Server (NTRS)
Keymeulen, Didlier; Aranki, Nazeeh I.; Klimesh, Matthew A.; Bakhshi, Alireza
2012-01-01
Efficient onboard data compression can reduce the data volume from hyperspectral imagers on NASA and DoD spacecraft in order to return as much imagery as possible through constrained downlink channels. Lossless compression is important for signature extraction, object recognition, and feature classification capabilities. To provide onboard data compression, a hardware implementation of a lossless hyperspectral compression algorithm was developed using a field programmable gate array (FPGA). The underlying algorithm is the Fast Lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral- Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), p. 26 with the modification reported in Lossless, Multi-Spectral Data Comressor for Improved Compression for Pushbroom-Type Instruments (NPO-45473), NASA Tech Briefs, Vol. 32, No. 7 (July 2008) p. 63, which provides improved compression performance for data from pushbroom-type imagers. An FPGA implementation of the unmodified FL algorithm was previously developed and reported in Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System (NPO-46867), NASA Tech Briefs, Vol. 36, No. 5 (May 2012) p. 42. The essence of the FL algorithm is adaptive linear predictive compression using the sign algorithm for filter adaption. The FL compressor achieves a combination of low complexity and compression effectiveness that exceeds that of stateof- the-art techniques currently in use. The modification changes the predictor structure to tolerate differences in sensitivity of different detector elements, as occurs in pushbroom-type imagers, which are suitable for spacecraft use. The FPGA implementation offers a low-cost, flexible solution compared to traditional ASIC (application specific integrated circuit) and can be integrated as an intellectual property (IP) for part of, e.g., a design that manages the instrument interface. The FPGA implementation was benchmarked on the Xilinx Virtex IV LX25 device, and ported to a Xilinx prototype board. The current implementation has a critical path of 29.5 ns, which dictated a clock speed of 33 MHz. The critical path delay is end-to-end measurement between the uncompressed input data and the output compression data stream. The implementation compresses one sample every clock cycle, which results in a speed of 33 Msample/s. The implementation has a rather low device use of the Xilinx Virtex IV LX25, making the total power consumption of the implementation about 1.27 W.
Multipurpose Controller with EPICS integration and data logging: BPM application for ESS Bilbao
NASA Astrophysics Data System (ADS)
Arredondo, I.; del Campo, M.; Echevarria, P.; Jugo, J.; Etxebarria, V.
2013-10-01
This work presents a multipurpose configurable control system which can be integrated in an EPICS control network, this functionality being configured through a XML configuration file. The core of the system is the so-called Hardware Controller which is in charge of the control hardware management, the set up and communication with the EPICS network and the data storage. The reconfigurable nature of the controller is based on a single XML file, allowing any final user to easily modify and adjust the control system to any specific requirement. The selected Java development environment ensures a multiplatform operation and large versatility, even regarding the control hardware to be controlled. Specifically, this paper, focused on fast control based on a high performance FPGA, describes also an application approach for the ESS Bilbao's Beam Position Monitoring system. The implementation of the XML configuration file and the satisfactory performance outcome achieved are presented, as well as a general description of the Multipurpose Controller itself.
Real-Time Capabilities of a Digital Analyzer for Mixed-Field Assay Using Scintillation Detectors
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Lavietes, A.; Plenteda, R.; Cave, F. D.; Parker, H.; Jones, A.; Astromskas, V.
2017-03-01
Scintillation detectors offer a single-step detection method for fast neutrons and necessitate real-time acquisition, whereas this is redundant in two-stage thermal detection systems using helium-3 and lithium-6, where the fast neutrons need to be thermalized prior to detection. The relative affordability of scintillation detectors and the associated fast digital acquisition systems have enabled entirely new measurement setups that can consist of sizeable detector arrays. These detectors in most cases rely on photomultiplier tubes, which have significant tolerances and result in variations in detector response functions. The detector tolerances and other environmental instabilities must be accounted for in measurements that depend on matched detector performance. This paper presents recent advances made to a high-speed FPGA-based digitizer. The technology described offers a complete solution for fast-neutron scintillation detectors by integrating multichannel high-speed data acquisition technology with dedicated detector high-voltage supplies. This configuration has significant advantages for large detector arrays that require uniform detector responses. We report on bespoke control software and firmware techniques that exploit real-time functionality to reduce setup and acquisition time, increase repeatability, and reduce statistical uncertainties.
Data transmission optical link for RF-GUN project
NASA Astrophysics Data System (ADS)
Olowski, Krzysztof; Zielinski, Jerzy; Jalmuzna, Wojciech; Pozniak, Krzysztof; Romaniuk, Ryszard
2005-09-01
Today, the fast optical data transmission is one of the fundamentals of modern distributed control systems. The fibers are widely use as multi-gigabit data stream medium. For a short range transmission, the multimode fibers are in common use. The data rate for this kind of transmission exceeds 10 Gbps for 10 Gigabit Ethernet and 10G Fibre Channel protocols. The Field Programmable Gate Arrays are one of the opportunities of managing the optical transmission. This article is concerning a synchronous optical transmission system via a multimode fiber. The transmission is controlled by the FPGA of two manufacturers: Xilinx and Altera. This paper contains the newest technology overview and market device parameters. It also describes a board for the optical transmission, technical details of the transmission and optical transmission results.
2007-03-01
32 4.4 Algorithm Pseudo - Code ...................................................................................34 4.5 WIND Interface With a...difference estimates of xc temporal derivatives, or by using a polynomial fit to the previous values of xc. 34 4.4 ALGORITHM PSEUDO - CODE Pseudo ...Phase Shift Keying DQPSK Differential Quadrature Phase Shift Keying EVM Error Vector Magnitude FFT Fast Fourier Transform FPGA Field Programmable
NASA Astrophysics Data System (ADS)
Finger, R.; Curotto, F.; Fuentes, R.; Duan, R.; Bronfman, L.; Li, D.
2018-02-01
Radio Frequency Interference (RFI) is a growing concern in the radio astronomy community. Single-dish telescopes are particularly susceptible to RFI. Several methods have been developed to cope with RF-polluted environments, based on flagging, excision, and real-time blanking, among others. All these methods produce some degree of data loss or require assumptions to be made on the astronomical signal. We report the development of a real-time, digital adaptive filter implemented on a Field Programmable Gate Array (FPGA) capable of processing 4096 spectral channels in a 1 GHz of instantaneous bandwidth. The filter is able to cancel a broad range of interference signals and quickly adapt to changes on the RFI source, minimizing the data loss without any assumption on the astronomical or interfering signal properties. The speed of convergence (for a decrease to a 1%) was measured to be 208.1 μs for a broadband noise-like RFI signal and 125.5 μs for a multiple-carrier RFI signal recorded at the FAST radio telescope.
A FPGA-based Measurement System for Nonvolatile Semiconductor Memory Characterization
NASA Astrophysics Data System (ADS)
Bu, Jiankang; White, Marvin
2002-03-01
Low voltage, long retention, high density SONOS nonvolatile semiconductor memory (NVSM) devices are ideally suited for PCMCIA, FLASH and 'smart' cards. The SONOS memory transistor requires characterization with an accurate, rapid measurement system with minimum disturbance to the device. The FPGA-based measurement system includes three parts: 1) a pattern generator implemented with XILINX FPGAs and corresponding software, 2) a high-speed, constant-current, threshold voltage detection circuit, 3) and a data evaluation program, implemented with a LABVIEW program. Fig. 1 shows the general block diagram of the FPGA-based measurement system. The function generator is designed and simulated with XILINX Foundation Software. Under the control of the specific erase/write/read pulses, the analog detect circuit applies operational modes to the SONOS device under test (DUT) and determines the change of the memory-state of the SONOS nonvolatile memory transistor. The TEK460 digitizes the analog threshold voltage output and sends to the PC computer. The data is filtered and averaged with a LABVIEWTM program running on the PC computer and displayed on the monitor in real time. We have implemented the pattern generator with XILINX FPGAs. Fig. 2 shows the block diagram of the pattern generator. We realized the logic control by a method of state machine design. Fig. 3 shows a small part of the state machine. The flexibility of the FPGAs enhances the capabilities of this system and allows measurement variations without hardware changes. The characterization of the nonvolatile memory transistor device under test (DUT), as function of programming voltage and time, is achieved by a high-speed, constant-current threshold voltage detection circuit. The analog detection circuit incorporating fast analog switches controlled digitally with the FPGAs. The schematic circuit diagram is shown in Fig. 4. The various operational modes for the DUT are realized with control signals applied to the analog switches (SW) as shown in Fig. 5. A LABVIEWTM program, on a PC platform, collects and processes the data. The data is displayed on the monitor in real time. This time-domain filtering reduces the digitizing error. Fig. 6 shows the data processing. SONOS nonvolatile semiconductor memories are characterized by erase/write, retention and endurance measurements. Fig. 7 shows the erase/write characteristics of an n-Channel, 5V prog-rammable SONOS memory transistor. Fig.8 shows the retention characteristic of the same SONOS transistor. We have used this system to characterize SONOS nonvolatile semiconductor memory transistors. The attractive features of the test system design lies in the cost-effectiveness and flexibility of the test pattern implementation, fast read-out of memory state, low power, high precision determination of the device threshold voltage, and perhaps most importantly, minimum disturbance, which is indispensable for nonvolatile memory characterization.
Independent component analysis algorithm FPGA design to perform real-time blind source separation
NASA Astrophysics Data System (ADS)
Meyer-Baese, Uwe; Odom, Crispin; Botella, Guillermo; Meyer-Baese, Anke
2015-05-01
The conditions that arise in the Cocktail Party Problem prevail across many fields creating a need for of Blind Source Separation. The need for BSS has become prevalent in several fields of work. These fields include array processing, communications, medical signal processing, and speech processing, wireless communication, audio, acoustics and biomedical engineering. The concept of the cocktail party problem and BSS led to the development of Independent Component Analysis (ICA) algorithms. ICA proves useful for applications needing real time signal processing. The goal of this research was to perform an extensive study on ability and efficiency of Independent Component Analysis algorithms to perform blind source separation on mixed signals in software and implementation in hardware with a Field Programmable Gate Array (FPGA). The Algebraic ICA (A-ICA), Fast ICA, and Equivariant Adaptive Separation via Independence (EASI) ICA were examined and compared. The best algorithm required the least complexity and fewest resources while effectively separating mixed sources. The best algorithm was the EASI algorithm. The EASI ICA was implemented on hardware with Field Programmable Gate Arrays (FPGA) to perform and analyze its performance in real time.
Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space Applications
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh; Bakhshi, Alireza; Keymeulen, Didier; Klimesh, Matthew
2009-01-01
Efficient on-board lossless hyperspectral data compression reduces the data volume necessary to meet NASA and DoD limited downlink capabilities. The techniques also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware, which makes it practical for flight implementations of pushbroom instruments. A prototype of the compressor (and decompressor) of the algorithm is available in software, but this implementation may not meet speed and real-time requirements of some space applications. Hardware acceleration provides performance improvements of 10x-100x vs. the software implementation (about 1M samples/sec on a Pentium IV machine). This paper describes a hardware implementation of the JPL-developed 'Fast Lossless' compression algorithm on a Field Programmable Gate Array (FPGA). The FPGA implementation targets the current state of the art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for Space applications.
Heterogeneous real-time computing in radio astronomy
NASA Astrophysics Data System (ADS)
Ford, John M.; Demorest, Paul; Ransom, Scott
2010-07-01
Modern computer architectures suited for general purpose computing are often not the best choice for either I/O-bound or compute-bound problems. Sometimes the best choice is not to choose a single architecture, but to take advantage of the best characteristics of different computer architectures to solve your problems. This paper examines the tradeoffs between using computer systems based on the ubiquitous X86 Central Processing Units (CPU's), Field Programmable Gate Array (FPGA) based signal processors, and Graphical Processing Units (GPU's). We will show how a heterogeneous system can be produced that blends the best of each of these technologies into a real-time signal processing system. FPGA's tightly coupled to analog-to-digital converters connect the instrument to the telescope and supply the first level of computing to the system. These FPGA's are coupled to other FPGA's to continue to provide highly efficient processing power. Data is then packaged up and shipped over fast networks to a cluster of general purpose computers equipped with GPU's, which are used for floating-point intensive computation. Finally, the data is handled by the CPU and written to disk, or further processed. Each of the elements in the system has been chosen for its specific characteristics and the role it can play in creating a system that does the most for the least, in terms of power, space, and money.
A dynamically reconfigurable multi-functional PLL for SRAM-based FPGA in 65nm CMOS technology
NASA Astrophysics Data System (ADS)
Yang, Mingqian; Chen, Lei; Li, Xuewu; Zhang, Yanlong
2018-04-01
Phase-locked loops (PLL) have been widely utilized in FPGA as an important module for clock management. PLL with dynamic reconfiguration capability is always welcomed in FPGA design as it is able to decrease power consumption and simultaneously improve flexibility. In this paper, a multi-functional PLL with dynamic reconfiguration capability for 65nm SRAM-based FPGA is proposed. Firstly, configurable charge pump and loop filter are utilized to optimize the loop bandwidth. Secondly, the PLL incorporates a VCO with dual control voltages to accelerate the adjustment of oscillation frequency. Thirdly, three configurable dividers are presented for flexible frequency synthesis. Lastly, a configuration block with dynamic reconfiguration function is proposed. Simulation results demonstrate that the proposed multi-functional PLL can output clocks with configurable division ratio, phase shift and duty cycle. The PLL can also be dynamically reconfigured without affecting other parts' running or halting the FPGA device.
A high performance hardware implementation image encryption with AES algorithm
NASA Astrophysics Data System (ADS)
Farmani, Ali; Jafari, Mohamad; Miremadi, Seyed Sohrab
2011-06-01
This paper describes implementation of a high-speed encryption algorithm with high throughput for encrypting the image. Therefore, we select a highly secured symmetric key encryption algorithm AES(Advanced Encryption Standard), in order to increase the speed and throughput using pipeline technique in four stages, control unit based on logic gates, optimal design of multiplier blocks in mixcolumn phase and simultaneous production keys and rounds. Such procedure makes AES suitable for fast image encryption. Implementation of a 128-bit AES on FPGA of Altra company has been done and the results are as follow: throughput, 6 Gbps in 471MHz. The time of encrypting in tested image with 32*32 size is 1.15ms.
Circuit design of an EMCCD camera
NASA Astrophysics Data System (ADS)
Li, Binhua; Song, Qian; Jin, Jianhui; He, Chun
2012-07-01
EMCCDs have been used in the astronomical observations in many ways. Recently we develop a camera using an EMCCD TX285. The CCD chip is cooled to -100°C in an LN2 dewar. The camera controller consists of a driving board, a control board and a temperature control board. Power supplies and driving clocks of the CCD are provided by the driving board, the timing generator is located in the control board. The timing generator and an embedded Nios II CPU are implemented in an FPGA. Moreover the ADC and the data transfer circuit are also in the control board, and controlled by the FPGA. The data transfer between the image workstation and the camera is done through a Camera Link frame grabber. The software of image acquisition is built using VC++ and Sapera LT. This paper describes the camera structure, the main components and circuit design for video signal processing channel, clock driver, FPGA and Camera Link interfaces, temperature metering and control system. Some testing results are presented.
Saeedi, Ehsan; Kong, Yinan
2017-01-01
In this paper, we propose a novel parallel architecture for fast hardware implementation of elliptic curve point multiplication (ECPM), which is the key operation of an elliptic curve cryptography processor. The point multiplication over binary fields is synthesized on both FPGA and ASIC technology by designing fast elliptic curve group operations in Jacobian projective coordinates. A novel combined point doubling and point addition (PDPA) architecture is proposed for group operations to achieve high speed and low hardware requirements for ECPM. It has been implemented over the binary field which is recommended by the National Institute of Standards and Technology (NIST). The proposed ECPM supports two Koblitz and random curves for the key sizes 233 and 163 bits. For group operations, a finite-field arithmetic operation, e.g. multiplication, is designed on a polynomial basis. The delay of a 233-bit point multiplication is only 3.05 and 3.56 μs, in a Xilinx Virtex-7 FPGA, for Koblitz and random curves, respectively, and 0.81 μs in an ASIC 65-nm technology, which are the fastest hardware implementation results reported in the literature to date. In addition, a 163-bit point multiplication is also implemented in FPGA and ASIC for fair comparison which takes around 0.33 and 0.46 μs, respectively. The area-time product of the proposed point multiplication is very low compared to similar designs. The performance (1Area×Time=1AT) and Area × Time × Energy (ATE) product of the proposed design are far better than the most significant studies found in the literature. PMID:28459831
Hossain, Md Selim; Saeedi, Ehsan; Kong, Yinan
2017-01-01
In this paper, we propose a novel parallel architecture for fast hardware implementation of elliptic curve point multiplication (ECPM), which is the key operation of an elliptic curve cryptography processor. The point multiplication over binary fields is synthesized on both FPGA and ASIC technology by designing fast elliptic curve group operations in Jacobian projective coordinates. A novel combined point doubling and point addition (PDPA) architecture is proposed for group operations to achieve high speed and low hardware requirements for ECPM. It has been implemented over the binary field which is recommended by the National Institute of Standards and Technology (NIST). The proposed ECPM supports two Koblitz and random curves for the key sizes 233 and 163 bits. For group operations, a finite-field arithmetic operation, e.g. multiplication, is designed on a polynomial basis. The delay of a 233-bit point multiplication is only 3.05 and 3.56 μs, in a Xilinx Virtex-7 FPGA, for Koblitz and random curves, respectively, and 0.81 μs in an ASIC 65-nm technology, which are the fastest hardware implementation results reported in the literature to date. In addition, a 163-bit point multiplication is also implemented in FPGA and ASIC for fair comparison which takes around 0.33 and 0.46 μs, respectively. The area-time product of the proposed point multiplication is very low compared to similar designs. The performance ([Formula: see text]) and Area × Time × Energy (ATE) product of the proposed design are far better than the most significant studies found in the literature.
An FPGA-based High Speed Parallel Signal Processing System for Adaptive Optics Testbed
NASA Astrophysics Data System (ADS)
Kim, H.; Choi, Y.; Yang, Y.
In this paper a state-of-the-art FPGA (Field Programmable Gate Array) based high speed parallel signal processing system (SPS) for adaptive optics (AO) testbed with 1 kHz wavefront error (WFE) correction frequency is reported. The AO system consists of Shack-Hartmann sensor (SHS) and deformable mirror (DM), tip-tilt sensor (TTS), tip-tilt mirror (TTM) and an FPGA-based high performance SPS to correct wavefront aberrations. The SHS is composed of 400 subapertures and the DM 277 actuators with Fried geometry, requiring high speed parallel computing capability SPS. In this study, the target WFE correction speed is 1 kHz; therefore, it requires massive parallel computing capabilities as well as strict hard real time constraints on measurements from sensors, matrix computation latency for correction algorithms, and output of control signals for actuators. In order to meet them, an FPGA based real-time SPS with parallel computing capabilities is proposed. In particular, the SPS is made up of a National Instrument's (NI's) real time computer and five FPGA boards based on state-of-the-art Xilinx Kintex 7 FPGA. Programming is done with NI's LabView environment, providing flexibility when applying different algorithms for WFE correction. It also facilitates faster programming and debugging environment as compared to conventional ones. One of the five FPGA's is assigned to measure TTS and calculate control signals for TTM, while the rest four are used to receive SHS signal, calculate slops for each subaperture and correction signal for DM. With this parallel processing capabilities of the SPS the overall closed-loop WFE correction speed of 1 kHz has been achieved. System requirements, architecture and implementation issues are described; furthermore, experimental results are also given.
ERIC Educational Resources Information Center
Zumel, P.; Fernandez, C.; Sanz, M.; Lazaro, A.; Barrado, A.
2011-01-01
In this paper, a short introductory course to introduce field-programmable gate array (FPGA)-based digital control of dc/dc switching power converters is presented. Digital control based on specific hardware has been at the leading edge of low-medium power dc/dc switching converters in recent years. Besides industry's interest in this topic, from…
NASA Astrophysics Data System (ADS)
Yu, Shi Jing; Fajeau, Emma; Liu, Lin Qiao; Jones, David J.; Madison, Kirk W.
2018-02-01
In this work, we address the advantages, limitations, and technical subtleties of employing field programmable gate array (FPGA)-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low and mid-range priced FPGA development platforms. The digital servo results are compared to results obtained from a commercially available state-of-the-art analog servo using the same plant for control (intensity stabilization). The digital servos have feedback bandwidths of 2.5 MHz, limited by the total signal latency, and we demonstrate improvements beyond the transfer function offered by the analog servo including a three-pole filter and a two-pole filter with phase compensation to suppress resonances. We also discuss limitations of our FPGA-servo implementation and general considerations when designing and using digital servos.
Yu, Shi Jing; Fajeau, Emma; Liu, Lin Qiao; Jones, David J; Madison, Kirk W
2018-02-01
In this work, we address the advantages, limitations, and technical subtleties of employing field programmable gate array (FPGA)-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low and mid-range priced FPGA development platforms. The digital servo results are compared to results obtained from a commercially available state-of-the-art analog servo using the same plant for control (intensity stabilization). The digital servos have feedback bandwidths of 2.5 MHz, limited by the total signal latency, and we demonstrate improvements beyond the transfer function offered by the analog servo including a three-pole filter and a two-pole filter with phase compensation to suppress resonances. We also discuss limitations of our FPGA-servo implementation and general considerations when designing and using digital servos.
Design of Belief Propagation Based on FPGA for the Multistereo CAFADIS Camera
Magdaleno, Eduardo; Lüke, Jonás Philipp; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we describe a fast, specialized hardware implementation of the belief propagation algorithm for the CAFADIS camera, a new plenoptic sensor patented by the University of La Laguna. This camera captures the lightfield of the scene and can be used to find out at which depth each pixel is in focus. The algorithm has been designed for FPGA devices using VHDL. We propose a parallel and pipeline architecture to implement the algorithm without external memory. Although the BRAM resources of the device increase considerably, we can maintain real-time restrictions by using extremely high-performance signal processing capability through parallelism and by accessing several memories simultaneously. The quantifying results with 16 bit precision have shown that performances are really close to the original Matlab programmed algorithm. PMID:22163404
Design of belief propagation based on FPGA for the multistereo CAFADIS camera.
Magdaleno, Eduardo; Lüke, Jonás Philipp; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we describe a fast, specialized hardware implementation of the belief propagation algorithm for the CAFADIS camera, a new plenoptic sensor patented by the University of La Laguna. This camera captures the lightfield of the scene and can be used to find out at which depth each pixel is in focus. The algorithm has been designed for FPGA devices using VHDL. We propose a parallel and pipeline architecture to implement the algorithm without external memory. Although the BRAM resources of the device increase considerably, we can maintain real-time restrictions by using extremely high-performance signal processing capability through parallelism and by accessing several memories simultaneously. The quantifying results with 16 bit precision have shown that performances are really close to the original Matlab programmed algorithm.
A phase-based stereo vision system-on-a-chip.
Díaz, Javier; Ros, Eduardo; Sabatini, Silvio P; Solari, Fabio; Mota, Sonia
2007-02-01
A simple and fast technique for depth estimation based on phase measurement has been adopted for the implementation of a real-time stereo system with sub-pixel resolution on an FPGA device. The technique avoids the attendant problem of phase warping. The designed system takes full advantage of the inherent processing parallelism and segmentation capabilities of FPGA devices to achieve a computation speed of 65megapixels/s, which can be arranged with a customized frame-grabber module to process 211frames/s at a size of 640x480 pixels. The processing speed achieved is higher than conventional camera frame rates, thus allowing the system to extract multiple estimations and be used as a platform to evaluate integration schemes of a population of neurons without increasing hardware resource demands.
Jiang, Chao; Zhang, Hongyan; Wang, Jia; Wang, Yaru; He, Heng; Liu, Rui; Zhou, Fangyuan; Deng, Jialiang; Li, Pengcheng; Luo, Qingming
2011-11-01
Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.
V&V Plan for FPGA-based ESF-CCS Using System Engineering Approach.
NASA Astrophysics Data System (ADS)
Maerani, Restu; Mayaka, Joyce; El Akrat, Mohamed; Cheon, Jung Jae
2018-02-01
Instrumentation and Control (I&C) systems play an important role in maintaining the safety of Nuclear Power Plant (NPP) operation. However, most current I&C safety systems are based on Programmable Logic Controller (PLC) hardware, which is difficult to verify and validate, and is susceptible to software common cause failure. Therefore, a plan for the replacement of the PLC-based safety systems, such as the Engineered Safety Feature - Component Control System (ESF-CCS), with Field Programmable Gate Arrays (FPGA) is needed. By using a systems engineering approach, which ensures traceability in every phase of the life cycle, from system requirements, design implementation to verification and validation, the system development is guaranteed to be in line with the regulatory requirements. The Verification process will ensure that the customer and stakeholder’s needs are satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner throughout a system’s entire life cycle. The benefit of the V&V plan is to ensure that the FPGA based ESF-CCS is correctly built, and to ensure that the measurement of performance indicators has positive feedback that “do we do the right thing” during the re-engineering process of the FPGA based ESF-CCS.
FPGA based control system for space instrumentation
NASA Astrophysics Data System (ADS)
Di Giorgio, Anna M.; Cerulli Irelli, Pasquale; Nuzzolo, Francesco; Orfei, Renato; Spinoglio, Luigi; Liu, Giovanni S.; Saraceno, Paolo
2008-07-01
The prototype for a general purpose FPGA based control system for space instrumentation is presented, with particular attention to the instrument control application software. The system HW is based on the LEON3FT processor, which gives the flexibility to configure the chip with only the necessary HW functionalities, from simple logic up to small dedicated processors. The instrument control SW is developed in ANSI C and for time critical (<10μs) commanding sequences implements an internal instructions sequencer, triggered via an interrupt service routine based on a HW high priority interrupt.
SPIDR, a general-purpose readout system for pixel ASICs
NASA Astrophysics Data System (ADS)
van der Heijden, B.; Visser, J.; van Beuzekom, M.; Boterenbrood, H.; Kulis, S.; Munneke, B.; Schreuder, F.
2017-02-01
The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a "soft core" CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four 10 Gigabit Ethernet links, and in addition provides the slow and fast control for the chip.
Motion camera based on a custom vision sensor and an FPGA architecture
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel
1998-09-01
A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.
Fast BPM data distribution for global orbit feedback using commercial gigabit ethernet technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulsart, R.; Cerniglia, P.; Michnoff, R.
2011-03-28
In order to correct beam perturbations in RHIC around 10Hz, a new fast data distribution network was required to deliver BPM position data at rates several orders of magnitude above the capability of the existing system. The urgency of the project limited the amount of custom hardware that could be developed, which dictated the use of as much commercially available equipment as possible. The selected architecture uses a custom hardware interface to the existing RHIC BPM electronics together with commercially available Gigabit Ethernet switches to distribute position data to devices located around the collider ring. Using the minimum Ethernet packetmore » size and a field programmable gate array (FPGA) based state machine logic instead of a software based driver, real-time and deterministic data delivery is possible using Ethernet. The method of adapting this protocol for low latency data delivery, bench testing of Ethernet hardware, and the logic to construct Ethernet packets using FPGA hardware will be discussed. A robust communications system using almost all commercial off-the-shelf equipment was developed in under a year which enabled retrofitting of the existing RHIC BPM system to provide 10 KHz data delivery for a global orbit feedback scheme using 72 BPMs. Total latencies from data acquisition at the BPMs to delivery at the controller modules, including very long transmission distances, were kept under 100 {micro}s, which provide very little phase error in correcting the 10 Hz oscillations. Leveraging off of the speed of Gigabit Ethernet and wide availability of Ethernet products enabled this solution to be fully implemented in a much shorter time and at lower cost than if a similar network was developed using a proprietary method.« less
NASA Technical Reports Server (NTRS)
Al Hassan, Mohammad; Britton, Paul; Hatfield, Glen Spencer; Novack, Steven D.
2017-01-01
Today's launch vehicles complex electronic and avionics systems heavily utilize Field Programmable Gate Array (FPGA) integrated circuits (IC) for their superb speed and reconfiguration capabilities. Consequently, FPGAs are prevalent ICs in communication protocols such as MILSTD- 1553B and in control signal commands such as in solenoid valve actuations. This paper will identify reliability concerns and high level guidelines to estimate FPGA total failure rates in a launch vehicle application. The paper will discuss hardware, hardware description language, and radiation induced failures. The hardware contribution of the approach accounts for physical failures of the IC. The hardware description language portion will discuss the high level FPGA programming languages and software/code reliability growth. The radiation portion will discuss FPGA susceptibility to space environment radiation.
Powerful conveyer belt real-time online detection system based on x-ray
NASA Astrophysics Data System (ADS)
Rong, Feng; Miao, Chang-yun; Meng, Wei
2009-07-01
The powerful conveyer belt is widely used in the mine, dock, and so on. After used for a long time, internal steel rope of the conveyor belt may fracture, rust, joints moving, and so on .This would bring potential safety problems. A kind of detection system based on x-ray is designed in this paper. Linear array detector (LDA) is used. LDA cost is low, response fast; technology mature .Output charge of LDA is transformed into differential voltage signal by amplifier. This kind of signal have great ability of anti-noise, is suitable for long-distance transmission. The processor is FPGA. A IP core control 4-channel A/D convertor, achieve parallel output data collection. Soft-core processor MicroBlaze which process tcp/ip protocol is embedded in FPGA. Sampling data are transferred to a computer via Ethernet. In order to improve the image quality, algorithm of getting rid of noise from the measurement result and taking gain normalization for pixel value is studied and designed. Experiments show that this system work well, can real-time online detect conveyor belt of width of 2.0m and speed of 5 m/s, does not affect the production. Image is clear, visual and can easily judge the situation of conveyor belt.
DSP+FPGA-based real-time histogram equalization system of infrared image
NASA Astrophysics Data System (ADS)
Gu, Dongsheng; Yang, Nansheng; Pi, Defu; Hua, Min; Shen, Xiaoyan; Zhang, Ruolan
2001-10-01
Histogram Modification is a simple but effective method to enhance an infrared image. There are several methods to equalize an infrared image's histogram due to the different characteristics of the different infrared images, such as the traditional HE (Histogram Equalization) method, and the improved HP (Histogram Projection) and PE (Plateau Equalization) method and so on. If to realize these methods in a single system, the system must have a mass of memory and extremely fast speed. In our system, we introduce a DSP + FPGA based real-time procession technology to do these things together. FPGA is used to realize the common part of these methods while DSP is to do the different part. The choice of methods and the parameter can be input by a keyboard or a computer. By this means, the function of the system is powerful while it is easy to operate and maintain. In this article, we give out the diagram of the system and the soft flow chart of the methods. And at the end of it, we give out the infrared image and its histogram before and after the process of HE method.
Pérez Suárez, Santiago T.; Travieso González, Carlos M.; Alonso Hernández, Jesús B.
2013-01-01
This article presents a design methodology for designing an artificial neural network as an equalizer for a binary signal. Firstly, the system is modelled in floating point format using Matlab. Afterward, the design is described for a Field Programmable Gate Array (FPGA) using fixed point format. The FPGA design is based on the System Generator from Xilinx, which is a design tool over Simulink of Matlab. System Generator allows one to design in a fast and flexible way. It uses low level details of the circuits and the functionality of the system can be fully tested. System Generator can be used to check the architecture and to analyse the effect of the number of bits on the system performance. Finally the System Generator design is compiled for the Xilinx Integrated System Environment (ISE) and the system is described using a hardware description language. In ISE the circuits are managed with high level details and physical performances are obtained. In the Conclusions section, some modifications are proposed to improve the methodology and to ensure portability across FPGA manufacturers.
A control system based on field programmable gate array for papermaking sewage treatment
NASA Astrophysics Data System (ADS)
Zhang, Zi Sheng; Xie, Chang; Qing Xiong, Yan; Liu, Zhi Qiang; Li, Qing
2013-03-01
A sewage treatment control system is designed to improve the efficiency of papermaking wastewater treatment system. The automation control system is based on Field Programmable Gate Array (FPGA), coded with Very-High-Speed Integrate Circuit Hardware Description Language (VHDL), compiled and simulated with Quartus. In order to ensure the stability of the data used in FPGA, the data is collected through temperature sensors, water level sensor and online PH measurement system. The automatic control system is more sensitive, and both the treatment efficiency and processing power are increased. This work provides a new method for sewage treatment control.
High altitude subsonic parachute field programmable gate array
NASA Technical Reports Server (NTRS)
Kowalski, James E.; Gromov, Konstantin; Konefat, Edward H.
2005-01-01
This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and control storage of telemetry data from multiple sensors throughout; launch, ascent, deployment and descent phases of the subsonic parachute test.
NASA Astrophysics Data System (ADS)
Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting
2010-11-01
An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.
NASA Technical Reports Server (NTRS)
Al Hassan, Mohammad; Novack, Steven D.; Hatfield, Glen S.; Britton, Paul
2017-01-01
Today's launch vehicles complex electronic and avionic systems heavily utilize the Field Programmable Gate Array (FPGA) integrated circuit (IC). FPGAs are prevalent ICs in communication protocols such as MIL-STD-1553B, and in control signal commands such as in solenoid/servo valves actuations. This paper will demonstrate guidelines to estimate FPGA failure rates for a launch vehicle, the guidelines will account for hardware, firmware, and radiation induced failures. The hardware contribution of the approach accounts for physical failures of the IC, FPGA memory and clock. The firmware portion will provide guidelines on the high level FPGA programming language and ways to account for software/code reliability growth. The radiation portion will provide guidelines on environment susceptibility as well as guidelines on tailoring other launch vehicle programs historical data to a specific launch vehicle.
The integration of FPGA TDC inside White Rabbit node
NASA Astrophysics Data System (ADS)
Li, H.; Xue, T.; Gong, G.; Li, J.
2017-04-01
White Rabbit technology is capable of delivering sub-nanosecond accuracy and picosecond precision of synchronization and normal data packets over the fiber network. Carry chain structure in FPGA is a popular way to build TDC and tens of picosecond RMS resolution has been achieved. The integration of WR technology with FPGA TDC can enhance and simplify the TDC in many aspects that includes providing a low jitter clock for TDC, a synchronized absolute UTC/TAI timestamp for coarse counter, a fancy way to calibrate the carry chain DNL and an easy to use Ethernet link for data and control information transmit. This paper presents a FPGA TDC implemented inside a normal White Rabbit node with sub-nanosecond measurement precision. The measured standard deviation reaches 50ps between two distributed TDCs. Possible applications of this distributed TDC are also discussed.
An embedded laser marking controller based on ARM and FPGA processors.
Dongyun, Wang; Xinpiao, Ye
2014-01-01
Laser marking is an important branch of the laser information processing technology. The existing laser marking machine based on PC and WINDOWS operating system, are large and inconvenient to move. Still, it cannot work outdoors or in other harsh environments. In order to compensate for the above mentioned disadvantages, this paper proposed an embedded laser marking controller based on ARM and FPGA processors. Based on the principle of laser galvanometer scanning marking, the hardware and software were designed for the application. Experiments showed that this new embedded laser marking controller controls the galvanometers synchronously and could achieve precise marking.
High-definition video display based on the FPGA and THS8200
NASA Astrophysics Data System (ADS)
Qian, Jia; Sui, Xiubao
2014-11-01
This paper presents a high-definition video display solution based on the FPGA and THS8200. THS8200 is a video decoder chip launched by TI company, this chip has three 10-bit DAC channels which can capture video data in both 4:2:2 and 4:4:4 formats, and its data synchronization can be either through the dedicated synchronization signals HSYNC and VSYNC, or extracted from the embedded video stream synchronization information SAV / EAV code. In this paper, we will utilize the address and control signals generated by FPGA to access to the data-storage array, and then the FPGA generates the corresponding digital video signals YCbCr. These signals combined with the synchronization signals HSYNC and VSYNC that are also generated by the FPGA act as the input signals of THS8200. In order to meet the bandwidth requirements of the high-definition TV, we adopt video input in the 4:2:2 format over 2×10-bit interface. THS8200 is needed to be controlled by FPGA with I2C bus to set the internal registers, and as a result, it can generate the synchronous signal that is satisfied with the standard SMPTE and transfer the digital video signals YCbCr into analog video signals YPbPr. Hence, the composite analog output signals YPbPr are consist of image data signal and synchronous signal which are superimposed together inside the chip THS8200. The experimental research indicates that the method presented in this paper is a viable solution for high-definition video display, which conforms to the input requirements of the new high-definition display devices.
ICE: A Scalable, Low-Cost FPGA-Based Telescope Signal Processing and Networking System
NASA Astrophysics Data System (ADS)
Bandura, K.; Bender, A. N.; Cliche, J. F.; de Haan, T.; Dobbs, M. A.; Gilbert, A. J.; Griffin, S.; Hsyu, G.; Ittah, D.; Parra, J. Mena; Montgomery, J.; Pinsonneault-Marotte, T.; Siegel, S.; Smecher, G.; Tang, Q. Y.; Vanderlinde, K.; Whitehorn, N.
2016-03-01
We present an overview of the ‘ICE’ hardware and software framework that implements large arrays of interconnected field-programmable gate array (FPGA)-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, millimeter and sub-millimeter telescope readout systems that have requirements beyond typical off-the-shelf processing systems, such as careful control of interference signals produced by the digital electronics, and clocking of all elements in the system from a single precise observatory-derived oscillator. A new generation of telescopes operating at these frequency bands and designed with a vastly increased emphasis on digital signal processing to support their detector multiplexing technology or high-bandwidth correlators — data rates exceeding a terabyte per second — are becoming common. The ICE system is built around a custom FPGA motherboard that makes use of an Xilinx Kintex-7 FPGA and ARM-based co-processor. The system is specialized for specific applications through software, firmware and custom mezzanine daughter boards that interface to the FPGA through the industry-standard FPGA mezzanine card (FMC) specifications. For high density applications, the motherboards are packaged in 16-slot crates with ICE backplanes that implement a low-cost passive full-mesh network between the motherboards in a crate, allow high bandwidth interconnection between crates and enable data offload to a computer cluster. A Python-based control software library automatically detects and operates the hardware in the array. Examples of specific telescope applications of the ICE framework are presented, namely the frequency-multiplexed bolometer readout systems used for the South Pole Telescope (SPT) and Simons Array and the digitizer, F-engine, and networking engine for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) radio interferometers.
DDGIPS: a general image processing system in robot vision
NASA Astrophysics Data System (ADS)
Tian, Yuan; Ying, Jun; Ye, Xiuqing; Gu, Weikang
2000-10-01
Real-Time Image Processing is the key work in robot vision. With the limitation of the hardware technique, many algorithm-oriented firmware systems were designed in the past. But their architectures were not flexible enough to achieve a multi-algorithm development system. Because of the rapid development of microelectronics technique, many high performance DSP chips and high density FPGA chips have come to life, and this makes it possible to construct a more flexible architecture in real-time image processing system. In this paper, a Double DSP General Image Processing System (DDGIPS) is concerned. We try to construct a two-DSP-based FPGA-computational system with two TMS320C6201s. The TMS320C6x devices are fixed-point processors based on the advanced VLIW CPU, which has eight functional units, including two multipliers and six arithmetic logic units. These features make C6x a good candidate for a general purpose system. In our system, the two TMS320C6201s each has a local memory space, and they also have a shared system memory space which enables them to intercommunicate and exchange data efficiently. At the same time, they can be directly inter-connected in star-shaped architecture. All of these are under the control of a FPGA group. As the core of the system, FPGA plays a very important role: it takes charge of DPS control, DSP communication, memory space access arbitration and the communication between the system and the host machine. And taking advantage of reconfiguring FPGA, all of the interconnection between the two DSP or between DSP and FPGA can be changed. In this way, users can easily rebuild the real-time image processing system according to the data stream and the task of the application and gain great flexibility.
DDGIPS: a general image processing system in robot vision
NASA Astrophysics Data System (ADS)
Tian, Yuan; Ying, Jun; Ye, Xiuqing; Gu, Weikang
2000-10-01
Real-Time Image Processing is the key work in robot vision. With the limitation of the hardware technique, many algorithm-oriented firmware systems were designed in the past. But their architectures were not flexible enough to achieve a multi- algorithm development system. Because of the rapid development of microelectronics technique, many high performance DSP chips and high density FPGA chips have come to life, and this makes it possible to construct a more flexible architecture in real-time image processing system. In this paper, a Double DSP General Image Processing System (DDGIPS) is concerned. We try to construct a two-DSP-based FPGA-computational system with two TMS320C6201s. The TMS320C6x devices are fixed-point processors based on the advanced VLIW CPU, which has eight functional units, including two multipliers and six arithmetic logic units. These features make C6x a good candidate for a general purpose system. In our system, the two TMS320C6210s each has a local memory space, and they also have a shared system memory space which enable them to intercommunicate and exchange data efficiently. At the same time, they can be directly interconnected in star- shaped architecture. All of these are under the control of FPGA group. As the core of the system, FPGA plays a very important role: it takes charge of DPS control, DSP communication, memory space access arbitration and the communication between the system and the host machine. And taking advantage of reconfiguring FPGA, all of the interconnection between the two DSP or between DSP and FPGA can be changed. In this way, users can easily rebuild the real-time image processing system according to the data stream and the task of the application and gain great flexibility.
