Sample records for fast fracture reliability

  1. The focused abdominal sonography for trauma examination can reliably identify patients with significant intra-abdominal hemorrhage in life-threatening pelvic fractures.

    PubMed

    Christian, Nicole Townsend; Burlew, Clay Cothren; Moore, Ernest E; Geddes, Andrea E; Wagenaar, Amy E; Fox, Charles J; Pieracci, Fredric M

    2018-06-01

    The focused abdominal sonography for trauma (FAST) examination has been reported to be unreliable in pelvic fracture patients. Additionally, given the advent of new therapeutic interventions, such as resuscitative endovascular balloon occlusion of the aorta (REBOA), rapid identification of intra-abdominal hemorrhage compared with Zone III hemorrhage may guide different therapeutic strategies. We hypothesized that FAST is reliable for detecting clinically significant intra-abdominal hemorrhage in the face of complex pelvic fractures. Our pelvic fracture database of all hemodynamically unstable patients requiring intervention from January 1, 2005, to July 1, 2015, was reviewed. The FAST examination was compared with operative and computed tomography (CT) scan findings. Confirmatory evaluation for FAST(-) patients was considered positive if therapeutic intervention was required. During the study period, 81 patients in refractory shock with FAST imaging in our emergency department (ED) underwent pelvic packing. Mean age was 45 ± 2 years and Injury Severity Score was 50 ± 1.5. The FAST examination was negative in 53 patients; 52 patients did not require operative intervention for abdominal bleeding while one patient required splenectomy. The FAST examination was positive in 28 patients; 26 had findings confirmed by CT or laparotomy while two patients did not have intra-abdominal hemorrhage on further evaluation. The sensitivity and specificity for FAST in this population was 96% and 96%, respectively, positive predictive value was 93%, and negative predictive value was 98%. The false-negative and -positive rates for FAST were 2% and 7%. Focused abdominal sonography for trauma examination reliably identifies clinically significant hemoperitoneum in life-threatening, pelvic fracture related hemorrhage. The incidence of a false-negative FAST in this unstable pelvic fracture population was 2%. FAST results may be used when determining the role of REBOA in these multisystem trauma patients and requires further study. REBOA placement should be considered in hemodynamically unstable pelvic fracture patients who are FAST(-), while laparotomy should be used in FAST(+) patients. Therapeutic, level IV.

  2. SCARE: A post-processor program to MSC/NASTRAN for the reliability analysis of structural ceramic components

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.

    1985-01-01

    A computer program was developed for calculating the statistical fast fracture reliability and failure probability of ceramic components. The program includes the two-parameter Weibull material fracture strength distribution model, using the principle of independent action for polyaxial stress states and Batdorf's shear-sensitive as well as shear-insensitive crack theories, all for volume distributed flaws in macroscopically isotropic solids. Both penny-shaped cracks and Griffith cracks are included in the Batdorf shear-sensitive crack response calculations, using Griffith's maximum tensile stress or critical coplanar strain energy release rate criteria to predict mixed mode fracture. Weibull material parameters can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and fracture data. The reliability prediction analysis uses MSC/NASTRAN stress, temperature and volume output, obtained from the use of three-dimensional, quadratic, isoparametric, or axisymmetric finite elements. The statistical fast fracture theories employed, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.

  3. Surface flaw reliability analysis of ceramic components with the SCARE finite element postprocessor program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Nemeth, Noel N.

    1987-01-01

    The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.

  4. Computing Reliabilities Of Ceramic Components Subject To Fracture

    NASA Technical Reports Server (NTRS)

    Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.

    1992-01-01

    CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.

  5. Monolithic ceramic analysis using the SCARE program

    NASA Technical Reports Server (NTRS)

    Manderscheid, Jane M.

    1988-01-01

    The Structural Ceramics Analysis and Reliability Evaluation (SCARE) computer program calculates the fast fracture reliability of monolithic ceramic components. The code is a post-processor to the MSC/NASTRAN general purpose finite element program. The SCARE program automatically accepts the MSC/NASTRAN output necessary to compute reliability. This includes element stresses, temperatures, volumes, and areas. The SCARE program computes two-parameter Weibull strength distributions from input fracture data for both volume and surface flaws. The distributions can then be used to calculate the reliability of geometrically complex components subjected to multiaxial stress states. Several fracture criteria and flaw types are available for selection by the user, including out-of-plane crack extension theories. The theoretical basis for the reliability calculations was proposed by Batdorf. These models combine linear elastic fracture mechanics (LEFM) with Weibull statistics to provide a mechanistic failure criterion. Other fracture theories included in SCARE are the normal stress averaging technique and the principle of independent action. The objective of this presentation is to summarize these theories, including their limitations and advantages, and to provide a general description of the SCARE program, along with example problems.

  6. Structural design methodologies for ceramic-based material systems

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Chulya, Abhisak; Gyekenyesi, John P.

    1991-01-01

    One of the primary pacing items for realizing the full potential of ceramic-based structural components is the development of new design methods and protocols. The focus here is on low temperature, fast-fracture analysis of monolithic, whisker-toughened, laminated, and woven ceramic composites. A number of design models and criteria are highlighted. Public domain computer algorithms, which aid engineers in predicting the fast-fracture reliability of structural components, are mentioned. Emphasis is not placed on evaluating the models, but instead is focused on the issues relevant to the current state of the art.

  7. Status of the Ford program to evaluate ceramics for stator applications in automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Trela, W.

    1980-01-01

    The paper reviews the progress of the major technical tasks of the DOE/NASA/Ford program Evaluation of Ceramics for Stator Applications in Automotive Gas Turbine Engines: reliability prediction, stator fabrication, material characterization, and stator evaluation. A fast fracture reliability model was prepared for a one-piece ceramic stator. Periodic inspection results are presented.

  8. Probabilistic Assessment of Fracture Progression in Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon; Mauget, Bertrand; Huang, Dade; Addi, Frank

    1999-01-01

    This report describes methods and corresponding computer codes that are used to evaluate progressive damage and fracture and to perform probabilistic assessment in built-up composite structures. Structural response is assessed probabilistically, during progressive fracture. The effects of design variable uncertainties on structural fracture progression are quantified. The fast probability integrator (FPI) is used to assess the response scatter in the composite structure at damage initiation. The sensitivity of the damage response to design variables is computed. The methods are general purpose and are applicable to stitched and unstitched composites in all types of structures and fracture processes starting from damage initiation to unstable propagation and to global structure collapse. The methods are demonstrated for a polymer matrix composite stiffened panel subjected to pressure. The results indicated that composite constituent properties, fabrication parameters, and respective uncertainties have a significant effect on structural durability and reliability. Design implications with regard to damage progression, damage tolerance, and reliability of composite structures are examined.

  9. Ceramics Analysis and Reliability Evaluation of Structures (CARES). Users and programmers manual

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.

    1990-01-01

    This manual describes how to use the Ceramics Analysis and Reliability Evaluation of Structures (CARES) computer program. The primary function of the code is to calculate the fast fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. The program uses results from MSC/NASTRAN or ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effect of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or unifrom uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-square analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests, ninety percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan ninety percent confidence band values are also provided. The probabilistic fast-fracture theories used in CARES, along with the input and output for CARES, are described. Example problems to demonstrate various feature of the program are also included. This manual describes the MSC/NASTRAN version of the CARES program.

  10. Ceramic component reliability with the restructured NASA/CARES computer program

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Starlinger, Alois; Gyekenyesi, John P.

    1992-01-01

    The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors).

  11. Program For Evaluation Of Reliability Of Ceramic Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, N.; Janosik, L. A.; Gyekenyesi, J. P.; Powers, Lynn M.

    1996-01-01

    CARES/LIFE predicts probability of failure of monolithic ceramic component as function of service time. Assesses risk that component fractures prematurely as result of subcritical crack growth (SCG). Effect of proof testing of components prior to service also considered. Coupled to such commercially available finite-element programs as ANSYS, ABAQUS, MARC, MSC/NASTRAN, and COSMOS/M. Also retains all capabilities of previous CARES code, which includes estimation of fast-fracture component reliability and Weibull parameters from inert strength (without SCG contributing to failure) specimen data. Estimates parameters that characterize SCG from specimen data as well. Written in ANSI FORTRAN 77 to be machine-independent. Program runs on any computer in which sufficient addressable memory (at least 8MB) and FORTRAN 77 compiler available. For IBM-compatible personal computer with minimum 640K memory, limited program available (CARES/PC, COSMIC number LEW-15248).

  12. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2016-03-01

    Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.

  13. Reliability Estimation for Single-unit Ceramic Crown Restorations

    PubMed Central

    Lekesiz, H.

    2014-01-01

    The objective of this study was to evaluate the potential of a survival prediction method for the assessment of ceramic dental restorations. For this purpose, fast-fracture and fatigue reliabilities for 2 bilayer (metal ceramic alloy core veneered with fluorapatite leucite glass-ceramic, d.Sign/d.Sign-67, by Ivoclar; glass-infiltrated alumina core veneered with feldspathic porcelain, VM7/In-Ceram Alumina, by Vita) and 3 monolithic (leucite-reinforced glass-ceramic, Empress, and ProCAD, by Ivoclar; lithium-disilicate glass-ceramic, Empress 2, by Ivoclar) single posterior crown restorations were predicted, and fatigue predictions were compared with the long-term clinical data presented in the literature. Both perfectly bonded and completely debonded cases were analyzed for evaluation of the influence of the adhesive/restoration bonding quality on estimations. Material constants and stress distributions required for predictions were calculated from biaxial tests and finite element analysis, respectively. Based on the predictions, In-Ceram Alumina presents the best fast-fracture resistance, and ProCAD presents a comparable resistance for perfect bonding; however, ProCAD shows a significant reduction of resistance in case of complete debonding. Nevertheless, it is still better than Empress and comparable with Empress 2. In-Ceram Alumina and d.Sign have the highest long-term reliability, with almost 100% survivability even after 10 years. When compared with clinical failure rates reported in the literature, predictions show a promising match with clinical data, and this indicates the soundness of the settings used in the proposed predictions. PMID:25048249

  14. Reliability Analysis of Uniaxially Ground Brittle Materials

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Nemeth, Noel N.; Powers, Lynn M.; Choi, Sung R.

    1995-01-01

    The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens.

  15. Lifetime Reliability Prediction of Ceramic Structures Under Transient Thermomechanical Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama J.; Gyekenyesi, John P.

    2005-01-01

    An analytical methodology is developed to predict the probability of survival (reliability) of ceramic components subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This capability enables more accurate prediction of ceramic component integrity against fracture in situations such as turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the following features: fast-fracture transient analysis (reliability analysis without slow crack growth, SCG); transient analysis with SCG (reliability analysis with time-dependent damage due to SCG); a computationally efficient algorithm to compute the reliability for components subjected to repeated transient loading (block loading); cyclic fatigue modeling using a combined SCG and Walker fatigue law; proof testing for transient loads; and Weibull and fatigue parameters that are allowed to vary with temperature or time. Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component surface (for surface-distributed flaws) or component volume (for volume-distributed flaws). The transient reliability analysis capability has been added to the NASA CARES/ Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. CARES/Life was also updated to interface with commercially available finite element analysis software, such as ANSYS, when used to model the effects of transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  16. CARES/PC - CERAMICS ANALYSIS AND RELIABILITY EVALUATION OF STRUCTURES

    NASA Technical Reports Server (NTRS)

    Szatmary, S. A.

    1994-01-01

    The beneficial properties of structural ceramics include their high-temperature strength, light weight, hardness, and corrosion and oxidation resistance. For advanced heat engines, ceramics have demonstrated functional abilities at temperatures well beyond the operational limits of metals. This is offset by the fact that ceramic materials tend to be brittle. When a load is applied, their lack of significant plastic deformation causes the material to crack at microscopic flaws, destroying the component. CARES/PC performs statistical analysis of data obtained from the fracture of simple, uniaxial tensile or flexural specimens and estimates the Weibull and Batdorf material parameters from this data. CARES/PC is a subset of the program CARES (COSMIC program number LEW-15168) which calculates the fast-fracture reliability or failure probability of ceramic components utilizing the Batdorf and Weibull models to describe the effects of multi-axial stress states on material strength. CARES additionally requires that the ceramic structure be modeled by a finite element program such as MSC/NASTRAN or ANSYS. The more limited CARES/PC does not perform fast-fracture reliability estimation of components. CARES/PC estimates ceramic material properties from uniaxial tensile or from three- and four-point bend bar data. In general, the parameters are obtained from the fracture stresses of many specimens (30 or more are recommended) whose geometry and loading configurations are held constant. Parameter estimation can be performed for single or multiple failure modes by using the least-squares analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests measure the accuracy of the hypothesis that the fracture data comes from a population with a distribution specified by the estimated Weibull parameters. Ninety-percent confidence intervals on the Weibull parameters and the unbiased value of the shape parameter for complete samples are provided when the maximum likelihood technique is used. CARES/PC is written and compiled with the Microsoft FORTRAN v5.0 compiler using the VAX FORTRAN extensions and dynamic array allocation supported by this compiler for the IBM/MS-DOS or OS/2 operating systems. The dynamic array allocation routines allow the user to match the number of fracture sets and test specimens to the memory available. Machine requirements include IBM PC compatibles with optional math coprocessor. Program output is designed to fit 80-column format printers. Executables for both DOS and OS/2 are provided. CARES/PC is distributed on one 5.25 inch 360K MS-DOS format diskette in compressed format. The expansion tool PKUNZIP.EXE is supplied on the diskette. CARES/PC was developed in 1990. IBM PC and OS/2 are trademarks of International Business Machines. MS-DOS and MS OS/2 are trademarks of Microsoft Corporation. VAX is a trademark of Digital Equipment Corporation.

  17. Assessing the Accuracy and Reliability of Root Crack and Fracture Detection in Teeth Using Sweep Imaging with Fourier Transform (SWIFT) Magnetic Resonance Imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Schuurmans, Tyler J.

    Introduction: Magnetic Resonance Imaging (MRI) has the potential to aid in determining the presence and extent of cracks/fractures in teeth due to more advantageous contrast, without ionizing radiation. An MRI technique called Sweep Imaging with Fourier Transform (SWIFT) has overcome many of the inherent difficulties of conventional MRI with detecting fast-relaxing signals from densely mineralized dental tissues. The objectives of this in vitro investigation were to develop MRI criteria for root crack/fracture identification in teeth and to establish intra- and inter-rater reliabilities and corresponding sensitivity and specificity values for the detection of tooth-root cracks/fractures in SWIFT MRI and limited field of view (FOV) CBCT. Materials and Methods: MRI-based criteria for crack/fracture appearance was developed by an MRI physicist and 6 dentists, including 3 endodontists and 1 Oral and Maxillofacial (OMF) radiologist. Twenty-nine human adult teeth previously extracted following clinical diagnosis by a board-certified endodontist of a root crack/fracture were frequency-matched to 29 non-cracked controls. Crack/fracture status confirmation was performed with magnified visual inspection, transillumination and vital staining. Samples were scanned with two 3D imaging modalities: 1) SWIFT MRI (10 teeth/scan) via a custom oral radiofrequency (RF) coil and a 90cm, 4-T magnet; 2) Limited FOV CBCT (1 tooth/scan) via a Carestream (CS) 9000 (Rochester, NY). Following a training period, a blinded 4-member panel (3 endodontists, 1 OMF radiologist) evaluated the images with a proportion randomly re-tested to establish intra-rater reliability. Overall observer agreement was measured using Cohen's kappa and levels of agreement judged using the criteria of Landis and Koch. Sensitivity and specificity were computed with 95% confidence interval (CI); statistical significance was set at alpha ≤ 0.05. Results: MRI-based crack/fracture criteria were defined as 1-2 sharply-delineated, high-signal (bright/white) line shape(s) that must be visible on multiple contiguous image slices. The line shape(s) must present as: single entities, or parallel pairs in close proximity, or pairs in close proximity exhibiting convergence or divergence extending from the external boundary of the tooth to the pulpal cavity. Intra-rater reliability for MRI was fair-to-almost perfect (kappa = 0.38-1.00) and for CBCT was moderate-to-almost perfect (kappa = 0.66-1.00). Inter-rater reliability for MRI was fair (kappa = 0.21; 95% CI: 0.10-0.31; p < 0.001) and for CBCT was moderate (kappa = 0.45; 95% CI: 0.34-0.56; p < 0.001). Sensitivity: MRI = 0.59 (95% CI: 0.39-0.76; p = 0.46); CBCT = 0.59 (95% CI: 0.59-0.76; p = 0.46). Specificity: MRI = 0.83 (95% CI: 0.64-0.94; p < 0.01); CBCT = 0.90 (95% CI: 0.73-0.98; p < 0.01). Conclusions: Education and training for both imaging modalities is needed to improve reliabilities for the identification of tooth-root crack/fractures. Despite the advantages of increased contrast and absence of artifact from radio-dense materials in MRI, comparable measures of sensitivity and specificity (in relation to CBCT) suggest quality MRI improvements are needed, specifically in image acquisition and post-processing parameters. Given the early stage of technology development and multiple available pathways to optimize MR imaging of teeth, there may be a use for SWIFT MRI in detecting cracks and fractures in teeth.

  18. Association between hyperglycaemia and fracture risk in non-diabetic middle-aged and older Australians: a national, population-based prospective study (AusDiab).

    PubMed

    Gagnon, C; Magliano, D J; Ebeling, P R; Dunstan, D W; Zimmet, P Z; Shaw, J E; Daly, R M

    2010-12-01

    The association between pre-diabetes and fracture risk remains unclear. In this large cohort of middle-aged and older Australian men and women without diabetes, elevated 2-h plasma glucose and pre-diabetes were associated with a reduced 5-year risk of low trauma and all fractures in women, independently of BMI, fasting insulin and other lifestyle factors. We aimed to (1) examine associations between fasting and 2-h plasma glucose (FPG and 2-h PG), fasting insulin and risk of low trauma and all fractures in non-diabetic adults and (2) compare fracture risk between adults with pre-diabetes (impaired glucose tolerance or impaired fasting glucose) and those with normal glucose tolerance (NGT). Six thousand two hundred fifty-five non-diabetic men and women aged ≥40 years with NGT (n = 4,855) and pre-diabetes (n = 1,400) were followed for 5 years in the AusDiab Study. Fractures were self-reported. Five hundred thirty-nine participants suffered at least one fracture (368 women, 171 men), of which the majority (318) occurred after a low-energy trauma (258 women, 60 men). In women, a 2-h PG ≥ 7.2 mmol/L (highest quartile) was associated with a decreased risk of low trauma and all fractures independent of age and BMI [OR (95% CI) for low trauma fractures, 0.59 (0.40-0.88)], but also fasting insulin, smoking, physical activity, history of fracture, dietary calcium and alcohol intake or menopausal status. There was no effect of 2-h PG on fracture risk in men [OR (95% CI), 1.39 (0.60-3.26)] or any relationship between fracture risk and quartiles of FPG or insulin in either sex. Compared to women with NGT, those with pre-diabetes had a reduced risk of fracture [OR (95% CI) for all fractures, 0.70 (0.52-0.95); for low trauma fractures, 0.75 (0.53-1.05)]. Elevated 2-h PG levels and pre-diabetes were inversely associated with low trauma and/or all fractures in non-diabetic women, independent of BMI and fasting insulin levels.

  19. Does the Modified Gartland Classification Clarify Decision Making?

    PubMed

    Leung, Sophia; Paryavi, Ebrahim; Herman, Martin J; Sponseller, Paul D; Abzug, Joshua M

    2018-01-01

    The modified Gartland classification system for pediatric supracondylar fractures is often utilized as a communication tool to aid in determining whether or not a fracture warrants operative intervention. This study sought to determine the interobserver and intraobserver reliability of the Gartland classification system, as well as to determine whether there was agreement that a fracture warranted operative intervention regardless of the classification system. A total of 200 anteroposterior and lateral radiographs of pediatric supracondylar humerus fractures were retrospectively reviewed by 3 fellowship-trained pediatric orthopaedic surgeons and 2 orthopaedic residents and then classified as type I, IIa, IIb, or III. The surgeons then recorded whether they would treat the fracture nonoperatively or operatively. The κ coefficients were calculated to determine interobserver and intraobserver reliability. Overall, the Wilkins-modified Gartland classification has low-moderate interobserver reliability (κ=0.475) and high intraobserver reliability (κ=0.777). A low interobserver reliability was found when differentiating between type IIa and IIb (κ=0.240) among attendings. There was moderate-high interobserver reliability for the decision to operate (κ=0.691) and high intraobserver reliability (κ=0.760). Decreased interobserver reliability was present for decision to operate among residents. For fractures classified as type I, the decision to operate was made 3% of the time and 27% for type IIa. The decision was made to operate 99% of the time for type IIb and 100% for type III. There is almost full agreement for the nonoperative treatment of Type I fractures and operative treatment for type III fractures. There is agreement that type IIb fractures should be treated operatively and that the majority of type IIa fractures should be treated nonoperatively. However, the interobserver reliability for differentiating between type IIa and IIb fractures is low. Our results validate the Gartland classfication system as a method to help direct treatment of pediatric supracondylar humerus fractures, although the modification of the system, IIa versus IIb, seems to have limited reliability and utility. Terminology based on decision to treat may lead to a more clinically useful classification system in the evaluation and treatment of pediatric supracondylar humerus fractures. Level III-diagnostic studies.

  20. [LiLa classification for paediatric long bone fractures. Intraobserver and interobserver reliability].

    PubMed

    Kamphaus, A; Rapp, M; Wessel, L M; Buchholz, M; Massalme, E; Schneidmüller, D; Roeder, C; Kaiser, M M

    2015-04-01

    There are two child-specific fracture classification systems for long bone fractures: the AO classification of pediatric long-bone fractures (PCCF) and the LiLa classification of pediatric fractures of long bones (LiLa classification). Both are still not widely established in comparison to the adult AO classification for long bone fractures. During a period of 12 months all long bone fractures in children were documented and classified according to the LiLa classification by experts and non-experts. Intraobserver and interobserver reliability were calculated according to Cohen (kappa). A total of 408 fractures were classified. The intraobserver reliability for location in the skeletal and bone segment showed an almost perfect agreement (K = 0.91-0.95) and also the morphology (joint/shaft fracture) (K = 0.87-0.93). Due to different judgment of the fracture displacement in the second classification round, the intraobserver reliability of the whole classification revealed moderate agreement (K = 0.53-0.58). Interobserver reliability showed moderate agreement (K = 0.55) often due to the low quality of the X-rays. Further differences occurred due to difficulties in assigning the precise transition from metaphysis to diaphysis. The LiLa classification is suitable and in most cases user-friendly for classifying long bone fractures in children. Reliability is higher than in established fracture specific classifications and comparable to the AO classification of pediatric long bone fractures. Some mistakes were due to a low quality of the X-rays and some due to difficulties to classify the fractures themselves. Improvements include a more precise definition of the metaphysis and the kind of displacement. Overall the LiLa classification should still be considered as an alternative for classifying pediatric long bone fractures.

  1. CARES - CERAMICS ANALYSIS AND RELIABILITY EVALUATION OF STRUCTURES

    NASA Technical Reports Server (NTRS)

    Nemeth, N. N.

    1994-01-01

    The beneficial properties of structural ceramics include their high-temperature strength, light weight, hardness, and corrosion and oxidation resistance. For advanced heat engines, ceramics have demonstrated functional abilities at temperatures well beyond the operational limits of metals. This is offset by the fact that ceramic materials tend to be brittle. When a load is applied, their lack of significant plastic deformation causes the material to crack at microscopic flaws, destroying the component. CARES calculates the fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings. The program uses results from a commercial structural analysis program (MSC/NASTRAN or ANSYS) to evaluate component reliability due to inherent surface and/or volume type flaws. A multiple material capability allows the finite element model reliability to be a function of many different ceramic material statistical characterizations. The reliability analysis uses element stress, temperature, area, and volume output, which are obtained from two dimensional shell and three dimensional solid isoparametric or axisymmetric finite elements. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effects of multi-axial stress states on material strength. The shear-sensitive Batdorf model requires a user-selected flaw geometry and a mixed-mode fracture criterion. Flaws intersecting the surface and imperfections embedded in the volume can be modeled. The total strain energy release rate theory is used as a mixed mode fracture criterion for co-planar crack extension. Out-of-plane crack extension criteria are approximated by a simple equation with a semi-empirical constant that can model the maximum tangential stress theory, the minimum strain energy density criterion, the maximum strain energy release rate theory, or experimental results. For comparison, Griffith's maximum tensile stress theory, the principle of independent action, and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or uniform uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-squares analysis or the maximum likelihood method. A more limited program, CARES/PC (COSMIC number LEW-15248) runs on a personal computer and estimates ceramic material properties from three-point bend bar data. CARES/PC does not perform fast fracture reliability estimation. CARES is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and on IBM 370 series computers under VM/CMS. On a VAX, CARES requires 10Mb of main memory. Five MSC/NASTRAN example problems and two ANSYS example problems are provided. There are two versions of CARES supplied on the distribution tape, CARES1 and CARES2. CARES2 contains sub-elements and CARES1 does not. CARES is available on a 9-track 1600 BPI VAX FILES-11 format magnetic tape (standard media) or in VAX BACKUP format on a TK50 tape cartridge. The program requires a FORTRAN 77 compiler and about 12Mb memory. CARES was developed in 1990. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. IBM 370 is a trademark of International Business Machines. MSC/NASTRAN is a trademark of MacNeal-Schwendler Corporation. ANSYS is a trademark of Swanson Analysis Systems, Inc.

  2. Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study.

    PubMed

    Strotmeyer, Elsa S; Cauley, Jane A; Schwartz, Ann V; Nevitt, Michael C; Resnick, Helaine E; Bauer, Douglas C; Tylavsky, Frances A; de Rekeneire, Nathalie; Harris, Tamara B; Newman, Anne B

    2005-07-25

    Diabetes mellitus (DM) and related complications may increase clinical fracture risk in older adults. Our objectives were to determine if type 2 diabetes mellitus or impaired fasting glucose was associated with higher fracture rates in older adults and to evaluate how diabetic individuals with fractures differed from those without fractures. The Health, Aging, and Body Composition Study participants were well-functioning, community-dwelling men and women aged 70 to 79 years (N = 2979; 42% black), of whom 19% had DM and 6% had impaired fasting glucose at baseline. Incident nontraumatic clinical fractures were verified by radiology reports for a mean +/- SD of 4.5 +/- 1.1 years. Cox proportional hazards regression models determined how DM and impaired fasting glucose affected subsequent risk of fracture. Diabetes mellitus was associated with elevated fracture risk (relative risk, 1.64; 95% confidence interval, 1.07-2.51) after adjustment for a hip bone mineral density (BMD) and fracture risk factors. Impaired fasting glucose was not significantly associated with fractures (relative risk, 1.34; 95% confidence interval, 0.67-2.67). Diabetic participants with fractures had lower hip BMD (0.818 g/cm(2) vs 0.967 g/cm(2); P<.001) and lean mass (44.3 kg vs 51.7 kg) and were more likely to have reduced peripheral sensation (35% vs 14%), transient ischemic attack/stroke (20% vs 8%), a lower physical performance battery score (5.0 vs 7.0), and falls (37% vs 21%) compared with diabetic participants without fractures (P<.05). These results indicate that older white and black adults with DM are at higher fracture risk compared with nondiabetic adults with a similar BMD since a higher risk of nontraumatic fractures was found after adjustment for hip BMD. Fracture prevention needs to target specific risk factors found in older adults with DM.

  3. Design of ceramic components with the NASA/CARES computer program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.

    1990-01-01

    The ceramics analysis and reliability evaluation of structures (CARES) computer program is described. The primary function of the code is to calculate the fast-fracture reliability or failure probability of macro-scopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. CARES uses results from MSC/NASTRAN or ANSYS finite-element analysis programs to evaluate how inherent surface and/or volume type flaws component reliability. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effects of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or uniform uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for a single or multiple failure modes by using a least-squares analysis or a maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-to-fit-tests, 90 percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan 90 percent confidence band values are also provided. Examples are provided to illustrate the various features of CARES.

  4. How reliable and accurate is the AO/OTA comprehensive classification for adult long-bone fractures?

    PubMed

    Meling, Terje; Harboe, Knut; Enoksen, Cathrine H; Aarflot, Morten; Arthursson, Astvaldur J; Søreide, Kjetil

    2012-07-01

    Reliable classification of fractures is important for treatment allocation and study comparisons. The overall accuracy of scoring applied to a general population of fractures is little known. This study aimed to investigate the accuracy and reliability of the comprehensive Arbeitsgemeinschaft für Osteosynthesefragen/Orthopedic Trauma Association classification for adult long-bone fractures and identify factors associated with poor coding agreement. Adults (>16 years) with long-bone fractures coded in a Fracture and Dislocation Registry at the Stavanger University Hospital during the fiscal year 2008 were included. An unblinded reference code dataset was generated for the overall accuracy assessment by two experienced orthopedic trauma surgeons. Blinded analysis of intrarater reliability was performed by rescoring and of interrater reliability by recoding of a randomly selected fracture sample. Proportion of agreement (PA) and kappa (κ) statistics are presented. Uni- and multivariate logistic regression analyses of factors predicting accuracy were performed. During the study period, 949 fractures were included and coded by 26 surgeons. For the intrarater analysis, overall agreements were κ = 0.67 (95% confidence interval [CI]: 0.64-0.70) and PA 69%. For interrater assessment, κ = 0.67 (95% CI: 0.62-0.72) and PA 69%. The accuracy of surgeons' blinded recoding was κ = 0.68 (95% CI: 0.65- 0.71) and PA 68%. Fracture type, frequency of the fracture, and segment fractured significantly influenced accuracy whereas the coder's experience did not. Both the reliability and accuracy of the comprehensive Arbeitsgemeinschaft für Osteosynthesefragen/Orthopedic Trauma Association classification for long-bone fractures ranged from substantial to excellent. Variations in coding accuracy seem to be related more to the fracture itself than the surgeon. Diagnostic study, level I.

  5. A Numerical Round Robin for the Reliability Prediction of Structural Ceramics

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Janosik, Lesley A.

    1993-01-01

    A round robin has been conducted on integrated fast fracture design programs for brittle materials. An informal working group (WELFEP-WEakest Link failure probability prediction by Finite Element Postprocessors) was formed to discuss and evaluate the implementation of the programs examined in the study. Results from the study have provided insight on the differences between the various programs examined. Conclusions from the study have shown that when brittle materials are used in design, analysis must understand how to apply the concepts presented herein to failure probability analysis.

  6. Application of Advanced Fracture Mechanics Technology to Ensure Structural Reliability in Critical Titanium Structures,

    DTIC Science & Technology

    1982-11-22

    RD-Ri42 354 APPLICATION OF ADVANCED FRACTURE MECHANICS TECHNOLOGY i/i TT ENSURE STRUCTURA..(U) 1WESTINGHOUSE RESEARCH FND DEVELOPMENT CENTER...I Iml .4. 47 Igo 12. 4 %B 1. __ ~. ~% ski Z L __ 12 APPLICATION OF ADVANCED FRACTURE MECHANICS -p TECHNOLOGY TO ENSURE STRUCTURAL RELIABILITY IN...Road W Pilttsburgh. Pennsylvania 15235 84 06 18 207 APPLICATION OF ADVANCED FRACTURE MECHANICS TECHNOLOGY TO ENSURE STRUCTURAL RELIABILITY IN CRITICAL

  7. Inter- and intraobserver reliability of the vertebral, local and segmental kyphosis in 120 traumatic lumbar and thoracic burst fractures: evaluation in lateral X-rays and sagittal computed tomographies

    PubMed Central

    Brunner, Alexander; Gühring, Markus; Schmälzle, Traude; Weise, Kuno; Badke, Andreas

    2009-01-01

    Evaluation of the kyphosis angle in thoracic and lumbar burst fractures is often used to indicate surgical procedures. The kyphosis angle could be measured as vertebral, segmental and local kyphosis according to the method of Cobb. The vertebral, segmental and local kyphosis according to the method of Cobb were measured at 120 lateral X-rays and sagittal computed tomographies of 60 thoracic and 60 lumbar burst fractures by 3 independent observers on 2 separate occasions. Osteoporotic fractures were excluded. The intra- and interobserver reliability of these angles in X-ray and computed tomogram, using the intra class correlation coefficient (ICC) were evaluated. Highest reproducibility showed the segmental kyphosis followed by the vertebral kyphosis. For thoracic fractures segmental kyphosis shows in X-ray “excellent” inter- and intraobserver reliabilities (ICC 0.826, 0.802) and for lumbar fractures “good” to “excellent” inter- and intraobserver reliabilities (ICC = 0.790, 0.803). In computed tomography, the segmental kyphosis showed “excellent” inter- and intraobserver reliabilities (ICC = 0.824, 0.801) for thoracic and “excellent” inter- and intraobserver reliabilities (ICC = 0.874, 0.835) for the lumbar fractures. Regarding both diagnostic work ups (X-ray and computed tomography), significant differences were evaluated in interobserver reliabilities for vertebral kyphosis measured in lumbar fracture X-rays (p = 0.035) and interobserver reliabilities for local kyphosis, measured in thoracic fracture X-rays (p = 0.010). Regarding both fracture localizations (thoracic and lumbar fractures), significant differences could only be evaluated in interobserver reliabilities for the local kyphosis measured in computed tomographies (p = 0.045) and in intraobserver reliabilities for the vertebral kyphosis measured in X-rays (p = 0.024). “Good” to “excellent” inter- and intraobserver reliabilities for vertebral, segmental and local kyphosis in X-ray make these angles to a helpful tool, indicating surgical procedures. For the practical use in lateral X-ray, we emphasize the determination of the segmental kyphosis, because of the highest reproducibility of this angle. “Good” to “excellent” inter- and intraobserver reliabilities for these three angles could also be evaluated in computed tomographies. Therefore, also in computed tomography, the use of these three angles seems to be generally possible. For a direct correlation of the results in lateral X-ray and in computed tomography, further studies should be needed. PMID:19953277

  8. Andy Gump Fracture of the Mandible in a Pediatric Patient.

    PubMed

    Mulinari-Santos, Gabriel; Lima, Valthierre Nunes; Palacio-Muñoz, Xiomara Mónica Johanna; Oliva, André Hergesel de; Momesso, Gustavo Antonio Correa; Polo, Tárik Ocon Braga; Souza, Francisley Ávila; Garcia-Júnior, Idelmo Rangel; Faverani, Leonardo Perez

    2017-10-01

    The mandibular fractures in pediatric patients are rare, and they can need a fast and safe treatment. We present a case of a pediatric patient with "Andy Gump" fracture, resulting in a retrognathic mandible, distress to breathe, and functional discomfort to the patient caused by a cycling accident. The treatment was successful with the fast release of airway path and use of titanium plates to fix the fracture.

  9. Tritium and 36Cl as constraints on fast fracture flow and percolation flux in the unsaturated zone at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Guerin, Marianne

    2001-10-01

    An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this "fast flow" in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891-989] and suggest that fast flow in fractures with minimal fracture-matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.

  10. Tritium and 36Cl as constraints on fast fracture flow and percolation flux in the unsaturated zone at Yucca Mountain.

    PubMed

    Guerin, M

    2001-10-01

    An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this "fast flow" in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891-989] and suggest that fast flow in fractures with minimal fracture-matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.

  11. Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming.

    PubMed

    Ren, Shuangpo; Parsekian, Andrew D; Zhang, Ye; Carr, Bradley J

    2018-05-15

    In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., K NMR ) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated K NMR are within one order of magnitude of K FLUTe . The empirical parameters obtained from calibrating the NMR data suggest that "intermediate diffusion" and/or "slow diffusion" during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, "intermediate diffusion" dominates the relaxation time, therefore assuming "fast diffusion" in the interpretation of NMR data from fractured rock may lead to inaccurate K NMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable K NMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements. © 2018, National Ground Water Association.

  12. Kuhn-Tucker optimization based reliability analysis for probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Besterfield, G.; Lawrence, M.; Belytschko, T.

    1988-01-01

    The fusion of probability finite element method (PFEM) and reliability analysis for fracture mechanics is considered. Reliability analysis with specific application to fracture mechanics is presented, and computational procedures are discussed. Explicit expressions for the optimization procedure with regard to fracture mechanics are given. The results show the PFEM is a very powerful tool in determining the second-moment statistics. The method can determine the probability of failure or fracture subject to randomness in load, material properties and crack length, orientation, and location.

  13. Scapula fractures: interobserver reliability of classification and treatment.

    PubMed

    Neuhaus, Valentin; Bot, Arjan G J; Guitton, Thierry G; Ring, David C; Abdel-Ghany, Mahmoud I; Abrams, Jeffrey; Abzug, Joshua M; Adolfsson, Lars E; Balfour, George W; Bamberger, H Brent; Barquet, Antonio; Baskies, Michael; Batson, W Arnold; Baxamusa, Taizoon; Bayne, Grant J; Begue, Thierry; Behrman, Michael; Beingessner, Daphne; Biert, Jan; Bishop, Julius; Alves, Mateus Borges Oliveira; Boyer, Martin; Brilej, Drago; Brink, Peter R G; Brunton, Lance M; Buckley, Richard; Cagnone, Juan Carlos; Calfee, Ryan P; Campinhos, Luiz Augusto B; Cassidy, Charles; Catalano, Louis; Chivers, Karel; Choudhari, Pradeep; Cimerman, Matej; Conflitti, Joseph M; Costanzo, Ralph M; Crist, Brett D; Cross, Brian J; Dantuluri, Phani; Darowish, Michael; de Bedout, Ramon; DeCoster, Thomas; Dennison, David G; DeNoble, Peter H; DeSilva, Gregory; Dienstknecht, Thomas; Duncan, Scott F; Duralde, Xavier A; Durchholz, Holger; Egol, Kenneth; Ekholm, Carl; Elias, Nelson; Erickson, John M; Esparza, J Daniel Espinosa; Fernandes, C H; Fischer, Thomas J; Fischmeister, Martin; Forigua Jaime, E; Getz, Charles L; Gilbert, Richard S; Giordano, Vincenzo; Glaser, David L; Gosens, Taco; Grafe, Michael W; Filho, Jose Eduardo Grandi Ribeiro; Gray, Robert R L; Gulotta, Lawrence V; Gummerson, Nigel William; Hammerberg, Eric Mark; Harvey, Edward; Haverlag, R; Henry, Patrick D G; Hobby, Jonathan L; Hofmeister, Eric P; Hughes, Thomas; Itamura, John; Jebson, Peter; Jenkinson, Richard; Jeray, Kyle; Jones, Christopher M; Jones, Jedediah; Jubel, Axel; Kaar, Scott G; Kabir, K; Kaplan, F Thomas D; Kennedy, Stephen A; Kessler, Michael W; Kimball, Hervey L; Kloen, Peter; Klostermann, Cyrus; Kohut, Georges; Kraan, G A; Kristan, Anze; Loebenberg, Mark I; Malone, Kevin J; Marsh, L; Martineau, Paul A; McAuliffe, John; McGraw, Iain; Mehta, Samir; Merchant, Milind; Metzger, Charles; Meylaerts, S A; Miller, Anna N; Wolf, Jennifer Moriatis; Murachovsky, Joel; Murthi, Anand; Nancollas, Michael; Nolan, Betsy M; Omara, Timothy; Omid, Reza; Ortiz, Jose A; Overbeck, Joachim P; Castillo, Alberto Pérez; Pesantez, Rodrigo; Polatsch, Daniel; Porcellini, G; Prayson, Michael; Quell, M; Ragsdell, Matthew M; Reid, James G; Reuver, J M; Richard, Marc J; Richardson, Martin; Rizzo, Marco; Rowinski, Sergio; Rubio, Jorge; Guerrero, Carlos G Sánchez; Satora, Wojciech; Schandelmaier, Peter; Scheer, Johan H; Schmidt, Andrew; Schubkegel, Todd A; Schulte, Leah M; Schumer, Evan D; Sears, Benjamin W; Shafritz, Adam B; Shortt, Nicholas L; Siff, Todd; Silva, Dario Mejia; Smith, Raymond Malcolm; Spruijt, Sander; Stein, Jason A; Pemovska, Emilija Stojkovska; Streubel, Philipp N; Swigart, Carrie; Swiontkowski, Marc; Thomas, George; Tolo, Eric T; Turina, Matthias; Tyllianakis, Minos; van den Bekerom, Michel P J; van der Heide, Huub; van de Sande, M A J; van Eerten, P V; Verbeek, Diederik O F; Hoffmann, David Victoria; Vochteloo, A J H; Wagenmakers, Robert; Wall, Christopher J; Wallensten, Richard; Wascher, Daniel C; Weiss, Lawrence; Wiater, J Michael; Wills, Brian P D; Wint, Jeffrey; Wright, Thomas; Young, Jason P; Zalavras, Charalampos; Zura, Robert D; Zyto, Karol

    2014-03-01

    There is substantial variation in the classification and management of scapula fractures. The first purpose of this study was to analyze the interobserver reliability of the OTA/AO classification and the New International Classification for Scapula Fractures. The second purpose was to assess the proportion of agreement among orthopaedic surgeons on operative or nonoperative treatment. Web-based reliability study. Independent orthopaedic surgeons from several countries were invited to classify scapular fractures in an online survey. One hundred three orthopaedic surgeons evaluated 35 movies of three-dimensional computerized tomography reconstruction of selected scapular fractures, representing a full spectrum of fracture patterns. Fleiss kappa (κ) was used to assess the reliability of agreement between the surgeons. The overall agreement on the OTA/AO classification was moderate for the types (A, B, and C, κ = 0.54) with a 71% proportion of rater agreement (PA) and for the 9 groups (A1 to C3, κ = 0.47) with a 57% PA. For the New International Classification, the agreement about the intraarticular extension of the fracture (Fossa (F), κ = 0.79) was substantial and the agreement about a fractured body (Body (B), κ = 0.57) or process was moderate (Process (P), κ = 0.53); however, PAs were more than 81%. The agreement on the treatment recommendation was moderate (κ = 0.57) with a 73% PA. The New International Classification was more reliable. Body and process fractures generated more disagreement than intraarticular fractures and need further clear definitions.

  14. ADM guidance-Ceramics: Fracture toughness testing and method selection.

    PubMed

    Cesar, Paulo Francisco; Della Bona, Alvaro; Scherrer, Susanne S; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, Robert; Lohbauer, Ulrich

    2017-06-01

    The objective is within the scope of the Academy of Dental Materials Guidance Project, which is to provide dental materials researchers with a critical analysis of fracture toughness (FT) tests such that the assessment of the FT of dental ceramics is conducted in a reliable, repeatable and reproducible way. Fracture mechanics theory and FT methodologies were critically reviewed to introduce basic fracture principles and determine the main advantages and disadvantages of existing FT methods from the standpoint of the dental researcher. The recommended methods for FT determination of dental ceramics were the Single Edge "V" Notch Beam (SEVNB), Single Edge Precracked Beam (SEPB), Chevron Notch Beam (CNB), and Surface Crack in Flexure (SCF). SEVNB's main advantage is the ease of producing the notch via a cutting disk, SEPB allows for production of an atomically sharp crack generated by a specific precracking device, CNB is technically difficult, but based on solid fracture mechanics solutions, and SCF involves fracture from a clinically sized precrack. The IF test should be avoided due to heavy criticism that has arisen in the engineering field regarding the empirical nature of the calculations used for FT determination. Dental researchers interested in FT measurement of dental ceramics should start with a broad review of fracture mechanics theory to understand the underlying principles involved in fast fracture of ceramics. The choice of FT methodology should be based on the pros and cons of each test, as described in this literature review. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Ceramic Life Prediction Methodology.

    DTIC Science & Technology

    1986-03-01

    stress rupture data were collected on two materials, a sintered silicon nitride and a lithium-aluminum-silicate. The fast fracture data was presented...graphically in the form of Weibull plots of percent failed versus failure stress . The stress rupture results were presented in tabular form. Photo...micrographs were presented to illustrate the fracture surfaces of fast fracture and stress rupture failures. A program of specimen development was coaducted

  16. Thermally induced fracture for core-veneered dental ceramic structures.

    PubMed

    Zhang, Zhongpu; Guazzato, Massimiliano; Sornsuwan, Tanapon; Scherrer, Susanne S; Rungsiyakull, Chaiy; Li, Wei; Swain, Michael V; Li, Qing

    2013-09-01

    Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of fabrication is studied here by using the extended finite element method (XFEM). In this study, a transient thermal analysis of cooling is conducted first to determine the temperature distributions. The time-dependent temperature field is then imported to the XFEM model for viscoelastic thermomechanical analysis, which predicts thermally induced damage and cracking at different time steps. Temperature-dependent material properties are used in both transient thermal and thermomechanical analyses. Three typical ceramic structures are considered in this paper, namely bi-layered spheres, squat cylinders and dental crowns with thickness ratios of either 1:2 or 1:1. The XFEM fracture patterns exhibit good agreement with clinical observation and the in vitro experimental results obtained from scanning electron microscopy characterization. The study reveals that fast cooling can lead to thermal fracture of these different bi-layered ceramic structures, and cooling rate (in terms of heat transfer coefficient) plays a critical role in crack initiation and propagation. By exploring different cooling rates, the heat transfer coefficient thresholds of fracture are determined for different structures, which are of clear clinical implication. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Reliability analysis of structural ceramics subjected to biaxial flexure

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1991-01-01

    The reliability of alumina disks subjected to biaxial flexure is predicted on the basis of statistical fracture theory using a critical strain energy release rate fracture criterion. Results on a sintered silicon nitride are consistent with reliability predictions based on pore-initiated penny-shaped cracks with preferred orientation normal to the maximum principal stress. Assumptions with regard to flaw types and their orientations in each ceramic can be justified by fractography. It is shown that there are no universal guidelines for selecting fracture criteria or assuming flaw orientations in reliability analyses.

  18. Rotating Beam Fatigue Testing and Hybrid Ceramic Bearings.

    DTIC Science & Technology

    1994-07-01

    Runout and Fast Fracture ......... 20 FIG.7 Stress-life Plots of Rotating Beam Fatigue Testing ............. 23 FIG.8 Fractograph of Rotating Beam...Chand-Kare Engineering Ceramics, Worcester, MA. Diamond wheels of 600 grits were used with longitudinal grinding applied for the final finishing of...stress in the range of 600-850 MPa. Three test completion modes were encountered, i.e. fast fracture at setup, fatigue fracture and runout (no failure

  19. Diagnostic Accuracy of Full-Body Linear X-Ray Scanning in Multiple Trauma Patients in Comparison to Computed Tomography.

    PubMed

    Jöres, A P W; Heverhagen, J T; Bonél, H; Exadaktylos, A; Klink, T

    2016-02-01

    The purpose of this study was to evaluate the diagnostic accuracy of full-body linear X-ray scanning (LS) in multiple trauma patients in comparison to 128-multislice computed tomography (MSCT). 106 multiple trauma patients (female: 33; male: 73) were retrospectively included in this study. All patients underwent LS of the whole body, including extremities, and MSCT covering the neck, thorax, abdomen, and pelvis. The diagnostic accuracy of LS for the detection of fractures of the truncal skeleton and pneumothoraces was evaluated in comparison to MSCT by two observers in consensus. Extremity fractures detected by LS were documented. The overall sensitivity of LS was 49.2 %, the specificity was 93.3 %, the positive predictive value was 91 %, and the negative predictive value was 57.5 %. The overall sensitivity for vertebral fractures was 16.7 %, and the specificity was 100 %. The sensitivity was 48.7 % and the specificity 98.2 % for all other fractures. Pneumothoraces were detected in 12 patients by CT, but not by LS. 40 extremity fractures were detected by LS, of which 4 fractures were dislocated, and 2 were fully covered by MSCT. The diagnostic accuracy of LS is limited in the evaluation of acute trauma of the truncal skeleton. LS allows fast whole-body X-ray imaging, and may be valuable for detecting extremity fractures in trauma patients in addition to MSCT.  The overall sensitivity of LS for truncal skeleton injuries in multiple-trauma patients was < 50 %. The diagnostic reference standard MSCT is the preferred and reliable imaging modality. LS may be valuable for quick detection of extremity fractures. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Evaluation of Fracture and Osteotomy Union in the Setting of Osteogenesis Imperfecta: Reliability of the Modified Radiographic Union Score for Tibial Fractures (RUST).

    PubMed

    Franzone, Jeanne M; Finkelstein, Mark S; Rogers, Kenneth J; Kruse, Richard W

    2017-09-08

    Evaluation of the union of osteotomies and fractures in patients with osteogenesis imperfecta (OI) is a critical component of patient care. Studies of the OI patient population have so far used varied criteria to evaluate bony union. The radiographic union score for tibial fractures (RUST), which was subsequently revised to the modified RUST, is an objective standardized method of evaluating fracture healing. We sought to evaluate the reliability of the modified RUST in the setting of the tibias of patients with OI. Tibial radiographs of 30 patients with OI fractures, or osteotomies were scored by 3 observers on 2 separate occasions. Each of the 4 cortices was given a score (1=no callus, 2=callus present, 3=bridging callus, and 4=remodeled, fracture not visible) and the modified RUST is the sum of these scores (range, 4 to 16). The interobserver and intraobserver reliabilities were evaluated using intraclass coefficients (ICC) with 95% confidence intervals. The ICC representing the interobserver reliability for the first iteration of scores was 0.926 (0.864 to 0.962) and for the second series was 0.915 (0.845 to 0.957). The ICCs representing the intraobserver reliability for each of the 3 reviewers for the measurements in series 1 and 2 were 0.860 (0.707 to 0.934), 0.994 (0.986 to 0.997), and 0.974 (0.946 to 0.988). The modified RUST has excellent interobserver and intraobserver reliability in the setting of OI despite challenges related to the poor quality of the bone and its dysplastic nature. The application and routine use of the modified RUST in the OI population will help standardize our evaluation of osteotomy and fracture healing. Level III-retrospective study of nonconsecutive patients.

  1. Fast first arrival picking algorithm for noisy microseismic data

    NASA Astrophysics Data System (ADS)

    Kim, Dowan; Byun, Joongmoo; Lee, Minho; Choi, Jihoon; Kim, Myungsun

    2017-01-01

    Most microseismic events occur during hydraulic fracturing. Thus microseismic monitoring, by recording seismic waves from microseismic events, is one of the best methods for locating the positions of hydraulic fractures. However, since microseismic events have very low energy, the data often have a low signal-to-noise ratio (S/N ratio) and it is not easy to pick the first arrival time. In this study, we suggest a new fast picking method optimised for noisy data using cross-correlation and stacking. In this method, a reference trace is selected and the time differences between the first arrivals of the reference trace and those of the other traces are computed by cross-correlation. Then, all traces are aligned with the reference trace by time shifting, and the aligned traces are summed together to produce a stacked reference trace that has a considerably improved S/N ratio. After the first arrival time of the stacked reference trace is picked, the first arrival time of each trace is calculated automatically using the time differences obtained in the cross-correlation process. In experiments with noisy synthetic data and field data, this method produces more reliable results than the traditional method, which picks the first arrival time of each noisy trace separately. In addition, the computation time is dramatically reduced.

  2. Time-resolved measurement of photon emission during fast crack propagation in three-point bending fracture of silica glass and soda lime glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp; Sato, Yoshitaka; Yasuda, Kouichi

    2014-03-10

    Simultaneous time-resolved measurements of photon emission (PE) and fast crack propagation upon bending fracture were conducted in silica glass and soda lime glass. Observation of fracture surfaces revealed that macroscopic crack propagation behavior was similar between the silica glass and soda lime glass when fracture loads for these specimens were comparable and cracks propagated without branching. However, a large difference in the PE characteristics was found between the two glasses. In silica glass, PE (645–655 nm) was observed during the entire crack propagation process, whereas intense PE (430–490 nm and 500–600 nm) was observed during the initial stages of propagation. In contrast, onlymore » weak PE was detected in soda lime glass. These results show that there is a large difference in the atomic processes involved in fast crack propagation between these glasses, and that PE can be used to study brittle fracture on the atomic scale.« less

  3. Training improves interobserver reliability for the diagnosis of scaphoid fracture displacement.

    PubMed

    Buijze, Geert A; Guitton, Thierry G; van Dijk, C Niek; Ring, David

    2012-07-01

    The diagnosis of displacement in scaphoid fractures is notorious for poor interobserver reliability. We tested whether training can improve interobserver reliability and sensitivity, specificity, and accuracy for the diagnosis of scaphoid fracture displacement on radiographs and CT scans. Sixty-four orthopaedic surgeons rated a set of radiographs and CT scans of 10 displaced and 10 nondisplaced scaphoid fractures for the presence of displacement, using a web-based rating application. Before rating, observers were randomized to a training group (34 observers) and a nontraining group (30 observers). The training group received an online training module before the rating session, and the nontraining group did not. Interobserver reliability for training and nontraining was assessed by Siegel's multirater kappa and the Z-test was used to test for significance. There was a small, but significant difference in the interobserver reliability for displacement ratings in favor of the training group compared with the nontraining group. Ratings of radiographs and CT scans combined resulted in moderate agreement for both groups. The average sensitivity, specificity, and accuracy of diagnosing displacement of scaphoid fractures were, respectively, 83%, 85%, and 84% for the nontraining group and 87%, 86%, and 87% for the training group. Assuming a 5% prevalence of fracture displacement, the positive predictive value was 0.23 in the nontraining group and 0.25 in the training group. The negative predictive value was 0.99 in both groups. Our results suggest training can improve interobserver reliability and sensitivity, specificity and accuracy for the diagnosis of scaphoid fracture displacement, but the improvements are slight. These findings are encouraging for future research regarding interobserver variation and how to reduce it further.

  4. Understanding fast macroscale fracture from microcrack post mortem patterns

    PubMed Central

    Guerra, Claudia; Scheibert, Julien; Bonamy, Daniel; Dalmas, Davy

    2012-01-01

    Dynamic crack propagation drives catastrophic solid failures. In many amorphous brittle materials, sufficiently fast crack growth involves small-scale, high-frequency microcracking damage localized near the crack tip. The ultrafast dynamics of microcrack nucleation, growth, and coalescence is inaccessible experimentally and fast crack propagation was therefore studied only as a macroscale average. Here, we overcome this limitation in polymethylmethacrylate, the archetype of brittle amorphous materials: We reconstruct the complete spatiotemporal microcracking dynamics, with micrometer/nanosecond resolution, through post mortem analysis of the fracture surfaces. We find that all individual microcracks propagate at the same low, load-independent velocity. Collectively, the main effect of microcracks is not to slow down fracture by increasing the energy required for crack propagation, as commonly believed, but on the contrary to boost the macroscale velocity through an acceleration factor selected on geometric grounds. Our results emphasize the key role of damage-related internal variables in the selection of macroscale fracture dynamics. PMID:22203962

  5. Design of high temperature ceramic components against fast fracture and time-dependent failure using cares/life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadaan, O.M.; Powers, L.M.; Nemeth, N.N.

    1995-08-01

    A probabilistic design methodology which predicts the fast fracture and time-dependent failure behavior of thermomechanically loaded ceramic components is discussed using the CARES/LIFE integrated design computer program. Slow crack growth (SCG) is assumed to be the mechanism responsible for delayed failure behavior. Inert strength and dynamic fatigue data obtained from testing coupon specimens (O-ring and C-ring specimens) are initially used to calculate the fast fracture and SCG material parameters as a function of temperature using the parameter estimation techniques available with the CARES/LIFE code. Finite element analysis (FEA) is used to compute the stress distributions for the tube as amore » function of applied pressure. Knowing the stress and temperature distributions and the fast fracture and SCG material parameters, the life time for a given tube can be computed. A stress-failure probability-time to failure (SPT) diagram is subsequently constructed for these tubes. Such a diagram can be used by design engineers to estimate the time to failure at a given failure probability level for a component subjected to a given thermomechanical load.« less

  6. Reliability of analysis of the bone mineral density of the second and fifth metatarsals using dual-energy x-ray absorptiometry (DXA).

    PubMed

    Pritchard, N Stewart; Smoliga, James M; Nguyen, Anh-Dung; Branscomb, Micah C; Sinacore, David R; Taylor, Jeffrey B; Ford, Kevin R

    2017-01-01

    Metatarsal fractures, especially of the fifth metatarsal, are common injuries of the foot in a young athletic population, but the risk factors for this injury are not well understood. Dual-energy x-ray absorptiometry (DXA) provides reliable measures of regional bone mineral density to predict fracture risk in the hip and lumbar spine. Recently, sub-regional metatarsal reliability was established in fresh cadaveric specimens and associated with ultimate fracture force. The purpose of this study was to assess the reliability of DXA bone mineral density measurements of sub-regions of the second and fifth metatarsals in a young, active population. Thirty two recreationally active individuals participated in the study, and the bone density of the second (2MT) and fifth (5MT) metatarsals of each subject was measured using a Hologic QDR x-ray bone densitometer. Scans were analyzed separately by two raters, and regional bone mineral density, bone mineral content, and area measurements were calculated for the proximal, shaft, and distal regions of the bone. Intra-rater, inter-rater, and scan-rescan reliability were then determined for each region. Proximal and shaft bone mineral density measurements of the second and fifth metatarsal were reliable. ICC's were variable across regions and metatarsals, with the distal region being the poorest. Bone mineral density measurements of the metatarsals may be a better indicator of fracture risk of the metatarsals than whole body measurements. A reliable method for measuring the regional bone mineral densities of the metatarsals was found. However, inter-rater reliability and scan-rescan reliability for the distal regions were poor. Future research should examine the relationship between DXA bone mineral density measurements and fracture risk at the metatarsals.