FPGA Flash Memory High Speed Data Acquisition
NASA Technical Reports Server (NTRS)
Gonzalez, April
2013-01-01
The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.
Three-phase Four-leg Inverter LabVIEW FPGA Control Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
In the area of power electronics control, Field Programmable Gate Arrays (FPGAs) have the capability to outperform their Digital Signal Processor (DSP) counterparts due to the FPGA’s ability to implement true parallel processing and therefore facilitate higher switching frequencies, higher control bandwidth, and/or enhanced functionality. National Instruments (NI) has developed two platforms, Compact RIO (cRIO) and Single Board RIO (sbRIO), which combine a real-time processor with an FPGA. The FPGA can be programmed with a subset of the well-known LabVIEW graphical programming language. The use of cRIO and sbRIO for power electronics control has developed over the last few yearsmore » to include control of three-phase inverters. Most three-phase inverter topologies include three switching legs. The addition of a fourth-leg to natively generate the neutral connection allows the inverter to serve single-phase loads in a microgrid or stand-alone power system and to balance the three-phase voltages in the presence of significant load imbalance. However, the control of a four-leg inverter is much more complex. In particular, instead of standard two-dimensional space vector modulation (SVM), the inverter requires three-dimensional space vector modulation (3D-SVM). The candidate software implements complete control algorithms in LabVIEW FPGA for a three-phase four-leg inverter. The software includes feedback control loops, three-dimensional space vector modulation gate-drive algorithms, advanced alarm handling capabilities, contactor control, power measurements, and debugging and tuning tools. The feedback control loops allow inverter operation in AC voltage control, AC current control, or DC bus voltage control modes based on external mode selection by a user or supervisory controller. The software includes the ability to synchronize its AC output to the grid or other voltage-source before connection. The software also includes provisions to allow inverter operation in parallel with other voltage regulating devices on the AC or DC buses. This flexibility allows the Inverter to operate as a stand-alone voltage source, connected to the grid, or in parallel with other controllable voltage sources as part of a microgrid or remote power system. In addition, as the inverter is expected to operate under severe unbalanced conditions, the software includes algorithms to accurately compute real and reactive power for each phase based on definitions provided in the IEEE Standard 1459: IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. Finally, the software includes code to output analog signals for debugging and for tuning of control loops. The software fits on the Xilinx Virtex V LX110 FPGA embedded in the NI cRIO-9118 FPGA chassis, and with a 40 MHz base clock, supports a modulation update rate of 40 MHz, user-settable switching frequencies and synchronized control loop update rates of tens of kHz, and reference waveform generation, including Phase Lock Loop (PLL), update rate of 100 kHz.« less
Fast neutron flux analyzer with real-time digital pulse shape discrimination
NASA Astrophysics Data System (ADS)
Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.
2016-08-01
Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.
Intelligent FPGA Data Acquisition Framework
NASA Astrophysics Data System (ADS)
Bai, Yunpeng; Gaisbauer, Dominic; Huber, Stefan; Konorov, Igor; Levit, Dmytro; Steffen, Dominik; Paul, Stephan
2017-06-01
In this paper, we present the field programmable gate arrays (FPGA)-based framework intelligent FPGA data acquisition (IFDAQ), which is used for the development of DAQ systems for detectors in high-energy physics. The framework supports Xilinx FPGA and provides a collection of IP cores written in very high speed integrated circuit hardware description language, which use the common interconnect interface. The IP core library offers functionality required for the development of the full DAQ chain. The library consists of Serializer/Deserializer (SERDES)-based time-to-digital conversion channels, an interface to a multichannel 80-MS/s 10-b analog-digital conversion, data transmission, and synchronization protocol between FPGAs, event builder, and slow control. The functionality is distributed among FPGA modules built in the AMC form factor: front end and data concentrator. This modular design also helps to scale and adapt the DAQ system to the needs of the particular experiment. The first application of the IFDAQ framework is the upgrade of the read-out electronics for the drift chambers and the electromagnetic calorimeters (ECALs) of the COMPASS experiment at CERN. The framework will be presented and discussed in the context of this paper.
CBM First-level Event Selector Input Interface Demonstrator
NASA Astrophysics Data System (ADS)
Hutter, Dirk; de Cuveland, Jan; Lindenstruth, Volker
2017-10-01
CBM is a heavy-ion experiment at the future FAIR facility in Darmstadt, Germany. Featuring self-triggered front-end electronics and free-streaming read-out, event selection will exclusively be done by the First Level Event Selector (FLES). Designed as an HPC cluster with several hundred nodes its task is an online analysis and selection of the physics data at a total input data rate exceeding 1 TByte/s. To allow efficient event selection, the FLES performs timeslice building, which combines the data from all given input links to self-contained, potentially overlapping processing intervals and distributes them to compute nodes. Partitioning the input data streams into specialized containers allows performing this task very efficiently. The FLES Input Interface defines the linkage between the FEE and the FLES data transport framework. A custom FPGA PCIe board, the FLES Interface Board (FLIB), is used to receive data via optical links and transfer them via DMA to the host’s memory. The current prototype of the FLIB features a Kintex-7 FPGA and provides up to eight 10 GBit/s optical links. A custom FPGA design has been developed for this board. DMA transfers and data structures are optimized for subsequent timeslice building. Index tables generated by the FPGA enable fast random access to the written data containers. In addition the DMA target buffers can directly serve as InfiniBand RDMA source buffers without copying the data. The usage of POSIX shared memory for these buffers allows data access from multiple processes. An accompanying HDL module has been developed to integrate the FLES link into the front-end FPGA designs. It implements the front-end logic interface as well as the link protocol. Prototypes of all Input Interface components have been implemented and integrated into the FLES test framework. This allows the implementation and evaluation of the foreseen CBM read-out chain.
Khan, Shadab; Manwaring, Preston; Borsic, Andrea; Halter, Ryan
2015-04-01
Electrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones. To this end, we developed a modular and reconfigurable data acquisition (DAQ) system using National Instruments' (NI) hardware and software modules, which offer inherent compatibility over generations of hardware and software revisions. The system can be configured to use up to 32-channels. This EIT system can be used to interchangeably apply current or voltage signal, and measure the tissue response in a semi-parallel fashion. A novel signal averaging algorithm, and 512-point fast Fourier transform (FFT) computation block was implemented on the FPGA. FFT output bins were classified as signal or noise. Signal bins constitute a tissue's response to a pure or mixed tone signal. Signal bins' data can be used for traditional applications, as well as synchronous frequency-difference imaging. Noise bins were used to compute noise power on the FPGA. Noise power represents a metric of signal quality, and can be used to ensure proper tissue-electrode contact. Allocation of these computationally expensive tasks to the FPGA reduced the required bandwidth between PC, and the FPGA for high frame rate EIT. In 16-channel configuration, with a signal-averaging factor of 8, the DAQ frame rate at 100 kHz exceeded 110 frames s (-1), and signal-to-noise ratio exceeded 90 dB across the spectrum. Reciprocity error was found to be for frequencies up to 1 MHz. Static imaging experiments were performed on a high-conductivity inclusion placed in a saline filled tank; the inclusion was clearly localized in the reconstructions obtained for both absolute current and voltage mode data.
Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kimesh, Matthew A.
2012-01-01
Modern hyperspectral imaging systems are able to acquire far more data than can be downlinked from a spacecraft. Onboard data compression helps to alleviate this problem, but requires a system capable of power efficiency and high throughput. Software solutions have limited throughput performance and are power-hungry. Dedicated hardware solutions can provide both high throughput and power efficiency, while taking the load off of the main processor. Thus a hardware compression system was developed. The implementation uses a field-programmable gate array (FPGA). The implementation is based on the fast lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral-Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which achieves excellent compression performance and has low complexity. This algorithm performs predictive compression using an adaptive filtering method, and uses adaptive Golomb coding. The implementation also packetizes the coded data. The FL algorithm is well suited for implementation in hardware. In the FPGA implementation, one sample is compressed every clock cycle, which makes for a fast and practical realtime solution for space applications. Benefits of this implementation are: 1) The underlying algorithm achieves a combination of low complexity and compression effectiveness that exceeds that of techniques currently in use. 2) The algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. 3) Hardware acceleration provides a throughput improvement of 10 to 100 times vs. the software implementation. A prototype of the compressor is available in software, but it runs at a speed that does not meet spacecraft requirements. The hardware implementation targets the Xilinx Virtex IV FPGAs, and makes the use of this compressor practical for Earth satellites as well as beyond-Earth missions with hyperspectral instruments.
Integration of multi-interface conversion channel using FPGA for modular photonic network
NASA Astrophysics Data System (ADS)
Janicki, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.
2010-09-01
The article discusses the integration of different types of interfaces with FPGA circuits using a reconfigurable communication platform. The solution has been implemented in practice in a single node of a distributed measurement system. Construction of communication platform has been presented with its selected hardware modules, described in VHDL and implemented in FPGA circuits. The graphical user interface (GUI) has been described that allows a user to control the operation of the system. In the final part of the article selected practical solutions have been introduced. The whole measurement system resides on multi-gigabit optical network. The optical network construction is highly modular, reconfigurable and scalable.
Hervás, Marcos; Alsina-Pagès, Rosa Ma; Alías, Francesc; Salvador, Martí
2017-06-08
Fast environmental variations due to climate change can cause mass decline or even extinctions of species, having a dramatic impact on the future of biodiversity. During the last decade, different approaches have been proposed to track and monitor endangered species, generally based on costly semi-automatic systems that require human supervision adding limitations in coverage and time. However, the recent emergence of Wireless Acoustic Sensor Networks (WASN) has allowed non-intrusive remote monitoring of endangered species in real time through the automatic identification of the sound they emit. In this work, an FPGA-based WASN centralized architecture is proposed and validated on a simulated operation environment. The feasibility of the architecture is evaluated in a case study designed to detect the threatened Botaurus stellaris among other 19 cohabiting birds species in The Parc Natural dels Aiguamolls de l'Empord.
A 128-channel Time-to-Digital Converter (TDC) inside a Virtex-5 FPGA on the GANDALF module
NASA Astrophysics Data System (ADS)
Büchele, M.; Fischer, H.; Gorzellik, M.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.
2012-03-01
The GANDALF 6U-VME64x/VXS module has been developed for the digitization and real time analysis of detector signals. To perform different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition and trigger generation, this module comes with exchangeable analog and digital mezzanine cards. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In contrast to common TDC concepts, the input signal is sampled by 16 equidistant phase-shifted clocks. A particular challenge of the design is the minimum skew routing of the input signals to the sampling flip-flops. We present measurement results for the differential nonlinearity and the time resolution of the TDC readout system.
A FPGA Implementation of the CAR-FAC Cochlear Model.
Xu, Ying; Thakur, Chetan S; Singh, Ram K; Hamilton, Tara Julia; Wang, Runchun M; van Schaik, André
2018-01-01
This paper presents a digital implementation of the Cascade of Asymmetric Resonators with Fast-Acting Compression (CAR-FAC) cochlear model. The CAR part simulates the basilar membrane's (BM) response to sound. The FAC part models the outer hair cell (OHC), the inner hair cell (IHC), and the medial olivocochlear efferent system functions. The FAC feeds back to the CAR by moving the poles and zeros of the CAR resonators automatically. We have implemented a 70-section, 44.1 kHz sampling rate CAR-FAC system on an Altera Cyclone V Field Programmable Gate Array (FPGA) with 18% ALM utilization by using time-multiplexing and pipeline parallelizing techniques and present measurement results here. The fully digital reconfigurable CAR-FAC system is stable, scalable, easy to use, and provides an excellent input stage to more complex machine hearing tasks such as sound localization, sound segregation, speech recognition, and so on.
A FPGA Implementation of the CAR-FAC Cochlear Model
Xu, Ying; Thakur, Chetan S.; Singh, Ram K.; Hamilton, Tara Julia; Wang, Runchun M.; van Schaik, André
2018-01-01
This paper presents a digital implementation of the Cascade of Asymmetric Resonators with Fast-Acting Compression (CAR-FAC) cochlear model. The CAR part simulates the basilar membrane's (BM) response to sound. The FAC part models the outer hair cell (OHC), the inner hair cell (IHC), and the medial olivocochlear efferent system functions. The FAC feeds back to the CAR by moving the poles and zeros of the CAR resonators automatically. We have implemented a 70-section, 44.1 kHz sampling rate CAR-FAC system on an Altera Cyclone V Field Programmable Gate Array (FPGA) with 18% ALM utilization by using time-multiplexing and pipeline parallelizing techniques and present measurement results here. The fully digital reconfigurable CAR-FAC system is stable, scalable, easy to use, and provides an excellent input stage to more complex machine hearing tasks such as sound localization, sound segregation, speech recognition, and so on. PMID:29692700
A space-efficient quantum computer simulator suitable for high-speed FPGA implementation
NASA Astrophysics Data System (ADS)
Frank, Michael P.; Oniciuc, Liviu; Meyer-Baese, Uwe H.; Chiorescu, Irinel
2009-05-01
Conventional vector-based simulators for quantum computers are quite limited in the size of the quantum circuits they can handle, due to the worst-case exponential growth of even sparse representations of the full quantum state vector as a function of the number of quantum operations applied. However, this exponential-space requirement can be avoided by using general space-time tradeoffs long known to complexity theorists, which can be appropriately optimized for this particular problem in a way that also illustrates some interesting reformulations of quantum mechanics. In this paper, we describe the design and empirical space/time complexity measurements of a working software prototype of a quantum computer simulator that avoids excessive space requirements. Due to its space-efficiency, this design is well-suited to embedding in single-chip environments, permitting especially fast execution that avoids access latencies to main memory. We plan to prototype our design on a standard FPGA development board.
FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking
Xu, Yilun; Wilcox, Russell; Byrd, John; ...
2017-11-20
Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less
FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yilun; Wilcox, Russell; Byrd, John
Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less
NASA Astrophysics Data System (ADS)
Yussup, N.; Ibrahim, M. M.; Lombigit, L.; Rahman, N. A. A.; Zin, M. R. M.
2014-02-01
Typically a system consists of hardware as the controller and software which is installed in the personal computer (PC). In the effective nuclear detection, the hardware involves the detection setup and the electronics used, with the software consisting of analysis tools and graphical display on PC. A data acquisition interface is necessary to enable the communication between the controller hardware and PC. Nowadays, Universal Serial Bus (USB) has become a standard connection method for computer peripherals and has replaced many varieties of serial and parallel ports. However the implementation of USB is complex. This paper describes the implementation of data acquisition interface between a field-programmable gate array (FPGA) board and a PC by exploiting the USB link of the FPGA board. The USB link is based on an FTDI chip which allows direct access of input and output to the Joint Test Action Group (JTAG) signals from a USB host and a complex programmable logic device (CPLD) with a 24 MHz clock input to the USB link. The implementation and results of using the USB link of FPGA board as the data interfacing are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yussup, N.; Ibrahim, M. M.; Lombigit, L.
Typically a system consists of hardware as the controller and software which is installed in the personal computer (PC). In the effective nuclear detection, the hardware involves the detection setup and the electronics used, with the software consisting of analysis tools and graphical display on PC. A data acquisition interface is necessary to enable the communication between the controller hardware and PC. Nowadays, Universal Serial Bus (USB) has become a standard connection method for computer peripherals and has replaced many varieties of serial and parallel ports. However the implementation of USB is complex. This paper describes the implementation of datamore » acquisition interface between a field-programmable gate array (FPGA) board and a PC by exploiting the USB link of the FPGA board. The USB link is based on an FTDI chip which allows direct access of input and output to the Joint Test Action Group (JTAG) signals from a USB host and a complex programmable logic device (CPLD) with a 24 MHz clock input to the USB link. The implementation and results of using the USB link of FPGA board as the data interfacing are discussed.« less
An Embedded Laser Marking Controller Based on ARM and FPGA Processors
Dongyun, Wang; Xinpiao, Ye
2014-01-01
Laser marking is an important branch of the laser information processing technology. The existing laser marking machine based on PC and WINDOWS operating system, are large and inconvenient to move. Still, it cannot work outdoors or in other harsh environments. In order to compensate for the above mentioned disadvantages, this paper proposed an embedded laser marking controller based on ARM and FPGA processors. Based on the principle of laser galvanometer scanning marking, the hardware and software were designed for the application. Experiments showed that this new embedded laser marking controller controls the galvanometers synchronously and could achieve precise marking. PMID:24772028
ISDEC-2 and ISDEC-3 controllers for HAWAII detectors
NASA Astrophysics Data System (ADS)
Burse, Mahesh; Ramaprakash, A. N.; Chordia, Pravinkumar; Punnadi, Sujit; Chillal, Kalpesh; Mestri, Vilas; Bharti, Rupali; Sinha, Sakya; Kohok, Abhay
2016-07-01
ISDEC-2 - IUCAA1 SIDECAR Drive Electronics Controller is an alternative for Teledyne make JADE2 based controller for HAWAII detectors. It is a ready to use complete package and has been developed keeping in mind general astronomical requirements and widely used observatory set-ups like preferred OS-Linux , multi-extension fits output with fully populated headers (with detector as well as telescope and observation specific information), etc. Actual exposure time is measured for each frame to a few tens of microsecond accuracy and put in the fits header. It also caters to several application specific requirements like fast resets, strip mode, multiple region readout with on board co-adding, etc. ISDEC-2 is designed to work at -40 deg. and is already in use at observatories worldwide. ISDEC-3 is an Artix-7 FPGA based SIDECAR Drive Electronics Controller currently being developed at IUCAA. It will retain all the functionality supported by ISDEC-2 and will also support the operation of H2RG in continuos, fast (32 output, 5 MSPS, 12 bit) mode. It will have a 5 Gbps USB 3.0 PC interface and 1 Gbps Ethernet interface for image data transfer from SIDECAR to host PC. Additionally, the board will have DDR-3 memory for on-board storage and processing. ISDEC-3 will be capable of handling two SIDECARs simultaneously (in sync) for H2RG slow modes.
NASA Astrophysics Data System (ADS)
Kelly, Jamie S.; Bowman, Hiroshi C.; Rao, Vittal S.; Pottinger, Hardy J.
1997-06-01
Implementation issues represent an unfamiliar challenge to most control engineers, and many techniques for controller design ignore these issues outright. Consequently, the design of controllers for smart structural systems usually proceeds without regard for their eventual implementation, thus resulting either in serious performance degradation or in hardware requirements that squander power, complicate integration, and drive up cost. The level of integration assumed by the Smart Patch further exacerbates these difficulties, and any design inefficiency may render the realization of a single-package sensor-controller-actuator system infeasible. The goal of this research is to automate the controller implementation process and to relieve the design engineer of implementation concerns like quantization, computational efficiency, and device selection. We specifically target Field Programmable Gate Arrays (FPGAs) as our hardware platform because these devices are highly flexible, power efficient, and reprogrammable. The current study develops an automated implementation sequence that minimizes hardware requirements while maintaining controller performance. Beginning with a state space representation of the controller, the sequence automatically generates a configuration bitstream for a suitable FPGA implementation. MATLAB functions optimize and simulate the control algorithm before translating it into the VHSIC hardware description language. These functions improve power efficiency and simplify integration in the final implementation by performing a linear transformation that renders the controller computationally friendly. The transformation favors sparse matrices in order to reduce multiply operations and the hardware necessary to support them; simultaneously, the remaining matrix elements take on values that minimize limit cycles and parameter sensitivity. The proposed controller design methodology is implemented on a simple cantilever beam test structure using FPGA hardware. The experimental closed loop response is compared with that of an automated FPGA controller implementation. Finally, we explore the integration of FPGA based controllers into a multi-chip module, which we believe represents the next step towards the realization of the Smart Patch.
Real-time machine vision system using FPGA and soft-core processor
NASA Astrophysics Data System (ADS)
Malik, Abdul Waheed; Thörnberg, Benny; Meng, Xiaozhou; Imran, Muhammad
2012-06-01
This paper presents a machine vision system for real-time computation of distance and angle of a camera from reference points in the environment. Image pre-processing, component labeling and feature extraction modules were modeled at Register Transfer (RT) level and synthesized for implementation on field programmable gate arrays (FPGA). The extracted image component features were sent from the hardware modules to a soft-core processor, MicroBlaze, for computation of distance and angle. A CMOS imaging sensor operating at a clock frequency of 27MHz was used in our experiments to produce a video stream at the rate of 75 frames per second. Image component labeling and feature extraction modules were running in parallel having a total latency of 13ms. The MicroBlaze was interfaced with the component labeling and feature extraction modules through Fast Simplex Link (FSL). The latency for computing distance and angle of camera from the reference points was measured to be 2ms on the MicroBlaze, running at 100 MHz clock frequency. In this paper, we present the performance analysis, device utilization and power consumption for the designed system. The FPGA based machine vision system that we propose has high frame speed, low latency and a power consumption that is much lower compared to commercially available smart camera solutions.
Hervás, Marcos; Alsina-Pagès, Rosa Ma; Alías, Francesc; Salvador, Martí
2017-01-01
Fast environmental variations due to climate change can cause mass decline or even extinctions of species, having a dramatic impact on the future of biodiversity. During the last decade, different approaches have been proposed to track and monitor endangered species, generally based on costly semi-automatic systems that require human supervision adding limitations in coverage and time. However, the recent emergence of Wireless Acoustic Sensor Networks (WASN) has allowed non-intrusive remote monitoring of endangered species in real time through the automatic identification of the sound they emit. In this work, an FPGA-based WASN centralized architecture is proposed and validated on a simulated operation environment. The feasibility of the architecture is evaluated in a case study designed to detect the threatened Botaurus stellaris among other 19 cohabiting birds species in The Parc Natural dels Aiguamolls de l’Empordà, showing an averaged recognition accuracy of 91% over 2h 55’ of representative data. The FPGA-based feature extraction implementation allows the system to process data from 30 acoustic sensors in real time with an affordable cost. Finally, several open questions derived from this research are discussed to be considered for future works. PMID:28594373
FPGA-based multiprocessor system for injection molding control.
Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P; Osornio-Rios, Roque A
2012-10-18
The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected.
FPGA-based distributed computing microarchitecture for complex physical dynamics investigation.
Borgese, Gianluca; Pace, Calogero; Pantano, Pietro; Bilotta, Eleonora
2013-09-01
In this paper, we present a distributed computing system, called DCMARK, aimed at solving partial differential equations at the basis of many investigation fields, such as solid state physics, nuclear physics, and plasma physics. This distributed architecture is based on the cellular neural network paradigm, which allows us to divide the differential equation system solving into many parallel integration operations to be executed by a custom multiprocessor system. We push the number of processors to the limit of one processor for each equation. In order to test the present idea, we choose to implement DCMARK on a single FPGA, designing the single processor in order to minimize its hardware requirements and to obtain a large number of easily interconnected processors. This approach is particularly suited to study the properties of 1-, 2- and 3-D locally interconnected dynamical systems. In order to test the computing platform, we implement a 200 cells, Korteweg-de Vries (KdV) equation solver and perform a comparison between simulations conducted on a high performance PC and on our system. Since our distributed architecture takes a constant computing time to solve the equation system, independently of the number of dynamical elements (cells) of the CNN array, it allows us to reduce the elaboration time more than other similar systems in the literature. To ensure a high level of reconfigurability, we design a compact system on programmable chip managed by a softcore processor, which controls the fast data/control communication between our system and a PC Host. An intuitively graphical user interface allows us to change the calculation parameters and plot the results.
Efficient Smart CMOS Camera Based on FPGAs Oriented to Embedded Image Processing
Bravo, Ignacio; Baliñas, Javier; Gardel, Alfredo; Lázaro, José L.; Espinosa, Felipe; García, Jorge
2011-01-01
This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC) microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely. PMID:22163739
Remote hardware-reconfigurable robotic camera
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.
2001-10-01
In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.
FPS-RAM: Fast Prefix Search RAM-Based Hardware for Forwarding Engine
NASA Astrophysics Data System (ADS)
Zaitsu, Kazuya; Yamamoto, Koji; Kuroda, Yasuto; Inoue, Kazunari; Ata, Shingo; Oka, Ikuo
Ternary content addressable memory (TCAM) is becoming very popular for designing high-throughput forwarding engines on routers. However, TCAM has potential problems in terms of hardware and power costs, which limits its ability to deploy large amounts of capacity in IP routers. In this paper, we propose new hardware architecture for fast forwarding engines, called fast prefix search RAM-based hardware (FPS-RAM). We designed FPS-RAM hardware with the intent of maintaining the same search performance and physical user interface as TCAM because our objective is to replace the TCAM in the market. Our RAM-based hardware architecture is completely different from that of TCAM and has dramatically reduced the costs and power consumption to 62% and 52%, respectively. We implemented FPS-RAM on an FPGA to examine its lookup operation.
Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian
2016-06-27
Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.
FPGA-based Upgrade to RITS-6 Control System, Designed with EMP Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold D. Anderson, John T. Williams
2009-07-01
The existing control system for the RITS-6, a 20-MA 3-MV pulsed-power accelerator located at Sandia National Laboratories, was built as a system of analog switches because the operators needed to be close enough to the machine to hear pulsed-power breakdowns, yet the electromagnetic pulse (EMP) emitted would disable any processor-based solutions. The resulting system requires operators to activate and deactivate a series of 110-V relays manually in a complex order. The machine is sensitive to both the order of operation and the time taken between steps. A mistake in either case would cause a misfire and possible machine damage. Basedmore » on these constraints, a field-programmable gate array (FPGA) was chosen as the core of a proposed upgrade to the control system. An FPGA is a series of logic elements connected during programming. Based on their connections, the elements can mimic primitive logic elements, a process called synthesis. The circuit is static; all paths exist simultaneously and do not depend on a processor. This should make it less sensitive to EMP. By shielding it and using good electromagnetic interference-reduction practices, it should continue to operate well in the electrically noisy environment. The FPGA has two advantages over the existing system. In manual operation mode, the synthesized logic gates keep the operators in sequence. In addition, a clock signal and synthesized countdown circuit provides an automated sequence, with adjustable delays, for quickly executing the time-critical portions of charging and firing. The FPGA is modeled as a set of states, each state being a unique set of values for the output signals. The state is determined by the input signals, and in the automated segment by the value of the synthesized countdown timer, with the default mode placing the system in a safe configuration. Unlike a processor-based system, any system stimulus that results in an abort situation immediately executes a shutdown, with only a tens-of-nanoseconds delay to propagate across the FPGA. This paper discusses the design, installation, and testing of the proposed system upgrade, including failure statistics and modifications to the original design.« less
Beam Instrument Development System
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOOLITTLE, LAWRENCE; HUANG, GANG; DU, QIANG
Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jinyuan
A digitization scheme of sub-microampere current using a commercial comparator with adjustable hysteresis and FPGA-based Wave Union TDC has been tested. The comparator plus a few passive components forms a current controlled oscillator and the input current is sent into the hysteresis control pin. The input current is converted into the transition times of the oscillations, which are digitized with a Wave Union TDC in FPGA and the variation of the transition times reflects the variation of the input current. Preliminary tests show that input charges < 25 fC can be measured at > 50 M samples/s without a preamplifier.
NASA Astrophysics Data System (ADS)
Wojenski, Andrzej; Kasprowicz, Grzegorz; Pozniak, Krzysztof T.; Romaniuk, Ryszard
2013-10-01
The paper describes a concept of automatic firmware generation for reconfigurable measurement systems, which uses FPGA devices and measurement cards in FMC standard. Following sections are described in details: automatic HDL code generation for FPGA devices, automatic communication interfaces implementation, HDL drivers for measurement cards, automatic serial connection between multiple measurement backplane boards, automatic build of memory map (address space), automatic generated firmware management. Presented solutions are required in many advanced measurement systems, like Beam Position Monitors or GEM detectors. This work is a part of a wider project for automatic firmware generation and management of reconfigurable systems. Solutions presented in this paper are based on previous publication in SPIE.
FPGA wavelet processor design using language for instruction-set architectures (LISA)
NASA Astrophysics Data System (ADS)
Meyer-Bäse, Uwe; Vera, Alonzo; Rao, Suhasini; Lenk, Karl; Pattichis, Marios
2007-04-01
The design of an microprocessor is a long, tedious, and error-prone task consisting of typically three design phases: architecture exploration, software design (assembler, linker, loader, profiler), architecture implementation (RTL generation for FPGA or cell-based ASIC) and verification. The Language for instruction-set architectures (LISA) allows to model a microprocessor not only from instruction-set but also from architecture description including pipelining behavior that allows a design and development tool consistency over all levels of the design. To explore the capability of the LISA processor design platform a.k.a. CoWare Processor Designer we present in this paper three microprocessor designs that implement a 8/8 wavelet transform processor that is typically used in today's FBI fingerprint compression scheme. We have designed a 3 stage pipelined 16 bit RISC processor (NanoBlaze). Although RISC μPs are usually considered "fast" processors due to design concept like constant instruction word size, deep pipelines and many general purpose registers, it turns out that DSP operations consume essential processing time in a RISC processor. In a second step we have used design principles from programmable digital signal processor (PDSP) to improve the throughput of the DWT processor. A multiply-accumulate operation along with indirect addressing operation were the key to achieve higher throughput. A further improvement is possible with today's FPGA technology. Today's FPGAs offer a large number of embedded array multipliers and it is now feasible to design a "true" vector processor (TVP). A multiplication of two vectors can be done in just one clock cycle with our TVP, a complete scalar product in two clock cycles. Code profiling and Xilinx FPGA ISE synthesis results are provided that demonstrate the essential improvement that a TVP has compared with traditional RISC or PDSP designs.
Optimization on fixed low latency implementation of the GBT core in FPGA
Chen, K.; Chen, H.; Wu, W.; ...
2017-07-11
We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less
Optimization on fixed low latency implementation of the GBT core in FPGA
NASA Astrophysics Data System (ADS)
Chen, K.; Chen, H.; Wu, W.; Xu, H.; Yao, L.
2017-07-01
In the upgrade of ATLAS experiment [1], the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link [2]. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, the GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA [3]. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system [4, 5] is used to interface the front-end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. The system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.
Design of video interface conversion system based on FPGA
NASA Astrophysics Data System (ADS)
Zhao, Heng; Wang, Xiang-jun
2014-11-01
This paper presents a FPGA based video interface conversion system that enables the inter-conversion between digital and analog video. Cyclone IV series EP4CE22F17C chip from Altera Corporation is used as the main video processing chip, and single-chip is used as the information interaction control unit between FPGA and PC. The system is able to encode/decode messages from the PC. Technologies including video decoding/encoding circuits, bus communication protocol, data stream de-interleaving and de-interlacing, color space conversion and the Camera Link timing generator module of FPGA are introduced. The system converts Composite Video Broadcast Signal (CVBS) from the CCD camera into Low Voltage Differential Signaling (LVDS), which will be collected by the video processing unit with Camera Link interface. The processed video signals will then be inputted to system output board and displayed on the monitor.The current experiment shows that it can achieve high-quality video conversion with minimum board size.
FPGA-Based Multiprocessor System for Injection Molding Control
Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J.; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P.; Osornio-Rios, Roque A.
2012-01-01
The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected. PMID:23202036
Roll Angle Estimation Using Thermopiles for a Flight Controlled Mortar
2012-06-01
Using Xilinx’s System generator, the entire design was implemented at a relatively high level within Malab’s Simulink. This allowed VHDL code to...thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA). These results demonstrate the...accurately estimated by processing the thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA
Design of area array CCD image acquisition and display system based on FPGA
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming
2014-09-01
With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.
Fast particles identification in programmable form at level-0 trigger by means of the 3D-Flow system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crosetto, Dario B.
1998-10-30
The 3D-Flow Processor system is a new, technology-independent concept in very fast, real-time system architectures. Based on either an FPGA or an ASIC implementation, it can address, in a fully programmable manner, applications where commercially available processors would fail because of throughput requirements. Possible applications include filtering-algorithms (pattern recognition) from the input of multiple sensors, as well as moving any input validated by these filtering-algorithms to a single output channel. Both operations can easily be implemented on a 3D-Flow system to achieve a real-time processing system with a very short lag time. This system can be built either with off-the-shelfmore » FPGAs or, for higher data rates, with CMOS chips containing 4 to 16 processors each. The basic building block of the system, a 3D-Flow processor, has been successfully designed in VHDL code written in ''Generic HDL'' (mostly made of reusable blocks that are synthesizable in different technologies, or FPGAs), to produce a netlist for a four-processor ASIC featuring 0.35 micron CBA (Ceil Base Array) technology at 3.3 Volts, 884 mW power dissipation at 60 MHz and 63.75 mm sq. die size. The same VHDL code has been targeted to three FPGA manufacturers (Altera EPF10K250A, ORCA-Lucent Technologies 0R3T165 and Xilinx XCV1000). A complete set of software tools, the 3D-Flow System Manager, equally applicable to ASIC or FPGA implementations, has been produced to provide full system simulation, application development, real-time monitoring, and run-time fault recovery. Today's technology can accommodate 16 processors per chip in a medium size die, at a cost per processor of less than $5 based on the current silicon die/size technology cost.« less
Logic design and implementation of FPGA for a high frame rate ultrasound imaging system
NASA Astrophysics Data System (ADS)
Liu, Anjun; Wang, Jing; Lu, Jian-Yu
2002-05-01
Recently, a method has been developed for high frame rate medical imaging [Jian-yu Lu, ``2D and 3D high frame rate imaging with limited diffraction beams,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(4), 839-856 (1997)]. To realize this method, a complicated system [multiple-channel simultaneous data acquisition, large memory in each channel for storing up to 16 seconds of data at 40 MHz and 12-bit resolution, time-variable-gain (TGC) control, Doppler imaging, harmonic imaging, as well as coded transmissions] is designed. Due to the complexity of the system, field programmable gate array (FPGA) (Xilinx Spartn II) is used. In this presentation, the design and implementation of the FPGA for the system will be reported. This includes the synchronous dynamic random access memory (SDRAM) controller and other system controllers, time sharing for auto-refresh of SDRAMs to reduce peak power, transmission and imaging modality selections, ECG data acquisition and synchronization, 160 MHz delay locked loop (DLL) for accurate timing, and data transfer via either a parallel port or a PCI bus for post image processing. [Work supported in part by Grant 5RO1 HL60301 from NIH.
Adaptive Proactive Inhibitory Control for Embedded Real-Time Applications
Yang, Shufan; McGinnity, T. Martin; Wong-Lin, KongFatt
2012-01-01
Psychologists have studied the inhibitory control of voluntary movement for many years. In particular, the countermanding of an impending action has been extensively studied. In this work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type model based on current findings in animal electrophysiological and human psychophysical experiments. We then implement this model on a field-programmable gate array (FPGA) prototyping system, using dedicated real-time hardware circuitry. Our results show that the FPGA-based implementation can run in real-time while achieving behavioral performance qualitatively suggestive of the animal experiments. Implementing such biological inhibitory control in an embedded device can lead to the development of control systems that may be used in more realistic cognitive robotics or in neural prosthetic systems aiding human movement control. PMID:22701420
A novel approach to Hough Transform for implementation in fast triggers
NASA Astrophysics Data System (ADS)
Pozzobon, Nicola; Montecassiano, Fabio; Zotto, Pierluigi
2016-10-01
Telescopes of position sensitive detectors are common layouts in charged particles tracking, and programmable logic devices, such as FPGAs, represent a viable choice for the real-time reconstruction of track segments in such detector arrays. A compact implementation of the Hough Transform for fast triggers in High Energy Physics, exploiting a parameter reduction method, is proposed, targeting the reduction of the needed storage or computing resources in current, or next future, state-of-the-art FPGA devices, while retaining high resolution over a wide range of track parameters. The proposed approach is compared to a Standard Hough Transform with particular emphasis on their application to muon detectors. In both cases, an original readout implementation is modeled.
FPGA Sequencer for Radar Altimeter Applications
NASA Technical Reports Server (NTRS)
Berkun, Andrew C.; Pollard, Brian D.; Chen, Curtis W.
2011-01-01
A sequencer for a radar altimeter provides accurate attitude information for a reliable soft landing of the Mars Science Laboratory (MSL). This is a field-programmable- gate-array (FPGA)-only implementation. A table loaded externally into the FPGA controls timing, processing, and decision structures. Radar is memory-less and does not use previous acquisitions to assist in the current acquisition. All cycles complete in exactly 50 milliseconds, regardless of range or whether a target was found. A RAM (random access memory) within the FPGA holds instructions for up to 15 sets. For each set, timing is run, echoes are processed, and a comparison is made. If a target is seen, more detailed processing is run on that set. If no target is seen, the next set is tried. When all sets have been run, the FPGA terminates and waits for the next 50-millisecond event. This setup simplifies testing and improves reliability. A single vertex chip does the work of an entire assembly. Output products require minor processing to become range and velocity. This technology is the heart of the Terminal Descent Sensor, which is an integral part of the Entry Decent and Landing system for MSL. In addition, it is a strong candidate for manned landings on Mars or the Moon.
The Application Design of Solar Radio Spectrometer Based on FPGA
NASA Astrophysics Data System (ADS)
Du, Q. F.; Chen, R. J.; Zhao, Y. C.; Feng, S. W.; Chen, Y.; Song, Y.
2017-10-01
The Solar radio spectrometer is the key instrument to observe solar radio. By programing the computer software, we control the AD signal acquisition card which is based on FPGA to get a mass of data. The data are transferred by using PCI-E port. This program has realized the function of timing data collection, finding data in specific time and controlling acquisition meter in real time. It can also map the solar radio power intensity graph. By doing the experiment, we verify the reliability of solar radio spectrum instrument, in the meanwhile, the instrument simplifies the operation in observing the sun.
Advanced Wireless Integrated Navy Network (AWINN)
2005-12-31
handle high data rates using COTS FPGAs . The effort of the Cross-Layer Optimization group is focused on cross-layer design of UWB for position location...From Transmitter Boar1 To Receiver BoardTransmittedl Receiver i i.. Switch Lowpass -20 dB FPGA -2dB Filter Gain Controlled Gain Variable Attenuator... FPGA Code * April - June 2006 "o Demonstrate Transceiver Operation "o Integrate Transceiver with Other AWINN Activities Personnel: Chris R. Anderson
FPGA applications for single dish activity at Medicina radio telescopes
NASA Astrophysics Data System (ADS)
Bartolini, M.; Naldi, G.; Mattana, A.; Maccaferri, A.; De Biaggi, M.
FPGA technologies are gaining major attention in the recent years in the field of radio astronomy. At Medicina radio telescopes, FPGAs have been used in the last ten years for a number of purposes and in this article we will take into exam the applications developed and installed for the Medicina Single Dish 32m Antenna: these range from high performance digital signal processing to instrument control developed on top of smaller FPGAs.
HIFU Monitoring and Control with Dual-Mode Ultrasound Arrays
NASA Astrophysics Data System (ADS)
Casper, Andrew Jacob
The biological effects of high-intensity focused ultrasound (HIFU) have been known and studied for decades. HIFU has been shown capable of treating a wide variety of diseases and disorders. However, despite its demonstrated potential, HIFU has been slow to gain clinical acceptance. This is due, in part, to the difficulty associated with robustly monitoring and controlling the delivery of the HIFU energy. The non-invasive nature of the surgery makes the assessment of treatment progression difficult, leading to long treatment times and a significant risk of under treatment. This thesis research develops new techniques and systems for robustly monitoring HIFU therapies for the safe and efficacious delivery of the intended treatment. Systems and algorithms were developed for the two most common modes of HIFU delivery systems: single-element and phased array applicators. Delivering HIFU with a single element transducer is a widely used technique in HIFU therapies. The simplicity of a single element offers many benefits in terms of cost and overall system complexity. Typical monitoring schemes rely on an external device (e.g. diagnostic ultrasound or MRI) to assess the progression of therapy. The research presented in this thesis explores using the same element to both deliver and monitor the HIFU therapy. The use of a dual-mode ultrasound transducer (DMUT) required the development of an FPGA based single-channel arbitrary waveform generator and high-speed data acquisition unit. Data collected from initial uncontrolled ablations led to the development of monitoring and control algorithms which were implemented directly on the FPGA. Close integration between the data acquisition and arbitrary waveform units allowed for fast, low latency control over the ablation process. Results are presented that demonstrate control of HIFU therapies over a broad range of intensities and in multiple in vitro tissues. The second area of investigation expands the DMUT research to an ultrasound phased-array. The phased-array allows for electronic steering of the HIFU focus and imaging of the acoustic medium. Investigating the dual-mode ultrasound array (DMUA) required the design and construction of a novel ultrasound-guided focused ultrasound (USgFUS) platform. The platform consisted of custom hardware designed for the unique requirements of operating a phased-array in both therapeutic and imaging modes. The platform also required the development of FPGA based signal processing and GPU based beamforming algorithms for online monitoring of the therapy process. The results presented in this thesis represent the first demonstration of a real-time USgFUS platform based around a DMUA. Experimental imaging and therapy results from series of animal experiments, including a 12 animal GLP study, are presented. In addition, in vitro control results, which build upon the DMUT work, are presented.
High density, multi-range analog output Versa Module Europa board for control system applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kundan, E-mail: kundan@iuac.res.in; Das, Ajit Lal
2014-01-15
A new VMEDAC64, 12-bit 64 channel digital-to-analog converter, a Versa Module Europa (VME) module, features 64 analog voltage outputs with user selectable multiple ranges, has been developed for control system applications at Inter University Accelerator Centre. The FPGA (Field Programmable Gate Array) is the module's core, i.e., it implements the DAC control logic and complexity of VMEbus slave interface logic. The VMEbus slave interface and DAC control logic are completely designed and implemented on a single FPGA chip to achieve high density of 64 channels in a single width VME module and will reduce the module count in the controlmore » system applications, and hence will reduce the power consumption and cost of overall system. One of our early design goals was to develop the VME interface such that it can be easily integrated with the peripheral devices and satisfy the timing specifications of VME standard. The modular design of this module reduces the amount of time required to develop other custom modules for control system. The VME slave interface is written as a single component inside FPGA which will be used as a basic building block for any VMEbus interface project. The module offers multiple output voltage ranges depending upon the requirement. The output voltage range can be reduced or expanded by writing range selection bits in the control register. The module has programmable refresh rate and by default hold capacitors in the sample and hold circuit for each channel are charged periodically every 7.040 ms (i.e., update frequency 284 Hz). Each channel has software controlled output switch which disconnects analog output from the field. The modularity in the firmware design on FPGA makes the debugging very easy. On-board DC/DC converters are incorporated for isolated power supply for the analog section of the board.« less
Fast Offset Laser Phase-Locking System
NASA Technical Reports Server (NTRS)
Shaddock, Daniel; Ware, Brent
2008-01-01
Figure 1 shows a simplified block diagram of an improved optoelectronic system for locking the phase of one laser to that of another laser with an adjustable offset frequency specified by the user. In comparison with prior systems, this system exhibits higher performance (including higher stability) and is much easier to use. The system is based on a field-programmable gate array (FPGA) and operates almost entirely digitally; hence, it is easily adaptable to many different systems. The system achieves phase stability of less than a microcycle. It was developed to satisfy the phase-stability requirement for a planned spaceborne gravitational-wave-detecting heterodyne laser interferometer (LISA). The system has potential terrestrial utility in communications, lidar, and other applications. The present system includes a fast phasemeter that is a companion to the microcycle-accurate one described in High-Accuracy, High-Dynamic-Range Phase-Measurement System (NPO-41927), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 22. In the present system (as in the previously reported one), beams from the two lasers (here denoted the master and slave lasers) interfere on a photodiode. The heterodyne photodiode output is digitized and fed to the fast phasemeter, which produces suitably conditioned, low-latency analog control signals which lock the phase of the slave laser to that of the master laser. These control signals are used to drive a thermal and a piezoelectric transducer that adjust the frequency and phase of the slave-laser output. The output of the photodiode is a heterodyne signal at the difference between the frequencies of the two lasers. (The difference is currently required to be less than 20 MHz due to the Nyquist limit of the current sampling rate. We foresee few problems in doubling this limit using current equipment.) Within the phasemeter, the photodiode-output signal is digitized to 15 bits at a sampling frequency of 40 MHz by use of the same analog-to-digital converter (ADC) as that of the previously reported phasemeter. The ADC output is passed to the FPGA, wherein the signal is demodulated using a digitally generated oscillator signal at the offset locking frequency specified by the user. The demodulated signal is low-pass filtered, decimated to a sample rate of 1 MHz, then filtered again. The decimated and filtered signal is converted to an analog output by a 1 MHz, 16-bit digital-to-analog converters. After a simple low-pass filter, these analog signals drive the thermal and piezoelectric transducers of the laser.
Enhanced Control for Local Helicity Injection on the Pegasus ST
NASA Astrophysics Data System (ADS)
Pierren, C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.
2017-10-01
Local helicity injection (LHI) experiments on Pegasus rely upon programmable control of a 250 MVA modular power supply system that drives the electromagnets and helicity injection systems. Precise control of the central solenoid is critical to experimental campaigns that test the LHI Taylor relaxation limit and the coupling efficiency of LHI-produced plasmas to Ohmic current drive. Enhancement and expansion of the present control system is underway using field programmable gate array (FPGA) technology for digital logic and control, coupled to new 10 MHz optical-to-digital transceivers for semiconductor level device communication. The system accepts optical command signals from existing analog feedback controllers, transmits them to multiple devices in parallel H-bridges, and aggregates their status signals for fault detection. Present device-level multiplexing/de-multiplexing and protection logic is extended to include bridge-level protections with the FPGA. An input command filter protects against erroneous and/or spurious noise generated commands that could otherwise cause device failures. Fault registration and response times with the FPGA system are 25 ns. Initial system testing indicates an increased immunity to power supply induced noise, enabling plasma operations at higher working capacitor bank voltage. This can increase the applied helicity injection drive voltage, enable longer pulse lengths and improve Ohmic loop voltage control. Work supported by US DOE Grant DE-FG02-96ER54375.
A versatile small form factor twisted-pair TFC FMC for MTCA AMCs
NASA Astrophysics Data System (ADS)
Meder, L.; Lebedev, J.; Becker, J.
2017-03-01
In continuous readout systems of particle physics experiments, the provision of a common clock and time reference and the distribution of critical low latency messages to the processing and fronted layers of the readout are crucial tasks. In the context of the Compressed Baryonic Matter (CBM) experiment, a versatile small form factor Timing and Fast-Control (TFC) interfacing FPGA Mezzanine Card (FMC) was developed, offering bidirectional twisted-pair (TP) links for the communication between TFC nodes. Also a versatile clocking including voltage controlled oscillators and a connection to the telecommunication clock lines of mTCA crates are available. Being designed for both TFC Master and Slaves, the card allows rapid system developments without additional Slave hardware circuits. Measurements show that it is possible to transmit over cable lengths of 25 m at a rate of 240 Mbit/s for all data channels simultaneously. A TFC Master-Slave system using two of these cards can be synchronized with a precision of ±10 ps to an user-defined phase setpoint.
A CMOS high speed imaging system design based on FPGA
NASA Astrophysics Data System (ADS)
Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui
2015-10-01
CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.
FPGA-based prototype storage system with phase change memory
NASA Astrophysics Data System (ADS)
Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang
2016-10-01
With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.
NASA Astrophysics Data System (ADS)
Badoni, D.; Bizzarri, M.; Bonaiuto, V.; Checcucci, B.; De Simone, N.; Federici, L.; Fucci, A.; Paoluzzi, G.; Papi, A.; Piccini, M.; Salamon, A.; Salina, G.; Santovetti, E.; Sargeni, F.; Venditti, S.
2014-01-01
The goal of the NA62 experiment at the CERN SPS is the measurement of the Branching Ratio of the very rare kaon decay K+→π+ ν bar nu with a 10% accuracy by collecting 100 events in two years of data taking. An efficient photon veto system is needed to reject the K+→π+ π0 background and a liquid krypton electromagnetic calorimeter will be used for this purpose in the 1-10 mrad angular region. The L0 trigger system for the calorimeter consists of a peak reconstruction algorithm implemented on FPGA by using a mixed parallel architecture based on soft core Altera NIOS II embedded processors together with custom VHDL modules. This solution allows an efficient and flexible reconstruction of the energy-deposition peak. The system will be totally composed of 36 TEL62 boards, 108 mezzanine cards and 215 high-performance FPGAs. We describe the design, current status and the results of the first performance tests.
A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikulski, M., E-mail: marekp@ethz.ch; Shiroka, T.; Ott, H.-R.
2014-09-15
We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHzmore » passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.« less
A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics.
Pikulski, M; Shiroka, T; Ott, H-R; Mesot, J
2014-09-01
We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHz passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.
Design and implementation of an optical Gaussian noise generator
NASA Astrophysics Data System (ADS)
Za~O, Leonardo; Loss, Gustavo; Coelho, Rosângela
2009-08-01
A design of a fast and accurate optical Gaussian noise generator is proposed and demonstrated. The noise sample generation is based on the Box-Muller algorithm. The functions implementation was performed on a high-speed Altera Stratix EP1S25 field-programmable gate array (FPGA) development kit. It enabled the generation of 150 million 16-bit noise samples per second. The Gaussian noise generator required only 7.4% of the FPGA logic elements, 1.2% of the RAM memory, 0.04% of the ROM memory, and a laser source. The optical pulses were generated by a laser source externally modulated by the data bit samples using the frequency-shift keying technique. The accuracy of the noise samples was evaluated for different sequences size and confidence intervals. The noise sample pattern was validated by the Bhattacharyya distance (Bd) and the autocorrelation function. The results showed that the proposed design of the optical Gaussian noise generator is very promising to evaluate the performance of optical communications channels with very low bit-error-rate values.
FPGA design of correlation-based pattern recognition
NASA Astrophysics Data System (ADS)
Jridi, Maher; Alfalou, Ayman
2017-05-01
Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.
Random number generators for large-scale parallel Monte Carlo simulations on FPGA
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, F.; Liu, B.
2018-05-01
Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.
Real-time laser cladding control with variable spot size
NASA Astrophysics Data System (ADS)
Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.
2014-03-01
Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.
NASA Astrophysics Data System (ADS)
Zheng, Yong; Chen, Yan
2013-10-01
To realize the design of dynamic acquisition system for real-time detection of transmission chain error is very important to improve the machining accuracy of machine tool. In this paper, the USB controller and FPGA is used for hardware platform design, combined with LabVIEW to design user applications, NI-VISA is taken for develop USB drivers, and ultimately achieve the dynamic acquisition system design of transmission error
Implementing a Digital Phasemeter in an FPGA
NASA Technical Reports Server (NTRS)
Rao, Shanti R.
2008-01-01
Firmware for implementing a digital phasemeter within a field-programmable gate array (FPGA) has been devised. In the original application of this firmware, the phase that one seeks to measure is the difference between the phases of two nominally-equal-frequency heterodyne signals generated by two interferometers. In that application, zero-crossing detectors convert the heterodyne signals to trains of rectangular pulses, the two pulse trains are fed to a fringe counter (the major part of the phasemeter) controlled by a clock signal having a frequency greater than the heterodyne frequency, and the fringe counter computes a time-averaged estimate of the difference between the phases of the two pulse trains. The firmware also does the following: Causes the FPGA to compute the frequencies of the input signals; Causes the FPGA to implement an Ethernet (or equivalent) transmitter for readout of phase and frequency values; and Provides data for use in diagnosis of communication failures. The readout rate can be set, by programming, to a value between 250 Hz and 1 kHz. Network addresses can be programmed by the user.
Design and Implementation of a Mechanical Control System for the Scanning Microwave Limb Sounder
NASA Technical Reports Server (NTRS)
Bowden, William
2011-01-01
The Scanning Microwave Limb Sounder (SMLS) will use technological improvements in low noise mixers to provide precise data on the Earth's atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a real time control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with a FPGA-based setup, we chose to use a low cost processor development kit manufactured by XMOS. The XMOS architecture allows parallel execution of multiple tasks on separate threads-making it ideal for this application and is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. For these reasons, the XMOS technology is an attractive, cost effective, alternative to FPGA-based technologies for this design and similar rapid prototyping projects.
FPGA platform for MEMS Disc Resonance Gyroscope (DRG) control
NASA Astrophysics Data System (ADS)
Keymeulen, Didier; Peay, Chris; Foor, David; Trung, Tran; Bakhshi, Alireza; Withington, Phil; Yee, Karl; Terrile, Rich
2008-04-01
Inertial navigation systems based upon optical gyroscopes tend to be expensive, large, power consumptive, and are not long lived. Micro-Electromechanical Systems (MEMS) based gyros do not have these shortcomings; however, until recently, the performance of MEMS based gyros had been below navigation grade. Boeing and JPL have been cooperating since 1997 to develop high performance MEMS gyroscopes for miniature, low power space Inertial Reference Unit applications. The efforts resulted in demonstration of a Post Resonator Gyroscope (PRG). This experience led to the more compact Disc Resonator Gyroscope (DRG) for further reduced size and power with potentially increased performance. Currently, the mass, volume and power of the DRG are dominated by the size of the electronics. This paper will detail the FPGA based digital electronics architecture and its implementation for the DRG which will allow reduction of size and power and will increase performance through a reduction in electronics noise. Using the digital control based on FPGA, we can program and modify in real-time the control loop to adapt to the specificity of each particular gyro and the change of the mechanical characteristic of the gyro during its life time.
FPGA implementation of a ZigBee wireless network control interface to transmit biomedical signals
NASA Astrophysics Data System (ADS)
Gómez López, M. A.; Goy, C. B.; Bolognini, P. C.; Herrera, M. C.
2011-12-01
In recent years, cardiac hemodynamic monitors have incorporated new technologies based on wireless sensor networks which can implement different types of communication protocols. More precisely, a digital conductance catheter system recently developed adds a wireless ZigBee module (IEEE 802.15.4 standards) to transmit cardiac signals (ECG, intraventricular pressure and volume) which would allow the physicians to evaluate the patient's cardiac status in a noninvasively way. The aim of this paper is to describe a control interface, implemented in a FPGA device, to manage a ZigBee wireless network. ZigBee technology is used due to its excellent performance including simplicity, low-power consumption, short-range transmission and low cost. FPGA internal memory stores 8-bit signals with which the control interface prepares the information packets. These data were send to the ZigBee END DEVICE module that receives and transmits wirelessly to the external COORDINATOR module. Using an USB port, the COORDINATOR sends the signals to a personal computer for displaying. Each functional block of control interface was assessed by means of temporal diagrams. Three biological signals, organized in packets and converted to RS232 serial protocol, were sucessfully transmitted and displayed in a PC screen. For this purpose, a custom-made graphical software was designed using LabView.
FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model.
Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid
2014-01-01
A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well.
Fast data transmission from serial data acquisition for the GEM detector system
NASA Astrophysics Data System (ADS)
Kolasinski, Piotr; Pozniak, Krzysztof T.; Czarski, Tomasz; Byszuk, Adrian; Chernyshova, Maryna; Kasprowicz, Grzegorz; Krawczyk, Rafal D.; Wojenski, Andrzej; Zabolotny, Wojciech
2015-09-01
This article proposes new method of storing data and transferring it to PC in the X-ray GEM detector system. The whole process is performed by FPGA chips (Spartan-6 series from Xilinx). Comparing to previous methods, new approach allows to store much more data in the system. New, improved implementation of the communication algorithm significantly increases transfer rate between system and PC. In PC data is merged and processed by MATLAB. The structure of firmware implemented in the FPGAs is described.
Economical Implementation of a Filter Engine in an FPGA
NASA Technical Reports Server (NTRS)
Kowalski, James E.
2009-01-01
A logic design has been conceived for a field-programmable gate array (FPGA) that would implement a complex system of multiple digital state-space filters. The main innovative aspect of this design lies in providing for reuse of parts of the FPGA hardware to perform different parts of the filter computations at different times, in such a manner as to enable the timely performance of all required computations in the face of limitations on available FPGA hardware resources. The implementation of the digital state-space filter involves matrix vector multiplications, which, in the absence of the present innovation, would ordinarily necessitate some multiplexing of vector elements and/or routing of data flows along multiple paths. The design concept calls for implementing vector registers as shift registers to simplify operand access to multipliers and accumulators, obviating both multiplexing and routing of data along multiple paths. Each vector register would be reused for different parts of a calculation. Outputs would always be drawn from the same register, and inputs would always be loaded into the same register. A simple state machine would control each filter. The output of a given filter would be passed to the next filter, accompanied by a "valid" signal, which would start the state machine of the next filter. Multiple filter modules would share a multiplication/accumulation arithmetic unit. The filter computations would be timed by use of a clock having a frequency high enough, relative to the input and output data rate, to provide enough cycles for matrix and vector arithmetic operations. This design concept could prove beneficial in numerous applications in which digital filters are used and/or vectors are multiplied by coefficient matrices. Examples of such applications include general signal processing, filtering of signals in control systems, processing of geophysical measurements, and medical imaging. For these and other applications, it could be advantageous to combine compact FPGA digital filter implementations with other application-specific logic implementations on single integrated-circuit chips. An FPGA could readily be tailored to implement a variety of filters because the filter coefficients would be loaded into memory at startup.
Estimating the circuit delay of FPGA with a transfer learning method
NASA Astrophysics Data System (ADS)
Cui, Xiuhai; Liu, Datong; Peng, Yu; Peng, Xiyuan
2017-10-01
With the increase of FPGA (Field Programmable Gate Array, FPGA) functionality, FPGA has become an on-chip system platform. Due to increase the complexity of FPGA, estimating the delay of FPGA is a very challenge work. To solve the problems, we propose a transfer learning estimation delay (TLED) method to simplify the delay estimation of different speed grade FPGA. In fact, the same style different speed grade FPGA comes from the same process and layout. The delay has some correlation among different speed grade FPGA. Therefore, one kind of speed grade FPGA is chosen as a basic training sample in this paper. Other training samples of different speed grade can get from the basic training samples through of transfer learning. At the same time, we also select a few target FPGA samples as training samples. A general predictive model is trained by these samples. Thus one kind of estimation model is used to estimate different speed grade FPGA circuit delay. The framework of TRED includes three phases: 1) Building a basic circuit delay library which includes multipliers, adders, shifters, and so on. These circuits are used to train and build the predictive model. 2) By contrasting experiments among different algorithms, the forest random algorithm is selected to train predictive model. 3) The target circuit delay is predicted by the predictive model. The Artix-7, Kintex-7, and Virtex-7 are selected to do experiments. Each of them includes -1, -2, -2l, and -3 different speed grade. The experiments show the delay estimation accuracy score is more than 92% with the TLED method. This result shows that the TLED method is a feasible delay assessment method, especially in the high-level synthesis stage of FPGA tool, which is an efficient and effective delay assessment method.
NASA Astrophysics Data System (ADS)
Szplet, R.; Kalisz, J.; Jachna, Z.
2009-02-01
We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second.
Development of FEB Test Platform for ATLAS New Small Wheel Upgrade
NASA Astrophysics Data System (ADS)
Lu, Houbing; Hu, Kun; Wang, Xu; Li, Feng; Han, Liang; Jin, Ge
2016-10-01
This concept of test platform is based on the test requirements of the front-end board (FEB) which is developed for the phase I upgrade of the small Thin Gap Chamber(sTGC) detector on New Small Wheel(NSW) of ATLAS. The front-end electronics system of sTGC consists of 1,536 FEBs with about 322,000 readout of strips, wires and pads in total. A test platform for FEB with up to 256 channels has been designed to keep the testing efficiency at a controllable level. We present the circuit model architecture of the platform, and its functions and implementation as well. The firmware based on Field Programmable Gate Array (FPGA) and the software based on PC have been developed, and basic test methods have been established. FEB readout measurements have been performed in analog injection from the test platform, which will provide a fast and efficient test method for the production of FEB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, K.; Chen, H.; Wu, W.
We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal
Open Computing Language (OpenCL) is a high-level language that enables software programmers to explore Field Programmable Gate Arrays (FPGAs) for application acceleration. The Intel FPGA software development kit (SDK) for OpenCL allows a user to specify applications at a high level and explore the performance of low-level hardware acceleration. In this report, we present the FPGA performance and power consumption results of the single-precision floating-point vector add OpenCL kernel using the Intel FPGA SDK for OpenCL on the Nallatech 385A FPGA board. The board features an Arria 10 FPGA. We evaluate the FPGA implementations using the compute unit duplication andmore » kernel vectorization optimization techniques. On the Nallatech 385A FPGA board, the maximum compute kernel bandwidth we achieve is 25.8 GB/s, approximately 76% of the peak memory bandwidth. The power consumption of the FPGA device when running the kernels ranges from 29W to 42W.« less
NASA Technical Reports Server (NTRS)
Al Hassan, Mohammad; Britton, Paul; Hatfield, Glen Spencer; Novack, Steven D.
2017-01-01
Field Programmable Gate Arrays (FPGAs) integrated circuits (IC) are one of the key electronic components in today's sophisticated launch and space vehicle complex avionic systems, largely due to their superb reprogrammable and reconfigurable capabilities combined with relatively low non-recurring engineering costs (NRE) and short design cycle. Consequently, FPGAs are prevalent ICs in communication protocols and control signal commands. This paper will identify reliability concerns and high level guidelines to estimate FPGA total failure rates in a launch vehicle application. The paper will discuss hardware, hardware description language, and radiation induced failures. The hardware contribution of the approach accounts for physical failures of the IC. The hardware description language portion will discuss the high level FPGA programming languages and software/code reliability growth. The radiation portion will discuss FPGA susceptibility to space environment radiation.
Fast Inference of Deep Neural Networks in FPGAs for Particle Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duarte, Javier; Han, Song; Harris, Philip
Recent results at the Large Hadron Collider (LHC) have pointed to enhanced physics capabilities through the improvement of the real-time event processing techniques. Machine learning methods are ubiquitous and have proven to be very powerful in LHC physics, and particle physics as a whole. However, exploration of the use of such techniques in low-latency, low-power FPGA hardware has only just begun. FPGA-based trigger and data acquisition (DAQ) systems have extremely low, sub-microsecond latency requirements that are unique to particle physics. We present a case study for neural network inference in FPGAs focusing on a classifier for jet substructure which wouldmore » enable, among many other physics scenarios, searches for new dark sector particles and novel measurements of the Higgs boson. While we focus on a specific example, the lessons are far-reaching. We develop a package based on High-Level Synthesis (HLS) called hls4ml to build machine learning models in FPGAs. The use of HLS increases accessibility across a broad user community and allows for a drastic decrease in firmware development time. We map out FPGA resource usage and latency versus neural network hyperparameters to identify the problems in particle physics that would benefit from performing neural network inference with FPGAs. For our example jet substructure model, we fit well within the available resources of modern FPGAs with a latency on the scale of 100 ns.« less
Qiu, Kang-Fu
2017-01-01
This study presents design, digital implementation and performance validation of a lead-lag controller for a 2-degree-of-freedom (DOF) translational optical image stabilizer (OIS) installed with a digital image sensor in mobile camera phones. Nowadays, OIS is an important feature of modern commercial mobile camera phones, which aims to mechanically reduce the image blur caused by hand shaking while shooting photos. The OIS developed in this study is able to move the imaging lens by actuating its voice coil motors (VCMs) at the required speed to the position that significantly compensates for imaging blurs by hand shaking. The compensation proposed is made possible by first establishing the exact, nonlinear equations of motion (EOMs) for the OIS, which is followed by designing a simple lead-lag controller based on established nonlinear EOMs for simple digital computation via a field-programmable gate array (FPGA) board in order to achieve fast response. Finally, experimental validation is conducted to show the favorable performance of the designed OIS; i.e., it is able to stabilize the lens holder to the desired position within 0.02 s, which is much less than previously reported times of around 0.1 s. Also, the resulting residual vibration is less than 2.2–2.5 μm, which is commensurate to the very small pixel size found in most of commercial image sensors; thus, significantly minimizing image blur caused by hand shaking. PMID:29027950
Wang, Jeremy H-S; Qiu, Kang-Fu; Chao, Paul C-P
2017-10-13
This study presents design, digital implementation and performance validation of a lead-lag controller for a 2-degree-of-freedom (DOF) translational optical image stabilizer (OIS) installed with a digital image sensor in mobile camera phones. Nowadays, OIS is an important feature of modern commercial mobile camera phones, which aims to mechanically reduce the image blur caused by hand shaking while shooting photos. The OIS developed in this study is able to move the imaging lens by actuating its voice coil motors (VCMs) at the required speed to the position that significantly compensates for imaging blurs by hand shaking. The compensation proposed is made possible by first establishing the exact, nonlinear equations of motion (EOMs) for the OIS, which is followed by designing a simple lead-lag controller based on established nonlinear EOMs for simple digital computation via a field-programmable gate array (FPGA) board in order to achieve fast response. Finally, experimental validation is conducted to show the favorable performance of the designed OIS; i.e., it is able to stabilize the lens holder to the desired position within 0.02 s, which is much less than previously reported times of around 0.1 s. Also, the resulting residual vibration is less than 2.2-2.5 μm, which is commensurate to the very small pixel size found in most of commercial image sensors; thus, significantly minimizing image blur caused by hand shaking.
High frequency signal acquisition and control system based on DSP+FPGA
NASA Astrophysics Data System (ADS)
Liu, Xiao-qi; Zhang, Da-zhi; Yin, Ya-dong
2017-10-01
This paper introduces a design and implementation of high frequency signal acquisition and control system based on DSP + FPGA. The system supports internal/external clock and internal/external trigger sampling. It has a maximum sampling rate of 400MBPS and has a 1.4GHz input bandwidth for the ADC. Data can be collected continuously or periodically in systems and they are stored in DDR2. At the same time, the system also supports real-time acquisition, the collected data after digital frequency conversion and Cascaded Integrator-Comb (CIC) filtering, which then be sent to the CPCI bus through the high-speed DSP, can be assigned to the fiber board for subsequent processing. The system integrates signal acquisition and pre-processing functions, which uses high-speed A/D, high-speed DSP and FPGA mixed technology and has a wide range of uses in data acquisition and recording. In the signal processing, the system can be seamlessly connected to the dedicated processor board. The system has the advantages of multi-selectivity, good scalability and so on, which satisfies the different requirements of different signals in different projects.
Configurable test bed design for nanosats to qualify commercial and customized integrated circuits
NASA Astrophysics Data System (ADS)
Guareschi, W.; Azambuja, J.; Kastensmidt, F.; Reis, R.; Durao, O.; Schuch, N.; Dessbesel, G.
The use of small satellites has increased substantially in recent years due to the reduced cost of their development and launch, as well to the flexibility offered by commercial components. The test bed is a platform that allows components to be evaluated and tested in space. It is a flexible platform, which can be adjusted to a wide quantity of components and interfaces. This work proposes the design and implementation of a test bed suitable for test and evaluation of commercial circuits used in nanosatellites. The development of such a platform allows developers to reduce the efforts in the integration of components and therefore speed up the overall system development time. The proposed test bed is a configurable platform implemented using a Field Programmable Gate Array (FPGA) that controls the communication protocols and connections to the devices under test. The Flash-based ProASIC3E FPGA from Microsemi is used as a control system. This adaptive system enables the control of new payloads and softcores for test and validation in space. Thus, the integration can be easily performed through configuration parameters. It is intended for modularity. Each component connected to the test bed can have a specific interface programmed using a hardware description language (HDL). The data of each component is stored in embedded memories. Each component has its own memory space. The size of the allocated memory can be also configured. The data transfer priority can be set and packaging can be added to the logic, when needed. Communication with peripheral devices and with the Onboard Computer (OBC) is done through the pre-implemented protocols, such as I2C (Inter-Integrated Circuit), SPI (Serial Peripheral Interface) and external memory control. In loco primary tests demonstrated the control system's functionality. The commercial ProASIC3E FPGA family is not space-flight qualified, but tests have been made under Total Ionizing Dose (TID) showing its robustness up to 25 kr- ds (Si). When considering proton and heavy ions, flash-based FPGAs provide immunity to configuration loss and low bit-flips susceptibility in flash memory. In this first version of the test bed two components are connected to the controller FPGA: a commercial magnetometer and a hardened test chip. The embedded FPGA implements a Single Event Effects (SEE) hardened microprocessor and few other soft-cores to be used in space. This test bed will be used in the NanoSatC-BR1, the first Brazilian Cubesat scheduled to be launched in mid-2013.
Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J
2008-09-01
Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.
Wirtz, Sebastian F; Cunha, Adauto P A; Labusch, Marc; Marzun, Galina; Barcikowski, Stephan; Söffker, Dirk
2018-06-01
Today, the demand for continuous monitoring of valuable or safety critical equipment is increasing in many industrial applications due to safety and economical requirements. Therefore, reliable in-situ measurement techniques are required for instance in Structural Health Monitoring (SHM) as well as process monitoring and control. Here, current challenges are related to the processing of sensor data with a high data rate and low latency. In particular, measurement and analyses of Acoustic Emission (AE) are widely used for passive, in-situ inspection. Advantages of AE are related to its sensitivity to different micro-mechanical mechanisms on the material level. However, online processing of AE waveforms is computationally demanding. The related equipment is typically bulky, expensive, and not well suited for permanent installation. The contribution of this paper is the development of a Field Programmable Gate Array (FPGA)-based measurement system using ZedBoard devlopment kit with Zynq-7000 system on chip for embedded implementation of suitable online processing algorithms. This platform comprises a dual-core Advanced Reduced Instruction Set Computer Machine (ARM) architecture running a Linux operating system and FPGA fabric. A FPGA-based hardware implementation of the discrete wavelet transform is realized to accelerate processing the AE measurements. Key features of the system are low cost, small form factor, and low energy consumption, which makes it suitable to serve as field-deployed measurement and control device. For verification of the functionality, a novel automatically realized adjustment of the working distance during pulsed laser ablation in liquids is established as an example. A sample rate of 5 MHz is achieved at 16 bit resolution.
A minimal SATA III Host Controller based on FPGA
NASA Astrophysics Data System (ADS)
Liu, Hailiang
2018-03-01
SATA (Serial Advanced Technology Attachment) is an advanced serial bus which has a outstanding performance in transmitting high speed real-time data applied in Personal Computers, Financial Industry, astronautics and aeronautics, etc. In this express, a minimal SATA III Host Controller based on Xilinx Kintex 7 serial FPGA is designed and implemented. Compared to the state-of-art, registers utilization are reduced 25.3% and LUTs utilization are reduced 65.9%. According to the experimental results, the controller works precisely and steady with the reading bandwidth of up to 536 MB per second and the writing bandwidth of up to 512 MB per second, both of which are close to the maximum bandwidth of the SSD(Solid State Disk) device. The host controller is very suitable for high speed data transmission and mass data storage.
Fast Image Texture Classification Using Decision Trees
NASA Technical Reports Server (NTRS)
Thompson, David R.
2011-01-01
Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.
NASA Astrophysics Data System (ADS)
Butkowski, Łukasz; Vogel, Vladimir; Schlarb, Holger; Szabatin, Jerzy
2017-06-01
The driving engine of the superconducting accelerator of the European X-ray free electron laser (XFEL) is a set of 27 radio frequency (RF) stations. Each of the underground RF stations consists of a multibeam horizontal klystron that can provide up to 10 MW of power at 1.3 GHz. Klystrons are sensitive devices with a limited lifetime and a high mean time between failures. In real operation, the lifetime of the tube can be significantly reduced because of failures. The special fast protection klystron lifetime management (KLM) system has been developed to minimize the influence of service conditions on the lifetime of klystrons. The main task of this system is to detect all events which can destroy the tube as quickly as possible, and switch off the driving RF signal or the high voltage. Detection of events is based on a comparison of the value of the real signal obtained at the system output with the value estimated on the basis of a high-power RF amplifier model and input signals. The KLM system has been realized in field-programmable gate array (FPGA) and implemented in XFEL. Implementation is based on the standard low-level RF micro telecommunications computing architecture (MTCA.4 or xTCA). The main part of the paper focuses on an estimation of the klystron model and the implementation of KLM in FPGA. The results of the performance of the KLM system will also be presented.
An FPGA-based demodulation system for fiber Bragg grating sensing
NASA Astrophysics Data System (ADS)
Li, Yongqian; He, Haitao; Yao, Guozhen
2010-11-01
This paper introduces the principle of fiber Bragg grating (FBG) sensor, designs and realizes a compact wavelength demodulation system for FBG sensing using a Fabry-Perot (F-P) filter. FPGA is adopted as a main controller to control a D/A converter to produce a sawtooth wave for driving the F-P filter, and to design the data acquisition circuit for collecting the output signals of photoelectric detector. The collected data is processed after transmitting to PC through the data transmission circuit, and then the demodulation of FBG wavelength is completed finally. This compact FBG wavelength demodulation system is expected to have wide applications in on-line monitoring of electric power equipment and large structures.
Update on the DIII-D ECH system: experiments, gyrotrons, advanced diagnostics, and controls
NASA Astrophysics Data System (ADS)
Lohr, John; Brambila, Rigoberto; Cengher, Mirela; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Torrezan, Antonio; Ives, Lawrence; Reed, Michael; Blank, Monica; Felch, Kevin; Parisuaña, Claudia; LeViness, Alexandra
2017-08-01
The ECH system on DIII-D is continuing to be upgraded, while simultaneously being operated nearly daily for plasma experiments. The latest major hardware addition is a new 117.5 GHz gyrotron, which generated 1.7 MW for short pulses during factory testing. A new gyrotron control system based on Field Programmable Gate Array (FPGA) technology with very high speed system data acquisition has significantly increased the flexibility and reliability of individual gyrotron operation. We have improved the performance of the fast mirror scanning, both by increasing the scan speeds and by adding new algorithms for controlling the aiming using commands generated by the Plasma Control System (PCS). The system is used for transport studies, ELM control, current profile control, non-inductive current generation, suppression of MHD modes, startup assist, plasma density control, and other applications. A program of protective measures, which has been in place for more than two years, has eliminated damage to hardware and diagnostics caused by overdense operation. Other activities not directly related to fusion research have used the ECH system to test components, study methods for improving production of semiconductor junctions and materials, and test the feasibility of using ground based microwave systems to power satellites into orbit.
Fast semivariogram computation using FPGA architectures
NASA Astrophysics Data System (ADS)
Lagadapati, Yamuna; Shirvaikar, Mukul; Dong, Xuanliang
2015-02-01
The semivariogram is a statistical measure of the spatial distribution of data and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. The semivariogram is a plot of semivariances for different lag distances between pixels. A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h. Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O(n2). Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz, but they can perform tens of thousands of calculations per clock cycle while operating in the low range of power. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. The design consists of several modules dedicated to the constituent computational tasks. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. Anisotropic semivariogram implementation is anticipated to be an extension of the current architecture, ostensibly based on refinements to the current modules. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from MRI scans are utilized for the experiments. Computational speedup is measured with respect to Matlab implementation on a personal computer with an Intel i7 multi-core processor. Preliminary simulation results indicate that a significant advantage in speed can be attained by the architectures, making the algorithm viable for implementation in medical devices
Intelligent Controller for a Compact Wide-Band Compositional Infrared Fourier Transform Spectrometer
NASA Astrophysics Data System (ADS)
Yiu, P.; Keymeulen, D.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.
2013-12-01
This paper presents the design and integration of an intelligent controller for CIRIS (Compositional InfraRed Interferometric Spectrometer) on a stand-alone field programmable gate array (FPGA) architecture. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. This design eliminates the need for periodically accelerating/decelerating mirrors inherent to canonical Michelson designs and allows for a compact and robust device that is intrinsically radiation-hard, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 μm) on planetary exploration missions. A traditional Michelson FTS passes a monochromatic light source (incident light from the sample) through a system of refractors/mirrors followed by a mirror moving linearly in the plane of the incident light. This process selectively blocks certain wavelengths and permits measurement of the sample's absorption rates as a function of the wavelengths blocked to produce an 'inteferogram.' This is subsequently processed using a Fourier transform to obtain the sample's spectrum and ascertain the sample's composition. With our prototype CIRIS instrument in development at Design and Prototype Inc. and NASA-JPL, we propose the use of a rotating refractor spinning at a constant velocity to variably phase shift incident light to the detector as an alternative to a linearly moving mirror. This design eliminates sensitivity to vibrations, minimizing path length and non-linear errors due to minor perturbations to the system, in addition to facilitating compact design critical to meeting the strict volume requirements of spacecraft. Further, this is done without sacrificing spectral resolution or throughput when compared to Michelson or diffractive designs. While Michelson designs typically achieve very high wavelength resolution, the intended application of our instrument (spectroscopic investigation of Europa's surface) places higher emphasis on the greater wavelength band sensitivity in the 2-12 μm range provided by a rotating refractor design. The instrument's embedded microcontroller is implemented on a flight-qualified VIRTEX-5 FPGA with the aim of sampling the instrument's detector and optical rotary encoder in order to construct an interferogram. Subsequent signal processing, including a Fast Fourier Transform (FFT), noise reduction/averaging, and spectral calibration techniques are applied in real-time to compose the sample spectrum. Deployment of an FPGA eliminates the instrument's need to share computing resources with the main spacecraft computer and takes advantage of the low power consumption and high-throughput hardware parallelism intrinsic to FPGA applications. This parallelism facilitates the high speed, low latency sampling/signal processing critical to instrument precision with minimal power consumption to achieve highly sensitive spectra within the constraints of available spacecraft resources. The instrument is characterized in simulated space-flight conditions and we demonstrate that this technology is capable of meeting the strict volume, sensitivity, and power consumption requirements for implementation in scientific space systems.
FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model
Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid
2014-01-01
A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well. PMID:25484854
NASA Technical Reports Server (NTRS)
Roosta, Ramin; Wang, Xinchen; Sadigursky, Michael; Tracton, Phil
2004-01-01
Field Programmable Gate Arrays (FPGA) have played increasingly important roles in military and aerospace applications. Xilinx SRAM-based FPGAs have been extensively used in commercial applications. They have been used less frequently in space flight applications due to their susceptibility to single-event upsets. Reliability of these devices in space applications is a concern that has not been addressed. The objective of this project is to design a fully programmable hardware/software platform that allows (but is not limited to) comprehensive static/dynamic burn-in test of Virtex-II 3000 FPGAs, at speed test and SEU test. Conventional methods test very few discrete AC parameters (primarily switching) of a given integrated circuit. This approach will test any possible configuration of the FPGA and any associated performance parameters. It allows complete or partial re-programming of the FPGA and verification of the program by using read back followed by dynamic test. Designers have full control over which functional elements of the FPGA to stress. They can completely simulate all possible types of configurations/functions. Another benefit of this platform is that it allows collecting information on elevation of the junction temperature as a function of gate utilization, operating frequency and functionality. A software tool has been implemented to demonstrate the various features of the system. The software consists of three major parts: the parallel interface driver, main system procedure and a graphical user interface (GUI).
Design of CMOS imaging system based on FPGA
NASA Astrophysics Data System (ADS)
Hu, Bo; Chen, Xiaolai
2017-10-01
In order to meet the needs of engineering applications for high dynamic range CMOS camera under the rolling shutter mode, a complete imaging system is designed based on the CMOS imaging sensor NSC1105. The paper decides CMOS+ADC+FPGA+Camera Link as processing architecture and introduces the design and implementation of the hardware system. As for camera software system, which consists of CMOS timing drive module, image acquisition module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The ISE 14.6 emulator ISim is used in the simulation of signals. The imaging experimental results show that the system exhibits a 1280*1024 pixel resolution, has a frame frequency of 25 fps and a dynamic range more than 120dB. The imaging quality of the system satisfies the requirement of the index.
Zhang, Zhen; Ma, Cheng; Zhu, Rong
2017-08-23
Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.
A single-board NMR spectrometer based on a software defined radio architecture
NASA Astrophysics Data System (ADS)
Tang, Weinan; Wang, Weimin
2011-01-01
A single-board software defined radio (SDR) spectrometer for nuclear magnetic resonance (NMR) is presented. The SDR-based architecture, realized by combining a single field programmable gate array (FPGA) and a digital signal processor (DSP) with peripheral radio frequency (RF) front-end circuits, makes the spectrometer compact and reconfigurable. The DSP, working as a pulse programmer, communicates with a personal computer via a USB interface and controls the FPGA through a parallel port. The FPGA accomplishes digital processing tasks such as a numerically controlled oscillator (NCO), digital down converter (DDC) and gradient waveform generator. The NCO, with agile control of phase, frequency and amplitude, is part of a direct digital synthesizer that is used to generate an RF pulse. The DDC performs quadrature demodulation, multistage low-pass filtering and gain adjustment to produce a bandpass signal (receiver bandwidth from 3.9 kHz to 10 MHz). The gradient waveform generator is capable of outputting shaped gradient pulse waveforms and supports eddy-current compensation. The spectrometer directly acquires an NMR signal up to 30 MHz in the case of baseband sampling and is suitable for low-field (<0.7 T) application. Due to the featured SDR architecture, this prototype has flexible add-on ability and is expected to be suitable for portable NMR systems.
Zhang, Zhen; Zhu, Rong
2017-01-01
Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas. PMID:28832522
NASA Astrophysics Data System (ADS)
Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.
2014-12-01
Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.
Evaluation of FPGA to PC feedback loop
NASA Astrophysics Data System (ADS)
Linczuk, Pawel; Zabolotny, Wojciech M.; Wojenski, Andrzej; Krawczyk, Rafal D.; Pozniak, Krzysztof T.; Chernyshova, Maryna; Czarski, Tomasz; Gaska, Michal; Kasprowicz, Grzegorz; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol
2017-08-01
The paper presents the evaluation study of the performance of the data transmission subsystem which can be used in High Energy Physics (HEP) and other High-Performance Computing (HPC) systems. The test environment consisted of Xilinx Artix-7 FPGA and server-grade PC connected via the PCIe 4xGen2 bus. The DMA engine was based on the Xilinx DMA for PCI Express Subsystem1 controlled by the modified Xilinx XDMA kernel driver.2 The research is focused on the influence of the system configuration on achievable throughput and latency of data transfer.