  7. CRACK GROWTH ANALYSIS OF SOLID OXIDE FUEL CELL ELECTROLYTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Bandopadhyay; N. Nagabhushana

    2003-10-01

    Defects and Flaws control the structural and functional property of ceramics. In determining the reliability and lifetime of ceramics structures it is very important to quantify the crack growth behavior of the ceramics. In addition, because of the high variability of the strength and the relatively low toughness of ceramics, a statistical design approach is necessary. The statistical nature of the strength of ceramics is currently well recognized, and is usually accounted for by utilizing Weibull or similar statistical distributions. Design tools such as CARES using a combination of strength measurements, stress analysis, and statistics are available and reasonably wellmore » developed. These design codes also incorporate material data such as elastic constants as well as flaw distributions and time-dependent properties. The fast fracture reliability for ceramics is often different from their time-dependent reliability. Further confounding the design complexity, the time-dependent reliability varies with the environment/temperature/stress combination. Therefore, it becomes important to be able to accurately determine the behavior of ceramics under simulated application conditions to provide a better prediction of the lifetime and reliability for a given component. In the present study, Yttria stabilized Zirconia (YSZ) of 9.6 mol% Yttria composition was procured in the form of tubes of length 100 mm. The composition is of interest as tubular electrolytes for Solid Oxide Fuel Cells. Rings cut from the tubes were characterized for microstructure, phase stability, mechanical strength (Weibull modulus) and fracture mechanisms. The strength at operating condition of SOFCs (1000 C) decreased to 95 MPa as compared to room temperature strength of 230 MPa. However, the Weibull modulus remains relatively unchanged. Slow crack growth (SCG) parameter, n = 17 evaluated at room temperature in air was representative of well studied brittle materials. Based on the results, further work was planned to evaluate the strength degradation, modulus and failure in more representative environment of the SOFCs.« less

  8. Reliability and smallest real difference of the ankle lunge test post ankle fracture.

    PubMed

    Simondson, David; Brock, Kim; Cotton, Susan

    2012-02-01

    This study aimed to determine the reliability and the smallest real difference of the Ankle Lunge test in an ankle fracture patient population. In the post immobilisation stage of ankle fracture, ankle dorsiflexion is an important measure of progress and outcome. The Ankle Lunge test measures weight bearing dorsiflexion, resulting in negative scores (knee to wall distance) and positive scores (toe to wall distance), for which the latter has proven reliability in normal subjects only. A consecutive sample of ankle fracture patients with permission to commence weight bearing, were recruited to the study. Three measurements of the Ankle Lunge Test were performed each by two raters, one senior and one junior physiotherapist. These occurred prior to therapy sessions in the second week after plaster removal. A standardised testing station was utilised and allowed for both knee to wall distance and toe to wall distance measurement. Data was collected from 10 individuals with ankle fracture, with an average age of 36 years (SD 14.8). Seventy seven percent of observations were negative. Intra and inter-rater reliability yielded intra class correlations at or above 0.97, p < .001. There was a significant systematic bias towards improved scores during repeated measurement for one rater (p = .01). The smallest real difference was calculated as 13.8mm. The Ankle Lunge test is a practical and reliable tool for measuring weightbearing dorsiflexion post ankle fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Development and validation of a paediatric long-bone fracture classification. A prospective multicentre study in 13 European paediatric trauma centres

    PubMed Central

    2011-01-01

    Background The aim of this study was to develop a child-specific classification system for long bone fractures and to examine its reliability and validity on the basis of a prospective multicentre study. Methods Using the sequentially developed classification system, three samples of between 30 and 185 paediatric limb fractures from a pool of 2308 fractures documented in two multicenter studies were analysed in a blinded fashion by eight orthopaedic surgeons, on a total of 5 occasions. Intra- and interobserver reliability and accuracy were calculated. Results The reliability improved with successive simplification of the classification. The final version resulted in an overall interobserver agreement of κ = 0.71 with no significant difference between experienced and less experienced raters. Conclusions In conclusion, the evaluation of the newly proposed classification system resulted in a reliable and routinely applicable system, for which training in its proper use may further improve the reliability. It can be recommended as a useful tool for clinical practice and offers the option for developing treatment recommendations and outcome predictions in the future. PMID:21548939

  10. AO Distal Radius Fracture Classification: Global Perspective on Observer Agreement.

    PubMed

    Jayakumar, Prakash; Teunis, Teun; Giménez, Beatriz Bravo; Verstreken, Frederik; Di Mascio, Livio; Jupiter, Jesse B

    2017-02-01

    Background  The primary objective of this study was to test interobserver reliability when classifying fractures by consensus by AO types and groups among a large international group of surgeons. Secondarily, we assessed the difference in inter- and intraobserver agreement of the AO classification in relation to geographical location, level of training, and subspecialty. Methods  A randomized set of radiographic and computed tomographic images from a consecutive series of 96 distal radius fractures (DRFs), treated between October 2010 and April 2013, was classified using an electronic web-based portal by an invited group of participants on two occasions. Results  Interobserver reliability was substantial when classifying AO type A fractures but fair and moderate for type B and C fractures, respectively. No difference was observed by location, except for an apparent difference between participants from India and Australia classifying type B fractures. No statistically significant associations were observed comparing interobserver agreement by level of training and no differences were shown comparing subspecialties. Intra-rater reproducibility was "substantial" for fracture types and "fair" for fracture groups with no difference accounting for location, training level, or specialty. Conclusion  Improved definition of reliability and reproducibility of this classification may be achieved using large international groups of raters, empowering decision making on which system to utilize. Level of Evidence  Level III.

  11. AO Distal Radius Fracture Classification: Global Perspective on Observer Agreement

    PubMed Central

    Jayakumar, Prakash; Teunis, Teun; Giménez, Beatriz Bravo; Verstreken, Frederik; Di Mascio, Livio; Jupiter, Jesse B.

    2016-01-01

    Background The primary objective of this study was to test interobserver reliability when classifying fractures by consensus by AO types and groups among a large international group of surgeons. Secondarily, we assessed the difference in inter- and intraobserver agreement of the AO classification in relation to geographical location, level of training, and subspecialty. Methods A randomized set of radiographic and computed tomographic images from a consecutive series of 96 distal radius fractures (DRFs), treated between October 2010 and April 2013, was classified using an electronic web-based portal by an invited group of participants on two occasions. Results Interobserver reliability was substantial when classifying AO type A fractures but fair and moderate for type B and C fractures, respectively. No difference was observed by location, except for an apparent difference between participants from India and Australia classifying type B fractures. No statistically significant associations were observed comparing interobserver agreement by level of training and no differences were shown comparing subspecialties. Intra-rater reproducibility was “substantial” for fracture types and “fair” for fracture groups with no difference accounting for location, training level, or specialty. Conclusion Improved definition of reliability and reproducibility of this classification may be achieved using large international groups of raters, empowering decision making on which system to utilize. Level of Evidence Level III PMID:28119795

  12. Plain film measurement error in acute displaced midshaft clavicle fractures

    PubMed Central

    Archer, Lori Anne; Hunt, Stephen; Squire, Daniel; Moores, Carl; Stone, Craig; O’Dea, Frank; Furey, Andrew

    2016-01-01

    Background Clavicle fractures are common and optimal treatment remains controversial. Recent literature suggests operative fixation of acute displaced mid-shaft clavicle fractures (DMCFs) shortened more than 2 cm improves outcomes. We aimed to identify correlation between plain film and computed tomography (CT) measurement of displacement and the inter- and intraobserver reliability of repeated radiographic measurements. Methods We obtained radiographs and CT scans of patients with acute DMCFs. Three orthopedic staff and 3 residents measured radiographic displacement at time zero and 2 weeks later. The CT measurements identified absolute shortening in 3 dimensions (by subtracting the length of the fractured from the intact clavicle). We then compared shortening measured on radiographs and shortening measured in 3 dimensions on CT. Interobserver and intraobserver reliability were calculated. Results We reviewed the fractures of 22 patients. Bland–Altman repeatability coefficient calculations indicated that radiograph and CT measurements of shortening could not be correlated owing to an unacceptable amount of measurement error (6 cm). Interobserver reliability for plain radiograph measurements was excellent (Cronbach α = 0.90). Likewise, intraobserver reliabilities for plain radiograph measurements as calculated with paired t tests indicated excellent correlation (p > 0.05 in all but 1 observer [p = 0.04]). Conclusion To establish shortening as an indication for DMCF fixation, reliable measurement tools are required. The low correlation between plain film and CT measurements we observed suggests further research is necessary to establish what imaging modality reliably predicts shortening. Our results indicate weak correlation between radiograph and CT measurement of acute DMCF shortening. PMID:27438054

  13. Identification of Nasal Bone Fractures on Conventional Radiography and Facial CT: Comparison of the Diagnostic Accuracy in Different Imaging Modalities and Analysis of Interobserver Reliability.

    PubMed

    Baek, Hye Jin; Kim, Dong Wook; Ryu, Ji Hwa; Lee, Yoo Jin

    2013-09-01

    There has been no study to compare the diagnostic accuracy of an experienced radiologist with a trainee in nasal bone fracture. To compare the diagnostic accuracy between conventional radiography and computed tomography (CT) for the identification of nasal bone fractures and to evaluate the interobserver reliability between a staff radiologist and a trainee. A total of 108 patients who underwent conventional radiography and CT after acute nasal trauma were included in this retrospective study. Two readers, a staff radiologist and a second-year resident, independently assessed the results of the imaging studies. Of the 108 patients, the presence of a nasal bone fracture was confirmed in 88 (81.5%) patients. The number of non-depressed fractures was higher than the number of depressed fractures. In nine (10.2%) patients, nasal bone fractures were only identified on conventional radiography, including three depressed and six non-depressed fractures. CT was more accurate as compared to conventional radiography for the identification of nasal bone fractures as determined by both readers (P <0.05), all diagnostic indices of an experienced radiologist were similar to or higher than those of a trainee, and κ statistics showed moderate agreement between the two diagnostic tools for both readers. There was no statistical difference in the assessment of interobserver reliability for both imaging modalities in the identification of nasal bone fractures. For the identification of nasal bone fractures, CT was significantly superior to conventional radiography. Although a staff radiologist showed better values in the identification of nasal bone fracture and differentiation between depressed and non-depressed fractures than a trainee, there was no statistically significant difference in the interpretation of conventional radiography and CT between a radiologist and a trainee.

  14. A comparison of resistance to fracture among four commercially available forms of hydroxyapatite cement.

    PubMed

    Miller, Lee; Guerra, Aldo Benjamin; Bidros, Rafi Sirop; Trahan, Christopher; Baratta, Richard; Metzinger, Stephen Eric

    2005-07-01

    Hydroxyapatite cement is a relatively new biomaterial that has found widespread use in craniomaxillofacial surgery. Despite its common usage, complication rates as high as 32% have been reported. When failed implants are removed, implant fracture has been cited as a potential cause of failure. The purpose of this study was to evaluate resistance to fracture among 4 commercially available hydroxyapatite cement formulations. The materials tested included Norian Craniofacial Repair System (carbonated apatite cement) (AO North America, Devon, PA), Norian CRS Fast Set Putty (carbonated apatite cement) (AO North America), BoneSource (hydroxyapatite cement) (Stryker Leibinger, Portage, MI), and Mimix (hydroxyapatite cement) (Walter Lorenz Surgical, Inc, Jacksonville, FL). To ensure consistency, all materials were embedded in acrylic wells. Each material was placed into a well 2.54 cm in diameter and 0.953 cm in thickness. The materials were prepared per manufacturer specifications. All materials were incubated at 37.0 degrees C, in 6% CO2, 100% humidity for 36 hours. Using the Bionix MTS Test System, a 12-mm-diameter probe applied incremental force to the center of the disk at a rate of 0.1 mm per second. The transmitted force was measured using a Bionix MTS Axial-Torsional Load Transducer for each disk. The force which resulted in fracture was recorded for each material. Ten disks of each material were processed by this method, for a total of 40 disks. The significance of resistance to fracture for the 4 compounds was analyzed using 1-way analysis of variance with post hoc Scheffe method. Mean fracture force with related P values was plotted for direct comparison of group outcomes. Material type contributed significantly to variance in fracture force for the biomaterials studied. Norian CRS required the greatest mean fracture force (1385 N, SD+/-292 N), followed by Norian CRS Fast Set Putty (1143 N, SD+/-193 N). Mimix required a mean fracture force of 740 N, SD+/-79 N. BoneSource required a mean fracture force of 558 N, SD+/-150 N. Mimix and BoneSource required significantly less force for fracture when compared with Norian CRS and Fast Set Putty (P<0.01). Comparisons of fracture load resistance between 4 commonly used bone substitute materials have not been previously reported. Increasing biomaterial strength may reduce complications resulting from reinjury to cranioplasty sites. In this model, Norian CRS and Norian CRS Fast Set Putty demonstrated a significantly greater resistance to fracture when compared with BoneSource and Mimix.

  15. Reliability of Radiographic Assessments of Adolescent Midshaft Clavicle Fractures by the FACTS Multicenter Study Group.

    PubMed

    Li, Ying; Donohue, Kyna S; Robbins, Christopher B; Pennock, Andrew T; Ellis, Henry B; Nepple, Jeffrey J; Pandya, Nirav; Spence, David D; Willimon, Samuel Clifton; Heyworth, Benton E

    2017-09-01

    There is a recent trend toward increased surgical treatment of displaced midshaft clavicle fractures in adolescents. The primary purpose of this study was to evaluate the intrarater and interrater reliability of clavicle fracture classification systems and measurements of displacement, shortening, and angulation in adolescents. The secondary purpose was to compare 2 different measurement methods for fracture shortening. This study was performed by a multicenter study group conducting a prospective, comparative, observational cohort study of adolescent clavicle fractures. Eight raters evaluated 24 deidentified anteroposterior clavicle radiographs selected from patients 10-18 years of age with midshaft clavicle fractures. Two clavicle fracture classification systems were used, and 2 measurements for shortening, 1 measurement for superior-inferior displacement, and 2 measurements for fracture angulation were performed. A minimum of 2 weeks after the first round, the process was repeated. Intraclass correlation coefficients were calculated. Good to excellent intrarater and interrater agreement was achieved for the descriptive classification system of fracture displacement, direction of angulation, presence of comminution, and all continuous variables, including both measurements of shortening, superior-inferior displacement, and degrees of angulation. Moderate agreement was achieved for the Arbeitsgemeinschaft für Osteosynthesefragen classification system overall. Mean shortening by 2 different methods were significantly different from each other (P < 0.0001). Most radiographic measurements performed by investigators in a multicenter, prospective cohort study of adolescent clavicle fractures demonstrated good-to-excellent intrarater and interrater reliability. Future consensus on the most accurate and clinically appropriate measurement method for fracture shortening is critical.

  16. Proximal humeral fracture classification systems revisited.

    PubMed

    Majed, Addie; Macleod, Iain; Bull, Anthony M J; Zyto, Karol; Resch, Herbert; Hertel, Ralph; Reilly, Peter; Emery, Roger J H

    2011-10-01

    This study evaluated several classification systems and expert surgeons' anatomic understanding of these complex injuries based on a consecutive series of patients. We hypothesized that current proximal humeral fracture classification systems, regardless of imaging methods, are not sufficiently reliable to aid clinical management of these injuries. Complex fractures in 96 consecutive patients were investigated by generation of rapid sequence prototyping models from computed tomography Digital Imaging and Communications in Medicine (DICOM) imaging data. Four independent senior observers were asked to classify each model using 4 classification systems: Neer, AO, Codman-Hertel, and a prototype classification system by Resch. Interobserver and intraobserver κ coefficient values were calculated for the overall classification system and for selected classification items. The κ coefficient values for the interobserver reliability were 0.33 for Neer, 0.11 for AO, 0.44 for Codman-Hertel, and 0.15 for Resch. Interobserver reliability κ coefficient values were 0.32 for the number of fragments and 0.30 for the anatomic segment involved using the Neer system, 0.30 for the AO type (A, B, C), and 0.53, 0.48, and 0.08 for the Resch impaction/distraction, varus/valgus and flexion/extension subgroups, respectively. Three-part fractures showed low reliability for the Neer and AO systems. Currently available evidence suggests fracture classifications in use have poor intra- and inter-observer reliability despite the modality of imaging used thus making treating these injuries difficult as weak as affecting scientific research as well. This study was undertaken to evaluate the reliability of several systems using rapid sequence prototype models. Overall interobserver κ values represented slight to moderate agreement. The most reliable interobserver scores were found with the Codman-Hertel classification, followed by elements of Resch's trial system. The AO system had the lowest values. The higher interobserver reliability values for the Codman-Hertel system showed that is the only comprehensive fracture description studied, whereas the novel classification by Resch showed clear definition in respect to varus/valgus and impaction/distraction angulation. Copyright © 2011 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights reserved.

  17. Time/Temperature Dependent Tensile Strength of SiC and Al2O3-Based Fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; DiCarlo, James A.

    1997-01-01

    In order to understand and model the thermomechanical behavior of fiber-reinforced composites, stress-rupture, fast-fracture, and warm-up rupture studies were conducted on various advanced SiC and Al2O3-based fibers in the,temperature range from 20 to 1400 C in air as well as in inert environments. The measured stress-rupture, fast fracture, and warm-up rupture strengths were correlated into a single master time/temperature-dependent strength plot for each fiber type using thermal activation and slow crack growth theories. It is shown that these plots are useful for comparing and selecting fibers for CMC and MMC reinforcement and that, in comparison to stress rupture tests, the fast-fracture and warm-up tests can be used for rapid generation of these plots.

  18. Stress corrosion study of PH13-8Mo stainless steel using the Slow Strain Rate Technique

    NASA Technical Reports Server (NTRS)

    Torres, Pablo D.

    1989-01-01

    The need for a fast and reliable method to study stress corrosion in metals has caused increased interest in the Slow Strain Rate Technique (SSRT) during the last few decades. PH13-8MoH950 and H1000 round tensile specimens were studied by this method. Percent reduction-in-area, time-to-failure, elongation at fracture, and fracture energy were used to express the loss in ductility, which has been used to indicate susceptibility to stress corrosion cracking (SCC). Results from a 3.5 percent salt solution (corrosive medium) were compared to those in air (inert medium). A tendency to early failure was found when testing in the vicinity of 1.0 x 10(-6) mm/mm/sec in the 3.5 percent salt solution. PH13-8Mo H1000 was found to be less likely to suffer SCC than PH13-8Mo H950. This program showed that the SSRT is promising for the SCC characterization of metals and results can be obtained in much shorter times (18 hr for PH steels) than those required using conventional techniques.

  19. Microseismic event location using global optimization algorithms: An integrated and automated workflow

    NASA Astrophysics Data System (ADS)

    Lagos, Soledad R.; Velis, Danilo R.

    2018-02-01

    We perform the location of microseismic events generated in hydraulic fracturing monitoring scenarios using two global optimization techniques: Very Fast Simulated Annealing (VFSA) and Particle Swarm Optimization (PSO), and compare them against the classical grid search (GS). To this end, we present an integrated and optimized workflow that concatenates into an automated bash script the different steps that lead to the microseismic events location from raw 3C data. First, we carry out the automatic detection, denoising and identification of the P- and S-waves. Secondly, we estimate their corresponding backazimuths using polarization information, and propose a simple energy-based criterion to automatically decide which is the most reliable estimate. Finally, after taking proper care of the size of the search space using the backazimuth information, we perform the location using the aforementioned algorithms for 2D and 3D usual scenarios of hydraulic fracturing processes. We assess the impact of restricting the search space and show the advantages of using either VFSA or PSO over GS to attain significant speed-ups.

  20. Completed Ulnar Shaft Stress Fracture in a Fast-Pitch Softball Pitcher.

    PubMed

    Wiltfong, Roger E; Carruthers, Katherine H; Popp, James E

    2017-03-01

    Stress fractures of the upper extremity have been previously described in the literature, yet reports of isolated injury to the ulna diaphysis or olecranon are rare. The authors describe a case involving an 18-year-old fast-pitch softball pitcher. She presented with a long history of elbow and forearm pain, which was exacerbated during a long weekend of pitching. Her initial physician diagnosed her as having forearm tendinitis. She was treated with nonsurgical means including rest, anti-inflammatory medications, therapy, and kinesiology taping. She resumed pitching when allowed and subsequently had an acute event immediately ceasing pitching. She presented to an urgent care clinic that evening and was diagnosed as having a complete ulnar shaft fracture subsequently needing surgical management. This case illustrates the need for a high degree of suspicion for ulnar stress fractures in fast-pitch soft-ball pitchers with an insidious onset of unilateral forearm pain. Through early identification and intervention, physicians may be able to reduce the risk of injury progression and possibly eliminate the need for surgical management. [Orthopedics. 2017; 40(2):e360-e362.]. Copyright 2016, SLACK Incorporated.

  1. A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform

    PubMed Central

    Brunet-Imbault, Barbara; Lemineur, Gerald; Chappard, Christine; Harba, Rachid; Benhamou, Claude-Laurent

    2005-01-01

    Background The degree of anisotropy (DA) on radiographs is related to bone structure, we present a new index to assess DA. Methods In a region of interest from calcaneus radiographs, we applied a Fast Fourier Transform (FFT). All the FFT spectra involve the horizontal and vertical components corresponding respectively to longitudinal and transversal trabeculae. By visual inspection, we measured the spreading angles: Dispersion Longitudinal Index (DLI) and Dispersion Transverse Index (DTI) and calculated DA = 180/(DLI+DTI). To test the reliability of DA assessment, we synthesized images simulating radiological projections of periodic structures with elements more or less disoriented. Results Firstly, we tested synthetic images which comprised a large variety of structures from highly anisotropic structure to the almost isotropic, DA was ranging from 1.3 to 3.8 respectively. The analysis of the FFT spectra was performed by two observers, the Coefficients of Variation were 1.5% and 3.1 % for intra-and inter-observer reproducibility, respectively. In 22 post-menopausal women with osteoporotic fracture cases and 44 age-matched controls, DA values were respectively 1.87 ± 0.15 versus 1.72 ± 0.18 (p = 0.001). From the ROC analysis, the Area Under Curve (AUC) were respectively 0.65, 0.62, 0.64, 0.77 for lumbar spine, femoral neck, total femoral BMD and DA. Conclusion The highest DA values in fracture cases suggest that the structure is more anisotropic in osteoporosis due to preferential deletion of trabeculae in some directions. PMID:15927072

  2. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  3. High inter-rater reliability, agreement, and convergent validity of Constant score in patients with clavicle fractures.

    PubMed

    Ban, Ilija; Troelsen, Anders; Kristensen, Morten Tange

    2016-10-01

    The Constant score (CS) has been the primary endpoint in most studies on clavicle fractures. However, the CS was not developed to assess patients with clavicle fractures. Our aim was to examine inter-rater reliability and agreement of the CS in patients with clavicle fractures. The secondary aim was to estimate the correlation between the CS and the Disabilities of the Arm, Shoulder and Hand score and the internal consistency of the 2 scores. On the basis of sample sizing, 36 patients (31 male and 5 female patients; mean age, 41.3 years) with clavicle fractures underwent standardized CS assessment at a mean of 6.8 weeks (SD, 1.0 weeks) after injury. Reliability and agreement of the CS were determined by 2 raters. The interclass correlation coefficient (ICC2,1), standard error of measurement, minimal detectable change, Cronbach α coefficient, and Pearson correlation coefficient were estimated. Inter-rater reliability of the total CS was excellent (interclass correlation coefficient, 0.94; 95% confidence interval, 0.88-0.97), with no systematic difference between the 2 raters (P = .75). The standard error of measurement (measurement error at the group level) was 4.9, whereas the minimal detectable change (smallest change needed to indicate a real change for an individual) was 13.6 CS points. The internal consistency of the 10 CS items was good, with a Cronbach α of .85, and we found a strong correlation (r = -0.92) between the CS and Disabilities of the Arm, Shoulder and Hand score. The CS was found to be reliable for assessing patients with clavicle fractures, especially at the group level. With high inter-rater reliability and agreement, in addition to good internal consistency, the standardized CS used in this study can be used for comparison of results from different settings. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. An In vitro evaluation of the reliability of QR code denture labeling technique.

    PubMed

    Poovannan, Sindhu; Jain, Ashish R; Krishnan, Cakku Jalliah Venkata; Chandran, Chitraa R

    2016-01-01

    Positive identification of the dead after accidents and disasters through labeled dentures plays a key role in forensic scenario. A number of denture labeling methods are available, and studies evaluating their reliability under drastic conditions are vital. This study was conducted to evaluate the reliability of QR (Quick Response) Code labeled at various depths in heat-cured acrylic blocks after acid treatment, heat treatment (burns), and fracture in forensics. It was an in vitro study. This study included 160 specimens of heat-cured acrylic blocks (1.8 cm × 1.8 cm) and these were divided into 4 groups (40 samples per group). QR Codes were incorporated in the samples using clear acrylic sheet and they were assessed for reliability under various depths, acid, heat, and fracture. Data were analyzed using Chi-square test, test of proportion. The QR Code inclusion technique was reliable under various depths of acrylic sheet, acid (sulfuric acid 99%, hydrochloric acid 40%) and heat (up to 370°C). Results were variable with fracture of QR Code labeled acrylic blocks. Within the limitations of the study, by analyzing the results, it was clearly indicated that the QR Code technique was reliable under various depths of acrylic sheet, acid, and heat (370°C). Effectiveness varied in fracture and depended on the level of distortion. This study thus suggests that QR Code is an effective and simpler denture labeling method.

  5. Online Studies on Variation in Orthopedic Surgery: Computed Tomography in MPEG4 Versus DICOM Format.

    PubMed

    Mellema, Jos J; Mallee, Wouter H; Guitton, Thierry G; van Dijk, C Niek; Ring, David; Doornberg, Job N

    2017-10-01

    The purpose of this study was to compare the observer participation and satisfaction as well as interobserver reliability between two online platforms, Science of Variation Group (SOVG) and Traumaplatform Study Collaborative, for the evaluation of complex tibial plateau fractures using computed tomography in MPEG4 and DICOM format. A total of 143 observers started with the online evaluation of 15 complex tibial plateau fractures via either the SOVG or Traumaplatform Study Collaborative websites using MPEG4 videos or a DICOM viewer, respectively. Observers were asked to indicate the absence or presence of four tibial plateau fracture characteristics and to rate their satisfaction with the evaluation as provided by the respective online platforms. The observer participation rate was significantly higher in the SOVG (MPEG4 video) group compared to that in the Traumaplatform Study Collaborative (DICOM viewer) group (75 and 43%, respectively; P < 0.001). The median observer satisfaction with the online evaluation was seven (range, 0-10) using MPEG4 video compared to six (range, 1-9) using DICOM viewer (P = 0.11). The interobserver reliability for recognition of fracture characteristics in complex tibial plateau fractures was higher for the evaluation using MPEG4 video. In conclusion, observer participation and interobserver reliability for the characterization of tibial plateau fractures was greater with MPEG4 videos than with a standard DICOM viewer, while there was no difference in observer satisfaction. Future reliability studies should account for the method of delivering images.

  6. Laser notching ceramics for reliable fracture toughness testing

    DOE PAGES

    Barth, Holly D.; Elmer, John W.; Freeman, Dennis C.; ...

    2015-09-19

    A new method for notching ceramics was developed using a picosecond laser for fracture toughness testing of alumina samples. The test geometry incorporated a single-edge-V-notch that was notched using picosecond laser micromachining. This method has been used in the past for cutting ceramics, and is known to remove material with little to no thermal effect on the surrounding material matrix. This study showed that laser-assisted-machining for fracture toughness testing of ceramics was reliable, quick, and cost effective. In order to assess the laser notched single-edge-V-notch beam method, fracture toughness results were compared to results from other more traditional methods, specificallymore » surface-crack in flexure and the chevron notch bend tests. Lastly, the results showed that picosecond laser notching produced precise notches in post-failure measurements, and that the measured fracture toughness results showed improved consistency compared to traditional fracture toughness methods.« less

  7. Identification of Nasal Bone Fractures on Conventional Radiography and Facial CT: Comparison of the Diagnostic Accuracy in Different Imaging Modalities and Analysis of Interobserver Reliability

    PubMed Central

    Baek, Hye Jin; Kim, Dong Wook; Ryu, Ji Hwa; Lee, Yoo Jin

    2013-01-01

    Background There has been no study to compare the diagnostic accuracy of an experienced radiologist with a trainee in nasal bone fracture. Objectives To compare the diagnostic accuracy between conventional radiography and computed tomography (CT) for the identification of nasal bone fractures and to evaluate the interobserver reliability between a staff radiologist and a trainee. Patients and Methods A total of 108 patients who underwent conventional radiography and CT after acute nasal trauma were included in this retrospective study. Two readers, a staff radiologist and a second-year resident, independently assessed the results of the imaging studies. Results Of the 108 patients, the presence of a nasal bone fracture was confirmed in 88 (81.5%) patients. The number of non-depressed fractures was higher than the number of depressed fractures. In nine (10.2%) patients, nasal bone fractures were only identified on conventional radiography, including three depressed and six non-depressed fractures. CT was more accurate as compared to conventional radiography for the identification of nasal bone fractures as determined by both readers (P <0.05), all diagnostic indices of an experienced radiologist were similar to or higher than those of a trainee, and κ statistics showed moderate agreement between the two diagnostic tools for both readers. There was no statistical difference in the assessment of interobserver reliability for both imaging modalities in the identification of nasal bone fractures. Conclusion For the identification of nasal bone fractures, CT was significantly superior to conventional radiography. Although a staff radiologist showed better values in the identification of nasal bone fracture and differentiation between depressed and non-depressed fractures than a trainee, there was no statistically significant difference in the interpretation of conventional radiography and CT between a radiologist and a trainee. PMID:24348599

  8. Effects of core-to-dentin thickness ratio on the biaxial flexural strength, reliability, and fracture mode of bilayered materials of zirconia core (Y-TZP) and veneer indirect composite resins.

    PubMed

    Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang

    2017-01-01

    Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Reliability of the pronator quadratus fat pad sign to predict the severity of distal radius fractures.

    PubMed

    Loesaus, Julia; Wobbe, Isabel; Stahlberg, Erik; Barkhausen, Joerg; Goltz, Jan Peter

    2017-09-28

    To evaluate the reliability of pronator quadratus fat pad sign to detect distal radius fracture and to predict its severity. Retrospectively we identified 89 consecutive patients (41 female, mean age 49 ± 18 years) who had X-ray (CR) and computed tomography (CT) within 24 h following distal forearm trauma. Thickness of pronator quadratus fat pad complex (PQC) was measured using lateral views (CR) and sagittal reconstructions (CT). Pearson's test was used to determine the correlation of the PQC thickness in CR and CT. A positive pronator quadratus sign (PQS) was defined as a PQC > 8.0 mm (female) or > 9.0 mm (male). Frykman classification was utilized to assess the severity of fractures. Forty-four/89 patients (49%) had a distal radius fracture (Frykman I n = 3, II n = 0, III n = 10, IV n = 5, V n = 2, VI n = 2, VII n = 9, VIII n = 13). Mean thickness of the PQC thickness can reliably be measured on X-ray views and was 7.5 ± 2.8 mm in lateral views (CR), respectively 9.4 ± 3.0 mm in sagittal reconstructions (CT), resulting in a significant correlation coefficient of 0.795. A positive PQS at CR was present in 21/44 patients (48%) with distal radius fracture and in 2/45 patients (4%) without distal radius fracture, resulting in a specificity of 96% and a sensitivity of 48% for the detection of distal radius fractures. There was no correlation between thickness of the PQC and severity of distal radius fractures. A positive PQS shows high specificity but low sensitivity for detection of distal radius fractures. The PQC thickness cannot predict the severity of distal radius fractures.

  10. Reliability of the pronator quadratus fat pad sign to predict the severity of distal radius fractures

    PubMed Central

    Loesaus, Julia; Wobbe, Isabel; Stahlberg, Erik; Barkhausen, Joerg; Goltz, Jan Peter

    2017-01-01

    AIM To evaluate the reliability of pronator quadratus fat pad sign to detect distal radius fracture and to predict its severity. METHODS Retrospectively we identified 89 consecutive patients (41 female, mean age 49 ± 18 years) who had X-ray (CR) and computed tomography (CT) within 24 h following distal forearm trauma. Thickness of pronator quadratus fat pad complex (PQC) was measured using lateral views (CR) and sagittal reconstructions (CT). Pearson’s test was used to determine the correlation of the PQC thickness in CR and CT. A positive pronator quadratus sign (PQS) was defined as a PQC > 8.0 mm (female) or > 9.0 mm (male). Frykman classification was utilized to assess the severity of fractures. RESULTS Forty-four/89 patients (49%) had a distal radius fracture (Frykman I n = 3, II n = 0, III n = 10, IV n = 5, V n = 2, VI n = 2, VII n = 9, VIII n = 13). Mean thickness of the PQC thickness can reliably be measured on X-ray views and was 7.5 ± 2.8 mm in lateral views (CR), respectively 9.4 ± 3.0 mm in sagittal reconstructions (CT), resulting in a significant correlation coefficient of 0.795. A positive PQS at CR was present in 21/44 patients (48%) with distal radius fracture and in 2/45 patients (4%) without distal radius fracture, resulting in a specificity of 96% and a sensitivity of 48% for the detection of distal radius fractures. There was no correlation between thickness of the PQC and severity of distal radius fractures. CONCLUSION A positive PQS shows high specificity but low sensitivity for detection of distal radius fractures. The PQC thickness cannot predict the severity of distal radius fractures. PMID:29098069

  11. Cross-cultural adaptation and validation of the osteoporosis assessment questionnaire short version (OPAQ-SV) for Chinese osteoporotic fracture females.

    PubMed

    Zhang, Yin-Ping; Wei, Huan-Huan; Wang, Wen; Xia, Ru-Yi; Zhou, Xiao-Ling; Porr, Caroline; Lammi, Mikko

    2016-04-01

    The Osteoporosis Assessment Questionnaire Short Version (OPAQ-SV) was cross-culturally adapted to measure health-related quality of life in Chinese osteoporotic fracture females and then validated in China for its psychometric properties. Cross-cultural adaptation, including translation of the original OPAQ-SV into Mandarin Chinese language, was performed according to published guidelines. Validation of the newly cross-culturally adapted OPAQ-SV was conducted by sampling 234 Chinese osteoporotic fracture females and also a control group of 235 Chinese osteoporotic females without fractures, producing robust content, construct, and discriminant validation results. Major categories of reliability were also met: the Cronbach alpha coefficient was 0.975, indicating good internal consistency; the test-retest reliability was 0.80; and principal component analysis resulted in a 6-factor structure explaining 75.847 % of the total variance. Further, the Comparative Fit Index result was 0.922 following the modified model confirmatory factor analysis, and the chi-squared test was 1.98. The root mean squared error of approximation was 0.078. Moreover, significant differences were revealed between females with fractures and those without fractures across all domains (p < 0.001). Overall, the newly cross-culturally adapted OPAQ-SV appears to possess adequate validity and reliability and may be utilized in clinical trials to assess the health-related quality of life in Chinese osteoporotic fracture females.

  12. Self-reinforced bioresorbable poly-L/DL-lactide [SR-P(L/DL)LA] 70/30 miniplates and miniscrews are reliable for fixation of anterior mandibular fractures: a pilot study.

    PubMed

    Ylikontiola, Leena; Sundqvuist, Kai; Sàndor, George K B; Törmälä, Pertti; Ashammakhi, Nureddin

    2004-03-01

    Bioresorbable osteofixation devices are being increasingly used in orthognathic surgery and in cases of trauma to avoid problems associated with conventional metal osteofixation devices. The aim of this clinical study was to assess the reliability and efficacy of bioresorbable self-reinforced poly-L/DL-lactide (SR-P(L/DL)LA 70/30) plates and screws in the fixation of mandibular fractures in adults. Ten patients (20 to 49 years old) with isolated anterior mandibular parasymphyseal fractures were treated by means of open reduction and internal fixation using SR-P(L/DL)LA 70/30 bioresorbable plates and screws. During the minimum of 6 months of follow-up, no problems were encountered except for 1 case where a plate became exposed intraorally and infected. This required debridement and later excision of the exposed part of the plate. Despite this setback the fractured bone healed well. SR-P(L/DL)LA 70/30 plates and screws are reliable for internal fixation of anterior mandibular fractures in adults. Proper soft tissue coverage should be ensured to avoid plate exposure. Should implant exposure occur, it might be necessary to excise the exposed part after fracture healing (6-8 weeks postoperatively).

  13. What Are Ways to Prevent Falls and Related Fractures?

    MedlinePlus

    ... Read Series of Publications for the Public What Are Ways to Prevent Falls and Related Fractures? Fast ... Read Series of Publications for the Public Falls are serious at any age, but especially for older ...

  14. An In vitro evaluation of the reliability of QR code denture labeling technique

    PubMed Central

    Poovannan, Sindhu; Jain, Ashish R.; Krishnan, Cakku Jalliah Venkata; Chandran, Chitraa R.

    2016-01-01

    Statement of Problem: Positive identification of the dead after accidents and disasters through labeled dentures plays a key role in forensic scenario. A number of denture labeling methods are available, and studies evaluating their reliability under drastic conditions are vital. Aim: This study was conducted to evaluate the reliability of QR (Quick Response) Code labeled at various depths in heat-cured acrylic blocks after acid treatment, heat treatment (burns), and fracture in forensics. It was an in vitro study. Materials and Methods: This study included 160 specimens of heat-cured acrylic blocks (1.8 cm × 1.8 cm) and these were divided into 4 groups (40 samples per group). QR Codes were incorporated in the samples using clear acrylic sheet and they were assessed for reliability under various depths, acid, heat, and fracture. Data were analyzed using Chi-square test, test of proportion. Results: The QR Code inclusion technique was reliable under various depths of acrylic sheet, acid (sulfuric acid 99%, hydrochloric acid 40%) and heat (up to 370°C). Results were variable with fracture of QR Code labeled acrylic blocks. Conclusion: Within the limitations of the study, by analyzing the results, it was clearly indicated that the QR Code technique was reliable under various depths of acrylic sheet, acid, and heat (370°C). Effectiveness varied in fracture and depended on the level of distortion. This study thus suggests that QR Code is an effective and simpler denture labeling method. PMID:28123284

  15. Investigating reliability attributes of silicon photovoltaic cells - An overview

    NASA Technical Reports Server (NTRS)

    Royal, E. L.

    1982-01-01

    Reliability attributes are being developed on a wide variety of advanced single-crystal silicon solar cells. Two separate investigations: cell-contact integrity (metal-to-silicon adherence), and cracked cells identified with fracture-strength-reducing flaws are discussed. In the cell-contact-integrity investigation, analysis of contact pull-strength data shows that cell types made with different metallization technologies, i.e., vacuum, plated, screen-printed and soldered, have appreciably different reliability attributes. In the second investigation, fracture strength was measured using Czochralski wafers and cells taken at various stages of processing and differences were noted. Fracture strength, which is believed to be governed by flaws introduced during wafer sawing, was observed to improve (increase) after chemical polishing and other process steps that tend to remove surface and edge flaws.

  16. Flow-path textures and mineralogy in tuffs of the unsaturated zone

    USGS Publications Warehouse

    Levy, Schön; Chipera, Steve; WoldeGabriel, Giday; Fabryka-Martin, June; Roach, Jeffrey; Sweetkind, Donald S.; Haneberg, William C.; Mozley, Peter S.; Moore, J. Casey; Goodwin, Laurel B.

    1999-01-01

    The high concentration of chlorine-36 (36Cl) produced by above-ground nuclear tests (bomb-pulse) provides a fortuitous tracer for infiltration during the last 50 years, and is used to detect fast flow in the unsaturated zone at Yucca Mountain, Nevada, a thick deposit of welded and nonwelded tuffs. Evidence of fast flow as much as 300 m into the mountain has been found in several zones in a 7.7-km tunnel. Many zones are associated with faults that provide continuous fracture flow paths from the surface. In the Sundance fault zone, water with the bomb-pulse signature has moved into subsidiary fractures and breccia zones. We found no highly distinctive mineralogic associations of fault and fracture samples containing bomb-pulse 36Cl. Bomb-pulse sites are slightly more likely to have calcite deposits than are non-bomb-pulse sites. Most other mineralogic and textural associations of fast-flow paths reflect the structural processes leading to locally enhanced permeability rather than the effects of ground-water percolation. Water movement through the rock was investigated by isotopic analysis of paired samples representing breccia zones and fractured wall rock bounding the breccia zones. Where bomb-pulse 36Cl is present, the waters in bounding fractures and intergranular pores of the fast pathways are not in equilibrium with respect to the isotopic signal. In structural domains that have experienced extensional deformation, fluid flow within a breccia is equivalent to matrix flow in a particulate rock, whereas true fracture flow occurs along the boundaries of a breccia zone. Where shearing predominated over extension, the boundary between wall rock and breccia is rough and irregular with a tight wallrock/breccia contact. The absence of a gap between the breccia and the wall rock helps maintain fluid flow within the breccia instead of along the wallrock/breccia boundary, leading to higher 36Cl/Cl values in the breccia than in the wall rock.

  17. Fracture mechanics technology for optimum pressure vessel design.

    NASA Technical Reports Server (NTRS)

    Bjeletich, J. G.; Morton, T. M.

    1973-01-01

    A technique has been developed to design a maximum efficiency reliable pressure vessel of given geometry and service life. The technique for ensuring reliability of the minimum weight vessel relies on the application of linear elastic fracture mechanics and fracture mechanics concepts. The resultant design incorporates potential fatigue and stress corrosion crack extension during service of a worst case initial flaw. Maximum stress for safe life is specified by the design technique, thereby minimizing weight. Ratios of pressure and toughness parameters are employed to avoid arbitrary specification of design stress level which would lead to a suboptimum design.

  18. Acoustic emission analysis of crack resistance and fracture behavior of 20GL steel having the gradient microstructure and strength

    NASA Astrophysics Data System (ADS)

    Nikulin, S.; Nikitin, A.; Belov, V.; Rozhnov, A.; Turilina, V.; Anikeenko, V.; Khatkevich, V.

    2017-07-01

    The crack resistances as well as fracture behavior of 20GL steel quenched with a fast-moving water stream and having gradient microstructure and strength are analyzed. Crack resistance tests with quenched and normalized flat rectangular specimens having different cut lengths loaded by three-point bending with acoustic emission measurements have been performed. The critical J-integral has been used as the crack resistance parameter of the material. Quenching with a fast moving water stream leads to gradient (along a specimen wall thickness) strengthening of steel due to highly refined gradient microstructure formation of the troostomartensite type. Quenching with a fast-moving water stream increases crack resistance Jc , of 20GL steel by a factor of ∼ 1.5. The fracture accrues gradually with the load in the normalized specimens while the initiated crack is hindered in the variable ductility layer and further arrested in the more ductile core in the quenched specimens.

  19. Role of ultrasonography with color-Doppler in the emergency diagnosis of acute penile fracture: a case report.

    PubMed

    Buyukkaya, Ramazan; Buyukkaya, Ayla; Ozturk, Beyhan; Kayıkçı, Ali; Yazgan, Ömer

    2014-03-01

    Penile fracture is the rupture of tunica albuginea, typically resulting from blunt trauma, intercourse, or penile manipulation. Diagnosis is made clinically. Ultrasound is not used frequently in diagnosis of penile fracture but it provides a fast, non-invasive alternative to more often used MRI and cavernography. We aimed to present diagnostic ultrasound and color Doppler images of a patient with acute penile fracture in conjunction with literature.

  20. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  1. Worm melt fracture and fast die build-up at high shear rates in extrusion blow molding of large drums

    NASA Astrophysics Data System (ADS)

    Inn, Yong Woo; Sukhadia, Ashish M.

    2017-05-01

    In the extrusion blow molding process of high density polyethylene (HDPE) for making of large size drums, string-like defects, which are referred to as worm melt fracture in the industry, are often observed on the extrudate surface. Such string-like defects in various shapes and sizes are observed in capillary extrusion at very high shear rates after the slip-stick transition. The HDPE resin with broader molecular weight distribution (MWD) exhibits a greater degree of worm melt fracture while the narrow MWD PE resin, which has higher slip velocity and a uniform slip layer, shows a lesser degree of worm melt fracture. It is hypothesized that the worm melt fracture is related to fast die build-up and cohesive slip layer, a failure within the polymer melts at an internal surface. If the cohesive slip layer at an internal surface emerges out from the die, it can be attached on the surface of extrudate as string-like defects, the worm melt fracture. The resin having more small chains and lower plateau modulus can be easier to have such an internal failure and consequently exhibit more "worm" defects.

  2. Evaluating the Effect of Minimizing Screws on Stabilization of Symphysis Mandibular Fracture by 3D Finite Element Analysis.

    PubMed

    Kharmanda, Ghias; Kharma, Mohamed-Yaser

    2017-06-01

    The objective of this work is to integrate structural optimization and reliability concepts into mini-plate fixation strategy used in symphysis mandibular fractures. The structural reliability levels are next estimated when considering a single failure mode and multiple failure modes. A 3-dimensional finite element model is developed in order to evaluate the ability of reducing the negative effect due to the stabilization of the fracture. Topology optimization process is considered in the conceptual design stage to predict possible fixation layouts. In the detailed design stage, suitable mini-plates are selected taking into account the resulting topology and different anatomical considerations. Several muscle forces are considered in order to obtain realistic predictions. Since some muscles can be cut or harmed during the surgery and cannot operate at its maximum capacity, there is a strong motivation to introduce the loading uncertainties in order to obtain reliable designs. The structural reliability is carried out for a single failure mode and multiple failure modes. The different results are validated with a clinical case of a male patient with symphysis fracture. In this case while use of the upper plate fixation with four holes, only two screws were applied to protect adjacent vital structure. This behavior does not affect the stability of the fracture. The proposed strategy to optimize bone plates leads to fewer complications and second surgeries, less patient discomfort, and shorter time of healing.

  3. Fast Reliability Assessing Method for Distribution Network with Distributed Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Chen, Fan; Huang, Shaoxiong; Ding, Jinjin; Ding, Jinjin; Gao, Bo; Xie, Yuguang; Wang, Xiaoming

    2018-01-01

    This paper proposes a fast reliability assessing method for distribution grid with distributed renewable energy generation. First, the Weibull distribution and the Beta distribution are used to describe the probability distribution characteristics of wind speed and solar irradiance respectively, and the models of wind farm, solar park and local load are built for reliability assessment. Then based on power system production cost simulation probability discretization and linearization power flow, a optimal power flow objected with minimum cost of conventional power generation is to be resolved. Thus a reliability assessment for distribution grid is implemented fast and accurately. The Loss Of Load Probability (LOLP) and Expected Energy Not Supplied (EENS) are selected as the reliability index, a simulation for IEEE RBTS BUS6 system in MATLAB indicates that the fast reliability assessing method calculates the reliability index much faster with the accuracy ensured when compared with Monte Carlo method.

  4. Interobserver reliability of the young-burgess and tile classification systems for fractures of the pelvic ring.

    PubMed

    Koo, Henry; Leveridge, Mike; Thompson, Charles; Zdero, Rad; Bhandari, Mohit; Kreder, Hans J; Stephen, David; McKee, Michael D; Schemitsch, Emil H

    2008-07-01

    The purpose of this study was to measure interobserver reliability of 2 classification systems of pelvic ring fractures and to determine whether computed tomography (CT) improves reliability. The reliability of several radiographic findings was also tested. Thirty patients taken from a database at a Level I trauma facility were reviewed. For each patient, 3 radiographs (AP pelvis, inlet, and outlet) and CT scans were available. Six different reviewers (pelvic and acetabular specialist, orthopaedic traumatologist, or orthopaedic trainee) classified the injury according to Young-Burgess and Tile classification systems after reviewing plain radiographs and then after CT scans. The Kappa coefficient was used to determine interobserver reliability of these classification systems before and after CT scan. For plain radiographs, overall Kappa values for the Young-Burgess and Tile classification systems were 0.72 and 0.30, respectively. For CT scan and plain radiographs, the overall Kappa values for the Young-Burgess and Tile classification systems were 0.63 and 0.33, respectively. The pelvis/acetabular surgeons demonstrated the highest level of agreement using both classification systems. For individual questions, the addition of CT did significantly improve reviewer interpretation of fracture stability. The pre-CT and post-CT Kappa values for fracture stability were 0.59 and 0.93, respectively. The CT scan can improve the reliability of assessment of pelvic stability because of its ability to identify anatomical features of injury. The Young-Burgess system may be optimal for the learning surgeon. The Tile classification system is more beneficial for specialists in pelvic and acetabular surgery.

  5. Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions

    NASA Astrophysics Data System (ADS)

    Yeh, Gour-Tsyh (George); Siegel, Malcolm D.; Li, Ming-Hsu

    2001-02-01

    The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.

  6. Reliability of a four-column classification for tibial plateau fractures.

    PubMed

    Martínez-Rondanelli, Alfredo; Escobar-González, Sara Sofía; Henao-Alzate, Alejandro; Martínez-Cano, Juan Pablo

    2017-09-01

    A four-column classification system offers a different way of evaluating tibial plateau fractures. The aim of this study is to compare the intra-observer and inter-observer reliability between four-column and classic classifications. This is a reliability study, which included patients presenting with tibial plateau fractures between January 2013 and September 2015 in a level-1 trauma centre. Four orthopaedic surgeons blindly classified each fracture according to four different classifications: AO, Schatzker, Duparc and four-column. Kappa, intra-observer and inter-observer concordance were calculated for the reliability analysis. Forty-nine patients were included. The mean age was 39 ± 14.2 years, with no gender predominance (men: 51%; women: 49%), and 67% of the fractures included at least one of the posterior columns. The intra-observer and inter-observer concordance were calculated for each classification: four-column (84%/79%), Schatzker (60%/71%), AO (50%/59%) and Duparc (48%/58%), with a statistically significant difference among them (p = 0.001/p = 0.003). Kappa coefficient for intr-aobserver and inter-observer evaluations: Schatzker 0.48/0.39, four-column 0.61/0.34, Duparc 0.37/0.23, and AO 0.34/0.11. The proposed four-column classification showed the highest intra and inter-observer agreement. When taking into account the agreement that occurs by chance, Schatzker classification showed the highest inter-observer kappa, but again the four-column had the highest intra-observer kappa value. The proposed classification is a more inclusive classification for the posteromedial and posterolateral fractures. We suggest, therefore, that it be used in addition to one of the classic classifications in order to better understand the fracture pattern, as it allows more attention to be paid to the posterior columns, it improves the surgical planning and allows the surgical approach to be chosen more accurately.

  7. Ottawa Ankle Rules and Subjective Surgeon Perception to Evaluate Radiograph Necessity Following Foot and Ankle Sprain

    PubMed Central

    Pires, RES; Pereira, AA; Abreu-e-Silva, GM; Labronici, PJ; Figueiredo, LB; Godoy-Santos, AL; Kfuri, M

    2014-01-01

    Background: Foot and ankle injuries are frequent in emergency departments. Although only a few patients with foot and ankle sprain present fractures and the fracture patterns are almost always simple, lack of fracture diagnosis can lead to poor functional outcomes. Aim: The present study aims to evaluate the reliability of the Ottawa ankle rules and the orthopedic surgeon subjective perception to assess foot and ankle fractures after sprains. Subjects and Methods: A cross-sectional study was conducted from July 2012 to December 2012. Ethical approval was granted. Two hundred seventy-four adult patients admitted to the emergency department with foot and/or ankle sprain were evaluated by an orthopedic surgeon who completed a questionnaire prior to radiographic assessment. The Ottawa ankle rules and subjective perception of foot and/or ankle fractures were evaluated on the questionnaire. Results: Thirteen percent (36/274) patients presented fracture. Orthopedic surgeon subjective analysis showed 55.6% sensitivity, 90.1% specificity, 46.5% positive predictive value and 92.9% negative predictive value. The general orthopedic surgeon opinion accuracy was 85.4%. The Ottawa ankle rules presented 97.2% sensitivity, 7.8% specificity, 13.9% positive predictive value, 95% negative predictive value and 19.9% accuracy respectively. Weight-bearing inability was the Ottawa ankle rule item that presented the highest reliability, 69.4% sensitivity, 61.6% specificity, 63.1% accuracy, 21.9% positive predictive value and 93% negative predictive value respectively. Conclusion: The Ottawa ankle rules showed high reliability for deciding when to take radiographs in foot and/or ankle sprains. Weight-bearing inability was the most important isolated item to predict fracture presence. Orthopedic surgeon subjective analysis to predict fracture possibility showed a high specificity rate, representing a confident method to exclude unnecessary radiographic exams. PMID:24971221

  8. Reliable classification of children’s fractures according to the comprehensive classification of long bone fractures by Müller

    PubMed Central

    2013-01-01

    Background and purpose Guidelines for fracture treatment and evaluation require a valid classification. Classifications especially designed for children are available, but they might lead to reduced accuracy, considering the relative infrequency of childhood fractures in a general orthopedic department. We tested the reliability and accuracy of the Müller classification when used for long bone fractures in children. Methods We included all long bone fractures in children aged < 16 years who were treated in 2008 at the surgical ward of Stavanger University Hospital. 20 surgeons recorded 232 fractures. Datasets were generated for intra- and inter-rater analysis, as well as a reference dataset for accuracy calculations. We present proportion of agreement (PA) and kappa (K) statistics. Results For intra-rater analysis, overall agreement (κ) was 0.75 (95% CI: 0.68–0.81) and PA was 79%. For inter-rater assessment, K was 0.71 (95% CI: 0.61–0.80) and PA was 77%. Accuracy was estimated: κ = 0.72 (95% CI: 0.64–0.79) and PA = 76%. Interpretation The Müller classification (slightly adjusted for pediatric fractures) showed substantial to excellent accuracy among general orthopedic surgeons when applied to long bone fractures in children. However, separate knowledge about the child-specific fracture pattern, the maturity of the bone, and the degree of displacement must be considered when the treatment and the prognosis of the fractures are evaluated. PMID:23245225

  9. Effect of Inflammatory and Noninflammatory Stress on Beta-Hydroxybutyrate and Free Fatty Acids in Rat Blood.

    DTIC Science & Technology

    fasting plus screen-restraint and fasting plus femoral fracture. Inflammatory stresses caused a marked inhibition of the normal fasting-induced ketosis ...and a reduction in the level of circulating free fatty acids. Noninflammatory stresses caused no inhibition of the normal fasting-induced ketosis but did cause a reduction in the level of circulating free fatty acids. (Author)

  10. The Functional Arm Scale for Throwers (FAST)-Part II: Reliability and Validity of an Upper Extremity Region-Specific and Population-Specific Patient-Reported Outcome Scale for Throwing Athletes.

    PubMed

    Huxel Bliven, Kellie C; Snyder Valier, Alison R; Bay, R Curtis; Sauers, Eric L

    2017-04-01

    The Functional Arm Scale for Throwers (FAST) is an upper extremity (UE) region-specific and population-specific patient-reported outcome (PRO) scale developed to measure health-related quality of life in throwers with UE injuries. Stages I and II, described in a companion paper, of FAST development produced a 22-item scale and a 9-item pitcher module. Stage III of scale development, establishing reliability and validity of the FAST, is reported herein. To describe stage III of scale development: reliability and validity of the FAST. Cohort study (diagnosis); Level of evidence, 2. Data from throwing athletes collected over 5 studies were pooled to assess reliability and validity of the FAST. Reliability was estimated using FAST scores from 162 throwing athletes who were injured (n = 23) and uninjured (n = 139). Concurrent validity was estimated using FAST scores and Disabilities of the Arm, Shoulder, and Hand (DASH) and Kerlan-Jobe Orthopaedic Clinic (KJOC) scores from 106 healthy, uninjured throwing athletes. Known-groups validity was estimated using FAST scores from 557 throwing athletes who were injured (n = 142) and uninjured (n = 415). Reliability and validity were assessed using intraclass correlation coefficients (ICCs), and measurement error was assessed using standard error of measurement (SEM) and minimum detectable change (MDC). Receiver operating characteristic curves and sensitivity/specificity values were estimated for known-groups validity. Data from a separate group (n = 18) of postsurgical and nonoperative/conservative rehabilitation patients were analyzed to report responsiveness of the FAST. The FAST total, subscales, and pitcher module scores demonstrated excellent test-retest reliability (ICC, 0.91-0.98). The SEM 95 and MDC 95 for the FAST total score were 3.8 and 10.5 points, respectively. The SEM 95 and MDC 95 for the pitcher module score were 5.7 and 15.7 points, respectively. The FAST scores showed acceptable correlation with DASH (ICC, 0.49-0.82) and KJOC (ICC, 0.62-0.81) scores. The FAST total score classified 85.1% of players into the correct injury group. For predicting UE injury status, a FAST total cutoff score of 10.0 out of 100.0 was 91% sensitive and 75% specific, and a pitcher module score of 10.0 out of 100.0 was 87% sensitive and 78% specific. The FAST total score demonstrated responsiveness on several indices between intake and discharge time points. The FAST is a reliable, valid, and responsive UE region-specific and population-specific PRO scale for measuring patient-reported health care outcomes in throwing athletes with injury.