Super-Resolution in Plenoptic Cameras Using FPGAs
Pérez, Joel; Magdaleno, Eduardo; Pérez, Fernando; Rodríguez, Manuel; Hernández, David; Corrales, Jaime
2014-01-01
Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA) devices using VHDL (very high speed integrated circuit (VHSIC) hardware description language). With this technology, we obtain an acceleration of several orders of magnitude using its extremely high-performance signal processing capability through parallelism and pipeline architecture. The system has been developed using generics of the VHDL language. This allows a very versatile and parameterizable system. The system user can easily modify parameters such as data width, number of microlenses of the plenoptic camera, their size and shape, and the super-resolution factor. The speed of the algorithm in FPGA has been successfully compared with the execution using a conventional computer for several image sizes and different 3D refocusing planes. PMID:24841246
Super-resolution in plenoptic cameras using FPGAs.
Pérez, Joel; Magdaleno, Eduardo; Pérez, Fernando; Rodríguez, Manuel; Hernández, David; Corrales, Jaime
2014-05-16
Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA) devices using VHDL (very high speed integrated circuit (VHSIC) hardware description language). With this technology, we obtain an acceleration of several orders of magnitude using its extremely high-performance signal processing capability through parallelism and pipeline architecture. The system has been developed using generics of the VHDL language. This allows a very versatile and parameterizable system. The system user can easily modify parameters such as data width, number of microlenses of the plenoptic camera, their size and shape, and the super-resolution factor. The speed of the algorithm in FPGA has been successfully compared with the execution using a conventional computer for several image sizes and different 3D refocusing planes.
NASA Astrophysics Data System (ADS)
Bostrom, G.; Atkinson, D.; Rice, A.
2015-04-01
Cavity ringdown spectroscopy (CRDS) uses the exponential decay constant of light exiting a high-finesse resonance cavity to determine analyte concentration, typically via absorption. We present a high-throughput data acquisition system that determines the decay constant in near real time using the discrete Fourier transform algorithm on a field programmable gate array (FPGA). A commercially available, high-speed, high-resolution, analog-to-digital converter evaluation board system is used as the platform for the system, after minor hardware and software modifications. The system outputs decay constants at maximum rate of 4.4 kHz using an 8192-point fast Fourier transform by processing the intensity decay signal between ringdown events. We present the details of the system, including the modifications required to adapt the evaluation board to accurately process the exponential waveform. We also demonstrate the performance of the system, both stand-alone and incorporated into our existing CRDS system. Details of FPGA, microcontroller, and circuitry modifications are provided in the Appendix and computer code is available upon request from the authors.
An FPGA computing demo core for space charge simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jinyuan; Huang, Yifei; /Fermilab
2009-01-01
In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computedmore » using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.« less
NASA Astrophysics Data System (ADS)
Nogrette, F.; Heurteau, D.; Chang, R.; Bouton, Q.; Westbrook, C. I.; Sellem, R.; Clément, D.
2015-11-01
We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 106 s-1 and three-dimensional reconstruction of the coordinates up to 3.2 × 106 particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) μm at a flux of 3 × 105 particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.
2017-03-01
This project aims to exploit the parallel computing power of a commercial Graphics Processing Unit (GPU) to implement fast pattern matching in the Ring Imaging Cherenkov (RICH) detector for the level 0 (L0) trigger of the NA62 experiment. In this approach, the ring-fitting algorithm is seedless, being fed with raw RICH data, with no previous information on the ring position from other detectors. Moreover, since the L0 trigger is provided with a more elaborated information than a simple multiplicity number, it results in a higher selection power. Two methods have been studied in order to reduce the data transfer latency from the readout boards of the detector to the GPU, i.e., the use of a dedicated NIC device driver with very low latency and a direct data transfer protocol from a custom FPGA-based NIC to the GPU. The performance of the system, developed through the FPGA approach, for multi-ring Cherenkov online reconstruction obtained during the NA62 physics runs is presented.
Fast modular data acquisition system for GEM-2D detector
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.
2014-11-01
A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.
Controller and data acquisition system for SIDECAR ASIC driven HAWAII detectors
NASA Astrophysics Data System (ADS)
Ramaprakash, Anamparambu; Burse, Mahesh; Chordia, Pravin; Chillal, Kalpesh; Kohok, Abhay; Mestry, Vilas; Punnadi, Sujit; Sinha, Sakya
2010-07-01
SIDECAR is an Application Specific Integrated Circuit (ASIC), which can be used for control and data acquisition from near-IR HAWAII detectors offered by Teledyne Imaging Sensors (TIS), USA. The standard interfaces provided by Teledyne are COM API and socket servers running under MS Windows platform. These interfaces communicate to the ASIC (and the detector) through an intermediate card called JWST ASIC Drive Electronics (JADE2). As part of an ongoing programme of several years, for developing astronomical focal plane array (CCDs, CMOS and Hybrid) controllers and data acquisition systems (CDAQs), IUCAA is currently developing the next generation controllers employing Virtex-5 family FPGA devices. We present here the capabilities which are built into these new CDAQs for handling HAWAII detectors. In our system, the computer which hosts the application programme, user interface and device drivers runs on a Linux platform. It communicates through a hot-pluggable USB interface (with an optional optical fibre extender) to the FPGA-based card which replaces the JADE2. The FPGA board in turn, controls the SIDECAR ASIC and through it a HAWAII-2RG detector, both of which are located in a cryogenic test Dewar set up which is liquid nitrogen cooled. The system can acquire data over 1, 4, or 32 readout channels, with or without binning, at different speeds, can define sub-regions for readout, offers various readout schemes like Fowler sampling, up-theramp etc. In this paper, we present the performance results obtained from a prototype system.
Digital Fingerprinting of Field Programmable Gate Arrays
2008-03-01
48 vii Page Appendix B . Tranistional Sampling Outputs . . . . . . . . . . . . . . 49 Appendix C. VHDL Entities...cumulative sampling outputs by pin . . . . . . . . . . . 48 B .1. FPGA outputs for Sample 0, Clk 18 . . . . . . . . . . . . . . . 49 B .2. FPGA outputs for...Sample 0, Clk 19 . . . . . . . . . . . . . . . 49 B .3. FPGA outputs for Sample 0, Clk 21 . . . . . . . . . . . . . . . 50 B .4. FPGA outputs for Sample
GPU real-time processing in NA62 trigger system
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.
2017-01-01
A commercial Graphics Processing Unit (GPU) is used to build a fast Level 0 (L0) trigger system tested parasitically with the TDAQ (Trigger and Data Acquisition systems) of the NA62 experiment at CERN. In particular, the parallel computing power of the GPU is exploited to perform real-time fitting in the Ring Imaging CHerenkov (RICH) detector. Direct GPU communication using a FPGA-based board has been used to reduce the data transmission latency. The performance of the system for multi-ring reconstrunction obtained during the NA62 physics run will be presented.
NASA Technical Reports Server (NTRS)
Wilson, William C.
1999-01-01
The NASA Langley Research Center's Wind Tunnel Reinvestment project plans to shrink the existing data acquisition electronics to fit inside a wind tunnel model. Space limitations within a model necessitate a distributed system of Application Specific Integrated Circuits (ASICs) rather than a centralized system based on PC boards. This thesis will focus on the design of the prototype of the communication Controller board. A portion of the communication Controller board is to be used as the basis of an ASIC design. The communication Controller board will communicate between the internal model modules and the external data acquisition computer. This board is based around an Field Programmable Gate Array (FPGA), to allow for reconfigurability. In addition to the FPGA, this board contains buffer Random Access Memory (RAM), configuration memory (EEPROM), drivers for the communications ports, and passive components.
Evaluation of CHO Benchmarks on the Arria 10 FPGA using Intel FPGA SDK for OpenCL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal
The OpenCL standard is an open programming model for accelerating algorithms on heterogeneous computing system. OpenCL extends the C-based programming language for developing portable codes on different platforms such as CPU, Graphics processing units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to abstract away the complex FPGA-based development flow for a high-level software development flow. Users can focus on the design of hardware-accelerated kernel functions in OpenCL and then direct the tools to generate the low-level FPGA implementations. The approach makes themore » FPGA-based development more accessible to software users as the needs for hybrid computing using CPUs and FPGAs are increasing. It can also significantly reduce the hardware development time as users can evaluate different ideas with high-level language without deep FPGA domain knowledge. Benchmarking of OpenCL-based framework is an effective way for analyzing the performance of system by studying the execution of the benchmark applications. CHO is a suite of benchmark applications that provides support for OpenCL [1]. The authors presented CHO as an OpenCL port of the CHStone benchmark. Using Altera OpenCL (AOCL) compiler to synthesize the benchmark applications, they listed the resource usage and performance of each kernel that can be successfully synthesized by the compiler. In this report, we evaluate the resource usage and performance of the CHO benchmark applications using the Intel FPGA SDK for OpenCL and Nallatech 385A FPGA board that features an Arria 10 FPGA device. The focus of the report is to have a better understanding of the resource usage and performance of the kernel implementations using Arria-10 FPGA devices compared to Stratix-5 FPGA devices. In addition, we also gain knowledge about the limitations of the current compiler when it fails to synthesize a benchmark application.« less
Board Saver for Use with Developmental FPGAs
NASA Technical Reports Server (NTRS)
Berkun, Andrew
2009-01-01
A device denoted a board saver has been developed as a means of reducing wear and tear of a printed-circuit board onto which an antifuse field programmable gate array (FPGA) is to be eventually soldered permanently after a number of design iterations. The need for the board saver or a similar device arises because (1) antifuse-FPGA design iterations are common and (2) repeated soldering and unsoldering of FPGAs on the printed-circuit board to accommodate design iterations can wear out the printed-circuit board. The board saver is basically a solderable/unsolderable FPGA receptacle that is installed temporarily on the printed-circuit board. The board saver is, more specifically, a smaller, square-ring-shaped, printed-circuit board (see figure) that contains half via holes one for each contact pad along its periphery. As initially fabricated, the board saver is a wider ring containing full via holes, but then it is milled along its outer edges, cutting the via holes in half and laterally exposing their interiors. The board saver is positioned in registration with the designated FPGA footprint and each via hole is soldered to the outer portion of the corresponding FPGA contact pad on the first-mentioned printed-circuit board. The via-hole/contact joints can be inspected visually and can be easily unsoldered later. The square hole in the middle of the board saver is sized to accommodate the FPGA, and the thickness of the board saver is the same as that of the FPGA. Hence, when a non-final FPGA is placed in the square hole, the combination of the non-final FPGA and the board saver occupy no more area and thickness than would a final FPGA soldered directly into its designated position on the first-mentioned circuit board. The contact leads of a non-final FPGA are not bent and are soldered, at the top of the board saver, to the corresponding via holes. A non-final FPGA can readily be unsoldered from the board saver and replaced by another one. Once the final FPGA design has been determined, the board saver can be unsoldered from the contact pads on the first-mentioned printed-circuit board and replaced by the final FPGA.
Solar adaptive optics with the DKIST: status report
NASA Astrophysics Data System (ADS)
Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Gregory, Scott; Hegwer, Steve; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich
2014-08-01
The DKIST wavefront correction system will be an integral part of the telescope, providing active alignment control, wavefront correction, and jitter compensation to all DKIST instruments. The wavefront correction system will operate in four observing modes, diffraction-limited, seeing-limited on-disk, seeing-limited coronal, and limb occulting with image stabilization. Wavefront correction for DKIST includes two major components: active optics to correct low-order wavefront and alignment errors, and adaptive optics to correct wavefront errors and high-frequency jitter caused by atmospheric turbulence. The adaptive optics system is built around a fast tip-tilt mirror and a 1600 actuator deformable mirror, both of which are controlled by an FPGA-based real-time system running at 2 kHz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). We present the current status of the DKIST high-order adaptive optics, focusing on system design, hardware procurements, and error budget management.
A fast event preprocessor for the Simbol-X Low-Energy Detector
NASA Astrophysics Data System (ADS)
Schanz, T.; Tenzer, C.; Kendziorra, E.; Santangelo, A.
2008-07-01
The Simbol-X1 Low Energy Detector (LED), a 128 × 128 pixel DEPFET array, will be read out very fast (8000 frames/second). This requires a very fast onboard data preprocessing of the raw data. We present an FPGA based Event Preprocessor (EPP) which can fulfill this requirements. The design is developed in the hardware description language VHDL and can be later ported on an ASIC technology. The EPP performs a pixel related offset correction and can apply different energy thresholds to each pixel of the frame. It also provides a line related common-mode correction to reduce noise that is unavoidably caused by the analog readout chip of the DEPFET. An integrated pattern detector can block all invalid pixel patterns. The EPP has an internal pipeline structure and can perform all operation in realtime (< 2 μs per line of 64 pixel) with a base clock frequency of 100 MHz. It is utilizing a fast median-value detection algorithm for common-mode correction and a new pattern scanning algorithm to select only valid events. Both new algorithms were developed during the last year at our institute.
Anti Theft Mechanism Through Face recognition Using FPGA
NASA Astrophysics Data System (ADS)
Sundari, Y. B. T.; Laxminarayana, G.; Laxmi, G. Vijaya
2012-11-01
The use of vehicle is must for everyone. At the same time, protection from theft is also very important. Prevention of vehicle theft can be done remotely by an authorized person. The location of the car can be found by using GPS and GSM controlled by FPGA. In this paper, face recognition is used to identify the persons and comparison is done with the preloaded faces for authorization. The vehicle will start only when the authorized personís face is identified. In the event of theft attempt or unauthorized personís trial to drive the vehicle, an MMS/SMS will be sent to the owner along with the location. Then the authorized person can alert the security personnel for tracking and catching the vehicle. For face recognition, a Principal Component Analysis (PCA) algorithm is developed using MATLAB. The control technique for GPS and GSM is developed using VHDL over SPTRAN 3E FPGA. The MMS sending method is written in VB6.0. The proposed application can be implemented with some modifications in the systems wherever the face recognition or detection is needed like, airports, international borders, banking applications etc.
Radiation-Hardened Solid-State Drive
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.
2010-01-01
A method is provided for a radiationhardened (rad-hard) solid-state drive for space mission memory applications by combining rad-hard and commercial off-the-shelf (COTS) non-volatile memories (NVMs) into a hybrid architecture. The architecture is controlled by a rad-hard ASIC (application specific integrated circuit) or a FPGA (field programmable gate array). Specific error handling and data management protocols are developed for use in a rad-hard environment. The rad-hard memories are smaller in overall memory density, but are used to control and manage radiation-induced errors in the main, and much larger density, non-rad-hard COTS memory devices. Small amounts of rad-hard memory are used as error buffers and temporary caches for radiation-induced errors in the large COTS memories. The rad-hard ASIC/FPGA implements a variety of error-handling protocols to manage these radiation-induced errors. The large COTS memory is triplicated for protection, and CRC-based counters are calculated for sub-areas in each COTS NVM array. These counters are stored in the rad-hard non-volatile memory. Through monitoring, rewriting, regeneration, triplication, and long-term storage, radiation-induced errors in the large NV memory are managed. The rad-hard ASIC/FPGA also interfaces with the external computer buses.
Evaluation of the OpenCL AES Kernel using the Intel FPGA SDK for OpenCL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal
The OpenCL standard is an open programming model for accelerating algorithms on heterogeneous computing system. OpenCL extends the C-based programming language for developing portable codes on different platforms such as CPU, Graphics processing units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to abstract away the complex FPGA-based development flow for a high-level software development flow. Users can focus on the design of hardware-accelerated kernel functions in OpenCL and then direct the tools to generate the low-level FPGA implementations. The approach makes themore » FPGA-based development more accessible to software users as the needs for hybrid computing using CPUs and FPGAs are increasing. It can also significantly reduce the hardware development time as users can evaluate different ideas with high-level language without deep FPGA domain knowledge. In this report, we evaluate the performance of the kernel using the Intel FPGA SDK for OpenCL and Nallatech 385A FPGA board. Compared to the M506 module, the board provides more hardware resources for a larger design exploration space. The kernel performance is measured with the compute kernel throughput, an upper bound to the FPGA throughput. The report presents the experimental results in details. The Appendix lists the kernel source code.« less
OpenPET: A Flexible Electronics System for Radiotracer Imaging
NASA Astrophysics Data System (ADS)
Moses, W. W.; Buckley, S.; Vu, C.; Peng, Q.; Pavlov, N.; Choong, W.-S.; Wu, J.; Jackson, C.
2010-10-01
We present the design for OpenPET, an electronics readout system designed for prototype radiotracer imaging instruments. The critical requirements are that it has sufficient performance, channel count, channel density, and power consumption to service a complete camera, and yet be simple, flexible, and customizable enough to be used with almost any detector or camera design. An important feature of this system is that each analog input is processed independently. Each input can be configured to accept signals of either polarity as well as either differential or ground referenced signals. Each signal is digitized by a continuously sampled ADC, which is processed by an FPGA to extract pulse height information. A leading edge discriminator creates a timing edge that is “time stamped” by a TDC implemented inside the FPGA. This digital information from each channel is sent to an FPGA that services 16 analog channels, and information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc. As all of this processing is controlled by firmware and software, it can be modified/customized easily. The system is open source, meaning that all technical data (specifications, schematics and board layout files, source code, and instructions) will be publicly available.
Design and implementation of a programming circuit in radiation-hardened FPGA
NASA Astrophysics Data System (ADS)
Lihua, Wu; Xiaowei, Han; Yan, Zhao; Zhongli, Liu; Fang, Yu; Chen, Stanley L.
2011-08-01
We present a novel programming circuit used in our radiation-hardened field programmable gate array (FPGA) chip. This circuit provides the ability to write user-defined configuration data into an FPGA and then read it back. The proposed circuit adopts the direct-access programming point scheme instead of the typical long token shift register chain. It not only saves area but also provides more flexible configuration operations. By configuring the proposed partial configuration control register, our smallest configuration section can be conveniently configured as a single data and a flexible partial configuration can be easily implemented. The hierarchical simulation scheme, optimization of the critical path and the elaborate layout plan make this circuit work well. Also, the radiation hardened by design programming point is introduced. This circuit has been implemented in a static random access memory (SRAM)-based FPGA fabricated by a 0.5 μm partial-depletion silicon-on-insulator CMOS process. The function test results of the fabricated chip indicate that this programming circuit successfully realizes the desired functions in the configuration and read-back. Moreover, the radiation test results indicate that the programming circuit has total dose tolerance of 1 × 105 rad(Si), dose rate survivability of 1.5 × 1011 rad(Si)/s and neutron fluence immunity of 1 × 1014 n/cm2.
A 64ch readout module for PPD/MPPC/SiPM using EASIROC ASIC
NASA Astrophysics Data System (ADS)
Nakamura, Isamu; Ishijima, N.; Hanagaki, K.; Yoshimura, K.; Nakai, Y.; Ueno, K.
2015-07-01
A readout module for PPD/MPPC/GAPD/SiPM is developed using EASIROC ASIC. The module can handle 64 PPDs and has on-board bias power supply, ADC for energy measurement, 1 ns TDC on FPGA as well as 64ch Logic output for external trigger. Controls and data transfer are through SiTCP technology implemented in FPGA. The module has NIM format for convenience, but can be operated without crate with 5 V AC/DC converter. Basic performance of production module was tested and the results are presented in the poster.
Pre-Hardware Optimization and Implementation Of Fast Optics Closed Control Loop Algorithms
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader
2004-01-01
One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The FFT is particularly useful in two-dimensional (2-D) image processing (FFT2) within optical systems control. However, timing constraints of a fast optics closed control loop would require a supercomputer to run the software implementation of the FFT2 and its inverse, as well as other image processing representative algorithm, such as numerical image folding and fringe feature extraction. A laboratory supercomputer is not always available even for ground operations and is not feasible for a night project. However, the computationally intensive algorithms still warrant alternative implementation using reconfigurable computing technologies (RC) such as Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA), which provide low cost compact super-computing capabilities. We present a new RC hardware implementation and utilization architecture that significantly reduces the computational complexity of a few basic image-processing algorithm, such as FFT2, image folding and phase diversity for the NASA Solar Viewing Interferometer Prototype (SVIP) using a cluster of DSPs and FPGAs. The DSP cluster utilization architecture also assures avoidance of a single point of failure, while using commercially available hardware. This, combined with the control algorithms pre-hardware optimization, or the first time allows construction of image-based 800 Hertz (Hz) optics closed control loops on-board a spacecraft, based on the SVIP ground instrument. That spacecraft is the proposed Earth Atmosphere Solar Occultation Imager (EASI) to study greenhouse gases CO2, C2H, H2O, O3, O2, N2O from Lagrange-2 point in space. This paper provides an advanced insight into a new type of science capabilities for future space exploration missions based on on-board image processing for control and for robotics missions using vision sensors. It presents a top-level description of technologies required for the design and construction of SVIP and EASI and to advance the spatial-spectral imaging and large-scale space interferometry science and engineering.
Computing Models for FPGA-Based Accelerators
Herbordt, Martin C.; Gu, Yongfeng; VanCourt, Tom; Model, Josh; Sukhwani, Bharat; Chiu, Matt
2011-01-01
Field-programmable gate arrays are widely considered as accelerators for compute-intensive applications. A critical phase of FPGA application development is finding and mapping to the appropriate computing model. FPGA computing enables models with highly flexible fine-grained parallelism and associative operations such as broadcast and collective response. Several case studies demonstrate the effectiveness of using these computing models in developing FPGA applications for molecular modeling. PMID:21603152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrine, Kenneth A.; Hopkins, Derek F.; Lamarche, Brian L.
2005-09-01
Biologists and computer engineers at Pacific Northwest National Laboratory have specified, designed, and implemented a hardware/software system for performing real-time, multispectral image processing on a confocal microscope. This solution is intended to extend the capabilities of the microscope, enabling scientists to conduct advanced experiments on cell signaling and other kinds of protein interactions. FRET (fluorescence resonance energy transfer) techniques are used to locate and monitor protein activity. In FRET, it is critical that spectral images be precisely aligned with each other despite disturbances in the physical imaging path caused by imperfections in lenses and cameras, and expansion and contraction ofmore » materials due to temperature changes. The central importance of this work is therefore automatic image registration. This runs in a framework that guarantees real-time performance (processing pairs of 1024x1024, 8-bit images at 15 frames per second) and enables the addition of other types of advanced image processing algorithms such as image feature characterization. The supporting system architecture consists of a Visual Basic front-end containing a series of on-screen interfaces for controlling various aspects of the microscope and a script engine for automation. One of the controls is an ActiveX component written in C++ for handling the control and transfer of images. This component interfaces with a pair of LVDS image capture boards and a PCI board containing a 6-million gate Xilinx Virtex-II FPGA. Several types of image processing are performed on the FPGA in a pipelined fashion, including the image registration. The FPGA offloads work that would otherwise need to be performed by the main CPU and has a guaranteed real-time throughput. Image registration is performed in the FPGA by applying a cubic warp on one image to precisely align it with the other image. Before each experiment, an automated calibration procedure is run in order to set up the cubic warp. During image acquisitions, the cubic warp is evaluated by way of forward differencing. Unwanted pixelation artifacts are minimized by bilinear sampling. The resulting system is state-of-the-art for biological imaging. Precisely registered images enable the reliable use of FRET techniques. In addition, real-time image processing performance allows computed images to be fed back and displayed to scientists immediately, and the pipelined nature of the FPGA allows additional image processing algorithms to be incorporated into the system without slowing throughput.« less
Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle
NASA Technical Reports Server (NTRS)
Ingham, John C. (Inventor); Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Kuhn, III, Theodore R. (Inventor); Babel, III, Walter C. (Inventor); Fox, legal representative, Christopher L. (Inventor); Adams, James K. (Inventor); Laughter, Sean A. (Inventor)
2011-01-01
A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.
An FPGA- Based General-Purpose Data Acquisition Controller
NASA Astrophysics Data System (ADS)
Robson, C. C. W.; Bousselham, A.; Bohm
2006-08-01
System development in advanced FPGAs allows considerable flexibility, both during development and in production use. A mixed firmware/software solution allows the developer to choose what shall be done in firmware or software, and to make that decision late in the process. However, this flexibility comes at the cost of increased complexity. We have designed a modular development framework to help to overcome these issues of increased complexity. This framework comprises a generic controller that can be adapted for different systems by simply changing the software or firmware parts. The controller can use both soft and hard processors, with or without an RTOS, based on the demands of the system to be developed. The resulting system uses the Internet for both control and data acquisition. In our studies we developed the embedded system in a Xilinx Virtex-II Pro FPGA, where we used both PowerPC and MicroBlaze cores, http, Java, and LabView for control and communication, together with the MicroC/OS-II and OSE operating systems
Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Kim, J. E.; Lim, H.; Nam, J. W.; Brandt, S.; Budtz-Jørgensen, C.; Castro-Tirado, A. J.; Chen, P.; Choi, H. S.; Grossan, B.; Huang, M. A.; Jeong, S.; Jung, A.; Kim, M. B.; Kim, S.-W.; Lee, J.; Linder, E. V.; Liu, T.-C.; Na, G. W.; Panasyuk, M. I.; Park, I. H.; Ripa, J.; Reglero, V.; Smoot, G. F.; Svertilov, S.; Vedenkin, N.; Yashin, I.
2013-07-01
The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov spacecraft at the end of 2013. The SMT utilizes a motorized mirror that slews rapidly forward to its target within a second after triggering by an X-ray coded mask camera, which makes unnecessary a reorientation of the entire spacecraft. Subsequent measurement of the UV/optical is accomplished by a 10 cm aperture Ritchey-Chrètien telescope and the focal plane detector of Intensified Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/optical photons of 200-650 nm in wavelength by using a UV-enhanced S20 photocathode and amplifies photoelectrons at a gain of 104-106 in double Micro-Channel Plates. These photons are read out by a Kodak KAI-0340 interline CCD sensor and a CCD Signal Processor with 10-bit Analog-to-Digital Converter. Various control clocks for CCD readout are implemented using a Field Programmable Gate Array (FPGA). The SMT readout is in charge of not only data acquisition, storage and transfer, but also control of the slewing mirror, the ICCD high voltage adjustments, power distribution, and system monitoring by interfacing to the UFFO-pathfinder. These functions are realized in the FPGA to minimize power consumption and to enhance processing time. The SMT readout electronics are designed and built to meet the spacecraft's constraints of power consumption, mass, and volume. The entire system is integrated with the SMT optics, as is the UFFO-pathfinder. The system has been tested and satisfies the conditions of launch and those of operation in space: those associated with shock and vibration and those associated with thermal and vacuum, respectively. In this paper, we present the SMT readout electronics: the design, construction, and performance, as well as the results of space environment test.
A Fine-Grained Pipelined Implementation for Large-Scale Matrix Inversion on FPGA
NASA Astrophysics Data System (ADS)
Zhou, Jie; Dou, Yong; Zhao, Jianxun; Xia, Fei; Lei, Yuanwu; Tang, Yuxing
Large-scale matrix inversion play an important role in many applications. However to the best of our knowledge, there is no FPGA-based implementation. In this paper, we explore the possibility of accelerating large-scale matrix inversion on FPGA. To exploit the computational potential of FPGA, we introduce a fine-grained parallel algorithm for matrix inversion. A scalable linear array processing elements (PEs), which is the core component of the FPGA accelerator, is proposed to implement this algorithm. A total of 12 PEs can be integrated into an Altera StratixII EP2S130F1020C5 FPGA on our self-designed board. Experimental results show that a factor of 2.6 speedup and the maximum power-performance of 41 can be achieved compare to Pentium Dual CPU with double SSE threads.
A CCD experimental platform for large telescope in Antarctica based on FPGA
NASA Astrophysics Data System (ADS)
Zhu, Yuhua; Qi, Yongjun
2014-07-01
The CCD , as a detector , is one of the important components of astronomical telescopes. For a large telescope in Antarctica, a set of CCD detector system with large size, high sensitivity and low noise is indispensable. Because of the extremely low temperatures and unattended, system maintenance and software and hardware upgrade become hard problems. This paper introduces a general CCD controller experiment platform, using Field programmable gate array FPGA, which is, in fact, a large-scale field reconfigurable array. Taking the advantage of convenience to modify the system, construction of driving circuit, digital signal processing module, network communication interface, control algorithm validation, and remote reconfigurable module may realize. With the concept of integrated hardware and software, the paper discusses the key technology of building scientific CCD system suitable for the special work environment in Antarctica, focusing on the method of remote reconfiguration for controller via network and then offering a feasible hardware and software solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Gorman, T.; Gibson, K. J.; Snape, J. A.
2012-10-15
A real-time system has been developed to trigger both the MAST Thomson scattering (TS) system and the plasma control system on the phase and amplitude of neoclassical tearing modes (NTMs), extending the capabilities of the original system. This triggering system determines the phase and amplitude of a given NTM using magnetic coils at different toroidal locations. Real-time processing of the raw magnetic data occurs on a low cost field programmable gate array (FPGA) based unit which permits triggering of the TS lasers on specific amplitudes and phases of NTM evolution. The MAST plasma control system can receive a separate triggermore » from the FPGA unit that initiates a vertical shift of the MAST magnetic axis. Such shifts have fully removed m/n= 2/1 NTMs instabilities on a number of MAST discharges.« less
Implementation en VHDl/FPGA d'afficheur video numerique (AVN) pour des applications aerospatiales
NASA Astrophysics Data System (ADS)
Pelletier, Sebastien
L'objectif de ce projet est de developper un controleur video en langage VHDL afin de remplacer la composante specialisee presentement utilisee chez CMC Electronique. Une recherche approfondie des tendances et de ce qui se fait actuellement dans le domaine des controleurs video est effectuee afin de definir les specifications du systeme. Les techniques d'entreposage et d'affichage des images sont expliquees afin de mener ce projet a terme. Le nouveau controleur est developpe sur une plateforme electronique possedant un FPGA, un port VGA et de la memoire pour emmagasiner les donnees. Il est programmable et prend peu d'espace dans un FPGA, ce qui lui permet de s'inserer dans n'importe quelle nouvelle technologie de masse a faible cout. Il s'adapte rapidement a toutes les resolutions d'affichage puisqu'il est modulaire et configurable. A court terme, ce projet permettra un controle ameliore des specifications et des normes de qualite liees aux contraintes de l'avionique.
Generic FPGA-Based Platform for Distributed IO in Proton Therapy Patient Safety Interlock System
NASA Astrophysics Data System (ADS)
Eichin, Michael; Carmona, Pablo Fernandez; Johansen, Ernst; Grossmann, Martin; Mayor, Alexandre; Erhardt, Daniel; Gomperts, Alexander; Regele, Harald; Bula, Christian; Sidler, Christof
2017-06-01
At the Paul Scherrer Institute (PSI) in Switzerland, cancer patients are treated with protons. Proton therapy at PSI has a long history and started in the 1980s. More than 30 years later, a new gantry has recently been installed in the existing facility. This new machine has been delivered by an industry partner. A big challenge is the integration of the vendor's safety system into the existing PSI environment. Different interface standards and the complexity of the system made it necessary to find a technical solution connecting an industry system to the existing PSI infrastructure. A novel very flexible distributed IO system based on field-programmable gate array (FPGA) technology was developed, supporting many different IO interface standards and high-speed communication links connecting the device to a PSI standard versa module eurocard-bus input output controller. This paper summarizes the features of the hardware technology, the FPGA framework with its high-speed communication link protocol, and presents our first measurement results.
NASA Astrophysics Data System (ADS)
Oh, Gyong Jin; Kim, Lyang-June; Sheen, Sue-Ho; Koo, Gyou-Phyo; Jin, Sang-Hun; Yeo, Bo-Yeon; Lee, Jong-Ho
2009-05-01
This paper presents a real time implementation of Non Uniformity Correction (NUC). Two point correction and one point correction with shutter were carried out in an uncooled imaging system which will be applied to a missile application. To design a small, light weight and high speed imaging system for a missile system, SoPC (System On a Programmable Chip) which comprises of FPGA and soft core (Micro-blaze) was used. Real time NUC and generation of control signals are implemented using FPGA. Also, three different NUC tables were made to make the operating time shorter and to reduce the power consumption in a large range of environment temperature. The imaging system consists of optics and four electronics boards which are detector interface board, Analog to Digital converter board, Detector signal generation board and Power supply board. To evaluate the imaging system, NETD was measured. The NETD was less than 160mK in three different environment temperatures.
NASA Astrophysics Data System (ADS)
Devi, S.; Saravanan, M.
2018-03-01
It is necessary that the condition of the steam turbines is continuously monitored on a scheduled basis for the safe operation of the steam turbines. The review showed that steam turbine fault detection and operation maintenance system (STFDOMS) is gaining importance recently. In this paper, novel hardware architecture is proposed for STFDOMS that can be communicated through the GSM network. Arduino is interfaced with the FPGA so as to transfer the message. The design has been simulated using the Verilog programming language and implemented in hardware using FPGA. The proposed system is shown to be a simple, cost effective and flexible and thereby making it suitable for the maintenance of steam turbines. This system forewarns the experts to access to data messages and take necessary action in a short period with great accuracy. The hardware developed is promised as a real-time test bench, specifically for investigations of long haul effects with different parameter settings.
New Developments in FPGA: SEUs and Fail-Safe Strategies from the NASA Goddard Perspective
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; Label, Kenneth A.; Pellish, Jonathan
2016-01-01
It has been shown that, when exposed to radiation environments, each Field Programmable Gate Array (FPGA) device has unique error signatures. Subsequently, fail-safe and mitigation strategies will differ per FPGA type. In this session several design approaches for safe systems will be presented. It will also explore the benefits and limitations of several mitigation techniques. The intention of the presentation is to provide information regarding FPGA types, their susceptibilities, and proven fail-safe strategies; so that users can select appropriate mitigation and perform the required trade for system insertion. The presentation will describe three types of FPGA devices and their susceptibilities in radiation environments.
New Developments in FPGA: SEUs and Fail-Safe Strategies from the NASA Goddard Perspective
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; LaBel, Kenneth; Pellish, Jonathan
2015-01-01
It has been shown that, when exposed to radiation environments, each Field Programmable Gate Array (FPGA) device has unique error signatures. Subsequently, fail-safe and mitigation strategies will differ per FPGA type. In this session several design approaches for safe systems will be presented. It will also explore the benefits and limitations of several mitigation techniques. The intention of the presentation is to provide information regarding FPGA types, their susceptibilities, and proven fail-safe strategies; so that users can select appropriate mitigation and perform the required trade for system insertion. The presentation will describe three types of FPGA devices and their susceptibilities in radiation environments.
Bridging FPGA and GPU technologies for AO real-time control
NASA Astrophysics Data System (ADS)
Perret, Denis; Lainé, Maxime; Bernard, Julien; Gratadour, Damien; Sevin, Arnaud
2016-07-01
Our team has developed a common environment for high performance simulations and real-time control of AO systems based on the use of Graphics Processors Units in the context of the COMPASS project. Such a solution, based on the ability of the real time core in the simulation to provide adequate computing performance, limits the cost of developing AO RTC systems and makes them more scalable. A code developed and validated in the context of the simulation may be injected directly into the system and tested on sky. Furthermore, the use of relatively low cost components also offers significant advantages for the system hardware platform. However, the use of GPUs in an AO loop comes with drawbacks: the traditional way of offloading computation from CPU to GPUs - involving multiple copies and unacceptable overhead in kernel launching - is not well suited in a real time context. This last application requires the implementation of a solution enabling direct memory access (DMA) to the GPU memory from a third party device, bypassing the operating system. This allows this device to communicate directly with the real-time core of the simulation feeding it with the WFS camera pixel stream. We show that DMA between a custom FPGA-based frame-grabber and a computation unit (GPU, FPGA, or Coprocessor such as Xeon-phi) across PCIe allows us to get latencies compatible with what will be needed on ELTs. As a fine-grained synchronization mechanism is not yet made available by GPU vendors, we propose the use of memory polling to avoid interrupts handling and involvement of a CPU. Network and Vision protocols are handled by the FPGA-based Network Interface Card (NIC). We present the results we obtained on a complete AO loop using camera and deformable mirror simulators.
Observing conformations of single FoF1-ATP synthases in a fast anti-Brownian electrokinetic trap
NASA Astrophysics Data System (ADS)
Su, Bertram; Düser, Monika G.; Zarrabi, Nawid; Heitkamp, Thomas; Starke, Ilka; Börsch, Michael
2015-03-01
To monitor conformational changes of individual membrane transporters in liposomes in real time, we attach two fluorophores to selected domains of a protein. Sequential distance changes between the dyes are recorded and analyzed by Förster resonance energy transfer (FRET). Using freely diffusing membrane proteins reconstituted in liposomes, observation times are limited by Brownian motion through the confocal detection volume. A. E. Cohen and W. E. Moerner have invented and built microfluidic devices to actively counteract Brownian motion of single nanoparticles in electrokinetic traps (ABELtrap). Here we present a version of an ABELtrap with a laser focus pattern generated by electro-optical beam deflectors and controlled by a programmable FPGA. This ABELtrap could hold single fluorescent nanobeads for more than 100 seconds, increasing the observation times of a single particle more than 1000-fold. Conformational changes of single FRET-labeled membrane enzymes FoF1-ATP synthase can be detected in the ABELtrap.
NASA Astrophysics Data System (ADS)
García, Aday; Santos, Lucana; López, Sebastián.; Callicó, Gustavo M.; Lopez, Jose F.; Sarmiento, Roberto
2014-05-01
Efficient onboard satellite hyperspectral image compression represents a necessity and a challenge for current and future space missions. Therefore, it is mandatory to provide hardware implementations for this type of algorithms in order to achieve the constraints required for onboard compression. In this work, we implement the Lossy Compression for Exomars (LCE) algorithm on an FPGA by means of high-level synthesis (HSL) in order to shorten the design cycle. Specifically, we use CatapultC HLS tool to obtain a VHDL description of the LCE algorithm from C-language specifications. Two different approaches are followed for HLS: on one hand, introducing the whole C-language description in CatapultC and on the other hand, splitting the C-language description in functional modules to be implemented independently with CatapultC, connecting and controlling them by an RTL description code without HLS. In both cases the goal is to obtain an FPGA implementation. We explain the several changes applied to the original Clanguage source code in order to optimize the results obtained by CatapultC for both approaches. Experimental results show low area occupancy of less than 15% for a SRAM-based Virtex-5 FPGA and a maximum frequency above 80 MHz. Additionally, the LCE compressor was implemented into an RTAX2000S antifuse-based FPGA, showing an area occupancy of 75% and a frequency around 53 MHz. All these serve to demonstrate that the LCE algorithm can be efficiently executed on an FPGA onboard a satellite. A comparison between both implementation approaches is also provided. The performance of the algorithm is finally compared with implementations on other technologies, specifically a graphics processing unit (GPU) and a single-threaded CPU.
A data transmission method for particle physics experiments based on Ethernet physical layer
NASA Astrophysics Data System (ADS)
Huang, Xi-Ru; Cao, Ping; Zheng, Jia-Jun
2015-11-01
Due to its advantages of universality, flexibility and high performance, fast Ethernet is widely used in readout system design for modern particle physics experiments. However, Ethernet is usually used together with the TCP/IP protocol stack, which makes it difficult to implement readout systems because designers have to use the operating system to process this protocol. Furthermore, TCP/IP degrades the transmission efficiency and real-time performance. To maximize the performance of Ethernet in physics experiment applications, a data readout method based on the physical layer (PHY) is proposed. In this method, TCP/IP is replaced with a customized and simple protocol, which makes it easier to implement. On each readout module, data from the front-end electronics is first fed into an FPGA for protocol processing and then sent out to a PHY chip controlled by this FPGA for transmission. This kind of data path is fully implemented by hardware. From the side of the data acquisition system (DAQ), however, the absence of a standard protocol causes problems for the network related applications. To solve this problem, in the operating system kernel space, data received by the network interface card is redirected from the traditional flow to a specified memory space by a customized program. This memory space can easily be accessed by applications in user space. For the purpose of verification, a prototype system has been designed and implemented. Preliminary test results show that this method can meet the requirements of data transmission from the readout module to the DAQ with an efficient and simple manner. Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of Particle Detection and Electronics (201301)
Fast ADC based multichannel acquisition system for the GEM detector
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Czarski, T.; Chernyshova, M.; Dominik, W.; Jakubowska, K.; Karpinski, L.; Kierzkowski, K.; Pozniak, K.; Rzadkiewicz, J.; Scholz, M.; Zabolotny, W.
2012-05-01
A novel approach to the Gas Electron Multiplier1 (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators, and analogue FIFOs,[ the method developed uses simultaneously sampling high speed ADCs and advanced FPGA-based processing logic to estimate the energy of every single photon. Such method is applied to every GEM strip signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, where higher order reflections need to be identified and rejected. For the purpose of the detector readout, a novel conception of the measurement platform was developed.
Neuron array with plastic synapses and programmable dendrites.
Ramakrishnan, Shubha; Wunderlich, Richard; Hasler, Jennifer; George, Suma
2013-10-01
We describe a novel neuromorphic chip architecture that models neurons for efficient computation. Traditional architectures of neuron array chips consist of large scale systems that are interfaced with AER for implementing intra- or inter-chip connectivity. We present a chip that uses AER for inter-chip communication but uses fast, reconfigurable FPGA-style routing with local memory for intra-chip connectivity. We model neurons with biologically realistic channel models, synapses and dendrites. This chip is suitable for small-scale network simulations and can also be used for sequence detection, utilizing directional selectivity properties of dendrites, ultimately for use in word recognition.
The VLSI design of the sub-band filterbank in MP3 decoding
NASA Astrophysics Data System (ADS)
Liu, Jia-Xin; Luo, Li
2018-03-01
The sub-band filterbank is one of the most important modules which has the largest amount of calculation in MP3 decoding. In order to save CPU resources and integrate the sub-band filterbank part into MP3 IP core, the hardware circuit of the sub-band filterbank module is designed in this paper. A fast algorithm suit for hardware implementation is proposed and achieved on FPGA development board. The results show that the sub-band filterbank function is correct in the case of using very few registers and the amount of calculation and ROM resources are reduced greatly.
NASA Astrophysics Data System (ADS)
Masuda, Nobuyuki; Sugie, Takashige; Ito, Tomoyoshi; Tanaka, Shinjiro; Hamada, Yu; Satake, Shin-ichi; Kunugi, Tomoaki; Sato, Kazuho
2010-12-01
We have designed a PC cluster system with special purpose computer boards for visualization of fluid flow using digital holographic particle tracking velocimetry (DHPTV). In this board, there is a Field Programmable Gate Array (FPGA) chip in which is installed a pipeline for calculating the intensity of an object from a hologram by fast Fourier transform (FFT). This cluster system can create 1024 reconstructed images from a 1024×1024-grid hologram in 0.77 s. It is expected that this system will contribute to the analysis of fluid flow using DHPTV.
NASA Astrophysics Data System (ADS)
Gunay, Omer; Ozsarac, Ismail; Kamisli, Fatih
2017-05-01
Video recording is an essential property of new generation military imaging systems. Playback of the stored video on the same device is also desirable as it provides several operational benefits to end users. Two very important constraints for many military imaging systems, especially for hand-held devices and thermal weapon sights, are power consumption and size. To meet these constraints, it is essential to perform most of the processing applied to the video signal, such as preprocessing, compression, storing, decoding, playback and other system functions on a single programmable chip, such as FPGA, DSP, GPU or ASIC. In this work, H.264/AVC (Advanced Video Coding) compatible video compression, storage, decoding and playback blocks are efficiently designed and implemented on FPGA platforms using FPGA fabric and Altera NIOS II soft processor. Many subblocks that are used in video encoding are also used during video decoding in order to save FPGA resources and power. Computationally complex blocks are designed using FPGA fabric, while blocks such as SD card write/read, H.264 syntax decoding and CAVLC decoding are done using NIOS processor to benefit from software flexibility. In addition, to keep power consumption low, the system was designed to require limited external memory access. The design was tested using 640x480 25 fps thermal camera on CYCLONE V FPGA, which is the ALTERA's lowest power FPGA family, and consumes lower than 40% of CYCLONE V 5CEFA7 FPGA resources on average.
Analog Module Architecture for Space-Qualified Field-Programmable Mixed-Signal Arrays
NASA Technical Reports Server (NTRS)
Edwards, R. Timothy; Strohbehn, Kim; Jaskulek, Steven E.; Katz, Richard
1999-01-01
Spacecraft require all manner of both digital and analog circuits. Onboard digital systems are constructed almost exclusively from field-programmable gate array (FPGA) circuits providing numerous advantages over discrete design including high integration density, high reliability, fast turn-around design cycle time, lower mass, volume, and power consumption, and lower parts acquisition and flight qualification costs. Analog and mixed-signal circuits perform tasks ranging from housekeeping to signal conditioning and processing. These circuits are painstakingly designed and built using discrete components due to a lack of options for field-programmability. FPAA (Field-Programmable Analog Array) and FPMA (Field-Programmable Mixed-signal Array) parts exist but not in radiation-tolerant technology and not necessarily in an architecture optimal for the design of analog circuits for spaceflight applications. This paper outlines an architecture proposed for an FPAA fabricated in an existing commercial digital CMOS process used to make radiation-tolerant antifuse-based FPGA devices. The primary concerns are the impact of the technology and the overall array architecture on the flexibility of programming, the bandwidth available for high-speed analog circuits, and the accuracy of the components for high-performance applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogrette, F.; Chang, R.; Bouton, Q.
We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 10{sup 6} s{sup −1} and three-dimensional reconstruction of the coordinates up to 3.2 × 10{sup 6} particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of themore » detector to be 140(20) μm at a flux of 3 × 10{sup 5} particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.« less
Fast neuromimetic object recognition using FPGA outperforms GPU implementations.
Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph
2013-08-01
Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.
NASA Astrophysics Data System (ADS)
Faerber, Christian
2017-10-01
The LHCb experiment at the LHC will upgrade its detector by 2018/2019 to a ‘triggerless’ readout scheme, where all the readout electronics and several sub-detector parts will be replaced. The new readout electronics will be able to readout the detector at 40 MHz. This increases the data bandwidth from the detector down to the Event Filter farm to 40 TBit/s, which also has to be processed to select the interesting proton-proton collision for later storage. The architecture of such a computing farm, which can process this amount of data as efficiently as possible, is a challenging task and several compute accelerator technologies are being considered for use inside the new Event Filter farm. In the high performance computing sector more and more FPGA compute accelerators are used to improve the compute performance and reduce the power consumption (e.g. in the Microsoft Catapult project and Bing search engine). Also for the LHCb upgrade the usage of an experimental FPGA accelerated computing platform in the Event Building or in the Event Filter farm is being considered and therefore tested. This platform from Intel hosts a general CPU and a high performance FPGA linked via a high speed link which is for this platform a QPI link. On the FPGA an accelerator is implemented. The used system is a two socket platform from Intel with a Xeon CPU and an FPGA. The FPGA has cache-coherent memory access to the main memory of the server and can collaborate with the CPU. As a first step, a computing intensive algorithm to reconstruct Cherenkov angles for the LHCb RICH particle identification was successfully ported in Verilog to the Intel Xeon/FPGA platform and accelerated by a factor of 35. The same algorithm was ported to the Intel Xeon/FPGA platform with OpenCL. The implementation work and the performance will be compared. Also another FPGA accelerator the Nallatech 385 PCIe accelerator with the same Stratix V FPGA were tested for performance. The results show that the Intel Xeon/FPGA platforms, which are built in general for high performance computing, are also very interesting for the High Energy Physics community.
New Developments in FPGA Devices: SEUs and Fail-Safe Strategies from the NASA Goddard Perspective
NASA Technical Reports Server (NTRS)
Berg, Melanie; LaBel, Kenneth; Pellish, Jonathan
2016-01-01
It has been shown that, when exposed to radiation environments, each Field Programmable Gate Array (FPGA) device has unique error signatures. Subsequently, fail-safe and mitigation strategies will differ per FPGA type. In this session several design approaches for safe systems will be presented. It will also explore the benefits and limitations of several mitigation techniques. The intention of the presentation is to provide information regarding FPGA types, their susceptibilities, and proven fail-safe strategies; so that users can select appropriate mitigation and perform the required trade for system insertion. The presentation will describe three types of FPGA devices and their susceptibilities in radiation environments.
A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation.
Juang, Jih-Gau; Liu, Wen-Kai; Lin, Ren-Wei
2011-10-01
This paper presents a fuzzy PID control scheme with a real-valued genetic algorithm (RGA) to a setpoint control problem. The objective of this paper is to control a twin rotor MIMO system (TRMS) to move quickly and accurately to the desired attitudes, both the pitch angle and the azimuth angle in a cross-coupled condition. A fuzzy compensator is applied to the PID controller. The proposed control structure includes four PID controllers with independent inputs in 2-DOF. In order to reduce total error and control energy, all parameters of the controller are obtained by a RGA with the system performance index as a fitness function. The system performance index utilized the integral of time multiplied by the square error criterion (ITSE) to build a suitable fitness function in the RGA. A new method for RGA to solve more than 10 parameters in the control scheme is investigated. For real-time control, Xilinx Spartan II SP200 FPGA (Field Programmable Gate Array) is employed to construct a hardware-in-the-loop system through writing VHDL on this FPGA. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Digitization of Analog Signals using a Field Programmable Gate Array (FPGA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilera, Daniel; Rusu, Vadim
The idea of this research is consolidating the electrical components used for capturing data in the Mu2e Tracker. Ideally, an FPGA will serve as the Time-Division Converters (TDC) and Analog-to-Digital Converters (ADC). The TDC is already being carried out by the FPGA, but we are still using off the shelf ADCs. This poster proposes using Low Voltage Differential Signaling as the basis for analog-to-digital conversion using and FPGA.
An embedded face-classification system for infrared images on an FPGA
NASA Astrophysics Data System (ADS)
Soto, Javier E.; Figueroa, Miguel
2014-10-01
We present a face-classification architecture for long-wave infrared (IR) images implemented on a Field Programmable Gate Array (FPGA). The circuit is fast, compact and low power, can recognize faces in real time and be embedded in a larger image-processing and computer vision system operating locally on an IR camera. The algorithm uses Local Binary Patterns (LBP) to perform feature extraction on each IR image. First, each pixel in the image is represented as an LBP pattern that encodes the similarity between the pixel and its neighbors. Uniform LBP codes are then used to reduce the number of patterns to 59 while preserving more than 90% of the information contained in the original LBP representation. Then, the image is divided into 64 non-overlapping regions, and each region is represented as a 59-bin histogram of patterns. Finally, the algorithm concatenates all 64 regions to create a 3,776-bin spatially enhanced histogram. We reduce the dimensionality of this histogram using Linear Discriminant Analysis (LDA), which improves clustering and enables us to store an entire database of 53 subjects on-chip. During classification, the circuit applies LBP and LDA to each incoming IR image in real time, and compares the resulting feature vector to each pattern stored in the local database using the Manhattan distance. We implemented the circuit on a Xilinx Artix-7 XC7A100T FPGA and tested it with the UCHThermalFace database, which consists of 28 81 x 150-pixel images of 53 subjects in indoor and outdoor conditions. The circuit achieves a 98.6% hit ratio, trained with 16 images and tested with 12 images of each subject in the database. Using a 100 MHz clock, the circuit classifies 8,230 images per second, and consumes only 309mW.
Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer
NASA Technical Reports Server (NTRS)
Jamot, Robert F.; Monroe, Ryan M.
2012-01-01
With present concern for ecological sustainability ever increasing, it is desirable to model the composition of Earth s upper atmosphere accurately with regards to certain helpful and harmful chemicals, such as greenhouse gases and ozone. The microwave limb sounder (MLS) is an instrument designed to map the global day-to-day concentrations of key atmospheric constituents continuously. One important component in MLS is the spectrometer, which processes the raw data provided by the receivers into frequency-domain information that cannot only be transmitted more efficiently, but also processed directly once received. The present-generation spectrometer is fully analog. The goal is to include a fully digital spectrometer in the next-generation sensor. In a digital spectrometer, incoming analog data must be converted into a digital format, processed through a Fourier transform, and finally accumulated to reduce the impact of input noise. While the final design will be placed on an application specific integrated circuit (ASIC), the building of these chips is prohibitively expensive. To that end, this design was constructed on a field-programmable gate array (FPGA). A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved analog-to-digital converters (ADCs). This 6-Gsps (gigasample per second) digital representation of the analog signal is then processed through an FPGA-based streaming fast Fourier transform (FFT). Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers.
Semivariogram Analysis of Bone Images Implemented on FPGA Architectures.
Shirvaikar, Mukul; Lagadapati, Yamuna; Dong, Xuanliang
2017-03-01
Osteoporotic fractures are a major concern for the healthcare of elderly and female populations. Early diagnosis of patients with a high risk of osteoporotic fractures can be enhanced by introducing second-order statistical analysis of bone image data using techniques such as variogram analysis. Such analysis is computationally intensive thereby creating an impediment for introduction into imaging machines found in common clinical settings. This paper investigates the fast implementation of the semivariogram algorithm, which has been proven to be effective in modeling bone strength, and should be of interest to readers in the areas of computer-aided diagnosis and quantitative image analysis. The semivariogram is a statistical measure of the spatial distribution of data, and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. A semi-variance, γ ( h ), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h . Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O ( n 2 ) Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from DXA scans are utilized for the experiments. Implementation results show that a significant advantage in computational speed is attained by the architectures with respect to implementation on a personal computer with an Intel i7 multi-core processor.
Semivariogram Analysis of Bone Images Implemented on FPGA Architectures
Shirvaikar, Mukul; Lagadapati, Yamuna; Dong, Xuanliang
2016-01-01
Osteoporotic fractures are a major concern for the healthcare of elderly and female populations. Early diagnosis of patients with a high risk of osteoporotic fractures can be enhanced by introducing second-order statistical analysis of bone image data using techniques such as variogram analysis. Such analysis is computationally intensive thereby creating an impediment for introduction into imaging machines found in common clinical settings. This paper investigates the fast implementation of the semivariogram algorithm, which has been proven to be effective in modeling bone strength, and should be of interest to readers in the areas of computer-aided diagnosis and quantitative image analysis. The semivariogram is a statistical measure of the spatial distribution of data, and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h. Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O (n2) Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from DXA scans are utilized for the experiments. Implementation results show that a significant advantage in computational speed is attained by the architectures with respect to implementation on a personal computer with an Intel i7 multi-core processor. PMID:28428829
NASA Technical Reports Server (NTRS)
Lux, James P.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.
2011-01-01
An FPGA module leverages the previous work from Goddard Space Flight Center (GSFC) relating to NASA s Space Telecommunications Radio System (STRS) project. The STRS SpaceWire FPGA Module is written in the Verilog Register Transfer Level (RTL) language, and it encapsulates an unmodified GSFC core (which is written in VHDL). The module has the necessary inputs/outputs (I/Os) and parameters to integrate seamlessly with the SPARC I/O FPGA Interface module (also developed for the STRS operating environment, OE). Software running on the SPARC processor can access the configuration and status registers within the SpaceWire module. This allows software to control and monitor the SpaceWire functions, but it is also used to give software direct access to what is transmitted and received through the link. SpaceWire data characters can be sent/received through the software interface, as well as through the dedicated interface on the GSFC core. Similarly, SpaceWire time codes can be sent/received through the software interface or through a dedicated interface on the core. This innovation is designed for plug-and-play integration in the STRS OE. The SpaceWire module simplifies the interfaces to the GSFC core, and synchronizes all I/O to a single clock. An interrupt output (with optional masking) identifies time-sensitive events within the module. Test modes were added to allow internal loopback of the SpaceWire link and internal loopback of the client-side data interface.
Design of time interval generator based on hybrid counting method
NASA Astrophysics Data System (ADS)
Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge
2016-10-01
Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some "off-the-shelf" TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.
FPGA implementation of adaptive beamforming in hearing aids.
Samtani, Kartik; Thomas, Jobin; Varma, G Abhinav; Sumam, David S; Deepu, S P
2017-07-01
Beamforming is a spatial filtering technique used in hearing aids to improve target sound reception by reducing interference from other directions. In this paper we propose improvements in an existing architecture present for two omnidirectional microphone array based adaptive beamforming for hearing aid applications and implement the same on Xilinx Artix 7 FPGA using VHDL coding and Xilinx Vivado ® 2015.2. The nulls are introduced in particular directions by combination of two fixed polar patterns. This combination can be adaptively controlled to steer the null in the direction of noise. The beamform patterns and improvements in SNR values obtained from experiments in a conference room environment are analyzed.
FPGA-accelerated adaptive optics wavefront control
NASA Astrophysics Data System (ADS)
Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.
2014-03-01
The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.
Assessment of Proper Bonding Methods and Mechanical Characterization FPGA CQFPs
NASA Technical Reports Server (NTRS)
Davis, Milton C.
2008-01-01
This presentation discusses fractured leads on field-programmable gate array (FPGA) during flight vibration. Actions taken to determine root cause and resolution of the failure include finite element analysis (FEA) and vibration testing and scanning electron microscopy (with X-ray microanalysis) and energy dispersive spectrometry (SEM/EDS) failure assessment. Bonding methods for surface mount parts is assessed, including critical analysis and assessment of random fatigue damage. Regarding ceramic quad flat pack (CQFP) lead fracture, after disassembling the attitude control electronics (ACE) configuration, photographs showed six leads cracked on FPGA RTSX72SU-1 CQ208B package located on the RWIC card. An identical package (FPGA RTSX32SU-1 CQ208B) mounted on the RWIC did not results in cracked pins due to vibration. FPGA lead failure theories include workmanship issues in the lead-forming, material defect in the leads of the FPGA packages, and the insecure mounting of the board in the card guides, among other theories. Studies were conducted using simple calculations to determine the response and fatigue life of the package. Shorter packages exhibited more response when loaded by out-of-plane displacement of PCB while taller packages exhibit more response when loaded by in-plane acceleration of PCB. Additionally, under-fill did not contribute to reducing stress in leads due to out-of-plane PCB loading or from component twisting, as much as corner bonding. The combination of corner bond and under-fill is best to address mechanical and thermal S/C environment. Test results of bonded parts showed reduced (dampened) amplitude and slightly shifted peaks at the un-bonded natural frequency and an additional response at the bonded frequency. Stress due to PCBB out-of-plane loading was decreased on in the corners when only a corner bond was used. Future work may address CQFP fatigue assessment, including the investigation of discrepancy in predicted fatigue damage, as well as comparing fatigue life and fatigue damage cycle ration computed using FEA and Miner's rule to results from a fatigue assessment software program.
Integration of the Reconfigurable Self-Healing eDNA Architecture in an Embedded System
NASA Technical Reports Server (NTRS)
Boesen, Michael Reibel; Keymeulen, Didier; Madsen, Jan; Lu, Thomas; Chao, Tien-Hsin
2011-01-01
In this work we describe the first real world case study for the self-healing eDNA (electronic DNA) architecture by implementing the control and data processing of a Fourier Transform Spectrometer (FTS) on an eDNA prototype. For this purpose the eDNA prototype has been ported from a Xilinx Virtex 5 FPGA to an embedded system consisting of a PowerPC and a Xilinx Virtex 5 FPGA. The FTS instrument features a novel liquid crystal waveguide, which consequently eliminates all moving parts from the instrument. The addition of the eDNA architecture to do the control and data processing has resulted in a highly fault-tolerant FTS instrument. The case study has shown that the early stage prototype of the autonomous self-healing eDNA architecture is expensive in terms of execution time.
FPGA for Power Control of MSL Avionics
NASA Technical Reports Server (NTRS)
Wang, Duo; Burke, Gary R.
2011-01-01
A PLGT FPGA (Field Programmable Gate Array) is included in the LCC (Load Control Card), GID (Guidance Interface & Drivers), TMC (Telemetry Multiplexer Card), and PFC (Pyro Firing Card) boards of the Mars Science Laboratory (MSL) spacecraft. (PLGT stands for PFC, LCC, GID, and TMC.) It provides the interface between the backside bus and the power drivers on these boards. The LCC drives power switches to switch power loads, and also relays. The GID drives the thrusters and latch valves, as well as having the star-tracker and Sun-sensor interface. The PFC drives pyros, and the TMC receives digital and analog telemetry. The FPGA is implemented both in Xilinx (Spartan 3- 400) and in Actel (RTSX72SU, ASX72S). The Xilinx Spartan 3 part is used for the breadboard, the Actel ASX part is used for the EM (Engineer Module), and the pin-compatible, radiation-hardened RTSX part is used for final EM and flight. The MSL spacecraft uses a FC (Flight Computer) to control power loads, relays, thrusters, latch valves, Sun-sensor, and star-tracker, and to read telemetry such as temperature. Commands are sent over a 1553 bus to the MREU (Multi-Mission System Architecture Platform Remote Engineering Unit). The MREU resends over a remote serial command bus c-bus to the LCC, GID TMC, and PFC. The MREU also sends out telemetry addresses via a remote serial telemetry address bus to the LCC, GID, TMC, and PFC, and the status is returned over the remote serial telemetry data bus.
A FPGA-based architecture for real-time image matching
NASA Astrophysics Data System (ADS)
Wang, Jianhui; Zhong, Sheng; Xu, Wenhui; Zhang, Weijun; Cao, Zhiguo
2013-10-01
Image matching is a fundamental task in computer vision. It is used to establish correspondence between two images taken at different viewpoint or different time from the same scene. However, its large computational complexity has been a challenge to most embedded systems. This paper proposes a single FPGA-based image matching system, which consists of SIFT feature detection, BRIEF descriptor extraction and BRIEF matching. It optimizes the FPGA architecture for the SIFT feature detection to reduce the FPGA resources utilization. Moreover, we implement BRIEF description and matching on FPGA also. The proposed system can implement image matching at 30fps (frame per second) for 1280x720 images. Its processing speed can meet the demand of most real-life computer vision applications.
A natural-color mapping for single-band night-time image based on FPGA
NASA Astrophysics Data System (ADS)
Wang, Yilun; Qian, Yunsheng
2018-01-01
A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.
Real-time fast physical random number generator with a photonic integrated circuit.
Ugajin, Kazusa; Terashima, Yuta; Iwakawa, Kento; Uchida, Atsushi; Harayama, Takahisa; Yoshimura, Kazuyuki; Inubushi, Masanobu
2017-03-20
Random number generators are essential for applications in information security and numerical simulations. Most optical-chaos-based random number generators produce random bit sequences by offline post-processing with large optical components. We demonstrate a real-time hardware implementation of a fast physical random number generator with a photonic integrated circuit and a field programmable gate array (FPGA) electronic board. We generate 1-Tbit random bit sequences and evaluate their statistical randomness using NIST Special Publication 800-22 and TestU01. All of the BigCrush tests in TestU01 are passed using 410-Gbit random bit sequences. A maximum real-time generation rate of 21.1 Gb/s is achieved for random bit sequences in binary format stored in a computer, which can be directly used for applications involving secret keys in cryptography and random seeds in large-scale numerical simulations.
NASA Astrophysics Data System (ADS)
Hoek, M.; Cardinali, M.; Corell, O.; Dickescheid, M.; Ferretti B., M. I.; Lauth, W.; Schlimme, B. S.; Sfienti, C.; Thiel, M.
2017-12-01
A prototype detector, called FLASH (Fast Light Acquiring Start Hodoscope), was built to provide precise Time-of-Flight (TOF) measurements and reference timestamps for detector setups at external beam lines. Radiator bars, made of synthetic fused silica, were coupled to a fast MCP-PMT with 64 channels and read out with custom electronics using Time-over-Threshold (TOT) for signal characterization. The TRB3 system, a high-precision TDC implemented in an FPGA, was used as data acquisition system. The performance of a system consisting of two FLASH units was investigated at a dedicated test experiment at the Mainz Microtron (MAMI) accelerator using its 855 MeV electron beam. The TOT measurement enabled time walk corrections and an overall TOF resolution of ∼70 ps could be achieved which translates into a resolution of ∼50 ps per FLASH unit. The intrinsic resolution of the frontend electronics including the TDC was measured to be less than 25 ps.
A digital acquisition and elaboration system for nuclear fast pulse detection
NASA Astrophysics Data System (ADS)
Esposito, B.; Riva, M.; Marocco, D.; Kaschuck, Y.
2007-03-01
A new digital acquisition and elaboration system has been developed and assembled in ENEA-Frascati for the direct sampling of fast pulses from nuclear detectors such as scintillators and diamond detectors. The system is capable of performing the digital sampling of the pulses (200 MSamples/s, 14-bit) and the simultaneous (compressed) data transfer for further storage and software elaboration. The design (FPGA-based) is oriented to real-time applications and has been developed in order to allow acquisition with no loss of pulses and data storage for long-time intervals (tens of s at MHz pulse count rates) without the need of large on-board memory. A dedicated pulse analysis software, written in LabVIEWTM, performs the treatment of the acquired pulses, including pulse recognition, pile-up rejection, baseline removal, pulse shape particle separation and pulse height spectra analysis. The acquisition and pre-elaboration programs have been fully integrated with the analysis software.
NASA Astrophysics Data System (ADS)
Goossens, Bart; Aelterman, Jan; Luong, Hi"p.; Pižurica, Aleksandra; Philips, Wilfried
2011-09-01
The shearlet transform is a recent sibling in the family of geometric image representations that provides a traditional multiresolution analysis combined with a multidirectional analysis. In this paper, we present a fast DFT-based analysis and synthesis scheme for the 2D discrete shearlet transform. Our scheme conforms to the continuous shearlet theory to high extent, provides perfect numerical reconstruction (up to floating point rounding errors) in a non-iterative scheme and is highly suitable for parallel implementation (e.g. FPGA, GPU). We show that our discrete shearlet representation is also a tight frame and the redundancy factor of the transform is around 2.6, independent of the number of analysis directions. Experimental denoising results indicate that the transform performs the same or even better than several related multiresolution transforms, while having a significantly lower redundancy factor.
NASA Technical Reports Server (NTRS)
Berg, M. D.; Kim, H. S.; Friendlich, M. A.; Perez, C. E.; Seidlick, C. M.; LaBel, K. A.
2011-01-01
We present SEU test and analysis of the Microsemi ProASIC3 FPGA. SEU Probability models are incorporated for device evaluation. Included is a comparison to the RTAXS FPGA illustrating the effectiveness of the overall testing methodology.
NASA Astrophysics Data System (ADS)
Ren, Y. J.; Zhu, J. G.; Yang, X. Y.; Ye, S. H.
2006-10-01
The Virtex-II Pro FPGA is applied to the vision sensor tracking system of IRB2400 robot. The hardware platform, which undertakes the task of improving SNR and compressing data, is constructed by using the high-speed image processing of FPGA. The lower level image-processing algorithm is realized by combining the FPGA frame and the embedded CPU. The velocity of image processing is accelerated due to the introduction of FPGA and CPU. The usage of the embedded CPU makes it easily to realize the logic design of interface. Some key techniques are presented in the text, such as read-write process, template matching, convolution, and some modules are simulated too. In the end, the compare among the modules using this design, using the PC computer and using the DSP, is carried out. Because the high-speed image processing system core is a chip of FPGA, the function of which can renew conveniently, therefore, to a degree, the measure system is intelligent.
FPGA-based GEM detector signal acquisition for SXR spectroscopy system
NASA Astrophysics Data System (ADS)
Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Zabolotny, W.; Chernyshova, M.; Czarski, T.; Malinowski, K.
2016-11-01
The presented work is related to the Gas Electron Multiplier (GEM) detector soft X-ray spectroscopy system for tokamak applications. The used GEM detector has one-dimensional, 128 channel readout structure. The channels are connected to the radiation-hard electronics with configurable analog stage and fast ADCs, supporting speeds of 125 MSPS for each channel. The digitalized data is sent directly to the FPGAs using fast serial links. The preprocessing algorithms are implemented in the FPGAs, with the data buffering made in the on-board 2Gb DDR3 memory chips. After the algorithmic stage, the data is sent to the Intel Xeon-based PC for further postprocessing using PCI-Express link Gen 2. For connection of multiple FPGAs, PCI-Express switch 8-to-1 was designed. The whole system can support up to 2048 analog channels. The scope of the work is an FPGA-based implementation of the recorder of the raw signal from GEM detector. Since the system will work in a very challenging environment (neutron radiation, intense electro-magnetic fields), the registered signals from the GEM detector can be corrupted. In the case of the very intense hot plasma radiation (e.g. laser generated plasma), the registered signals can overlap. Therefore, it is valuable to register the raw signals from the GEM detector with high number of events during soft X-ray radiation. The signal analysis will have the direct impact on the implementation of photon energy computation algorithms. As the result, the system will produce energy spectra and topological distribution of soft X-ray radiation. The advanced software was developed in order to perform complex system startup and monitoring of hardware units. Using the array of two one-dimensional GEM detectors it will be possible to perform tomographic reconstruction of plasma impurities radiation in the SXR region.
Design of barrier bucket kicker control system
NASA Astrophysics Data System (ADS)
Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li
2018-05-01
The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.
Lee, W R; Kim, H S; Park, M K; Lee, J H; Kim, K H
2012-09-01
The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.
Embedded controller for GEM detector readout system
NASA Astrophysics Data System (ADS)
Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek
2013-10-01
This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.
Active vibration control of a full scale aircraft wing using a reconfigurable controller
NASA Astrophysics Data System (ADS)
Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.
2016-01-01
This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.
A programmable metasurface with dynamic polarization, scattering and focusing control
NASA Astrophysics Data System (ADS)
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-10-01
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.
A programmable metasurface with dynamic polarization, scattering and focusing control
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-01-01
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications. PMID:27774997
A programmable metasurface with dynamic polarization, scattering and focusing control.
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-10-24
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.
Web-based DAQ systems: connecting the user and electronics front-ends
NASA Astrophysics Data System (ADS)
Lenzi, Thomas
2016-12-01
Web technologies are quickly evolving and are gaining in computational power and flexibility, allowing for a paradigm shift in the field of Data Acquisition (DAQ) systems design. Modern web browsers offer the possibility to create intricate user interfaces and are able to process and render complex data. Furthermore, new web standards such as WebSockets allow for fast real-time communication between the server and the user with minimal overhead. Those improvements make it possible to move the control and monitoring operations from the back-end servers directly to the user and to the front-end electronics, thus reducing the complexity of the data acquisition chain. Moreover, web-based DAQ systems offer greater flexibility, accessibility, and maintainability on the user side than traditional applications which often lack portability and ease of use. As proof of concept, we implemented a simplified DAQ system on a mid-range Spartan6 Field Programmable Gate Array (FPGA) development board coupled to a digital front-end readout chip. The system is connected to the Internet and can be accessed from any web browser. It is composed of custom code to control the front-end readout and of a dual soft-core Microblaze processor to communicate with the client.
Note: Design of FPGA based system identification module with application to atomic force microscopy
NASA Astrophysics Data System (ADS)
Ghosal, Sayan; Pradhan, Sourav; Salapaka, Murti
2018-05-01
The science of system identification is widely utilized in modeling input-output relationships of diverse systems. In this article, we report field programmable gate array (FPGA) based implementation of a real-time system identification algorithm which employs forgetting factors and bias compensation techniques. The FPGA module is employed to estimate the mechanical properties of surfaces of materials at the nano-scale with an atomic force microscope (AFM). The FPGA module is user friendly which can be interfaced with commercially available AFMs. Extensive simulation and experimental results validate the design.
Radiation Hardened 10BASE-T Ethernet Physical Layer (PHY)
NASA Technical Reports Server (NTRS)
Lin, Michael R. (Inventor); Petrick, David J. (Inventor); Ballou, Kevin M. (Inventor); Espinosa, Daniel C. (Inventor); James, Edward F. (Inventor); Kliesner, Matthew A. (Inventor)
2017-01-01
Embodiments may provide a radiation hardened 10BASE-T Ethernet interface circuit suitable for space flight and in compliance with the IEEE 802.3 standard for Ethernet. The various embodiments may provide a 10BASE-T Ethernet interface circuit, comprising a field programmable gate array (FPGA), a transmitter circuit connected to the FPGA, a receiver circuit connected to the FPGA, and a transformer connected to the transmitter circuit and the receiver circuit. In the various embodiments, the FPGA, transmitter circuit, receiver circuit, and transformer may be radiation hardened.
NASA Astrophysics Data System (ADS)
Jaensch, M.; Lampérth, M. U.
2007-04-01
This paper describes the design and performance testing of a micropositioning, vibration isolation and suppression system, which can be used to position a piece of equipment with sub-micrometre accuracy and stabilize it against various types of external disturbance. The presented demonstrator was designed as part of a novel extremely open pre-polarization magnetic resonance imaging (MRI) scanner. The active control system utilizes six piezoelectric actuators, wide-bandwidth optical fibre displacement sensors and a very fast digital field programmable gate array (FPGA) controller. A PID feedback control algorithm with emphasis on a very high level of integral gain is employed. Due to the high external forces expected, the whole structure is designed to be as stiff as possible, including a novel hard mount approach with parallel passive damping for the suspension of the payload. The performance of the system is studied theoretically and experimentally. The sensitive equipment can be positioned in six degrees of freedom with an accuracy of ± 0.2 µm. External disturbances acting on the support structure or the equipment itself are attenuated in three degrees of freedom by more than -20 dB within a bandwidth of 0-200 Hz. Excellent impulse rejection and input tracking are demonstrated as well.
Systems-on-chip approach for real-time simulation of wheel-rail contact laws
NASA Astrophysics Data System (ADS)
Mei, T. X.; Zhou, Y. J.
2013-04-01
This paper presents the development of a systems-on-chip approach to speed up the simulation of wheel-rail contact laws, which can be used to reduce the requirement for high-performance computers and enable simulation in real time for the use of hardware-in-loop for experimental studies of the latest vehicle dynamic and control technologies. The wheel-rail contact laws are implemented using a field programmable gate array (FPGA) device with a design that substantially outperforms modern general-purpose PC platforms or fixed architecture digital signal processor devices in terms of processing time, configuration flexibility and cost. In order to utilise the FPGA's parallel-processing capability, the operations in the contact laws algorithms are arranged in a parallel manner and multi-contact patches are tackled simultaneously in the design. The interface between the FPGA device and the host PC is achieved by using a high-throughput and low-latency Ethernet link. The development is based on FASTSIM algorithms, although the design can be adapted and expanded for even more computationally demanding tasks.
Laplace Transform Based Radiative Transfer Studies
NASA Astrophysics Data System (ADS)
Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.
2006-12-01
Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.
Implementation of four layer automatic elevator controller
NASA Astrophysics Data System (ADS)
Prasad, B. K. V.; Kumar, P. Satish; Charles, B. S.; Srilakshmi, G.
2017-07-01
In this modern era, elevators have become an integral part of any commercial or public complex. It facilitates the faster movement of people and luggage between floors. The lift control system is one among the keenest aspects in electronics controlling module that are used in auto motive filed. Usually elevators are designed for a specific building taking into account the main factors like the measure of the building, the count of persons travelling to each floor and the expected periods of large usage. The lift system was designed with different control strategies. This implementation is based on FPGA, which could be used for any building with any number of floors, with the necessary inputs and outputs. This controller can be implemented based on the required number of floors by merely changing a control variable from the HDL code. This approach is based on an algorithm which reduces the number of computation necessary, on concentrating only on the relevant principles that improves the score and ability of the club of elevator structure. The elevator controller is developed using Verilog HDL and is perfectly executed on a Xilinx ISE 12.4 and Spartan -3E FPGA.
Field-programmable gate array-controlled sweep velocity-locked laser pulse generator
NASA Astrophysics Data System (ADS)
Chen, Zhen; Hefferman, Gerald; Wei, Tao
2017-05-01
A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.
An embedded vision system for an unmanned four-rotor helicopter
NASA Astrophysics Data System (ADS)
Lillywhite, Kirt; Lee, Dah-Jye; Tippetts, Beau; Fowers, Spencer; Dennis, Aaron; Nelson, Brent; Archibald, James
2006-10-01
In this paper an embedded vision system and control module is introduced that is capable of controlling an unmanned four-rotor helicopter and processing live video for various law enforcement, security, military, and civilian applications. The vision system is implemented on a newly designed compact FPGA board (Helios). The Helios board contains a Xilinx Virtex-4 FPGA chip and memory making it capable of implementing real time vision algorithms. A Smooth Automated Intelligent Leveling daughter board (SAIL), attached to the Helios board, collects attitude and heading information to be processed in order to control the unmanned helicopter. The SAIL board uses an electrolytic tilt sensor, compass, voltage level converters, and analog to digital converters to perform its operations. While level flight can be maintained, problems stemming from the characteristics of the tilt sensor limits maneuverability of the helicopter. The embedded vision system has proven to give very good results in its performance of a number of real-time robotic vision algorithms.
Design of low noise imaging system
NASA Astrophysics Data System (ADS)
Hu, Bo; Chen, Xiaolai
2017-10-01
In order to meet the needs of engineering applications for low noise imaging system under the mode of global shutter, a complete imaging system is designed based on the SCMOS (Scientific CMOS) image sensor CIS2521F. The paper introduces hardware circuit and software system design. Based on the analysis of key indexes and technologies about the imaging system, the paper makes chips selection and decides SCMOS + FPGA+ DDRII+ Camera Link as processing architecture. Then it introduces the entire system workflow and power supply and distribution unit design. As for the software system, which consists of the SCMOS control module, image acquisition module, data cache control module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The imaging experimental results show that the imaging system exhibits a 2560*2160 pixel resolution, has a maximum frame frequency of 50 fps. The imaging quality of the system satisfies the requirement of the index.
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).
Luminance uniformity compensation for OLED panels based on FPGA
NASA Astrophysics Data System (ADS)
Ou, Peng; Yang, Gang; Jiang, Quan; Yu, Jun-Sheng; Wu, Qi-Peng; Shang, Fu-Hai; Yin, Wei; Wang, Jun; Zhong, Jian; Luo, Kai-Jun
2009-09-01
Aiming at the problem of luminance uniformity for organic lighting-emitting diode (OLED) panels, a new brightness calculating method based on bilinear interpolation is proposed. The irradiance time of each pixel reaching the same luminance is figured out by Matlab. Adopting the 64×32-pixel, single color and passive matrix OLED panel as adjusting luminance uniformity panel, a new circuit compensating scheme based on FPGA is designed. VHDL is used to make each pixel’s irradiance time in one frame period written in program. The irradiance brightness is controlled by changing its irradiance time, and finally, luminance compensation of the panel is realized. The simulation result indicates that the design is reasonable.
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345
Time-delayed chameleon: Analysis, synchronization and FPGA implementation
NASA Astrophysics Data System (ADS)
Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas
2017-12-01
In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.
Design of an Oximeter Based on LED-LED Configuration and FPGA Technology
Stojanovic, Radovan; Karadaglic, Dejan
2013-01-01
A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2). N-LEDs configuration is proposed for multichannel SpO2 measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption. PMID:23291575
FPGA-based real time controller for high order correction in EDIFISE
NASA Astrophysics Data System (ADS)
Rodríguez-Ramos, L. F.; Chulani, H.; Martín, Y.; Dorta, T.; Alonso, A.; Fuensalida, J. J.
2012-07-01
EDIFISE is a technology demonstrator instrument developed at the Institute of Astrophysics of the Canary Islands (IAC), intended to explore the feasibility of combining Adaptive Optics with attenuated optical fibers in order to obtain high spatial resolution spectra at the surroundings of a star, as an alternative to coronagraphy. A simplified version with only tip tilt correction has been tested at the OGS telescope in Observatorio del Teide (Canary islands, Spain) and a complete version is intended to be tested at the OGS and at the WHT telescope in Observatorio del Roque de los Muchachos, (Canary Islands, Spain). This paper describes the FPGA-based real time control of the High Order unit, responsible of the computation of the actuation values of a 97-actuactor deformable mirror (11x11) with the information provided by a configurable wavefront sensor of up to 16x16 subpupils at 500 Hz (128x128 pixels). The reconfigurable logic hardware will allow both zonal and modal control approaches, will full access to select which mode loops should be closed and with a number of utilities for influence matrix and open loop response measurements. The system has been designed in a modular way to allow for easy upgrade to faster frame rates (1500 Hz) and bigger wavefront sensors (240x240 pixels), accepting also several interfaces from the WFS and towards the mirror driver. The FPGA-based (Field Programmable Gate Array) real time controller provides bias and flat-fielding corrections, subpupil slopes to modal matrix computation for up to 97 modes, independent servo loop controllers for each mode with user control for independent loop opening or closing, mode to actuator matrix computation and non-common path aberration correction capability. It also provides full housekeeping control via UPD/IP for matrix reloading and full system data logging.
Autonomous Lawnmower using FPGA implementation.
NASA Astrophysics Data System (ADS)
Ahmad, Nabihah; Lokman, Nabill bin; Helmy Abd Wahab, Mohd
2016-11-01
Nowadays, there are various types of robot have been invented for multiple purposes. The robots have the special characteristic that surpass the human ability and could operate in extreme environment which human cannot endure. In this paper, an autonomous robot is built to imitate the characteristic of a human cutting grass. A Field Programmable Gate Array (FPGA) is used to control the movements where all data and information would be processed. Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) is used to describe the hardware using Quartus II software. This robot has the ability of avoiding obstacle using ultrasonic sensor. This robot used two DC motors for its movement. It could include moving forward, backward, and turning left and right. The movement or the path of the automatic lawn mower is based on a path planning technique. Four Global Positioning System (GPS) plot are set to create a boundary. This to ensure that the lawn mower operates within the area given by user. Every action of the lawn mower is controlled by the FPGA DE' Board Cyclone II with the help of the sensor. Furthermore, Sketch Up software was used to design the structure of the lawn mower. The autonomous lawn mower was able to operate efficiently and smoothly return to coordinated paths after passing the obstacle. It uses 25% of total pins available on the board and 31% of total Digital Signal Processing (DSP) blocks.