  11. The Functional Arm Scale for Throwers (FAST)—Part II: Reliability and Validity of an Upper Extremity Region-Specific and Population-Specific Patient-Reported Outcome Scale for Throwing Athletes

    PubMed Central

    Huxel Bliven, Kellie C.; Snyder Valier, Alison R.; Bay, R. Curtis; Sauers, Eric L.

    2017-01-01

    Background: The Functional Arm Scale for Throwers (FAST) is an upper extremity (UE) region-specific and population-specific patient-reported outcome (PRO) scale developed to measure health-related quality of life in throwers with UE injuries. Stages I and II, described in a companion paper, of FAST development produced a 22-item scale and a 9-item pitcher module. Stage III of scale development, establishing reliability and validity of the FAST, is reported herein. Purpose: To describe stage III of scale development: reliability and validity of the FAST. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Data from throwing athletes collected over 5 studies were pooled to assess reliability and validity of the FAST. Reliability was estimated using FAST scores from 162 throwing athletes who were injured (n = 23) and uninjured (n = 139). Concurrent validity was estimated using FAST scores and Disabilities of the Arm, Shoulder, and Hand (DASH) and Kerlan-Jobe Orthopaedic Clinic (KJOC) scores from 106 healthy, uninjured throwing athletes. Known-groups validity was estimated using FAST scores from 557 throwing athletes who were injured (n = 142) and uninjured (n = 415). Reliability and validity were assessed using intraclass correlation coefficients (ICCs), and measurement error was assessed using standard error of measurement (SEM) and minimum detectable change (MDC). Receiver operating characteristic curves and sensitivity/specificity values were estimated for known-groups validity. Data from a separate group (n = 18) of postsurgical and nonoperative/conservative rehabilitation patients were analyzed to report responsiveness of the FAST. Results: The FAST total, subscales, and pitcher module scores demonstrated excellent test-retest reliability (ICC, 0.91-0.98). The SEM95 and MDC95 for the FAST total score were 3.8 and 10.5 points, respectively. The SEM95 and MDC95 for the pitcher module score were 5.7 and 15.7 points, respectively. The FAST scores showed acceptable correlation with DASH (ICC, 0.49-0.82) and KJOC (ICC, 0.62-0.81) scores. The FAST total score classified 85.1% of players into the correct injury group. For predicting UE injury status, a FAST total cutoff score of 10.0 out of 100.0 was 91% sensitive and 75% specific, and a pitcher module score of 10.0 out of 100.0 was 87% sensitive and 78% specific. The FAST total score demonstrated responsiveness on several indices between intake and discharge time points. Conclusion: The FAST is a reliable, valid, and responsive UE region-specific and population-specific PRO scale for measuring patient-reported health care outcomes in throwing athletes with injury. PMID:28451614

  12. Finite element analysis of a bone healing model: 1-year follow-up after internal fixation surgery for femoral fracture.

    PubMed

    Jiang-Jun, Zhou; Min, Zhao; Ya-Bo, Yan; Wei, Lei; Ren-Fa, Lv; Zhi-Yu, Zhu; Rong-Jian, Chen; Wei-Tao, Yu; Cheng-Fei, Du

    2014-03-01

    Finite element analysis was used to compare preoperative and postoperative stress distribution of a bone healing model of femur fracture, to identify whether broken ends of fractured bone would break or not after fixation dislodgement one year after intramedullary nailing. Method s: Using fast, personalized imaging, bone healing models of femur fracture were constructed based on data from multi-slice spiral computed tomography using Mimics, Geomagic Studio, and Abaqus software packages. The intramedullary pin was removed by Boolean operations before fixation was dislodged. Loads were applied on each model to simulate a person standing on one leg. The von Mises stress distribution, maximum stress, and its location was observed. Results : According to 10 kinds of display groups based on material assignment, the nodes of maximum and minimum von Mises stress were the same before and after dislodgement, and all nodes of maximum von Mises stress were outside the fracture line. The maximum von Mises stress node was situated at the bottom quarter of the femur. The von Mises stress distribution was identical before and after surgery. Conclusion : Fast, personalized model establishment can simulate fixation dislodgement before operation, and personalized finite element analysis was performed to successfully predict whether nail dislodgement would disrupt femur fracture or not.

  13. The interrater and test-retest reliability of the Home Falls and Accidents Screening Tool (HOME FAST) in Malaysia: Using raters with a range of professional backgrounds.

    PubMed

    Romli, Muhammad Hibatullah; Mackenzie, Lynette; Lovarini, Meryl; Tan, Maw Pin; Clemson, Lindy

    2017-06-01

    Falls can be a devastating issue for older people living in the community, including those living in Malaysia. Health professionals and community members have a responsibility to ensure that older people have a safe home environment to reduce the risk of falls. Using a standardised screening tool is beneficial to intervene early with this group. The Home Falls and Accidents Screening Tool (HOME FAST) should be considered for this purpose; however, its use in Malaysia has not been studied. Therefore, the aim of this study was to evaluate the interrater and test-retest reliability of the HOME FAST with multiple professionals in the Malaysian context. A cross-sectional design was used to evaluate interrater reliability where the HOME FAST was used simultaneously in the homes of older people by 2 raters and a prospective design was used to evaluate test-retest reliability with a separate group of older people at different times in their homes. Both studies took place in an urban area of Kuala Lumpur. Professionals from 9 professional backgrounds participated as raters in this study, and a group of 51 community older people were recruited for the interrater reliability study and another group of 30 for the test-retest reliability study. The overall agreement was moderate for interrater reliability and good for test-retest reliability. The HOME FAST was consistently rated by different professionals, and no bias was found among the multiple raters. The HOME FAST can be used with confidence by a variety of professionals across different settings. The HOME FAST can become a universal tool to screen for home hazards related to falls. © 2017 John Wiley & Sons, Ltd.

  14. The new intra-articular calcaneal fracture classification system in term of sustentacular fragment configurations and incorporation of posterior calcaneal facet fractures with fracture components of the calcaneal body.

    PubMed

    Harnroongroj, Thossart; Harnroongroj, Thos; Suntharapa, Thongchai; Arunakul, Marut

    2016-10-01

    The aim of this study was to develop a new calcaneal fracture classification system which will consider sustentacular fragment configuration and relation of posterior calcaneal facet to calcaneal body. The new classification system used sustentacular fragment configuration and relation of posterior calcaneal facet fracture with fracture components of calcaneal body as key aspects of main types and subtypes. Between 2000 and 2014, 126 intraarticular calcaneal fractures were classified according to the new classification system by using computed tomography images. The new classification system was studied in term of reliability, correlation to choices of treatment, implant fixation and quality of fracture reduction. Types of sustentacular fragment comprised type A, B and C. Type A sustentacular fragment included sustentacular tali containing middle calcaneal facet. In Type B and C fractures sustentacular fragment included medial aspect and entire posterior calcaneal facet as a single unit, respectively. The fractures with type A, B and C sustentacular fragments were classified as main type A, B and C intra-articular calcaneal fractures. The main type A and B comprised 4 subtypes. Subtypes A1, A3, B1, and B3 associated with avulsion and bending fragments of calcaneal body. Subtype A2, B2, and B4 associated with burst calcaneal body. Subtype B4 was not found in the study. Main type C had no subtype and associated with burst calcaneal body. The data showed good reliability. The study showed that our new intra-articular calcaneal fracture classification system correlates to choices of treatment, implant fixation and quality of fracture reduction. Level IV, Study of Diagnostic Test. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  15. Methods and Reliability of Radiographic Vertebral Fracture Detection in Older Men: The Osteoporotic Fractures in Men Study

    PubMed Central

    Cawthon, Peggy M.; Haslam, Jane; Fullman, Robin; Peters, Katherine W.; Black, Dennis; Ensrud, Kristine E.; Cummings, Steven R.; Orwoll, Eric S.; Barrett-Connor, Elizabeth; Marshall, Lynn; Steiger, Peter; Schousboe, John T.

    2014-01-01

    We describe the methods and reliability of radiographic vertebral fracture assessment in MrOS, a cohort of community dwelling men aged ≥65 yrs. Lateral spine radiographs were obtained at Visit 1 (2000-2) and 4.6 years later (Visit 2). Using a workflow tool (SpineAnalyzer™, Optasia Medical), a physician reader completed semi-quantitative (SQ) scoring. Prior to SQ scoring, technicians performed “triage” to reduce physician reader workload, whereby clearly normal spine images were eliminated from SQ scoring with all levels assumed to be SQ=0 (no fracture, “triage negative”); spine images with any possible fracture or abnormality were passed to the physician reader as “triage positive” images. Using a quality assurance sample of images (n=20 participants; 8 with baseline only and 12 with baseline and follow-up images) read multiple times, we calculated intra-reader kappa statistics and percent agreement for SQ scores. A subset of 494 participants' images were read regardless of triage classification to calculate the specificity and sensitivity of triage. Technically adequate images were available for 5958 of 5994 participants at Visit 1, and 4399 of 4423 participants at Visit 2. Triage identified 3215 (53.9%) participants with radiographs that required further evaluation by the physician reader. For prevalent fractures at Visit 1 (SQ≥1), intra-reader kappa statistics ranged from 0.79-0.92; percent agreement ranged from 96.9%-98.9%; sensitivity of the triage was 96.8% and specificity of triage was 46.3%. In conclusion, SQ scoring had excellent intra-rater reliability in our study. The triage process reduces expert reader workload without hindering the ability to identify vertebral fractures. PMID:25003811

  16. Fast Physically Accurate Rendering of Multimodal Signatures of Distributed Fracture in Heterogeneous Materials.

    PubMed

    Visell, Yon

    2015-04-01

    This paper proposes a fast, physically accurate method for synthesizing multimodal, acoustic and haptic, signatures of distributed fracture in quasi-brittle heterogeneous materials, such as wood, granular media, or other fiber composites. Fracture processes in these materials are challenging to simulate with existing methods, due to the prevalence of large numbers of disordered, quasi-random spatial degrees of freedom, representing the complex physical state of a sample over the geometric volume of interest. Here, I develop an algorithm for simulating such processes, building on a class of statistical lattice models of fracture that have been widely investigated in the physics literature. This algorithm is enabled through a recently published mathematical construction based on the inverse transform method of random number sampling. It yields a purely time domain stochastic jump process representing stress fluctuations in the medium. The latter can be readily extended by a mean field approximation that captures the averaged constitutive (stress-strain) behavior of the material. Numerical simulations and interactive examples demonstrate the ability of these algorithms to generate physically plausible acoustic and haptic signatures of fracture in complex, natural materials interactively at audio sampling rates.

  17. CT-scout based, semi-automated vertebral morphometry after digital image enhancement.

    PubMed

    Glinkowski, Wojciech M; Narloch, Jerzy

    2017-09-01

    Radiographic diagnosis of osteoporotic vertebral fracture is necessary to reduce its substantial associated morbidity. Computed tomography (CT) scout has recently been demonstrated as a reliable technique for vertebral fracture diagnosis. Software assistance may help to overcome some limitations of that diagnostics. We aimed to evaluate whether digital image enhancement improved the capacity of one of the existing software to detect fractures semi-automatically. CT scanograms of patients suffering from osteoporosis, with or without vertebral fractures were analyzed. The original set of CT scanograms were triplicated and digitally modified to improve edge detection using three different techniques: SHARPENING, UNSHARP MASKING, and CONVOLUTION. The manual morphometric analysis identified 1485 vertebrae, 200 of which were classified as fractured. Unadjusted morphometry (AUTOMATED with no digital enhancement) found 63 fractures, 33 of which were true positive (i.e., it correctly identified 52% of the fractures); SHARPENING detected 57 fractures (30 true positives, 53%); UNSHARP MASKING yielded 30 (13 true positives, 43%); and CONVOLUTION found 24 fractures (9 true positives, 38%). The intra-reader reliability for height ratios did not significantly improve with image enhancement (kappa ranged 0.22-0.41 for adjusted measurements and 0.16-0.38 for unadjusted). Similarly, the inter-reader agreement for prevalent fractures did not significantly improve with image enhancement (kappa 0.29-0.56 and -0.01 to 0.23 for adjusted and unadjusted measurements, respectively). Our results suggest that digital image enhancement does not improve software-assisted vertebral fracture detection by CT scout. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

    NASA Astrophysics Data System (ADS)

    Suppachoknirun, Theerapat; Tutuncu, Azra N.

    2017-12-01

    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize the cumulative production and for the three wells individually. Significant reduction in the production rate in early production times is anticipated in tight reservoirs regardless of the fracturing techniques implemented. The simulations conducted using the alternating fracturing technique led to more oil production than when zipper fracturing was used for a 20-year production period. Yet, due to the decline experienced, the differences in cumulative production get smaller, and the alternating fracturing is not practically implementable while field application of zipper fracturing technique is more practical and widely used.

  19. CCARES: A computer algorithm for the reliability analysis of laminated CMC components

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1993-01-01

    Structural components produced from laminated CMC (ceramic matrix composite) materials are being considered for a broad range of aerospace applications that include various structural components for the national aerospace plane, the space shuttle main engine, and advanced gas turbines. Specifically, these applications include segmented engine liners, small missile engine turbine rotors, and exhaust nozzles. Use of these materials allows for improvements in fuel efficiency due to increased engine temperatures and pressures, which in turn generate more power and thrust. Furthermore, this class of materials offers significant potential for raising the thrust-to-weight ratio of gas turbine engines by tailoring directions of high specific reliability. The emerging composite systems, particularly those with silicon nitride or silicon carbide matrix, can compete with metals in many demanding applications. Laminated CMC prototypes have already demonstrated functional capabilities at temperatures approaching 1400 C, which is well beyond the operational limits of most metallic materials. Laminated CMC material systems have several mechanical characteristics which must be carefully considered in the design process. Test bed software programs are needed that incorporate stochastic design concepts that are user friendly, computationally efficient, and have flexible architectures that readily incorporate changes in design philosophy. The CCARES (Composite Ceramics Analysis and Reliability Evaluation of Structures) program is representative of an effort to fill this need. CCARES is a public domain computer algorithm, coupled to a general purpose finite element program, which predicts the fast fracture reliability of a structural component under multiaxial loading conditions.

  20. Fracture mechanics methodology: Evaluation of structural components integrity

    NASA Astrophysics Data System (ADS)

    Sih, G. C.; de Oliveira Faria, L.

    1984-09-01

    The application of fracture mechanics to structural-design problems is discussed in lectures presented in the AGARD Fracture Mechanics Methodology course held in Lisbon, Portugal, in June 1981. The emphasis is on aeronautical design, and chapters are included on fatigue-life prediction for metals and composites, the fracture mechanics of engineering structural components, failure mechanics and damage evaluation of structural components, flaw-acceptance methods, and reliability in probabilistic design. Graphs, diagrams, drawings, and photographs are provided.

  1. Reliability of internal oblique elbow radiographs for measuring displacement of medial epicondyle humerus fractures: a cadaveric study.

    PubMed

    Gottschalk, Hilton P; Bastrom, Tracey P; Edmonds, Eric W

    2013-01-01

    Standard elbow radiographs (AP and lateral views) are not accurate enough to measure true displacement of medial epicondyle fractures of the humerus. The amount of perceived displacement has been used to determine treatment options. This study assesses the utility of internal oblique radiographs for measurement of true displacement in these fractures. A medial epicondyle fracture was created in a cadaveric specimen. Displacement of the fragment (mm) was set at 5, 10, and 15 in line with the vector of the flexor pronator mass. The fragment was sutured temporarily in place. Radiographs were obtained at 0 (AP), 15, 30, 45, 60, 75, and 90 degrees (lateral) of internal rotation, with the elbow in set positions of flexion. This was done with and without radio-opaque markers placed on the fragment and fracture bed. The 45 and 60 degrees internal oblique radiographs were then presented to 5 separate reviewers (of different levels of training) to evaluate intraobserver and interobserver agreement. Change in elbow position did not affect the perceived displacement (P=0.82) with excellent intraobserver reliability (intraclass correlation coefficient range, 0.979 to 0.988) and interobserver agreement of 0.953. The intraclass correlation coefficient for intraobserver reliability on 45 degrees internal oblique films for all groups ranged from 0.985 to 0.998, with interobserver agreement of 0.953. For predicting displacement, the observers were 60% accurate in predicting the true displacement on the 45 degrees internal oblique films and only 35% accurate using the 60 degrees internal oblique view. Standardizing to a 45 degrees internal oblique radiograph of the elbow (regardless of elbow flexion) can augment the treating surgeon's ability to determine true displacement. At this degree of rotation, the measured number can be multiplied by 1.4 to better estimate displacement. The addition of a 45 degrees internal oblique radiograph in medial humeral epicondyle fractures has good intraobserver and interobserver reliability to more accurately estimate the true displacement of these fractures. Diagnostic study, Level II (Development of diagnostic study with universally applied reference "gold" standard).

  2. Mechanical and fracture behavior of veneer-framework composites for all-ceramic dental bridges.

    PubMed

    Studart, André R; Filser, Frank; Kocher, Peter; Lüthy, Heinz; Gauckler, Ludwig J

    2007-01-01

    High-strength ceramics are required in dental posterior restorations in order to withstand the excessive tensile stresses that occur during mastication. The aim of this study was to investigate the fracture behavior and the fast-fracture mechanical strength of three veneer-framework composites (Empress 2/IPS Eris, TZP/Cercon S and Inceram-Zirconia/Vita VM7) for all-ceramic dental bridges. The load bearing capacity of the veneer-framework composites were evaluated using a bending mechanical apparatus. The stress distribution through the rectangular-shaped layered samples was assessed using simple beam calculations and used to estimate the fracture strength of the veneer layer. Optical microscopy of fractured specimens was employed to determine the origin of cracks and the fracture mode. Under fast fracture conditions, cracks were observed to initiate on, or close to, the veneer outer surface and propagate towards the inner framework material. Crack deflection occurred at the veneer-framework interface of composites containing a tough framework material (TZP/Cercon S and Inceram-Zirconia/Vita VM7), as opposed to the straight propagation observed in the case of weaker frameworks (Empress 2/IPS Eris). The mechanical strength of dental composites containing a weak framework (K(IC)<3 MPam(1/2)) is ultimately determined by the low fracture strength of the veneer layer, since no crack arresting occurs at the veneer-framework interface. Therefore, high-toughness ceramics (K(IC)>5 MPam(1/2)) should be used as framework materials of posterior all-ceramic bridges, so that cracks propagating from the veneer layer do not lead to a premature failure of the prosthesis.

  3. Reliability improvement of 1 mil aluminum wire bonds for semiconductors, technical performance summary

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The reliability of semiconductor devices as influenced by the reliability of wire bonds used in the assembly of the devices is investigated. The specific type of failure dealt with involves fracture of wire bonds as a result of repeated flexure of the wire at the heel of the bond when the devices are operated in an on-off mode. The mechanism of failure is one of induced fracture of the wire. To improve the reliability of a chosen transistor, one-mil diameter wires of aluminum with various alloy additions were studied using an accelerated fatigue testing machine. In addition, the electroprobe was used to study the metallurgy of the wires as to microstructure and kinetics of the growth of insoluble phases. Thermocompression and ultrasonic bonding techniques were also investigated.

  4. Multiple fracturing experiments: propellant and borehole considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuderman, J F

    1982-01-01

    The technology for multiple fracturing of a wellbore, using progressively burning propellants, is being developed to enhance natural gas recovery. Multiple fracturing appears especially attractive for stimulating naturally fractured reservoirs such as Devonian shales where it is expected to effectively intersect existing fractures and connect them to a wellbore. Previous experiments and modeling efforts defined pressure risetimes required for multiple fracturing as a function of borehole diameter, but identified only a weak dependence on peak pressure attained. Typically, from four to eight equally spaced major fractures occur as a function of pressure risetime and in situ stress orientation. The presentmore » experiments address propellant and rock response considerations required to achieve the desired pressure risetimes for reliable multiple fracturing.« less

  5. Interlocking intramedullary nailing in distal tibial fractures.

    PubMed

    Tyllianakis, M; Megas, P; Giannikas, D; Lambiris, E

    2000-08-01

    This retrospective study examined the results of non-pilon fractures of the distal part of the tibia treated with interlocking intramedullary nailing. Seventy-three patients with equal numbers of fractures treated surgically between 1990 and 1998 were reviewed. Mean patient age was 39.8 years, and follow-up averaged 34.2 months. The AO fracture classification system was used. Concomitant fractures of the lateral malleolus were fixed. All but three fractures achieved union within 4.2 months on average. Satisfactory or excellent results were obtained in 86.3% of patients. These results indicate interlocking intramedullary nailing is a reliable method of treatment for these fractures and is characterized by high rates of union and a low incidence of complications.

  6. Validity and reliability of the Miller Forensic Assessment of Symptoms Test (M-FAST): comment on Veazey, et al. (2005).

    PubMed

    Charter, Richard A

    2005-12-01

    Confidence intervals are provided for the validity coefficients calculated by Veazey, et al. for the M-FAST. Two coefficients alpha are also presented along with suggestions for different approaches to calculating the M-FAST internal consistency reliability.

  7. Electronics reliability fracture mechanics. Volume 2: Fracture mechanics

    NASA Astrophysics Data System (ADS)

    Kallis, J.; Duncan, L.; Buechler, D.; Backes, P.; Sandkulla, D.

    1992-05-01

    This is the second of two volumes. The other volume (WL-TR-92-3015) is 'Causes of Failures of Shop Replaceable Units and Hybrid Microcircuits.' The objective of the Electronics Reliability Fracture Mechanics (ERFM) program was to develop and demonstrate a life prediction technique for electronic assemblies, when subjected to environmental stresses of vibration and thermal cycling, based upon the mechanical properties of the materials and packaging configurations which make up an electronic system. The application of fracture mechanics to microscale phenomena in electronic assemblies was a pioneering research effort. The small scale made the experiments very difficult; for example, the 1-mil-diameter bond wires in microelectronic devices are 1/3 the diameter of a human hair. A number of issues had to be resolved to determine whether a fracture mechanics modelling approach is correct for the selected failures; specifically, the following two issues had to be resolved: What fraction of the lifetime is spent in crack initiation? Are macro fracture mechanics techniques, used in large structures such as bridges, applicable to the tiny structures in electronic equipment? The following structural failure mechanisms were selected for modelling: bondwire fracture from mechanical cycling; bondwire fracture from thermal (power) cycling; plated through hole (PTH) fracture from thermal cycling. The bondwire fracture test specimens were A1-1 percent Si wires, representative of wires used in the parts in the modules selected for detailed investigation in this program (see Vol. 1 of this report); 1-mil-diameter wires were tested in this program. The PTH test specimens were sections of 14-layer printed wiring boards of the type used.

  8. Novel Anterior Plating Technique for Patella Fracture Fixation.

    PubMed

    Siljander, Matthew P; Vara, Alexander D; Koueiter, Denise M; Wiater, Brett P; Wiater, Patrick J

    2017-07-01

    Patella fracture fixation remains a significant challenge for orthopedic surgeons. Although tension band fixation allows for reliable osseous union, especially in simple fracture patterns, it still presents several problems. Plate fixation of patella fractures is a method that allows for more rigid stabilization and earlier mobilization. At the authors' level 1 trauma center, one fellowship-trained trauma surgeon has transitioned to using a novel anterior, low-profile mesh plate construct for all types of patella fractures. This construct allows for stable fixation, osseous union, and neutralization of the inferior pole for even the most comminuted of patella fractures. [Orthopedics. 2017; 40(4):e739-e743.]. Copyright 2017, SLACK Incorporated.

  9. Electronics reliability fracture mechanics. Volume 1: Causes of failures of shop replaceable units and hybrid microcircuits

    NASA Astrophysics Data System (ADS)

    Kallis, J.; Buechler, D.; Erickson, J.; Westerhuyzen, D. V.; Strokes, R.

    1992-05-01

    This is the first of two volumes. The other volume (WL-TR-91-3119) is 'Fracture Mechanics'. The objective of the Electronics Reliability Fracture Mechanics (ERFM) program was to develop and demonstrate a life prediction technique for electronic assemblies, when subjected to environmental stress of vibration and thermal cycling, based upon the mechanical properties of the materials and packaging configurations which make up an electronic system. A detailed investigation was performed of the following two shop replaceable units (SRUs): Timing and Control Module (P/N 3562102) and Linear Regulator Module (P/N 3569800). The SRUs are in the Programmable Signal Processor (3137042) Line Replaceable Unit (LRU) of the Hughes AN/APG-63 Radar for the F-15 Aircraft.

  10. Reliability of the Robinson classification for displaced comminuted midshaft clavicular fractures.

    PubMed

    Stegeman, Sylvia A; Fernandes, Nicole C; Krijnen, Pieta; Schipper, Inger B

    2015-01-01

    This study aimed to assess the reliability of the Robinson classification for displaced comminuted midshaft fractures. A total of 102 surgeons and 52 radiologists classified 15 displaced comminuted midshaft clavicular fractures on anteroposterior (AP) and 30-degree caudocephalad radiographs twice. For both surgeons and radiologists, inter-observer and intra-observer agreement significantly improved after showing the 30-degree caudocephalad view in addition to the AP view. Radiologists had significantly higher inter- and intra-observer agreement than surgeons after judging both radiographs (κmultirater of 0.81 vs. 0.56; κintra-observer of 0.73 vs. 0.44). We advise to use two-plane radiography and to routinely incorporate the Robinson classification in the radiology reports. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Volcanic conduit failure as a trigger to magma fragmentation

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Benson, P. M.; Heap, M. J.; Flaws, A.; Hess, K.-U.; Dingwell, D. B.

    2012-01-01

    In the assessment of volcanic risk, it is often assumed that magma ascending at a slow rate will erupt effusively, whereas magma ascending at fast rate will lead to an explosive eruption. Mechanistically viewed, this assessment is supported by the notion that the viscoelastic nature of magma (i.e., the ability of magma to relax at an applied strain rate), linked via the gradient of flow pressure (related to discharge rate), controls the eruption style. In such an analysis, the physical interactions between the magma and the conduit wall are commonly, to a first order, neglected. Yet, during ascent, magma must force its way through the volcanic edifice/structure, whose presence and form may greatly affect the stress field through which the magma is trying to ascend. Here, we demonstrate that fracturing of the conduit wall via flow pressure releases an elastic shock resulting in fracturing of the viscous magma itself. We find that magma fragmentation occurred at strain rates seven orders of magnitude slower than theoretically anticipated from the applied axial strain rate. Our conclusion, that the discharge rate cannot provide a reliable indication of ascending magma rheology without knowledge of conduit wall stability, has important ramifications for volcanic hazard assessment. New numerical simulations are now needed in order to integrate magma/conduit interaction into eruption models.

  12. Auckland City Hospital's ortho-geriatric service: an audit of patients aged over 65 with fractured neck of femur.

    PubMed

    Fergus, Lucy; Cutfield, Greer; Harris, Roger

    2011-06-24

    The process of care of older patients with fractured neck of femur at Auckland City Hospital has recently changed with selected patients "fast-tracked" as soon as possible postoperatively to a specialised Older People's Health (OPH) ward. The aims of this study were: to evaluate patient characteristics; to analyse process of care; to compare outcomes in those "fast-tracked" patients with those receiving usual care; and to compare this information with previous data from Auckland City Hospital and other centres in New Zealand. Prospective case record audit of patients with fractured neck of femur aged 65 years and over admitted under Orthopaedics over a 4-month period. 115 patients were audited; mean age was 84 years, 77% were female. Inpatient mortality was 5%. Twenty-four percent of patients had surgery within 24 hours of admission. Of those who did not have surgery within 24 hours, 39% were awaiting operating theatre availability. Median overall length of stay (LOS) was 27 days. Eighty-four percent of patients were transferred to Older Peoples Health. Considering all patients, 70% of those living at home pre-fracture returned home on discharge. However, only 26% of those in Rest Home returned to Rest Home. Overall, 35% of patients were discharged to a higher level of care. Forty-four percent of the group were able to walk unaided prior to hip fracture, but only 1% on discharge. Forty-three patients were "fast-tracked" to Older Peoples Health. Their median overall LOS was 23 days compared to 28 days for those receiving usual care. This was due to the shorter time in Orthopaedics. Thirty-three percent of this group went to a higher level of care on discharge compared to 35% in the group that received usual care. Many patients experience a delay to surgery for non-medical reasons. The percentage transferred to Older Peoples Health is high. Fast-tracking to Older Peoples Health shortens overall length of stay due to fewer days in Orthopaedics. Many patients require a higher level of care after hip fracture, particularly if already resident in Rest Home. Demographics and inpatient mortality are comparable, but total length of stay is longer than similar New Zealand studies due to a longer length of stay in Older Peoples Health. Review of previous data from Auckland City Hospital and from other New Zealand centres shows significant variability in process of care for older patients with hip fracture.

  13. Quantitative ultrasound and dual-energy X-ray absorptiometry in the prediction of fragility fracture in men.

    PubMed

    Gonnelli, Stefano; Cepollaro, Chiara; Gennari, Luigi; Montagnani, Andrea; Caffarelli, Carla; Merlotti, Daniela; Rossi, Stefania; Cadirni, Alice; Nuti, Ranuccio

    2005-08-01

    Fragility fractures in men represent a major health problem, and this prompts a necessity for reliable tools for the identification of men at risk of fracture. In order to assess the ability of dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) in the prediction of fracture risk in men and whether their combination might be useful in a clinical setting, we studied 401 men (age range 45-82 years, mean 60.3+/-12.5), of whom 133 had osteoporotic fractures and 268 did not. In all subjects we measured bone mineral density at the lumbar spine (BMD-LS) and at the femur, calculating thereafter the standard femoral subregions: neck (BMD-FN), total hip (BMD-T), trochanter (BMD-TR), intertrochanter (BMD-ITR), and Ward's triangle (BMD-W), by DXA. We also performed ultrasound parameters at the calcaneus: speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness, by Achilles plus, and at the phalanxes: amplitude dependent speed of sound (AD-SoS) and the parameters of the graphic trace: bone transmission time (BTT), fast wave amplitude (FWA), signal dynamic (SDy) and ultrasound bone profile index (UBPI), by Bone Profiler. All DXA and QUS parameters, apart from FWA, were significantly (P<0.001) lower in patients with a history of fracture. BMD at the proximal femur showed the best ability in discriminating men with or without fractures. QUS at the heel showed discriminatory ability significantly better than QUS at the fingers. By logistic regression analysis, adjusted for age and BMI, BMD-T showed the best association with fragility fracture [odds ratio (OR)=3.43, 95% confidence interval (CI)=2.47-4.77]. Among QUS parameters, the highest value of the OR was shown by stiffness (OR=3.18, CI=2.27-4.48). FWA and SDy were not associated with fragility fractures in men. If DXA and QUS were combined, the prediction of the OR of fragility fracture events in men increases; in fact Stiffness was able to increase the OR when added to BMD-LS (OR=5.44, CI=3.16-10.13) and BMD-T (OR=6.08, CI=2.63-14.27). SOS and BUA showed a similar pattern. AD-SoS improved the prediction of fracture only when combined with BMD-LS (OR=4.36, CI=1.99-9.57). If BMD-LS and BMD-FN or BMD-T were combined, the value of the OR increases (OR=4.59, CI=2.27-9.25 and OR=4.68, CI=2.24-9.76), respectively. Our study supports the effectiveness of QUS in the identification of osteoporotic fractures in men. QUS seems to play an independent and complementary role, with respect to DXA, in order to enhance the power for predicting osteoporotic fractures in men.

  14. Highly stretchable and ultrathin nanopaper composites for epidermal strain sensors.

    PubMed

    Sun, Jingyao; Zhao, Yanan; Yang, Zhaogang; Shen, Jingjing; Cabrera, Eusebio; Lertola, Matthew J; Yang, Willie; Zhang, Dan; Benatar, Avi; Castro, Jose M; Wu, Daming; Lee, L James

    2018-08-31

    Multifunctional electronics are attracting great interest with the increasing demand and fast development of wearable electronic devices. Here, we describe an epidermal strain sensor based on an all-carbon conductive network made from multi-walled carbon nanotubes (MWCNTs) impregnated with poly(dimethyl siloxane) (PDMS) matrix through a vacuum filtration process. An ultrasonication treatment was performed to complete the penetration of PDMS resin in seconds. The entangled and overlapped MWCNT network largely enhances the electrical conductivity (1430 S m -1 ), uniformity (remaining stable on different layers), reliable sensing range (up to 80% strain), and cyclic stability of the strain sensor. The homogeneous dispersion of MWCNTs within the PDMS matrix leads to a strong interaction between the two phases and greatly improves the mechanical stability (ca. 160% strain at fracture). The flexible, reversible and ultrathin (<100 μm) film can be directly attached on human skin as epidermal strain sensors for high accuracy and real-time human motion detection.

  15. Enhanced hip fracture management: use of statistical methods and dataset to evaluate a fractured neck of femur fast track pathway-pilot study.

    PubMed

    Gilchrist, Nigel; Dalzell, Kristian; Pearson, Scott; Hooper, Gary; Hoeben, Kit; Hickling, Jeremy; McKie, John; Yi, Ma; Chamberlain, Sandra; McCullough, Caroline; Gutenstein, Marc

    2017-05-12

    The increasing elderly population and subsequent rise in total hip fracture(s) in this group means more effective management strategies are necessary to improve efficiency. We have changed our patient care strategy from the emergency department (ED), acute orthopaedic wards, operating theatre, post-operation and rehabilitation, and called it Fracture Neck of Femur Fast Track Pathway. All clinical data and actions were captured, integrated and displayed on a weekly basis using 'signalfromnoise' (SFN) software. The initial four months analysis of this project showed significant improvement in patient flow within the hospitals. The overall length of stay was reduced by four days. Time in ED was reduced by 30 minutes, and the wait for rehabilitation reduced by three days. Overall time in rehabilitation reduced by 3-7 days depending on facility. On average, fast track patients spent 95 less hours in hospital, resulting in 631 bed days saved in this period, with projected savings of NZD700,000. No adverse effects were seen in mortality, readmission and functional improvement status. Fractured neck of femur has increasing clinical demand in a busy tertiary hospital. Length of stay, co-morbidities and waiting time for theatres are seen as major barriers to treatment for these conditions. Wait for rehabilitation can significantly lengthen hospital stay; also poor communication between the individual hospital management facets of this condition has been an ongoing issue. Lack of instant and available electronic information on this patient group has also been seen as a major barrier to improvement. This paper demonstrates how integration of service components that are involved in fractured neck of femur can be achieved. It also shows how the use of electronic data capture and analysis can give a very quick and easily interpretable data trend that will enable change in practice. This paper indicates that cooperation between health professionals and practitioners can significantly improve the length of stay and the time in which patients can be returned home. Full interdisciplinary involvement was the key to this approach. The use of electronic data capture and analysis can be used in many other health pathways within the health system.

  16. An in vitro study of the effect of different restorative materials on the reliability of a veneering porcelain.

    PubMed

    Anderson, Matthew R; Chung, Kwok-Hung; Flinn, Brian D; Raigrodski, Ariel J

    2013-12-01

    Implant-supported, porcelain veneered restorations experience a greater rate of porcelain fracture than tooth-supported restorations. For completely edentulous patients, one approach to minimizing porcelain fracture is to use acrylic resin in the mandible, although its efficacy is unknown. The purpose of this study was to evaluate the reliability of a veneering porcelain fatigued with different restorative materials in vitro. Fifty-nine veneering porcelain disk specimens were fabricated by layering veneering porcelain on nickel-chromium base metal alloy disks. Four groups of different indenter materials fatigued the porcelain specimens: group WC, tungsten carbide served as a control; group FC, pressed leucite glass ceramic; group NHC, nanohybrid composite resin denture tooth; and group AR, unfilled acrylic resin denture tooth. Porcelain specimens were randomly divided into 4 groups (n=14). A step-stress accelerated life-testing model was used. Use-level probability Weibull plots were generated, and the reliability of each group was estimated for a theoretical completion of 50 000 cycles at 150 N. Nanohybrid composite resin and unfilled acrylic resin denture tooth groups had higher reliability than tungsten carbide and leucite glass ceramic groups. No significant differences existed between the reliability of the tungsten carbide and leucite glass ceramic groups and the nanohybrid composite resin and acrylic resin denture tooth groups. Veneering porcelain disk specimens fatigued with the unfilled acrylic resin and nanohybrid composite resin denture tooth indenters exhibited higher reliability than the specimens fatigued with either the tungsten carbide or leucite glass ceramic indenters. All of the veneering porcelain disk specimens failed with the same mode of fracture, although the surface posttest exhibited different fracture characteristics among specimens fatigued with the 4 different materials. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  17. Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus.

    PubMed

    Foffani, Guglielmo; Uzcategui, Yoryani G; Gal, Beatriz; Menendez de la Prida, Liset

    2007-09-20

    Ripples are sharp-wave-associated field oscillations (100-300 Hz) recorded in the hippocampus during behavioral immobility and slow-wave sleep. In epileptic rats and humans, a different and faster oscillation (200-600 Hz), termed fast ripples, has been described. However, the basic mechanisms are unknown. Here, we propose that fast ripples emerge from a disorganized ripple pattern caused by unreliable firing in the epileptic hippocampus. Enhanced synaptic activity is responsible for the irregular bursting of CA3 pyramidal cells due to large membrane potential fluctuations. Lower field interactions and a reduced spike-timing reliability concur with decreased spatial synchronization and the emergence of fast ripples. Reducing synaptically driven membrane potential fluctuations improves both spike-timing reliability and spatial synchronization and restores ripples in the epileptic hippocampus. Conversely, a lower spike-timing reliability, with reduced potassium currents, is associated with ripple shuffling in normal hippocampus. Therefore, fast ripples may reflect a pathological desynchronization of the normal ripple pattern.

  18. Probabilistic finite elements for fracture mechanics

    NASA Technical Reports Server (NTRS)

    Besterfield, Glen

    1988-01-01

    The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.

  19. Textural evidence of microbial activity in seafloor and subseafloor basalt: A comparison

    NASA Astrophysics Data System (ADS)

    Thorseth, I. H.; Pedersen, R. B.; Christie, D. M.

    2003-04-01

    SEM observations of alteration rims in basaltic glasses dredged from 0 -- 2.5 Ma seafloor and drilled from 18 -- 28 Ma ocean crust in the Australian-Antarctic Discordance (AAD) document the presence of endolithic microbes in altered basalt glass. In very young AAD lavas ˜10 μm thick alteration rims are developed along intersecting fractures and cracks. The altered glass contains numerous spherical, rod-shaped and star-shaped, partially fossilised microbial cells, similar to those from the Arctic Ridges (Thorseth et al., 2001). In 2.5 Ma basalt glasses, altered rims are up to 250 μm thick and zeolite (phillipsite) is present within the fractures. Spherical cells are observed both in porous zones in the outer part of alteration rims and on zeolite surfaces within central fractures, indicating that microbial activity persist in the region for at least 2.5 Ma. Mn-rich cell-encrustations suggest that Mn is used in an energy yielding metabolic process. Combined with recent results from the Arctic ridges the results from this study demonstrate that endolithic microbial growth is a general feature of mid-ocean spreading ridges. In glasses from ODP cores, ˜1mm thick alteration rims are developed along wide fractures lined with Mn(Fe)-oxyhydroxides and clay and filled by zeolite and calcite. Most common however are <10--200 μm thick rims developed along zeolite filled, more narrow fractures and cracks. Zeolite filled fractures with only minor to no alteration, indicate several episodes of fracturing followed by relatively fast sealing. There is no age progression in alteration thickness along fractures or other characteristics, suggesting that alteration is essentially completed between 2.5 and 18 Ma. A comparison of alteration in the 2.5 Ma glass with that in the ODP samples indicates that a significant part of the altered glass in the drilled samples developed at the surface stage. However, diffuse and highly irregular alteration fronts that are only observed in the ODP samples, most likely developed after burial. These diffuse alteration fronts are caused by partially dissolution and alteration of the glass into minute globules, 0.05 -- 0.2 μm in diameter, with no associated microbial morphologies. Fossilised, Mn-rich cells do occur within zeolite filled fractures, possibly indicating that microbial activity continued in the fractures for as long as circulation continued. The apparent non-biological origin of diffuse, irregular alteration fronts in buried AAD glasses indicates that these textural features are not reliable as diagnostic criteria for the existence of a deep biosphere in the volcanic ocean crust. Reference: Thorseth, I. H., Torsvik, T., Torsvik, V., Daae, F. L., Pedersen, R. B. & Keldysh -- 98 Scientific party (2001). Diversity of life in ocean floor basalt. Earth Planet. Sci. Lett., 194: 31-37.

  20. Are routine pelvic radiographs in major pediatric blunt trauma necessary?

    PubMed

    Lagisetty, Jyothi; Slovis, Thomas; Thomas, Ronald; Knazik, Stephen; Stankovic, Curt

    2012-07-01

    Screening pelvic radiographs to rule out pelvic fractures are routinely used for the initial evaluation of pediatric blunt trauma. Recently, the utility of routine pelvic radiographs in certain subsets of patients with blunt trauma has been questioned. There is a growing amount of evidence that shows the clinical exam is reliable enough to obviate the need for routine screening pelvic radiographs in children. To identify variables that help predict the presence or absence of pelvic fractures in pediatric blunt trauma. We conducted a retrospective study from January 2005 to January 2010 using the trauma registry at a level 1 pediatric trauma center. We analyzed all level 1 and level 2 trauma victims, evaluating history, exam and mechanism of injury for association with the presence or absence of a pelvic fracture. Of 553 level 1 and 2 trauma patients who presented during the study period, 504 were included in the study. Most of these children, 486/504 (96.4%), showed no evidence of a pelvic fracture while 18/504 (3.6%) had a pelvic fracture. No factors were found to be predictive of a pelvic fracture. However, we developed a pelvic fracture screening tool that accurately rules out the presence of a pelvic fracture P = 0.008, NPV 99, sensitivity 96, 8.98 (1.52-52.8). This screening tool combines eight high-risk clinical findings (pelvic tenderness, laceration, ecchymosis, abrasion, GCS <14, positive urinalysis, abdominal pain/tenderness, femur fracture) and five high-risk mechanisms of injury (unrestrained motor vehicle collision [MVC], MVC with ejection, MVC rollover, auto vs. pedestrian, auto vs. bicycle). Pelvic fractures in pediatric major blunt trauma can reliably be ruled out by using our pelvic trauma screening tool. Although no findings accurately identified the presence of a pelvic fracture, the screening tool accurately identified the absence of a fracture, suggesting that pelvic radiographs are not warranted in this subset of patients.

  1. The research on delayed fracture behavior of high-strength bolts in steel structure

    NASA Astrophysics Data System (ADS)

    Li, Guo dong; Li, Nan

    2017-07-01

    High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.

  2. Fixation of unstable type II clavicle fractures with distal clavicle plate and suture button.

    PubMed

    Johnston, Peter S; Sears, Benjamin W; Lazarus, Mark R; Frieman, Barbara G

    2014-11-01

    This article reports on a technique to treat unstable type II distal clavicle fractures using fracture-specific plates and coracoclavicular augmentation with a suture button. Six patients with clinically unstable type II distal clavicle fractures underwent treatment using the above technique. All fractures demonstrated radiographic union at 9.6 (8.4-11.6) weeks with a mean follow-up of 15.6 (12.4-22.3) months. American Shoulder and Elbow Surgeons, Penn Shoulder Score, and Single Assessment Numeric Evaluation scores were 97.97 (98.33-100), 96.4 (91-99), and 95 (90-100), respectively. One patient required implant removal. Fracture-specific plating with suture-button augmentation for type II distal clavicle fractures provides reliable rates of union without absolute requirement for implant removal.

  3. Fracture Toughness and Reliability in High-Temperature Structural Ceramics and Composites: Prospects and Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1999-01-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  4. Reliability of pulse waveform separation analysis: effects of posture and fasting.

    PubMed

    Stoner, Lee; Credeur, Daniel; Fryer, Simon; Faulkner, James; Lambrick, Danielle; Gibbs, Bethany Barone

    2017-03-01

    Oscillometric pulse wave analysis devices enable, with relative simplicity and objectivity, the measurement of central hemodynamic parameters. The important parameters are central blood pressures and indices of arterial wave reflection, including wave separation analysis (backward pressure component Pb and reflection magnitude). This study sought to determine whether the measurement precision (between-day reliability) of Pb and reflection magnitude: exceeds the criterion for acceptable reliability; and is affected by posture (supine, seated) and fasting state. Twenty healthy adults (50% female, 27.9 years, 24.2 kg/m) were tested on six different mornings: 3 days fasted, 3 days nonfasted condition. On each occasion, participants were tested in supine and seated postures. Oscillometric pressure waveforms were recorded on the left upper arm. The criterion intra-class correlation coefficient value of 0.75 was exceeded for Pb (0.76) and reflection magnitude (0.77) when participants were assessed under the combined supine-fasted condition. The intra-class correlation coefficient was lowest for Pb in seated-nonfasted condition (0.57), and lowest for reflection magnitude in the seated-fasted condition (0.56). For Pb, the smallest detectible change that must be exceeded in order for a significant change to occur in an individual was 2.5 mmHg, and for reflection magnitude, the smallest detectable change was 8.5%. Assessments of Pb and reflection magnitude are as follows: exceed the criterion for acceptable reliability; and are most reliable when participants are fasted in a supine position. The demonstrated reliability suggests sufficient precision to detect clinically meaningful changes in reflection magnitude and Pb.

  5. A Novel Fixation System for Acetabular Quadrilateral Plate Fracture: A Comparative Biomechanical Study

    PubMed Central

    Zha, Guo-Chun; Sun, Jun-Ying; Dong, Sheng-Jie; Zhang, Wen; Luo, Zong-Ping

    2015-01-01

    This study aims to assess the biomechanical properties of a novel fixation system (named AFRIF) and to compare it with other five different fixation techniques for quadrilateral plate fractures. This in vitro biomechanical experiment has shown that the multidirectional titanium fixation (MTF) and pelvic brim long screws fixation (PBSF) provided the strongest fixation for quadrilateral plate fracture; the better biomechanical performance of the AFRIF compared with the T-shaped plate fixation (TPF), L-shaped plate fixation (LPF), and H-shaped plate fixation (HPF); AFRIF gives reasonable stability of treatment for quadrilateral plate fracture and may offer a better solution for comminuted quadrilateral plate fractures or free floating medial wall fracture and be reliable in preventing protrusion of femoral head. PMID:25802849

  6. Complex proximal humerus fractures: Hertel's criteria reliability to predict head necrosis.

    PubMed

    Campochiaro, G; Rebuzzi, M; Baudi, P; Catani, F

    2015-09-01

    The risk of post-traumatic humeral head avascular necrosis (AVN), regardless of the treatment, has a high reported incidence. In 2004, Hertel et al. stated that the most relevant predictors of ischemia after intracapsular fracture treated with osteosynthesis are the calcar length, medial hinge integrity and some specific fracture types. Based on Hertel's model, the purpose of this study is to evaluate both its reliability and weaknesses in our series of 267 fractures, assessing how the anatomical configuration of fracture, the quality of reduction and its maintenance were predictive of osteonecrosis development, and so to suggest a treatment choice algorithm. A retrospective study, level of evidence IV, was conducted to duly assess the radiographic features of 267 fractures treated from 2004 to 2010 following Hertel's criteria treated with open reduction and internal fixation by angular stability plates and screws. The average age was 65.2 years. The average follow-up was 28.3 ± 17.0 months. The percentage of AVN, the quality and maintenance of reduction obtained during surgery were evaluated. The AVN incidence was 3.7 %. No significant correlation with gender, age and fracture type was found. At the last follow-up X-ray, only 30 % presented all Hertel's good predictors in the AVN group, 4.7 % in the non-AVN group (p < 0.05). About quality of reduction in the AVN group, it was poor in 50 %; while in the non-AVN group, it was poor in 3.4 % (p < 0.05). Four patients with AVN were symptomatic, and three needed a second surgery. Hertel's criteria are important in the surgical planning, but they are not sufficient: an accurate evaluation of the calcar area fracture in three planes is required. All fractures involving calcar area should be studied with CT.

  7. An integrated methodology for sub-surface fracture characterization using microseismic data: A case study at the NW Geysers

    NASA Astrophysics Data System (ADS)

    Aminzadeh, Fred; Tafti, Tayeb A.; Maity, Debotyam

    2013-04-01

    Geothermal and unconventional hydrocarbon reservoirs are often characterized by low permeability and porosity. So, they are difficult to produce and require stimulation techniques, such as thermal shear deactivation and hydraulic fracturing. Fractures provide porosity for fluid storage and permeability for fluid movement and play an important role in production from this kind of reservoirs. Hence, characterization of fractures has become a vitally important consideration in every aspect of exploration, development and production so as to provide additional energy resources for the world. During the injection or production of fluid, induced seismicity (micro-seismic events) can be caused by reactivated shears created fractures or the natural fractures in shear zones and faults. Monitoring these events can help visualize fracture growth during injection stimulation. Although the locations of microseismic events can be a useful characterization tool and have been used by many authors, we go beyond these locations to characterize fractures more reliably. Tomographic inversion, fuzzy clustering, and shear wave splitting are three methods that can be applied to microseismic data to obtain reliable characteristics about fractured areas. In this article, we show how each method can help us in the characterization process. In addition, we demonstrate how they can be integrated with each other or with other data for a more holistic approach. The knowledge gained might be used to optimize drilling targets or stimulation jobs to reduce costs and maximize production. Some of the concepts discussed in this paper are general in nature, and may be more applicable to unconventional hydrocarbon reservoirs than the metamorphic and igneous reservoir rocks at The Geysers geothermal field.

  8. Are distal radius fracture classifications reproducible? Intra and interobserver agreement.

    PubMed

    Belloti, João Carlos; Tamaoki, Marcel Jun Sugawara; Franciozi, Carlos Eduardo da Silveira; Santos, João Baptista Gomes dos; Balbachevsky, Daniel; Chap Chap, Eduardo; Albertoni, Walter Manna; Faloppa, Flávio

    2008-05-01

    Various classification systems have been proposed for fractures of the distal radius, but the reliability of these classifications is seldom addressed. For a fracture classification to be useful, it must provide prognostic significance, interobserver reliability and intraobserver reproducibility. The aim here was to evaluate the intraobserver and interobserver agreement of distal radius fracture classifications. This was a validation study on interobserver and intraobserver reliability. It was developed in the Department of Orthopedics and Traumatology, Universidade Federal de São Paulo - Escola Paulista de Medicina. X-rays from 98 cases of displaced distal radius fracture were evaluated by five observers: one third-year orthopedic resident (R3), one sixth-year undergraduate medical student (UG6), one radiologist physician (XRP), one orthopedic trauma specialist (OT) and one orthopedic hand surgery specialist (OHS). The radiographs were classified on three different occasions (times T1, T2 and T3) using the Universal (Cooney), Arbeitsgemeinschaft für Osteosynthesefragen/Association for the Study of Internal Fixation (AO/ASIF), Frykman and Fernández classifications. The kappa coefficient (kappa) was applied to assess the degree of agreement. Among the three occasions, the highest mean intraobserver k was observed in the Universal classification (0.61), followed by Fernández (0.59), Frykman (0.55) and AO/ASIF (0.49). The interobserver agreement was unsatisfactory in all classifications. The Fernández classification showed the best agreement (0.44) and the worst was the Frykman classification (0.26). The low agreement levels observed in this study suggest that there is still no classification method with high reproducibility.

  9. Qtracer Program for Tracer-Breakthrough Curve Analysis for Karst and Fractured-Rock Aquifers (2000)

    EPA Science Inventory

    Tracer tests are generally regarded as being the most reliable and efficient means of gathering subsurface hydraulic information. This is true for all types of aquifers, but especially so for karst and fractured-rock aquifers. Qualitative tracing tests have been conventionally em...

  10. Biologic restoration: a treatment option for reconstruction of anterior teeth.

    PubMed

    Babaji, Prashant; Khanna, Priyanka; S, Shankar; Chaurasia, Vishwajit Rampratap; Masamatti, Vinaykumar S

    2014-11-01

    Several procedures are advised to manage fractured anterior tooth structure using acrylic resin, composite restoration, ceramic or metal crown with ceramic facing. Biologic restoration is a procedure to restore fractured tooth structure with natural tooth material. In this in vitro case we have made an attempt for aesthetic rehabilitation of maxillary central incisor with similar biologic crown taken form extracted maxillary central incisor. It was observed that biologic restoration is an aesthetic, economical, fast and functional procedure which can be used as an alternative method to restore fractured primary or permanent anteriors.

  11. Probabilistic finite elements for fatigue and fracture analysis

    NASA Astrophysics Data System (ADS)

    Belytschko, Ted; Liu, Wing Kam

    Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.

  12. Probabilistic finite elements for fatigue and fracture analysis

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Liu, Wing Kam

    1992-01-01

    Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.

  13. Development and Reliability Testing of a Fast-Food Restaurant Observation Form.

    PubMed

    Rimkus, Leah; Ohri-Vachaspati, Punam; Powell, Lisa M; Zenk, Shannon N; Quinn, Christopher M; Barker, Dianne C; Pugach, Oksana; Resnick, Elissa A; Chaloupka, Frank J

    2015-01-01

    To develop a reliable observational data collection instrument to measure characteristics of the fast-food restaurant environment likely to influence consumer behaviors, including product availability, pricing, and promotion. The study used observational data collection. Restaurants were in the Chicago Metropolitan Statistical Area. A total of 131 chain fast-food restaurant outlets were included. Interrater reliability was measured for product availability, pricing, and promotion measures on a fast-food restaurant observational data collection instrument. Analysis was done with Cohen's κ coefficient and proportion of overall agreement for categorical variables and intraclass correlation coefficient (ICC) for continuous variables. Interrater reliability, as measured by average κ coefficient, was .79 for menu characteristics, .84 for kids' menu characteristics, .92 for food availability and sizes, .85 for beverage availability and sizes, .78 for measures on the availability of nutrition information,.75 for characteristics of exterior advertisements, and .62 and .90 for exterior and interior characteristics measures, respectively. For continuous measures, average ICC was .88 for food pricing measures, .83 for beverage prices, and .65 for counts of exterior advertisements. Over 85% of measures demonstrated substantial or almost perfect agreement. Although some measures required revision or protocol clarification, results from this study suggest that the instrument may be used to reliably measure the fast-food restaurant environment.

  14. Fracture mechanics concepts in reliability analysis of monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Manderscheid, Jane M.; Gyekenyesi, John P.

    1987-01-01

    Basic design concepts for high-performance, monolithic ceramic structural components are addressed. The design of brittle ceramics differs from that of ductile metals because of the inability of ceramic materials to redistribute high local stresses caused by inherent flaws. Random flaw size and orientation requires that a probabilistic analysis be performed in order to determine component reliability. The current trend in probabilistic analysis is to combine linear elastic fracture mechanics concepts with the two parameter Weibull distribution function to predict component reliability under multiaxial stress states. Nondestructive evaluation supports this analytical effort by supplying data during verification testing. It can also help to determine statistical parameters which describe the material strength variation, in particular the material threshold strength (the third Weibull parameter), which in the past was often taken as zero for simplicity.

  15. Histopathological examination of bone debris from reaming of interlocking intra-medullary nail fixation of long bone fractures with concomitant head injury.

    PubMed

    Khallaf, Fathy G; Kehinde, Elijah O

    2015-12-01

    The aim of study was to test, for the presence of osteoblasts in the reaming debris of intramedullary nailing of femoral and tibial fracture in patients with and without severe head injury. Two groups of patients were studied. Group A (n = 32) had long bone fractures in addition to having head injuries. Group B (n = 35) had only long bone fractures. The fractures in the 2 groups of patients was treated by inter medullary nailing. Osteoblasts in the debris of the inter medullary nailing was compared between the 2 groups of patients. The results demonstrated that histopathological specimens from reaming debris of fractured femur and tibia in patients with head injury showed osteoblasts in (82.9%) and in (27.5%) of patients with isolated long bone fractures (p < 0.001). Healing indicators in diaphyseal fractures and concomitant head injury confirm fast and adequate healing in these patients and the presence of plenty of osteoblasts in their reaming debris may reflect a proof of accelerated fracture healing environment.

  16. Mapping Inherited Fractures in the Critical Zone Using Seismic Anisotropy From Circular Surveys

    NASA Astrophysics Data System (ADS)

    Novitsky, Christopher G.; Holbrook, W. Steven; Carr, Bradley J.; Pasquet, Sylvain; Okaya, David; Flinchum, Brady A.

    2018-04-01

    Weathering and hydrological processes in Earth's shallow subsurface are influenced by inherited bedrock structures, such as bedding planes, faults, joints, and fractures. However, these structures are difficult to observe in soil-mantled landscapes. Steeply dipping structures with a dominant orientation are detectable by seismic anisotropy, with fast wave speeds along the strike of structures. We measured shallow ( 2-4 m) seismic anisotropy using "circle shots," geophones deployed in a circle around a central shot point, in a weathered granite terrain in the Laramie Range of Wyoming. The inferred remnant fracture orientations agree with brittle fracture orientations measured at tens of meters depth in boreholes, demonstrating that bedrock fractures persist through the weathering process into the shallow critical zone. Seismic anisotropy positively correlates with saprolite thickness, suggesting that inherited bedrock fractures may control saprolite thickness by providing preferential pathways for corrosive meteoric waters to access the deep critical zone.