Design for Review - Applying Lessons Learned to Improve the FPGA Review Process
NASA Technical Reports Server (NTRS)
Figueiredo, Marco A.; Li, Kenneth E.
2014-01-01
Flight Field Programmable Gate Array (FPGA) designs are required to be independently reviewed. This paper provides recommendations to Flight FPGA designers to properly prepare their designs for review in order to facilitate the review process, and reduce the impact of the review time in the overall project schedule.
Pruttivarasin, Thaned; Katori, Hidetoshi
2015-11-01
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp; Katori, Hidetoshi; Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
XMOS XC-2 Development Board for Mechanical Control and Data Collection
NASA Technical Reports Server (NTRS)
Jarnot, Robert F.; Bowden, William J.
2011-01-01
The scanning microwave limb sounder (SMLS) will use technological improvements in low-noise mixers to provide precise data on the Earth s atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a realtime control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with an FPGA(fieldprogrammable gate array)-based setup, a processor development kit manufactured by XMOS was chosen. The XMOS architecture allows parallel execution of multiple tasks on separate threads, making it ideal for this application. It is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. A simple approach to control the chopper, calibration mirror, and gimbal for the airborne SMLS was needed. The XMOS board allows for multiple threads and real-time data acquisition. The XC-2 development kit is an attractive choice for synchronized, real-time, event-driven applications. The XMOS is based on the transputer microprocessor architecture developed for parallel computing, which is being revamped in this new platform. The XMOS device has multiple cores capable of running parallel applications on separate threads. The threads communicate with each other via user-defined channels capable of transmitting data within the device. XMOS provides a C-based development environment using XC, which eliminates the need for custom tool kits associated with FPGA programming. The XC-2 has four cores and necessary hardware for Ethernet I/O.
FPGA based demodulation of laser induced fluorescence in plasmas
NASA Astrophysics Data System (ADS)
Mattingly, Sean W.; Skiff, Fred
2018-04-01
We present a field programmable gate array (FPGA)-based system that counts photons from laser-induced fluorescence (LIF) on a laboratory plasma. This is accomplished with FPGA-based up/down counters that demodulate the data, giving a background-subtracted LIF signal stream that is updated with a new point as each laser amplitude modulation cycle completes. We demonstrate using the FPGA to modulate a laser at 1 MHz and demodulate the resulting LIF data stream. This data stream is used to calculate an LIF-based measurement sampled at 1 MHz of a plasma ion fluctuation spectrum.
Multi-variants synthesis of Petri nets for FPGA devices
NASA Astrophysics Data System (ADS)
Bukowiec, Arkadiusz; Doligalski, Michał
2015-09-01
There is presented new method of synthesis of application specific logic controllers for FPGA devices. The specification of control algorithm is made with use of control interpreted Petri net (PT type). It allows specifying parallel processes in easy way. The Petri net is decomposed into state-machine type subnets. In this case, each subnet represents one parallel process. For this purpose there are applied algorithms of coloring of Petri nets. There are presented two approaches of such decomposition: with doublers of macroplaces or with one global wait place. Next, subnets are implemented into two-level logic circuit of the controller. The levels of logic circuit are obtained as a result of its architectural decomposition. The first level combinational circuit is responsible for generation of next places and second level decoder is responsible for generation output symbols. There are worked out two variants of such circuits: with one shared operational memory or with many flexible distributed memories as a decoder. Variants of Petri net decomposition and structures of logic circuits can be combined together without any restrictions. It leads to existence of four variants of multi-variants synthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabakar, Kumaraguru; Shirazi, Mariko; Singh, Akanksha
Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the differentmore » control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.« less
FPGA in-the-loop simulations of cardiac excitation model under voltage clamp conditions
NASA Astrophysics Data System (ADS)
Othman, Norliza; Adon, Nur Atiqah; Mahmud, Farhanahani
2017-01-01
Voltage clamp technique allows the detection of single channel currents in biological membranes in identifying variety of electrophysiological problems in the cellular level. In this paper, a simulation study of the voltage clamp technique has been presented to analyse current-voltage (I-V) characteristics of ion currents based on Luo-Rudy Phase-I (LR-I) cardiac model by using a Field Programmable Gate Array (FPGA). Nowadays, cardiac models are becoming increasingly complex which can cause a vast amount of time to run the simulation. Thus, a real-time hardware implementation using FPGA could be one of the best solutions for high-performance real-time systems as it provides high configurability and performance, and able to executes in parallel mode operation. For shorter time development while retaining high confidence results, FPGA-based rapid prototyping through HDL Coder from MATLAB software has been used to construct the algorithm for the simulation system. Basically, the HDL Coder is capable to convert the designed MATLAB Simulink blocks into hardware description language (HDL) for the FPGA implementation. As a result, the voltage-clamp fixed-point design of LR-I model has been successfully conducted in MATLAB Simulink and the simulation of the I-V characteristics of the ionic currents has been verified on Xilinx FPGA Virtex-6 XC6VLX240T development board through an FPGA-in-the-loop (FIL) simulation.
Field Programmable Gate Array Control of Power Systems in Graduate Student Laboratories
2008-03-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited FIELD PROGRAMMABLE...REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Field Programmable Gate Array Control of Power Systems in Graduate Student...Electronics curriculum track is the development of a design center that explores Field Programmable Gate Array (FPGA) control of power electronics
Development of ROACH firmware for microwave multiplexed X-ray TES microcalorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, T. J.; Cecil, T. W.; Gades, L. M.
We are developing room temperature electronics based upon the ROACH platform for reading out microwave multiplexed X-ray TES. ROACH is an open-source hardware and software platform featuring a large Xilinx Field Programmable Gate Array (FPGA), Power PC processor, several 10GB Ethernet SFP+ interfaces, and a collection of daughter boards for analog signal generation and acquisition. The combination of a ROACH board, ADC/DAC conversion daughter boards, and hardware for RF mixing allows for the generation and capture of multiple RF tones for reading out microwave multiplexed x-ray TES microcalorimeters. The FPGA is used to generate multiple tones in base band, frommore » 10MHz to 250MHz, which are subsequently mixed to RF in the multiple GHz range and sent through the microwave multiplexer. The tones are generated in the FPGA by storing a large lookup table in Quad Data Rate (QDR) SRAM modules and playing out the waveform to a DAC board. Once the signal has been modulated to RF, passed through the microwave multiplexer, and has been modulated back to base band, the signal is digitized by an ADC board. The tones are modulated to 0Hz by using a FPGA circuit consisting of a polyphase filter bank, several Xilinx FFT blocks, Xilinx CORDIC blocks (for converting to magnitude and phase), and special phase accumulator circuit for mixing to exactly 0Hz. Upwards of 256 channels can be simultaneously captured and written into a bank of 256 First-In-First-Out (FIFO) memories, with each FIFO corresponding to a channel. Individual channel data can be further processed in the FPGA before being streamed through a 10GB Ethernet fiber-optic interface to a Linux system. The Linux system runs software written in Python and QT C++ for controlling the ROACH system, capturing data, and processing data.« less
NASA Astrophysics Data System (ADS)
Sanz, D.; Ruiz, M.; Castro, R.; Vega, J.; Afif, M.; Monroe, M.; Simrock, S.; Debelle, T.; Marawar, R.; Glass, B.
2016-04-01
To aid in assessing the functional performance of ITER, Fission Chambers (FC) based on the neutron diagnostic use case deliver timestamped measurements of neutron source strength and fusion power. To demonstrate the Plant System Instrumentation & Control (I&C) required for such a system, ITER Organization (IO) has developed a neutron diagnostics use case that fully complies with guidelines presented in the Plant Control Design Handbook (PCDH). The implementation presented in this paper has been developed on the PXI Express (PXIe) platform using products from the ITER catalog of standard I&C hardware for fast controllers. Using FlexRIO technology, detector signals are acquired at 125 MS/s, while filtering, decimation, and three methods of neutron counting are performed in real-time via the onboard Field Programmable Gate Array (FPGA). Measurement results are reported every 1 ms through Experimental Physics and Industrial Control System (EPICS) Channel Access (CA), with real-time timestamps derived from the ITER Timing Communication Network (TCN) based on IEEE 1588-2008. Furthermore, in accordance with ITER specifications for CODAC Core System (CCS) application development, the software responsible for the management, configuration, and monitoring of system devices has been developed in compliance with a new EPICS module called Nominal Device Support (NDS) and RIO/FlexRIO design methodology.
160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA)
Li, Isaac TS; Shum, Warren; Truong, Kevin
2007-01-01
Background To infer homology and subsequently gene function, the Smith-Waterman (SW) algorithm is used to find the optimal local alignment between two sequences. When searching sequence databases that may contain hundreds of millions of sequences, this algorithm becomes computationally expensive. Results In this paper, we focused on accelerating the Smith-Waterman algorithm by using FPGA-based hardware that implemented a module for computing the score of a single cell of the SW matrix. Then using a grid of this module, the entire SW matrix was computed at the speed of field propagation through the FPGA circuit. These modifications dramatically accelerated the algorithm's computation time by up to 160 folds compared to a pure software implementation running on the same FPGA with an Altera Nios II softprocessor. Conclusion This design of FPGA accelerated hardware offers a new promising direction to seeking computation improvement of genomic database searching. PMID:17555593
FPGA-based gating and logic for multichannel single photon counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooser, Raphael C; Earl, Dennis Duncan; Evans, Philip G
2012-01-01
We present results characterizing multichannel InGaAs single photon detectors utilizing gated passive quenching circuits (GPQC), self-differencing techniques, and field programmable gate array (FPGA)-based logic for both diode gating and coincidence counting. Utilizing FPGAs for the diode gating frontend and the logic counting backend has the advantage of low cost compared to custom built logic circuits and current off-the-shelf detector technology. Further, FPGA logic counters have been shown to work well in quantum key distribution (QKD) test beds. Our setup combines multiple independent detector channels in a reconfigurable manner via an FPGA backend and post processing in order to perform coincidencemore » measurements between any two or more detector channels simultaneously. Using this method, states from a multi-photon polarization entangled source are detected and characterized via coincidence counting on the FPGA. Photons detection events are also processed by the quantum information toolkit for application testing (QITKAT)« less
160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA).
Li, Isaac T S; Shum, Warren; Truong, Kevin
2007-06-07
To infer homology and subsequently gene function, the Smith-Waterman (SW) algorithm is used to find the optimal local alignment between two sequences. When searching sequence databases that may contain hundreds of millions of sequences, this algorithm becomes computationally expensive. In this paper, we focused on accelerating the Smith-Waterman algorithm by using FPGA-based hardware that implemented a module for computing the score of a single cell of the SW matrix. Then using a grid of this module, the entire SW matrix was computed at the speed of field propagation through the FPGA circuit. These modifications dramatically accelerated the algorithm's computation time by up to 160 folds compared to a pure software implementation running on the same FPGA with an Altera Nios II softprocessor. This design of FPGA accelerated hardware offers a new promising direction to seeking computation improvement of genomic database searching.
A high data rate universal lattice decoder on FPGA
NASA Astrophysics Data System (ADS)
Ma, Jing; Huang, Xinming; Kura, Swapna
2005-06-01
This paper presents the architecture design of a high data rate universal lattice decoder for MIMO channels on FPGA platform. A phost strategy based lattice decoding algorithm is modified in this paper to reduce the complexity of the closest lattice point search. The data dependency of the improved algorithm is examined and a parallel and pipeline architecture is developed with the iterative decoding function on FPGA and the division intensive channel matrix preprocessing on DSP. Simulation results demonstrate that the improved lattice decoding algorithm provides better bit error rate and less iteration number compared with the original algorithm. The system prototype of the decoder shows that it supports data rate up to 7Mbit/s on a Virtex2-1000 FPGA, which is about 8 times faster than the original algorithm on FPGA platform and two-orders of magnitude better than its implementation on a DSP platform.
Systems and methods for detecting a failure event in a field programmable gate array
NASA Technical Reports Server (NTRS)
Ng, Tak-Kwong (Inventor); Herath, Jeffrey A. (Inventor)
2009-01-01
An embodiment generally relates to a method of self-detecting an error in a field programmable gate array (FPGA). The method includes writing a signature value into a signature memory in the FPGA and determining a conclusion of a configuration refresh operation in the FPGA. The method also includes reading an outcome value from the signature memory.
NASA Technical Reports Server (NTRS)
Wang, Jih-Jong; Cronquist, Brian E.; McGowan, John E.; Katz, Richard B.
1997-01-01
The goals for a radiation hardened (RAD-HARD) and high reliability (HI-REL) field programmable gate array (FPGA) are described. The first qualified manufacturer list (QML) radiation hardened RH1280 and RH1020 were developed. The total radiation dose and single event effects observed on the antifuse FPGA RH1280 are reported on. Tradeoffs and the limitations in the single event upset hardening are discussed.
Design techniques for a stable operation of cryogenic field-programmable gate arrays.
Homulle, Harald; Visser, Stefan; Patra, Bishnu; Charbon, Edoardo
2018-01-01
In this paper, we show how a deep-submicron field-programmable gate array (FPGA) can be operated more stably at extremely low temperatures through special firmware design techniques. Stability at low temperatures is limited through long power supply wires and reduced performance of various printed circuit board components commonly employed at room temperature. Extensive characterization of these components shows that the majority of decoupling capacitor types and voltage regulators are not well behaved at cryogenic temperatures, asking for an ad hoc solution to stabilize the FPGA supply voltage, especially for sensitive applications. Therefore, we have designed a firmware that enforces a constant power consumption, so as to stabilize the supply voltage in the interior of the FPGA. The FPGA is powered with a supply at several meters distance, causing significant resistive voltage drop and thus fluctuations on the local supply voltage. To achieve the stabilization, the variation in digital logic speed, which directly corresponds to changes in supply voltage, is constantly measured and corrected for through a tunable oscillator farm, implemented on the FPGA. The impact of the stabilization technique is demonstrated together with a reconfigurable analog-to-digital converter (ADC), completely implemented in the FPGA fabric and operating at 15 K. The ADC performance can be improved by at most 1.5 bits (effective number of bits) thanks to the more stable supply voltage. The method is versatile and robust, enabling seamless porting to other FPGA families and configurations.
Design techniques for a stable operation of cryogenic field-programmable gate arrays
NASA Astrophysics Data System (ADS)
Homulle, Harald; Visser, Stefan; Patra, Bishnu; Charbon, Edoardo
2018-01-01
In this paper, we show how a deep-submicron field-programmable gate array (FPGA) can be operated more stably at extremely low temperatures through special firmware design techniques. Stability at low temperatures is limited through long power supply wires and reduced performance of various printed circuit board components commonly employed at room temperature. Extensive characterization of these components shows that the majority of decoupling capacitor types and voltage regulators are not well behaved at cryogenic temperatures, asking for an ad hoc solution to stabilize the FPGA supply voltage, especially for sensitive applications. Therefore, we have designed a firmware that enforces a constant power consumption, so as to stabilize the supply voltage in the interior of the FPGA. The FPGA is powered with a supply at several meters distance, causing significant resistive voltage drop and thus fluctuations on the local supply voltage. To achieve the stabilization, the variation in digital logic speed, which directly corresponds to changes in supply voltage, is constantly measured and corrected for through a tunable oscillator farm, implemented on the FPGA. The impact of the stabilization technique is demonstrated together with a reconfigurable analog-to-digital converter (ADC), completely implemented in the FPGA fabric and operating at 15 K. The ADC performance can be improved by at most 1.5 bits (effective number of bits) thanks to the more stable supply voltage. The method is versatile and robust, enabling seamless porting to other FPGA families and configurations.
Software-based high-level synthesis design of FPGA beamformers for synthetic aperture imaging.
Amaro, Joao; Yiu, Billy Y S; Falcao, Gabriel; Gomes, Marco A C; Yu, Alfred C H
2015-05-01
Field-programmable gate arrays (FPGAs) can potentially be configured as beamforming platforms for ultrasound imaging, but a long design time and skilled expertise in hardware programming are typically required. In this article, we present a novel approach to the efficient design of FPGA beamformers for synthetic aperture (SA) imaging via the use of software-based high-level synthesis techniques. Software kernels (coded in OpenCL) were first developed to stage-wise handle SA beamforming operations, and their corresponding FPGA logic circuitry was emulated through a high-level synthesis framework. After design space analysis, the fine-tuned OpenCL kernels were compiled into register transfer level descriptions to configure an FPGA as a beamformer module. The processing performance of this beamformer was assessed through a series of offline emulation experiments that sought to derive beamformed images from SA channel-domain raw data (40-MHz sampling rate, 12 bit resolution). With 128 channels, our FPGA-based SA beamformer can achieve 41 frames per second (fps) processing throughput (3.44 × 10(8) pixels per second for frame size of 256 × 256 pixels) at 31.5 W power consumption (1.30 fps/W power efficiency). It utilized 86.9% of the FPGA fabric and operated at a 196.5 MHz clock frequency (after optimization). Based on these findings, we anticipate that FPGA and high-level synthesis can together foster rapid prototyping of real-time ultrasound processor modules at low power consumption budgets.
Programming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter Scale
Huang, Muhuan; Wu, Di; Yu, Cody Hao; Fang, Zhenman; Interlandi, Matteo; Condie, Tyson; Cong, Jason
2017-01-01
With the end of CPU core scaling due to dark silicon limitations, customized accelerators on FPGAs have gained increased attention in modern datacenters due to their lower power, high performance and energy efficiency. Evidenced by Microsoft’s FPGA deployment in its Bing search engine and Intel’s 16.7 billion acquisition of Altera, integrating FPGAs into datacenters is considered one of the most promising approaches to sustain future datacenter growth. However, it is quite challenging for existing big data computing systems—like Apache Spark and Hadoop—to access the performance and energy benefits of FPGA accelerators. In this paper we design and implement Blaze to provide programming and runtime support for enabling easy and efficient deployments of FPGA accelerators in datacenters. In particular, Blaze abstracts FPGA accelerators as a service (FaaS) and provides a set of clean programming APIs for big data processing applications to easily utilize those accelerators. Our Blaze runtime implements an FaaS framework to efficiently share FPGA accelerators among multiple heterogeneous threads on a single node, and extends Hadoop YARN with accelerator-centric scheduling to efficiently share them among multiple computing tasks in the cluster. Experimental results using four representative big data applications demonstrate that Blaze greatly reduces the programming efforts to access FPGA accelerators in systems like Apache Spark and YARN, and improves the system throughput by 1.7 × to 3× (and energy efficiency by 1.5× to 2.7×) compared to a conventional CPU-only cluster. PMID:28317049
Programming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter Scale.
Huang, Muhuan; Wu, Di; Yu, Cody Hao; Fang, Zhenman; Interlandi, Matteo; Condie, Tyson; Cong, Jason
2016-10-01
With the end of CPU core scaling due to dark silicon limitations, customized accelerators on FPGAs have gained increased attention in modern datacenters due to their lower power, high performance and energy efficiency. Evidenced by Microsoft's FPGA deployment in its Bing search engine and Intel's 16.7 billion acquisition of Altera, integrating FPGAs into datacenters is considered one of the most promising approaches to sustain future datacenter growth. However, it is quite challenging for existing big data computing systems-like Apache Spark and Hadoop-to access the performance and energy benefits of FPGA accelerators. In this paper we design and implement Blaze to provide programming and runtime support for enabling easy and efficient deployments of FPGA accelerators in datacenters. In particular, Blaze abstracts FPGA accelerators as a service (FaaS) and provides a set of clean programming APIs for big data processing applications to easily utilize those accelerators. Our Blaze runtime implements an FaaS framework to efficiently share FPGA accelerators among multiple heterogeneous threads on a single node, and extends Hadoop YARN with accelerator-centric scheduling to efficiently share them among multiple computing tasks in the cluster. Experimental results using four representative big data applications demonstrate that Blaze greatly reduces the programming efforts to access FPGA accelerators in systems like Apache Spark and YARN, and improves the system throughput by 1.7 × to 3× (and energy efficiency by 1.5× to 2.7×) compared to a conventional CPU-only cluster.
Cavity parameters identification for TESLA control system development
NASA Astrophysics Data System (ADS)
Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan
2005-08-01
Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.
New design environment for defect detection in web inspection systems
NASA Astrophysics Data System (ADS)
Hajimowlana, S. Hossain; Muscedere, Roberto; Jullien, Graham A.; Roberts, James W.
1997-09-01
One of the aims of industrial machine vision is to develop computer and electronic systems destined to replace human vision in the process of quality control of industrial production. In this paper we discuss the development of a new design environment developed for real-time defect detection using reconfigurable FPGA and DSP processor mounted inside a DALSA programmable CCD camera. The FPGA is directly connected to the video data-stream and outputs data to a low bandwidth output bus. The system is targeted for web inspection but has the potential for broader application areas. We describe and show test results of the prototype system board, mounted inside a DALSA camera and discuss some of the algorithms currently simulated and implemented for web inspection applications.
FPGA-based real-time phase measuring profilometry algorithm design and implementation
NASA Astrophysics Data System (ADS)
Zhan, Guomin; Tang, Hongwei; Zhong, Kai; Li, Zhongwei; Shi, Yusheng
2016-11-01
Phase measuring profilometry (PMP) has been widely used in many fields, like Computer Aided Verification (CAV), Flexible Manufacturing System (FMS) et al. High frame-rate (HFR) real-time vision-based feedback control will be a common demands in near future. However, the instruction time delay in the computer caused by numerous repetitive operations greatly limit the efficiency of data processing. FPGA has the advantages of pipeline architecture and parallel execution, and it fit for handling PMP algorithm. In this paper, we design a fully pipelined hardware architecture for PMP. The functions of hardware architecture includes rectification, phase calculation, phase shifting, and stereo matching. The experiment verified the performance of this method, and the factors that may influence the computation accuracy was analyzed.
In-situ Testing of the EHT High Gain and Frequency Ultra-Stable Integrators
NASA Astrophysics Data System (ADS)
Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Lotz, Dan
2014-10-01
Eagle Harbor Technologies (EHT) has developed a long-pulse integrator that exceeds the ITER specification for integration error and pulse duration. During the Phase I program, EHT improved the RPPL short-pulse integrators, added a fast digital reset, and demonstrated that the new integrators exceed the ITER integration error and pulse duration requirements. In Phase II, EHT developed Field Programmable Gate Array (FPGA) software that allows for integrator control and real-time signal digitization and processing. In the second year of Phase II, the EHT integrator will be tested at a validation platform experiment (HIT-SI) and tokamak (DIII-D). In the Phase IIB program, EHT will continue development of the EHT integrator to reduce overall cost per channel. EHT will test lower cost components, move to surface mount components, and add an onboard Field Programmable Gate Array and data acquisition to produce a stand-alone system with lower cost per channel and increased the channel density. EHT will test the Phase IIB integrator at a validation platform experiment (HIT-SI) and tokamak (DIII-D). Work supported by the DOE under Contract Number (DE-SC0006281).
FPGA based data processing in the ALICE High Level Trigger in LHC Run 2
NASA Astrophysics Data System (ADS)
Engel, Heiko; Alt, Torsten; Kebschull, Udo;
2017-10-01
The ALICE High Level Trigger (HLT) is a computing cluster dedicated to the online compression, reconstruction and calibration of experimental data. The HLT receives detector data via serial optical links into FPGA based readout boards that process the data on a per-link level already inside the FPGA and provide it to the host machines connected with a data transport framework. FPGA based data pre-processing is enabled for the biggest detector of ALICE, the Time Projection Chamber (TPC), with a hardware cluster finding algorithm. This algorithm was ported to the Common Read-Out Receiver Card (C-RORC) as used in the HLT for RUN 2. It was improved to handle double the input bandwidth and adjusted to the upgraded TPC Readout Control Unit (RCU2). A flexible firmware implementation in the HLT handles both the old and the new TPC data format and link rates transparently. Extended protocol and data error detection, error handling and the enhanced RCU2 data ordering scheme provide an improved physics performance of the cluster finder. The performance of the cluster finder was verified against large sets of reference data both in terms of throughput and algorithmic correctness. Comparisons with a software reference implementation confirm significant savings on CPU processing power using the hardware implementation. The C-RORC hardware with the cluster finder for RCU1 data is in use in the HLT since the start of RUN 2. The extended hardware cluster finder implementation for the RCU2 with doubled throughput is active since the upgrade of the TPC readout electronics in early 2016.
NASA Astrophysics Data System (ADS)
Rosu-Hamzescu, Mihnea; Polonschii, Cristina; Oprea, Sergiu; Popescu, Dragos; David, Sorin; Bratu, Dumitru; Gheorghiu, Eugen
2018-06-01
Electro-optical measurements, i.e., optical waveguides and plasmonic based electrochemical impedance spectroscopy (P-EIS), are based on the sensitive dependence of refractive index of electro-optical sensors on surface charge density, modulated by an AC electrical field applied to the sensor surface. Recently, P-EIS has emerged as a new analytical tool that can resolve local impedance with high, optical spatial resolution, without using microelectrodes. This study describes a high speed image acquisition and processing system for electro-optical measurements, based on a high speed complementary metal-oxide semiconductor (CMOS) sensor and a field-programmable gate array (FPGA) board. The FPGA is used to configure CMOS parameters, as well as to receive and locally process the acquired images by performing Fourier analysis for each pixel, deriving the real and imaginary parts of the Fourier coefficients for the AC field frequencies. An AC field generator, for single or multi-sine signals, is synchronized with the high speed acquisition system for phase measurements. The system was successfully used for real-time angle-resolved electro-plasmonic measurements from 30 Hz up to 10 kHz, providing results consistent to ones obtained by a conventional electrical impedance approach. The system was able to detect amplitude variations with a relative variation of ±1%, even for rather low sampling rates per period (i.e., 8 samples per period). The PC (personal computer) acquisition and control software allows synchronized acquisition for multiple FPGA boards, making it also suitable for simultaneous angle-resolved P-EIS imaging.
NASA Technical Reports Server (NTRS)
Wade, Randall S.; Jones, Bailey
2009-01-01
A computer program loads configuration code into a Xilinx field-programmable gate array (FPGA), reads back and verifies that code, reloads the code if an error is detected, and monitors the performance of the FPGA for errors in the presence of radiation. The program consists mainly of a set of VHDL files (wherein "VHDL" signifies "VHSIC Hardware Description Language" and "VHSIC" signifies "very-high-speed integrated circuit").
Design of extensible meteorological data acquisition system based on FPGA
NASA Astrophysics Data System (ADS)
Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui
2015-02-01
In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.
Field programmable gate arrays: Evaluation report for space-flight application
NASA Technical Reports Server (NTRS)
Sandoe, Mike; Davarpanah, Mike; Soliman, Kamal; Suszko, Steven; Mackey, Susan
1992-01-01
Field Programmable Gate Arrays commonly called FPGA's are the newer generation of field programmable devices and offer more flexibility in the logic modules they incorporate and in how they are interconnected. The flexibility, the number of logic building blocks available, and the high gate densities achievable are why users find FPGA's attractive. These attributes are important in reducing product development costs and shortening the development cycle. The aerospace community is interested in incorporating this new generation of field programmable technology in space applications. To this end, a consortium was formed to evaluate the quality, reliability, and radiation performance of FPGA's. This report presents the test results on FPGA parts provided by ACTEL Corporation.
Vector disparity sensor with vergence control for active vision systems.
Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo
2012-01-01
This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.
Vector Disparity Sensor with Vergence Control for Active Vision Systems
Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P.; Ros, Eduardo
2012-01-01
This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system. PMID:22438737
FPGA-based Trigger System for the Fermilab SeaQuest Experimentz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan
The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ + and μ -produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is thenmore » examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less
FPGA-based trigger system for the Fermilab SeaQuest experimentz
NASA Astrophysics Data System (ADS)
Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu; Gilman, Ron; Nakano, Kenichi; Peng, Jen-Chieh; Wang, Su-Yin
2015-12-01
The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ+ and μ- produced in 120 GeV/c proton-nucleon interactions in a high rate environment. The trigger system consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined against pre-determined trigger matrices to identify candidate muon tracks. Information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.
FPGA-based Trigger System for the Fermilab SeaQuest Experimentz
Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; ...
2015-09-10
The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ + and μ -produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is thenmore » examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less
Uranus: a rapid prototyping tool for FPGA embedded computer vision
NASA Astrophysics Data System (ADS)
Rosales-Hernández, Victor; Castillo-Jimenez, Liz; Viveros-Velez, Gilberto; Zuñiga-Grajeda, Virgilio; Treviño Torres, Abel; Arias-Estrada, M.
2007-01-01
The starting point for all successful system development is the simulation. Performing high level simulation of a system can help to identify, insolate and fix design problems. This work presents Uranus, a software tool for simulation and evaluation of image processing algorithms with support to migrate them to an FPGA environment for algorithm acceleration and embedded processes purposes. The tool includes an integrated library of previous coded operators in software and provides the necessary support to read and display image sequences as well as video files. The user can use the previous compiled soft-operators in a high level process chain, and code his own operators. Additional to the prototyping tool, Uranus offers FPGA-based hardware architecture with the same organization as the software prototyping part. The hardware architecture contains a library of FPGA IP cores for image processing that are connected with a PowerPC based system. The Uranus environment is intended for rapid prototyping of machine vision and the migration to FPGA accelerator platform, and it is distributed for academic purposes.
Selected issues of the universal communication environment implementation for CII standard
NASA Astrophysics Data System (ADS)
Zagoździńska, Agnieszka; Poźniak, Krzysztof T.; Drabik, Paweł K.
2011-10-01
In the contemporary FPGA market there is the wide assortment of structures, integrated development environments, and boards of different producers. The variety allows to fit resources to requirements of the individual designer. There is the need of standardization of the projects to make it useful in research laboratories equipped with different producers tools. Proposed solution is CII standardization of VHDL components. This paper contains specification of the universal communication environment for CII standard. The link can be used in different FPGA structures. Implementation of the link enables object oriented VHDL programming with the use of CII standardization. The whole environment contains FPGA environment and PC software. The paper contains description of the selected issues of FPGA environment. There is description of some specific solutions that enables environment usage in structures of different producers. The flexibility of different size data transmissions with the use of CII is presented. The specified tool gives the opportunity to use FPGA structures variety fully and design faster and more effectively.
Tuple spaces in hardware for accelerated implicit routing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Zachary Kent; Tripp, Justin
2010-12-01
Organizing and optimizing data objects on networks with support for data migration and failing nodes is a complicated problem to handle as systems grow. The goal of this work is to demonstrate that high levels of speedup can be achieved by moving responsibility for finding, fetching, and staging data into an FPGA-based network card. We present a system for implicit routing of data via FPGA-based network cards. In this system, data structures are requested by name, and the network of FPGAs finds the data within the network and relays the structure to the requester. This is acheived through successive examinationmore » of hardware hash tables implemented in the FPGA. By avoiding software stacks between nodes, the data is quickly fetched entirely through FPGA-FPGA interaction. The performance of this system is orders of magnitude faster than software implementations due to the improved speed of the hash tables and lowered latency between the network nodes.« less
NASA Astrophysics Data System (ADS)
Vilardy, Juan M.; Giacometto, F.; Torres, C. O.; Mattos, L.
2011-01-01
The two-dimensional Fast Fourier Transform (FFT 2D) is an essential tool in the two-dimensional discrete signals analysis and processing, which allows developing a large number of applications. This article shows the description and synthesis in VHDL code of the FFT 2D with fixed point binary representation using the programming tool Simulink HDL Coder of Matlab; showing a quick and easy way to handle overflow, underflow and the creation registers, adders and multipliers of complex data in VHDL and as well as the generation of test bench for verification of the codes generated in the ModelSim tool. The main objective of development of the hardware architecture of the FFT 2D focuses on the subsequent completion of the following operations applied to images: frequency filtering, convolution and correlation. The description and synthesis of the hardware architecture uses the XC3S1200E family Spartan 3E FPGA from Xilinx Manufacturer.
Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe
2017-01-01
Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l’information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work. PMID:28718788
Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe; Thom, Christian
2017-07-18
Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l'information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N -th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.
FPGA Control System for the Automated Test of Microshutters
NASA Technical Reports Server (NTRS)
Lyness, Eric; Rapchun, David A.; Moseley, S. Harvey
2008-01-01
The James Webb Space Telescope, scheduled to replace the Hubble in 2013, must simultaneously observe hundreds of faint galaxies. This requirement has led to the development of a programmable transmission mask which can be adapted to admit light with arbitrary pattern of galaxies into its spectrograph. This programmable mask will contain a large array of micro-electromechanical (MEMs) devices called MicroShutters. These microscopic shutters physically open and close like the shutter on a camera, except each shutter is microscopic in size and an array 365 by 171 is used to select the objects under spectroscopic observation at a given time, and to block the unwanted background light from other areas. NASA developed and is currently refining the exceptionally difficult process of manufacturing these shutters. This paper describes how the authors used LabVIEW FPGA and a reconfigurable I/O board to control the shutters in a test chamber and how the flexibility of the system allows us to continue to modify the control algorithms as NASA optimizes the performance of the MicroShutter arrays.
FPGA Control System for the Automated Test of MicroShutters
NASA Technical Reports Server (NTRS)
Lyness, Eric; Rapchun, David A.; Moseley, S. Harvey
2008-01-01
The James Webb Space Telescope, scheduled to replace the Hubble in 2013, must simultaneously observe hundreds of faint galaxies. This requirement has led to the development of a programmable transmission mask which can be adapted to admit light from an arbitrary pattern of galaxies into its spectrograph. This programmable mask will contain a large array of micro-electromechanical (MEMs) devices called MicroShutters. These microscopic shutters physically open and close like the shutter on a camera, except each shutter is microscopic in size and an array 365 by 171 is used to select the objects under spectroscopic observation at a given time, and to block the unwanted background light from other areas. NASA developed and is currently refining the exceptionally difficult process of manufacturing these shutters. This paper describes how the authors used LabVIEW FPGA and a reconfigurable I/O board to control the shutters in a test chamber and how the flexibility of the system allows us to continue to modify the control algorithms as NASA optimizes the performance of the MicroShutter arrays.
FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
Barron-Zambrano, Jose Hugo; Torres-Huitzil, Cesar
2013-09-01
Neuromorphic engineering is a discipline devoted to the design and development of computational hardware that mimics the characteristics and capabilities of neuro-biological systems. In recent years, neuromorphic hardware systems have been implemented using a hybrid approach incorporating digital hardware so as to provide flexibility and scalability at the cost of power efficiency and some biological realism. This paper proposes an FPGA-based neuromorphic-like embedded system on a chip to generate locomotion patterns of periodic rhythmic movements inspired by Central Pattern Generators (CPGs). The proposed implementation follows a top-down approach where modularity and hierarchy are two desirable features. The locomotion controller is based on CPG models to produce rhythmic locomotion patterns or gaits for legged robots such as quadrupeds and hexapods. The architecture is configurable and scalable for robots with either different morphologies or different degrees of freedom (DOFs). Experiments performed on a real robot are presented and discussed. The obtained results demonstrate that the CPG-based controller provides the necessary flexibility to generate different rhythmic patterns at run-time suitable for adaptable locomotion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Preliminary Study of Image Reconstruction Algorithm on a Digital Signal Processor
2014-03-01
5.2 Comparison of CPU-GPU, CPU-FPGA, and CPU-DSP Designs The work for implementing VHDL description of the back-projection algorithm on a physical...FPGA was not complete. Hence, the DSP implementation results are compared with the simulated results for the VHDL design. Simulating VHDL provides an...rather than at the software level. Depending on an application’s characteristics, FPGA implementations can provide a significant performance
2015-03-26
REAL-TIME RF-DNA FINGERPRINTING OF ZIGBEE DEVICES USING A SOFTWARE-DEFINED RADIO WITH FPGA...not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-054 REAL-TIME RF-DNA FINGERPRINTING OF ZIGBEE DEVICES USING A...REAL-TIME RF-DNA FINGERPRINTING OF ZIGBEE DEVICES USING A SOFTWARE-DEFINED RADIO WITH FPGA PROCESSING William M. Lowder, BSEE, BSCPE
FPGA design for constrained energy minimization
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Chang, Chein-I.; Cao, Mang
2004-02-01
The Constrained Energy Minimization (CEM) has been widely used for hyperspectral detection and classification. The feasibility of implementing the CEM as a real-time processing algorithm in systolic arrays has been also demonstrated. The main challenge of realizing the CEM in hardware architecture in the computation of the inverse of the data correlation matrix performed in the CEM, which requires a complete set of data samples. In order to cope with this problem, the data correlation matrix must be calculated in a causal manner which only needs data samples up to the sample at the time it is processed. This paper presents a Field Programmable Gate Arrays (FPGA) design of such a causal CEM. The main feature of the proposed FPGA design is to use the Coordinate Rotation DIgital Computer (CORDIC) algorithm that can convert a Givens rotation of a vector to a set of shift-add operations. As a result, the CORDIC algorithm can be easily implemented in hardware architecture, therefore in FPGA. Since the computation of the inverse of the data correlction involves a series of Givens rotations, the utility of the CORDIC algorithm allows the causal CEM to perform real-time processing in FPGA. In this paper, an FPGA implementation of the causal CEM will be studied and its detailed architecture will be also described.
Rapid-X - An FPGA Development Toolset Using a Custom Simulink Library for MTCA.4 Modules
NASA Astrophysics Data System (ADS)
Prędki, Paweł; Heuer, Michael; Butkowski, Łukasz; Przygoda, Konrad; Schlarb, Holger; Napieralski, Andrzej
2015-06-01
The recent introduction of advanced hardware architectures such as the Micro Telecommunications Computing Architecture (MTCA) caused a change in the approach to implementation of control schemes in many fields. The development has been moving away from traditional programming languages ( C/C++), to hardware description languages (VHDL, Verilog), which are used in FPGA development. With MATLAB/Simulink it is possible to describe complex systems with block diagrams and simulate their behavior. Those diagrams are then used by the HDL experts to implement exactly the required functionality in hardware. Both the porting of existing applications and adaptation of new ones require a lot of development time from them. To solve this, Xilinx System Generator, a toolbox for MATLAB/Simulink, allows rapid prototyping of those block diagrams using hardware modelling. It is still up to the firmware developer to merge this structure with the hardware-dependent HDL project. This prevents the application engineer from quickly verifying the proposed schemes in real hardware. The framework described in this article overcomes these challenges, offering a hardware-independent library of components that can be used in Simulink/System Generator models. The components are subsequently translated into VHDL entities and integrated with a pre-prepared VHDL project template. Furthermore, the entire implementation process is run in the background, giving the user an almost one-click path from control scheme modelling and simulation to bit-file generation. This approach allows the application engineers to quickly develop new schemes and test them in real hardware environment. The applications may range from simple data logging or signal generation ones to very advanced controllers. Taking advantage of the Simulink simulation capabilities and user-friendly hardware implementation routines, the framework significantly decreases the development time of FPGA-based applications.
Field-Programmable Gate Array Computer in Structural Analysis: An Initial Exploration
NASA Technical Reports Server (NTRS)
Singleterry, Robert C., Jr.; Sobieszczanski-Sobieski, Jaroslaw; Brown, Samuel
2002-01-01
This paper reports on an initial assessment of using a Field-Programmable Gate Array (FPGA) computational device as a new tool for solving structural mechanics problems. A FPGA is an assemblage of binary gates arranged in logical blocks that are interconnected via software in a manner dependent on the algorithm being implemented and can be reprogrammed thousands of times per second. In effect, this creates a computer specialized for the problem that automatically exploits all the potential for parallel computing intrinsic in an algorithm. This inherent parallelism is the most important feature of the FPGA computational environment. It is therefore important that if a problem offers a choice of different solution algorithms, an algorithm of a higher degree of inherent parallelism should be selected. It is found that in structural analysis, an 'analog computer' style of programming, which solves problems by direct simulation of the terms in the governing differential equations, yields a more favorable solution algorithm than current solution methods. This style of programming is facilitated by a 'drag-and-drop' graphic programming language that is supplied with the particular type of FPGA computer reported in this paper. Simple examples in structural dynamics and statics illustrate the solution approach used. The FPGA system also allows linear scalability in computing capability. As the problem grows, the number of FPGA chips can be increased with no loss of computing efficiency due to data flow or algorithmic latency that occurs when a single problem is distributed among many conventional processors that operate in parallel. This initial assessment finds the FPGA hardware and software to be in their infancy in regard to the user conveniences; however, they have enormous potential for shrinking the elapsed time of structural analysis solutions if programmed with algorithms that exhibit inherent parallelism and linear scalability. This potential warrants further development of FPGA-tailored algorithms for structural analysis.