  17. Distal tibial fractures and non-unions treated with shortened intramedullary nail.

    PubMed

    Megas, P; Zouboulis, P; Papadopoulos, A X; Karageorgos, A; Lambiris, E

    2003-01-01

    We reviewed 18 patients, 14 with acute fractures and four with non-union of the distal tibia, treated between 1990 and 2001 with a shortened, reamed intramedullary nail. The mean follow-up was 38 (8-144) months. The fractures united at an average of 16 (12-18) weeks and the non-unions at 20 (12-30) weeks. Two patients required nail dynamization. No limb shortening nor material failures were seen. All patients returned to normal daily activities. Although technically demanding, intramedullary nailing for distal tibial fractures and non-unions with a shortened nail represents a safe and reliable method.

  18. Fracture reduction and primary ankle arthrodesis: a reliable approach for severely comminuted tibial pilon fracture.

    PubMed

    Beaman, Douglas N; Gellman, Richard

    2014-12-01

    Posttraumatic arthritis and prolonged recovery are typical after a severely comminuted tibial pilon fracture, and ankle arthrodesis is a common salvage procedure. However, few reports discuss the option of immediate arthrodesis, which may be a potentially viable approach to accelerate overall recovery in patients with severe fracture patterns. (1) How long does it take the fracture to heal and the arthrodesis to fuse when primary ankle arthrodesis is a component of initial fracture management? (2) How do these patients fare clinically in terms of modified American Orthopaedic Foot and Ankle Society (AOFAS) scores and activity levels after this treatment? (3) Does primary ankle arthrodesis heal in an acceptable position when anterior ankle arthrodesis plates are used? During a 2-year period, we performed open fracture reduction and internal fixation in 63 patients. Eleven patients (12 ankles) with severely comminuted high-energy tibial pilon fractures were retrospectively reviewed after surgical treatment with primary ankle arthrodesis and fracture reduction. Average patient age was 58 years, and minimum followup was 6 months (average, 14 months; range, 6-22 months). Anatomically designed anterior ankle arthrodesis plates were used in 10 ankles. Ring external fixation was used in nine ankles with concomitant tibia fracture or in instances requiring additional fixation. Clinical evaluation included chart review, interview, the AOFAS ankle-hindfoot score, and radiographic evaluation. All of the ankle arthrodeses healed at an average of 4.4 months (range, 3-5 months). One patient had a nonunion at the metaphyseal fracture, which healed with revision surgery. The average AOFAS ankle-hindfoot score was 83 with 88% having an excellent or good result. Radiographic and clinical analysis confirmed a plantigrade foot without malalignment. No patients required revision surgery for malunion. Primary ankle arthrodesis combined with fracture reduction for the severely comminuted tibial pilon fracture reliably healed and restored acceptable function in this highly selective patient group. Ring external fixation may be a useful adjunct to internal fixation, and this concept should be further studied. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  19. Validity and Reliability of the Italian Version of the Functioning Assessment Short Test (FAST) in Bipolar Disorder

    PubMed Central

    Moro, Maria Francesca; Colom, Francesc; Floris, Francesca; Pintus, Elisa; Pintus, Mirra; Contini, Francesca; Carta, Mauro Giovanni

    2012-01-01

    Background: Functioning Assessment Short Test (FAST) is a brief instrument designed to assess the main functioning problems experienced by psychiatric patients, specifically bipolar patients. It includes 24 items assessing impairment or disability in six domains of functioning: autonomy, occupational functioning, cognitive functioning, financial issues, interpersonal relationships and leisure time. The aim of this study is to measure the validity and reliability of the Italian version of this instrument. Methods: Twenty-four patients with DSM-IV TR bipolar disorder and 20 healthy controls were recruited and evaluated in three private clinics in Cagliari (Sardinia, Italy). The psychometric properties of FAST (feasibility, internal consistency, concurrent validity, discriminant validity (patients vs controls and eutimic patients vs manic and depressed), and test-retest reliability were analyzed. Results: The internal consistency obtained was very high with a Cronbach's alpha of 0.955. A highly significant negative correlation with GAF was obtained (r = -0.9; p < 0.001) pointing to a reasonable degree of concurrent validity. FAST show a good test-retest reliability between two independent evaluation differing of one week (mean K =0.73). The total FAST scores were lower in controls as compared with Bipolar Patients and in Euthimic patients compared with Depressed or Manic. Conclusion: The Italian version of the FAST showed similar psychometrics properties as far as regard internal consistency and discriminant validity of the original version and show a good test retest reliability measure by means of K statistics. PMID:22905035

  20. Effect of Time and Temperature on Transformation Toughened Zirconias.

    DTIC Science & Technology

    1987-06-01

    room temperature. High temperature mechanical tests performed vere stress rupture and stepped temperature stress rupture. The results of the tests...tetragonal precipitates will spontaneously transform to the monoclinic phae due to the lattice mismatch stress if they become larger than about 0.2 on, with...specimens, including fast fracture and fracture toughness testing. High temper- ture testing consisting of stress rupture and stepped temperature stress

  1. The development of a comprehensive multidisciplinary care pathway for patients with a hip fracture: design and results of a clinical trial.

    PubMed

    Flikweert, Elvira R; Izaks, Gerbrand J; Knobben, Bas A S; Stevens, Martin; Wendt, Klaus

    2014-05-30

    Hip fractures frequently occur in older persons and severely decrease life expectancy and independence. Several care pathways have been developed to lower the risk of negative outcomes but most pathways are limited to only one aspect of care. The aim of this study was therefore to develop a comprehensive care pathway for older persons with a hip fracture and to conduct a preliminary analysis of its effect. A comprehensive multidisciplinary care pathway for patients aged 60 years or older with a hip fracture was developed by a multidisciplinary team. The new care pathway was evaluated in a clinical trial with historical controls. The data of the intervention group were collected prospectively. The intervention group included all patients with a hip fracture who were admitted to University Medical Center Groningen between 1 July 2009 and 1 July 2011. The data of the control group were collected retrospectively. The control group comprised all patients with a hip fracture who were admitted between 1 January 2006 and 1 January 2008. The groups were compared with the independent sample t-test, the Mann-Whitney U-test or the Chi-squared test (Phi test). The effect of the intervention on fasting time and length of stay was adjusted by linear regression analysis for differences between the intervention and control group. The intervention group included 256 persons (women, 68%; mean age (SD), 78 (9) years) and the control group 145 persons (women, 72%; mean age (SD), 80 (10) years). Median preoperative fasting time and median length of hospital stay were significantly lower in the intervention group: 9 vs. 17 hours (p < 0.001), and 7 vs. 11 days (p < 0.001), respectively. A similar result was found after adjustment for age, gender, living condition and American Society of Anesthesiologists (ASA) classification. In-hospital mortality was also lower in the intervention group: 2% vs. 6% (p < 0.05). There were no statistically significant differences in other outcome measures. The new comprehensive care pathway was associated with a significant decrease in preoperative fasting time and length of hospital stay.

  2. Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl

    A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturingmore » is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.« less

  3. [Fractures of the thoracic and lumbar spine in children and adolescents].

    PubMed

    Kraus, R; Stahl, J-P; Heiss, C; Horas, U; Dongowski, N; Schnettler, R

    2013-05-01

    Only 1.5-2% of all fractures in children and adolescents are fractures of the thoracic and lumbar spine. Treatment is most often conservative. This study compares the own experience with the recent literature. Over a 48 month period all patients with fractures of the thoracic and lumbar spine, younger than 16 years were included prospectively. Of the patients 67 underwent follow-up investigations after 3-36 months. The average age of the patients was 11.9 years. Sports (53%) and traffic (28%) accidents were most frequent. Fractures most often appeared in the mid-thoracic (47%) and thoracolumbar spine (41%). Operative treatment was performed in 9 cases (10.4%). Secondary loss of alignment was not observed neither after conservative nor operative treatment. Neurological deficits (n=2) did not completely improve. Most fractures of the thoracic and lumbar spine heal fast and without any sequelae. Unstable fractures of type B and C (exclusively occurring as a result of traffic accidents) need operative stabilization as in adults.

  4. Dripping from Rough Multi-Segmented Fracture Sets into Unsaturated Rock Underground Excavations

    NASA Astrophysics Data System (ADS)

    Cesano, D.; Bagtzoglou, A. C.

    2001-05-01

    The aim of this paper is to present a probabilistic analytical formulation of unsaturated flow through a single rough multi-segmented fracture, with the ultimate goal to provide a numerical platform with which to perform calculations on the dripping initiation time and to explain the fast flow-paths detected and reported by Fabryka-Martin et al. (1996). To accomplish this, an enhanced version of the Wang and Narasimhan model (Wang and Narasimhan, 1985; 1993), the Enhanced Wang and Narasimhan Model (EWNM), has been used. In the EWNM, a fracture is formed by a finite number of connected fracture segments of given strike and dip. These parameters are sampled from hypothetical probability density functions. Unsaturated water flow occurs in these fracture segments, and in order for dripping to occur it is assumed that local saturation conditions exist at the surface and the tunnel level, where dripping occurs. The current version of the EWNM ignores transient flow processes, and thus it assumes the flow system being at equilibrium. The fracture segments are considered as rough fractures, with their roughness characterized by an aperture distribution function that can be derived from real field data. The roughness along each fracture segment is considered to be constant, leading to a constant effective aperture, and it is randomly assigned. An effective flow area is also included in the model, which accounts for three-dimensional variations of the fracture area that can be possibly occupied by water. The model takes into account the possibility that the fracture crosses multiple layers, each of which can have a different configuration in the values of the input parameters. Monte Carlo simulations calculate average times for water to flow from the top to the bottom of the fracture for a specified number of random realizations. The random component of the realizations comprises the different geometric configurations of the fracture flow path, while the value of all the input parameters and the statistical distribution they honor are kept constant from realization to realization. This travel time, called the dripping initiation time, is the cumulative sum of the time it takes for the water to drip through all fracture segments and eventually reach the tunnel. Based on the results of a sensitivity analysis, three different scenarios of input parameters were used to test the validity of the model with the fast flow-paths detected and reported in the Fabryka-Martin et al. (1996) study. The three scenarios differed from each other for the response of the dripping initiation times. These three different parameter configurations were then tested at three different depths. Each depth represented a different location where fast-flow has been detected at Yucca Mountain and reported by Fabryka-Martin et al. (1996). The first depth is considered representative of a location in correspondence to the Bow Ridge Fault. The second location represents a network of steep fractures and cooling joints with large variability in dip reaching the ESF at a depth of 180 meters. The third location, which is probably connected to the Diabolous Ridge Fault, is 290 meters deep and the flow path is low-dipping. Monte Carlo simulations were run for each configuration at each depth to calculate average dripping initiation times, so that results from 9 scenarios were produced. The final conclusion is that the model is able to produce results quite consistent with the Fabryka-Martin et al. (1996) study.

  5. Application of oil-water discrimination technology in fractured reservoirs using the differences between fast and slow shear-waves

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Li, Xiangyang; Huang, Guangtan

    2017-08-01

    Oil-water discrimination is of great significance in the design and adjustment of development projects in oil fields. For fractured reservoirs, based on anisotropic S-wave splitting information, it becomes possible to effectively solve such problems which are difficult to deal with in traditional longitudinal wave exploration, due to the similar bulk modulus and density of these two fluids. In this paper, by analyzing the anisotropic character of the Chapman model (2009 Geophysics 74 97-103), the velocity and reflection coefficient differences between the fast and slow S-wave caused by fluid substitution have been verified. Then, through a wave field response analysis of the theoretical model, we found that water saturation causes a longer time delay, a larger time delay gradient and a lower amplitude difference between the fast and slow S-wave, while the oil case corresponds to a lower time delay, a lower gradient and a higher amplitude difference. Therefore, a new class attribute has been proposed regarding the amplitude energy of the fast and slow shear wave, used for oil-water distinction. This new attribute, as well as that of the time delay gradient, were both applied to the 3D3C seismic data of carbonate fractured reservoirs in the Luojia area of the Shengli oil field in China. The results show that the predictions of the energy attributes are more consistent with the well information than the time delay gradient attribute, hence demonstrating the great advantages and potential of this new attribute in oil-water recognition.

  6. Probabilistic finite elements for fatigue and fracture analysis

    NASA Astrophysics Data System (ADS)

    Belytschko, Ted; Liu, Wing Kam

    1993-04-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  7. Probabilistic finite elements for fatigue and fracture analysis

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Liu, Wing Kam

    1993-01-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  8. On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, B.; Bodvarsson, G.S.; Salve, R.

    2002-04-01

    To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Tonopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility, using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variationsmore » of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff, incorporating the time dependent processes of water redistribution in the fracture-matrix system.« less

  9. Surgical treatment of comminuted mandibular fractures using a low-profile locking mandibular reconstruction plate system

    PubMed Central

    Kanno, Takahiro; Sukegawa, Shintaro; Nariai, Yoshiki; Tatsumi, Hiroto; Ishibashi, Hiroaki; Furuki, Yoshihiko; Sekine, Joji

    2014-01-01

    Objective: The treatment of comminuted mandibular fractures is challenging due to the severity of associated injuries and the need for a careful diagnosis with adequate treatment planning. Recently, open reduction and stable internal fixation (OR-IF) with a load-bearing reconstruction plate have been advocated for reliable clinical outcomes with minimal complications. This clinical prospective study evaluated OR-IF in the surgical management of comminuted mandibular fractures with a new low-profile, thin, mandibular locking reconstruction plate. Materials and Methods: We prospectively assessed OR-IF of comminuted mandibular fractures with a low-profile locking mandibular reconstruction plate in 12 patients (nine men, three women; mean age 32.2 [range 16-71] years) between April 2010 and December 2011. The clinical characteristics and associated clinical parameters of patients were evaluated over a minimum follow-up period of 12 months. Results: Traffic accidents caused 50% of the fractures, followed by falls (25%). Four patients (33.3%) had associated midfacial maxillofacial fractures, while five patients had other mandibular fractures. Seven patients (58.3%) needed emergency surgery, mostly for airway management. Anatomical reduction of the comminuted segments re-established the mandibular skeleton in stable occlusion with rigid IF via extraoral (33.3%), intraoral (50%), or combined (16.7%) approaches. Immediate functional recovery was achieved. Sound bone healing was confirmed in all patients, with no complications such as malocclusion, surgical site infection, or malunion with a mean follow-up of 16.3 (range 12-24) months. Conclusions: OR-IF using a low-profile reconstruction plate system is a reliable treatment for comminuted mandibular fractures, enabling immediate functional recovery with good clinical results. PMID:25593862

  10. Camera-tracking gaming control device for evaluation of active wrist flexion and extension.

    PubMed

    Shefer Eini, Dalit; Ratzon, Navah Z; Rizzo, Albert A; Yeh, Shih-Ching; Lange, Belinda; Yaffe, Batia; Daich, Alexander; Weiss, Patrice L; Kizony, Rachel

    Cross sectional. Measuring wrist range of motion (ROM) is an essential procedure in hand therapy clinics. To test the reliability and validity of a dynamic ROM assessment, the Camera Wrist Tracker (CWT). Wrist flexion and extension ROM of 15 patients with distal radius fractures and 15 matched controls were assessed with the CWT and with a universal goniometer. One-way model intraclass correlation coefficient analysis indicated high test-retest reliability for extension (ICC = 0.92) and moderate reliability for flexion (ICC = 0.49). Standard error for extension was 2.45° and for flexion was 4.07°. Repeated-measures analysis revealed a significant main effect for group; ROM was greater in the control group (F[1, 28] = 47.35; P < .001). The concurrent validity of the CWT was partially supported. The results indicate that the CWT may provide highly reliable scores for dynamic wrist extension ROM, and moderately reliable scores for flexion, in people recovering from a distal radius fracture. N/A. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  11. Reliability, validity, and responsiveness of the Western Ontario and McMaster Universities Osteoarthritis Index for elderly patients with a femoral neck fracture.

    PubMed

    Burgers, Paul T P W; Poolman, Rudolf W; Van Bakel, Theodorus M J; Tuinebreijer, Wim E; Zielinski, Stephanie M; Bhandari, Mohit; Patka, Peter; Van Lieshout, Esther M M

    2015-05-06

    The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) has been extensively evaluated in groups of patients with osteoarthritis, yet not in patients with a femoral neck fracture. This study aimed to determine the reliability, construct validity, and responsiveness of the WOMAC compared with the Short Form-12 (SF-12) and the EuroQol 5D (EQ-5D) questionnaires for the assessment of elderly patients with a femoral neck fracture. Reliability was tested by assessing the Cronbach alpha. Construct validity was determined with the Pearson correlation coefficient. Change scores were calculated from ten weeks to twelve months of follow-up. Standardized response means and floor and ceiling effects were determined. Analyses were performed to compare the results for patients less than eighty years old with those for patients eighty years of age or older. The mean WOMAC total score was 89 points before the fracture in the younger patients and increased from 70 points at ten weeks to 81 points at two years postoperatively. In the older age group, these scores were 86, 75, and 78 points. The mean WOMAC pain scores before the fracture and at ten weeks and two years postoperatively were 92, 76, and 87 points, respectively, in the younger age group and 92, 84, and 93 points in the older age group. Function scores were 89, 68, and 79 points for the younger age group and 84, 71, and 73 points for the older age group. The Cronbach alpha for pain, stiffness, function, and the total scale ranged from 0.83 to 0.98 for the younger age group and from 0.79 to 0.97 for the older age group. Construct validity was good, with 82% and 79% of predefined hypotheses confirmed in the younger and older age groups, respectively. Responsiveness was moderate. No floor effects were found. Moderate to large ceiling effects were found for pain and stiffness scales at ten weeks and twelve months in younger patients (18% to 36%) and in the older age group (38% to 53%). The WOMAC showed good reliability, construct validity, and responsiveness in both age groups of elderly patients with a femoral neck fracture who had been physically and mentally fit before the fracture. The instrument is suitable for use in future clinical studies in these populations. The results are based on two clinical trials. The questionnaires used concern pure, clinically relevant issues (ability to walk, climb stairs, etc.). Moreover, the results can be used for future research comparing clinical outcomes (or treatments) for populations with a femoral neck fracture. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  12. Do stress fractures induce hypertrophy of the grafted fibula? A report of three cases received free vascularized fibular graft treatment for tibial defects.

    PubMed

    Qi, Yong; Sun, Hong-Tao; Fan, Yue-Guang; Li, Fei-Meng; Lin, Zhou-Sheng

    2016-06-01

    The presence of large segmental defects of the diaphyseal bone is challenging for orthopedic surgeons. Free vascularized fibular grafting (FVFG) is considered to be a reliable reconstructive procedure. Stress fractures are a common complication following this surgery, and hypertrophy is the main physiological change of the grafted fibula. The exact mechanism of hypertrophy is not completely known. To the best of our knowledge, no studies have examined the possible relationship between stress fractures and hypertrophy. We herein report three cases of patients underwent FVFG. Two of them developed stress fractures and significant hypertrophy, while the remaining patient developed neither stress fractures nor significant hypertrophy. This phenomenon indicates that a relationship may exist between stress fractures and hypertrophy of the grafted fibula, specifically, that the presence of a stress fracture may initiate the process of hypertrophy.

  13. Intramedullary nail fixation of non-traditional fractures: Clavicle, forearm, fibula.

    PubMed

    Dehghan, Niloofar; Schemitsch, Emil H

    2017-06-01

    Locked intramedullary fixation is a well-established technique for managing long-bone fractures. While intramedullary nail fixation of diaphyseal fractures in the femur, tibia, and humerus is well established, the same is not true for other fractures. Surgical fixations of clavicle, forearm and ankle are traditionally treated with plate and screw fixation. In some cases, fixation with an intramedullary device is possible, and may be advantageous. However, there is however a concern regarding a lack of rotational stability and fracture shortening. While new generation of locked intramedullary devices for fractures of clavicle, forearm and fibula are recently available, the outcomes are not as reliable as fixation with plates and screws. Further research in this area is warranted with high quality comparative studies, to investigate the outcomes and indication of these fractures treated with intramedullary nail devices compared to intramedullary nail fixation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input parameters. It was demonstrated that a single critical parameter does not characterize the conditions required for dynamic initiation. Experimental measurements for critical crack lengths, and the energy release rates exhibit significant scatter. The resulting output of the model produces good agreement with both the average values and scatter of experimental measurements.

  15. Predicting Fluid Flow in Stressed Fractures: A Quantitative Evaluation of Methods

    NASA Astrophysics Data System (ADS)

    Weihmann, S. A.; Healy, D.

    2015-12-01

    Reliable estimation of fracture stability in the subsurface is crucial to the success of exploration and production in the petroleum industry, and also for wider applications to earthquake mechanics, hydrogeology and waste disposal. Previous work suggests that fracture stability is related to fluid flow in crystalline basement rocks through shear or tensile instabilities of fractures. Our preliminary scoping analysis compares the fracture stability of 60 partly open (apertures 1.5-3 cm) and electrically conductive (low acoustic amplitudes relative to matrix) fractures from a 16 m section of a producing zone in a basement well in Bayoot field, Yemen, to a non-producing zone in the same well (also 16 m). We determine the Critically Stressed Fractures (CSF; Barton et al., 1995) and dilatation tendency (Td; Ferrill et al., 1999). We find that: 1. CSF (Fig. 1) is a poor predictor of high fluid flow in the inflow zone; 88% of the fractures are predicted to be NOT critically stressed and yet they all occur within a zone of high fluid flow rate 2. Td (Fig. 2) is also a poor predictor of high fluid flow in the inflow zone; 67% of the fractures have a LOW Td(< 0.6) 3. For the non-producing zone CSF is a very reliable predictor (100% are not critically stressed) whereas the values of Tdare consistent with their location in non-producing interval (81% are < 0.6) (Fig. 3 & 4). In summary, neither method correlates well with the observed abundance of hydraulically conductive fractures within the producing zone. Within the non-producing zone CSF and Td make reasonably accurate predictions. Fractures may be filled or partially filled with drilling mud or a lower density and electrically conductive fill such as clay in the producing zone and therefore appear (partly) open. In situ stress, fluid pressure, rock properties (friction, strength) and fracture orientation data used as inputs for the CSF and Td calculations are all subject to uncertainty. Our results suggest that scope exists to systematically quantify and explore the impacts of these uncertainties for better predictions of geomechanical stability and fluid conductivity in the subsurface.

  16. The development of in situ fracture toughness evaluation techniques in hydrogen environment

    DOE PAGES

    Wang, John Jy-An; Ren, Fei; Tan, Tin; ...

    2014-12-19

    Reliability of hydrogen pipelines and storage tanks is significantly influenced by the mechanical performance of the structural materials exposed in the hydrogen environment. Fracture behavior and fracture toughness are of specific interest since they are relevant to many catastrophic failures. However, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen. Thus it is desired to develop novel in situ techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, special testing apparatus were designed to facilitate in situ fracture testing in H 2. A torsional fixture was developed tomore » utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The design concepts will be discussed. Preliminary in situ testing results indicated that the exposure to H 2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.« less

  17. Development of a probabilistic analysis methodology for structural reliability estimation

    NASA Technical Reports Server (NTRS)

    Torng, T. Y.; Wu, Y.-T.

    1991-01-01

    The novel probabilistic analysis method for assessment of structural reliability presented, which combines fast-convolution with an efficient structural reliability analysis, can after identifying the most important point of a limit state proceed to establish a quadratic-performance function. It then transforms the quadratic function into a linear one, and applies fast convolution. The method is applicable to problems requiring computer-intensive structural analysis. Five illustrative examples of the method's application are given.

  18. Clinical efficacy of open reduction and semirigid internal fixation in management of displaced pediatric mandibular fractures: a series of 10 cases and surgical guidelines.

    PubMed

    Joshi, Samir; Kshirsagar, Rajesh; Mishra, Akshay; Shah, Rahul

    2015-01-01

    To evaluate the efficacy of open reduction and semirigid internal fixation in the management of displaced pediatric mandibular fractures. Ten patients with displaced mandibular fractures treated with 1.5 mm four holed titanium mini-plate and 4 mm screws which were removed within four month after surgery. All cases showed satisfactory bone healing without any growth disturbance. Open reduction and rigid internal fixation (ORIF) with 1.5 mm titanium mini- plates and 4 mm screws is a reliable and safe method in treatment of displaced paediatric mandibular fractures.

  19. Effect of water uptake on the fracture behavior of low-k organosilicate glass

    Treesearch

    Xiangyu Guo; Joseph E. Jakes; Samer Banna; Yoshio Nishi; J. Leon Shohet

    2014-01-01

    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of-the-line integration and circuit reliability. This work examines the effects of water uptake on the fracture behavior of nanoporous low-k organosilicate glass. By using annealing dehydration and humidity conditioning, the roles of different water types...

  20. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  1. [IMPACT OF PERIOPERATIVE AVERAGE BLOOD-GLUCOSE LEVEL ON PROGNOSIS OF PATIENTS WITH HIP FRACTURE AND DIABETES MELLITUS].

    PubMed

    Wang, Guoqi; Long, Anhua; Zhang, Lihai; Zhang, Hao; Yin, Peng; Tang, Peifu

    2014-07-01

    To explore the impact of perioperative average blood-glucose level on the prognosis of patients with hip fracture and diabetes mellitus. A retrospective analysis was made on the clinical data of 244 patients with hip fracture and diabetes mellitus who accorded with the inclusion criteria between September 2009 and September 2012. Of 244 patients, 125 patients with poorly controlled fasting blood-glucose (average fasting blood-glucose level > 7.8 mmol/L) were assigned in group A, and 119 patients with well controlled fasting blood-glucose (average fasting blood-glucose level ≤ 7.8 mmol/L) were assigned in group B according to "China guideline for type 2 diabetes" criteria. There was no significant difference in gender, age, disease duration of diabetes mellitus, serum albumin, fracture type and disease duration, surgical procedure, anaesthesia, and complications between 2 groups (P > 0.05). Group A had a higher hemoglobin level and fewer patients who can do some outdoor activities than group B (t = -2.353, P = 0.020; χ2 = 4.333, P = 0.037). The hospitalization time, days to await surgery, stitch removal time, the postoperative complication rate, the mortality at 1 month and 1 year after operation, and ambulatory ability at 1 year after operation were compared between the 2 groups. A total of 223 patients (114 in group A and 109 in group B) were followed up 12-15 months (mean, 13.5 months). The days to await surgery of group A were significantly more than those of group B (t = -2.743, P=0.007), but no significant difference was found in hospitalization time and stitch removal time between 2 groups (P > 0.05). The postoperative complication rate of group A (19.2%, 24/125) was significantly higher than that of group B (8.4%, 10/119) (χ2 =5.926, P = 0.015). Group A had a higher mortality at 1 month after operation than group B (6.1% vs. 0) (χ2 = 5.038, P = 0.025), but no significant difference was shown at 1 year after operation between groups A and B (8.8% vs. 4.6%) (χ2 = 1.555, P = 0.212). At 1 year after operation in patients who can do some outdoor activities, the proportions of patients who turned to do some indoor activities was 19.2% (15/78) in the group A and 13.5% (12/89) in group B, showing no significant difference (χ2 = l.013, P = 0.314). Poorly controlled perioperative fasting blood-glucose may lead undesirable influence on the prognosis of patients with hip fracture and diabetes mellitus. In order to reduce the complication rate and other accidents, the fasting blood-glucose level should be controlled to 7.8 mmol/L or less.

  2. Redesigning the care of fragility fracture patients to improve osteoporosis management: a health care improvement project.

    PubMed

    Harrington, J Timothy; Barash, Harvey L; Day, Sherry; Lease, Joellen

    2005-04-15

    To develop new processes that assure more reliable, population-based care of fragility fracture patients. A 4-year clinical improvement project was performed in a multispecialty, community practice health system using evidence-based guidelines and rapid cycle process improvement methods (plan-do-study-act cycles). Prior to this project, appropriate osteoporosis care was provided to only 5% of our 1999 hip fracture patients. In 2001, primary physicians were provided prompts about appropriate care (cycle 1), which resulted in improved care for only 20% of patients. A process improvement pilot in 2002 (cycle 2) and full program implementation in 2003 (cycle 3) have assured osteoporosis care for all willing and able patients with any fragility fracture. Altogether, 58% of 2003 fragility fracture patients, including 46% of those with hip fracture, have had a bone measurement, have been assigned to osteoporosis care with their primary physician or a consultant, and are being monitored regularly. Only 19% refused osteoporosis care. Key process improvements have included using orthopedic billings to identify patients, referring patients directly from orthopedics to an osteoporosis care program, organizing care with a nurse manager and process management computer software, assigning patients to primary or consultative physician care based on disease severity, and monitoring adherence to therapy by telephone. Reliable osteoporosis care is achievable by redesigning clinical processes. Performance data motivate physicians to reconsider traditional approaches. Improving the care of osteoporosis and other chronic diseases requires coordinated care across specialty boundaries and health system support.

  3. An Epidemiological Study on Pattern and Incidence of Mandibular Fractures

    PubMed Central

    Natu, Subodh S.; Pradhan, Harsha; Gupta, Hemant; Alam, Sarwar; Gupta, Sumit; Pradhan, R.; Mohammad, Shadab; Kohli, Munish; Sinha, Vijai P.; Shankar, Ravi; Agarwal, Anshita

    2012-01-01

    Mandible is the second most common facial fracture. There has been a significant increase in the number of cases in recent years with the advent of fast moving automobiles. Mandibular fractures constitute a substantial proportion of maxillofacial trauma cases in Lucknow. This study was undertaken to study mandibular fractures clinicoradiologically with an aim to calculate incidence and study pattern and the commonest site of fractures in population in and around Lucknow. Patient presenting with history of trauma at various centers of maxillofacial surgery in and around Lucknow were included in this study. Detailed case history was recorded followed by thorough clinical examination, and radiological interpretation was done for establishing the diagnosis and the data obtained was analyzed statistically. Out of 66 patients with mandibular fractures, highest percentage was found in 21–30 years of age with male predominance. Road traffic accidents were the most common cause of fracture with parasymphysis being commonest site. Commonest combination was parasymphysis with subcondyle. There was no gender bias in etiology with number of fracture sites. The incidence and causes of mandibular fracture reflect trauma patterns within the community and can provide a guide to the design of programs geared toward prevention and treatment. PMID:23227327

  4. Reliability of Serum Metabolites over a Two-Year Period: A Targeted Metabolomic Approach in Fasting and Non-Fasting Samples from EPIC

    PubMed Central

    Achaintre, David; Sacerdote, Carlotta; Vineis, Paolo; Key, Timothy J.; Onland Moret, N. Charlotte; Scalbert, Augustin; Rinaldi, Sabina; Ferrari, Pietro

    2015-01-01

    Objective Although metabolic profiles have been associated with chronic disease risk, lack of temporal stability of metabolite levels could limit their use in epidemiological investigations. The present study aims to evaluate the reliability over a two-year period of 158 metabolites and compare reliability over time in fasting and non-fasting serum samples. Methods Metabolites were measured with the AbsolueIDQp180 kit (Biocrates, Innsbruck, Austria) by mass spectrometry and included acylcarnitines, amino acids, biogenic amines, hexoses, phosphatidylcholines and sphingomyelins. Measurements were performed on repeat serum samples collected two years apart in 27 fasting men from Turin, Italy, and 39 non-fasting women from Utrecht, The Netherlands, all participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Reproducibility was assessed by estimating intraclass correlation coefficients (ICCs) in multivariable mixed models. Results In fasting samples, a median ICC of 0.70 was observed. ICC values were <0.50 for 48% of amino acids, 27% of acylcarnitines, 18% of lysophosphatidylcholines and 4% of phosphatidylcholines. In non-fasting samples, the median ICC was 0.54. ICC values were <0.50 for 71% of acylcarnitines, 48% of amino acids, 44% of biogenic amines, 36% of sphingomyelins, 34% of phosphatidylcholines and 33% of lysophosphatidylcholines. Overall, reproducibility was lower in non-fasting as compared to fasting samples, with a statistically significant difference for 19–36% of acylcarnitines, phosphatidylcholines and sphingomyelins. Conclusion A single measurement per individual may be sufficient for the study of 73% and 52% of the metabolites showing ICCs >0.50 in fasting and non-fasting samples, respectively. ICCs were higher in fasting samples that are preferable to non-fasting. PMID:26274920

  5. Microstructure dependence of dynamic fracture and yielding in aluminum and an aluminum alloy at strain rates of 2 × 106 s-1 and faster

    NASA Astrophysics Data System (ADS)

    Dalton, D. A.; Worthington, D. L.; Sherek, P. A.; Pedrazas, N. A.; Quevedo, H. J.; Bernstein, A. C.; Rambo, P.; Schwarz, J.; Edens, A.; Geissel, M.; Smith, I. C.; Taleff, E. M.; Ditmire, T.

    2011-11-01

    Experiments investigating fracture and resistance to plastic deformation at fast strain rates (>106 s-1) were performed via laser ablation on thin sheets of aluminum and aluminum alloys. Single crystal high purity aluminum (Al-HP) and a single crystal 1100 series aluminum alloy (AA1100) were prepared to investigate the role of impurity particles. Specimens of aluminum alloy +3 wt. % Mg (Al+3Mg) at three different grain sizes were also studied to determine the effect of grain size. In the present experiments, high purity aluminum (Al-HP) exhibited the highest spall strength over 1100 series aluminum alloy (AA1100) and Al+3Mg. Fracture characterization and particle analysis revealed that fracture was initiated in the presence of particles associated with impurity content in the AA1100 and at both grain boundaries and particles in Al+3Mg. The Al+3Mg specimens exhibited the greatest resistance to plastic deformation likely resulting from the presence of magnesium atoms. The Al-HP and AA1100, both lacking a strengthening element such as Mg, were found to have the same Hugoniot elastic limit (HEL) stress. Within the single crystal specimens, orientation effects on spall strength and HEL stress appear to be negligible. Although the fracture character shows a trend with grain size, no clear dependence of spall strength and HEL stress on grain size was measured for the Al+3Mg. Hydrodynamic simulations show how various strength and fracture models are insufficient to predict material behavior at fast strain rates, and a revised set of Tuler-Butcher coefficients for spall are proposed.

  6. Development of martensitic steels for high neutron damage applications

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.

    1996-12-01

    Martensitic stainless steels have been developed for both in-core applications in advanced liquid metal fast breeder reactors (LMFBR) and for first wall and structural materials applications for commercial fusion reactors. It can now be shown that these steels can be expected to maintain properties to levels as high as 175 or 200 dpa, respectively. The 12Cr1Mo0.5W0.2C alloy HT-9 has been extensively tested for LMFBR applications and shown to resist radiation damage, providing a creep and swelling resistant alternative to austenitic steels. Degradation of fracture toughness and Charpy impact properties have been observed, but properties are sufficient to provide reliable service. In comparison, alloys with lower chromium contents are found to decarburize in contact with liquid sodium and are therefore not recommended. Tungsten stabilized martensitic stainless steels have appropriate properties for fusion applications. Radioactivity levels are benign less than 500 years after service, radiation damage resistance is excellent, including impact properties, and swelling is modest. This report describes the history of the development effort.

  7. [A new type sternoclavicular hook plate for unstable sternoclavicular joint dislocation and fracture].

    PubMed

    Zhang, Chuan-Yi; Lin, Lie; Liang, Jun-Bo; Wang, Bin; Chen, Guo-Fu; Chen, Hai-Xiao

    2016-11-25

    To evaluate the therapeutic effect of a new type sternoclavicular hook plate fixation in treating unstable sternoclavicular joint dislocation and fracture. From June 2011 to December 2013, 32 patients with sternoclavicular joint dislocation and fracture were treated with a new type sternoclavicular hook plate fixation, including 24 males and 8 females with an average age of 42 years ranging from 25 to 76 years;12 patients were anterior dislocation, 5 pations were posterior dislocation, 10 patients were internal extremity of clavicle fracture and 5 patients were sternoclavicular joint dislocation combined with fracture. The anterior fracture dislocation of the sternoclavicular joint adopted standard sternoclavicular joint hook plate, and the posterior dislocation was at the distal end of the hook of the steel plate, that is, the front part of the handle of the breast was added with a nut and a gasket to prevent the re-dislocation after operation. The results were evaluated according to Rockwood score. No complication happened in all patients. X-ray and CT showed that the dislocation and fracture of the sternoclavicular joint was well reduced and the plate was on right position. All patients were followed up for 6 to 24 months with an average of 10 months. At 6 to 3 months after operation, the fracture was healing without re-dislocation of the sternoclavicular joint, the medial end of the clavicle anatomical structure were restored, functional satisfaction, in which 9 patients with the swelling around sternoclavicular joint, but no pain and other symptoms. The total Rockwood score was 12.78±1.43; the results were excellent in 24 cases, good in 8 cases. The use of the new type of locking hook plate for the treatment of unstable fracture of the sternoclavicular joint, internal fixation is reliable, high security, easy to operate, to provide a reliable method for the treatment of such trauma.

  8. Use of the oral sugar test in ponies when performed with or without prior fasting.

    PubMed

    Knowles, E J; Harris, P A; Elliott, J; Menzies-Gow, N J

    2017-07-01

    It is recommended that the oral sugar test (OST) for insulin dysregulation (ID) be performed after an overnight fast, but fasting is impractical in ponies kept solely at pasture. There are few data on OST repeatability and reliability in ponies. To report 1) whether OST results obtained in the morning after an overnight fast or without fasting in the afternoon (FASTING/FED) can be used interchangeably, 2) time of highest insulin concentration T max [insulin], repeatability and reliability of insulin response to the OST when FASTING or FED and 3) dichotomous agreement (ID/normal) within a small sample when FASTING or FED. Method comparison study. Oral sugar tests were performed on four occasions in 10 adult native British ponies, twice FASTING and twice FED. Insulin concentrations were measured by radioimmunoassay at 0-120 min (T 0,30,60,75,90,120 ). Differences between FASTING and FED results were assessed using mixed effects models. Indices of repeatability and reliability were calculated; dichotomous agreement was reported using kappa statistics. Serum [insulin] was significantly (P≤0.05) higher at T 60 -T 90 with prior fasting (estimated differences [95% confidence intervals]): T 60 : 23.5 μiu/ml (8.7-38.4 μiu/ml), T 75 : 27.1 μiu/ml (12.3-41.8 μiu/ml), T 90 : 15.1 (0.36-29.9 μiu/ml). Most frequently, T max [ins] occurred at T 30 . At any single time point, within-subject coefficients of variation were: FASTING: 40% and FED: 31%. The 95% limits for repeatability were FASTING: 29-340%, FED: 41-240%. Test reliabilities were FASTING: 0.70 and FED: 0.67. For dichotomous interpretation similar results (kappa = 0.7) were obtained using cut-offs of [Insulin] >60 μiu/ml at T 60 or T 90 for FASTING and [Insulin] >51 μiu/ml at T 30 or T 60 for FED samples. Oral sugar tests were performed on a small number of animals on one pasture during one season (spring). Clinicians should beware of interpreting changes in absolute OST results owing to poor repeatability. When stabling is unavailable, OSTs of ponies at pasture may yield similar dichotomous results without prior fasting. © 2016 EVJ Ltd.

  9. Stability-based classification for ankle fracture management and the syndesmosis injury in ankle fractures due to a supination external rotation mechanism of injury.

    PubMed

    Pakarinen, Harri

    2012-12-01

    The aim of this thesis was to confirm the utility of stability-based ankle fracture classification in choosing between non-operative and operative treatment of ankle fractures, to determine how many ankle fractures are amenable to non-operative treatment, to assess the roles of the exploration and anatomical repair of the AITFL in the outcome of patients with SER ankle fractures, to establish the sensitivities, specificities and interobserver reliabilities of the hook and intraoperative stress tests for diagnosing syndesmosis instability in SER ankle fractures, and to determine whether transfixation of unstable syndesmosis is necessary in SER ankle fractures. The utility of stability based fracture classification to choose between non-operative and operative treatment was assessed in a retrospective study (1) of 253 ankle fractures in skeletally mature patients, 160 of whom were included in the study to obtain an epidemiological profile in a population of 130,000. Outcome was assessed after a minimum follow-up of two years. The role of AITFL repairs was assessed in a retrospective study (2) of 288 patients with Lauge-Hansen SE4 ankle fractures; the AITFL was explored and repaired in one group (n=165), and a similar operative method was used but the AITFL was not explored in another group (n=123). Outcome was measured with a minimum follow-up of two years. Interobserver reliability of clinical syndesomosis tests (study 3) and the role of syndesmosis transfixation (study 4) were assessed in a prospective study of 140 patients with Lauge-Hansen SE4 ankle fractures. The stability of the distal tibiofibular joint was evaluated by the hook and ER stress tests. Clinical tests were carried out by the main surgeon and assistant, separately, after which a 7.5-Nm standardized ER stress test for both ankles was performed; if it was positive, the patient was randomized to either syndesmosis transfixation (13 patients) or no fixation (11 patients) treatment groups. The sensitivity and specificity of both clinical tests were calculated using the standard 7.5-Nm external rotation stress test as reference. Outcome was assessed after a minimum of one year of follow-up. Olerud-Molander (OM) scoring system, RAND 36-Item Health Survey, and VAS to measure pain and function were used as outcome measures in all studies. In study 1, 85 (53%) fractures were treated operatively using the stability based fracture classification. Non-operatively treated patients reported less pain and better OM (good or excellent 89% vs. 71%) and VAS functional scores compared to operatively treated patients although they experienced more displacement of the distal fibula (0 mm 30% vs. 69%; 0-2 mm 65% vs. 25%) after treatment. No non-operatively treated patients required operative fracture fixation during follow-up. In study 2, AITFL exploration and suture lead to equal functional outcome (OM mean, 77 vs. 73) to no exploration or fixation. In study 3, the hook test had a sensitivity of 0.25 and a specificity of 0.98. The external rotation stress test had a sensitivity of 0.58 and a specificity of 0.9. Both tests had excellent interobserver reliability; the agreement was 99% for the hook test and 98% for the stress test. There was no statistically significant difference in functional scores (OM mean, 79.6 vs. 83.6) or pain between syndesmosis transfixation and no fixation groups (Study 4). Our results suggest that a simple stability-based fracture classification is useful in choosing between non-operative and operative treatment of ankle fractures; approximately half of the ankle fractures can be treated non-operatively with success. Our observations also suggest that relevant syndesmosis injuries are rare in ankle fractures due to an SER mechanism of injury. According to our research, syndesmotic repair or fixation in SER ankle fracture has no influence on functional outcome or pain after minimum one year compared with no fixation.

  10. Inclusion of Topological Measurements into Analytic Estimates of Effective Permeability in Fractured Media

    NASA Astrophysics Data System (ADS)

    Sævik, P. N.; Nixon, C. W.

    2017-11-01

    We demonstrate how topology-based measures of connectivity can be used to improve analytical estimates of effective permeability in 2-D fracture networks, which is one of the key parameters necessary for fluid flow simulations at the reservoir scale. Existing methods in this field usually compute fracture connectivity using the average fracture length. This approach is valid for ideally shaped, randomly distributed fractures, but is not immediately applicable to natural fracture networks. In particular, natural networks tend to be more connected than randomly positioned fractures of comparable lengths, since natural fractures often terminate in each other. The proposed topological connectivity measure is based on the number of intersections and fracture terminations per sampling area, which for statistically stationary networks can be obtained directly from limited outcrop exposures. To evaluate the method, numerical permeability upscaling was performed on a large number of synthetic and natural fracture networks, with varying topology and geometry. The proposed method was seen to provide much more reliable permeability estimates than the length-based approach, across a wide range of fracture patterns. We summarize our results in a single, explicit formula for the effective permeability.

  11. Understanding the Geometry of Connected Fracture Flow with Multiperiod Oscillatory Hydraulic Tests.

    PubMed

    Sayler, Claire; Cardiff, Michael; Fort, Michael D

    2018-03-01

    An understanding of the spatial and hydraulic properties of fast preferential flow pathways in the subsurface is necessary in applications ranging from contaminant fate and transport modeling to design of energy extraction systems. One method for the characterization of fracture properties over interwellbore scales is Multiperiod Oscillatory Hydraulic (MOH) testing, in which the aquifer response to oscillatory pressure stimulations is observed. MOH tests were conducted on isolated intervals of wells in siliciclastic and carbonate aquifers in southern Wisconsin. The goal was to characterize the spatial properties of discrete fractures over interwellbore scales. MOH tests were conducted on two discrete fractured intervals intersecting two boreholes at one field site, and a nest of three piezometers at another field site. Fracture diffusivity estimates were obtained using analytical solutions that relate diffusivity to observed phase lag and amplitude decay. In addition, MOH tests were used to investigate the spatial extent of flow using different conceptual models of fracture geometry. Results indicated that fracture geometry at both field sites can be approximated by permeable two-dimensional fracture planes, oriented near-horizontally at one site, and near-vertically at the other. The technique used on MOH field data to characterize fracture geometry shows promise in revealing fracture network characteristics important to groundwater flow and transport. © 2017, National Ground Water Association.

  12. Global Sensitivity Applied to Dynamic Combined Finite Discrete Element Methods for Fracture Simulation

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Rougier, E.; Osthus, D.; Srinivasan, G.

    2017-12-01

    Fracture propagation play a key role for a number of application of interest to the scientific community. From dynamic fracture processes like spall and fragmentation in metals and detection of gas flow in static fractures in rock and the subsurface, the dynamics of fracture propagation is important to various engineering and scientific disciplines. In this work we implement a global sensitivity analysis test to the Hybrid Optimization Software Suite (HOSS), a multi-physics software tool based on the combined finite-discrete element method, that is used to describe material deformation and failure (i.e., fracture and fragmentation) under a number of user-prescribed boundary conditions. We explore the sensitivity of HOSS for various model parameters that influence how fracture are propagated through a material of interest. The parameters control the softening curve that the model relies to determine fractures within each element in the mesh, as well a other internal parameters which influence fracture behavior. The sensitivity method we apply is the Fourier Amplitude Sensitivity Test (FAST), which is a global sensitivity method to explore how each parameter influence the model fracture and to determine the key model parameters that have the most impact on the model. We present several sensitivity experiments for different combination of model parameters and compare against experimental data for verification.

  13. Reliability analysis of the AOSpine thoracolumbar spine injury classification system by a worldwide group of naïve spinal surgeons.

    PubMed

    Kepler, Christopher K; Vaccaro, Alexander R; Koerner, John D; Dvorak, Marcel F; Kandziora, Frank; Rajasekaran, Shanmuganathan; Aarabi, Bizhan; Vialle, Luiz R; Fehlings, Michael G; Schroeder, Gregory D; Reinhold, Maximilian; Schnake, Klaus John; Bellabarba, Carlo; Cumhur Öner, F

    2016-04-01

    The aims of this study were (1) to demonstrate the AOSpine thoracolumbar spine injury classification system can be reliably applied by an international group of surgeons and (2) to delineate those injury types which are difficult for spine surgeons to classify reliably. A previously described classification system of thoracolumbar injuries which consists of a morphologic classification of the fracture, a grading system for the neurologic status and relevant patient-specific modifiers was applied to 25 cases by 100 spinal surgeons from across the world twice independently, in grading sessions 1 month apart. The results were analyzed for classification reliability using the Kappa coefficient (κ). The overall Kappa coefficient for all cases was 0.56, which represents moderate reliability. Kappa values describing interobserver agreement were 0.80 for type A injuries, 0.68 for type B injuries and 0.72 for type C injuries, all representing substantial reliability. The lowest level of agreement for specific subtypes was for fracture subtype A4 (Kappa = 0.19). Intraobserver analysis demonstrated overall average Kappa statistic for subtype grading of 0.68 also representing substantial reproducibility. In a worldwide sample of spinal surgeons without previous exposure to the recently described AOSpine Thoracolumbar Spine Injury Classification System, we demonstrated moderate interobserver and substantial intraobserver reliability. These results suggest that most spine surgeons can reliably apply this system to spine trauma patients as or more reliably than previously described systems.

  14. Freeze fracturing of elastic porous media: a mathematical model

    PubMed Central

    Vlahou, I.; Worster, M. G.

    2015-01-01

    We present a mathematical model of the fracturing of water-saturated rocks and other porous materials in cold climates. Ice growing inside porous rocks causes large pressures to develop that can significantly damage the rock. We study the growth of ice inside a penny-shaped cavity in a water-saturated porous rock and the consequent fracturing of the medium. Premelting of the ice against the rock, which results in thin films of unfrozen water forming between the ice and the rock, is one of the dominant processes of rock fracturing. We find that the fracture toughness of the rock, the size of pre-existing faults and the undercooling of the environment are the main parameters determining the susceptibility of a medium to fracturing. We also explore the dependence of the growth rates on the permeability and elasticity of the medium. Thin and fast-fracturing cracks are found for many types of rocks. We consider how the growth rate can be limited by the existence of pore ice, which decreases the permeability of a medium, and propose an expression for the effective ‘frozen’ permeability. PMID:25792954

  15. Freeze fracturing of elastic porous media: a mathematical model.

    PubMed

    Vlahou, I; Worster, M G

    2015-03-08

    We present a mathematical model of the fracturing of water-saturated rocks and other porous materials in cold climates. Ice growing inside porous rocks causes large pressures to develop that can significantly damage the rock. We study the growth of ice inside a penny-shaped cavity in a water-saturated porous rock and the consequent fracturing of the medium. Premelting of the ice against the rock, which results in thin films of unfrozen water forming between the ice and the rock, is one of the dominant processes of rock fracturing. We find that the fracture toughness of the rock, the size of pre-existing faults and the undercooling of the environment are the main parameters determining the susceptibility of a medium to fracturing. We also explore the dependence of the growth rates on the permeability and elasticity of the medium. Thin and fast-fracturing cracks are found for many types of rocks. We consider how the growth rate can be limited by the existence of pore ice, which decreases the permeability of a medium, and propose an expression for the effective 'frozen' permeability.

  16. [The use of titanium nickelide devices in treating fractures of the zygomatico-orbital complex].

    PubMed

    Medvedev, Iu A; Sivolapov, K A

    1993-01-01

    The authors analyze the results of surgical treatment of 78 patients with zygomatico-orbital injuries. Mini-cramps and mini-plates of titanium nickelide with thermomechanical memory were employed for fracture fixation. Surgical strategy based on osteosynthesis with the use of such devices provides a reliable fixation of bone fragments and makes the operation less traumatic.

  17. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions ofmore » EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.« less

  18. Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study.

    PubMed

    Röijezon, Ulrik; Djupsjöbacka, Mats; Björklund, Martin; Häger-Ross, Charlotte; Grip, Helena; Liebermann, Dario G

    2010-09-27

    Assessment of sensorimotor function is useful for classification and treatment evaluation of neck pain disorders. Several studies have investigated various aspects of cervical motor functions. Most of these have involved slow or self-paced movements, while few have investigated fast cervical movements. Moreover, the reliability of assessment of fast cervical axial rotation has, to our knowledge, not been evaluated before. Cervical kinematics was assessed during fast axial head rotations in 118 women with chronic nonspecific neck pain (NS) and compared to 49 healthy controls (CON). The relationship between cervical kinematics and symptoms, self-rated functioning and fear of movement was evaluated in the NS group. A sub-sample of 16 NS and 16 CON was re-tested after one week to assess the reliability of kinematic variables. Six cervical kinematic variables were calculated: peak speed, range of movement, conjunct movements and three variables related to the shape of the speed profile. Together, peak speed and conjunct movements had a sensitivity of 76% and a specificity of 78% in discriminating between NS and CON, of which the major part could be attributed to peak speed (NS: 226 ± 88°/s and CON: 348 ± 92°/s, p < 0.01). Peak speed was slower in NS compared to healthy controls and even slower in NS with comorbidity of low-back pain. Associations were found between reduced peak speed and self-rated difficulties with running, performing head movements, car driving, sleeping and pain. Peak speed showed reasonably high reliability, while the reliability for conjunct movements was poor. Peak speed of fast cervical axial rotations is reduced in people with chronic neck pain, and even further reduced in subjects with concomitant low back pain. Fast cervical rotation test seems to be a reliable and valid tool for assessment of neck pain disorders on group level, while a rather large between subject variation and overlap between groups calls for caution in the interpretation of individual assessments.

  19. Interobserver Variability of Radiographic Assessment Using a Mobile Messaging Application as a Teleconsultation Tool

    PubMed Central

    Özkan, Sezai; Mellema, Jos J.; Ring, David; Chen, Neal C.

    2017-01-01

    Background: To examine whether interobserver reliability, decision-making, and confidence in decision-making in the treatment of distal radius fractures changes if radiographs are viewed on a messenger application on a mobile phone compared to a standard DICOM viewer. Methods: Radiographs of distal radius fractures were presented to surgeons on either a smart phone using a mobile messenger application or a laptop using a DICOM viewer application. Twenty observers participated: 10 (50%) were randomly assigned to the DICOM viewer group and 10 (50%) to the mobile messenger group. Each observer was asked to evaluate the cases and (1) classify the fracture type according to the AO classification, (2) recommend operative or conservative treatment and (3) rate their confidence about this decision. Results: There was no significant difference in interobserver reliability for AO classification and recommendation for surgery for distal radius fractures in both groups. The percentage of recommendation for surgery was significantly higher in the messenger application group compared to the DICOM viewer group (89% versus 78%, P=0.019) and the confidence for treatment decision was significantly higher in the mobile messenger group compared to the DICOM viewer group (8.9 versus 7.9, P=0.026). Conclusion: Messenger applications on mobile phones could facilitate remote decision-making for patients with distal radius fractures, but should be used with caution. PMID:29226202

  20. Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.

    2016-04-01

    A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and principal vector similarity criteria. Poles to points are assigned to individual discontinuity objects using easy custom vector clustering and Jaccard distance approaches, and each object is segmented into planar clusters using an improved version of the DBSCAN algorithm. Modal set orientations are then recomputed by cluster-based orientation statistics to avoid the effects of biases related to cluster size and density heterogeneity of the point cloud. Finally, spacing values are measured between individual discontinuity clusters along scanlines parallel to modal pole vectors, whereas individual feature size (persistence) is measured using 3D convex hull bounding boxes. Spacing and size are provided both as raw population data and as summary statistics. The tool is optimized for parallel computing on 64bit systems, and a Graphic User Interface (GUI) has been developed to manage data processing, provide several outputs, including reclassified point clouds, tables, plots, derived fracture intensity parameters, and export to modelling software tools. We present test applications performed both on synthetic 3D data (simple 3D solids) and real case studies, validating the results with existing geomechanical datasets.

  1. Testing of the SEE and OEE post-hip fracture.

    PubMed

    Resnick, Barbara; Orwig, Denise; Zimmerman, Sheryl; Hawkes, William; Golden, Justine; Werner-Bronzert, Michelle; Magaziner, Jay

    2006-08-01

    The purpose of this study was to test the reliability and validity of the Self-Efficacy for Exercise (SEE) and the Outcome Expectations for Exercise (OEE) scales in a sample of 166 older women post-hip fracture. There was some evidence of validity of the SEE and OEE based on confirmatory factor analysis and Rasch model testing, criterion based and convergent validity, and evidence of internal consistency based on alpha coefficients and separation indices and reliability based on R2 estimates. Rasch model testing demonstrated that some items had high variability. Based on these findings suggestions are made for how items could be revised and the scales improved for future use.

  2. FastStats: Osteoporosis

    MedlinePlus

    ... More data FRAX-based Estimates of 10-year Probability of Hip and Major Osteoporotic Fracture Among Adults ... 2016 Content source: CDC/National Center for Health Statistics Email Recommend Tweet YouTube Instagram Listen Watch RSS ...

  3. Calcaneotalar ratio: a new concept in the estimation of the length of the calcaneus.

    PubMed

    David, Vikram; Stephens, Terry J; Kindl, Radek; Ang, Andy; Tay, Wei-Han; Asaid, Rafik; McCullough, Keith

    2015-01-01

    Maintaining the calcaneal length after calcaneal fractures is vital to restoring the normal biomechanics of the foot, because it acts as an important lever arm to the plantarflexors of the foot. However, estimation of the length of the calcaneus to be reconstructed in comminuted calcaneal fractures can be difficult. We propose a new method to reliably estimate the calcaneal length radiographically by defining the calcaneotalar length ratio. A total of 100 ankle radiographs with no fracture in the calcaneus or talus taken in skeletally mature patients were reviewed by 6 observers. The anteroposterior lengths of the calcaneus and talus were measured, and the calcaneotalar length ratio was determined. The ratio was then used to estimate the length of the calcaneus. Interobserver reliability was determined using Cronbach's α coefficient and Pearson's correlation coefficient. The mean length of the calcaneus was 75 ± 0.6 mm, and the mean length of the talus was 59 ± 0.5 mm. The calcaneotalar ratio was 1.3. Using this ratio and multiplying it by the talar length, the mean average estimated length of the calcaneus was within 0.7 mm of the known calcaneal length. Cronbach's α coefficient and Pearson's correlation coefficient showed excellent interobserver reliability. The proposed calcaneotalar ratio is a new and reliable method to radiographically estimate the normal length of the calcaneus when reconstructing the calcaneus. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Modem transmission of data for 3D fracture modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, S.A.; Rodgerson, J.L.; Martinez, A.D.

    1996-06-01

    Hydraulic fracturing treatments require measurement of numerous parameters, including surface rates and pressures, to quantify fluids, proppant, and additives. Computers are used to acquire data for the purpose of calculating bottomhole pressure (BHP), compiling quality-control data, generating diagnostic plots, and, often, for modeling fracture geometry in real time. In the recent past, modems have been routinely used in conjunction with cellular phone systems to transmit field-monitored data to a remote office. More recently, these data have been used at the remote site to perform 3D fracture modeling for design verification and adjustment. This paper describes data-transmission technology and discusses themore » related cost and reliability.« less

  5. The difficult task of assessing perimortem and postmortem fractures on the skeleton: a blind text on 210 fractures of known origin.

    PubMed

    Cappella, Annalisa; Amadasi, Alberto; Castoldi, Elisa; Mazzarelli, Debora; Gaudio, Daniel; Cattaneo, Cristina

    2014-11-01

    The distinction between perimortem and postmortem fractures is an important challenge for forensic anthropology. Such a crucial task is presently based on macro-morphological criteria widely accepted in the scientific community. However, several limits affect these parameters which have not yet been investigated thoroughly. This study aims at highlighting the pitfalls and errors in evaluating perimortem or postmortem fractures. Two trained forensic anthropologists were asked to classify 210 fractures of known origin in four skeletons (three victims of blunt force trauma and one natural death) as perimortem, postmortem, or dubious, twice in 6 months in order to assess intraobserver error also. Results show large errors, ranging from 14.8 to 37% for perimortem fractures and from 5.5 to 14.8% for postmortem ones; more than 80% of errors concerned trabecular bone. This supports the need for more objective and reliable criteria for a correct assessment of peri- and postmortem bone fractures. © 2014 American Academy of Forensic Sciences.

  6. Prosthetic replacement for proximal humeral fractures.

    PubMed

    Kontakis, George; Tosounidis, Theodoros; Galanakis, Ioannis; Megas, Panagiotis

    2008-12-01

    The ideal management of complex proximal humeral fractures continues to be debatable. Evolution of proximal humeral fracture management, during the past decade, led to the implementation of many innovations in surgical treatment. Even though the pendulum of treatment seems to swing towards new trends such as locked plating, hemiarthroplasty remains a valid and reliable option that serves the patient's needs well. Hemiarthroplasty is indicated for complex proximal humeral fractures in elderly patients with poor bone stock and when internal fixation is difficult or unreliable. Hemiarthroplasty provides a better result when it is performed early post-injury. Stem height, retroversion and tuberosity positioning are technical aspects of utmost importance. Additionally reverse total shoulder arthroplasty is an alternative new modality that can be used as a primary solution in selected patients with proximal humeral fracture treatment. Failed hemiarthroplasty and fracture sequelae can be successfully managed with reverse total shoulder arthroplasty. Individual decision-making and tailored treatment that takes into consideration the personality of the fracture and the patient's characteristics should be used.

  7. [The laboratory evaluation of pathogenic factors under retarded consolidation of fractures of bones of lower extremities].

    PubMed

    Stogov, V M; Kireeva, E A; Karasev, A G

    2014-12-01

    The study was carried out to comparatively analyze metabolic profile and content of growth factors in blood serum of patients with retarded consolidation of fractures of bones of lower extremities. The evaluation was applied to concentration of metabolites, growth factors and enzyme activity of blood serum in 13 patients with retarded consolidation of fractures of thigh and shank bones (main group). The comparative group included 14 patients with solid fractures of thigh and shank bones. The analysis established that as compared to patients with solid fractures of bones, in patients with retarded consolidation of fractures blood serum contained reliably higher concentration of triglycerides, products of glycolysis, epidermal growth factor and transforming growth factors TGF-α and TGF-β2. The content of vitamin E and insullin-like growth factor (IGF-1) was decreased The given markers can be labeled as potential markers of diagnostic and prognosis of development of retarded consolidation of fractures.

  8. Reliability testing of two classification systems for osteoarthritis and post-traumatic arthritis of the elbow.

    PubMed

    Amini, Michael H; Sykes, Joshua B; Olson, Stephen T; Smith, Richard A; Mauck, Benjamin M; Azar, Frederick M; Throckmorton, Thomas W

    2015-03-01

    The severity of elbow arthritis is one of many factors that surgeons must evaluate when considering treatment options for a given patient. Elbow surgeons have historically used the Broberg and Morrey (BM) and Hastings and Rettig (HR) classification systems to radiographically stage the severity of post-traumatic arthritis (PTA) and primary osteoarthritis (OA). We proposed to compare the intraobserver and interobserver reliability between systems for patients with either PTA or OA. The radiographs of 45 patients were evaluated at least 2 weeks apart by 6 evaluators of different levels of training. Intraobserver and interobserver reliability were calculated by Spearman correlation coefficients with 95% confidence intervals. Agreement was considered almost perfect for coefficients >0.80 and substantial for coefficients of 0.61 to 0.80. In patients with both PTA and OA, intraobserver reliability and interobserver reliability were substantial, with no difference between classification systems. There were no significant differences in intraobserver or interobserver reliability between attending physicians and trainees for either classification system (all P > .10). The presence of fracture implants did not affect reliability in the BM system but did substantially worsen reliability in the HR system (intraobserver P = .04 and interobserver P = .001). The BM and HR classifications both showed substantial intraobserver and interobserver reliability for PTA and OA. Training level differences did not affect reliability for either system. Both trainees and fellowship-trained surgeons may easily and reliably apply each classification system to the evaluation of primary elbow OA and PTA, although the HR system was less reliable in the presence of fracture implants. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. Vertebral fracture after aircraft ejection during Operation Desert Storm.

    PubMed

    Osborne, R G; Cook, A A

    1997-04-01

    During Operation Desert Storm, 21 United States and 2 Italian military personnel were held in Iraq as prisoners of war. Of these, 18 had ejected from fixed-wing, ejection seat-equipped, combat aircraft prior to their capture. Of the 18, 6 (33%) had sustained vertebral fractures; 4 of these were compression fractures. This fracture rate is comparable to that of previously studied groups. Fractures were noted to be at several different vertebral sites and after ejecting from a variety of aircraft. Apart from contusions and abrasions, vertebral fractures were the most common injuries discovered in this repatriated population. None of the vertebral fractures produced recognizable neurological disability. The development of vertebral fractures was neither associated with the use of any particular ejection system or aircraft nor did the development of vertebral fractures appear dependent on the age, height or length of service of the affected personnel. Ejected aircrew with low altitude mission profiles seemed more predisposed to vertebral fracture than those at high altitudes, but with a small sample population, this relationship was not statistically significant (p > 0.25). Reliable data were unavailable on aircrew positioning and preparation time for ejection.

  10. Measuring Fracture Times Of Ceramics

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.

    1989-01-01

    Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.

  11. Statistical Tools And Artificial Intelligence Approaches To Predict Fracture In Bulk Forming Processes

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, R.; Ingarao, G.; Fonti, V.

    2007-05-01

    The crucial task in the prevention of ductile fracture is the availability of a tool for the prediction of such defect occurrence. The technical literature presents a wide investigation on this topic and many contributions have been given by many authors following different approaches. The main class of approaches regards the development of fracture criteria: generally, such criteria are expressed by determining a critical value of a damage function which depends on stress and strain paths: ductile fracture is assumed to occur when such critical value is reached during the analysed process. There is a relevant drawback related to the utilization of ductile fracture criteria; in fact each criterion usually has good performances in the prediction of fracture for particular stress - strain paths, i.e. it works very well for certain processes but may provide no good results for other processes. On the other hand, the approaches based on damage mechanics formulation are very effective from a theoretical point of view but they are very complex and their proper calibration is quite difficult. In this paper, two different approaches are investigated to predict fracture occurrence in cold forming operations. The final aim of the proposed method is the achievement of a tool which has a general reliability i.e. it is able to predict fracture for different forming processes. The proposed approach represents a step forward within a research project focused on the utilization of innovative predictive tools for ductile fracture. The paper presents a comparison between an artificial neural network design procedure and an approach based on statistical tools; both the approaches were aimed to predict fracture occurrence/absence basing on a set of stress and strain paths data. The proposed approach is based on the utilization of experimental data available, for a given material, on fracture occurrence in different processes. More in detail, the approach consists in the analysis of experimental tests in which fracture occurs followed by the numerical simulations of such processes in order to track the stress-strain paths in the workpiece region where fracture is expected. Such data are utilized to build up a proper data set which was utilized both to train an artificial neural network and to perform a statistical analysis aimed to predict fracture occurrence. The developed statistical tool is properly designed and optimized and is able to recognize the fracture occurrence. The reliability and predictive capability of the statistical method were compared with the ones obtained from an artificial neural network developed to predict fracture occurrence. Moreover, the approach is validated also in forming processes characterized by a complex fracture mechanics.

  12. Comparing slow and fast rupture in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Brantut, N.; David, E.; Mitchell, T. M.

    2017-12-01

    During the brittle failure of rock, elastically stored energy is converted into a localized fracture plane and surrounding fracture damage, seismic radiation, and thermal energy. However, the partitioning of energy might vary with the rate of elastic energy release during failure. Here, we present the results of controlled (slow) and dynamic (fast) rupture experiments on dry Lanhélin granite and Westerly granite samples, performed under triaxial stress conditions at confining pressures of 50 and 100 MPa. During the tests, we measured sample shortening, axial load and local strains (with 2 pairs of strain gauges glued directly onto the sample). In addition, acoustic emissions (AEs) and changes in seismic velocities were monitored. The AE rate was used as an indicator to manually control the axial load on the sample to stabilize rupture in the quasi-static failure experiments. For the dynamic rupture experiments a constant strain rate of 10-5 s-1 was applied until sample failure. A third experiment, labeled semi-controlled rupture, involved controlled rupture up to a point where the rupture became unstable and the remaining elastic energy was released dynamically. All experiments were concluded after a macroscopic fracture had developed across the whole sample and frictional sliding commenced. Post-mortem samples were epoxied, cut and polished to reveal the macroscopic fracture and the surrounding damage zone. The samples failed with average rupture velocities varying from 5x10-6 m/s up to >> 0.1 m/s. The analyses of AE locations on the slow ruptures reveal that within Westerly granite samples - with a smaller grain size - fracture planes are disbanded in favor of other planes when a geometrical irregularity is encountered. For the coarser grained Lanhélin granite a single fracture plane is always formed, although irregularities are recognized as well. The semi-controlled experiments show that for both rock types the rupture can become unstable in response to these irregularities. In Westerly granite, slow rupture experiments tend to produce complex fracture patterns while during the dynamic rupture experiments secondary rupture planes are not formed. These findings show that grain or flaw size, flaw distribution, and rupture speed strongly influence fracture localization and propagation.

  13. [Reduced fasting time improves comfort and satisfaction of elderly patients undergoing anesthesia for hip fracture].

    PubMed

    Imbelloni, Luiz Eduardo; Pombo, Illova Anaya Nasiane; Filho, Geraldo Borges de Morais

    2015-01-01

    Patient's satisfaction is a standard indicator of care quality. The aim of this study was to evaluate whether a preoperative oral ingestion of 200mL of a carbohydrate drink can improve comfort and satisfaction with anesthesia in elderly patients with hip fracture. Prospective randomized clinical trial conducted in a Brazilian public hospital, with patients ASA I-III undergoing surgery for hip fracture. The control group (NPO) received nothing by mouth after 9:00 p.m. the night before, while patients in the experimental group (CHO) received 200mL of a carbohydrate drink 2-4hours before the operation. Patients' characteristics, subjective perceptions, thirst and hunger and satisfaction were determined in four steps. Mann-Whitney U-test and Fisher exact test were used for comparison of control and experimental groups. A p-value <0.05 was considered significant. A total of 100 patients were included in one of two regimens of preoperative fasting. Fasting time decreased significantly in the study group. Patients drank 200mL 2:59h before surgery and showed no hunger (p <0.00) and thirsty on arrival to OR (p <0.00), resulting in increased satisfaction with the perioperative anesthesia care (p <0.00). The satisfaction questionnaire for surgical patient could become a useful tool in assessing the quality of care. In conclusion, CHO significantly reduces preoperative discomfort and increases satisfaction with anesthesia care. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. Development of the T+M coupled flow–geomechanical simulator to describe fracture propagation and coupled flow–thermal–geomechanical processes in tight/shale gas systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Moridis, George J.

    2013-10-01

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treatsmore » nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.« less

  15. Is fibular fracture displacement consistent with tibiotalar displacement?

    PubMed

    van den Bekerom, Michel P J; van Dijk, C Niek

    2010-04-01

    We believed open reduction with internal fixation is required for supination-external rotation ankle fractures located at the level of the distal tibiofibular syndesmosis (Lauge-Hanssen SER II and Weber B) with 2 mm or more fibular fracture displacement. The rationale for surgery for these ankle fractures is based on the notion of elevated intraarticular contact pressures with lateral displacement. To diagnose these injuries, we presumed that in patients with a fibular fracture with at least 2 mm fracture displacement, the lateral malleolus and talus have moved at least 2 mm in a lateral direction without medial displacement of the proximal fibula. We reviewed 55 adult patients treated operatively for a supination-external rotation II ankle fracture (2 mm or more fibular fracture displacement) between 1990 and 1998. On standard radiographs, distance from the tibia to the proximal fibula, distance from the tibia to the distal fibula, and displacement at the level of the fibular fracture were measured. These distances were compared preoperatively and postoperatively. We concluded tibiotalar displacement cannot be reliably assessed at the level of the fracture. Based on this and other studies, we believe there is little evidence to perform open reduction and internal fixation of supination-external rotation II ankle fractures. Level IV, case series. See Guidelines for Authors for a complete description of levels of evidence.

  16. The lingual splint: an often forgotten method for fixating pediatric mandibular fractures.

    PubMed

    Binahmed, Abdulaziz; Sansalone, Claudio; Garbedian, Justin; Sándor, George K B

    2007-01-01

    Maxillofacial fractures are uncommon in the pediatric population, and their treatment is unique due to the psychological, physiological, developmental and anatomical characteristics of children. We present the case of a boy who was treated in an outpatient dental clinic using a lingual splint for the reduction, stabilization and fixation of a mandibular body fracture. This technique is a reliable, noninvasive procedure that dentists may consider in selected cases by referral to an oral and maxillofacial surgeon. It also limits the discomfort and morbidity that can be associated with maxillomandibular fixation or open reduction and internal fixation in pediatric patients.

  17. Relevance of vitamin D in fall prevention.

    PubMed

    Bischoff-Ferrari, Heike A

    2017-03-01

    This review will summarize recent clinical studies and meta-analyses on the effect of vitamin D supplementation on fall prevention. As fall prevention is fundamental in fracture prevention at older age, we discuss if and to what extend the vitamin D effect on muscle modulates hip fracture risk. Further, to explain the effect of vitamin D on fall prevention, we will review the mechanistic evidence linking vitamin D to muscle health and the potentially selective effect of vitamin D on type II fast muscle fibers.

  18. Optimization of structures on the basis of fracture mechanics and reliability criteria

    NASA Technical Reports Server (NTRS)

    Heer, E.; Yang, J. N.

    1973-01-01

    Systematic summary of factors which are involved in optimization of given structural configuration is part of report resulting from study of analysis of objective function. Predicted reliability of performance of finished structure is sharply dependent upon results of coupon tests. Optimization analysis developed by study also involves expected cost of proof testing.

  19. Electronics Reliability Fracture Mechanics, Volume 2. Fracture Mechanics

    DTIC Science & Technology

    1992-05-01

    alloy or strength level. Aluminum alloy 2024 - T351 was selected as being representative of the aluminum wire, and the fatigue ...to bracket the bond wire fatigue tests. 3-41 Also shown for comparison are two curves, which are the crack growth rates for 2024 aluminum alloy (Ref...is very similar to that for 2024 aluminum alloy . 3.2.6 Discussion of Loop Vibration Fatigue Testing Results This experimental and

  20. Establishment of a Uniform Format for Data Reporting of Structural Material Properties for Reliability Analysis

    DTIC Science & Technology

    1994-06-30

    tip Opening Displacement (CTOD) Fracture Toughness Measurement". 48 The method has found application in the elastic-plastic fracture mechanics ( EPFM ...68 6.1 Proposed Material Property Database Format and Hierarchy .............. 68 6.2 Sample Application of the Material Property Database...the E 49.05 sub-committee. The relevant quality indicators applicable to the present program are: source of data, statistical basis of data

  1. Acoustic emission from composite materials. [nondestructive tests

    NASA Technical Reports Server (NTRS)

    Visconti, I. C.; Teti, R.

    1979-01-01

    The two basic areas where the acoustic emission (AE) technique can be applied are materials research and the evaluation of structural reliability. This experimental method leads to a better understanding of fracture mechanisms and is an NDT technique particularly well suited for the study of propagating cracks. Experiments are described in which acoustic emissions were unambiguously correlated with microstructural fracture mechanisms. The advantages and limitations of the AE technique are noted.

  2. Effect of core ceramic grinding on fracture behaviour of bilayered zirconia veneering ceramic systems under two loading schemes.

    PubMed

    Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke

    2016-12-01

    The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (p<0.001). Thermal veneering treatment reversed the transformation of monoclinic phase observed after initial grinding. No difference in initial (p=0.519 for subgroups Ac-Dc) and final fracture strength (p=0.699 for subgroups Ac-Dc; p=0.328 for subgroups At-Dt) was found among the four groups for both loading schemes. While coarse grinding slightly increased final fracture strength reliability (m) for subgroups Ac-Dc. Two different modes of fracture were observed according to which material was on the bottom surface. Components of the liner porcelain remained on the zirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that veneering porcelain be applied directly after routine lab grinding of zirconia ceramic, and its application on rough zirconia cores may be preferred to enhance bond strength. Copyright © 2016. Published by Elsevier Ltd.

  3. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  4. Reliability of smartphone-based teleradiology for evaluating thoracolumbar spine fractures.

    PubMed

    Stahl, Ido; Dreyfuss, Daniel; Ofir, Dror; Merom, Lior; Raichel, Michael; Hous, Nir; Norman, Doron; Haddad, Elias

    2017-02-01

    Timely interpretation of computed tomography (CT) scans is of paramount importance in diagnosing and managing spinal column fractures, which can be devastating. Out-of-hospital, on-call spine surgeons are often asked to evaluate CT scans of patients who have sustained trauma to the thoracolumbar spine to make diagnosis and to determine the appropriate course of urgent treatment. Capturing radiographic scans and video clips from computer screens and sending them as instant messages have become common means of communication between physicians, aiding in triaging and transfer decision-making in orthopedic and neurosurgical emergencies. The present study aimed to compare the reliability of interpreting CT scans viewed by orthopedic surgeons in two ways for diagnosing, classifying, and treatment planning for thoracolumbar spine fractures: (1) captured as video clips from standard workstation-based picture archiving and communication system (PACS) and sent via a smartphone-based instant messaging application for viewing on a smartphone; and (2) viewed directly on a PACS. Reliability and agreement study. Thirty adults with thoracolumbar spine fractures who had been consecutively admitted to the Division of Orthopedic Surgery of a Level I trauma center during 2014. Intraobserver agreement. CT scans were captured by use of an iPhone 6 smartphone from a computer screen displaying PACS. Then by use of the WhatsApp instant messaging application, video clips of the scans were sent to the personal smartphones of five spine surgeons. These evaluators were asked to diagnose, classify, and determine the course of treatment for each case. Evaluation of the cases was repeated 4 weeks later, this time using the standard method of workstation-based PACS. Intraobserver agreement was interpreted based on the value of Cohen's kappa statistic. The study did not receive any outside funding. Intraobserver agreement for determining fracture level was near perfect (κ=0.94). Intraobserver agreement for AO classification, proposed treatment, neural canal penetration, and Denis classification were substantial (κ values, 0.75, 0.73, 0.71, and 0.69, respectively). Intraobserver agreement for loss of vertebral height and kyphosis were moderate (κ values, 0.55 and 0.45, respectively) CONCLUSIONS: Video clips of CT scans can be readily captured by a smartphone from a workstation-based PACS and then transmitted by use of the WhatsApp instant messaging application. Diagnosing, classifying, and proposing treatment of fractures of the thoracic and lumbar spine can be made with equal reliability by evaluating video clips of CT scans transmitted to a smartphone or by the standard method of viewing the CT scan on a workstation-based PACS. Evaluating video clips of CT scans transmitted to a smartphone is a readily accessible, simple, and inexpensive method. We believe that it can be reliably used for consultations between the emergency physicians or orthopedic or neurosurgical residents with offsite, on-call specialists. It might also enable rural orcommunity emergency department physicians to communicate more efficiently and effectively with surgeons in tertiary referral centers. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Study of Damage and Fracture Toughness Due to Influence of Creep and Fatigue of Commercially Pure Copper by Monotonic and Cyclic Indentation

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabita; Prakash, Raghu V.

    2013-01-01

    Fracture toughness is the ability of a component containing a flow to resist fracture. In the current study, the Ball indentation (BI) test technique, which is well acknowledged as an alternative approach to evaluate mechanical properties of materials due to its semi-nondestructive, fast, and high accurate qualities is used to estimate damage and the fracture toughness for copper samples subjected to varying levels of creep and fatigue. The indentation fracture toughness shows the degradation of Cu samples when they are subjected to different creep conditions. Axial fatigue cycling increases the strength at the mid-gauge section compared to other regions of the samples due to initial strain hardening. The advancement of indentation depth with indentation fatigue cycles experiences transient stage, i.e., jump in indentation depth has been observed, which may be an indication of failure and followed by a steady state with almost constant depth propagation with indentation cycles.

  6. Arthroplasty for Unreconstructable Acute Fractures and Failed Fracture Fixation About the Hip and Knee in the Active Elderly: A New Paradigm.

    PubMed

    Kyle, Richard F; Duwelius, Paul J; Haidukewych, George J; Schmidt, Andrew H

    2017-02-15

    The techniques, materials, and designs for total joint arthroplasty underwent major improvements in the past 30 years. During this time, trauma surgeons classified the severity of fractures as well as identified certain articular fractures that do not have good outcomes and have a high rate of failure after internal fixation. Advanced improvements in arthroplasty have increased its reliability and longevity. Total joint arthroplasty is becoming a standard of care for some acute articular fractures, particularly displaced femoral neck fractures in the active elderly. Total joint arthroplasty also has become the standard of care after failed internal fixation in patients who have very complicated fractures about the knee, hip, and shoulder. As the population ages, fractures worldwide continue to rapidly increase. Elderly patients have a high risk for fractures that result from falls because of their poor bone quality. The current active elderly population participates in higher risk activities than previous elderly populations, which places them at risk for more injuries. This has become both a worldwide healthcare problem and an economic problem. Surgeons need to manage fractures in the active elderly with the latest advancements in technology and patient selection to ensure rapid recovery and the reduction of complications.

  7. A study on electromigration-inducing intergranular fracture of fine silver alloy wires

    NASA Astrophysics Data System (ADS)

    Hsueh, Hao-Wen; Hung, Fei-Yi; Lui, Truan-Sheng

    2017-01-01

    In this study, Pd-coated Cu, Ag (purity = 4 N), and Ag alloy (Ag-8Au-3Pd) wires were employed to measure the tensile properties during current stressing using the so-called dynamic current tensile (DCT) test. Both the tensile strength and elongation of the wires decreased dramatically in the DCT test, particularly of the Ag-based wires, and the fracture morphology of the Cu-based and Ag-based wires was ductile fracture and intergranular fracture, respectively. Compared to the Cu-based wires, electromigration occurred more easily in the Ag-based wires, and it always generated voids and cracks at the grain boundaries; therefore, the fracture morphology of the Ag-based wires was intergranular fracture owing to the weakened grain boundary. Further, the results indicated that the Ag-based wires could not carry a higher current density than the Cu-based wires, primarily because their extremely low strength and elongation in current stressing might cause serious reliability problems.

  8. Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study

    PubMed Central

    2010-01-01

    Background Assessment of sensorimotor function is useful for classification and treatment evaluation of neck pain disorders. Several studies have investigated various aspects of cervical motor functions. Most of these have involved slow or self-paced movements, while few have investigated fast cervical movements. Moreover, the reliability of assessment of fast cervical axial rotation has, to our knowledge, not been evaluated before. Methods Cervical kinematics was assessed during fast axial head rotations in 118 women with chronic nonspecific neck pain (NS) and compared to 49 healthy controls (CON). The relationship between cervical kinematics and symptoms, self-rated functioning and fear of movement was evaluated in the NS group. A sub-sample of 16 NS and 16 CON was re-tested after one week to assess the reliability of kinematic variables. Six cervical kinematic variables were calculated: peak speed, range of movement, conjunct movements and three variables related to the shape of the speed profile. Results Together, peak speed and conjunct movements had a sensitivity of 76% and a specificity of 78% in discriminating between NS and CON, of which the major part could be attributed to peak speed (NS: 226 ± 88 °/s and CON: 348 ± 92 °/s, p < 0.01). Peak speed was slower in NS compared to healthy controls and even slower in NS with comorbidity of low-back pain. Associations were found between reduced peak speed and self-rated difficulties with running, performing head movements, car driving, sleeping and pain. Peak speed showed reasonably high reliability, while the reliability for conjunct movements was poor. Conclusions Peak speed of fast cervical axial rotations is reduced in people with chronic neck pain, and even further reduced in subjects with concomitant low back pain. Fast cervical rotation test seems to be a reliable and valid tool for assessment of neck pain disorders on group level, while a rather large between subject variation and overlap between groups calls for caution in the interpretation of individual assessments. PMID:20875135

  9. Use of integrated analogue and numerical modelling to predict tridimensional fracture intensity in fault-related-folds.

    NASA Astrophysics Data System (ADS)

    Pizzati, Mattia; Cavozzi, Cristian; Magistroni, Corrado; Storti, Fabrizio

    2016-04-01

    Fracture density pattern predictions with low uncertainty is a fundamental issue for constraining fluid flow pathways in thrust-related anticlines in the frontal parts of thrust-and-fold belts and accretionary prisms, which can also provide plays for hydrocarbon exploration and development. Among the drivers that concur to determine the distribution of fractures in fold-and-thrust-belts, the complex kinematic pathways of folded structures play a key role. In areas with scarce and not reliable underground information, analogue modelling can provide effective support for developing and validating reliable hypotheses on structural architectures and their evolution. In this contribution, we propose a working method that combines analogue and numerical modelling. We deformed a sand-silicone multilayer to eventually produce a non-cylindrical thrust-related anticline at the wedge toe, which was our test geological structure at the reservoir scale. We cut 60 serial cross-sections through the central part of the deformed model to analyze faults and folds geometry using dedicated software (3D Move). The cross-sections were also used to reconstruct the 3D geometry of reference surfaces that compose the mechanical stratigraphy thanks to the use of the software GoCad. From the 3D model of the experimental anticline, by using 3D Move it was possible to calculate the cumulative stress and strain underwent by the deformed reference layers at the end of the deformation and also in incremental steps of fold growth. Based on these model outputs it was also possible to predict the orientation of three main fractures sets (joints and conjugate shear fractures) and their occurrence and density on model surfaces. The next step was the upscaling of the fracture network to the entire digital model volume, to create DFNs.

  10. Shear Wave Splitting analysis of borehole microseismic reveals weak azimuthal anisotropy hidden behind strong VTI fabric of Lower Paleozoic shales in northern Poland

    NASA Astrophysics Data System (ADS)

    Gajek, Wojciech; Verdon, James; Malinowski, Michał; Trojanowski, Jacek

    2017-04-01

    Azimuthal anisotropy plays a key-role in hydraulic fracturing experiments, since it provides information on stress orientation and pre-existing fracture system presence. The Lower Paleozoic shale plays in northern Poland are characterized by a strong (15-18%) Vertical Transverse Isotropy (VTI) fabric which dominates weak azimuthal anisotropy being of order of 1-2%. A shear wave travelling in the subsurface after entering an anisotropic medium splits into two orthogonally polarized waves travelling with different velocities. Splitting parameters which can be assessed using a microseismic array are polarization of the fast shear wave and time delay between two modes. Polarization of the fast wave characterizes the anisotropic system on the wave path while the time delay is proportional to the magnitude of anisotropy. We employ Shear Wave Splitting (SWS) technique using a borehole microseismic dataset collected during a hydraulic stimulation treatment located in northern Poland, to image fracture strike masked by a strong VTI signature. During the inversion part, the VTI background parameters were kept constant using information from 3D seismic (VTI model used for pre-stack depth migration). Obtained fracture azimuths averaged over fracturing stages are consistent with the available XRMI imager logs from the nearby vertical well, however they are different from the large-scale maximum stress direction (by 40-45 degrees). Inverted Hudson's crack density (ca. 2%) are compatible with the low shear-wave anisotropy observed in the cross-dipole sonic logs (1-2%). This work has been funded by the Polish National Centre for Research and Development within the Blue Gas project (No BG2/SHALEMECH/14). Data were provided by the PGNiG SA. Collaboration with University of Bristol was supported within TIDES COST Action ES1401.

  11. Growth Kinematics of Opening-Mode Fractures

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Alzayer, Y.; Laubach, S.; Fall, A.

    2014-12-01

    Fracture aperture is a primary control on flow in fractured reservoirs of low matrix permeability including unconventional oil and gas reservoirs and most geothermal systems. Guided by principles of linear elastic fracture mechanics, fracture aperture is generally assumed to be a linear function of fracture length and elastic material properties. Natural opening-mode fractures with significant preserved aperture are observed in core and outcrop indicative of fracture opening strain accommodated by permanent solution-precipitation creep. Fracture opening may thus be decoupled from length growth if the material effectively weakens after initial elastic fracture growth by either non-elastic deformation processes or changes in elastic properties. To investigate the kinematics of fracture length and aperture growth, we reconstructed the opening history of three opening-mode fractures that are bridged by crack-seal quartz cement in Travis Peak Sandstone of the SFOT-1 well, East Texas. Similar crack-seal cement bridges had been interpreted to form by repeated incremental fracture opening and subsequent precipitation of quartz cement. We imaged crack-seal cement textures for bridges sampled at varying distance from the tips using scanning electron microscope cathodoluminescence, and determined the number and thickness of crack-seal cement increments as a function of position along the fracture length and height. Observed trends in increment number and thickness are consistent with an initial stage of fast fracture propagation relative to aperture growth, followed by a stage of slow propagation and pronounced aperture growth. Consistent with fluid inclusion observations indicative of fracture opening and propagation occurring over 30-40 m.y., we interpret the second phase of pronounced aperture growth to result from fracture opening strain accommodated by solution-precipitation creep and concurrent slow, possibly subcritical, fracture propagation. Similar deformation mechanisms are envisioned to govern fracture growth over shorter timescales in reactive chemical subsurface environments including CO2 reservoirs, organic-rich shales, and geothermal systems.

  12. Value of a skin island flap as a postoperative predictor of vascularized fibula graft viability in extensive diaphyseal bone defect reconstruction.

    PubMed

    Guo, Q-F; Xu, Z-H; Wen, S-F; Liu, Q-H; Liu, S-H; Wang, J-W; Li, X-Y; Xu, H-H

    2012-09-01

    To evaluate the feasibility and reliability of free vascularized fibular graft with skin island flap for reconstruction of large diaphyseal bone defect. The clinical results of vascularized fibular graft and experiences related to the importance and reliability of a monitoring island flap for the reconstruction of various long-bone defects were reviewed in 87 patients. Bony reconstruction was achieved in 82 of the 87 patients. Arterial thrombosis of anastomosed vessel in two patients and venous congestion of monitoring flap in nine patients occurred in the early postoperative periods. All of them were managed by immediate thrombectomy and reanastomosis, alternatively the thrombotic veins were replaced by new veins to anastomose with the superficial veins in five patients. Partial flap necrosis was noted in six patients, but additional surgical intervention was not required. The vascularized fibula survived and bony fusion was achieved in all patients. Postoperative stress fractures of the fibula graft occurred in 19 (21.8%) patients (once in seven patients, twice in five patients, three or more times in seven) as the mechanical stress to the graft increased. Included fracture on the tibia in 12 patients, humerus in one and femur in six. Treatments included casting in 11 patients, percutaneous pinning in one case, and adjustment of external fixator in seven patients. Bony union was finally achieved an average of 9.6 months after fracture. Correct alignment between the recipient bone and the external fixator is a prerequisite to preventing graft fracture. Vascularized fibula transfer is a valuable procedure for long-bone defects, and a skin island-monitoring flap is a simple, extremely useful, and reliable method for assessing the vascular status of vascularized fibula. Level IV. Retrospective study. Copyright © 2012. Published by Elsevier Masson SAS.

  13. Measurement of clavicular length and shortening after a midshaft clavicular fracture: Spatial digitization versus planar roentgen photogrammetry.

    PubMed

    Stegeman, Sylvia A; de Witte, Pieter Bas; Boonstra, Sjoerd; de Groot, Jurriaan H; Nagels, Jochem; Krijnen, Pieta; Schipper, Inger B

    2016-08-01

    Clavicular shortening after fracture is deemed prognostic for clinical outcome and is therefore generally assessed on radiographs. It is used for clinical decision making regarding operative or non-operative treatment in the first 2weeks after trauma, although the reliability and accuracy of the measurements are unclear. This study aimed to assess the reliability of roentgen photogrammetry (2D) of clavicular length and shortening, and to compare these with 3D-spatial digitization measurements, obtained with an electromagnetic recording system (Flock of Birds). Thirty-two participants with a consolidated non-operatively treated two or multi-fragmented dislocated midshaft clavicular fracture were analysed. Two observers measured clavicular lengths and absolute and proportional clavicular shortening on radiographs taken before and after fracture consolidation. The clavicular lengths were also measured with spatial digitization. Inter-observer agreement on the radiographic measurements was assessed using the Intraclass Correlation Coefficient (ICC). Agreement between the radiographic and spatial digitization measurements was assessed using a Bland-Altman plot. The inter-observer agreement on clavicular length, and absolute and proportional shortening on trauma radiographs was almost perfect (ICC>0.90), but moderate for absolute shortening after consolidation (ICC=0.45). The Bland-Altman plot compared measurements of length on AP panorama radiographs with spatial digitization and showed that planar roentgen photogrammetry resulted in up to 37mm longer and 34mm shorter measurements than spatial digitization. Measurements of clavicular length on radiographs are highly reliable between observers, but may not reflect the actual length and shortening of the clavicle when compared to length measurements with spatial digitization. We recommend to use proportional shortening when measuring clavicular length or shortening on radiographs for clinical decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Clinical and radiological outcomes of transoral endoscope-assisted treatment of mandibular condylar fractures.

    PubMed

    You, H-J; Moon, K-C; Yoon, E-S; Lee, B-I; Park, S-H

    2016-03-01

    Fractures of the mandibular condyle are one of the most common craniofacial fractures. However, the diagnosis and treatment of these fractures is controversial because of the multiple surgical approaches available. The purposes of this study were to identify surgery-related technical tips for better outcomes and to evaluate the results as well as complications encountered during 7 years of endoscope use to supplement the limited intraoral approach in the treatment of mandibular condylar fractures. Between 2005 and 2012, 50 patients with condylar fractures underwent endoscope-assisted reduction surgery. Postoperative facial bone computed tomography and panoramic radiography demonstrated adequate reduction of the condylar fractures in all patients. No condylar resorption was detected, and most patients displayed a satisfactory functional and structural recovery. There was no facial nerve damage or transitory hypoesthesia, and there were no visible scars after the surgery. Transoral endoscope-assisted treatment is a challenging but reliable method with lower morbidity and a rapid recovery. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Applications of Automation Methods for Nonlinear Fracture Test Analysis

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    As fracture mechanics material testing evolves, the governing test standards continue to be refined to better reflect the latest understanding of the physics of the fracture processes involved. The traditional format of ASTM fracture testing standards, utilizing equations expressed directly in the text of the standard to assess the experimental result, is self-limiting in the complexity that can be reasonably captured. The use of automated analysis techniques to draw upon a rich, detailed solution database for assessing fracture mechanics tests provides a foundation for a new approach to testing standards that enables routine users to obtain highly reliable assessments of tests involving complex, non-linear fracture behavior. Herein, the case for automating the analysis of tests of surface cracks in tension in the elastic-plastic regime is utilized as an example of how such a database can be generated and implemented for use in the ASTM standards framework. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.

  16. Direct Resin Composite Restoration of Maxillary Central Incisors with Fractured Tooth Fragment Reattachment: Case Report.

    PubMed

    Szmidt, Monika; Górski, Maciej; Barczak, Katarzyna; Buczkowska-Radlińska, Jadwiga

    This article presents a clinical protocol to reconstruct two accidentally damaged maxillary central incisors using composite resin material and a fractured tooth component. A patient was referred to the clinic with fracture of the two maxillary central incisors. Clinical examination revealed that both teeth were fractured in the middle third of the crown and that the fractures involved enamel and dentin with no pulp exposure. The patient had also suffered a lower lip laceration. When the lip was evaluated, a fractured fragment of the maxillary right central incisor was found inside the wound. The missing part of the tooth was replaced via adhesive attachment. Due to the damage of the fractured part of the maxillary left central incisor, direct composite restoration of this tooth was performed. With the advent of adhesive dentistry, the process of fragment reattachment has become simplified and more reliable. This procedure provides improved function, is faster to perform, and provides long-lasting effects, indicating that reattachment of a coronal fragment is a realistic alternative to placement of conventional resin composite restorations.

  17. Fracture in Westerly granite under AE feedback and constant strain rate loading: Nucleation, quasi-static propagation, and the transition to unstable fracture propagation

    USGS Publications Warehouse

    Thompson, B.D.; Young, R.P.; Lockner, D.A.

    2006-01-01

    New observations of fracture nucleation are presented from three triaxial compression experiments on intact samples of Westerly granite, using Acoustic Emission (AE) monitoring. By conducting the tests under different loading conditions, the fracture process is demonstrated for quasi-static fracture (under AE Feedback load), a slowly developing unstable fracture (loaded at a 'slow' constant strain rate of 2.5 ?? 10-6/s) and an unstable fracture that develops near instantaneously (loaded at a 'fast' constant strain rate of 5 ?? 10-5/s). By recording a continuous ultrasonic waveform during the critical period of fracture, the entire AE catalogue can be captured and the exact time of fracture defined. Under constant strain loading, three stages are observed: (1) An initial nucleation or stable growth phase at a rate of ??? 1.3 mm/s, (2) a sudden increase to a constant or slowly accelerating propagation speed of ??? 18 mm/s, and (3) unstable, accelerating propagation. In the ??? 100 ms before rupture, the high level of AE activity (as seen on the continuous record) prevented the location of discrete AE events. A lower bound estimate of the average propagation velocity (using the time-to-rupture and the existing fracture length) suggests values of a few m/s. However from a low gain acoustic record, we infer that in the final few ms, the fracture propagation speed increased to 175 m/s. These results demonstrate similarities between fracture nucleation in intact rock and the nucleation of dynamic instabilities in stick slip experiments. It is suggested that the ability to constrain the size of an evolving fracture provides a crucial tool in further understanding the controls on fracture nucleation. ?? Birkha??user Verlag, Basel, 2006.

  18. Possible benefits of strontium ranelate in complicated long bone fractures.

    PubMed

    Alegre, Duarte Nuno; Ribeiro, Costa; Sousa, Carlos; Correia, João; Silva, Luís; de Almeida, Luís

    2012-02-01

    Osteoporosis drugs are prescribed to prevent fragility fractures, which is the principal aim of the management of osteoporosis. However, if fracture does occur, then it is also important to promote a fast and uneventful healing process. Despite this, little is known about the effect of osteoporosis drugs on bone healing in humans. Strontium ranelate is an osteoporosis agent that increases bone formation and reduces bone resorption and may therefore be beneficial in fracture healing. We report four cases of fracture non-union for up to 20 months. Treatment with strontium ranelate (2 g/day) for between 6 weeks and 6 months appeared to contribute to bone consolidation in the four cases. Animal studies support beneficial effects of strontium ranelate on bone healing via improvement of bone material properties and microarchitecture in the vicinity of the fracture. The clinical cases described herein provide new information on these effects, in the absence of randomized controlled studies on the clinical efficacy of pharmacological treatments in osteoporosis in fracture repair. Further studies are necessary. Fracture healing is an important topic in orthopedic research and is also a concern for patients with postmenopausal osteoporosis. Evidence from case reports and animal studies suggests that strontium ranelate improves bone microarchitecture and accelerates fracture healing. A positive effect of osteoporosis treatments on bone healing is an interesting possibility and merits further clinical research.

  19. Identifying atypical femoral fractures--a retrospective review.

    PubMed

    Juby, Angela G; Crowther, Sean; Cree, Marilyn

    2014-11-01

    Subtrochanteric atypical femoral fractures (AFFs) have been reported in patients on osteoporosis therapy (bisphosphonates and denosumab). In 2010, and again in 2013, the ASBMR AFF Task Force developed strict diagnostic criteria for AFFs. This is the first study using these criteria to define the prevalence of AFFs in Canada. This study is a retrospective review of all adult patients (April 2002-March 2013) with an ICD 10 code for hip, femoral or subtrochanteric fracture, from two referral hospitals in Alberta, Canada. All identified as isolated subtrochanteric fractures were further evaluated by chart review, prescription review and examination of radiographs. Of 349 subjects, 79 had isolated subtrochanteric fractures. Of the 70 cases of subtrochanteric fractures that were radiographically assessed (9 films unavailable), 41 fulfilled ASBMR 2013 AFF criteria. The remaining subjects had subtrochanteric fractures but did not meet the ASBMR criteria to qualify as AFFs. There were 11 AFFs in 2012/2013, giving a rate of AFFs of 1.42 per 100,000 50 + year adults, compared to a rate of 103.47 per 100,000 50+ year adults for typical hip fractures. Isolated subtrochanteric fractures are rare. They cannot reliably be identified by ICD coding alone. In this study, only 59 % of all isolated subtrochanteric/femoral shaft fractures fulfilled the ASBMR task force criteria for true AFFs. The rate of typical hip fractures was substantially higher than the rate of AFFs, defined by ASBMR diagnostic criteria.

  20. Reduction and internal fixation of displaced intra-articular calcaneal fractures with a locking nail: a prospective study of sixty nine cases.

    PubMed

    Simon, P; Goldzak, M; Eschler, A; Mittlmeier, T

    2015-10-01

    The best treatment for intra-articular fractures of the calcaneus is still debated. The aims of this study were to determine whether intrafocal reduction of thalamic fractures is effective, to evaluate whether a locking nail is able to maintain reduction of the articular surface and to analyse the functional results of this original method. This prospective study assessed 69 fractures treated with a locking fracture nail in 63 cases and with primary subtalar fusion in six (Calcanail (®), FH). Articular congruity and global reduction of the calcaneus was assessed in all patients by computed tomography (CT) scan three months postoperatively. Functional results were evaluated according to the American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Score (AOFAS-AHS) and all complications recorded. For the 63 fracture nails, the average AOFAS score was 85.9 at a mean final follow-up of 12 months. Only three secondary fusions were performed. For the six comminuted fractures requiring primary fusion, the average AOFAS score was 75.9 at the last follow-up. The posterior intrafocal approach for both reduction and locked nailing of intra-articular calcaneal fractures has been proven as an effective and reliable procedure.

  1. Risk factors for falls with severe fracture in elderly people living in a middle-income country: a case control study.

    PubMed

    Coutinho, Evandro S F; Fletcher, Astrid; Bloch, Katia V; Rodrigues, Laura C

    2008-08-26

    Fracture after falling has been identified as an important problem in public health. Most studies of risk factors for fractures due to falls have been carried out in developed countries, although the size of the elderly population is increasing fast in middle income countries. The objective of this paper is to identify risk factors for fall related to severe fractures in those aged 60 or more in a middle-income country. A case-control study was carried out in Rio de Janeiro-Brazil based general hospitals between 2002-2003. Two hundred-fifty hospitalised cases of fracture were matched with 250 community controls by sex, age group and living area. Data were collected for socio-demographic variables, health status and drugs used before the fall. A conditional logistic regression model was fitted to identify variables associated with the risk of fall related severe fracture. Low body mass index, cognitive impairment, stroke and lack of urine control were associated with increased risk of severe fall related fractures. Benzodiazepines and muscle relaxants were also related to an increased risk of severe fractures while moderate use of alcohol was associated with reduced risk. Although the association between benzodiazepines and fractures due to fall has been consistently demonstrated for old people, this has not been the case for muscle relaxant drugs. The decision to prescribe muscle relaxants for elderly people should take into account the risk of severe fracture associated with these drugs.

  2. Do clinical outcomes correlate with bone density after open reduction and internal fixation of tibial plateau fractures.

    PubMed

    Gausden, Elizabeth; Garner, Matthew R; Fabricant, Peter D; Warner, Stephen J; Shaffer, Andre D; Lorich, Dean G

    2017-06-01

    The operative management of tibial plateau fractures in elderly patients has historically led to inconsistent results, and these clinical outcomes were thought to be associated with poor bone quality often in elderly patients. The goal of this study was to investigate the relationship between bone density and subjective clinical outcome scores after open reduction and internal fixation of tibial plateau fractures. This is a retrospective cohort study from a single-surgeon conducted at an Academic, Level 1 Trauma Center. A preoperative computed tomography (CT) scan was obtained for all patients. Bone density of the distal femur was quantified with Hounsfield units (HU) as measured on axial CT scans. Inter-rater reliability of HU measurements was assessed using interclass correlation coefficients. Regression models controlling for age were used to identify relationships between bone density (HU) and the following variables: articular subsidence and 1-year subjective clinical outcomes scores [Knee Outcome Survey Activities of Daily Living Scale (KOS-ADLS), and Short-Form-36 (SF-36) physical and mental component scores (PCS, MCS)]. Sixty-one patients with a mean age of 59.3 years (range 27-85 years) and a minimum of 12 months of clinical follow-up were included in the study. The majority of the fractures (32 of 61) were classified as Schatzker II tibial plateau fractures, and there were 13 Schatzker V fractures, 11 Schatzker VI fractures, 2 Schatzker IV fractures and 1 Schatzker 1 fracture. HU measurements demonstrated an almost perfect inter-observer reliability (ICC = 0.97). Age was negatively correlated with HU measurements (r = -0.51, p < 0.001), and using a geriatric cut-off of 65 years of age, the geriatric group had a lower mean HU compared to the non-geriatric group (78.2 versus 114.8, p = 0.018). There was no significant relationship between bone quality, as assessed by distal femoral HU, and any subjective clinical outcome score. Inferior bone mineral density alone does not appear to affect clinical outcomes 1 year postoperatively when bone grafting is used to restore osseous voids. Poor bone quality should not be used as an indication for non-operative management of tibial plateau fractures.

  3. Weibull crack density coefficient for polydimensional stress states

    NASA Technical Reports Server (NTRS)

    Gross, Bernard; Gyekenyesi, John P.

    1989-01-01

    A structural ceramic analysis and reliability evaluation code has recently been developed encompassing volume and surface flaw induced fracture, modeled by the two-parameter Weibull probability density function. A segment of the software involves computing the Weibull polydimensional stress state crack density coefficient from uniaxial stress experimental fracture data. The relationship of the polydimensional stress coefficient to the uniaxial stress coefficient is derived for a shear-insensitive material with a random surface flaw population.

  4. Psychometric properties of the Chinese version of the Functioning Assessment Short Test (FAST) in bipolar disorder.

    PubMed

    Zhang, Yong; Long, Xingning; Ma, Xiaojuan; He, Qianqian; Luo, Xingguang; Bian, Yanhui; Xi, Yuanyuan; Sun, Xia; Ng, Chee H; Vieta, Eduard; Xiang, Yu-Tao

    2018-06-05

    Bipolar disorder (BD) is often associated with significant functional impairment. However, there is currently no valid and reliable instrument for this variable that is both brief and easy to administer in China. We thus aimed to evaluate the psychometric properties of the Chinese version of the Functioning Assessment Short Test (FAST) in Chinese adults with BD. In this sample of adult subjects, 176 with BD and 53 healthy controls were included. The Chinese version of the FAST, the Young Mania Rating Scale (YMRS), the 17-item Hamilton Depression Rating Scale (HDRS-17) and the Global Assessment Functioning (GAF) were administered, and the psychometric analysis of the FAST was conducted. The internal consistency (Cronbach's alpha) was 0.89 and 0.88 for the FAST at the baseline and week 1, respectively. Four domains (occupational functioning, cognitive functioning, interpersonal relationship and financial issues) at baseline had high item-total correlations. The FAST assessments at baseline and week 1 were highly correlated, indicating high test-retest reliability. The FAST total score was strongly associated with GAF total scores at week 0 (r  = -0.952, p < 0.001), HDRS (r = 0.575, p < 0.001) and YRMS (r = 0.394, p < 0.001) and at week 1 (r  = -0.945, p < 0.001; r  = 0.582, p < 0.001; r  = 0.363, p < 0.001), respectively, suggesting high concurrent validity. The FAST showed four dimensional measurement properties in exploratory factor analysis at baseline. The Chinese version of the FAST has satisfactory psychometric properties in terms of validity and reliability in Chinese adults with BD. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.

    2010-01-01

    Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures

  6. Serum of 25-Hydroxyvitamin D and Intact Parathyroid Hormone Levels in Postmenopausal Women with Hip and Upper Limb Fractures.

    PubMed

    Lv, Jiang-Tao; Zhang, Ying-Ying; Tian, Shao-Qi; Sun, Kang

    2016-05-01

    To assess the serum of 25-hydroxyvitamin D (25(OH)D) and intact parathyroid hormone (iPTH) levels in postmenopausal women from northern China with hip and upper limb fractures. Case-control. Affiliated Hospital of Qingdao University. Postmenopausal women diagnosed with hip fracture (n = 335) and matched controls without fracture (n = 335). Between 2011 and 2013, fasting venous samples were analyzed for 25(OH)D, iPTH, alkaline phosphatase (ALP), calcium, and phosphorus. All women completed a standardized questionnaire designed to document putative risk factors for fractures. Eight percent of participants had vitamin D deficiency, and 66.0% had secondary hyperparathyroidism. Serum 25(OH)D levels were significantly (P < .001) lower in women with hip fracture than in controls. Multivariate logistic regression analysis adjusted for common risk factors showed that serum 25(OH)D of 20 ng/mL or less was an independent indicator of hip fracture (odds ratio (OR) = 2.98, 95% confidence interval (CI) = 2.11-4.20) and concomitant upper limb fracture in those with existing hip fractures (OR = 4.77, 95% CI = 1.60-10.12). The area under the receiver operating characteristic curve of 25(OH)D was 0.77 (95% CI = 0.68-0.84) for hip fracture and 0.80 (95% CI = 0.72-0.89) for hip and upper limb fractures. Vitamin D insufficiency and secondary hyperparathyroidism were a common problem in postmenopausal women who presented with concomitant hip and upper limb fractures, suggesting that they might contribute to the pathophysiology of fractures in postmenopausal women. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  7. Probabilistic fracture finite elements

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Lua, Y. J.

    1991-01-01

    The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.

  8. Probabilistic fracture finite elements

    NASA Astrophysics Data System (ADS)

    Liu, W. K.; Belytschko, T.; Lua, Y. J.

    1991-05-01

    The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.

  9. A Review of Periprosthetic Femoral Fractures Associated With Total Hip Arthroplasty

    PubMed Central

    Marsland, Daniel; Mears, Simon C.

    2012-01-01

    Periprosthetic fractures of the femur in association with total hip arthroplasty are increasingly common and often difficult to treat. Patients with periprosthetic fractures are typically elderly and frail and have osteoporosis. No clear consensus exists regarding the optimal management strategy because there is limited high-quality research. The Vancouver classification facilitates treatment decisions. In the presence of a stable prosthesis (type-B1 and -C fractures), most authors recommend surgical stabilization of the fracture with plates, strut grafts, or a combination thereof. In up to 20% of apparent Vancouver type-B1 fractures, the femoral stem is loose, which may explain the high failure rates associated with open reduction and internal fixation. Some authors recommend routine opening and dislocation of the hip to perform an intraoperative stem stability test to rule out a loose component. Advances in plating techniques and technology are improving the outcomes for these fractures. For fractures around a loose femoral prosthesis (types B2 and 3), revision using an extensively porous-coated uncemented long stem, with or without additional fracture fixation, appears to offer the most reliable outcome. Cement-in-cement revision using a long-stem prosthesis is feasible in elderly patients with a well-fixed cement mantle. It is essential to treat the osteoporosis to help fracture healing and to prevent further fractures. We provide an overview of the causes, classification, and management of periprosthetic femoral fractures around a total hip arthroplasty based on the current best available evidence. PMID:23569704

  10. Epidemiology of atlas fractures--a national registry-based cohort study of 1,537 cases.

    PubMed

    Matthiessen, Christian; Robinson, Yohan

    2015-11-01

    The epidemiology of fractures of the first cervical vertebra-the atlas-has not been well documented. Previous studies concerning atlas fractures focus on treatment and form a weak platform for epidemiologic study. This study aims to provide reliable epidemiologic data on atlas fractures. This was a national registry-based cohort study. A total of 1,537 cases of atlas fractures between 1997 and 2011 from the Swedish National Patient Registry (NPR). The outcome measures were annual incidence and mortality. Data from the NPR and the Swedish Cause of Death Registry were extracted, including age, gender, diagnosis, comorbidity, treatment codes, and date of death. The Charlson Comorbidity Index was calculated and a survival analysis performed. A total of 869 (56.5%) cases were men, and 668 (43.5%) were women. The mean age of the entire population was 64 years. The proportion of atlas fractures of all registered cervical fractures was 10.6%. In 19% of all cases, there was an additional fracture of the axis, and 7% of all cases had additional subaxial cervical fractures. Patients with fractures of the axis were older than patients with isolated atlas fractures. The annual incidence almost doubled during the study period, and in 2011, it was 17 per million inhabitants. The greatest increase in incidence occurred in the elderly population. Atlas fractures occurred predominantly in the elderly population. Further study is needed to determine the cause of the increasing incidence. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Newly developed double neural network concept for reliable fast plasma position control

    NASA Astrophysics Data System (ADS)

    Jeon, Young-Mu; Na, Yong-Su; Kim, Myung-Rak; Hwang, Y. S.

    2001-01-01

    Neural network is considered as a parameter estimation tool in plasma controls for next generation tokamak such as ITER. The neural network has been reported to be so accurate and fast for plasma equilibrium identification that it may be applied to the control of complex tokamak plasmas. For this application, the reliability of the conventional neural network needs to be improved. In this study, a new idea of double neural network is developed to achieve this. The new idea has been applied to simple plasma position identification of KSTAR tokamak for feasibility test. Characteristics of the concept show higher reliability and fault tolerance even in severe faulty conditions, which may make neural network applicable to plasma control reliably and widely in future tokamaks.

  12. FRACOR-software toolbox for deterministic mapping of fracture corridors in oil fields on AutoCAD platform

    NASA Astrophysics Data System (ADS)

    Ozkaya, Sait I.

    2018-03-01

    Fracture corridors are interconnected large fractures in a narrow sub vertical tabular array, which usually traverse entire reservoir vertically and extended for several hundreds of meters laterally. Fracture corridors with their huge conductivities constitute an important element of many fractured reservoirs. Unlike small diffuse fractures, actual fracture corridors must be mapped deterministically for simulation or field development purposes. Fracture corridors can be identified and quantified definitely with borehole image logs and well testing. However, there are rarely sufficient image logs or well tests, and it is necessary to utilize various fracture corridor indicators with varying degrees of reliability. Integration of data from many different sources, in turn, requires a platform with powerful editing and layering capability. Available commercial reservoir characterization software packages, with layering and editing capabilities, can be cost intensive. CAD packages are far more affordable and may easily acquire the versatility and power of commercial software packages with addition of a small software toolbox. The objective of this communication is to present FRACOR, a software toolbox which enables deterministic 2D fracture corridor mapping and modeling on AutoCAD platform. The FRACOR toolbox is written in AutoLISPand contains several independent routines to import and integrate available fracture corridor data from an oil field, and export results as text files. The resulting fracture corridor maps consists mainly of fracture corridors with different confidence levels from combination of static and dynamic data and exclusion zones where no fracture corridor can exist. The exported text file of fracture corridors from FRACOR can be imported into an upscaling programs to generate fracture grid for dual porosity simulation or used for field development and well planning.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell

    Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-­related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictivemore » models and monitoring techniques. The project involved three major components: (1) study of two-­phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-­2013) and partially supported a post-­doctoral scholar (Dr. Jean Elkhoury; 2010-­2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-­2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-­water or water-­CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high--resolution mechanistic model that couples elastic deformation of contacts and aperture-­dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.« less

  14. Fracture characterization from near-offset VSP inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, S.; MacBeth, C.; Queen, J.

    1997-01-01

    A global optimization method incorporating a ray-tracing scheme is used to invert observations of shear-wave splitting from two near-offset VSPs recorded at the Conoco Borehole Test Facility, Kay County, Oklahoma. Inversion results suggest that the seismic anisotropy is due to a non-vertical fracture system. This interpretation is constrained by the VSP acquisition geometry for which two sources are employed along near diametrically opposite azimuths about the well heads. A correlation is noted between the time-delay variations between the fast and slow split shear waves and the sandstone formations.

  15. Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models

    NASA Astrophysics Data System (ADS)

    Sommer, Silke

    2010-06-01

    This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.

  16. solveME: fast and reliable solution of nonlinear ME models.