Energy efficiency analysis and implementation of AES on an FPGA
NASA Astrophysics Data System (ADS)
Kenney, David
The Advanced Encryption Standard (AES) was developed by Joan Daemen and Vincent Rjimen and endorsed by the National Institute of Standards and Technology in 2001. It was designed to replace the aging Data Encryption Standard (DES) and be useful for a wide range of applications with varying throughput, area, power dissipation and energy consumption requirements. Field Programmable Gate Arrays (FPGAs) are flexible and reconfigurable integrated circuits that are useful for many different applications including the implementation of AES. Though they are highly flexible, FPGAs are often less efficient than Application Specific Integrated Circuits (ASICs); they tend to operate slower, take up more space and dissipate more power. There have been many FPGA AES implementations that focus on obtaining high throughput or low area usage, but very little research done in the area of low power or energy efficient FPGA based AES; in fact, it is rare for estimates on power dissipation to be made at all. This thesis presents a methodology to evaluate the energy efficiency of FPGA based AES designs and proposes a novel FPGA AES implementation which is highly flexible and energy efficient. The proposed methodology is implemented as part of a novel scripting tool, the AES Energy Analyzer, which is able to fully characterize the power dissipation and energy efficiency of FPGA based AES designs. Additionally, this thesis introduces a new FPGA power reduction technique called Opportunistic Combinational Operand Gating (OCOG) which is used in the proposed energy efficient implementation. The AES Energy Analyzer was able to estimate the power dissipation and energy efficiency of the proposed AES design during its most commonly performed operations. It was found that the proposed implementation consumes less energy per operation than any previous FPGA based AES implementations that included power estimations. Finally, the use of Opportunistic Combinational Operand Gating on an AES cipher was found to reduce its dynamic power consumption by up to 17% when compared to an identical design that did not employ the technique.
Hardware Timestamping for an Image Acquisition System Based on FlexRIO and IEEE 1588 v2 Standard
NASA Astrophysics Data System (ADS)
Esquembri, S.; Sanz, D.; Barrera, E.; Ruiz, M.; Bustos, A.; Vega, J.; Castro, R.
2016-02-01
Current fusion devices usually implement distributed acquisition systems for the multiple diagnostics of their experiments. However, each diagnostic is composed by hundreds or even thousands of signals, including images from the vessel interior. These signals and images must be correctly timestamped, because all the information will be analyzed to identify plasma behavior using temporal correlations. For acquisition devices without synchronization mechanisms the timestamp is given by another device with timing capabilities when signaled by the first device. Later, each data should be related with its timestamp, usually via software. This critical action is unfeasible for software applications when sampling rates are high. In order to solve this problem this paper presents the implementation of an image acquisition system with real-time hardware timestamping mechanism. This is synchronized with a master clock using the IEEE 1588 v2 Precision Time Protocol (PTP). Synchronization, image acquisition and processing, and timestamping mechanisms are implemented using Field Programmable Gate Array (FPGA) and a timing card -PTP v2 synchronized. The system has been validated using a camera simulator streaming videos from fusion databases. The developed architecture is fully compatible with ITER Fast Controllers and has been integrated with EPICS to control and monitor the whole system.
Superconducting Coil Winding Machine Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogiec, J. M.; Kotelnikov, S.; Makulski, A.
The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.
A design approach for small vision-based autonomous vehicles
NASA Astrophysics Data System (ADS)
Edwards, Barrett B.; Fife, Wade S.; Archibald, James K.; Lee, Dah-Jye; Wilde, Doran K.
2006-10-01
This paper describes the design of a small autonomous vehicle based on the Helios computing platform, a custom FPGA-based board capable of supporting on-board vision. Target applications for the Helios computing platform are those that require lightweight equipment and low power consumption. To demonstrate the capabilities of FPGAs in real-time control of autonomous vehicles, a 16 inch long R/C monster truck was outfitted with a Helios board. The platform provided by such a small vehicle is ideal for testing and development. The proof of concept application for this autonomous vehicle was a timed race through an environment with obstacles. Given the size restrictions of the vehicle and its operating environment, the only feasible on-board sensor is a small CMOS camera. The single video feed is therefore the only source of information from the surrounding environment. The image is then segmented and processed by custom logic in the FPGA that also controls direction and speed of the vehicle based on visual input.
A COMPACTRIO-BASED BEAM LOSS MONITOR FOR THE SNS RF TEST CAVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokland, Willem; Armstrong, Gary A
2009-01-01
An RF Test Cave has been built at the Spallation Neutron Source (SNS) to be able to test RF cavities without interfering the SNS accelerator operations. In addition to using thick concrete wall to minimize radiation exposure, a Beam Loss Monitor (BLM) must abort the operation within 100 usec when the integrated radiation within the cave exceeds a threshold. We choose the CompactRIO platform to implement the BLM based on its performance, cost-effectiveness, and rapid development. Each in/output module is connected through an FPGA to provide point-by-point processing. Every 10 usec the data is acquired analyzed and compared to themore » threshold. Data from the FPGA is transferred using DMA to the real-time controller, which communicates to a gateway PC to talk to the SNS control system. The system includes diagnostics to test the hardware and integrates the losses in real-time. In this paper we describe our design, implementation, and results« less
Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.
Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing
2016-01-01
The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.
S-Band POSIX Device Drivers for RTEMS
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.
2011-01-01
This is a set of POSIX device driver level abstractions in the RTEMS RTOS (Real-Time Executive for Multiprocessor Systems real-time operating system) to SBand radio hardware devices that have been instantiated in an FPGA (field-programmable gate array). These include A/D (analog-to-digital) sample capture, D/A (digital-to-analog) sample playback, PLL (phase-locked-loop) tuning, and PWM (pulse-width-modulation)-controlled gain. This software interfaces to Sband radio hardware in an attached Xilinx Virtex-2 FPGA. It uses plug-and-play device discovery to map memory to device IDs. Instead of interacting with hardware devices directly, using direct-memory mapped access at the application level, this driver provides an application programming interface (API) offering that easily uses standard POSIX function calls. This simplifies application programming, enables portability, and offers an additional level of protection to the hardware. There are three separate device drivers included in this package: sband_device (ADC capture and DAC playback), pll_device (RF front end PLL tuning), and pwm_device (RF front end AGC control).
NASA Astrophysics Data System (ADS)
Ryou, Albert
Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 kHz. Harnessing the massive processing power of a state-of-the-art FPGA, we present a novel, low-latency digital architecture for loop-shaping, with applications in atomic physics and beyond.
A fast embedded readout system for large-area Medipix and Timepix systems
NASA Astrophysics Data System (ADS)
Brogna, A. S.; Balzer, M.; Smale, S.; Hartmann, J.; Bormann, D.; Hamann, E.; Cecilia, A.; Zuber, M.; Koenig, T.; Zwerger, A.; Weber, M.; Fiederle, M.; Baumbach, T.
2014-05-01
In this work we present a novel readout electronics for an X-ray sensor based on a Si crystal bump-bonded to an array of 3 × 2 Medipix ASICs. The pixel size is 55 μm × 55 μm with a total number of ~ 400k pixels and a sensitive area of 42 mm × 28 mm. The readout electronics operate Medipix-2 MXR or Timepix ASICs with a clock speed of 125 MHz. The data acquisition system is centered around an FPGA and each of the six ASICs has a dedicated I/O port for simultaneous data acquisition. The settings of the auxiliary devices (ADCs and DACs) are also processed in the FPGA. Moreover, a high-resolution timer operates the electronic shutter to select the exposure time from 8 ns to several milliseconds. A sophisticated trigger is available in hardware and software to synchronize the acquisition with external electro-mechanical motors. The system includes a diagnostic subsystem to check the sensor temperature and to control the cooling Peltier cells and a programmable high-voltage generator to bias the crystal. A network cable transfers the data, encapsulated into the UDP protocol and streamed at 1 Gb/s. Therefore most notebooks or personal computers are able to process the data and to program the system without a dedicated interface. The data readout software is compatible with the well-known Pixelman 2.x running both on Windows and GNU/Linux. Furthermore the open architecture encourages users to write their own applications. With a low-level interface library which implements all the basic features, a MATLAB or Python script can be implemented for special manipulations of the raw data. In this paper we present selected images taken with a microfocus X-ray tube to demonstrate the capability to collect the data at rates up to 120 fps corresponding to 0.76 Gb/s.
Design and realization of the real-time spectrograph controller for LAMOST based on FPGA
NASA Astrophysics Data System (ADS)
Wang, Jianing; Wu, Liyan; Zeng, Yizhong; Dai, Songxin; Hu, Zhongwen; Zhu, Yongtian; Wang, Lei; Wu, Zhen; Chen, Yi
2008-08-01
A large Schmitt reflector telescope, Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST), is being built in China, which has effective aperture of 4 meters and can observe the spectra of as many as 4000 objects simultaneously. To fit such a large amount of observational objects, the dispersion part is composed of a set of 16 multipurpose fiber-fed double-beam Schmidt spectrographs, of which each has about ten of moveable components realtimely accommodated and manipulated by a controller. An industrial Ethernet network connects those 16 spectrograph controllers. The light from stars is fed to the entrance slits of the spectrographs with optical fibers. In this paper, we mainly introduce the design and realization of our real-time controller for the spectrograph, our design using the technique of System On Programmable Chip (SOPC) based on Field Programmable Gate Array (FPGA) and then realizing the control of the spectrographs through NIOSII Soft Core Embedded Processor. We seal the stepper motor controller as intellectual property (IP) cores and reuse it, greatly simplifying the design process and then shortening the development time. Under the embedded operating system μC/OS-II, a multi-tasks control program has been well written to realize the real-time control of the moveable parts of the spectrographs. At present, a number of such controllers have been applied in the spectrograph of LAMOST.
An Implementation of Physical Layer Authentication Using Software Radio
2009-07-01
USRP consists of an FPGA responsible for up/down conversions, ADCs and DACs, and various plug-in daughterboards. . . . . . . . . . . . . . . . . 7 5...seen in figure 4, the USRP consists of a USB interface, a 6 field-programmable gate array ( FPGA ), ADCs and DACs, and daughterboards. The...configuration. In the following, we detail the signal receive path to highlight the design of the hardware. FPGA Receive Daughterboar d A/D A/D Tr ansmit
NEPP Update of Independent Single Event Upset Field Programmable Gate Array Testing
NASA Technical Reports Server (NTRS)
Berg, Melanie; Label, Kenneth; Campola, Michael; Pellish, Jonathan
2017-01-01
This presentation provides a NASA Electronic Parts and Packaging (NEPP) Program update of independent Single Event Upset (SEU) Field Programmable Gate Array (FPGA) testing including FPGA test guidelines, Microsemi RTG4 heavy-ion results, Xilinx Kintex-UltraScale heavy-ion results, Xilinx UltraScale+ single event effect (SEE) test plans, development of a new methodology for characterizing SEU system response, and NEPP involvement with FPGA security and trust.
Programmable logic controller performance enhancement by field programmable gate array based design.
Patel, Dhruv; Bhatt, Jignesh; Trivedi, Sanjay
2015-01-01
PLC, the core element of modern automation systems, due to serial execution, exhibits limitations like slow speed and poor scan time. Improved PLC design using FPGA has been proposed based on parallel execution mechanism for enhancement of performance and flexibility. Modelsim as simulation platform and VHDL used to translate, integrate and implement the logic circuit in FPGA. Xilinx's Spartan kit for implementation-testing and VB has been used for GUI development. Salient merits of the design include cost-effectiveness, miniaturization, user-friendliness, simplicity, along with lower power consumption, smaller scan time and higher speed. Various functionalities and applications like typical PLC and industrial alarm annunciator have been developed and successfully tested. Results of simulation, design and implementation have been reported. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan
2017-10-01
A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.
Design of a system based on DSP and FPGA for video recording and replaying
NASA Astrophysics Data System (ADS)
Kang, Yan; Wang, Heng
2013-08-01
This paper brings forward a video recording and replaying system with the architecture of Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA). The system achieved encoding, recording, decoding and replaying of Video Graphics Array (VGA) signals which are displayed on a monitor during airplanes and ships' navigating. In the architecture, the DSP is a main processor which is used for a large amount of complicated calculation during digital signal processing. The FPGA is a coprocessor for preprocessing video signals and implementing logic control in the system. In the hardware design of the system, Peripheral Device Transfer (PDT) function of the External Memory Interface (EMIF) is utilized to implement seamless interface among the DSP, the synchronous dynamic RAM (SDRAM) and the First-In-First-Out (FIFO) in the system. This transfer mode can avoid the bottle-neck of the data transfer and simplify the circuit between the DSP and its peripheral chips. The DSP's EMIF and two level matching chips are used to implement Advanced Technology Attachment (ATA) protocol on physical layer of the interface of an Integrated Drive Electronics (IDE) Hard Disk (HD), which has a high speed in data access and does not rely on a computer. Main functions of the logic on the FPGA are described and the screenshots of the behavioral simulation are provided in this paper. In the design of program on the DSP, Enhanced Direct Memory Access (EDMA) channels are used to transfer data between the FIFO and the SDRAM to exert the CPU's high performance on computing without intervention by the CPU and save its time spending. JPEG2000 is implemented to obtain high fidelity in video recording and replaying. Ways and means of acquiring high performance for code are briefly present. The ability of data processing of the system is desirable. And smoothness of the replayed video is acceptable. By right of its design flexibility and reliable operation, the system based on DSP and FPGA for video recording and replaying has a considerable perspective in analysis after the event, simulated exercitation and so forth.
Reconfigurable Processing Module
NASA Technical Reports Server (NTRS)
Somervill, Kevin; Hodson, Robert; Jones, Robert; Williams, John
2005-01-01
To accommodate a wide spectrum of applications and technologies, NASA s Exploration System's Missions Directorate has called for reconfigurable and modular technologies to support future missions to the moon and Mars. In response, Langley Research Center is leading a program entitled Reconfigurable Scaleable Computing (RSC) that is centered on the development of FPGA-based computing resources in a stackable form factor. This paper details the architecture and implementation of the Reconfigurable Processing Module (RPM), which is the key element of the RSC system. The RPM is an FPGA-based, space-qualified printed circuit assembly leveraging terrestrial/commercial design standards into the space applications domain. The form factor is similar to, and backwards compatible with, the PCI-104 standard utilizing only the PCI interface. The size is expanded to accommodate the required functionality while still better than 30% smaller than a 3U CompactPCI(TradeMark)card and without the overhead of the backplane. The architecture is built around two FPGA devices, one hosting PCI and memory interfaces, and another hosting mission application resources; both of which are connected with a high-speed data bus. The PCI interface FPGA provides access via the PCI bus to onboard SDRAM, flash PROM, and the application resources; both configuration management as well as runtime interaction. The reconfigurable FPGA, referred to as the Application FPGA - or simply "the application" - is a radiation-tolerant Xilinx Virtex-4 FX60 hosting custom application specific logic or soft microprocessor IP. The RPM implements various SEE mitigation techniques including TMR, EDAC, and configuration scrubbing of the reconfigurable FPGA. Prototype hardware and formal modeling techniques are used to explore the performability trade space. These models provide a novel way to calculate quality-of-service performance measures while simultaneously considering fault-related behavior due to SEE soft errors.
NASA Astrophysics Data System (ADS)
Mandal, Swagata; Saini, Jogender; Zabołotny, Wojciech M.; Sau, Suman; Chakrabarti, Amlan; Chattopadhyay, Subhasis
2017-03-01
Due to the dramatic increase of data volume in modern high energy physics (HEP) experiments, a robust high-speed data acquisition (DAQ) system is very much needed to gather the data generated during different nuclear interactions. As the DAQ works under harsh radiation environment, there is a fair chance of data corruption due to various energetic particles like alpha, beta, or neutron. Hence, a major challenge in the development of DAQ in the HEP experiment is to establish an error resilient communication system between front-end sensors or detectors and back-end data processing computing nodes. Here, we have implemented the DAQ using field-programmable gate array (FPGA) due to some of its inherent advantages over the application-specific integrated circuit. A novel orthogonal concatenated code and cyclic redundancy check (CRC) have been used to mitigate the effects of data corruption in the user data. Scrubbing with a 32-b CRC has been used against error in the configuration memory of FPGA. Data from front-end sensors will reach to the back-end processing nodes through multiple stages that may add an uncertain amount of delay to the different data packets. We have also proposed a novel memory management algorithm that helps to process the data at the back-end computing nodes removing the added path delays. To the best of our knowledge, the proposed FPGA-based DAQ utilizing optical link with channel coding and efficient memory management modules can be considered as first of its kind. Performance estimation of the implemented DAQ system is done based on resource utilization, bit error rate, efficiency, and robustness to radiation.
The research of data acquisition system for Raman spectrometer
NASA Astrophysics Data System (ADS)
Cui, Xiao; Guo, Pan; Zhang, Yinchao; Chen, Siying; Chen, He; Chen, Wenbo
2011-11-01
Raman spectrometer has been widely used as an identification tool for analyzing material structure and composition in many fields. However, Raman scattering echo signal is very weak, about dozens of photons at most in one laser plus signal. Therefore, it is a great challenge to design a Raman spectrum data acquisition system which could accurately receive the weak echo signal. The system designed in this paper receives optical signals with the principle of photon counter and could detect single photon. The whole system consists of a photoelectric conversion module H7421-40 and a photo counting card including a field programmable gate array (FPGA) chip and a PCI9054 chip. The module H7421-40 including a PMT, an amplifier and a discriminator has high sensitivity on wavelength from 300nm to 720nm. The Center Wavelength is 580nm which is close to the excitation wavelength (532nm), QE 40% at peak wavelength, Count Sensitivity is 7.8*105(S-1PW-1) and Count Linearity is 1.5MHZ. In FPGA chip, the functions are divided into three parts: parameter setting module, controlling module, data collection and storage module. All the commands, parameters and data are transmitted between FPGA and computer by PCI9054 chip through the PCI interface. The result of experiment shows that the Raman spectrum data acquisition system is reasonable and efficient. There are three primary advantages of the data acquisition system: the first one is the high sensitivity with single photon detection capability; the second one is the high integrated level which means all the operation could be done by the photo counting card; and the last one is the high expansion ability because of the smart reconfigurability of FPGA chip.
Compact Low Power DPU for Plasma Instrument LINA on the Russian Luna-Glob Lander
NASA Astrophysics Data System (ADS)
Schmidt, Walter; Riihelä, Pekka; Kallio, Esa
2013-04-01
The Swedish Institute for Space Physics in Kiruna is bilding a Lunar Ions and Neutrals Analyzer (LINA) for the Russian Luna-Glob lander mission and its orbiter, to be launched around 2016 [1]. The Finnish Meteorological Institute is responsible for designing and building the central data processing units (DPU) for both instruments. The design details were optimized to serve as demonstrator also for a similar instrument on the Jupiter mission JUICE. To accommodate the originally set short development time and to keep the design between orbiter and Lander as similar as possible, the DPU is built around two re-programmable flash-based FPGAs from Actel. One FPGA contains a public-domain 32-bit processor core identical for both Lander and orbiter. The other FPGA handles all interfaces to the spacecraft system and the detectors, somewhat different for both implementations. Monitoring of analog housekeeping data is implemented as an IP-core from Stellamar inside the interface FPGA, saving mass, volume and especially power while simplifying the radiation protection design. As especially on the Lander the data retention before transfer to the orbiter cannot be guaranteed under all conditions, the DPU includes a Flash-PROM containing several software versions and data storage capability. With the memory management implemented inside the interface FPGA, one of the serial links can also be used as test port to verify the system, load the initial software into the Flash-PROM and to control the detector hardware directly without support by the processor and a ready developed operating system and software. Implementation and performance details will be presented. Reference: [1] http://www.russianspaceweb.com/luna_glob_lander.html.
FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG
2014-06-01
is normalized to π. The proposed burst-mode architecture is written in VHDL and verified using Modelsim. The VHDL design is implemented on a Xilinx...Document Number: SET 2014-0043 412TW-PA-14298 FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG June 2014 Final Report Test...To) 9/11 -- 8/14 4. TITLE AND SUBTITLE FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG 5a. CONTRACT NUMBER: W900KK-11-C-0032 5b
FPGA Accelerated Discrete-SURF for Real-Time Homography Estimation
2015-03-26
allows for the sum of a group of pixels to be found with only four memory accesses, and a single calculation...of pixels are retrieved from memory and their Hessian determinant values are compared. If the center pixel of the 3x3 block is greater than the other...process- ing on the FPGA[5][24][31]. Third, previous approaches rely heavily on external memory and other components external to the FPGA, while a logic
NASA Technical Reports Server (NTRS)
Allen, Gregory
2011-01-01
The NEPP Reconfigurable Field-Programmable Gate Array (FPGA) task has been charged to evaluate reconfigurable FPGA technologies for use in space. Under this task, the Xilinx single-event-immune, reconfigurable FPGA (SIRF) XQR5VFX130 device was evaluated for SEE. Additionally, the Altera Stratix-IV and SiliconBlue iCE65 were screened for single-event latchup (SEL).
Exploring Accelerating Science Applications with FPGAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storaasli, Olaf O; Strenski, Dave
2007-01-01
FPGA hardware and tools (VHDL, Viva, MitrionC and CHiMPS) are described. FPGA performance is evaluated on two Cray XD1 systems (Virtex-II Pro 50 and Virtex-4 LX160) for human genome (DNA and protein) sequence comparisons for a computational biology code (FASTA). Scalable FPGA speedups of 50X (Virtex-II) and 100X (Virtex-4) over a 2.2 GHz Opteron were achieved. Coding and IO issues faced for human genome data are described.
Soft-core processor study for node-based architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Houten, Jonathan Roger; Jarosz, Jason P.; Welch, Benjamin James
2008-09-01
Node-based architecture (NBA) designs for future satellite projects hold the promise of decreasing system development time and costs, size, weight, and power and positioning the laboratory to address other emerging mission opportunities quickly. Reconfigurable Field Programmable Gate Array (FPGA) based modules will comprise the core of several of the NBA nodes. Microprocessing capabilities will be necessary with varying degrees of mission-specific performance requirements on these nodes. To enable the flexibility of these reconfigurable nodes, it is advantageous to incorporate the microprocessor into the FPGA itself, either as a hardcore processor built into the FPGA or as a soft-core processor builtmore » out of FPGA elements. This document describes the evaluation of three reconfigurable FPGA based processors for use in future NBA systems--two soft cores (MicroBlaze and non-fault-tolerant LEON) and one hard core (PowerPC 405). Two standard performance benchmark applications were developed for each processor. The first, Dhrystone, is a fixed-point operation metric. The second, Whetstone, is a floating-point operation metric. Several trials were run at varying code locations, loop counts, processor speeds, and cache configurations. FPGA resource utilization was recorded for each configuration. Cache configurations impacted the results greatly; for optimal processor efficiency it is necessary to enable caches on the processors. Processor caches carry a penalty; cache error mitigation is necessary when operating in a radiation environment.« less
Real-time implementation of camera positioning algorithm based on FPGA & SOPC
NASA Astrophysics Data System (ADS)
Yang, Mingcao; Qiu, Yuehong
2014-09-01
In recent years, with the development of positioning algorithm and FPGA, to achieve the camera positioning based on real-time implementation, rapidity, accuracy of FPGA has become a possibility by way of in-depth study of embedded hardware and dual camera positioning system, this thesis set up an infrared optical positioning system based on FPGA and SOPC system, which enables real-time positioning to mark points in space. Thesis completion include: (1) uses a CMOS sensor to extract the pixel of three objects with total feet, implemented through FPGA hardware driver, visible-light LED, used here as the target point of the instrument. (2) prior to extraction of the feature point coordinates, the image needs to be filtered to avoid affecting the physical properties of the system to bring the platform, where the median filtering. (3) Coordinate signs point to FPGA hardware circuit extraction, a new iterative threshold selection method for segmentation of images. Binary image is then segmented image tags, which calculates the coordinates of the feature points of the needle through the center of gravity method. (4) direct linear transformation (DLT) and extreme constraints method is applied to three-dimensional reconstruction of the plane array CMOS system space coordinates. using SOPC system on a chip here, taking advantage of dual-core computing systems, which let match and coordinate operations separately, thus increase processing speed.
A novel pipeline based FPGA implementation of a genetic algorithm
NASA Astrophysics Data System (ADS)
Thirer, Nonel
2014-05-01
To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.
An ultra-fast EOD-based force-clamp detects rapid biomechanical transitions
NASA Astrophysics Data System (ADS)
Woody, Michael S.; Capitanio, Marco; Ostap, E. Michael; Goldman, Yale E.
2017-08-01
We assembled an ultra-fast infrared optical trapping system to detect mechanical events that occur less than a millisecond after a ligand binds to its filamentous substrate, such as myosin undergoing its 5 - 10 nm working stroke after actin binding. The instrument is based on the concept of Capitanio et al.1, in which a polymer bead-actin-bead dumbbell is held in two force-clamped optical traps. A force applied by the traps causes the filament to move at a constant velocity as hydrodynamic drag balances the applied load. When the ligand binds, the filament motion stops within 100 μs as the total force from the optical traps is transferred to the attachment. Subsequent translations signal active motions, such as the magnitude and timing of the motor's working stroke. In our instrument, the beads defining the dumbbell are held in independent force clamps utilizing a field-programmable gate array (FPGA) to update the trap beam positions at 250 kHz. We found that in our setup, acousto-optical deflectors (AODs) steering the beams were unsuitable for this purpose due to a slightly non-linear response in the beam intensity and deflection angle vs. the AOD ultra-sound wavelength, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artefactual 20 nm jumps in position. This type of AOD non-linearity has been reported to be absent in electro-optical deflectors (EODs)2. We demonstrate that replacement of the AODs with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-plane interferometry, and the dual high-speed FPGA-based feedback loops, we smoothly and precisely apply constant loads to study the dynamics of interactions between biological molecules such as actin and myosin.
A Test Methodology for Determining Space-Readiness of Xilinx SRAM-Based FPGA Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Heather M; Graham, Paul S; Morgan, Keith S
2008-01-01
Using reconfigurable, static random-access memory (SRAM) based field-programmable gate arrays (FPGAs) for space-based computation has been an exciting area of research for the past decade. Since both the circuit and the circuit's state is stored in radiation-tolerant memory, both could be alterd by the harsh space radiation environment. Both the circuit and the circuit's state can be prote cted by triple-moduler redundancy (TMR), but applying TMR to FPGA user designs is often an error-prone process. Faulty application of TMR could cause the FPGA user circuit to output incorrect data. This paper will describe a three-tiered methodology for testing FPGA usermore » designs for space-readiness. We will describe the standard approach to testing FPGA user designs using a particle accelerator, as well as two methods using fault injection and a modeling tool. While accelerator testing is the current 'gold standard' for pre-launch testing, we believe the use of fault injection and modeling tools allows for easy, cheap and uniform access for discovering errors early in the design process.« less
The RTE inversion on FPGA aboard the solar orbiter PHI instrument
NASA Astrophysics Data System (ADS)
Cobos Carrascosa, J. P.; Aparicio del Moral, B.; Ramos Mas, J. L.; Balaguer, M.; López Jiménez, A. C.; del Toro Iniesta, J. C.
2016-07-01
In this work we propose a multiprocessor architecture to reach high performance in floating point operations by using radiation tolerant FPGA devices, and under narrow time and power constraints. This architecture is used in the PHI instrument that carries out the scientific analysis aboard the ESA's Solar Orbiter mission. The proposed architecture, in a SIMD flavor, is aimed to be an accelerator within the Data Processing Unit (it is composed by a main Leon processor and two FPGAs) for carrying out the RTE inversion on board the spacecraft using a relatively slow FPGA device - Xilinx XQR4VSX55-. The proposed architecture squeezes the FPGA resources in order to reach the computational requirements and improves the ground-based system performance based on commercial CPUs regarding time and power consumption. In this work we demonstrate the feasibility of using this FPGA devices embedded in the SO/PHI instrument. With that goal in mind, we perform tests to evaluate the scientific results and to measure the processing time and power consumption for carrying out the RTE inversion.
High-performance camera module for fast quality inspection in industrial printing applications
NASA Astrophysics Data System (ADS)
Fürtler, Johannes; Bodenstorfer, Ernst; Mayer, Konrad J.; Brodersen, Jörg; Heiss, Dorothea; Penz, Harald; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert
2007-02-01
Today, printing products which must meet highest quality standards, e.g., banknotes, stamps, or vouchers, are automatically checked by optical inspection systems. Typically, the examination of fine details of the print or security features demands images taken from various perspectives, with different spectral sensitivity (visible, infrared, ultraviolet), and with high resolution. Consequently, the inspection system is equipped with several cameras and has to cope with an enormous data rate to be processed in real-time. Hence, it is desirable to move image processing tasks into the camera to reduce the amount of data which has to be transferred to the (central) image processing system. The idea is to transfer relevant information only, i.e., features of the image instead of the raw image data from the sensor. These features are then further processed. In this paper a color line-scan camera for line rates up to 100 kHz is presented. The camera is based on a commercial CMOS (complementary metal oxide semiconductor) area image sensor and a field programmable gate array (FPGA). It implements extraction of image features which are well suited to detect print flaws like blotches of ink, color smears, splashes, spots and scratches. The camera design and several image processing methods implemented on the FPGA are described, including flat field correction, compensation of geometric distortions, color transformation, as well as decimation and neighborhood operations.
FPGA implementation of image dehazing algorithm for real time applications
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Kaushik, Brajesh Kumar; Balasubramanian, R.
2017-09-01
Weather degradation such as haze, fog, mist, etc. severely reduces the effective range of visual surveillance. This degradation is a spatially varying phenomena, which makes this problem non trivial. Dehazing is an essential preprocessing stage in applications such as long range imaging, border security, intelligent transportation system, etc. However, these applications require low latency of the preprocessing block. In this work, single image dark channel prior algorithm is modified and implemented for fast processing with comparable visual quality of the restored image/video. Although conventional single image dark channel prior algorithm is computationally expensive, it yields impressive results. Moreover, a two stage image dehazing architecture is introduced, wherein, dark channel and airlight are estimated in the first stage. Whereas, transmission map and intensity restoration are computed in the next stages. The algorithm is implemented using Xilinx Vivado software and validated by using Xilinx zc702 development board, which contains an Artix7 equivalent Field Programmable Gate Array (FPGA) and ARM Cortex A9 dual core processor. Additionally, high definition multimedia interface (HDMI) has been incorporated for video feed and display purposes. The results show that the dehazing algorithm attains 29 frames per second for the image resolution of 1920x1080 which is suitable of real time applications. The design utilizes 9 18K_BRAM, 97 DSP_48, 6508 FFs and 8159 LUTs.
Development of a scalable generic platform for adaptive optics real time control
NASA Astrophysics Data System (ADS)
Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar
2015-06-01
The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.
Distributed Motor Controller (DMC) for Operation in Extreme Environments
NASA Technical Reports Server (NTRS)
McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don
2012-01-01
This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.
2007-11-01
accuracy. FPGA ADC data acquisition is controlled by distributed Java -based software. Java -based server application sits on each of the acquisition...JNI ( Java Native Interface) is used to allow Java indirect control of the USB driver. Fig. 5. Photograph of mobile electronics rack...supplies with the monitor and keyboard. The server application on each of these machines is controlled by a remote client Java -based application
A low delay transmission method of multi-channel video based on FPGA
NASA Astrophysics Data System (ADS)
Fu, Weijian; Wei, Baozhi; Li, Xiaobin; Wang, Quan; Hu, Xiaofei
2018-03-01
In order to guarantee the fluency of multi-channel video transmission in video monitoring scenarios, we designed a kind of video format conversion method based on FPGA and its DMA scheduling for video data, reduces the overall video transmission delay.In order to sace the time in the conversion process, the parallel ability of FPGA is used to video format conversion. In order to improve the direct memory access (DMA) writing transmission rate of PCIe bus, a DMA scheduling method based on asynchronous command buffer is proposed. The experimental results show that this paper designs a low delay transmission method based on FPGA, which increases the DMA writing transmission rate by 34% compared with the existing method, and then the video overall delay is reduced to 23.6ms.
NASA Astrophysics Data System (ADS)
Hejtmánek, M.; Neue, G.; Voleš, P.
2015-06-01
This article is devoted to the software design and development of a high-speed readout application used for interfacing particle detectors via the CoaXPress communication standard. The CoaXPress provides an asymmetric high-speed serial connection over a single coaxial cable. It uses a widely available 75 Ω BNC standard and can operate in various modes with a data throughput ranging from 1.25 Gbps up to 25 Gbps. Moreover, it supports a low speed uplink with a fixed bit rate of 20.833 Mbps, which can be used to control and upload configuration data to the particle detector. The CoaXPress interface is an upcoming standard in medical imaging, therefore its usage promises long-term compatibility and versatility. This work presents an example of how to develop DAQ system for a pixel detector. For this purpose, a flexible DAQ card was developed using the XILINX Spartan 6 FPGA. The DAQ card is connected to the framegrabber FireBird CXP6 Quad, which is plugged in the PCI Express bus of the standard PC. The data transmission was performed between the FPGA and framegrabber card via the standard coaxial cable in communication mode with a bit rate of 3.125 Gbps. Using the Medipix2 Quad pixel detector, the framerate of 100 fps was achieved. The front-end application makes use of the FireBird framegrabber software development kit and is suitable for data acquisition as well as control of the detector through the registers implemented in the FPGA.
NEW EPICS/RTEMS IOC BASED ON ALTERA SOC AT JEFFERSON LAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jianxun; Seaton, Chad; Allison, Trent L.
A new EPICS/RTEMS IOC based on the Altera System-on-Chip (SoC) FPGA is being designed at Jefferson Lab. The Altera SoC FPGA integrates a dual ARM Cortex-A9 Hard Processor System (HPS) consisting of processor, peripherals and memory interfaces tied seamlessly with the FPGA fabric using a high-bandwidth interconnect backbone. The embedded Altera SoC IOC has features of remote network boot via U-Boot from SD card or QSPI Flash, 1Gig Ethernet, 1GB DDR3 SDRAM on HPS, UART serial ports, and ISA bus interface. RTEMS for the ARM processor BSP were built with CEXP shell, which will dynamically load the EPICS applications atmore » runtime. U-Boot is the primary bootloader to remotely load the kernel image into local memory from a DHCP/TFTP server over Ethernet, and automatically run RTEMS and EPICS. The first design of the SoC IOC will be compatible with Jefferson Lab’s current PC104 IOCs, which have been running in CEBAF 10 years. The next design would be mounting in a chassis and connected to a daughter card via standard HSMC connectors. This standard SoC IOC will become the next generation of low-level IOC for the accelerator controls at Jefferson Lab.« less
Multichannel FPGA-Based Data-Acquisition-System for Time-Resolved Synchrotron Radiation Experiments
NASA Astrophysics Data System (ADS)
Choe, Hyeokmin; Gorfman, Semen; Heidbrink, Stefan; Pietsch, Ullrich; Vogt, Marco; Winter, Jens; Ziolkowski, Michael
2017-06-01
The aim of this contribution is to describe our recent development of a novel compact field-programmable gatearray (FPGA)-based data acquisition (DAQ) system for use with multichannel X-ray detectors at synchrotron radiation facilities. The system is designed for time resolved counting of single photons arriving from several-currently 12-independent detector channels simultaneously. Detector signals of at least 2.8 ns duration are latched by asynchronous logic and then synchronized with the system clock of 100 MHz. The incoming signals are subsequently sorted out into 10 000 time-bins where they are counted. This occurs according to the arrival time of photons with respect to the trigger signal. Repeatable mode of triggered operation is used to achieve high statistic of accumulated counts. The time-bin width is adjustable from 10 ns to 1 ms. In addition, a special mode of operation with 2 ns time resolution is provided for two detector channels. The system is implemented in a pocketsize FPGA-based hardware of 10 cm × 10 cm × 3 cm and thus can easily be transported between synchrotron radiation facilities. For setup of operation and data read-out, the hardware is connected via USB interface to a portable control computer. DAQ applications are provided in both LabVIEW and MATLAB environments.
Re-Form: FPGA-Powered True Codesign Flow for High-Performance Computing In The Post-Moore Era
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappello, Franck; Yoshii, Kazutomo; Finkel, Hal
Multicore scaling will end soon because of practical power limits. Dark silicon is becoming a major issue even more than the end of Moore’s law. In the post-Moore era, the energy efficiency of computing will be a major concern. FPGAs could be a key to maximizing the energy efficiency. In this paper we address severe challenges in the adoption of FPGA in HPC and describe “Re-form,” an FPGA-powered codesign flow.
2009-09-01
suffer the power and complexity requirements of a public key system. 28 In [18], a simulation of the SHA –1 algorithm is performed on a Xilinx FPGA ... 256 bits. Thus, the construction of a hash table would need 2512 independent comparisons. It is known that hash collisions of the SHA –1 algorithm... SHA –1 algorithm for small-core FPGA design. Small-core FPGA design is the process by which a circuit is adapted to use the minimal amount of logic
Performance evaluation of multiple (32 channels) sub-nanosecond TDC implemented in low-cost FPGA
NASA Astrophysics Data System (ADS)
Lichard, P.; Konstantinou, G.; Villar Vilanueva, A.; Palladino, V.
2014-03-01
NA62 experiment Straw tracker frontend board serves as a gas-tight detector cover and integrates two CARIOCA chips, a low cost FPGA (Cyclon III, Altera) and a set of 400Mbit/s links to the backend. The FPGA houses 16 pairs of sub-nanosecond resolution TDCs with derandomizers and an output link serializer. Evaluation methods, including simulations, and performance results of the system in the lab and on a detector prototype are presented.
Radiation Tolerant, FPGA-Based SmallSat Computer System
NASA Technical Reports Server (NTRS)
LaMeres, Brock J.; Crum, Gary A.; Martinez, Andres; Petro, Andrew
2015-01-01
The Radiation Tolerant, FPGA-based SmallSat Computer System (RadSat) computing platform exploits a commercial off-the-shelf (COTS) Field Programmable Gate Array (FPGA) with real-time partial reconfiguration to provide increased performance, power efficiency and radiation tolerance at a fraction of the cost of existing radiation hardened computing solutions. This technology is ideal for small spacecraft that require state-of-the-art on-board processing in harsh radiation environments but where using radiation hardened processors is cost prohibitive.
FASEA: A FPGA Acquisition System and Software Event Analysis for liquid scintillation counting
NASA Astrophysics Data System (ADS)
Steele, T.; Mo, L.; Bignell, L.; Smith, M.; Alexiev, D.
2009-10-01
The FASEA (FPGA based Acquisition and Software Event Analysis) system has been developed to replace the MAC3 for coincidence pulse processing. The system uses a National Instruments Virtex 5 FPGA card (PXI-7842R) for data acquisition and a purpose developed data analysis software for data analysis. Initial comparisons to the MAC3 unit are included based on measurements of 89Sr and 3H, confirming that the system is able to accurately emulate the behaviour of the MAC3 unit.
Temperature-Adaptive Circuits on Reconfigurable Analog Arrays
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo S.; Keymeulen, Didier; Ramesham, Rajeshuni; Neff, Joseph; Katkoori, Srinivas
2006-01-01
Demonstration of a self-reconfigurable Integrated Circuit (IC) that would operate under extreme temperature (-180 C and 120 C) and radiation (300krad), without the protection of thermal controls and radiation shields. Self-Reconfigurable Electronics platform: a) Evolutionary Processor (EP) to run reconfiguration mechanism; b) Reconfigurable chip (FPGA, FPAA, etc).
Introduction to FPGA Devices and The Challenges for Critical Application - A User's Perspective
NASA Technical Reports Server (NTRS)
Berg, Melanie; LaBel, Kenneth
2015-01-01
This presentation is an introduction to Field Programmable Gate Array (FPGA) devices and the challenges of critical application including: safety, reliability, availability, recoverability, and security.
Double-tick realization of binary control program
NASA Astrophysics Data System (ADS)
Kobylecki, Michał; Kania, Dariusz
2016-12-01
This paper presents a procedure for the implementation of control algorithms for hardware-bit compatible with the standard IEC61131-3. The described transformation based on the sets of calculus and graphs, allows translation of the original form of the control program to the form in full compliance with the original, giving the architecture represented by two tick. The proposed method enables the efficient implementation of the control bits in the FPGA with the use of a standardized programming language LD.
Compute Element and Interface Box for the Hazard Detection System
NASA Technical Reports Server (NTRS)
Villalpando, Carlos Y.; Khanoyan, Garen; Stern, Ryan A.; Some, Raphael R.; Bailey, Erik S.; Carson, John M.; Vaughan, Geoffrey M.; Werner, Robert A.; Salomon, Phil M.; Martin, Keith E.;
2013-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is building a sensor that enables a spacecraft to evaluate autonomously a potential landing area to generate a list of hazardous and safe landing sites. It will also provide navigation inputs relative to those safe sites. The Hazard Detection System Compute Element (HDS-CE) box combines a field-programmable gate array (FPGA) board for sensor integration and timing, with a multicore computer board for processing. The FPGA does system-level timing and data aggregation, and acts as a go-between, removing the real-time requirements from the processor and labeling events with a high resolution time. The processor manages the behavior of the system, controls the instruments connected to the HDS-CE, and services the "heavy lifting" computational requirements for analyzing the potential landing spots.