    PubMed

    Yang, Laurence; Ma, Ding; Ebrahim, Ali; Lloyd, Colton J; Saunders, Michael A; Palsson, Bernhard O

    2016-09-22

    Genome-scale models of metabolism and macromolecular expression (ME) significantly expand the scope and predictive capabilities of constraint-based modeling. ME models present considerable computational challenges: they are much (>30 times) larger than corresponding metabolic reconstructions (M models), are multiscale, and growth maximization is a nonlinear programming (NLP) problem, mainly due to macromolecule dilution constraints. Here, we address these computational challenges. We develop a fast and numerically reliable solution method for growth maximization in ME models using a quad-precision NLP solver (Quad MINOS). Our method was up to 45 % faster than binary search for six significant digits in growth rate. We also develop a fast, quad-precision flux variability analysis that is accelerated (up to 60× speedup) via solver warm-starts. Finally, we employ the tools developed to investigate growth-coupled succinate overproduction, accounting for proteome constraints. Just as genome-scale metabolic reconstructions have become an invaluable tool for computational and systems biologists, we anticipate that these fast and numerically reliable ME solution methods will accelerate the wide-spread adoption of ME models for researchers in these fields.

  17. A 2.5D Reactive Transport Model for Fracture Alteration Simulation

    DOE PAGES

    Deng, Hang; Molins, Sergi; Steefel, Carl; ...

    2016-06-30

    Understanding fracture alteration resulting from geochemical reactions is critical in predicting fluid migration in the subsurface and is relevant to multiple environmental challenges. Here in this paper, we present a novel 2.5D continuum reactive transport model that captures and predicts the spatial pattern of fracture aperture change and the development of an altered layer in the near-fracture region. The model considers permeability heterogeneity in the fracture plane and updates fracture apertures and flow fields based on local reactions. It tracks the reaction front of each mineral phase and calculates the thickness of the altered layer. Given this treatment, the modelmore » is able to account for the diffusion limitation on reaction rates associated with the altered layer. The model results are in good agreement with an experimental study in which a CO 2-acidified brine was injected into a fracture in the Duperow Dolomite, causing dissolution of calcite and dolomite that result in the formation of a preferential flow channel and an altered layer. Finally, with an effective diffusion coefficient consistent with the experimentally observed porosity of the altered layer, the model captures the progressive decrease in the dissolution rate of the fast-reacting mineral in the altered layer.« less

  18. Mechanisms of High-Temperature Fatigue Failure in Alloy 800H

    NASA Technical Reports Server (NTRS)

    BhanuSankaraRao, K.; Schuster, H.; Halford, G. R.

    1996-01-01

    The damage mechanisms influencing the axial strain-controlled Low-Cycle Fatigue (LCF) behavior of alloy 800H at 850 C have been evaluated under conditions of equal tension/compression ramp rates (Fast-Fast (F-F): 4 X 10(sup -3)/s and Slow-Slow (S-S): 4 X 10(sup -5)/s) and asymmetrical ramp rates (Fast-Slow (F-S): 4 x 10(sup -3)/s / 4 X 10(sup -5/s and Slow-Fast (S-F): 4 X 10(sup -5) / 4 X 10(sup -3)/s) in tension and compression. The fatigue life, cyclic stress response, and fracture modes were significantly influenced by the waveform shape. The fatigue lives displayed by different loading conditions were in the following order: F-F greater than S-S greater than F-S greater than S-F. The fracture mode was dictated by the ramp rate adopted in the tensile direction. The fast ramp rate in the tensile direction led to the occurrence of transgranular crack initiation and propagation, whereas the slow ramp rate caused intergranular initiation and propagation. The time-dependent processes and their synergistic interactions, which were at the basis of observed changes in cyclic stress response and fatigue life, were identified. Oxidation, creep damage, dynamic strain aging, massive carbide precipitation, time-dependent creep deformation, and deformation ratcheting were among the several factors influencing cyclic life. Irrespective of the loading condition, the largest effect on life was exerted by oxidation processes. Deformation ratcheting had its greatest influence on life under asymmetrical loading conditions. Creep damage accumulated the greatest amount during the slow tensile ramp under S-F conditions.

  19. Fracture Behavior under Impact.

    DTIC Science & Technology

    1982-07-01

    effects .,w’ on the loading condition before, at, and after crack instability can re- .-oo .. .. ,..*, lea.’./,’ ... *. w . . ;) "~ l .. I...’.. I. - S ...34. --- "- op sult. Further information is necessary to fully understand the dynamic processes associated with the fast

  20. Two-dimensional distribution of microbial activity and flow patterns within naturally fractured chalk.

    PubMed

    Arnon, Shai; Ronen, Zeev; Adar, Eilon; Yakirevich, Alexander; Nativ, Ronit

    2005-10-01

    The two-dimensional distribution of flow patterns and their dynamic change due to microbial activity were investigated in naturally fractured chalk cores. Long-term biodegradation experiments were conducted in two cores ( approximately 20 cm diameter, 31 and 44 cm long), intersected by a natural fracture. 2,4,6-tribromophenol (TBP) was used as a model contaminant and as the sole carbon source for aerobic microbial activity. The transmissivity of the fractures was continuously reduced due to biomass accumulation in the fracture concurrent with TBP biodegradation. From multi-tracer experiments conducted prior to and following the microbial activity, it was found that biomass accumulation causes redistribution of the preferential flow channels. Zones of slow flow near the fracture inlet were clogged, thus further diverting the flow through zones of fast flow, which were also partially clogged. Quantitative evaluation of biodegradation and bacterial counts supported the results of the multi-tracer tests, indicating that most of the bacterial activity occurs close to the inlet. The changing flow patterns, which control the nutrient supply, resulted in variations in the concentrations of the chemical constituents (TBP, bromide and oxygen), used as indicators of biodegradation.

  1. Post-traumatic subtalar osteoarthritis: which grading system should we use?

    PubMed

    de Muinck Keizer, Robert-Jan O; Backes, Manouk; Dingemans, Siem A; Goslings, J Carel; Schepers, Tim

    2016-09-01

    To assess and compare post-traumatic osteoarthritis following intra-articular calcaneal fractures, one must have a reliable grading system that consistently grades the post-traumatic changes of the joint. A reliable grading system aids in the communication between treating physicians and improves the interpretation of research. To date, there is no consensus on what grading system to use in the evaluation of post-traumatic subtalar osteoarthritis. The objective of this study was to determine and compare the inter- and intra-rater reliability of two grading systems for post-traumatic subtalar osteoarthritis. Four observers evaluated 50 calcaneal fractures at least one year after trauma on conventional oblique lateral, internally and externally rotated views, and graded post-traumatic subtalar osteoarthritis using the Kellgren and Lawrence Grading Scale (KLGS) and the Paley Grading System (PGS). Inter- and intra-rater reliability were calculated and compared. The inter-rater reliability showed an intra-class correlation (ICC) of 0.54 (95 % CI 0.40-0.67) for the KLGS and an ICC of 0.41 (95 % CI 0.26 - 0.57) for the PGS. This difference was not statistically significant. The intra-rater reliability showed a mean weighted kappa of 0.62 for both the KLGS and the PGS. There is no statistically significant difference in reliability between the Kellgren and Lawrence Grading System (KLGS) and the Paley Grading System (PGS). The PGS allows for an easy two-step approach making it easy for everyday clinical purposes. For research purposes however, the more detailed and widely used KLGS seems preferable.

  2. Fracture Modes and Identification of Fault Zones in Wenchuan Earthquake Fault Scientific Drilling Boreholes

    NASA Astrophysics Data System (ADS)

    Deng, C.; Pan, H.; Zhao, P.; Qin, R.; Peng, L.

    2017-12-01

    After suffering from the disaster of Wenchuan earthquake on May 12th, 2008, scientists are eager to figure out the structure of formation, the geodynamic processes of faults and the mechanism of earthquake in Wenchuan by drilling five holes into the Yingxiu-Beichuan fault zone and Anxian-Guanxian fault zone. Fractures identification and in-situ stress determination can provide abundant information for formation evaluation and earthquake study. This study describe all the fracture modes in the five boreholes on the basis of cores and image logs, and summarize the response characteristics of fractures in conventional logs. The results indicate that the WFSD boreholes encounter enormous fractures, including natural fractures and induced fractures, and high dip-angle conductive fractures are the most common fractures. The maximum horizontal stress trends along the borehole are deduced as NWW-SEE according to orientations of borehole breakouts and drilling-induced fractures, which is nearly parallel to the strikes of the younger natural fracture sets. Minor positive deviations of AC (acoustic log) and negative deviation of DEN (density log) demonstrate their responses to fracture, followed by CNL (neutron log), resistivity logs and GR (gamma ray log) at different extent of intensity. Besides, considering the fact that the reliable methods for identifying fracture zone, like seismic, core recovery and image logs, can often be hampered by their high cost and limited application, this study propose a method by using conventional logs, which are low-cost and available in even old wells. We employ wavelet decomposition to extract the high frequency information of conventional logs and reconstruction a new log in special format of enhance fracture responses and eliminate nonfracture influence. Results reveal that the new log shows obvious deviations in fault zones, which confirm the potential of conventional logs in fracture zone identification.

  3. Reliability assessment and improvement for a fast corrector power supply in TPS

    NASA Astrophysics Data System (ADS)

    Liu, Kuo-Bin; Liu, Chen-Yao; Wang, Bao-Sheng; Wong, Yong Seng

    2018-07-01

    Fast Orbit Feedback System (FOFB) can be installed in a synchrotron light source to eliminate undesired disturbances and to improve the stability of beam orbit. The design and implementation of an accurate and reliable Fast Corrector Power Supply (FCPS) is essential to realize the effectiveness and availability of the FOFB. A reliability assessment for the FCPSs in the FOFB of Taiwan Photon Source (TPS) considering MOSFETs' temperatures is represented in this paper. The FCPS is composed of a full-bridge topology and a low-pass filter. A Hybrid Pulse Width Modulation (HPWM) requiring two MOSFETs in the full-bridge circuit to be operated at high frequency and the other two be operated at the output frequency is adopted to control the implemented FCPS. Due the characteristic of HPWM, the conduction loss and switching loss of each MOSFET in the FCPS is not same. Two of the MOSFETs in the full-bridge circuit will suffer higher temperatures and therefore the circuit reliability of FCPS is reduced. A Modified PWM Scheme (MPWMS) designed to average MOSFETs' temperatures and to improve circuit reliability is proposed in this paper. Experimental results measure the MOSFETs' temperatures of FCPS controlled by the HPWM and the proposed MPWMS. The reliability indices under different PWM controls are then assessed. From the experimental results, it can be observed that the reliability of FCPS using the proposed MPWMS can be improved because the MOSFETs' temperatures are closer. Since the reliability of FCPS can be enhanced, the availability of FOFB can also be improved.

  4. Bonding measurement -Strength and fracture mechanics approaches.

    PubMed

    Anunmana, Chuchai; Wansom, Wiroj

    2017-07-26

    This study investigated the effect of cross-sectional areas on interfacial fracture toughness and bond strength of bilayered dental ceramics. Zirconia core ceramics were veneered and cut to produce specimens with three different cross-sectional areas. Additionally, monolithic specimens of glass veneer were also prepared. The specimens were tested in tension until fracture at the interface and reported as bond strength. Fracture surfaces were observed, and the apparent interfacial toughness was determined from critical crack size and failure stress. The results showed that cross-sectional area had no effect on the interfacial toughness whereas such factor had a significant effect on interfacial bond strength. The study revealed that cross-sectional area had no effect on the interfacial toughness, but had a significant effect on interfacial bond strength. The interfacial toughness may be a more reliable indicator for interfacial bond quality than interfacial bond strength.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAdams, Brian J.; Pearson, Raymond A.

    With the continuing trend of decreasing feature sizes in flip-chip assemblies, the reliability tolerance to interfacial flaws is also decreasing. Small-scale disbonds will become more of a concern, pointing to the need for a better understanding of the initiation stage of interfacial delamination. With most accepted adhesion metric methodologies tailored to predict failure under the prior existence of a disbond, the study of the initiation phenomenon is open to development and standardization of new testing procedures. Traditional fracture mechanics approaches are not suitable, as the mathematics assume failure to originate at a disbond or crack tip. Disbond initiation is believedmore » to first occur at free edges and corners, which act as high stress concentration sites and exhibit singular stresses similar to a crack tip, though less severe in intensity. As such, a 'fracture mechanics-like' approach may be employed which defines a material parameter--a critical stress intensity factor (K{sub c})--that can be used to predict when initiation of a disbond at an interface will occur. The factors affecting the adhesion of underfill/polyimide interfaces relevant to flip-chip assemblies were investigated in this study. The study consisted of two distinct parts: a comparison of the initiation and propagation phenomena and a comparison of the relationship between sub-critical and critical initiation of interfacial failure. The initiation of underfill interfacial failure was studied by characterizing failure at a free-edge with a critical stress intensity factor. In comparison with the interfacial fracture toughness testing, it was shown that a good correlation exists between the initiation and propagation of interfacial failures. Such a correlation justifies the continuing use of fracture mechanics to predict the reliability of flip-chip packages. The second aspect of the research involved fatigue testing of tensile butt joint specimens to determine lifetimes at sub-critical load levels. The results display an interfacial strength ranking similar to that observed during monotonic testing. The fatigue results indicate that monotonic fracture mechanics testing may be an adequate screening tool to help predict cyclic underfill failure; however lifetime data is required to predict reliability.« less

  6. Internal fixators: a safe option for managing distal femur fractures?

    PubMed Central

    Batista, Bruno Bellaguarda; Salim, Rodrigo; Paccola, Cleber Antonio Jansen; Kfuri, Mauricio

    2014-01-01

    OBJECTIVE: Evaluate safety and reliability of internal fixator for the treatment of intra-articular and periarticular distal femur fractures. METHODS: Retrospective data evaluation of 28 patients with 29 fractures fixed with internal fixator was performed. There was a predominance of male patients (53.5%), with 52% of open wound fractures, 76% of AO33C type fractures, and a mean follow up of 21.3 months. Time of fracture healing, mechanical axis deviation, rate of infection and postoperative complications were registered. RESULTS: Healing rate was 93% in this sample, with an average time of 5.5 months. Twenty-seven percent of patients ended up with mechanical axis deviation, mostly resulting from poor primary intra-operative reduction. There were two cases of implant loosening; two implant breakage, and three patients presented stiff knee. No case of infection was observed. Healing rate in this study was comparable with current literature; there was a high degree of angular deviation, especially in the coronal plane. CONCLUSION: Internal fixators are a breakthrough in the treatment of knee fractures, but its use does not preclude application of principles of anatomical articular reduction and mechanical axis restoration. Level of Evidence II, Retrospective Study. PMID:25061424

  7. Biodegradable fixation of mandibular fractures in children: stability and early results.

    PubMed

    Yerit, Kaan C; Hainich, Sibylle; Enislidis, Georg; Turhani, Dritan; Klug, Clemens; Wittwer, Gert; Ockher, Michael; Undt, Gerhard; Kermer, Christian; Watzinger, Franz; Ewers, Rolf

    2005-07-01

    The aim of this study was to assess the safety and efficiency of biodegradable self-reinforced (SR-PLDLA) bone plates and screws in open reduction and internal fixation of mandible fractures in children. Thirteen patients (5 female, 8 male; mean age 12 years, range 5-16 years) were operated on various fractures of the mandible (2 symphyseal, 6 parasymphyseal, 4 body, 3 angle, 1 ramus, 2 condylar fractures). The mean follow-up time was 26.4 months (range 10.9-43.4 months). Intermaxillary fixation was applied in cases with concomitant condylar fractures up to 3 weeks. Primary healing of the fractured mandible was observed in all patients. Postoperative complications were minor and transient. The outcome of the operations was not endangered. Adverse tissue reactions to the implants, malocclusion, and growth restrictions did not occur during the observation period. Pediatric patients benefit from the advantages of resorbable materials, especially from faster mobilization and the avoidance of secondary removal operations. Based on these preliminary results, self-reinforced fixation devices are safe and efficient in the treatment of pediatric mandible fractures. However, further clinical investigations are necessary to evaluate the long-term reliability.

  8. Lateral compression open cap splint with circummandibular wiring for management of pediatric mandibular fractures: a retrospective audit of 10 cases.

    PubMed

    Bhola, Nitin; Jadhav, Anendd; Borle, Rajiv; Khemka, Gaurav; Adwani, Nitin; Bhattad, Mayur

    2014-03-01

    Mandibular fractures are relatively less frequent in children when compared to adults. Pediatric patients present a unique challenge to maxillofacial surgeons in terms of their treatment planning and in their functional needs. We currently describe our experience with lateral compression open cap splint with circummandibular wiring as a treatment modality which involves fewer risks in treating pediatric symphysis/parasymphysis/body mandibular fractures. A retrospective analysis of pediatric patients with mandibular symphysis/parasymphysis/body fractures operated from January 2007 to January 2012 was performed. Clinical photographs and orthopantomogram assessment at the time of presentation, after treatment, and at 6 months postoperatively were evaluated. All the 10 patients were followed up until the period of 6 months, and none of them had any major complications. Postoperatively, there was satisfactory healing and union of fracture fragments in all the patients. Only one patient developed infection at submental region. The 6-month follow-up showed good occlusion, without interference in teeth eruption and no signs of temporomandibular joint problems. Lateral compression open cap splints for treatment of pediatric mandibular symphysis/parasymphysis/body fractures are reliable treatment modalities with regard to occlusion-guided fracture reduction.

  9. Should lower limb fractures be treated surgically in patients with chronic spinal injuries? Experience in a reference centre.

    PubMed

    Barrera-Ochoa, S; Haddad, S; Rodríguez-Alabau, S; Teixidor, J; Tomás, J; Molero, V

    To report the outcomes of surgical treatment of lower limb fractures in patients with chronic spinal cord injuries. A total of 37 lower limb fractures were treated from 2003 to 2010, of which 25 fractures were treated surgically and 12 orthopaedically. Patients of the surgical group had better clinical results, range of motion, bone consolidation, and less pressure ulcers and radiological misalignment. No differences were detected between groups in terms of pain, hospital stay, and medical complications. There is no currently consensus regarding the management of lower limb fractures in patients with chronic spinal cord injuries, but the trend has been conservative treatment due to the high rate of complications in surgical treatment. Chronic spinal cord injuries patients with lower limb fractures who are treated surgically achieved a more reliable consolidation, practically a free range of motion, low rate of cutaneous complications, and pain associated with the fracture. This allows a quick return to the previous standard of living, and should be considered as an alternative to orthopaedic treatment in these patients. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Biological Perspectives of Delayed Fracture Healing

    PubMed Central

    Hankenson, KD; Zmmerman, G; Marcucio, R

    2015-01-01

    Fracture healing is a complex biological process that requires interaction among a series of different cell types. Maintaining the appropriate temporal progression and spatial pattern is essential to achieve robust healing. We can temporally assess the biological phases via gene expression, protein analysis, histologically, or non-invasively using biomarkers as well as imaging techniques. However, determining what leads to normal verses abnormal healing is more challenging. Since the ultimate outcome of the process of fracture healing is to restore the original functions of bone, assessment of fracture healing should include not only monitoring the restoration of structure and mechanical function, but also an evaluation of the restoration of normal bone biology. Currently very few non-invasive measures of the biology of healing exist; however, recent studies that have correlated non-invasive measures with fracture healing outcome in humans have shown that serum TGFbeta1 levels appear to be an indicator of healing vs non-healing. In the future, developing additional serum measures to assess biological healing will improve the reliability and permit us to assess stages of fracture healing. Additionally, new functional imaging technologies could prove useful for better understanding both normal fracture healing and predicting dysfunctional healing in human patients. PMID:24857030

  11. Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, D.; Brunett, A.; Passerini, S.

    Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. Themore » mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.« less

  12. Experimental Study and Numerical Modeling of Fracture Propagation in Shale Rocks During Brazilian Disk Test

    NASA Astrophysics Data System (ADS)

    Mousavi Nezhad, Mohaddeseh; Fisher, Quentin J.; Gironacci, Elia; Rezania, Mohammad

    2018-06-01

    Reliable prediction of fracture process in shale-gas rocks remains one of the most significant challenges for establishing sustained economic oil and gas production. This paper presents a modeling framework for simulation of crack propagation in heterogeneous shale rocks. The framework is on the basis of a variational approach, consistent with Griffith's theory. The modeling framework is used to reproduce the fracture propagation process in shale rock samples under standard Brazilian disk test conditions. Data collected from the experiments are employed to determine the testing specimens' tensile strength and fracture toughness. To incorporate the effects of shale formation heterogeneity in the simulation of crack paths, fracture properties of the specimens are defined as spatially random fields. A computational strategy on the basis of stochastic finite element theory is developed that allows to incorporate the effects of heterogeneity of shale rocks on the fracture evolution. A parametric study has been carried out to better understand how anisotropy and heterogeneity of the mechanical properties affect both direction of cracks and rock strength.

  13. [Treatment of complex scapular body fractures by locking reconstructive plates].

    PubMed

    Zhang, Jun-wei; Hou, Jin-yong; Yang, Mao-qing

    2011-03-01

    To investigate the method and effect of treatment of complex scapular body fractures by locking reconstructive plate through modified posterior approach. From August 2005 to November 2009, 27 patients with complex scapula body fractures were treated by locking reconstruction bone plate fixation,including 19 males and 8 females with an average age of 36 years old ranging from 16 to 64 years. The time after injury was 0.5 hours to 11 days (averaged 3 days). Of all the patients, 9 cases were associated with ipsilateral clavicle fracture, 2 cases were associated with acromioclavicular joint dislocation,16 cases were associated with multiple rib fractures, 1 case were associated with humeral shaft fractures, 5 cases were associated with pleural effusion, atelectasis, lung contusion etc. After operating,shoulder functional recovery were followed up. Twenty-four patients were followed up from 2 to 35 months with an average of 19 months. According to Hardegger shoulder function,the results were excellent in 15 cases, good in 7 cases, general in 2 cases. This method had the advantage of less trauma and clear exposure, firm and reliable fixation, and early activities.

  14. Microstructure-dependent fracture toughness (JIC) variations in dissimilar pipe welds for pressure vessel system of nuclear plants

    NASA Astrophysics Data System (ADS)

    Rathod, Dinesh W.; Pandey, Sunil; Singh, P. K.; Kumar, Suranjit

    2017-09-01

    In present study, dissimilar metal weld (DMW) joints between SA508Gr.3cl.1 ferritic steel and SS304LN pipes were prepared using Inconel 82/182, and Inconel 52/152 consumables. Metallurgical properties and their influence on fracture toughness of weldment regions and interfacial regions could play a significant role in integrity assessment of these joints. Ni-based consumables exhibit complex metallurgical properties at interfacial regions. The metallurgical characterization and fracture toughness studies of Inconel 82/182 and Inconel 52/152 joints have been carried out for determining the optimum consumable for DMW joint requirements and the effect of microstructure on fracture toughness in weldment regions. The present codes and procedures for integrity assessment of DMW joints have not given due considerations of metallurgical properties. The requirements for metallurgical properties by considering their effect on fracture toughness properties in integrity assessment have been discussed for reliable analysis. Inconel 82/182 is preferred over Inconel 52/152 joints owing to favorable metallurgical and fracture toughness properties across the interfacial and weldment regions.

  15. A systematic approach for studying the signs and symptoms of fever in adult patients: the fever assessment tool (FAST).

    PubMed

    Ames, Nancy J; Powers, John H; Ranucci, Alexandra; Gartrell, Kyungsook; Yang, Li; VanRaden, Mark; Leidy, Nancy Kline; Wallen, Gwenyth R

    2017-04-27

    Although body temperature is one of four key vital signs routinely monitored and treated in clinical practice, relatively little is known about the symptoms associated with febrile states. The purpose of this study was to assess the validity, reliability and feasibility of the Fever Assessment Tool (FAST) in an acute care research setting. Qualitative: To assess content validity and finalize the FAST instrument, 12 adults from an inpatient medical-surgical unit at the National Institutes of Health (NIH) Clinical Center participated in cognitive interviews within approximately 12 h of a febrile state (tympanic temperature ≥ 38° Celsius). Quantitative: To test reliability, validity and feasibility, 56 new adult inpatients completed the 21-item FAST. The cognitive interviews clarified and validated the content of the final 21-item FAST. Fifty-six patients completed the FAST from two to 133 times during routine vital sign assessment, yielding 1,699 temperature time points. Thirty-four percent of the patients (N = 19) experienced fever at one or more time points, with a total of 125 febrile time points. Kuder-Richardson 20 (KR-20) reliability of the FAST was 0.70. Four nonspecific symptom categories, Tired or Run-Down (12), Sleepy (13), Weak or Lacking Energy (11), and Thirsty (9) were among the most frequently reported symptoms in all participants. Using Generalized Estimating Equations (GEE), the odds of reporting eight symptoms, Warm (4), Sweating (5), Thirsty (9), General Body Aches (10), Weak or Lacking Energy (11), Tired or Run Down (12) and Difficulty Breathing (17), were increased when patients had a fever (Fever Now), compared to the two other subgroups-patients who had a fever, but not at that particular time point, (Fever Not Now) and patients who never had a fever (Fever Never). Many, but not all, of the comparisons were significant in both groups. Results suggest the FAST is reliable, valid and easy to administer. In addition to symptoms usually associated with fever (e.g. feeling warm), symptoms such as Difficulty Breathing (17) were identified with fever. Further study in a larger, more diverse patient population is warranted. Clinical Trials Number: NCT01287143 (January 2011).

  16. Audit, guidelines and standards: clinical governance for hip fracture care in Scotland.

    PubMed

    Currie, Colin T; Hutchison, James D

    To report on experience of national-level audit, guidelines and standards for hip fracture care in Scotland. Scottish Hip Fracture Audit (from 1993) documents case-mix, process and outcomes of hip fracture care in Scotland. Evidence-based national guidelines on hip fracture care are available (1997, updated 2002). Hip fracture serves as a tracer condition by the health quality assurance authority for its work on older people, which reported in 2004. Audit data are used locally to document care and support and monitor service developments. Synergy between the guidelines and the audit provides a means of improving care locally and monitoring care nationally. External review by the quality assurance body shows to what extent guideline-based standards relating to A&E care, pre-operative delay, multidisciplinary care and audit participation are met. Three national-level initiatives on hip fracture care have delivered: Reliable and large-scale comparative information on case-mix, care and outcomes; evidence-based recommendations on care; and nationally accountable standards inspected and reported by the national health quality assurance authority. These developments are linked and synergistic, and enjoy both clinical and managerial support. They provide an evolving framework for clinical governance, with casemix-adjusted outcome assessment for hip fracture care as a next step.

  17. Midterm results of treatment with a retrograde nail for supracondylar periprosthetic fractures of the femur following total knee arthroplasty.

    PubMed

    Gliatis, John; Megas, Panagiotis; Panagiotopoulos, Elias; Lambiris, Elias

    2005-03-01

    Although the short-term results of supracondylar periprosthetic fractures treated with retrograde nailing have been satisfactory, there is always a concern about the long-term survival of the prosthesis. The aim of the study was to evaluate fracture healing and knee functional outcome with a follow-up time of at least 2 years in periprosthetic fractures of the knee treated with a supracondylar nail. Cohort study. There were 9 patients with 10 periprosthetic fractures. In 1 patient, the fracture occurred intraoperatively. In the others, the time between the total knee arthroplasty and the periprosthetic fracture ranged between 2 weeks and 7 years (average time: 2.78 years). The mean follow-up was 34.5 months (25-52 months). The Western Ontario and McMaster Universities index was used to evaluate the functional result postoperatively using the paired t test as the statistical test. Fracture union was assessed with plain x-rays. All the fractures united within 3 months. One fracture united in extreme valgus (35 degrees) and was revised to a stemmed total knee replacement. There were no infections and no prosthesis loosening. The paired t test before the fracture and after the operation demonstrated no statistically significant differences; however, there was a trend toward lower functional score postoperatively. It appears that retrograde nailing is a reliable technique to treat periprosthetic supracondylar fractures. It provides adequate stability until fracture union. The morbidity of the operation is minimal, and the complication rate is low. The midterm results in our study showed that none of the prostheses required revision. In our opinion, it is the treatment of choice for a periprosthetic fracture when the prosthesis is stable.

  18. Locking plate fixation in distal metaphyseal tibial fractures: series of 79 patients.

    PubMed

    Gupta, Rakesh K; Rohilla, Rajesh Kumar; Sangwan, Kapil; Singh, Vijendra; Walia, Saurav

    2010-12-01

    Open reduction and internal fixation in distal tibial fractures jeopardises fracture fragment vascularity and often results in soft tissue complications. Minimally invasive osteosynthesis, if possible, offers the best possible option as it permits adequate fixation in a biological manner. Seventy-nine consecutive adult patients with distal tibial fractures, including one patient with a bilateral fracture of the distal tibia, treated with locking plates, were retrospectively reviewed. The 4.5-mm limited-contact locking compression plate (LC-LCP) was used in 33 fractures, the metaphyseal LCP in 27 fractures and the distal medial tibial LCP in the remaining 20 fractures. Fibula fixation was performed in the majority of comminuted fractures (n = 41) to maintain the second column of the ankle so as to achieve indirect reduction and to prevent collapse of the fracture. There were two cases of delayed wound breakdown in fractures fixed with the 4.5-mm LC-LCP. Five patients required primary bone grafting and three patients required secondary bone grafting. All cases of delayed union (n = 7) and nonunion (n = 3) were observed in cases where plates were used in bridge mode. Minimally invasive plate osteosynthesis (MIPO) with LCP was observed to be a reliable method of stabilisation for these fractures. Peri-operative docking of fracture ends may be a good option in severely impacted fractures with gap. The precontoured distal medial tibial LCP was observed to be a better tolerated implant in comparison to the 4.5-mm LC-LCP or metaphyseal LCP with respect to complications of soft tissues, bone healing and functional outcome, though its contour needs to be modified.

  19. Lower limb stress fractures in sport: Optimising their management and outcome

    PubMed Central

    Robertson, Greg A J; Wood, Alexander M

    2017-01-01

    Stress fractures in sport are becoming increasing more common, comprising up to 10% of all of sporting injuries. Around 90% of such injuries are located in the lower limb. This articles aims to define the optimal management of lower limb stress fractures in the athlete, with a view to maximise return rates and minimise return times to sport. Treatment planning of this condition is specific to the location of the injury. However, there remains a clear division of stress fractures by “high” and “low” risk. “Low risk” stress fractures are those with a low probability of fracture propagation, delayed union, or non-union, and so can be managed reliably with rest and exercise limitation. These include stress fractures of the Postero-Medial Tibial Diaphysis, Metatarsal Shafts, Distal Fibula, Medial Femoral Neck, Femoral Shaft and Calcaneus. “High risk” stress fractures, in contrast, have increased rates of fracture propagation, displacement, delayed and non-union, and so require immediate cessation of activity, with orthopaedic referral, to assess the need for surgical intervention. These include stress fractures of the Anterior Tibial Diaphysis, Fifth Metatarsal Base, Medial Malleolus, Lateral Femoral Neck, Tarsal Navicular and Great Toe Sesamoids. In order to establish the optimal methods for managing these injuries, we present and review the current evidence which guides the treatment of stress fractures in athletes. From this, we note an increased role for surgical management of certain high risk stress fractures to improve return times and rates to sport. Following this, key recommendations are provided for the management of the common stress fracture types seen in the athlete. Five case reports are also presented to illustrate the application of sport-focussed lower limb stress fracture treatment in the clinical setting. PMID:28361017

  20. Long-term oxygen depletion from infiltrating groundwaters: Model development and application to intra-glaciation and glaciation conditions

    NASA Astrophysics Data System (ADS)

    Sidborn, M.; Neretnieks, I.

    2008-08-01

    Processes that control the redox conditions in deep groundwaters have been studied. The understanding of such processes in a long-term perspective is important for the safety assessment of a deep geological repository for high-level nuclear waste. An oxidising environment at the depth of the repository would increase the solubility and mobility of many radionuclides, and increase the potential risk for radioactive contamination at the ground surface. Proposed repository concepts also include engineered barriers such as copper canisters, the corrosion of which increases considerably in an oxidising environment compared to prevailing reducing conditions. Swedish granitic rocks are typically relatively sparsely fractured and are best treated as a dual-porosity medium with fast flowing channels through fractures in the rock with a surrounding porous matrix, the pores of which are accessible from the fracture by diffusive transport. Highly simplified problems have been explored with the aim to gain understanding of the underlying transport processes, thermodynamics and chemical reaction kinetics. The degree of complexity is increased successively, and mechanisms and processes identified as of key importance are included in a model framework. For highly complex models, analytical expressions are not fully capable of describing the processes involved, and in such cases the solutions are obtained by numerical calculations. Deep in the rock the main source for reducing capacity is identified as reducing minerals. Such minerals are found inside the porous rock matrix and as infill particles or coatings in fractures in the rock. The model formulation also allows for different flow modes such as flow along discrete fractures in sparsely fractured rocks and along flowpaths in a fracture network. The scavenging of oxygen is exemplified for these cases as well as for more comprehensive applications, including glaciation considerations. Results show that chemical reaction kinetics control the scavenging of oxygen during a relatively short time with respect to the lifetime of the repository. For longer times the scavenging of oxygen is controlled by transport processes in the porous rock matrix. The penetration depth of oxygen along the flowpath depends largely on the hydraulic properties, which may vary significantly between different locations and situations. The results indicate that oxygen, in the absence of easily degradable organic matter, may reach long distances along a flow path during the life-time of the repository (hundreds to thousands of metres in a million years depending on e.g. hydraulic properties of the flow path and the availability of reducing capacity). However, large uncertainties regarding key input parameters exist leading to the conclusion that the results from the model must be treated with caution pending more accurate and validated data. Ongoing and planned experiments are expected to reduce these uncertainties, which are required in order to make more reliable predictions for a safety assessment of a nuclear waste repository.

  1. Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study.

    PubMed

    Fenton, Tanis R; Eliasziw, Misha; Tough, Suzanne C; Lyon, Andrew W; Brown, Jacques P; Hanley, David A

    2010-05-10

    The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis.The objectives of this study were to determine whether 1) low urine pH, or 2) acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a) fragility fractures; and b) five-year change of bone mineral density (BMD) in adults. Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion) in fasting morning with the incidence of fractures (6804 person years). Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651). Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index. There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders. Urine pH and urine acid excretion do not predict osteoporosis risk.

  2. On the mode I fracture analysis of cracked Brazilian disc using a digital image correlation method

    NASA Astrophysics Data System (ADS)

    Abshirini, Mohammad; Soltani, Nasser; Marashizadeh, Parisa

    2016-03-01

    Mode I of fracture of centrally cracked Brazilian disc was investigated experimentally using a digital image correlation (DIC) method. Experiments were performed on PMMA polymers subjected to diametric-compression load. The displacement fields were determined by a correlation between the reference and the deformed images captured before and during loading. The stress intensity factors were calculated by displacement fields using William's equation and the least square algorithm. The parameters involved in the accuracy of SIF calculation such as number of terms in William's equation and the region of analysis around the crack were discussed. The DIC results were compared with the numerical results available in literature and a very good agreement between them was observed. By extending the tests up to the critical state, mode I fracture toughness was determined by analyzing the image of specimen captured at the moment before fracture. The results showed that the digital image correlation was a reliable technique for the calculation of the fracture toughness of brittle materials.

  3. Esthetic rehabilitation of complicated crown fractures utilizing rapid orthodontic extrusion and two different restoration modalities.

    PubMed

    Milardovic Ortolan, Sladana; Strujic, Mihovil; Aurer, Andrej; Viskic, Josko; Bergman, Lana; Mehulic, Ketij

    2012-01-01

    This case report describes the management of a crown-root fractured maxillary right central incisor and a crown fractured maxillary left central incisor using two different techniques. A complex procedure was designed to manage this case including orthodontic extrusion to move the fracture line above the alveolar bone and surgical recontouring of the altered gingival margin. Finally, the right incisor was restored prosthodontically. Prosthetic treatment was based on performing a post and core, and all-ceramic crown on the extruded tooth. The left, less-damaged incisor was restored directly using composite resin. The treatment resulted in good esthetics and secured periodontal health. This case report demonstrates that a multidisciplinary treatment approach is a reliable and predictable option to save a tooth. How to cite this article: Ortolan SM, Strujic M, Aurer A, Viskic J, Bergman L, Mehulic K. Esthetic Rehabilitation of Complicated Crown Fractures Utilizing Rapid Orthodontic Extrusion and Two Different Restoration Modalities. Int J Clin Pediatr Dent 2012;5(1):64-67.

  4. Fixation of osteochondral fractures in rabbit knees. A comparison of Kirschner wires, fibrin sealant, and polydioxanone pins.

    PubMed

    Plaga, B R; Royster, R M; Donigian, A M; Wright, G B; Caskey, P M

    1992-03-01

    We compared fibrin sealant, polydioxanone (PDS) pins and Kirschner wires in the fixation of osteochondral fractures in rabbit knees. Standardised osteochondral fractures of the right medial femoral condyle were made in 56 adult New Zealand white rabbits. There were equal groups of control knees, and those which had Kirschner-wire, fibrin-sealant or PDS-pin fixation. No external immobilisation was used. One animal from each group was killed at two, three and four weeks. The remaining rabbits were killed at six weeks. A fracture which healed with less than 1 mm of displacement was considered a success. There was successful healing in 29% of the control group, in all of the Kirschner-wire group, in 50% of the fibrin-sealant group, and in 86% of the PDS-pin group. The use of PDS pins appears to be a reliable alternative to the use of metal in the fixation of osteochondral fractures in rabbits.

  5. Test-Retest Reliability of the 10-Metre Fast Walk Test and 6-Minute Walk Test in Ambulatory School-Aged Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Thompson, Patricia; Beath, Tricia; Bell, Jacqueline; Jacobson, Gabrielle; Phair, Tegan; Salbach, Nancy M.; Wright, F. Virginia

    2008-01-01

    Short-term test-retest reliability of the 10-metre fast walk test (10mFWT) and 6-minute walk test (6MWT) was evaluated in 31 ambulatory children with cerebral palsy (CP), with subgroup analyses in Gross Motor Function Classification System (GMFCS) Levels I (n=9), II (n=8), and III (n=14). Sixteen females and 15 males participated, mean age 9 years…

  6. Reproducibility assessment of brain responses to visual food stimuli in adults with overweight and obesity.

    PubMed

    Drew Sayer, R; Tamer, Gregory G; Chen, Ningning; Tregellas, Jason R; Cornier, Marc-Andre; Kareken, David A; Talavage, Thomas M; McCrory, Megan A; Campbell, Wayne W

    2016-10-01

    The brain's reward system influences ingestive behavior and subsequently obesity risk. Functional magnetic resonance imaging (fMRI) is a common method for investigating brain reward function. This study sought to assess the reproducibility of fasting-state brain responses to visual food stimuli using BOLD fMRI. A priori brain regions of interest included bilateral insula, amygdala, orbitofrontal cortex, caudate, and putamen. Fasting-state fMRI and appetite assessments were completed by 28 women (n = 16) and men (n = 12) with overweight or obesity on 2 days. Reproducibility was assessed by comparing mean fasting-state brain responses and measuring test-retest reliability of these responses on the two testing days. Mean fasting-state brain responses on day 2 were reduced compared with day 1 in the left insula and right amygdala, but mean day 1 and day 2 responses were not different in the other regions of interest. With the exception of the left orbitofrontal cortex response (fair reliability), test-retest reliabilities of brain responses were poor or unreliable. fMRI-measured responses to visual food cues in adults with overweight or obesity show relatively good mean-level reproducibility but considerable within-subject variability. Poor test-retest reliability reduces the likelihood of observing true correlations and increases the necessary sample sizes for studies. © 2016 The Obesity Society.

  7. Reproducibility assessment of brain responses to visual food stimuli in adults with overweight and obesity

    PubMed Central

    Sayer, R Drew; Tamer, Gregory G; Chen, Ningning; Tregellas, Jason R; Cornier, Marc-Andre; Kareken, David A; Talavage, Thomas M; McCrory, Megan A; Campbell, Wayne W

    2016-01-01

    Objective The brain’s reward system influences ingestive behavior and subsequently, obesity risk. Functional magnetic resonance imaging (fMRI) is a common method for investigating brain reward function. We sought to assess the reproducibility of fasting-state brain responses to visual food stimuli using BOLD fMRI. Methods A priori brain regions of interest included bilateral insula, amygdala, orbitofrontal cortex, caudate, and putamen. Fasting-state fMRI and appetite assessments were completed by 28 women (n=16) and men (n=12) with overweight or obesity on 2 days. Reproducibility was assessed by comparing mean fasting-state brain responses and measuring test-retest reliability of these responses on the 2 testing days. Results Mean fasting-state brain responses on Day 2 were reduced compared to Day 1 in the left insula and right amygdala, but mean Day 1 and Day 2 responses were not different in the other regions of interest. With the exception of the left orbitofrontal cortex response (fair reliability), test-retest reliabilities of brain responses were poor or unreliable. Conclusion fMRI-measured responses to visual food cues in adults with overweight or obesity show relatively good mean-level reproducibility, but considerable within-subject variability. Poor test-retest reliability reduces the likelihood of observing true correlations and increases the necessary sample sizes for studies. PMID:27542906

  8. Effect of Cortical Screw Diameter on Reduction and Stabilization of Type III Distal Phalanx Fractures: An Equine Cadaveric Study.

    PubMed

    Kay, Alastair T; Durgam, Sushmitha; Stewart, Matthew; Joslyn, Stephen; Schaeffer, David J; Horn, Gavin; Kesler, Richard; Chew, Peter

    2016-11-01

    To compare reduction of type III distal phalangeal fractures using 4.5 and 5.5 mm cortical screws placed in lag fashion and an intact hoof capsule model. Cadaveric experimental study. Hooves from 12 adult horses (n=24). Sagittal fractures were created in pairs of distal phalanges after distal interphalangeal joint disarticulation and were reduced with either 4.5 or 5.5 mm cortical screws placed in lag fashion. Contralateral phalanges served as non-reduced controls. Fracture reduction following screw placement was assessed by comparing pre-reduction and post-reduction fracture gap measurements from radiographs using paired t-tests. Effects of incremental loading (0, 135, 270, 540, 800, 1070, and 1335 kg) on fracture gaps in 6 phalanges reduced with 4.5 mm screws and 5 phalanges reduced with 5.5 mm screws were measured from fluoroscopic images and assessed by 2-way ANOVA. Significance was set at P<.05. Type III distal phalanx fractures were reliably created. Only 5.5 mm cortical screws, not 4.5 mm screws, significantly reduced fracture gaps and constrained fracture gap expansion 3 cm distal to the articular surface. Compressive loading closed the fracture gaps at the articular surface in both non-reduced control groups and those reduced with either 5.5 or 4.5 mm screws. The 5.5 mm cortical screws were more effective than 4.5 mm screws in reducing type III distal phalanx fractures and restricting distal fracture gap expansion under load. © Copyright 2016 by The American College of Veterinary Surgeons.

  9. Are validated outcome measures used in distal radial fractures truly valid?

    PubMed Central

    Nienhuis, R. W.; Bhandari, M.; Goslings, J. C.; Poolman, R. W.; Scholtes, V. A. B.

    2016-01-01

    Objectives Patient-reported outcome measures (PROMs) are often used to evaluate the outcome of treatment in patients with distal radial fractures. Which PROM to select is often based on assessment of measurement properties, such as validity and reliability. Measurement properties are assessed in clinimetric studies, and results are often reviewed without considering the methodological quality of these studies. Our aim was to systematically review the methodological quality of clinimetric studies that evaluated measurement properties of PROMs used in patients with distal radial fractures, and to make recommendations for the selection of PROMs based on the level of evidence of each individual measurement property. Methods A systematic literature search was performed in PubMed, EMbase, CINAHL and PsycINFO databases to identify relevant clinimetric studies. Two reviewers independently assessed the methodological quality of the studies on measurement properties, using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Level of evidence (strong / moderate / limited / lacking) for each measurement property per PROM was determined by combining the methodological quality and the results of the different clinimetric studies. Results In all, 19 out of 1508 identified unique studies were included, in which 12 PROMs were rated. The Patient-rated wrist evaluation (PRWE) and the Disabilities of Arm, Shoulder and Hand questionnaire (DASH) were evaluated on most measurement properties. The evidence for the PRWE is moderate that its reliability, validity (content and hypothesis testing), and responsiveness are good. The evidence is limited that its internal consistency and cross-cultural validity are good, and its measurement error is acceptable. There is no evidence for its structural and criterion validity. The evidence for the DASH is moderate that its responsiveness is good. The evidence is limited that its reliability and the validity on hypothesis testing are good. There is no evidence for the other measurement properties. Conclusion According to this systematic review, there is, at best, moderate evidence that the responsiveness of the PRWE and DASH are good, as are the reliability and validity of the PRWE. We recommend these PROMs in clinical studies in patients with distal radial fractures; however, more clinimetric studies of higher methodological quality are needed to adequately determine the other measurement properties. Cite this article: Dr Y. V. Kleinlugtenbelt. Are validated outcome measures used in distal radial fractures truly valid?: A critical assessment using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Bone Joint Res 2016;5:153–161. DOI: 10.1302/2046-3758.54.2000462. PMID:27132246

  10. Crustal Fracturing Field and Presence of Fluid as Revealed by Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Pastori, M.; Piccinini, D.; de Gori, P.; Margheriti, L.; Barchi, M. R.; di Bucci, D.

    2010-12-01

    In the last three years, we developed, tested and improved an automatic analysis code (Anisomat+) to calculate the shear wave splitting parameters, fast polarization direction (φ) and delay time (∂t). The code is a set of MatLab scripts able to retrieve crustal anisotropy parameters from three-component seismic recording of local earthquakes using horizontal component cross-correlation method. The analysis procedure consists in choosing an appropriate frequency range, that better highlights the signal containing the shear waves, and a length of time window on the seismogram centered on the S arrival (the temporal window contains at least one cycle of S wave). The code was compared to other two automatic analysis code (SPY and SHEBA) and tested on three Italian areas (Val d’Agri, Tiber Valley and L’Aquila surrounding) along the Apennine mountains. For each region we used the anisotropic parameters resulting from the automatic computation as a tool to determine the fracture field geometries connected with the active stress field. We compare the temporal variations of anisotropic parameters to the evolution of vp/vs ratio for the same seismicity. The anisotropic fast directions are used to define the active stress field (EDA model), finding a general consistence between fast direction and main stress indicators (focal mechanism and borehole break-out). The magnitude of delay time is used to define the fracture field intensity finding higher value in the volume where micro-seismicity occurs. Furthermore we studied temporal variations of anisotropic parameters and vp/vs ratio in order to explain if fluids play an important role in the earthquake generation process. The close association of anisotropic and vp/vs parameters variations and seismicity rate changes supports the hypothesis that the background seismicity is influenced by the fluctuation of pore fluid pressure in the rocks.

  11. Radiographic prevalence of CAM-type femoroacetabular impingement after open reduction and internal fixation of femoral neck fractures.

    PubMed

    Mathew, G; Kowalczuk, M; Hetaimish, B; Bedi, A; Philippon, M J; Bhandari, M; Simunovic, N; Crouch, S; Ayeni, O R

    2014-04-01

    The purpose of this study was to estimate the radiographic prevalence of CAM-type femoroacetabular impingement (FAI) in elderly patients (≥ 50 years) who have undergone internal fixation for femoral neck fracture. A total of 187 frog-leg lateral radiographs of elderly patients who underwent internal fixation for a femoral neck fracture were reviewed by two independent reviewers. The alpha angle, beta angle, and femoral head-neck offset ratio were calculated. The presence of two abnormal radiographic parameters was deemed to be diagnostic of radiographic CAM-type impingement. Radiographic CAM-type FAI was identified in 157 out of 187 (84 %) patients who underwent internal fixation for fractures of the femoral neck. Moderate-to-good inter-observer reliability was achieved in the measurement of radiographic parameters. With reference to fracture subtypes and prevalence of radiographic features of CAM-type morphology, 97 (72 %) out of 134 patients were positive for CAM in Garden subtypes I and II, whereas 49 (85.9 %) out of 57 patients had radiographic CAM in Garden III and IV subtypes. There was a high prevalence of CAM-type FAI in patients that underwent surgical fixation of femoral neck fractures. This is significantly higher than the reported prevalence in non-fracture patient populations. The high prevalence of CAM morphology could be related to several factors, including age, fracture morphology, quality of reduction, type of fixation, and fracture healing.

  12. Mechanical properties and fracture toughness of rail steels and thermite welds at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-qing; Zhou, Hui; Shi, Yong-jiu; Feng, Bao-rui

    2012-05-01

    Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway service. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of brittle fracture in rails even worse. A series of tests such as uniaxial tensile tests, Charpy impact tests, and three-point bending tests were carried out at low temperature to investigate the mechanical properties and fracture toughness of U71Mn and U75V rail steels and their thermite welds. Fracture micromechanisms were analyzed by scanning electron microscopy (SEM) on the fracture surfaces of the tested specimens. The ductility indices (percentage elongation after fracture and percentage reduction of area) and the toughness indices (Charpy impact energy A k and plane-strain fracture toughness K IC) of the two kinds of rail steels and the corresponding thermite welds all decrease as the temperature decreases. The thermite welds are more critical to fracture than the rail steel base metals, as indicated by a higher yield-to-ultimate ratio and a much lower Charpy impact energy. U71Mn rail steel is relatively higher in toughness than U75V, as demonstrated by larger A k and K IC values. Therefore, U71Mn rail steel and the corresponding thermite weld are recommended in railway construction and maintenance in cold regions.

  13. [Miniplate internal fixation and autogenous iliac bone graft in surgical treatment of old metatarsal fractures].

    PubMed

    Pan, Hao; Yu, Guangrong; Xiong, Wen; Zhao, Zhiming; Ding, Fan; Zheng, Qiong; Kan, Wushen

    2011-07-01

    To summarize the experience of treating old metatarsal fractures with surgery methods of miniplate internal fixation and autogenous iliac bone. Between May 2009 and July 2010, 7 patients with old metatarsal fractures were treated surgically, including 5 multi-metatarsal fractures and 2 single metatarsal fractures. There were 5 males and 2 females aged from 25 to 43 years (mean, 33 years). The time from fracture to operation was 4-12 weeks. The X-ray films showed that a small amount of callus formed at both broken ends with shortening, angulation, or rotation displacement. The surgical treatments included open reduction, internal fixation by miniplate, and autogenous iliac bone graft (1.5-2.5 cm(3)). The external plaster fixation was used in all patients for 4 to 6 weeks postoperatively (mean, 5 weeks). All incisions healed by first intention. The 7 patients were followed up 8-18 months (mean, 13.5 months). The clinical fracture healing time was 6 to 12 weeks postoperatively (mean, 8.4 weeks). No pain of planta pedis occurred while standing and walking. The American Orthopaedic Foot and Ankle Society (AOFAS) mesopedes and propodium score was 75-96 (mean, 86.4). It has the advantages of reliable internal fixation, high fracture healing rate, less complications to treat old metatarsal fractures with surgery methods of miniplate internal fixation and autogenous iliac bone graft, so it is an effective treatment method.

  14. Fracturing And Liquid CONvection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-02-29

    FALCON has been developed to enable simulation of the tightly coupled fluid-rock behavior in hydrothermal and engineered geothermal system (EGS) reservoirs, targeting the dynamics of fracture stimulation, fluid flow, rock deformation, and heat transport in a single integrated code, with the ultimate goal of providing a tool that can be used to test the viability of EGS in the United States and worldwide. Reliable reservoir performance predictions of EGS systems require accurate and robust modeling for the coupled thermal­hydrological­mechanical processes.

  15. [The method of replacement of defects in impression fractures of calcaneus. Porous NiTi or autotransplant?].

    PubMed

    Plotkin, G L; Moskalev, V P; Domashenko, A A; Sinitsyn, S S; Plotkin, Ia G; Turbin, K O

    2012-01-01

    An experience with treatment of 149 patients with severe injuries of the ankle joint operated using constructions of titanium-nickelide and autotransplant from the iliac crest is presented. Porous NiTi being bio-inert to organism tissues, having high through porosity, the formation of consolidation of the fracture develops more rapidly. Application of porous NiTi allowed the period of disablement to be on an average 20 days shorter and long-term results to be reliably better.

  16. Transient Reliability Analysis Capability Developed for CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2001-01-01

    The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has been developed to perform reliability analysis for components that undergo proof testing involving transient loads. This methodology was developed for environmentally assisted crack growth (crack growth as a function of time and loading), but it will be extended to account for cyclic fatigue (crack growth as a function of load cycles) as well.

  17. Classifications of Acute Scaphoid Fractures: A Systematic Literature Review.

    PubMed

    Ten Berg, Paul W; Drijkoningen, Tessa; Strackee, Simon D; Buijze, Geert A

    2016-05-01

    Background In the lack of consensus, surgeon-based preference determines how acute scaphoid fractures are classified. There is a great variety of classification systems with considerable controversies. Purposes The purpose of this study was to provide an overview of the different classification systems, clarifying their subgroups and analyzing their popularity by comparing citation indexes. The intention was to improve data comparison between studies using heterogeneous fracture descriptions. Methods We performed a systematic review of the literature based on a search of medical literature from 1950 to 2015, and a manual search using the reference lists in relevant book chapters. Only original descriptions of classifications of acute scaphoid fractures in adults were included. Popularity was based on citation index as reported in the databases of Web of Science (WoS) and Google Scholar. Articles that were cited <10 times in WoS were excluded. Results Our literature search resulted in 308 potentially eligible descriptive reports of which 12 reports met the inclusion criteria. We distinguished 13 different (sub) classification systems based on (1) fracture location, (2) fracture plane orientation, and (3) fracture stability/displacement. Based on citations numbers, the Herbert classification was most popular, followed by the Russe and Mayo classifications. All classification systems were based on plain radiography. Conclusions Most classification systems were based on fracture location, displacement, or stability. Based on the controversy and limited reliability of current classification systems, suggested research areas for an updated classification include three-dimensional fracture pattern etiology and fracture fragment mobility assessed by dynamic imaging.

  18. 78 FR 64916 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ...., light to heat), crystallization, melting, phase transformations, fracture, and other dynamic events. The... Sciences University, 1120 15th Street, Augusta, GA 30912. Instrument: Imaging System/Digital Microscope... the instrument include fast wavelength change, a dichromotome system, and two different light sources...

  19. Diagnostic tools in maxillofacial fractures: Is there really a need of three-dimensional computed tomography?

    PubMed Central

    Shah, Sheerin; Uppal, Sanjeev K.; Mittal, Rajinder K.; Garg, Ramneesh; Saggar, Kavita; Dhawan, Rishi

    2016-01-01

    Introduction: Because of its functional and cosmetic importance, facial injuries, especially bony fractures are clinically very significant. Missed and maltreated fractures might result in malocclusion and disfigurement of the face, thus making accurate diagnosis of the fracture very essential. In earlier times, conventional radiography along with clinical examination played a major role in diagnosis of maxillofacial fractures. However, it was noted that the overlapping nature of bones and the inability to visualise soft tissue swelling and fracture displacement, especially in face, makes radiography less reliable and useful. Computed tomography (CT), also called as X-ray computed radiography, has helped in solving this problem. This clinical study is to compare three-dimensional (3D) CT reconstruction with conventional radiography in evaluating the maxillofacial fractures preoperatively and effecting the surgical management, accordingly. Materials and Methods: Fifty patients, with suspected maxillofacial fractures on clinical examination, were subjected to conventional radiography and CT face with 3D reconstruction. The number and site of fractures in zygoma, maxilla, mandible and nose, detected by both the methods, were enumerated and compared. The final bearing of these additional fractures, on the management protocol, was analysed. Results: CT proved superior to conventional radiography in diagnosing additional number of fractures in zygoma, maxilla, mandible (subcondylar) and nasal bone. Coronal and axial images were found to be significantly more diagnostic in fracture sites such as zygomaticomaxillary complex, orbital floor, arch, lateral maxillary wall and anterior maxillary wall. Conclusion: 3D images gave an inside out picture of the actual sites of fractures. It acted as mind's eye for pre-operative planning and intra-operative execution of surgery. Better surgical treatment could be given to 33% of the cases because of better diagnostic ability of CT. PMID:27833286

  20. Diagnostic tools in maxillofacial fractures: Is there really a need of three-dimensional computed tomography?

    PubMed

    Shah, Sheerin; Uppal, Sanjeev K; Mittal, Rajinder K; Garg, Ramneesh; Saggar, Kavita; Dhawan, Rishi

    2016-01-01

    Because of its functional and cosmetic importance, facial injuries, especially bony fractures are clinically very significant. Missed and maltreated fractures might result in malocclusion and disfigurement of the face, thus making accurate diagnosis of the fracture very essential. In earlier times, conventional radiography along with clinical examination played a major role in diagnosis of maxillofacial fractures. However, it was noted that the overlapping nature of bones and the inability to visualise soft tissue swelling and fracture displacement, especially in face, makes radiography less reliable and useful. Computed tomography (CT), also called as X-ray computed radiography, has helped in solving this problem. This clinical study is to compare three-dimensional (3D) CT reconstruction with conventional radiography in evaluating the maxillofacial fractures preoperatively and effecting the surgical management, accordingly. Fifty patients, with suspected maxillofacial fractures on clinical examination, were subjected to conventional radiography and CT face with 3D reconstruction. The number and site of fractures in zygoma, maxilla, mandible and nose, detected by both the methods, were enumerated and compared. The final bearing of these additional fractures, on the management protocol, was analysed. CT proved superior to conventional radiography in diagnosing additional number of fractures in zygoma, maxilla, mandible (subcondylar) and nasal bone. Coronal and axial images were found to be significantly more diagnostic in fracture sites such as zygomaticomaxillary complex, orbital floor, arch, lateral maxillary wall and anterior maxillary wall. 3D images gave an inside out picture of the actual sites of fractures. It acted as mind's eye for pre-operative planning and intra-operative execution of surgery. Better surgical treatment could be given to 33% of the cases because of better diagnostic ability of CT.

  1. Bone scan as a screening test for missed fractures in severely injured patients.

    PubMed

    Lee, K-J; Jung, K; Kim, J; Kwon, J

    2014-12-01

    In many cases, patients with severe blunt trauma have multiple fractures throughout the body. These fractures are not often detectable by history or physical examination, and their diagnosis can be delayed or even missed. Thus, screening test fractures of the whole body is required after initial management. We performed this study to evaluate the reliability of bone scans for detecting missed fractures in patients with multiple severe traumas and we analyzed the causes of missed fractures by using bone scan. A bone scan is useful as a screening test for fractures of the entire body of severe trauma patients who are passed the acute phase. We reviewed the electronic medical records of severe trauma patients who underwent a bone scan from September 2009 to December 2010. Demographic and medical data were compared and statistically analyzed to determine whether missed fractures were detected after bone scan in the two groups. A total of 382 patients who had an injury severity score [ISS] greater than 16 points with multiple traumas visited the emergency room. One hundred and thirty-one patients underwent bone scan and 81 patients were identified with missed fractures by bone scan. The most frequent location for missed fractures was the rib area (55 cases, 41.98%), followed by the extremities (42 cases, 32.06%). The missed fractures that required surgery or splint were most common in extremities (11 cases). In univariate analysis, higher ISS scores and mechanism of injury were related with the probability that missed fractures would be found with a bone scan. The ISS score was statistically significant in multivariate analysis. Bone scan is an effective method of detecting missed fractures among patients with multiple severe traumas. Level IV, retrospective study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Fractography: determining the sites of fracture initiation.

    PubMed

    Mecholsky, J J

    1995-03-01

    Fractography is the analysis of fracture surfaces. Here, it refers to quantitative fracture surface analysis (FSA) in the context of applying the principles of fracture mechanics to the topography observed on the fracture surface of brittle materials. The application of FSA is based on the principle that encoded on the fracture surface of brittle materials is the entire history of the fracture process. It is our task to develop the skills and knowledge to decode this information. There are several motivating factors for applying our knowledge of FSA. The first and foremost is that there is specific, quantitative information to be obtained from the fracture surface. This information includes the identification of the size and location of the fracture initiating crack or defect, the stress state at failure, the existence, or not, of local or global residual stress, the existence, or not, of stress corrosion and a knowledge of local processing anomalies which affect the fracture process. The second motivating factor is that the information is free. Once a material is tested to failure, the encoded information becomes available. If we decide to observe the features produced during fracture then we are rewarded with much information. If we decide to ignore the fracture surface, then we are left to guess and/or reason as to the cause of the failure without the benefit of all of the possible information available. This paper addresses the application of quantitative fracture surface analysis to basic research, material and product development, and "trouble-shooting" of in-service failures. First, the basic principles involved will be presented. Next, the methodology necessary to apply the principles will be presented. Finally, a summary of the presentation will be made showing the applicability to design and reliability.

  3. Numerical Simulation of Hydraulic Fracturing in Low-/High-Permeability, Quasi-Brittle and Heterogeneous Rocks

    NASA Astrophysics Data System (ADS)

    Pakzad, R.; Wang, S. Y.; Sloan, S. W.

    2018-04-01

    In this study, an elastic-brittle-damage constitutive model was incorporated into the coupled fluid/solid analysis of ABAQUS to iteratively calculate the equilibrium effective stress of Biot's theory of consolidation. The Young's modulus, strength and permeability parameter of the material were randomly assigned to the representative volume elements of finite element models following the Weibull distribution function. The hydraulic conductivity of elements was associated with their hydrostatic effective stress and damage level. The steady-state permeability test results for sandstone specimens under different triaxial loading conditions were reproduced by employing the same set of material parameters in coupled transient flow/stress analyses of plane-strain models, thereby indicating the reliability of the numerical model. The influence of heterogeneity on the failure response and the absolute permeability was investigated, and the post-peak permeability was found to decrease with the heterogeneity level in the coupled analysis with transient flow. The proposed model was applied to the plane-strain simulation of the fluid pressurization of a cavity within a large-scale block under different conditions. Regardless of the heterogeneity level, the hydraulically driven fractures propagated perpendicular to the minimum principal far-field stress direction for high-permeability models under anisotropic far-field stress conditions. Scattered damage elements appeared in the models with higher degrees of heterogeneity. The partially saturated areas around propagating fractures were simulated by relating the saturation degree to the negative pore pressure in low-permeability blocks under high pressure. By replicating previously reported trends in the fracture initiation and breakdown pressure for different pressurization rates and hydraulic conductivities, the results showed that the proposed model for hydraulic fracture problems is reliable for a wide range of pressurization rates and permeability conditions.

  4. Physical Activity in the Acute Ward Following Hip Fracture Surgery is Associated with Less Fear of Falling.

    PubMed

    Kronborg, Lise; Bandholm, Thomas; Palm, Henrik; Kehlet, Henrik; Kristensen, Morten Tange

    2016-10-01

    Early mobilization following hip fracture surgery reduces medical complications and mortality, but may increase the risk of falling. The aim was to objectively measure the physical activity (time spent upright) the first week after hip fracture surgery and relate it to functional performance and fear of falling at discharge. The 24-hr upright time was measured for a median of six days using a thigh-worn accelerometer in 37 patients (mean 80 years ± 8.4) and increased from median 13 (IQR 6-31) min to 46 (11-107) min at day 7. More upright time at discharge was associated with less fear of falling (r = -.48, p = .01, n = 27), which also was associated with fast gait speed (r = -.50, p = .02, n = 23) and a faster Timed Up and Go test time (r = .54, p < .01, n = 22), indicating a need for further studies on motivation and limitations for more physical activity following hip fracture surgery.

  5. Formation and prevention of fractures in sol-gel-derived thin films.

    PubMed

    Kappert, Emiel J; Pavlenko, Denys; Malzbender, Jürgen; Nijmeijer, Arian; Benes, Nieck E; Tsai, Peichun Amy

    2015-02-07

    Sol-gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol-gel coating often induces mechanical stresses, which may fracture the thin films. An experimental study on the crack formation in sol-gel-derived silica and organosilica ultrathin (submicron) films is presented. The relationships among the crack density, inter-crack spacing, and film thickness were investigated by combining direct micrograph analysis with spectroscopic ellipsometry. It is found that silica thin films are more prone to fracturing than organosilica films and have a critical film thickness of 300 nm, above which the film fractures. In contrast, the organosilica films can be formed without cracks in the experimentally explored regime of film thickness up to at least 1250 nm. These results confirm that ultrathin organosilica coatings are a robust silica substitute for a wide range of applications.

  6. Hybrid learning in signalling games

    NASA Astrophysics Data System (ADS)

    Barrett, Jeffrey A.; Cochran, Calvin T.; Huttegger, Simon; Fujiwara, Naoki

    2017-09-01

    Lewis-Skyrms signalling games have been studied under a variety of low-rationality learning dynamics. Reinforcement dynamics are stable but slow and prone to evolving suboptimal signalling conventions. A low-inertia trial-and-error dynamical like win-stay/lose-randomise is fast and reliable at finding perfect signalling conventions but unstable in the context of noise or agent error. Here we consider a low-rationality hybrid of reinforcement and win-stay/lose-randomise learning that exhibits the virtues of both. This hybrid dynamics is reliable, stable and exceptionally fast.

  7. Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing

    USGS Publications Warehouse

    Sileny, J.; Hill, D.P.; Eisner, Leo; Cornet, F.H.

    2009-01-01

    We have inverted polarity and amplitude information of representative microearthquakes to investigate source mechanisms of seismicity induced by hydraulic fracturing in the Carthage Cotton Valley, east Texas, gas field. With vertical arrays of four and eight three-component geophones in two monitoring wells, respectively, we were able to reliably determine source mechanisms of the strongest events with the best signal-to-noise ratio. Our analysis indicates predominantly non-double-couple source mechanisms with positive volumetric component consistent with opening cracks oriented close to expected hydraulic fracture orientation. Our observations suggest the induced events are directly the result of opening cracks by fluid injection, in contrast to many previous studies where the seismicity is interpreted to be primarily shearing caused by pore pressure diffusion into the surrounding rock or associated with shear stresses created at the hydraulic fracture tip. Copyright 2009 by the American Geophysical Union.

  8. VA-LCP anterior clavicle plate: the anatomically precontoured fixation system with angular stability for clavicle shaft.

    PubMed

    van Olden, G D J

    2014-12-01

    The aim of this investigation was to evaluate the introduction of the VA-LCP anterior clavicle plate in the treatment of clavicle fractures. From March 2011 to March 2013, 42 clavicle fractures were treated; 40 were middle-third and 2 lateral-third, and 13/42 (31 %) patients were treated due to painful nonunion. Patient age ranged from 16 to 81 years. Complications were screw placement through the AC-joint, one superficial wound infection and one neuropraxia of the nervus radialis with dropping hand. We had some difficulties prebending both lateral to low and lateral to high but without clinical consequences. In all cases, the fracture healed with full functionality. After 1 year, 4 patients underwent a removal of the hardware. The VA-LCP anterior plate showed good reliability and sufficient stability with both middle-third, lateral and nonunion fractures of the clavicle.

  9. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  10. On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining

    NASA Astrophysics Data System (ADS)

    Zawadzki, Jaroslaw; Bogacki, Jan

    2016-04-01

    Recently shale gas production became essential for the global economy, thanks to fast advances in shale fracturing technology. Shale gas extraction can be achieved by drilling techniques coupled with hydraulic fracturing. Further increasing of shale gas production is possible by improving the efficiency of hydraulic fracturing and assessing the spatial distribution of fractures in shale deposits. The latter can be achieved by adding magnetic markers to fracturing fluid or directly to proppant, which keeps the fracture pathways open. After that, the range of hydraulic fracturing can be assessed by measurement of vertical and horizontal component of earth's magnetic field before and after fracturing. The difference in these components caused by the presence of magnetic marker particles may allow to delineate spatial distribution of fractures. Due to the fact, that subterranean geological formations may contain minerals with significant magnetic properties, it is important to provide to the markers excellent magnetic properties which should be also, independent of harsh chemical and geological conditions. On the other hand it is of great significance to produce magnetic markers at an affordable price because of the large quantities of fracturing fluids or proppants used during shale fracturing. Examining the properties of nano-materials, it was found, that they possess clearly superior magnetic properties, as compared to the same structure but having a larger particle size. It should be then possible, to use lower amount of magnetic marker, to obtain the same effect. Although a research on properties of new magnetic nano-materials is very intensive, cheap magnetic nano-materials are not yet produced on a scale appropriate for shale gas mining. In this work we overview, in detail, geological, technological and economic aspects of using magnetic nano-markers in shale gas mining. Acknowledgment This work was supported by the NCBiR under Grant "Electromagnetic method to estimate penetration of proppant in the fracturing process".

  11. Intraoperative assessment of the stability of the distal tibiofibular joint in supination-external rotation injuries of the ankle: sensitivity, specificity, and reliability of two clinical tests.

    PubMed

    Pakarinen, Harri; Flinkkilä, Tapio; Ohtonen, Pasi; Hyvönen, Pekka; Lakovaara, Martti; Leppilahti, Juhana; Ristiniemi, Jukka

    2011-11-16

    This study was designed to assess the sensitivity, specificity, and interobserver reliability of the hook test and the stress test for the intraoperative diagnosis of instability of the distal tibiofibular joint following fixation of ankle fractures resulting from supination-external rotation forces. We conducted a prospective study of 140 patients with an unstable unilateral ankle fracture resulting from a supination-external rotation mechanism (Lauge-Hansen SE). After internal fixation of the malleolar fracture, a hook test and an external rotation stress test under fluoroscopy were performed independently by the lead surgeon and assisting surgeon, followed by a standardized 7.5-Nm external rotation stress test of each ankle under fluoroscopy. A positive stress test result was defined as a side-to-side difference of >2 mm in the tibiotalar or the tibiofibular clear space on mortise radiographs. The sensitivity and specificity of each test were calculated with use of the standardized 7.5-Nm external rotation stress test as a reference. Twenty-four (17%) of the 140 patients had a positive standardized 7.5-Nm external rotation stress test after internal fixation of the malleolar fracture. The hook test had a sensitivity of 0.25 (95% confidence interval, 0.12 to 0.45) and a specificity of 0.98 (95% confidence interval, 0.94 to 1.0) for the detection of the same instabilities. The external rotation stress test had a sensitivity of 0.58 (95% confidence interval, 0.39 to 0.76) and a specificity of 0.96 (95% confidence interval, 0.90 to 0.98). Both tests had excellent interobserver reliability, with 99% agreement for the hook test and 98% for the stress test. Interobserver agreement for the hook test and the clinical stress test was excellent, but the sensitivity of these tests was insufficient to adequately detect instability of the syndesmosis intraoperatively.

  12. Effects of antiresorptive therapies on glucose metabolism: results from the FIT, HORIZON-PFT, and FREEDOM trials.

    PubMed

    Schwartz, Ann V; Schafer, Anne L; Grey, Andrew; Vittinghoff, Eric; Palermo, Lisa; Lui, Li-Yung L; Wallace, Robert B; Cummings, Steven R; Black, Dennis M; Bauer, Douglas C; Reid, Ian R

    2013-06-01

    In rodent models, undercarboxylated osteocalcin (ucOC) acts as a hormone that promotes insulin sensitivity and secretion. If ucOC plays a similar role in humans, then antiresorptive therapies, which reduce ucOC levels, may increase the risk of insulin resistance and diabetes. We tested whether antiresorptive therapies result in higher fasting glucose, increased weight, or greater diabetes incidence in post hoc analyses of three randomized, placebo-controlled trials in postmenopausal women: Fracture Intervention Trial (FIT) (N = 6151) of alendronate (4 years), Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly Pivotal Fracture Trial (HORIZON-PFT) (N = 7113) of zoledronic acid (3 years), and Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial (N = 7076) of denosumab (3 years). Fasting glucose was measured annually in FIT and HORIZON in a subset of women, and every 6 months in FREEDOM in all participants. Weight was measured annually in all trials. Incident diabetes was identified from adverse event reports, initiation of diabetes medication, or elevated fasting glucose. Differences in fasting glucose changes from randomization to trial conclusion between treatment and placebo groups were not statistically significant: -0.47 mg/dL in FIT, 0.20 mg/dL in HORIZON-PFT, and 0.09 mg/dL in FREEDOM, all p > 0.6. Weight change differed between treatment and placebo groups in FIT (0.32 kg, p = 0.003) and FREEDOM (0.31 kg, p = 0.023) but not in HORIZON-PFT (0.15 kg, p = 0.132). In the three trials combined, diabetes occurred in 203 and 225 women assigned to treatment or placebo, respectively. Diabetes incidence was not increased in any of the treatment groups or in the pooled estimate (pooled relative risk [RR] = 0.90; 95% confidence interval [CI] 0.74-1.10). Antiresorptive therapy does not have a clinically important effect on fasting glucose, weight, or diabetes risk in postmenopausal women. Contrary to predictions from mouse models, reduced bone turnover does not appear to play a significant role in glucose metabolism in humans. Copyright © 2013 American Society for Bone and Mineral Research.

  13. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    NASA Astrophysics Data System (ADS)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  14. Surfing Behind a Boat: Quality and Reliability of Online Resources on Scaphoid Fractures.

    PubMed

    Nassiri, Mujtaba; Mohamed, Osama; Berzins, Arvids; Aljabi, Yasser; Mahmood, Talat; Chenouri, Shojaeddin; O'Grady, Paul

    2016-10-01

    Patients seeking information and advice on treatment of scaphoid fractures unknowingly confront longstanding medical controversies surrounding the management of this condition. However, there are no studies specifically looking into the quality and reliability of online information on scaphoid fractures. We identified 44 unique websites for evaluation using the term "scaphoid fractures". The websites were categorized by type and assessed using the DISCERN score, the Journal of the American Medical Association (JAMA) benchmark criteria and the Health on the net (HON) code. The majority of websites were commercial (n = 13) followed by academic (n = 12). Only seven of the websites were HON certified. The mean DISCERN score was 43.8. Only 4 websites scored 63 or above representing excellent quality with minimal shortcomings but 13 websites scored 38 or below representing poor or very poor quality. The mean JAMA benchmark criteria score was 2.2. The Governmental and Non-Profit Organizations category websites had the highest mean JAMA benchmark score. The websites that displayed the HON-code seal had higher mean DISCERN scores and higher mean JAMA benchmark scores compared to websites that did not display the seal. Good quality health information is certainly available on the Internet. However, it is not possible to predict with certainty which sites are of higher quality. We suggest clinicians should have a responsibility to educate their patients regarding the unregulated nature of medical information on the internet and proactively provide patients with educational resources and thus help them make smart and informed decisions.

  15. The Reliability and Validity of the Thoracolumbar Injury Classification System in Pediatric Spine Trauma.

    PubMed

    Savage, Jason W; Moore, Timothy A; Arnold, Paul M; Thakur, Nikhil; Hsu, Wellington K; Patel, Alpesh A; McCarthy, Kathryn; Schroeder, Gregory D; Vaccaro, Alexander R; Dimar, John R; Anderson, Paul A

    2015-09-15

    The thoracolumbar injury classification system (TLICS) was evaluated in 20 consecutive pediatric spine trauma cases. The purpose of this study was to determine the reliability and validity of the TLICS in pediatric spine trauma. The TLICS was developed to improve the categorization and management of thoracolumbar trauma. TLICS has been shown to have good reliability and validity in the adult population. The clinical and radiographical findings of 20 pediatric thoracolumbar fractures were prospectively presented to 20 surgeons with disparate levels of training and experience with spinal trauma. These injuries were consecutively scored using the TLICS. Cohen unweighted κ coefficients and Spearman rank order correlation values were calculated for the key parameters (injury morphology, status of posterior ligamentous complex, neurological status, TLICS total score, and proposed management) to assess the inter-rater reliabilities. Five surgeons scored the same cases 3 months later to assess the intra-rater reliability. The actual management of each case was then compared with the treatment recommended by the TLICS algorithm to assess validity. The inter-rater κ statistics of all subgroups (injury morphology, status of the posterior ligamentous complex, neurological status, TLICS total score, and proposed treatment) were within the range of moderate to substantial reproducibility (0.524-0.958). All subgroups had excellent intra-rater reliability (0.748-1.000). The various indices for validity were calculated (80.3% correct, 0.836 sensitivity, 0.785 specificity, 0.676 positive predictive value, 0.899 negative predictive value). Overall, TLICS demonstrated good validity. The TLICS has good reliability and validity when used in the pediatric population. The inter-rater reliability of predicting management and indices for validity are lower than those in adults with thoracolumbar fractures, which is likely due to differences in the way children are treated for certain types of injuries. TLICS can be used to reliably categorize thoracolumbar injuries in the pediatric population; however, modifications may be needed to better guide treatment in this specific patient population. 4.

  16. Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    DOE Data Explorer

    Hunt, Jonathan

    2013-01-31

    In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent for subsurface applications. Colloidal silica solutions exist as low-viscosity fluids during their “induction period” but then undergo a rapid increase in viscosity (gelation) to form a solid gel. The length of the induction period can be manipulated by varying the properties of the solution, such as silica concentration and colloid size. We believe it is possible to produce colloidal silica gels suitable for use as diverting agents for blocking undesirable fast-paths which result in short-circuiting the EGS once hydraulic fracturing has been deployed. In addition, the gels could be used in conventional geothermal fields to increase overall energy recovery by modifying flow.

  17. Creation of a ceramics handbook

    NASA Technical Reports Server (NTRS)

    Craft, W. J.; Filatovs, G. J.

    1974-01-01

    A study was conducted to develop a ceramics handbook defining properties and parameters necessary for thermostructural design. Continuing efforts toward this goal, and in particular toward the evolution of a reliable predictor of fracture from current literature, are described.

  18. Fatigue risks in the connections of sign support structures.

    DOT National Transportation Integrated Search

    2013-05-01

    This research effort develops a reliability-based approach for prescribing inspection intervals for mast-arm sign support : structures corresponding to user-specified levels of fatigue-induced fracture risk. The resulting level of risk for a : partic...

  19. On the Processing of Spalling Experiments. Part II: Identification of Concrete Fracture Energy in Dynamic Tension

    NASA Astrophysics Data System (ADS)

    Lukić, Bratislav B.; Saletti, Dominique; Forquin, Pascal

    2017-12-01

    This paper presents a second part of the study aimed at investigating the fracture behavior of concrete under high strain rate tensile loading. The experimental method together with the identified stress-strain response of three tests conducted on ordinary concrete have been presented in the paper entitled Part I (Forquin and Lukić in Journal of Dynamic Behavior of Materials, 2017. https://doi.org/10.1007/s40870-017-0135-1). In the present paper, Part II, the investigation is extended towards directly determining the specific fracture energy of each observed fracture zone by visualizing the dynamic cracking process with a temporal resolution of 1 µs. Having access to temporal displacement fields of the sample surface, it is possible to identify the fracture opening displacement (FOD) and the fracture opening velocity of any principle (open) and secondary (closed) fracture at each measurement instance, that may or may not lead to complete physical failure of the sample. Finally, the local Stress-FOD curves were obtained for each observed fracture zone, opposed to previous works where indirect measurements were used. The obtained results indicated a much lower specific fracture energy compared to the results often found in the literature. Furthermore, numerical simulations were performed with a damage law to evaluate the validity of the proposed experimental data processing and compare it to the most often used one in the previous works. The results showed that the present method can reliably predict the specific fracture energy needed to open one macro-fracture and suggested that indirect measurement techniques can lead to an overestimate of specific fracture energy due to the stringent assumption of linear elasticity up-to the peak and the inability of having access to the real post-peak change of axial stress.

  20. Static test induced loads verification beyond elastic limit

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1996-01-01

    Increasing demands for reliable and least-cost high-performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total-inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.

  1. Static test induced loads verification beyond elastic limit

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1996-01-01

    Increasing demands for reliable and least-cost high performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large, high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.

  2. A method for vibrational assessment of cortical bone

    NASA Astrophysics Data System (ADS)

    Song, Yan; Gunaratne, Gemunu H.

    2006-09-01

    Large bones from many anatomical locations of the human skeleton consist of an outer shaft (cortex) surrounding a highly porous internal region (trabecular bone) whose structure is reminiscent of a disordered cubic network. Age related degradation of cortical and trabecular bone takes different forms. Trabecular bone weakens primarily by loss of connectivity of the porous network, and recent studies have shown that vibrational response can be used to obtain reliable estimates for loss of its strength. In contrast, cortical bone degrades via the accumulation of long fractures and changes in the level of mineralization of the bone tissue. In this paper, we model cortical bone by an initially solid specimen with uniform density to which long fractures are introduced; we find that, as in the case of trabecular bone, vibrational assessment provides more reliable estimates of residual strength in cortical bone than is possible using measurements of density or porosity.

  3. Measurement of Function Post Hip Fracture: Testing a Comprehensive Measurement Model of Physical Function

    PubMed Central

    Gruber-Baldini, Ann L.; Hicks, Gregory; Ostir, Glen; Klinedinst, N. Jennifer; Orwig, Denise; Magaziner, Jay

    2015-01-01

    Background Measurement of physical function post hip fracture has been conceptualized using multiple different measures. Purpose This study tested a comprehensive measurement model of physical function. Design This was a descriptive secondary data analysis including 168 men and 171 women post hip fracture. Methods Using structural equation modeling, a measurement model of physical function which included grip strength, activities of daily living, instrumental activities of daily living and performance was tested for fit at 2 and 12 months post hip fracture and among male and female participants and validity of the measurement model of physical function was evaluated based on how well the model explained physical activity, exercise and social activities post hip fracture. Findings The measurement model of physical function fit the data. The amount of variance the model or individual factors of the model explained varied depending on the activity. Conclusion Decisions about the ideal way in which to measure physical function should be based on outcomes considered and participant Clinical Implications The measurement model of physical function is a reliable and valid method to comprehensively measure physical function across the hip fracture recovery trajectory. Practical but useful assessment of function should be considered and monitored over the recovery trajectory post hip fracture. PMID:26492866

  4. Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian

    2016-11-01

    Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.

  5. Modeling failure in brittle porous ceramics

    NASA Astrophysics Data System (ADS)

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  6. CASTOR: Widely Distributed Scalable Infospaces

    DTIC Science & Technology

    2008-11-01

    1  i Progress against Planned Objectives Enable nimble apps that react fast as...generation of scalable, reliable, ultra- fast event notification in Linux data centers. • Maelstrom, a spin-off from Ricochet, offers a powerful new option...out potential enhancements to WS-EVENTING and WS-NOTIFICATION based on our work. Potential impact for the warflighter. QSM achieves extremely fast

  7. Fracture of the proximal tibia after revision total knee arthroplasty with an extensor mechanism allograft.

    PubMed

    Klein, Gregg R; Levine, Harlan B; Sporer, Scott M; Hartzband, Mark A

    2013-02-01

    Extensor mechanism reconstruction with an extensor mechanism allograft (EMA) remains one of the most reliable methods for treating the extensor mechanism deficient total knee arthroplasty. We report 3 patients who were treated with an EMA who sustained a proximal tibial shaft fracture. In all 3 cases, a short tibial component was present that ended close to the level of the distal extent of the bone block. When performing an EMA, it is important to recognize that the tibial bone block creates a stress riser and revision to a long-stemmed tibial component should be strongly considered to bypass this point to minimize the risk of fracture. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Intra- and interobserver agreement in the classification and treatment of distal third clavicle fractures.

    PubMed

    Bishop, Julie Y; Jones, Grant L; Lewis, Brian; Pedroza, Angela

    2015-04-01

    In treatment of distal third clavicle fractures, the Neer classification system, based on the location of the fracture in relation to the coracoclavicular ligaments, has traditionally been used to determine fracture pattern stability. To determine the intra- and interobserver reliability in the classification of distal third clavicle fractures via standard plain radiographs and the intra- and interobserver agreement in the preferred treatment of these fractures. Cohort study (Diagnosis); Level of evidence, 3. Thirty radiographs of distal clavicle fractures were randomly selected from patients treated for distal clavicle fractures between 2006 and 2011. The radiographs were distributed to 22 shoulder/sports medicine fellowship-trained orthopaedic surgeons. Fourteen surgeons responded and took part in the study. The evaluators were asked to measure the size of the distal fragment, classify the fracture pattern as stable or unstable, assign the Neer classification, and recommend operative versus nonoperative treatment. The radiographs were reordered and redistributed 3 months later. Inter- and intrarater agreement was determined for the distal fragment size, stability of the fracture, Neer classification, and decision to operate. Single variable logistic regression was performed to determine what factors could most accurately predict the decision for surgery. Interrater agreement was fair for distal fragment size, moderate for stability, fair for Neer classification, slight for type IIB and III fractures, and moderate for treatment approach. Intrarater agreement was moderate for distal fragment size categories (κ = 0.50, P < .001) and Neer classification (κ = 0.42, P < .001) and substantial for stable fracture (κ = 0.65, P < .001) and decision to operate (κ = 0.65, P < .001). Fracture stability was the best predictor of treatment, with 89% accuracy (P < .001). Fracture stability determination and the decision to operate had the highest interobserver agreement. Fracture stability was the key determinant of treatment, rather than the Neer classification system or the size of the distal fragment. © 2015 The Author(s).

  9. Pediatric Temporal Bone Fractures: A 10-Year Experience.

    PubMed

    Wexler, Sonya; Poletto, Erica; Chennupati, Sri Kiran

    2017-11-01

    The aim of the study was to compare the traditional and newer temporal bone fracture classification systems and their reliability in predicting serious outcomes of hearing loss and facial nerve (FN) injury. We queried the medical record database for hospital visits from 2002 to 2013 related to the search term temporal. A total of 1144 records were identified, and of these, 46 records with documented temporal bone fractures were reviewed for patient age, etiology and classification of the temporal bone fracture, FN examination, and hearing status. Of these records, radiology images were available for 38 patients and 40 fractures. Thirty-eight patients with accessible radiologic studies, aged 10 months to 16 years, were identified as having 40 temporal bone fractures for which the otolaryngology service was consulted. Twenty fractures (50.0%) were classified as longitudinal, 5 (12.5%) as transverse, and 15 (37.5%) as mixed. Using the otic capsule sparing (OCS)/violating nomenclature, 32 (80.0%) of fractures were classified as OCS, 2 (5.0%) otic capsule violating (OCV), and 6 (15.0%) could not be classified using this system. The otic capsule was involved in 1 (5%) of the longitudinal fractures, none of the transverse fractures, and 1 (6.7%) of the mixed fractures. Sensorineural hearing loss was found in only 2 fractures (5.0%) and conductive hearing loss (CHL) in 6 fractures (15.0%). Two fractures (5.0%) had ipsilateral facial palsy but no visualized fracture through the course of the FN canal. Neither the longitudinal/transverse/mixed nor OCS/OCV classifications were predictors of sensorineural hearing loss (SNHL), CHL, or FN involvement by Fisher exact statistical analysis (for SNHL: P = 0.37 vs 0.16; for CHL: P = 0.71 vs 0.33; for FN: P = 0.62 vs 0.94, respectively). In this large pediatric series, neither classification system of longitudinal/transverse/mixed nor OCS/OCV was predictive of SNHL, CHL, or FN palsy. A more robust database of audiologic results would be helpful in demonstrating this relationship.

  10. Comparison of our self-designed rotary self-locking intramedullary nail and interlocking intramedullary nail in the treatment of long bone fractures

    PubMed Central

    2014-01-01

    Objective The purpose of this study is to compare the clinical effects of our self-designed rotary self-locking intramedullary nail (RSIN) and interlocking intramedullary nail (IIN) for long bone fractures. Methods A retrospective study was performed in 1,704 patients who suffered bone fractures and underwent RSIN or IIN operation in our hospital between March 1999 and March 2013, including 494 with femoral fractures, 572 with humeral fractures, and 638 with tibial fractures. Among them, 634 patients were followed up for more than 1 year. The operative time, intraoperative blood loss, postoperative complications, healing rate, and the excellent and good rate of functional recovery were compared between two groups. Results Compared with IIN group, RSIN group exhibited significantly shorter operative time and less intraoperative blood loss no matter for humeral, femoral, or tibial fractures (all p < 0.001). The healing rate in patients with more than 1 year follow-up was significantly higher in RSIN group for femoral and tibial fractures (both p < 0.05). In RSIN group, no nail breakage or loosening occurred, but radial nerve injury and incision infection were respectively observed in one patient with humeral fracture. In IIN group, nail breakage or loosening occurred in 7 patients with femoral fractures and 16 patients with tibial fractures, radial nerve injury was observed in 8 patients with humeral fractures, and incision infection was present in 2 patients with humeral fractures and 1 patient with femoral fracture. The complication rate of IIN group was significantly higher than that of RSIN group (p < 0.05). However, there were no significant differences in the excellent and good rate of shoulder, elbow, knee, and ankle joint functional recovery between RSIN group and IIN group. Conclusion RSIN may be a reliable and practical alternative method for the treatment of long bone fractures. PMID:25047454

  11. Comparison of our self-designed rotary self-locking intramedullary nail and interlocking intramedullary nail in the treatment of long bone fractures.

    PubMed

    Liu, Bailian; Xiong, Ying; Deng, Hong; Gu, Shao; Jia, Fu; Li, Qunhui; Wang, Daxing; Gan, Xuewen; Liu, Wei

    2014-07-21

    The purpose of this study is to compare the clinical effects of our self-designed rotary self-locking intramedullary nail (RSIN) and interlocking intramedullary nail (IIN) for long bone fractures. A retrospective study was performed in 1,704 patients who suffered bone fractures and underwent RSIN or IIN operation in our hospital between March 1999 and March 2013, including 494 with femoral fractures, 572 with humeral fractures, and 638 with tibial fractures. Among them, 634 patients were followed up for more than 1 year. The operative time, intraoperative blood loss, postoperative complications, healing rate, and the excellent and good rate of functional recovery were compared between two groups. Compared with IIN group, RSIN group exhibited significantly shorter operative time and less intraoperative blood loss no matter for humeral, femoral, or tibial fractures (all p < 0.001). The healing rate in patients with more than 1 year follow-up was significantly higher in RSIN group for femoral and tibial fractures (both p < 0.05). In RSIN group, no nail breakage or loosening occurred, but radial nerve injury and incision infection were respectively observed in one patient with humeral fracture. In IIN group, nail breakage or loosening occurred in 7 patients with femoral fractures and 16 patients with tibial fractures, radial nerve injury was observed in 8 patients with humeral fractures, and incision infection was present in 2 patients with humeral fractures and 1 patient with femoral fracture. The complication rate of IIN group was significantly higher than that of RSIN group (p < 0.05). However, there were no significant differences in the excellent and good rate of shoulder, elbow, knee, and ankle joint functional recovery between RSIN group and IIN group. RSIN may be a reliable and practical alternative method for the treatment of long bone fractures.

  12. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study.

    PubMed

    Mansuri, Samir; Abdulkhayum, Abdul Mujeeb; Gazal, Giath; Hussain, Mohammed Abid Zahir

    2013-12-01

    Surgical treatment of fracture mandible using an internal fixation has changed in the last decades to achieve the required rigidity, stability and immediate restoration of function. The aim of the study was to do a Prospective study of 10 patients to determine the efficacy of rectangular grid compression miniplates in mandibular fractures. This study was carried out using 2.0 rectangular grid compression miniplates and 8 mm multidirectional screws as a rigid internal fixation in 10 patients without post operative intermaxillary fixation (IMF). Follow up was done for period of 6 months. All fractures were healed with an absolute stability in post operative period. None of the patient complained of post operative difficulty in occlusion. Within the limits of this study, it can be concluded that rectangular grid compression miniplates was rigid, reliable and thus can be recommended for the treatment of mandibular angle fractures. How to cite this article: Mansuri S, Abdulkhayum AM, Gazal G, Hussain MA. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study. J Int Oral Health 2013;5(6):93-100 .

  13. Applicability of cranial models in urethane resin and foam as a substitute for bone: are synthetic materials reliable?

    PubMed

    Muccino, Enrico; Porta, Davide; Magli, Francesca; Cigada, Alfredo; Sala, Remo; Gibelli, Daniele; Cattaneo, Cristina

    2013-09-01

    As literature is poor in functional synthetic cranial models, in this study, synthetic handmade models of cranial vaults were produced in two different materials (a urethane resin and a self-hardening foam), from multiple bone specimens (eight original cranial vaults: four human and four swine), in order to test their resemblance to bone structure in behavior, during fracture formation. All the vaults were mechanically tested with a 2-kg impact weight and filmed with a high-speed camera. Fracture patterns were homogeneous in all swine vaults and heterogeneous in human vaults, with resin fractures more similar to bone fractures. Mean fracture latency time extrapolated by videos were of 0.75 msec (bone), 1.5 msec (resin), 5.12 msec (foam) for human vaults and of 0.625 msec (bone), 1.87 msec (resin), 3.75 msec (foam) for swine vaults. These data showed that resin models are more similar to bone than foam reproductions, but that synthetic material may behave quite differently from bone as concerns fracture latency times. © 2013 American Academy of Forensic Sciences.

  14. [Treatment of conmminuted patellar fractures with internal Ni-Ti patellar concentrator and tension bind wire fixation].

    PubMed

    Tan, Hong-lie; Qian, Chen; Zhao, Jin-kun; Shi, Yan; Zhou, Qi

    2009-02-01

    To study the clinical efficacy of the treatment of comminuted patellar fractures with internal NiTi-Patellar concentrator and tension bind wire fixation. From March 2004 to June 2007, 38 cases of fresh comminuted patellar fractures were treated with internal NiTi-Patellar concentrator and tension bind wire fixation. There were 25 males and 13 females,ranging from 21 to 64 years (mean 42.5 years). All were comminuted fractures with displacement, 16 cases were 3 fragments, 14 cases were 4 fragments, 8 cases were 5 fragments. There were other fractures in 8 cases. During followed-up, knee function and complications were evaluated. All patients were followed up for 8 to 24 months (mean 15 months) and obtained complete bone union. No case of implant was loosening and fragment displacement, traumatic arthritis occured in 2 cases. Under Lysholm & Gillquist score, the results were excellent in 17 cases, good in 19, fair in 2. Internal Ni-Ti-Patellar concentrator and tension bind wire fixation is one of the ideal methods for the treatment of comminuted patellar fracture, which could provide satisfied reduction, reliable fixation and good functional recovery.

  15. What is fracking?

    NASA Astrophysics Data System (ADS)

    Norris, J. Quinn

    2016-03-01

    Fracking is the common term for the use of hydraulic fracturing during oil and gas recovery. During a hydraulic fracturing treatment, water and additives are injected into a target reservoir generating one or more fractures that enable oil and gas to flow to the borehole. Since the 1940's, hydraulic fracturing has been used to increase the production of traditional (typically sandstone) reservoirs with very little controversy. Hydraulic fracturing developments in the 1990's (specifically horizontal drilling and slickwater) enabled large-scale commercial recovery of oil and gas from tight shale reservoirs. This recovery has led to dramatic decreases in the prices of oil and gas and has made fracking highly controversial. While there are environmental risks associated the recovery and use of any natural resource, it is important to understand the specific environmental risks associated with hydraulic fracturing. Some risks like the generation of earthquakes are misunderstood. Many risks like drinking water contamination can be reduced through proper practices and regulation. While others like large water use are inherent to the process. In all cases, reliable publicly-accessible information and research are necessary for making informed decisions about fracking. US DOE Grant #DE-FG02-04ER1556.

  16. Free flap reconstructions of tibial fractures complicated after internal fixation.

    PubMed

    Nieminen, H; Kuokkanen, H; Tukiainen, E; Asko-Seljavaara, S

    1995-04-01

    The cases of 15 patients are presented where microvascular soft-tissue reconstructions became necessary after internal fixation of tibial fractures. Primarily, seven of the fractures were closed. Eleven fractures had originally been treated by open reduction and internal fixation using plates and screws, and four by intramedullary nailing. All of the patients suffered from postoperative complications leading to exposure of the bone or fixation material. The internal fixation material was removed and radical revision of dead and infected tissue was carried out in all cases. Soft tissue reconstruction was performed using a free microvascular muscle flap (11 latissimus dorsi, three rectus abdominis, and one gracilis). In eight cases the nonunion of the fracture indicated external fixation. The microvascular reconstruction was successful in all 15 patients. In one case the recurrence of deep infection finally indicated a below-knee amputation. In another case, chronic infection with fistulation recurred postoperatively. After a mean follow-up of 26 months the soft tissue coverage was good in all the remaining 13 cases. All the fractures united. Microvascular free muscle flap reconstruction of the leg is regarded as a reliable method for salvaging legs with large soft-tissue defects or defects in the distal leg. If after internal fixation of the tibial fracture the osteosynthesis material or fracture is exposed, reconstruction of the soft-tissue can successfully be performed by free flap transfer. By radical revision, external fixation, bone grafting, and a free flap the healing of the fracture can be achieved.

  17. Fixation of zygomatic and mandibular fractures with biodegradable plates.

    PubMed

    Degala, Saikrishna; Shetty, Sujeeth; Ramya, S

    2013-01-01

    In this prospective study, 13 randomly selected patients underwent treatment for zygomatic-complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and screws using Champy's principle. All the cases were evaluated clinically and radiologically for the type of fracture, need for the intermaxillary fixation (IMF) and its duration, duration of surgery, fixation at operation, state of reduction at operation, state of bone union after operation, anatomic reduction, paresthesia, occlusal discrepancies, soft tissue infection, immediate and late inflammatory reactions related to biodegradation process, and any need for the removal of the plates. Descriptives, Frequencies, and Chi-square test were used. In our study, the age group range was 5 to 55 years. Road traffic accidents accounted for the majority of patients six, (46.2%). Postoperative occlusal discrepancies were found in seven patients as mild to moderate, which resolved with IMF for 1-8 weeks. There were minimal complications seen and only as soft tissue infection. Use of biodegradable osteosynthesis system is a reliable alternative method for the fixation of zygomatic-complex and mandibular fractures. The biodegradable system still needs to be refined in material quality and handling to match the stability achieved with metal system. Biodegradable plates and screws is an ideal system for pediatric fractures with favorable outcome.

  18. Integrated Life-Cycle Framework for Maintenance, Monitoring and Reliability of Naval Ship Structures

    DTIC Science & Technology

    2012-08-15

    number of times, a fast and accurate method for analyzing the ship hull is required. In order to obtain this required computational speed and accuracy...Naval Engineers Fleet Maintenance & Modernization Symposium (FMMS 2011) [8] and the Eleventh International Conference on Fast Sea Transportation ( FAST ...probabilistic strength of the ship hull. First, a novel deterministic method for the fast and accurate calculation of the strength of the ship hull is

  19. The effect of hydrogeological conditions on variability and dynamic of groundwater recharge in a carbonate aquifer at local scale

    NASA Astrophysics Data System (ADS)

    Dvory, Noam Zach; Livshitz, Yakov; Kuznetsov, Michael; Adar, Eilon; Yakirevich, Alexander

    2016-04-01

    Groundwater recharge in fractured karstic aquifers is particularly difficult to quantify due to the rock mass's heterogeneity and complexity that include preferential flow paths along karst conduits. The present study's major goals were to assess how the changes in lithology, as well as the fractured karst systems, influence the flow mechanism in the unsaturated zone, and to define the spatial variation of the groundwater recharge at local scale. The study area is located within the fractured carbonate Western Mountain aquifer (Yarkon-Taninim), west of the city of Jerusalem at the Ein Karem (EK) production well field. Field monitoring included groundwater level observations in nine locations in the study area during years 1990-2014. The measured groundwater level series were analyzed with the aid of one-dimensional, dual permeability numerical model of water flow in variably saturated fractured-porous media, which was calibrated and used to estimate groundwater recharge at nine locations. The recharge values exhibit significant spatial and temporal variation with mean and standard deviation values of 216 and 113 mm/year, respectively. Based on simulations, relationships were established between precipitation and groundwater recharge in each of the nine studied sites and compared with similar ones obtained in earlier regional studies. Simulations show that fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% from the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively constant with a close to linear pattern and continues during summer.

  20. Reliability of hunger-related assessments during 24-hour fasts and their relationship to body composition and subsequent energy compensation.

    PubMed

    Tinsley, Grant M; Moore, M Lane; Graybeal, Austin J

    2018-05-01

    Many diets employ regular periods of fasting that extend beyond a typical overnight fast (i.e. intermittent fasting [IF]). Evaluation of acute fasting responses provides information concerning the potential theoretical rationale for IF. The purpose of the present investigation was to assess the test-retest reliability of hunger-related variables during 24-hour fasts and the relationship between these variables and body composition, as well as subsequent energy intake (EI) after fasting. Eleven participants (6 F, 5 M) completed two 24-hour fasts after being provided a 3-day standardized weight-maintenance diet. From 16 to 24 h of fasting, participants were directly observed and provided hourly assessments of hunger, desire to eat (DTE), prospective food consumption (PFC), fullness and energy. After the fast, participants were allowed ad libitum food consumption, and compensation was calculated as EI relative to weight-maintenance energy needs. Test-retest reliability for hunger-related assessments at particular durations of fasting was evaluated using intraclass correlation coefficients (ICC), changes in dependent variables were evaluated using ANOVA with repeated measures, and relationships between variables were explored using bivariate correlations. At 16 h of fasting, the ICCs for all hunger-related assessments were statistically significant (r = 0.67-0.91; p ≤ 0.05). However, as the fast progressed, reliability varied substantially. When averaged across the nine measurements, the ICCs were: 0.81 (fullness), 0.74 (PFC), 0.67 (energy), 0.44 (DTE) and 0.36 (hunger). Body fat percentage was significantly correlated with changes in PFC (r = 0.62, p = 0.04), hunger (r = 0.66, p = 0.03), DTE (r = 0.71, p = 0.02), and fullness (r = -0.63, p = 0.04), but not energy (r = -0.16, p = 0.64). Average EI compensation was only 60% of weight-maintenance needs, but substantial variability was observed (7 to 110% compensation). Compensation was significantly correlated with changes in PFC (r = 0.72, p = 0.01), hunger (r = 0.63, p = 0.04) and DTE (r = 0.60, p = 0.05), but not fullness (r = 0.58, p = 0.06) or energy (r = 0.35, p = 0.29). Compensation and body fat percentage were not correlated (r = 0.03, p = 0.94). The percent of energy intake from fat and protein increased after the fast (29.9 to 37.3% and 13.8 to 16.8%; p < 0.05), while the percent of energy intake from carbohydrate decreased (56.4 to 46.0%; p = 0.02). These results may have implications for IF programs. It is possible that the implementation of multiple "test fasts," in which subjective variables and subsequent energy intake are evaluated, could be used to identify candidates who may be more likely to benefit from an IF program. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Developing a reliable method for signal wire attachment : [research results].

    DOT National Transportation Integrated Search

    2013-03-01

    Railroad signaling systems detect trains on the track, identify track fractures, prevent derailments, and alert signal crossing stations when trains approach. These systems are vital to safe train operation; therefore, each component of this system h...

  2. The Validity and Reliability of the Turkish Version of Miller Forensic Assessment of Symptoms Test (M-FAST)

    PubMed Central

    KEYVAN, Ali; GER, Mehmet Can; ERTÜRK, Sevgi Gül; TÜRKCAN, Ahmet

    2015-01-01

    Introduction The aim of this study was to show the validity and reliability of the M-FAST Turkish Version. Methods Translation and back-translation of the M-FAST was done, then the M-FAST Turkish Version was created with linguistic equivalence. The study was performed with 97 detainees and convicts sent from penal institutions who were internalized at our hospital forensic psychiatry service. M-FAST Turkish Version was applied to evaluees and as a result of clinical interview according to DSM-IV-TR diagnostic criteria and various data explorations the evaluee was examined for malingering. To investigate the internal consistency of the scale, Cronbach’s alpha and test-retest methods were used. In order to check the validity of the scale, in addition to the clinician’s diagnosis, participants were requested to fill the Minnesota Multiphasic Personality Inventory (MMPI) F and K validity scales. Results The mean age of participants was 31.8±9.3 (SD) years. 47 evaluees (48.5%) were diagnosed as malingering. In the internal consistency analysis, Cronbach’s alpha Coefficient was found to be .93. Test-retest relationship that was applied to 22 evaluees was found to be highly significant and strong (r=.89, p<.001). M-FAST scores were significantly high at the malingering group (n=47) (z=−8.02, p<.001). ROC curve analysis suggested a score of ≥7 points as the optimal cut-off for a malingering level for the M-FAST. Kappa coefficients of malingering ± groups were found to be, M-FAST≥7 Kappa: .83; F>16 Kappa: .29; F-K>16 Kappa: .30. For diagnosis of malingering, M-FAST Scale and the MMPI inventory scales were evaluated with the Binary Logistic Regression analysis and only M-FAST scores were found to be significant in prediction of malingering. Conclusion The findings of this study support that, M-FAST Turkish Form represents the structure of the original scale and can be used as a reliable and valid instrument. PMID:28360727

  3. Assessment of reliability of CAD-CAM tooth-colored implant custom abutments.

    PubMed

    Guilherme, Nuno Marques; Chung, Kwok-Hung; Flinn, Brian D; Zheng, Cheng; Raigrodski, Ariel J

    2016-08-01

    Information is lacking about the fatigue resistance of computer-aided design and computer-aided manufacturing (CAD-CAM) tooth-colored implant custom abutment materials. The purpose of this in vitro study was to investigate the reliability of different types of CAD-CAM tooth-colored implant custom abutments. Zirconia (Lava Plus), lithium disilicate (IPS e.max CAD), and resin-based composite (Lava Ultimate) abutments were fabricated using CAD-CAM technology and bonded to machined titanium-6 aluminum-4 vanadium (Ti-6Al-4V) alloy inserts for conical connection implants (NobelReplace Conical Connection RP 4.3×10 mm; Nobel Biocare). Three groups (n=19) were assessed: group ZR, CAD-CAM zirconia/Ti-6Al-4V bonded abutments; group RC, CAD-CAM resin-based composite/Ti-6Al-4V bonded abutments; and group LD, CAD-CAM lithium disilicate/Ti-6Al-4V bonded abutments. Fifty-seven implant abutments were secured to implants and embedded in autopolymerizing acrylic resin according to ISO standard 14801. Static failure load (n=5) and fatigue failure load (n=14) were tested. Weibull cumulative damage analysis was used to calculate step-stress reliability at 150-N and 200-N loads with 2-sided 90% confidence limits. Representative fractured specimens were examined using stereomicroscopy and scanning electron microscopy to observe fracture patterns. Weibull plots revealed β values of 2.59 for group ZR, 0.30 for group RC, and 0.58 for group LD, indicating a wear-out or cumulative fatigue pattern for group ZR and load as the failure accelerating factor for groups RC and LD. Fractographic observation disclosed that failures initiated in the interproximal area where the lingual tensile stresses meet the compressive facial stresses for the early failure specimens. Plastic deformation of titanium inserts with fracture was observed for zirconia abutments in fatigue resistance testing. Significantly higher reliability was found in group ZR, and no significant differences in reliability were determined between groups RC and LD. Differences were found in the failure characteristics of group ZR between static and fatigue loading. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1972-01-01

    Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.

  5. Application of Fracture Mechanics to Specify the Proof Load Factor for Clamp Band Systems of Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Singaravelu, J.; Sundaresan, S.; Nageswara Rao, B.

    2013-04-01

    This article presents a methodology for evaluation of the proof load factor (PLF) for clamp band system (CBS) made of M250 Maraging steel following fracture mechanics principles.CBS is most widely used as a structural element and as a separation system. Using Taguchi's design of experiments and the response surface method (RSM) the compact tension specimens were tested to establish an empirical relation for the failure load ( P max) in terms of the ultimate strength, width, thickness, and initial crack length. The test results of P max closely matched with the developed RSM empirical relation. Crack growth rates of the maraging steel in different environments were examined. Fracture strength (σf) of center surface cracks and through-crack tension specimens are evaluated utilizing the fracture toughness ( K IC). Stress induced in merman band at flight loading conditions is evaluated to estimate the higher load factor and PLF. Statistical safety factor and reliability assessments were made for the specified flaw sizes useful in the development of fracture control plan for CBS of launch vehicles.

  6. Fixation of mandibular fractures with biodegradable plates and screws.

    PubMed

    Yerit, Kaan C; Enislidis, Georg; Schopper, Christian; Turhani, Dritan; Wanschitz, Felix; Wagner, Arne; Watzinger, Franz; Ewers, Rolf

    2002-09-01

    Little data exist regarding the use of biodegradable plates and screws for the internal fixation of human mandibular fractures. The purpose of this study was to evaluate the stability of biodegradable, self-reinforced poly-L-lactide plates and screws for the internal fixation of fractures of the human mandible. Twenty-two individuals (14 male, 8 female; average age, 26.3 years) with a variety of fracture patterns of the mandible underwent management with a biodegradable fixation system. After surgery, maxillomandibular fixation was applied in 3 cases. Images (panoramic radiograph, computed tomographic scan) were taken immediately after surgery and at the 4-week, 8-week, 12-week, and 24-week intervals. The follow-up period averaged 49.1 weeks (range, 22 to 78 weeks). Mucosal dehiscences over the resorbable devices were present in 2 patients. In 1 of these 2 cases, the material had to be replaced with titanium plates. Mucosal healing and consolidation of the fracture were normal in all other patients. Self-reinforced biodegradable osteosynthesis materials provide a reliable and sufficient alternative to conventional titanium plate systems.

  7. The clinical application of absorbable intramedullary nail and claw plate on treating multiple rib fractures.

    PubMed

    Chai, X; Lin, Q; Ruan, Z; Zheng, J; Zhou, J; Zhang, J

    2013-08-01

    The absorption intramedullary nail and claw plate indications and efficacy were investigated in the treatment of a life-threatening multiple rib fractures. A retrospective analysis of 248 surgically treated rib fracture patients was performed who admitted to our hospital from March 2007 to December 2012. Intramedullary nailing was performed in 28 cases, a claw-type bone plate was fixed in 141 cases, and a combination of both was fixed in 79 cases. All internal fixation patients were clinically cured except 1 patient died 14 days after a massive pulmonary embolism. The patients with flail chest and floating chest wall causing respiratory and circulatory disorders were promptly corrected. Routine follow-up was from 1 to 2 years, displaced fractures were in 2 cases, and there were 11 cases of internal fixation and extraction. Internal fixation is a simple and reliable method for the treatment of multiple rib fractures. Both internal fixation materials have their pros and cons but the claw bone plate is more robust. The actual selection of appropriate treatment options helps to improve the treatment efficacy.

  8. Fast estimation of Colles' fracture load of the distal section of the radius by homogenized finite element analysis based on HR-pQCT.

    PubMed

    Hosseini, Hadi S; Dünki, Andreas; Fabech, Jonas; Stauber, Martin; Vilayphiou, Nicolas; Pahr, Dieter; Pretterklieber, Michael; Wandel, Jasmin; Rietbergen, Bert van; Zysset, Philippe K

    2017-04-01

    Fractures of the distal section of the radius (Colles' fractures) occur earlier in life than other osteoporotic fractures. Therefore, they can be interpreted as a warning signal for later, more deleterious fractures of vertebral bodies or the femoral neck. In the past decade, the advent of HR-pQCT allowed a detailed architectural analysis of the distal radius and an automated but time-consuming estimation of its strength with linear micro-finite element (μFE) analysis. Recently, a second generation of HR-pQCT scanner (XtremeCT II, SCANCO Medical, Switzerland) with a resolution beyond 61 μm became available for even more refined biomechanical investigations in vivo. This raises the question how biomechanical outcome variables compare between the original (LR) and the new (HR) scanner resolution. Accordingly, the aim of this work was to validate experimentally a patient-specific homogenized finite element (hFE) analysis of the distal section of the human radius for the fast prediction of Colles' fracture load based on the last generation HR-pQCT. Fourteen pairs of fresh frozen forearms (mean age = 77.5±9) were scanned intact using the high (61 μm) and the low (82 μm) resolution protocols that correspond to the new and original HR-pQCT systems. From each forearm, the 20mm most distal section of the radius were dissected out, scanned with μCT at 16.4 μm and tested experimentally under compression up to failure for assessment of stiffness and ultimate load. Linear and nonlinear hFE models together with linear micro finite element (μFE) models were then generated based on the μCT and HR-pQCT reconstructions to predict the aforementioned mechanical properties of 24 sections. Precision errors of the short term reproducibility of the FE analyses were measured based on the repeated scans of 12 sections. The calculated failure loads correlated strongly with those measured in the experiments: accounting for donor as a random factor, the nonlinear hFE provided a marginal coefficient of determination (R m 2 ) of 0.957 for the high resolution (HR) and 0.948 for the low resolution (LR) protocols, the linear hFE with R m 2 of 0.957 for the HR and 0.947 for the LR protocols. Linear μFE predictions of the ultimate load were similar with an R m 2 of 0.950 for the HR and 0.954 for the LR protocols, respectively. Nonlinear hFE strength computation led to precision errors of 2.2 and 2.3% which were higher than the ones calculated based on the linear hFE (1.6 and 1.9%) and linear μFE (1.2 and 1.6%) for the HR and LR protocols respectively. Computation of the fracture load with nonlinear hFE demanded in average 6h of CPU time which was 3 times faster than with linear μFE, while computation with linear hFE took only a few minutes. This study delivers an extensive experimental and numerical validation for the application of an accurate and fast hFE diagnostic tool to help in identifying individuals who may be at risk of an osteoporotic wrist fracture and to follow up pharmacological and other treatments in such patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Fracture toughness of dentin/resin-composite adhesive interfaces.

    PubMed

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p < 0.05) between the dental adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.

  10. Are Biodegradable Plates Applicable in Endoscope-Assisted Open Reduction and Internal Fixation of Mandibular Subcondyle Fractures?

    PubMed

    Son, Jang-Ho; Ha, Jinhee; Cho, Yeong-Cheol; Sung, Iel-Yong

    2017-08-01

    To investigate whether biodegradable plates are applicable in endoscope-assisted open reduction and internal fixation (EAORIF) of mandibular subcondyle fractures. This retrospective case-series study included patients with mandibular subcondyle fractures treated with EAORIF using an unsintered hydroxyapatite particles/poly-l-lactide biodegradable plate system, with at least 6 months of clinical follow-up data available. The outcome variables were fracture healing with postoperative stability and postoperative complications. Other variables included age, gender, fracture site, cause of injury, accompanying mandibular fracture, total follow-up period, fracture classification, extent of displacement, preoperative status of occlusion, preoperative mandibular movements, fixation materials in accompanying mandibular fracture, location and number of fixation plates, periods of intermaxillary fixation/elastic bands, and postoperative mandibular movements. Fracture healing in these patients was assessed by comparing the immediate postoperative cone-beam computed tomography (CBCT) images with those obtained at least 3 months after surgery. A total of 11 patients, 9 male and 2 female, with a mean ± standard deviation age of 35.3 ± 15.9 years, were included. The mean follow-up period was 18.8 ± 7.8 months. Four patients had an accompanying mandibular fracture. Two 4-hole, 2.0-mm biodegradable plates were fixed with 6-mm screws along the posterior border of the mandibular ramus and near the sigmoid notch. Complete bone formation around the fracture lines or fading of the fracture lines, with no change in the position of the fractured segments, was observed on the postoperative CBCT images at 3 months. With the exception of 2 patients, no patient complained of plate palpability, deviation in occlusion, or discomfort during the postoperative follow-up period. EAORIF using biodegradable plates for mandible subcondylar fractures is a stable and reliable method, with considerable advantages compared with titanium plates. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Propagation of Gaussian wave packets in complex media and application to fracture characterization

    NASA Astrophysics Data System (ADS)

    Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu

    2017-08-01

    Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model. For a layered medium containing fractures, our method can correctly recover the fracture density even with an inaccurate velocity model.