A Real-Time System for Lane Detection Based on FPGA and DSP
NASA Astrophysics Data System (ADS)
Xiao, Jing; Li, Shutao; Sun, Bin
2016-12-01
This paper presents a real-time lane detection system including edge detection and improved Hough Transform based lane detection algorithm and its hardware implementation with field programmable gate array (FPGA) and digital signal processor (DSP). Firstly, gradient amplitude and direction information are combined to extract lane edge information. Then, the information is used to determine the region of interest. Finally, the lanes are extracted by using improved Hough Transform. The image processing module of the system consists of FPGA and DSP. Particularly, the algorithms implemented in FPGA are working in pipeline and processing in parallel so that the system can run in real-time. In addition, DSP realizes lane line extraction and display function with an improved Hough Transform. The experimental results show that the proposed system is able to detect lanes under different road situations efficiently and effectively.
An optimized and low-cost FPGA-based DNA sequence alignment--a step towards personal genomics.
Shah, Hurmat Ali; Hasan, Laiq; Ahmad, Nasir
2013-01-01
DNA sequence alignment is a cardinal process in computational biology but also is much expensive computationally when performing through traditional computational platforms like CPU. Of many off the shelf platforms explored for speeding up the computation process, FPGA stands as the best candidate due to its performance per dollar spent and performance per watt. These two advantages make FPGA as the most appropriate choice for realizing the aim of personal genomics. The previous implementation of DNA sequence alignment did not take into consideration the price of the device on which optimization was performed. This paper presents optimization over previous FPGA implementation that increases the overall speed-up achieved as well as the price incurred by the platform that was optimized. The optimizations are (1) The array of processing elements is made to run on change in input value and not on clock, so eliminating the need for tight clock synchronization, (2) the implementation is unrestrained by the size of the sequences to be aligned, (3) the waiting time required for the sequences to load to FPGA is reduced to the minimum possible and (4) an efficient method is devised to store the output matrix that make possible to save the diagonal elements to be used in next pass, in parallel with the computation of output matrix. Implemented on Spartan3 FPGA, this implementation achieved 20 times performance improvement in terms of CUPS over GPP implementation.
A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm
NASA Astrophysics Data System (ADS)
Thirer, Nonel
2013-05-01
With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.
Thieberger, Peter; Gassner, D.; Hulsart, R.; ...
2018-04-25
Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thieberger, Peter; Gassner, D.; Hulsart, R.
Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Citterio, M.; Camplani, A.; Cannon, M.
SRAM based Field Programmable Gate Arrays (FPGAs) have been rarely used in High Energy Physics (HEP) due to their sensitivity to radiation. The last generation of commercial FPGAs based on 28 nm feature size and on Silicon On Insulator (SOI) technologies are more tolerant to radiation to the level that their use in front-end electronics is now feasible. FPGAs provide re-programmability, high-speed computation and fast data transmission through the embedded serial transceivers. They could replace custom application specific integrated circuits in front end electronics in locations with moderate radiation field. Finally, the use of a FPGA in HEP experiments ismore » only limited by our ability to mitigate single event effects induced by the high energy hadrons present in the radiation field.« less
Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenko, S.V.; Khilchenko, A.D.; Ovchar, V.K.
2015-07-01
Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used tomore » form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)« less
MIA analysis of FPGA BPMs and beam optics at APS
NASA Astrophysics Data System (ADS)
Ji, Da-Heng; Wang, Chun-Xi; Qin, Qing
2012-11-01
Model independent analysis, which was developed for high precision and fast beam dynamics analysis, is a promising diagnostic tool for modern accelerators. We implemented a series of methods to analyze the turn-by-turn BPM data. Green's functions corresponding to the local transfer matrix elements R12 or R34 are extracted from BPM data and fitted with the model lattice using least-square fitting. Here, we report experimental results obtained from analyzing the transverse motion of a beam in the storage ring at the Advanced Photon Source. BPM gains and uncoupled optics parameters are successfully determined. Quadrupole strengths are adjusted for fitting but can not be uniquely determined in general due to an insufficient number of BPMs.
Testing Microshutter Arrays Using Commercial FPGA Hardware
NASA Technical Reports Server (NTRS)
Rapchun, David
2008-01-01
NASA is developing micro-shutter arrays for the Near Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST). These micro-shutter arrays allow NIRspec to do Multi Object Spectroscopy, a key part of the mission. Each array consists of 62414 individual 100 x 200 micron shutters. These shutters are magnetically opened and held electrostatically. Individual shutters are then programmatically closed using a simple row/column addressing technique. A common approach to provide these data/clock patterns is to use a Field Programmable Gate Array (FPGA). Such devices require complex VHSIC Hardware Description Language (VHDL) programming and custom electronic hardware. Due to JWST's rapid schedule on the development of the micro-shutters, rapid changes were required to the FPGA code to facilitate new approaches being discovered to optimize the array performance. Such rapid changes simply could not be made using conventional VHDL programming. Subsequently, National Instruments introduced an FPGA product that could be programmed through a Labview interface. Because Labview programming is considerably easier than VHDL programming, this method was adopted and brought success. The software/hardware allowed the rapid change the FPGA code and timely results of new micro-shutter array performance data. As a result, numerous labor hours and money to the project were conserved.
LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor
NASA Astrophysics Data System (ADS)
Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram
2007-09-01
Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.
Dynamically programmable cache
NASA Astrophysics Data System (ADS)
Nakkar, Mouna; Harding, John A.; Schwartz, David A.; Franzon, Paul D.; Conte, Thomas
1998-10-01
Reconfigurable machines have recently been used as co- processors to accelerate the execution of certain algorithms or program subroutines. The problems with the above approach include high reconfiguration time and limited partial reconfiguration. By far the most critical problems are: (1) the small on-chip memory which results in slower execution time, and (2) small FPGA areas that cannot implement large subroutines. Dynamically Programmable Cache (DPC) is a novel architecture for embedded processors which offers solutions to the above problems. To solve memory access problems, DPC processors merge reconfigurable arrays with the data cache at various cache levels to create a multi-level reconfigurable machines. As a result DPC machines have both higher data accessibility and FPGA memory bandwidth. To solve the limited FPGA resource problem, DPC processors implemented multi-context switching (Virtualization) concept. Virtualization allows implementation of large subroutines with fewer FPGA cells. Additionally, DPC processors can parallelize the execution of several operations resulting in faster execution time. In this paper, the speedup improvement for DPC machines are shown to be 5X faster than an Altera FLEX10K FPGA chip and 2X faster than a Sun Ultral SPARC station for two different algorithms (convolution and motion estimation).
An FPGA Testbed for Characterizing and Mapping DOD Applications
2017-12-27
series expansion helps to linearize pitch control design for wind turbine using linear quadratic regulator (LQR) [15]. In multi-static radar system...A. Mahmud, M. A. Chowdhury, and J. Zhang, “Stability enhancement of dfig wind turbine using lqr pitch control over rated wind speed,” in 2016 IEEE...the problem of meeting payload design specifications is exacerbated by the need to identify manufacturers with interfaces that match the sensors
A reconfigurable cryogenic platform for the classical control of quantum processors
NASA Astrophysics Data System (ADS)
Homulle, Harald; Visser, Stefan; Patra, Bishnu; Ferrari, Giorgio; Prati, Enrico; Sebastiano, Fabio; Charbon, Edoardo
2017-04-01
The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.
A reconfigurable cryogenic platform for the classical control of quantum processors.
Homulle, Harald; Visser, Stefan; Patra, Bishnu; Ferrari, Giorgio; Prati, Enrico; Sebastiano, Fabio; Charbon, Edoardo
2017-04-01
The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.
VIRTEX-5 Fpga Implementation of Advanced Encryption Standard Algorithm
NASA Astrophysics Data System (ADS)
Rais, Muhammad H.; Qasim, Syed M.
2010-06-01
In this paper, we present an implementation of Advanced Encryption Standard (AES) cryptographic algorithm using state-of-the-art Virtex-5 Field Programmable Gate Array (FPGA). The design is coded in Very High Speed Integrated Circuit Hardware Description Language (VHDL). Timing simulation is performed to verify the functionality of the designed circuit. Performance evaluation is also done in terms of throughput and area. The design implemented on Virtex-5 (XC5VLX50FFG676-3) FPGA achieves a maximum throughput of 4.34 Gbps utilizing a total of 399 slices.
A Mathematical Approach for Compiling and Optimizing Hardware Implementations of DSP Transforms
2010-08-01
FPGA throughput [billion samples per second] performance [ Gflop /s] 0 30 60 90 120 150 0 1 2 3 4 5 0 5,000 10,000 15,000 20,000 25,000...30,000 35,000 40,000 45,000 area [slices] DFT 64 (floating point) on Xilinx Virtex-6 FPGA throughput [billion samples per second] performance [ Gflop ...Virtex-6 FPGA throughput [billion samples per second] performance [ Gflop /s] 0 50 100 150 200 250 0 1 2 3 4 5 0 10,000 20,000 30,000 40,000
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-01-01
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection. PMID:29023385
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-10-12
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.
High-precision positioning system of four-quadrant detector based on the database query
NASA Astrophysics Data System (ADS)
Zhang, Xin; Deng, Xiao-guo; Su, Xiu-qin; Zheng, Xiao-qiang
2015-02-01
The fine pointing mechanism of the Acquisition, Pointing and Tracking (APT) system in free space laser communication usually use four-quadrant detector (QD) to point and track the laser beam accurately. The positioning precision of QD is one of the key factors of the pointing accuracy to APT system. A positioning system is designed based on FPGA and DSP in this paper, which can realize the sampling of AD, the positioning algorithm and the control of the fast swing mirror. We analyze the positioning error of facular center calculated by universal algorithm when the facular energy obeys Gauss distribution from the working principle of QD. A database is built by calculation and simulation with MatLab software, in which the facular center calculated by universal algorithm is corresponded with the facular center of Gaussian beam, and the database is stored in two pieces of E2PROM as the external memory of DSP. The facular center of Gaussian beam is inquiry in the database on the basis of the facular center calculated by universal algorithm in DSP. The experiment results show that the positioning accuracy of the high-precision positioning system is much better than the positioning accuracy calculated by universal algorithm.
Particle Identification on an FPGA Accelerated Compute Platform for the LHCb Upgrade
NASA Astrophysics Data System (ADS)
Fäerber, Christian; Schwemmer, Rainer; Machen, Jonathan; Neufeld, Niko
2017-07-01
The current LHCb readout system will be upgraded in 2018 to a “triggerless” readout of the entire detector at the Large Hadron Collider collision rate of 40 MHz. The corresponding bandwidth from the detector down to the foreseen dedicated computing farm (event filter farm), which acts as the trigger, has to be increased by a factor of almost 100 from currently 500 Gb/s up to 40 Tb/s. The event filter farm will preanalyze the data and will select the events on an event by event basis. This will reduce the bandwidth down to a manageable size to write the interesting physics data to tape. The design of such a system is a challenging task, and the reason why different new technologies are considered and have to be investigated for the different parts of the system. For the usage in the event building farm or in the event filter farm (trigger), an experimental field programmable gate array (FPGA) accelerated computing platform is considered and, therefore, tested. FPGA compute accelerators are used more and more in standard servers such as for Microsoft Bing search or Baidu search. The platform we use hosts a general Intel CPU and a high-performance FPGA linked via the high-speed Intel QuickPath Interconnect. An accelerator is implemented on the FPGA. It is very likely that these platforms, which are built, in general, for high-performance computing, are also very interesting for the high-energy physics community. First, the performance results of smaller test cases performed at the beginning are presented. Afterward, a part of the existing LHCb RICH particle identification is tested and is ported to the experimental FPGA accelerated platform. We have compared the performance of the LHCb RICH particle identification running on a normal CPU with the performance of the same algorithm, which is running on the Xeon-FPGA compute accelerator platform.
Flexible Architecture for FPGAs in Embedded Systems
NASA Technical Reports Server (NTRS)
Clark, Duane I.; Lim, Chester N.
2012-01-01
Commonly, field-programmable gate arrays (FPGAs) being developed in cPCI embedded systems include the bus interface in the FPGA. This complicates the development because the interface is complicated and requires a lot of development time and FPGA resources. In addition, flight qualification requires a substantial amount of time be devoted to just this interface. Another complication of putting the cPCI interface into the FPGA being developed is that configuration information loaded into the device by the cPCI microprocessor is lost when a new bit file is loaded, requiring cumbersome operations to return the system to an operational state. Finally, SRAM-based FPGAs are typically programmed via specialized cables and software, with programming files being loaded either directly into the FPGA, or into PROM devices. This can be cumbersome when doing FPGA development in an embedded environment, and does not have an easy path to flight. Currently, FPGAs used in space applications are usually programmed via multiple space-qualified PROM devices that are physically large and require extra circuitry (typically including a separate one-time programmable FPGA) to enable them to be used for this application. This technology adds a cPCI interface device with a simple, flexible, high-performance backend interface supporting multiple backend FPGAs. It includes a mechanism for programming the FPGAs directly via the microprocessor in the embedded system, eliminating specialized hardware, software, and PROM devices and their associated circuitry. It has a direct path to flight, and no extra hardware and minimal software are required to support reprogramming in flight. The device added is currently a small FPGA, but an advantage of this technology is that the design of the device does not change, regardless of the application in which it is being used. This means that it needs to be qualified for flight only once, and is suitable for one-time programmable devices or an application specific integrated circuit (ASIC). An application programming interface (API) further reduces the development time needed to use the interface device in a system.
An FPGA-based heterogeneous image fusion system design method
NASA Astrophysics Data System (ADS)
Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong
2011-08-01
Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.
NASA Astrophysics Data System (ADS)
Cobos Arribas, Pedro; Monasterio Huelin Macia, Felix
2003-04-01
A FPGA based hardware implementation of the Santos-Victor optical flow algorithm, useful in robot guidance applications, is described in this paper. The system used to do contains an ALTERA FPGA (20K100), an interface with a digital camera, three VRAM memories to contain the data input and some output memories (a VRAM and a EDO) to contain the results. The system have been used previously to develop and test other vision algorithms, such as image compression, optical flow calculation with differential and correlation methods. The designed system let connect the digital camera, or the FPGA output (results of algorithms) to a PC, throw its Firewire or USB port. The problems take place in this occasion have motivated to adopt another hardware structure for certain vision algorithms with special requirements, that need a very hard code intensive processing.
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; Label, Kenneth A.; Kim, Hak; Phan, Anthony; Seidleck, Christina
2014-01-01
Finite state-machines (FSMs) are used to control operational flow in application specific integrated circuits (ASICs) and field programmable gate array (FPGA) devices. Because of their ease of interpretation, FSMs simplify the design and verification process and consequently are significant components in a synchronous design.
Towards real time speckle controlled retinal photocoagulation
NASA Astrophysics Data System (ADS)
Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf
2016-03-01
Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szadkowski, Zbigniew
We present the new approach to a filtering of radio frequency interferences (RFI) in the Auger Engineering Radio Array (AERA) which study the electromagnetic part of the Extensive Air Showers. The radio stations can observe radio signals caused by coherent emissions due to geomagnetic radiation and charge excess processes. AERA observes frequency band from 30 to 80 MHz. This range is highly contaminated by human-made RFI. In order to improve the signal to noise ratio RFI filters are used in AERA to suppress this contamination. The first kind of filter used by AERA was the Median one, based on themore » Fast Fourier Transform (FFT) technique. The second one, which is currently in use, is the infinite impulse response (IIR) notch filter. The proposed new filter is a finite impulse response (FIR) filter based on a linear prediction (LP). A periodic contamination hidden in a registered signal (digitized in the ADC) can be extracted and next subtracted to make signal cleaner. The FIR filter requires a calculation of n=32, 64 or even 128 coefficients (dependent on a required speed or accuracy) by solving of n linear equations with coefficients built from the covariance Toeplitz matrix. This matrix can be solved by the Levinson recursion, which is much faster than the Gauss procedure. The filter has been already tested in the real AERA radio stations on Argentinean pampas with a very successful results. The linear equations were solved either in the virtual soft-core NIOSR processor (implemented in the FPGA chip as a net of logic elements) or in the external Voipac PXA270M ARM processor. The NIOS processor is relatively slow (50 MHz internal clock), calculations performed in an external processor consume a significant amount of time for data exchange between the FPGA and the processor. Test showed a very good efficiency of the RFI suppression for stationary (long-term) contaminations. However, we observed a short-time contaminations, which could not be suppressed either by the IIR-notch filter or by the FIR filter based on the linear predictions. For the LP FIR filter the refreshment time of the filter coefficients was to long and filter did not keep up with the changes of a contamination structure, mainly due to a long calculation time in a slow processors. We propose to use the Cyclone V SE chip with embedded micro-controller operating with 925 MHz internal clock to significantly reduce a refreshment time of the FIR coefficients. The lab results are promising. (authors)« less
A digitalized silicon microgyroscope based on embedded FPGA.
Xia, Dunzhu; Yu, Cheng; Wang, Yuliang
2012-09-27
This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system.
A Digitalized Silicon Microgyroscope Based on Embedded FPGA
Xia, Dunzhu; Yu, Cheng; Wang, Yuliang
2012-01-01
This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system. PMID:23201990
Method to implement the CCD timing generator based on FPGA
NASA Astrophysics Data System (ADS)
Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin
2010-07-01
With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.
Multi-channel temperature measurement system for automotive battery stack
NASA Astrophysics Data System (ADS)
Lewczuk, Radoslaw; Wojtkowski, Wojciech
2017-08-01
A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.
Design of Energy Storage Management System Based on FPGA in Micro-Grid
NASA Astrophysics Data System (ADS)
Liang, Yafeng; Wang, Yanping; Han, Dexiao
2018-01-01
Energy storage system is the core to maintain the stable operation of smart micro-grid. Aiming at the existing problems of the energy storage management system in the micro-grid such as Low fault tolerance, easy to cause fluctuations in micro-grid, a new intelligent battery management system based on field programmable gate array is proposed : taking advantage of FPGA to combine the battery management system with the intelligent micro-grid control strategy. Finally, aiming at the problem that during estimation of battery charge State by neural network, initialization of weights and thresholds are not accurate leading to large errors in prediction results, the genetic algorithm is proposed to optimize the neural network method, and the experimental simulation is carried out. The experimental results show that the algorithm has high precision and provides guarantee for the stable operation of micro-grid.
Optimizing latency in Xilinx FPGA implementations of the GBT
NASA Astrophysics Data System (ADS)
Muschter, S.; Baron, S.; Bohm, C.; Cachemiche, J.-P.; Soos, C.
2010-12-01
The GigaBit Transceiver (GBT) [1] system has been developed to replace the Timing, Trigger and Control (TTC) system [2], currently used by LHC, as well as to provide data transmission between on-detector and off-detector components in future sLHC detectors. A VHDL version of the GBT-SERDES, designed for FPGAs, was released in March 2010 as a GBT-FPGA Starter Kit for future GBT users and for off-detector GBT implementation [3]. This code was optimized for resource utilization [4], as the GBT protocol is very demanding. It was not, however, optimized for latency — which will be a critical parameter when used in the trigger path. The GBT-FPGA Starter Kit firmware was first analyzed in terms of latency by looking at the separate components of the VHDL version. Once the parts which contribute most to the latency were identified and modified, two possible optimizations were chosen, resulting in a latency reduced by a factor of three. The modifications were also analyzed in terms of logic utilization. The latency optimization results were compared with measurement results from a Virtex 6 ML605 development board [5] equipped with a XC6VLX240T with speedgrade-1 and the package FF1156. Bit error rate tests were also performed to ensure an error free operation. The two final optimizations were analyzed for utilization and compared with the original code, distributed in the Starter Kit.
Fast wavefront optimization for focusing through biological tissue (Conference Presentation)
NASA Astrophysics Data System (ADS)
Blochet, Baptiste; Bourdieu, Laurent; Gigan, Sylvain
2017-02-01
The propagation of light in biological tissues is rapidly dominated by multiple scattering: ballistic light is exponentially attenuated, which limits the penetration depth of conventional microscopy techniques. For coherent light, the recombination of the different scattered paths creates a complex interference: speckle. Recently, different wavefront shaping techniques have been developed to coherently manipulate the speckle. It opens the possibility to focus light through complex media and ultimately to image in them, provided however that the medium can be considered as stationary. We have studied the possibility to focus in and through time-varying biological tissues. Their intrinsic temporal dynamics creates a fast decorrelation of the speckle pattern. Therefore, focusing through biological tissues requires fast wavefront shaping devices, sensors and algorithms. We have investigated the use of a MEMS-based spatial light modulator (SLM) and a fast photodetector, combined with FPGA electronics to implement a closed-loop optimization. Our optimization process is just limited by the temporal dynamics of the SLM (200µs) and the computation time (45µs), thus corresponding to a rate of 4 kHz. To our knowledge, it's the fastest closed loop optimization using phase modulators. We have studied the focusing through colloidal solutions of TiO2 particles in glycerol, allowing tunable temporal stability, and scattering properties similar to biological tissues. We have shown that our set-up fulfills the required characteristics (speed, enhancement) to focus through biological tissues. We are currently investigating the focusing through acute rat brain slices and the memory effect in dynamic scattering media.
Grayscale image segmentation for real-time traffic sign recognition: the hardware point of view
NASA Astrophysics Data System (ADS)
Cao, Tam P.; Deng, Guang; Elton, Darrell
2009-02-01
In this paper, we study several grayscale-based image segmentation methods for real-time road sign recognition applications on an FPGA hardware platform. The performance of different image segmentation algorithms in different lighting conditions are initially compared using PC simulation. Based on these results and analysis, suitable algorithms are implemented and tested on a real-time FPGA speed sign detection system. Experimental results show that the system using segmented images uses significantly less hardware resources on an FPGA while maintaining comparable system's performance. The system is capable of processing 60 live video frames per second.
Xia, Fei; Jin, Guoqing
2014-06-01
PKNOTS is a most famous benchmark program and has been widely used to predict RNA secondary structure including pseudoknots. It adopts the standard four-dimensional (4D) dynamic programming (DP) method and is the basis of many variants and improved algorithms. Unfortunately, the O(N(6)) computing requirements and complicated data dependency greatly limits the usefulness of PKNOTS package with the explosion in gene database size. In this paper, we present a fine-grained parallel PKNOTS package and prototype system for accelerating RNA folding application based on FPGA chip. We adopted a series of storage optimization strategies to resolve the "Memory Wall" problem. We aggressively exploit parallel computing strategies to improve computational efficiency. We also propose several methods that collectively reduce the storage requirements for FPGA on-chip memory. To the best of our knowledge, our design is the first FPGA implementation for accelerating 4D DP problem for RNA folding application including pseudoknots. The experimental results show a factor of more than 50x average speedup over the PKNOTS-1.08 software running on a PC platform with Intel Core2 Q9400 Quad CPU for input RNA sequences. However, the power consumption of our FPGA accelerator is only about 50% of the general-purpose micro-processors.
Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam
2013-01-01
Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness. PMID:23867746
Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam
2013-07-17
Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness.
RFI Risk Reduction Activities Using New Goddard Digital Radiometry Capabilities
NASA Technical Reports Server (NTRS)
Bradley, Damon; Kim, Ed; Young, Peter; Miles, Lynn; Wong, Mark; Morris, Joel
2012-01-01
The Goddard Radio-Frequency Explorer (GREX) is the latest fast-sampling radiometer digital back-end processor that will be used for radiometry and radio-frequency interference (RFI) surveying at Goddard Space Flight Center. The system is compact and deployable, with a mass of about 40 kilograms. It is intended to be flown on aircraft. GREX is compatible with almost any aircraft, including P-3, twin otter, C-23, C-130, G3, and G5 types. At a minimum, the system can function as a clone of the Soil Moisture Active Passive (SMAP) ground-based development unit [1], or can be a completely independent system that is interfaced to any radiometer, provided that frequency shifting to GREX's intermediate frequency is performed prior to sampling. If the radiometer RF is less than 200MHz, then the band can be sampled and acquired directly by the system. A key feature of GREX is its ability to simultaneously sample two polarization channels simultaneously at up to 400MSPS, 14-bit resolution each. The sampled signals can be recorded continuously to a 23 TB solid-state RAID storage array. Data captures can be analyzed offline using the supercomputing facilities at Goddard Space Flight Center. In addition, various Field Programmable Gate Array (FPGA) - amenable radiometer signal processing and RFI detection algorithms can be implemented directly on the GREX system because it includes a high-capacity Xilinx Virtex-5 FPGA prototyping system that is user customizable.
Hardware enhance of brain computer interfaces
NASA Astrophysics Data System (ADS)
Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi
2015-05-01
The history of brain-computer interfaces (BCIs) starts with Hans Berger's discovery of the electrical activity of the human brain and the development of electroencephalography (EEG). Recent years, BCI researches are focused on Invasive, Partially invasive, and Non-invasive BCI. Furthermore, EEG can be also applied to telepathic communication which could provide the basis for brain-based communication using imagined speech. It is possible to use EEG signals to discriminate the vowels and consonants embedded in spoken and in imagined words and apply to military product. In this report, we begin with an example of using high density EEG with high electrode density and analysis the results by using BCIs. The BCIs in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.
Citterio, M.; Camplani, A.; Cannon, M.; ...
2015-11-19
SRAM based Field Programmable Gate Arrays (FPGAs) have been rarely used in High Energy Physics (HEP) due to their sensitivity to radiation. The last generation of commercial FPGAs based on 28 nm feature size and on Silicon On Insulator (SOI) technologies are more tolerant to radiation to the level that their use in front-end electronics is now feasible. FPGAs provide re-programmability, high-speed computation and fast data transmission through the embedded serial transceivers. They could replace custom application specific integrated circuits in front end electronics in locations with moderate radiation field. Finally, the use of a FPGA in HEP experiments ismore » only limited by our ability to mitigate single event effects induced by the high energy hadrons present in the radiation field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr; University of Farhat Abbas Setif1, Sétif, 19000; Mohamadi, Tayeb
In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.
FPGA Acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods.
Zierke, Stephanie; Bakos, Jason D
2010-04-12
Likelihood (ML)-based phylogenetic inference has become a popular method for estimating the evolutionary relationships among species based on genomic sequence data. This method is used in applications such as RAxML, GARLI, MrBayes, PAML, and PAUP. The Phylogenetic Likelihood Function (PLF) is an important kernel computation for this method. The PLF consists of a loop with no conditional behavior or dependencies between iterations. As such it contains a high potential for exploiting parallelism using micro-architectural techniques. In this paper, we describe a technique for mapping the PLF and supporting logic onto a Field Programmable Gate Array (FPGA)-based co-processor. By leveraging the FPGA's on-chip DSP modules and the high-bandwidth local memory attached to the FPGA, the resultant co-processor can accelerate ML-based methods and outperform state-of-the-art multi-core processors. We use the MrBayes 3 tool as a framework for designing our co-processor. For large datasets, we estimate that our accelerated MrBayes, if run on a current-generation FPGA, achieves a 10x speedup relative to software running on a state-of-the-art server-class microprocessor. The FPGA-based implementation achieves its performance by deeply pipelining the likelihood computations, performing multiple floating-point operations in parallel, and through a natural log approximation that is chosen specifically to leverage a deeply pipelined custom architecture. Heterogeneous computing, which combines general-purpose processors with special-purpose co-processors such as FPGAs and GPUs, is a promising approach for high-performance phylogeny inference as shown by the growing body of literature in this field. FPGAs in particular are well-suited for this task because of their low power consumption as compared to many-core processors and Graphics Processor Units (GPUs).
HDL Based FPGA Interface Library for Data Acquisition and Multipurpose Real Time Algorithms
NASA Astrophysics Data System (ADS)
Fernandes, Ana M.; Pereira, R. C.; Sousa, J.; Batista, A. J. N.; Combo, A.; Carvalho, B. B.; Correia, C. M. B. A.; Varandas, C. A. F.
2011-08-01
The inherent parallelism of the logic resources, the flexibility in its configuration and the performance at high processing frequencies makes the field programmable gate array (FPGA) the most suitable device to be used both for real time algorithm processing and data transfer in instrumentation modules. Moreover, the reconfigurability of these FPGA based modules enables exploiting different applications on the same module. When using a reconfigurable module for various applications, the availability of a common interface library for easier implementation of the algorithms on the FPGA leads to more efficient development. The FPGA configuration is usually specified in a hardware description language (HDL) or other higher level descriptive language. The critical paths, such as the management of internal hardware clocks that require deep knowledge of the module behavior shall be implemented in HDL to optimize the timing constraints. The common interface library should include these critical paths, freeing the application designer from hardware complexity and able to choose any of the available high-level abstraction languages for the algorithm implementation. With this purpose a modular Verilog code was developed for the Virtex 4 FPGA of the in-house Transient Recorder and Processor (TRP) hardware module, based on the Advanced Telecommunications Computing Architecture (ATCA), with eight channels sampling at up to 400 MSamples/s (MSPS). The TRP was designed to perform real time Pulse Height Analysis (PHA), Pulse Shape Discrimination (PSD) and Pile-Up Rejection (PUR) algorithms at a high count rate (few Mevent/s). A brief description of this modular code is presented and examples of its use as an interface with end user algorithms, including a PHA with PUR, are described.
Design the RS(255,239) encoder and interleaving in the space laser communication system
NASA Astrophysics Data System (ADS)
Lang, Yue; Tong, Shou-feng
2013-08-01
Space laser communication is researched by more and more countries. Space laser communication deserves to be researched. We can acquire higher transmission speed and better transmission quality between satellite and satellite, satellite and earth by setting up laser link. But in the space laser communication system,the reliability is under influences of many factors of atmosphere,detector noise, optical platform jitter and other factors. The intensity of the signal which is attenuated because of the long transmission distance is demanded to have higher intensity to acquire low BER. The channel code technology can enhance the anti-interference ability of the system. The theory of channel coding technology is that some redundancies is added to information codes. So it can make use of the checkout polynomial to correct errors at the sink port. It help the system to get low BER rate and coding gain. Reed-Solomon (RS) code is one of the channel code, and it is one kind of multi-ary BCH code, and it can correct both burst errors and random errors, and it is widely used in the error-control schemes. The new method of the RS encoder and interleaving based on the FPGA is proposed, aiming at satisfying the needs of the widely-used error control technology in the space laser communication field. An improved method for Finite Galois Field multiplier of encoding is proposed, and it is suitable for FPGA implementation. Comparison of the XOR gates cost between the optimization and original, the number of XOR gates is lessen more than 40% .Then give a new structure of interleaving by using the FPGA. By controlling the in-data stream and out-data stream of encoder, the asynchronous process of the whole frame is accomplished, while by using multi-level pipeline, the real-time transfer of the data is achieved. By controlling the read-address and write-address of the block RAM, the interleaving operation of the arbitrary depth is synchronously implemented. Compared with the normal method, it could reduce the complexity of the channel encoder and the hardware requirement effectively.
NASA Technical Reports Server (NTRS)
Berg, Melanie; Poivey C.; Petrick, D.; Espinosa, D.; Lesea, Austin; LaBel, K. A.; Friendlich, M; Kim, H; Phan, A.
2008-01-01
We compare two scrubbing mitigation schemes for Xilinx FPGA devices. The design of the scrubbers is briefly discussed along with an examination of mitigation limitations. Proton and Heavy Ion data are then presented and analyzed.
Use of Commercial FPGA-Based Evaluation Boards for Single-Event Testing of DDR2 and DDR3 SDRAMs
NASA Technical Reports Server (NTRS)
Ladbury, R. L.; Berg, M. D.; Wilcox, E. P.; LaBel, K. A.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.
2013-01-01
We investigate the use of commercial FPGA based evaluation boards for radiation testing DDR2 and DDR3 SDRAMs. We evaluate the resulting data quality and the tradeoffs involved in the use of these boards.
NASA Astrophysics Data System (ADS)
Berdychowski, Piotr P.; Zabolotny, Wojciech M.
2010-09-01
The main goal of C to VHDL compiler project is to make FPGA platform more accessible for scientists and software developers. FPGA platform offers unique ability to configure the hardware to implement virtually any dedicated architecture, and modern devices provide sufficient number of hardware resources to implement parallel execution platforms with complex processing units. All this makes the FPGA platform very attractive for those looking for efficient heterogeneous, computing environment. Current industry standard in development of digital systems on FPGA platform is based on HDLs. Although very effective and expressive in hands of hardware development specialists, these languages require specific knowledge and experience, unreachable for most scientists and software programmers. C to VHDL compiler project attempts to remedy that by creating an application, that derives initial VHDL description of a digital system (for further compilation and synthesis), from purely algorithmic description in C programming language. This idea itself is not new, and the C to VHDL compiler combines the best approaches from existing solutions developed over many previous years, with the introduction of some new unique improvements.
Implementation of total focusing method for phased array ultrasonic imaging on FPGA
NASA Astrophysics Data System (ADS)
Guo, JianQiang; Li, Xi; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke
2015-02-01
This paper describes a multi-FPGA imaging system dedicated for the real-time imaging using the Total Focusing Method (TFM) and Full Matrix Capture (FMC). The system was entirely described using Verilog HDL language and implemented on Altera Stratix IV GX FPGA development board. The whole algorithm process is to: establish a coordinate system of image and divide it into grids; calculate the complete acoustic distance of array element between transmitting array element and receiving array element, and transform it into index value; then index the sound pressure values from ROM and superimpose sound pressure values to get pixel value of one focus point; and calculate the pixel values of all focus points to get the final imaging. The imaging result shows that this algorithm has high SNR of defect imaging. And FPGA with parallel processing capability can provide high speed performance, so this system can provide the imaging interface, with complete function and good performance.
Brusati, M.; Camplani, A.; Cannon, M.; ...
2017-02-20
SRAM-ba8ed Field Programmable Gate Array (FPGA) logic devices arc very attractive in applications where high data throughput is needed, such as the latest generation of High Energy Physics (HEP) experiments. FPGAs have been rarely used in such experiments because of their sensitivity to radiation. The present paper proposes a mitigation approach applied to commercial FPGA devices to meet the reliability requirements for the front-end electronics of the Liquid Argon (LAr) electromagnetic calorimeter of the ATLAS experiment, located at CERN. Particular attention will be devoted to define a proper mitigation scheme of the multi-gigabit transceivers embedded in the FPGA, which ismore » a critical part of the LAr data acquisition chain. A demonstrator board is being developed to validate the proposed methodology. :!\\litigation techniques such as Triple Modular Redundancy (T:t\\IR) and scrubbing will be used to increase the robustness of the design and to maximize the fault tolerance from Single-Event Upsets (SEUs).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Stephen; Palsberg, Jens; Brooks, Jeffrey
Consumer electronics today such as cell phones often have one or more low-power FPGAs to assist with energy-intensive operations in order to reduce overall energy consumption and increase battery life. However, current techniques for programming FPGAs require people to be specially trained to do so. Ideally, software engineers can more readily take advantage of the benefits FPGAs offer by being able to program them using their existing skills, a common one being object-oriented programming. However, traditional techniques for compiling object-oriented languages are at odds with todays FPGA tools, which support neither pointers nor complex data structures. Open until now ismore » the problem of compiling an object-oriented language to an FPGA in a way that harnesses this potential for huge energy savings. In this paper, we present a new compilation technique that feeds into an existing FPGA tool chain and produces FPGAs with up to almost an order of magnitude in energy savings compared to a low-power microprocessor while still retaining comparable performance and area usage.« less
NASA Astrophysics Data System (ADS)
Zou, Liang; Fu, Zhuang; Zhao, YanZheng; Yang, JunYan
2010-07-01
This paper proposes a kind of pipelined electric circuit architecture implemented in FPGA, a very large scale integrated circuit (VLSI), which efficiently deals with the real time non-uniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPA). Dual Nios II soft-core processors and a DSP with a 64+ core together constitute this image system. Each processor undertakes own systematic task, coordinating its work with each other's. The system on programmable chip (SOPC) in FPGA works steadily under the global clock frequency of 96Mhz. Adequate time allowance makes FPGA perform NUC image pre-processing algorithm with ease, which has offered favorable guarantee for the work of post image processing in DSP. And at the meantime, this paper presents a hardware (HW) and software (SW) co-design in FPGA. Thus, this systematic architecture yields an image processing system with multiprocessor, and a smart solution to the satisfaction with the performance of the system.
Temperature Tolerant Evolvable Systems Utilizing FPGA Boards and Bias-Controlled Amplifiers
NASA Technical Reports Server (NTRS)
Kumar, Nikhil R.
2005-01-01
Space missions often require radiation and extreme-temperature hardened electronics to survive the harsh environments beyond Earth's atmosphere. Traditional approaches to preserve electronics incorporate shielding, insulation and redundancy at the expense of power and weight. However, a novel way of bypassing these problems is the concept of evolutionary hardware. A reconfigurable device, consisting of several switches interconnected with analog/digital parts, is controlled by an evolutionary processor (EP). When the EP detects degradation in the circuit it sends signals to reconfigure the switches, thus forming a new circuit with the desired output. This concept has been developed since the mid-l990s, but one problem remains-the EP cannot degrade substantially. For this reason, extensive testing at extreme temperatures (-180 to 120 C) has been done on devices found on FPGA boards (taking the role of the EP), such as the Analog to Digital and the Digital to Analog Converter. The EP is used in conjunction with a bias-controlled amplifier and a new prototype relay board, which is interconnected with 6 G4-FETs, a tri-input transistor-like element developed at JPL. The greatest improvements to be made lie in the reconfigurable device, so future design and testing of the G4-FET chip is required.
NASA Astrophysics Data System (ADS)
Ma, Chen-xi; Ding, Guo-qing
2017-10-01
Simple harmonic waves and synthesized simple harmonic waves are widely used in the test of instruments. However, because of the errors caused by clearance of gear and time-delay error of FPGA, it is difficult to control servo electric cylinder in precise simple harmonic motion under high speed, high frequency and large load conditions. To solve the problem, a method of error compensation is proposed in this paper. In the method, a displacement sensor is fitted on the piston rod of the electric cylinder. By using the displacement sensor, the real-time displacement of the piston rod is obtained and fed back to the input of servo motor, then a closed loop control is realized. There is compensation of pulses in the next period of the synthetic waves. This paper uses FPGA as the processing core. The software mainly comprises a waveform generator, an Ethernet module, a memory module, a pulse generator, a pulse selector, a protection module, an error compensation module. A durability of shock absorbers is used as the testing platform. The durability mainly comprises a single electric cylinder, a servo motor for driving the electric cylinder, and the servo motor driver.
Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA
de Souza, Alisson C. D.; Fernandes, Marcelo A. C.
2014-01-01
This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA. PMID:25268918
FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling.
Kim, Chang-Min; Park, Hyung-Min; Kim, Taesu; Choi, Yoon-Kyung; Lee, Soo-Young
2003-01-01
An field programmable gate array (FPGA) implementation of independent component analysis (ICA) algorithm is reported for blind signal separation (BSS) and adaptive noise canceling (ANC) in real time. In order to provide enormous computing power for ICA-based algorithms with multipath reverberation, a special digital processor is designed and implemented in FPGA. The chip design fully utilizes modular concept and several chips may be put together for complex applications with a large number of noise sources. Experimental results with a fabricated test board are reported for ANC only, BSS only, and simultaneous ANC/BSS, which demonstrates successful speech enhancement in real environments in real time.
Printed Circuit Board Design (PCB) with HDL Designer
NASA Technical Reports Server (NTRS)
Winkert, Thomas K.; LaFourcade, Teresa
2004-01-01
Contents include the following: PCB design with HDL designer, design process and schematic capture - symbols and diagrams: 1. Motivation: time savings, money savings, simplicity. 2. Approach: use single tool PCB for FPGA design, more FPGA designs than PCB designers. 3. Use HDL designer for schematic capture.
Telemetry Modernization with Open Architecture Software-Defined Radio Technology
2016-01-01
digital (A/D) con- vertors and separated into narrowband channels through digital down-conversion ( DDC ) techniques implemented in field-programmable...Lexington, MA 02420-9108 781-981-4204 Operations center Recording Filter FPGA DDC Filter Channel 1 Filter FPGA DDC Filter Channel n Wideband tuner A
Single Event Effects in FPGA Devices 2015-2016
NASA Technical Reports Server (NTRS)
Berg, Melanie; LaBel, Kenneth; Pellish, Jonathan
2016-01-01
This presentation provides an overview of single event effects in FPGA devices 2015-2016 including commercial Xilinx V5 heavy ion accelerated testing, Xilinx Kintex-7 heavy ion accelerated testing. Mitigation study, and investigation of various types of triple modular redundancy (TMR) for commercial SRAM based FPGAs.
Single Event Effects in FPGA Devices 2014-2015
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; LaBel, Kenneth A.; Pellish, Jonathan
2015-01-01
This presentation provides an overview of single event effects in FPGA devices 2014-2015 including commercial Xilinx V5 heavy ion accelerated testing, Xilinx Kintex-7 heavy ion accelerated testing. Mitigation study, and investigation of various types of triple modular redundancy (TMR) for commercial SRAM based FPGAs.