  12. A reliable, fast and low cost maximum power point tracker for photovoltaic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A.

    This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)

  13. Application of the differential decay-curve method to γ-γ fast-timing lifetime measurements

    NASA Astrophysics Data System (ADS)

    Petkov, P.; Régis, J.-M.; Dewald, A.; Kisyov, S.

    2016-10-01

    A new procedure for the analysis of delayed-coincidence lifetime experiments focused on the Fast-timing case is proposed following the approach of the Differential decay-curve method. Examples of application of the procedure on experimental data reveal its reliability for lifetimes even in the sub-nanosecond range. The procedure is expected to improve both precision/reliability and treatment of systematic errors and scarce data as well as to provide an option for cross-check with the results obtained by means of other analyzing methods.

  14. Postoperative Evaluation of Reduction Loss in Proximal Humeral Fractures: A Comparison of Plain Radiographs and Computed Tomography.

    PubMed

    Jia, Xiao-Yang; Chen, Yan-Xi; Qiang, Min-Fei; Zhang, Kun; Li, Hao-Bo; Jiang, Yu-Chen; Zhang, Yi-Jie

    2017-05-01

    To compare postoperative CT images with plain radiographs for measuring prognostic factors of reduction loss of fractures of the proximal part of the humerus. A total of 65 patients who sustained fractures of the proximal humerus treated with locking plates from June 2012 to October 2015 were retrospectively analyzed. There were 24 men and 41 women, with a mean age of 60.0 years (range, 22-76 years). According to the Neer classification system of proximal humeral fracture, there were 26 two-part, 27 three-part and 12 four-part fractures of the proximal part of the humerus, and all fractures were treated with open reduction and internal fixation (ORIF) using locked plating. All postoperative CT images and plain radiographs of the patients were obtained. Prognostic factors of the reduction loss were the change of neck shaft angle (NSA) and the change of humeral head height (HHH). The change of NSA and HHH were evaluated by the difference between postoperative initial and final follow-up measurement. Reduction loss was defined as the change ≥10° for NSA or ≥5 mm for HHH. The NSA and HHH were measured using plain radiographs and 3-D CT images, both initially and at final follow-up. The paired t-test was used for comparison of NSA, change of NSA, HHH, and change of HHH between two image modalities. The differences between two image modalities in the assessment of reduction loss were examined using the χ 2 -test (McNemar test). Intraclass correlation coefficients (ICC) were used to assess the intra-observer and inter-observer reliability. 3-D CT images (ICC range, 0.834-0.967) were more reliable in all parameters when compared with plain radiographs (ICC range, 0.598-0.915). Significant differences were found between the two image modalities in all parameters (plain radiographs: initial NSA = 133.6° ± 3.8°, final NSA = 130.0° ± 1.9°, initial HHH = 17.9 ± 0.9 mm, final HHH = 15.8 ± 1.5 mm; 3-D CT: initial NSA = 131.4° ± 3.4°, final NSA = 128.8° ± 1.7°, initial HHH = 16.8 ± 1.2 mm, final HHH = 14.5 ± 1.1 mm; all P < 0.05). In the assessment of reduction loss, the percentage was 16.9% (11/65) for the plain radiographs and 7.7% (5/65) for the 3-D CT scans (P < 0.05). For the 5 patients with reduction loss, which were observed by two imaging modalities, the mean Constant-Murley score was 61.0 ± 1.6. The patients with reduction loss, observed only in plain radiographs but not CT images, had good shoulder function (Constant-Murley score: 82.7 ± 1.0). Our data reveal that 3-D CT images are more reliable than plain radiographs in the assessment of the prognostic factors of reduction loss of fractures of the proximal part of the humerus with treatment of locking plates; this reliable CT technique can serve as an effective guideline for the subsequent clinical management of patients. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  15. A Vertical Organic Transistor Architecture for Fast Nonvolatile Memory.

    PubMed

    She, Xiao-Jian; Gustafsson, David; Sirringhaus, Henning

    2017-02-01

    A new device architecture for fast organic transistor memory is developed, based on a vertical organic transistor configuration incorporating high-performance ambipolar conjugated polymers and unipolar small molecules as the transport layers, to achieve reliable and fast programming and erasing of the threshold voltage shift in less than 200 ns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Assistant for Specifying Quality Software (ASQS) Mission Area Analysis

    DTIC Science & Technology

    1990-12-01

    somewhat arbitrary, it was a reasonable and fast approach for partitioning the mission and software domains. The MAD builds on work done by Boeing Aerospace...Reliability ++ Reliability +++ Response 2: NO Discussion: A NO response implies intermittent burns -- most likely to perform attitude control functions...Propulsion Reliability +++ Reliability ++ 4-15 4.8.3 Query BT.3 Query: For intermittent thruster firing requirements, will the average burn time be less than

  17. Skill Assessment in the Interpretation of 3D Fracture Patterns from Radiographs

    PubMed Central

    Rojas-Murillo, Salvador; Hanley, Jessica M; Kreiter, Clarence D; Karam, Matthew D; Anderson, Donald D

    2016-01-01

    Abstract Background Interpreting two-dimensional radiographs to ascertain the three-dimensional (3D) position and orientation of fracture planes and bone fragments is an important component of orthopedic diagnosis and clinical management. This skill, however, has not been thoroughly explored and measured. Our primary research question is to determine if 3D radiographic image interpretation can be reliably assessed, and whether this assessment varies by level of training. A test designed to measure this skill among orthopedic surgeons would provide a quantitative benchmark for skill assessment and training research. Methods Two tests consisting of a series of online exercises were developed to measure this skill. Each exercise displayed a pair of musculoskeletal radiographs. Participants selected one of three CT slices of the same or similar fracture patterns that best matched the radiographs. In experiment 1, 10 orthopedic residents and staff responded to nine questions. In experiment 2, 52 residents from both orthopedics and radiology responded to 12 questions. Results Experiment 1 yielded a Cronbach alpha of 0.47. Performance correlated with experience; r(8) = 0.87, p<0.01, suggesting that the test could be both valid and reliable with a slight increase in test length. In experiment 2, after removing three non-discriminating items, the Cronbach coefficient alpha was 0.28 and performance correlated with experience; r(50) = 0.25, p<0.10. Conclusions Although evidence for reliability and validity was more compelling with the first experiment, the analyses suggest motivation and test duration are important determinants of test efficacy. The interpretation of radiographs to discern 3D information is a promising and a relatively unexplored area for surgical skill education and assessment. The online test was useful and reliable. Further test development is likely to increase test effectiveness. Clinical Relevance Accurately interpreting radiographic images is an essential clinical skill. Quantitative, repeatable techniques to measure this skill can improve resident training and improve patient safety. PMID:27528827

  18. Reliability of Source Mechanisms for a Hydraulic Fracturing Dataset

    NASA Astrophysics Data System (ADS)

    Eyre, T.; Van der Baan, M.

    2016-12-01

    Non-double-couple components have been inferred for induced seismicity due to fluid injection, yet these components are often poorly constrained due to the acquisition geometry. Likewise non-double-couple components in microseismic recordings are not uncommon. Microseismic source mechanisms provide an insight into the fracturing behaviour of a hydraulically stimulated reservoir. However, source inversion in a hydraulic fracturing environment is complicated by the likelihood of volumetric contributions to the source due to the presence of high pressure fluids, which greatly increases the possible solution space and therefore the non-uniqueness of the solutions. Microseismic data is usually recorded on either 2D surface or borehole arrays of sensors. In many cases, surface arrays appear to constrain source mechanisms with high shear components, whereas borehole arrays tend to constrain more variable mechanisms including those with high tensile components. The abilities of each geometry to constrain the true source mechanisms are therefore called into question.The ability to distinguish between shear and tensile source mechanisms with different acquisition geometries is investigated using synthetic data. For both inversions, both P- and S- wave amplitudes recorded on three component sensors need to be included to obtain reliable solutions. Surface arrays appear to give more reliable solutions due to a greater sampling of the focal sphere, but in reality tend to record signals with a low signal to noise ratio. Borehole arrays can produce acceptable results, however the reliability is much more affected by relative source-receiver locations and source orientation, with biases produced in many of the solutions. Therefore more care must be taken when interpreting results.These findings are taken into account when interpreting a microseismic dataset of 470 events recorded by two vertical borehole arrays monitoring a horizontal treatment well. Source locations and mechanisms are calculated and the results discussed, including the biases caused by the array geometry. The majority of the events are located within the target reservoir, however a small, seemingly disconnected cluster of events appears 100 m above the reservoir.

  19. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis.

    PubMed

    Bordin, Dimorvan; Bergamo, Edmara T P; Fardin, Vinicius P; Coelho, Paulo G; Bonfante, Estevam A

    2017-07-01

    To assess the probability of survival (reliability) and failure modes of narrow implants with different diameters. For fatigue testing, 42 implants with the same macrogeometry and internal conical connection were divided, according to diameter, as follows: narrow (Ø3.3×10mm) and extra-narrow (Ø2.9×10mm) (21 per group). Identical abutments were torqued to the implants and standardized maxillary incisor crowns were cemented and subjected to step-stress accelerated life testing (SSALT) in water. The use-level probability Weibull curves, and reliability for a mission of 50,000 and 100,000 cycles at 50N, 100, 150 and 180N were calculated. For the finite element analysis (FEA), two virtual models, simulating the samples tested in fatigue, were constructed. Loading at 50N and 100N were applied 30° off-axis at the crown. The von-Mises stress was calculated for implant and abutment. The beta (β) values were: 0.67 for narrow and 1.32 for extra-narrow implants, indicating that failure rates did not increase with fatigue in the former, but more likely were associated with damage accumulation and wear-out failures in the latter. Both groups showed high reliability (up to 97.5%) at 50 and 100N. A decreased reliability was observed for both groups at 150 and 180N (ranging from 0 to 82.3%), but no significant difference was observed between groups. Failure predominantly involved abutment fracture for both groups. FEA at 50N-load, Ø3.3mm showed higher von-Mises stress for abutment (7.75%) and implant (2%) when compared to the Ø2.9mm. There was no significant difference between narrow and extra-narrow implants regarding probability of survival. The failure mode was similar for both groups, restricted to abutment fracture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Eyebrow ptosis after blowout fracture indicates impairment of trigeminal proprioceptive evocation that induces reflex contraction of the frontalis muscle.

    PubMed

    Ban, Ryokuya; Matsuo, Kiyoshi; Ban, Midori; Yuzuriha, Shunsuke

    2013-01-01

    The mixed levator and frontalis muscles lack the interior muscle spindles normally required to induce involuntary contraction of their slow-twitch fibers. To involuntarily move the eyelid and eyebrow, voluntary contraction of the levator nonskeletal fast-twitch muscle fibers stretches the mechanoreceptors in Müller's muscle to evoke trigeminal proprioception, which then induces reflex contraction of the levator and frontalis skeletal slow-twitch muscle fibers. The trigeminal proprioceptive nerve has a long intraorbital course from the mechanoreceptors in Müller's muscle to the superior orbital fissure. Since external force to the globe may cause impairment of trigeminal proprioceptive evocation, we confirmed how unilateral blowout fracture due to a hydraulic mechanism affects ipsilateral eyebrow movement as compared with unilateral zygomatic fracture. In 16 unilateral blowout fracture patients, eyebrow heights were measured on noninjured and injured sides in primary and 60° upward gaze and statistically compared. Eyebrow heights were also measured in primary gaze in 24 unilateral zygomatic fracture patients and statistically compared. In the blowout fracture patients, eyebrow heights on the injured side were significantly smaller than on the noninjured side in both gaze. In the zygomatic fracture patients, eyebrow heights on the injured side were significantly larger than on the noninjured side in primary gaze. Since 60° upward gaze did not recover the eyebrow ptosis observed in primary gaze in blowout fracture patients, such ptosis indicated impairment of trigeminal proprioceptive evocation and the presence of a hydraulic mechanism that may require ophthalmic examination.

  1. Eyebrow Ptosis After Blowout Fracture Indicates Impairment of Trigeminal Proprioceptive Evocation That Induces Reflex Contraction of the Frontalis Muscle

    PubMed Central

    Ban, Ryokuya; Matsuo, Kiyoshi; Ban, Midori; Yuzuriha, Shunsuke

    2013-01-01

    Objective: The mixed levator and frontalis muscles lack the interior muscle spindles normally required to induce involuntary contraction of their slow-twitch fibers. To involuntarily move the eyelid and eyebrow, voluntary contraction of the levator nonskeletal fast-twitch muscle fibers stretches the mechanoreceptors in Müller's muscle to evoke trigeminal proprioception, which then induces reflex contraction of the levator and frontalis skeletal slow-twitch muscle fibers. The trigeminal proprioceptive nerve has a long intraorbital course from the mechanoreceptors in Müller's muscle to the superior orbital fissure. Since external force to the globe may cause impairment of trigeminal proprioceptive evocation, we confirmed how unilateral blowout fracture due to a hydraulic mechanism affects ipsilateral eyebrow movement as compared with unilateral zygomatic fracture. Methods: In 16 unilateral blowout fracture patients, eyebrow heights were measured on noninjured and injured sides in primary and 60° upward gaze and statistically compared. Eyebrow heights were also measured in primary gaze in 24 unilateral zygomatic fracture patients and statistically compared. Results: In the blowout fracture patients, eyebrow heights on the injured side were significantly smaller than on the noninjured side in both gaze. In the zygomatic fracture patients, eyebrow heights on the injured side were significantly larger than on the noninjured side in primary gaze. Conclusion: Since 60° upward gaze did not recover the eyebrow ptosis observed in primary gaze in blowout fracture patients, such ptosis indicated impairment of trigeminal proprioceptive evocation and the presence of a hydraulic mechanism that may require ophthalmic examination. PMID:23814636

  2. Serum 25-hydroxyvitamin D status among Saudi children with and without a history of fracture.

    PubMed

    Al-Daghri, N M; Aljohani, N; Rahman, S; Sabico, S; Al-Attas, O S; Alokail, M S; Al-Ajlan, A; Chrousos, G P

    2016-10-01

    The significance of vitamin D deficiency in the incidence of bone fractures in children has been under investigated. Here, we aimed to associate serum 25-hydroxyvitamin D levels and fractures in Saudi children. This cross-sectional study was conducted in 1022 Saudi children without fracture history [476 boys (age 14.56 ± 1.81, BMI 22.38 ± 5.81) and 546 girls (age 13.57 ± 1.67, BMI 22.24 ± 4.94)] and 234 Saudi children with a history of fracture [148 boys (age 14.25 ± 1.39, BMI 22.66 ± 6.08) and 86 girls (age 13.76 ± 1.35, BMI 21.33 ± 1.35)]. Anthropometric and fasting serum biochemical data were collected. Serum 25-hydroxyvitamin D level was assessed using electrochemiluminescence. Mean circulating 25-hydroxyvitamin (25OH) D level in subjects with a history of fracture was significantly lower in both boys (p < 0.01) and girls (p < 0.01) than those without, however both groups had low mean 25(OH)D levels. Furthermore, age was positively associated with 25-hydroxyvitamin D in boys (p < 0.05) and negatively in girls (p < 0.05) with a history of fracture. In conclusion, vitamin D levels were significantly lower in children with a history of bone fractures in both boys and girls than those without such a history; even in the absence of fracture history, vitamin D status correction is warranted in the general Saudi pediatric population.

  3. Effect of chewing speed on the detection of a foreign object in food.

    PubMed

    Paphangkorakit, J; Ladsena, V; Rukyuttithamkul, T; Khamtad, T

    2016-03-01

    Accidentally biting hard on a piece of hard foreign object in food is among the causes of tooth fracturing and could be associated with oral sensibility. This study has investigated the effect of chewing speed on the ability to detect a foreign object in food in human. Fourteen healthy subjects were asked to randomly chew one of 10 cooked rice balls, five of which containing a foreign object made from a tiny uncooked rice grain, until they detected the rice grain. Each subject chewed the test foods both at 50 (slow) and 100 (fast) chews min(-1). The accuracy of detection and the number of chews before detection (CBD) were recorded and compared between the two chewing speeds using paired t-tests. The results showed that almost all subjects detected the foreign object by biting. The accuracy of detection was more than 90% and not significantly different between slow and fast chewing but the mean CBD in slow chewing (11·7 ± 1·3 chews) was significantly different from that in fast chewing (20·7 ± 1·9 chews; P < 0·001). The study showed that slow chewers required less number of chews before a foreign object in food could be detected and was, presumably, more effective in detecting the object compared to fast chewers. If each chew bears equal probability of teeth encountering the foreign object, slow chewing might also reduce the chance of accidentally biting hard on the foreign object and fracturing the tooth. © 2015 John Wiley & Sons Ltd.

  4. New techniques for modeling the reliability of reactor pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.I.; Simonen, F.A.; Liebetrau, A.M.

    1985-12-01

    In recent years several probabilistic fracture mechanics codes, including the VISA code, have been developed to predict the reliability of reactor pressure vessels. This paper describes new modeling techniques used in a second generation of the VISA code entitled VISA-II. Results are presented that show the sensitivity of vessel reliability predictions to such factors as inservice inspection to detect flaws, random positioning of flaws within the vessel walls thickness, and fluence distributions that vary through-out the vessel. The algorithms used to implement these modeling techniques are also described. Other new options in VISA-II are also described in this paper. Themore » effect of vessel cladding has been included in the heat transfer, stress, and fracture mechanics solutions in VISA-II. The algorithm for simulating flaws has been changed to consider an entire vessel rather than a single flaw in a single weld. The flaw distribution was changed to include the distribution of both flaw depth and length. A menu of several alternate equations has been included to predict the shift in RTNDT. For flaws that arrest and later re-initiate, an option was also included to allow correlating the current arrest thoughness with subsequent initiation toughnesses. 21 refs.« less

  5. Pumping capacity and reliability of cryogenic micro-pump for micro-satellite applications

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhao, Yi; Li, Biao; Ludlow, Daryl

    2004-10-01

    In micro-satellites, delicate instruments are compacted into a limited space. This raises concerns of active cooling and remote cooling. Silicon based micro-pump arrays are employed thanks to manufacturing simplicity, a small cryogen charge, etc, and keep the instruments within a narrow cryogenic temperature range. The pumping capacity and reliability of the micro-pump are critical in terms of heat balance calculation and lifetime evaluation. The pumping capacity is associated with the diaphragm deflection while the reliability is associated with stress and fatigue. Both of them heavily depend on the silicon diaphragm, one of the key components. This paper examines the pumping capacity and reliability of the micro-pump under cryogenic temperature for micro-satellite applications. In this work, differential pressure was used for the actuation of a single-crystal silicon diaphragm. Diaphragm deflection and stress distribution were achieved using interferometry and micro-Raman spectroscopy, respectively. As a result, smaller pumping capacity was derived under cryogenic temperature, compared to that under room temperature, indicating a stiffer material. From stress mapping, the edge centers were believed to be the most vulnerable to fracture, which was further validated by analyzing the fracture diaphragm. Moreover, a fatigue testing was conducted for 1.8 million cycles with no damage found, verifying silicon as a viable material for long time operation in a cryogenic environment.

  6. Intra-operative 3D imaging system for robot-assisted fracture manipulation.

    PubMed

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-01-01

    Reduction is a crucial step in the treatment of broken bones. Achieving precise anatomical alignment of bone fragments is essential for a good fast healing process. Percutaneous techniques are associated with faster recovery time and lower infection risk. However, deducing intra-operatively the desired reduction position is quite challenging due to the currently available technology. The 2D nature of this technology (i.e. the image intensifier) doesn't provide enough information to the surgeon regarding the fracture alignment and rotation, which is actually a three-dimensional problem. This paper describes the design and development of a 3D imaging system for the intra-operative virtual reduction of joint fractures. The proposed imaging system is able to receive and segment CT scan data of the fracture, to generate the 3D models of the bone fragments, and display them on a GUI. A commercial optical tracker was included into the system to track the actual pose of the bone fragments in the physical space, and generate the corresponding pose relations in the virtual environment of the imaging system. The surgeon virtually reduces the fracture in the 3D virtual environment, and a robotic manipulator connected to the fracture through an orthopedic pin executes the physical reductions accordingly. The system is here evaluated through fracture reduction experiments, demonstrating a reduction accuracy of 1.04 ± 0.69 mm (translational RMSE) and 0.89 ± 0.71 ° (rotational RMSE).

  7. Surgical Treatment of the Atrophic Mandibular Fractures by Locked Plates Systems: Our Experience and a Literature Review

    PubMed Central

    Novelli, Giorgio; Sconza, Cristiano; Ardito, Emanuela; Bozzetti, Alberto

    2012-01-01

    The management of atrophic mandibular fractures in edentulous patients represents an insidious issue for the maxillofacial surgeon due to the biological and biomechanical conditions that are unfavorable for fracture fixation and bone healing. The purpose of this study was to evaluate the results of the treatment of atrophic mandibular fractures and to compare the outcomes of different plating systems used for stabilization. We selected a study group of 16 patients with fractures of completely edentulous atrophic mandibles who were treated in our department between 2004 and 2010. All patients were surgically treated by open reduction and internal rigid fixation using 2.0-mm large-profile locking and 2.4-mm locking bone plates. All patients achieved a complete fracture healing and fast functional recovery of mandibular movements without intraoperative or postoperative surgical complications. The results of our study demonstrated the efficacy of this type of treatment in association with a low postoperative complication rate, a reduction in the recovery time, and the possibility to have an immediately functional rehabilitation. There were very similar results using each of the two bone plating methods considered: no case had hardware failure or nonunion of the fracture. The 2.0-mm large locking plate is thinner, exposes through the soft tissues less frequently, and is much easier to shape and adapt to the mandibular anatomy. However, the 2.4-mm locking plate system still represents the reference hardware in the condition of severe bone atrophy. PMID:23730420

  8. Seismic azimuthal anisotropy in crevasse fields

    NASA Astrophysics Data System (ADS)

    Lindner, F.; Laske, G.; Walter, F.

    2017-12-01

    Crevasses and englacial fracture networks route meltwater from a glacier's surface to the subglacial drainage system and thus strongly influence glacial hydraulics. However, rapid fracture growth may also lead to sudden (and potentially hazardous) structural failure of unstable glaciers and ice dams, rifting of ice shelves, or iceberg calving.Here, we use passive seismic recordings from Glacier de la Plaine Morte, Switzerland, to investigate the englacial fracture network. Glacier de la Plaine Morte is the largest plateau glacier in the European Alps and extremely vulnerable to climate change. The annual drainage of an ice-marginal lake gives rise to numerous icequakes, thereby demonstrating the interplay between hydraulics and fracturing. The majority of these naturally occurring events exhibits dispersed, high-frequency Rayleigh waves at about 10 Hz and higher. A wide distribution of events allows us to study azimuthal anisotropy of englacial seismic velocities in regions of preferentially oriented fractures.Results from beamforming applied to a 100m-aperture array show strong (up to 9%) azimuthal anisotropy of Rayleigh wave velocities. We find that the fast direction coincides with the observed surface strike of the fractures and that anisotropy is strongest for high-frequency (around 30 Hz) Rayleigh waves that are sensitive only to the uppermost (few tens of meters) part of the glacier. In addition to these results, we propose to study temporal variations in the anisotropy pattern that can potentially be related to growth, shrinkage, and changing water content of the fractures during the course of the lake drainage or other hydrological events.

  9. Sex Steroid Hormones and Fracture in a Multiethnic Cohort of Women: The Women's Health Initiative Study (WHI).

    PubMed

    Cauley, Jane A; Danielson, Michelle E; Jammy, Guru Rajesh; Bauer, Doug C; Jackson, Rebecca; Wactawski-Wende, Jean; Chlebowski, Rowan T; Ensrud, Kristine E; Boudreau, Robert

    2017-05-01

    We hypothesize that endogenous sex steroids are associated with fracture risk independent of race/ethnicity. We performed a nested case-control study within the prospective Women's Health Initiative Observational Study. Incident nonspine fractures were identified in 381 black, 192 Hispanic, 112 Asian, and 46 Native American women over an average of 8.6 years. A random sample of 400 white women who experienced an incident fracture was chosen. One control was selected per case and matched on age, race/ethnicity, and blood draw date. Bioavailable estradiol (BioE2), bioavailable testosterone (BioT), and sex hormone-binding globulin (SHBG) were measured using baseline fasting serum. Conditional logistic regression models calculated the odds ratio (OR) and 95% confidence interval (CI) of fracture across tertiles of hormone. In multivariable and race/ethnicity-adjusted models, higher BioE2 (>8.25 pg/mL) and higher BioT (>13.3 ng/dL) were associated with decreased risk of fracture (OR, 0.65; 95% CI, 0.50 to 0.85; P trend = 0.001 and OR, 0.76; 95% CI, 0.60 to 0.96; P trend = 0.02, respectively). The interaction term between race/ethnicity and either BioE2 or BioT was not significant. There was no association between SHBG and fracture risk. In models stratifying by race/ethnicity, higher BioE2 was associated with a lower risk of fracture in both white women (OR, 0.56; 95% CI, 0.36 to 0.87) and black women (OR, 0.61; 95% CI, 0.39 to 0.96). Higher BioT was associated with a significantly lower fracture risk in only black women (OR, 0.65; 95% CI, 0.43 to 1.00), P trend = 0.03. Serum BioE2 and BioT are associated with fracture risk in older women irrespective of race/ethnicity and independent of established risk factors for fracture. Copyright © 2017 by the Endocrine Society

  10. Identifying factors associated with fast food consumption among adolescents in Beijing China using a theory-based approach.

    PubMed

    Ma, R; Castellanos, D C; Bachman, J

    2016-07-01

    China is in the midst of the nutrition transition with increasing rates of obesity and dietary changes. One contributor is the increase in fast food chains within the country. The purpose of this study was to develop a theory-based instrument that explores influencing factors of fast food consumption in adolescents residing in Beijing, China. Cross-sectional study. Value expectancy and theory of planned behaviour were utilised to explore influencing factors of fast food consumption in the target population. There were 201 Chinese adolescents between the ages of 12 and 18. Cronbach's alpha correlation coefficients were used to examine internal reliability of the theory-based questionnaire. Bivariate correlations and a MANOVA were utilised to determine the relationship between theory-based constructs, body mass index (BMI)-for-age and fast food intake frequency as well as to determine differences in theory-based scores among fast food consumption frequency groupings. The theory-based questionnaire showed good reliability. Furthermore, there was a significant difference in the theory-based subcategory scores between fast food frequency groups. A significant positive correlation was observed between times per week fast food was consumed and each theory-based subscale score. Using BMI-for-age of 176 participants, 81% were normal weight and 19% were considered overweight or obese. Results showed consumption of fast food to be on average 1.50 ± 1.33 per week. The relationship between BMI-for-age and times per week fast food was consumed was not significant. As the nutrition transition continues and fast food chains expand, it is important to explore factors effecting fast food consumption in China. Interventions targeting influencing factors can be developed to encourage healthy dietary choice in the midst of this transition. Copyright © 2016. Published by Elsevier Ltd.

  11. Intraobserver and interobserver agreement in the classification and treatment of midshaft clavicle fractures.

    PubMed

    Jones, Grant L; Bishop, Julie Y; Lewis, Brian; Pedroza, Angela D

    2014-05-01

    With the recent emphasis on performing open reduction and internal fixation on midshaft clavicle fractures with complete displacement, comminution, and >2 cm of shortening, it is important to determine the reliability of orthopaedic surgeons to assess these variables on standard plain radiographs and to determine the agreement among orthopaedic surgeons in choosing the treatment. To determine the intra- and interobserver reliability in the classification of midshaft clavicle fractures via standard plain radiographs and to determine the intra- and interobserver agreement in the treatment of these fractures. Cohort study (diagnosis); Level of evidence, 3. Charts of patients seen by the 2 senior authors from 2006 to 2011 were reviewed to identify patients treated for clavicle fractures (CPT codes 23500 and 23515). Anteroposterior and 30° cephalad radiographs were selected, representing midshaft clavicle fractures treated both operatively and nonoperatively. Thirty pairs of radiographs were included in the investigation. The radiographs were standardized for size to allow accurate measurements within a non-PACS (picture archiving and communications system) program, and a PDF document was created with all representative radiographs. Clinical scenarios were created for each set of radiographs, and the evaluators were asked to (1) measure the degree of shortening in millimeters, (2) determine the percentage displacement, (3) determine whether the fracture was comminuted, and (4) state whether they would treat the fracture operatively or nonoperatively. The radiographs, along with instructions on how to use the measuring tool with Adobe Reader, were distributed to 22 shoulder/sports medicine fellowship-trained orthopaedic surgeons, then reordered and redistributed approximately 3 months later. Sixteen surgeons completed 1 round of surveys, and 13 surgeons completed both rounds. Interrater agreement was moderate for displacement of 0%-49% (κ = 0.71, P < .001) and >100% (κ = 0.73, P < .001), with minimal agreement for displacement of 50%-100% (κ = 0.39, P < .001). There was moderate interrater agreement for the presence/absence of comminution (κ = 0.75, P < .001). Interrater agreement was weak for shortening of 0-5.0 mm (κ = 0.58, P < .001) and >30.0 mm (κ = 0.51, P < .001), with minimal agreement for shortening of 5.1-10.0 mm (κ = 0.22, P < .001) and no agreement for the other 4 categories. Interrater analysis showed weak agreement on whether surgical treatment was recommended (κ = 0.40, P < .001). Intrarater agreement was strong for comminution (κ = 0.80, P < .0001), moderate for both displacement (κ = 0.76, P < .001) and operative treatment (κ = 0.64, P < .001), and minimal for shortening (κ = 0.38, P < .001). The following variables statistically predicted whether surgery was recommended (P < .001): (1) the odds of surgery were 2.26 if comminution was noted, holding displacement and the interaction between displacement and shortening constant, and (2) the odds of surgery were 3.37 if there is displacement of >100% compared with displacement of 0%-49%, holding comminution and shortening constant. Standard plain unilateral radiographs of the clavicle are insufficient to reliably determine the degree of shortening of clavicle fractures and the need for surgery among shoulder/sports medicine fellowship-trained orthopaedic surgeons. Consideration should be made to not use shortening as the sole determinant for whether to proceed with surgical intervention or to use other radiographic modalities to determine the amount of shortening.

  12. Incidence of traumatic long-bone fractures requiring in-hospital management: a prospective age- and gender-specific analysis of 4890 fractures.

    PubMed

    Meling, Terje; Harboe, Knut; Søreide, Kjetil

    2009-11-01

    Musculoskeletal trauma represents a considerable global health burden; however, reliable population-based incidence data are lacking. Thus, we prospectively investigated the age- and sex-specific incidence patterns of long-bone fractures in a defined population. A 4-year prospective study of all long-bone fractures in a defined Norwegian population was carried out. The demographic data, as well as data on fracture type and location and mode of treatment were collected using recognised classification (e.g., AO/OTA - Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association; Gustilo-Anderson (GA) for open fractures). Age- and sex-adjusted incidences were calculated using population statistics. During the study period, 4890 long-bone fractures were recorded. The overall incidence per 100,000 per year was 406 with a 95% confidence interval (95%CI) of 395-417. The age-adjusted incidence for those <16 years (339; 95%CI: 318-360) was lower than that for those >or=16 years (427; 95%CI: 414-440). The overall male incidence (337; 95%CI: 322-355) was lower than the female (476; 95%CI: 459-493), but the male:female ratio was 2:1 among those <50 years, and 1:3 in those >or=50 years. The upper limb fractures had an overall incidence of 159 (95%CI: 152-166), whereas the lower limb fracture incidence was 247 (95%CI: 238-256). Open fractures occurred in 3%, with an incidence of 13 (95%CI: 11-15). Paediatric fractures were more likely to be treated conservatively with only 8% requiring internal fixation, compared to 56% internal fixation in those >or=16 years of age. An increase in the use of angular stable plates occurred during the study period. This prospectively collected study of long-bone fractures in a defined population recognises age- and gender-specific fracture patterns. Boys predominate in the younger age group for which treatment is basically conservative. In the senior population, women and operative treatment predominate.

  13. Ipsilateral obturator type of hip dislocation with fracture shaft femur in a child: a case report and literature review.

    PubMed

    Arjun, R H H; Kumar, Vishal; Saibaba, Balaji; John, Rakesh; Guled, Uday; Aggarwal, Sameer

    2016-09-01

    The incidence of traumatic hip dislocations in children is rising in this fast developing world along with increasing numbers of high-velocity road traffic accidents. Anterior dislocation of the hip has a lower incidence compared with posterior dislocation of the hip. We encountered a rare case of the obturator type of anteriorly dislocated hip associated with ipsilateral fracture of the shaft femur in an 11-year-old child. This is a highly unusual injury combination and the mechanism of injury is obscure. Only two similar cases have been reported in the English literature to date. Closed reduction of the hip using a hitherto undescribed technique and an intramedullary interlocking nail was performed in this case. At 6 months of follow-up, the fracture shaft femur has united and the child is bearing full weight on the limb.

  14. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, lowmore » cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.« less

  15. Probabilistic Simulation of Progressive Fracture in Bolted-Joint Composite Laminates

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Singhal, S. N.; Chamis, C. C.

    1996-01-01

    This report describes computational methods to probabilistically simulate fracture in bolted composite structures. An innovative approach that is independent of stress intensity factors and fracture toughness was used to simulate progressive fracture. The effect of design variable uncertainties on structural damage was also quantified. A fast probability integrator assessed the scatter in the composite structure response before and after damage. Then the sensitivity of the response to design variables was computed. General-purpose methods, which are applicable to bolted joints in all types of structures and in all fracture processes-from damage initiation to unstable propagation and global structure collapse-were used. These methods were demonstrated for a bolted joint of a polymer matrix composite panel under edge loads. The effects of the fabrication process were included in the simulation of damage in the bolted panel. Results showed that the most effective way to reduce end displacement at fracture is to control both the load and the ply thickness. The cumulative probability for longitudinal stress in all plies was most sensitive to the load; in the 0 deg. plies it was very sensitive to ply thickness. The cumulative probability for transverse stress was most sensitive to the matrix coefficient of thermal expansion. In addition, fiber volume ratio and fiber transverse modulus both contributed significantly to the cumulative probability for the transverse stresses in all the plies.

  16. [Outcome of endoscopically assisted surgical treatment of mandibular condyle fractures: a retrospective study of 22 patients].

    PubMed

    Prade, V; Seguin, P; Boutet, C; Alix, T

    2014-12-01

    The condylar region is a frequent localization of mandibular fractures; there are various types of management. Mini-invasive endoscopic surgery is an alternative to open reduction. We had as goal to evaluate the outcome of this technique. We performed a monocentric retrospective study of patients consecutively operated for a condylar fracture (type II to V in the Spiessl and Schroll classification) with intraoral route and endoscopic assistance, during 30 months. We assessed the functional and radiological outcomes, and the complications. Twenty-two patients (25 fractures) were included. Seventeen patients (19 fractures) could be followed (mean follow-up: 16.7 months). The mean values were: interincisal opening, 45mm (±8.4); protrusion, 8.3mm (±1.9); ipsilateral excursion of the jaw: 8.6mm (±2); contralateral excursion: 8.7mm (±4). Three routes were used combined with a preauricular approach. The fracture reduction was good for 10 of the 19 fractures and poor for 3. The complications were: 3 cases of infection, 1 case of fixation failure with good consolidation; for combined approaches: 2 cases of temporary facial palsy and 2 cases of Frey syndrome. Endoscopic assistance for the surgical management of the fracture of mandibular condyle is a reliable technique, with a good functional outcome, and a low rate of specific complications, especially for facial nerve lesion or esthetic outcome. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Validation of a new classification for periprosthetic shoulder fractures.

    PubMed

    Kirchhoff, Chlodwig; Beirer, Marc; Brunner, Ulrich; Buchholz, Arne; Biberthaler, Peter; Crönlein, Moritz

    2018-06-01

    Successful treatment of periprosthetic shoulder fractures depends on the right strategy, starting with a well-structured classification of the fracture. Unfortunately, clinically relevant factors for treatment planning are missing in the pre-existing classifications. Therefore, the aim of the present study was to describe a new specific classification system for periprosthetic shoulder fractures including a structured treatment algorithm for this important fragility fracture issue. The classification was established, focussing on five relevant items, naming the prosthesis type, the fracture localisation, the rotator cuff status, the anatomical fracture region and the stability of the implant. After considering each single item, the individual treatment concept can be assessed in one last step. To evaluate the introduced classification, a retrospective analysis of pre- and post-operative data of patients, treated with periprosthetic shoulder fractures, was conducted by two board certified trauma surgery consultants. The data of 19 patients (8 male, 11 female) with a mean age of 74 ± five years have been analysed in our study. The suggested treatment algorithm was proven to be reliable, detected by good clinical outcome in 15 of 16 (94%) cases, where the suggested treatment was maintained. Only one case resulted in poor outcome due to post-operative wound infection and had to be revised. The newly developed six-step classification is easy to utilise and extends the pre-existing classification systems in terms of clinically-relevant information. This classification should serve as a simple tool for the surgeon to consider the optimal treatment for his patients.

  18. Evaluation of the diagnostic accuracy of four-view radiography and conventional computed tomography analysing sacral and pelvic fractures in dogs.

    PubMed

    Stieger-Vanegas, S M; Senthirajah, S K J; Nemanic, S; Baltzer, W; Warnock, J; Bobe, G

    2015-01-01

    The purpose of our study was (1) to determine whether four-view radiography of the pelvis is as reliable and accurate as computed tomography (CT) in diagnosing sacral and pelvic fractures, in addition to coxofemoral and sacroiliac joint subluxation or luxation, and (2) to evaluate the effect of the amount of training in reading diagnostic imaging studies on the accuracy of diagnosing sacral and pelvic fractures in dogs. Sacral and pelvic fractures were created in 11 canine cadavers using a lateral impactor. In all cadavers, frog-legged ventro-dorsal, lateral, right and left ventro-45°-medial to dorsolateral oblique frog leg ("rollover 45-degree view") radiographs and a CT of the pelvis were obtained. Two radiologists, two surgeons and two veterinary students classified fractures using a confidence scale and noted the duration of evaluation for each imaging modality and case. The imaging results were compared to gross dissection. All evaluators required significantly more time to analyse CT images compared to radiographic images. Sacral and pelvic fractures, specifically those of the sacral body, ischiatic table, and the pubic bone, were more accurately diagnosed using CT compared to radiography. Fractures of the acetabulum and iliac body were diagnosed with similar accuracy (at least 86%) using either modality. Computed tomography is a better method for detecting canine sacral and some pelvic fractures compared to radiography. Computed tomography provided an accuracy of close to 100% in persons trained in evaluating CT images.

  19. Hydraulic fracture propagation modeling and data-based fracture identification

    NASA Astrophysics Data System (ADS)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the parameters used in the reservoir flow simulator have large uncertainty. Those biased and uncertain parameters will result in misleading oil and gas recovery predictions. The Ensemble Kalman Filter is used to estimate and update both the state variables (pressure and saturations) and uncertain reservoir parameters (permeability). In order to directly incorporate spatial information such as fracture location and formation heterogeneity into the algorithm, a new covariance matrix method is proposed. This new method has been applied to a simplified single-phase reservoir and a complex black oil reservoir with complex structures to prove its capability in calibrating the reservoir parameters.

  20. Ambulance personnel's experience of pain management for patients with a suspected hip fracture: A qualitative study.

    PubMed

    Jakopovic, D; Falk, A-C; Lindström, V

    2015-07-01

    Pain management is described to be insufficient for patients suffering from a hip fracture, and the management for this vulnerable group of patients may be challenging due to their medical history (multiple comorbidities) and polypharmacy. Previous research has mainly focused on fast tracks aiming to reduce time to surgery. But the research on how pain management is handled for these patients in the prehospital context has been sparse. Therefore, the purpose of this study was to describe the ambulance personnel's experience of managing the pain of patients with a suspected hip fracture. A descriptive and qualitative design with Critical Incident Technique was used for collecting data. Moreover, a qualitative content analysis was used for analysing the collected data. Twenty-two participants communicated their experiences and 51 incidents were analysed. The main finding in the study was that the ambulance personnel, by using their clinical knowledge and by empowering the patients to participate in their own care, managed to individualize the pain relief for patients with a suspected hip fracture through a variety of interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Determination of dynamic fracture toughness using a new experimental technique

    NASA Astrophysics Data System (ADS)

    Cady, Carl M.; Liu, Cheng; Lovato, Manuel L.

    2015-09-01

    In other studies dynamic fracture toughness has been measured using Charpy impact and modified Hopkinson Bar techniques. In this paper results will be shown for the measurement of fracture toughness using a new test geometry. The crack propagation velocities range from ˜0.15 mm/s to 2.5 m/s. Digital image correlation (DIC) will be the technique used to measure both the strain and the crack growth rates. The boundary of the crack is determined using the correlation coefficient generated during image analysis and with interframe timing the crack growth rate and crack opening can be determined. A comparison of static and dynamic loading experiments will be made for brittle polymeric materials. The analysis technique presented by Sammis et al. [1] is a semi-empirical solution, however, additional Linear Elastic Fracture Mechanics analysis of the strain fields generated as part of the DIC analysis allow for the more commonly used method resembling the crack tip opening displacement (CTOD) experiment. It should be noted that this technique was developed because limited amounts of material were available and crack growth rates were to fast for a standard CTOD method.

  2. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  3. Novel Semiquantitative Bone Marrow Oedema Score and Fracture Score for the Magnetic Resonance Imaging Assessment of the Active Charcot Foot in Diabetes

    PubMed Central

    Meacock, L.; Donaldson, Ana; Isaac, A.; Briody, A.; Ramnarine, R.; Edmonds, M. E.; Elias, D. A.

    2017-01-01

    There are no accepted methods to grade bone marrow oedema (BMO) and fracture on magnetic resonance imaging (MRI) scans in Charcot osteoarthropathy. The aim was to devise semiquantitative BMO and fracture scores on foot and ankle MRI scans in diabetic patients with active osteoarthropathy and to assess the agreement in using these scores. Three radiologists assessed 45 scans (Siemens Avanto 1.5T, dedicated foot and ankle coil) and scored independently twenty-two bones (proximal phalanges, medial and lateral sesamoids, metatarsals, tarsals, distal tibial plafond, and medial and lateral malleoli) for BMO (0—no oedema, 1—oedema < 50% of bone volume, and 2—oedema > 50% of bone volume) and fracture (0—no fracture, 1—fracture, and 2—collapse/fragmentation). Interobserver agreement and intraobserver agreement were measured using multilevel modelling and intraclass correlation (ICC). The interobserver agreement for the total BMO and fracture scores was very good (ICC = 0.83, 95% confidence intervals (CI) 0.76, 0.91) and good (ICC = 0.62; 95% CI 0.48, 0.76), respectively. The intraobserver agreement for the total BMO and fracture scores was good (ICC = 0.78, 95% CI 0.6, 0.95) and fair to moderate (ICC = 0.44; 95% CI 0.14, 0.74), respectively. The proposed BMO and fracture scores are reliable and can be used to grade the extent of bone damage in the active Charcot foot. PMID:29230422

  4. Minimally invasive clamp-assisted reduction and cephalomedullary nailing without cerclage cables for subtrochanteric femur fractures in the elderly: Surgical technique and results.

    PubMed

    Mingo-Robinet, Juan; Torres-Torres, Miguel; Moreno-Barrero, María; Alonso, Juan Antonio; García-González, Sara

    2015-01-01

    The treatment of subtrochanteric fractures in the elderly remains technically challenging, due to instability and osteoporosis, with high reoperation rates. Even if intramedullary nailing is the most reliable treatment, reduction is difficult and cerclage wiring remains controversial. The purpose of this study was to evaluate 26 consecutive subtrochanteric fractures in elderly patients treated with a minimally invasive clamp-assisted reduction and cephalomedullary nailing without cerclage wiring. A retrospective analysis was conducted between January 2010 and September 2013. Data obtained from the medical records included patient's age, sex, classification of the fracture, the quality of reduction after surgery, and the presence of postoperative complications, especially fracture displacement and delayed union or nonunion. Twenty-six patients had adequate radiographic and clinical follow-up. Mean age was 84.4 (range 75-96) years. The mean duration of follow-up was 7.6 months (6-14 months). Mean surgical time was 74.42 min (range 45-115 min). Twenty-four (92.3%) showed acceptable varus/valgus alignment, and no sagittal plane malunions were noted. The tip-apex distance was <25 mm in all cases. Distraction at the fracture was <10mm in 21 fractures. Three patients had limb length discrepancy of 1cm. All fractures healed uneventfully. Reducing the fracture before nailing is mandatory to achieve good results. Minimally invasive clamp reduction without cerclage wires, even if challenging, has proven to be a safe, reproducible, and effective surgical technique, with at least the same results as other series. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fixation of zygomatic and mandibular fractures with biodegradable plates

    PubMed Central

    Degala, Saikrishna; Shetty, Sujeeth; Ramya, S

    2013-01-01

    Context: In this prospective study, 13 randomly selected patients underwent treatment for zygomatic–complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. Aims: To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. Materials and Methods: In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and screws using Champy's principle. All the cases were evaluated clinically and radiologically for the type of fracture, need for the intermaxillary fixation (IMF) and its duration, duration of surgery, fixation at operation, state of reduction at operation, state of bone union after operation, anatomic reduction, paresthesia, occlusal discrepancies, soft tissue infection, immediate and late inflammatory reactions related to biodegradation process, and any need for the removal of the plates. Statistical Analysis Used: Descriptives, Frequencies, and Chi-square test were used. Results: In our study, the age group range was 5 to 55 years. Road traffic accidents accounted for the majority of patients six, (46.2%). Postoperative occlusal discrepancies were found in seven patients as mild to moderate, which resolved with IMF for 1-8 weeks. There were minimal complications seen and only as soft tissue infection. Conclusions: Use of biodegradable osteosynthesis system is a reliable alternative method for the fixation of zygomatic-complex and mandibular fractures. The biodegradable system still needs to be refined in material quality and handling to match the stability achieved with metal system. Biodegradable plates and screws is an ideal system for pediatric fractures with favorable outcome. PMID:23662255

  6. Statistical methods of fracture characterization using acoustic borehole televiewer log interpretation

    NASA Astrophysics Data System (ADS)

    Massiot, Cécile; Townend, John; Nicol, Andrew; McNamara, David D.

    2017-08-01

    Acoustic borehole televiewer (BHTV) logs provide measurements of fracture attributes (orientations, thickness, and spacing) at depth. Orientation, censoring, and truncation sampling biases similar to those described for one-dimensional outcrop scanlines, and other logging or drilling artifacts specific to BHTV logs, can affect the interpretation of fracture attributes from BHTV logs. K-means, fuzzy K-means, and agglomerative clustering methods provide transparent means of separating fracture groups on the basis of their orientation. Fracture spacing is calculated for each of these fracture sets. Maximum likelihood estimation using truncated distributions permits the fitting of several probability distributions to the fracture attribute data sets within truncation limits, which can then be extrapolated over the entire range where they naturally occur. Akaike Information Criterion (AIC) and Schwartz Bayesian Criterion (SBC) statistical information criteria rank the distributions by how well they fit the data. We demonstrate these attribute analysis methods with a data set derived from three BHTV logs acquired from the high-temperature Rotokawa geothermal field, New Zealand. Varying BHTV log quality reduces the number of input data points, but careful selection of the quality levels where fractures are deemed fully sampled increases the reliability of the analysis. Spacing data analysis comprising up to 300 data points and spanning three orders of magnitude can be approximated similarly well (similar AIC rankings) with several distributions. Several clustering configurations and probability distributions can often characterize the data at similar levels of statistical criteria. Thus, several scenarios should be considered when using BHTV log data to constrain numerical fracture models.

  7. Closed reduction of displaced or dislocated mandibular condyle fractures in children using threaded Kirschner wire and external rubber traction.

    PubMed

    Kim, J H; Nam, D H

    2015-10-01

    Most surgeons agree that closed treatment provides the best results for condylar fractures in children. Nevertheless, treatment of the paediatric mandibular condyle fracture that is severely displaced or dislocated is controversial. The purpose of this study was to investigate the long-term clinical and radiological outcomes following the treatment of displaced or dislocated condylar fractures in children using threaded Kirschner wire and external rubber traction. This procedure can strengthen the advantage of closed reduction and make up for the shortcomings of open reduction. From March 1, 2005 to December 25, 2011, 11 children aged between 4 and 12 years with displaced or dislocated mandibular condyle fractures were treated using threaded Kirschner wire and external rubber traction under portable C-arm fluoroscopy. All patients had unilateral displaced or dislocated condylar fractures. The follow-up period ranged from 24 to 42 months (mean 29.3 months). Normal occlusion and pain-free function of the temporomandibular joint, without deviation or limitation of jaw opening, was achieved in all patients. This closed reduction technique in displaced or dislocated condylar fractures in children offers a reliable solution in preventing the unfavourable sequelae of closed treatment and the open technique, such as altered morphology, functional disturbances, and facial nerve damage. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. FAMI Screws for Mandibulo-Maxillary fixation in mandibular fracture treatment - Clinico-radiological evaluation.

    PubMed

    Kauke, Martin; Safi, Ali-Farid; Timmer, Marco; Nickenig, Hans-Joachim; Zöller, Joachim; Kreppel, Matthias

    2018-04-01

    Mandibulo-maxillary fixation (MMF) is indispensable for mandibular fracture treatment. Various means for MMF have been proposed, of which arch bars are widely considered to be the mainstay. However, disadvantages to this method have initiated a quest for an alternative, leading to the introduction of MMF screws. MMF screws have frequently been criticized for poor stability of fracture sites, root damage, hardware failure, and nerve damage. We retrospectively evaluate the FAMI (Fixation and Adaptation in Mandibular Injuries) screw in mandibular fracture treatment by scanning for clinically and radiologically visible complications. In total, 534 FAMI screws were used in the successful treatment of 96 males and 34 females. Condylar fractures were most commonly encountered, representing 120 of 241 fracture sites. 15 general fracture-related complications occurred, with the most common being nerve function impairment (3.8%) and postoperative malocclusion (4.6%). In nine cases (7%), clinically visible FAMI-screw-related complications occurred, with the most prevalent being screw loosening (2.3%) and mucosal signs of inflammation (3.1%). Duration of FAMI screws was associated with the occurrence of clinically visible complications (p = 0.042). Radiologically, clinically invisible dental hard tissue damage was noted in 21 individuals (16%). Therefore, FAMI screws seem to be a reliable and safe method for mandibulo-maxillary fixation. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. [Manipulative reduction and percutaneous Kirschner wire internal fixation for grade IV supination-external rotation ankle fractures].

    PubMed

    Li, Jia; Sun, Jin-Ke; Wang, Chen-Lin

    2017-06-25

    To investigate surgical skills and clinical effects of manipulative reduction and percutaneous Kirschner wire internal fixation in treating grade IV supination-external rotation ankle fractures. From May 2013 to October 2016, 35 patients with grade IV supination-external rotation ankle fractures were treated with percutaneous Kirschner wire internal fixation, involving 22 males and 13 females with an average age of 38.2 years ranged from 18 to 65 years old. The time from injury to operation ranged from 2 h to 10 d with an average of 5 d. Reduction quality was assessed by Burwell-Charnley radiological criteria. Baird-Jackson ankle scoring system was used to assess clinical effects. Thirty-three patients were followed up from 10 to 28 months with an average of 14 months. Fracture healing time ranged from 10 to 18 weeks with an average of 12 weeks. According to Burwell-Charnley radiological criteria, 30 cases were obtained anatomic reduction, 3 cases moderate. According to Baird-Jackson ankle scoring system, total score was 93.8±5.4, 17 cases got excellent result, 12 good, 2 fair and 2 poor. Manipulative reduction and percutaneous Kirschner wire internal fixation in treating grade IV supination-external rotation ankle fractures has advantages of reliable efficacy, less complications. But higher require techniques were required for closed reduction. It is not suitable for severe crushed fracture and compressive articular surface fracture.

  10. Reliability of fracture appearance measurement in the Charpy test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, B.F.

    1994-12-31

    Despite conventional wisdom, the Charpy fracture appearance transition curve does not always coincide with the energy transition curve. Furthermore, unlike Charpy energy, fracture appearance tells how a specimen failed. It can therefore be used to meaningfully relate the results of Charpy testing to results of other toughness tests which may employ different geometries and loading rates. In order to address the question of consistency, a set of 20 specimens was prepared and used in a `round robin` survey. Results showed that agreement was greatest when operators are experienced, samples are close to fracture appearance transition, and simple, two-dimensional diagrams aremore » sued for assessment. It was also found that certain inconsistencies exist between various assessment techniques for Charpy fracture appearance. As a part of this work, fracture appearance curves were compared to energy impact curves for the Charpy test and a similar test, the Schnadt K{sub o} test, which uses a sharp pressed notch. It was found that energy and fracture appearance transition may differ by as much as 50{degrees}C in the Charpy test while the two curves coincided in the Schnadt test. In series of toughness tests on 132 steels, the average difference between Charpy energy transition and Schnade K{sub o} energy transition was about 27{degrees}C. This is believed to represent the difference in toughness between blunt and sharp notches in Charpy size specimens.« less

  11. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laubach, S.E.; Marrett, R.; Rossen, W.

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specificmore » goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.« less

  12. Retrograde nailing for distal third femoral shaft fractures: a prospective study.

    PubMed

    Acharya, K N; Rao, M R

    2006-12-01

    To evaluate the postoperative knee function and results of unreamed retrograde nailing for distal third femoral shaft fractures. Between January 2002 and 2003 inclusive, a consecutive series of 27 patients (with 28 fractures) who underwent retrograde nailing were prospectively evaluated. Outcome measures were union time, initiation of weight bearing, deformity and shortening, functional length of the nail, knee function assessed using a modified Knee Society Knee Score. Correlations between union time and other variables were also studied. In these patients 26 (93%) of the 28 fractures achieved union, of which 5 underwent dynamisation; the mean union time for the other 21 fractures was 4.4 months. Angular malalignment was present in 4 patients and shortening in 4 others. There was negligible correlation between union time and variables of nail-canal diameter mismatch, functional length of nail, fracture geometry, or initiation of partial weight bearing ambulation. Knee flexion of more than 100 degrees was achieved in 26 patients. 19 patients had anterior knee pain and 10 had instability. By the end of one year, excellent or good scores for pain and function were recorded in 77% and 73% respectively, of the 26 patients. In view of such favourable union rates but significant deterioration in overall knee joint function, at best retrograde nailing is a reliable alternative in the management of selected complicated fractures of the distal femoral shaft.

  13. Time-dependent strength degradation of a siliconized silicon carbide determined by dynamic fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breder, K.

    1995-10-01

    Both fast-fracture strength and strength as a function of stressing rate at room temperature, 1,100, and 1,400 C were measured for a siliconized SiC. The fast-fracture strength increased slightly from 386 MPa at room temperature to 424 MPa at 1,100 C and then dropped to 308 MPa at 1,400 C. The Weibull moduli at room temperature and 1,100 were 10.8 and 7.8, respectively, whereas, at 1,400 C, the Weibull modulus was 2.8. The very low Weibull modulus at 1,400 C was due to the existence of two exclusive flaw populations with very different characteristic strengths. The data were reanalyzed usingmore » two exclusive flaw populations. The ceramic showed no slow crack growth (SCG), as measured by dynamic fatigue at 1,100 C, but, at 1,400 C, an SCG parameter, n, of 15.5 was measured. Fractography showed SCG zones consisting of cracks grown out from silicon-rich areas. Time-to-failure predictions at given levels of failure probabilities were performed.« less

  14. Analysis of patterns and treatment strategies for mandibular condyle fractures: review of 175 condyle fractures with review of literature.

    PubMed

    Reddy, N Viveka V; Reddy, P Bhaskar; Rajan, Ritesh; Ganti, Srinivas; Jhawar, D K; Potturi, Abhinand; Pradeep

    2013-09-01

    This study aims to evaluate incidence, patterns and epidemiology of mandibular condylar fractures (MCF) to propose a treatment strategy for managing MCF and analyze the factors which influence the outcome. One hundred and seventy-five MCF's were evaluated over a four year period and their pattern was recorded in terms of displacement, level of fracture, age of incidence and dental occlusion. Of the 2,718 facial bone fractures, MCF incidence was the third most common at 18.39 %. Of 175 MCF 58.8 % were unilateral and 41.12 % were bilateral. 67 % of bilateral fractures and 43.8 % of unilateral fractures were associated with midline symphysis and contralateral parasymphysis fractures respectively. Most of the MCF was seen in the age group of above 16 years and 50 % of them were at subcondylar level (below the neck of the condyle). Majority of MCF sustained due to inter personal violence were undisplaced (72.7 %) and contrary to this majority of MCF sustained during road traffic accident were displaced. 62.9 % of total fractures required open reduction and rigid fixation and 37.1 % were managed with closed reduction. 80 % of MCF managed with closed reduction were in the age group of below 16 years. From this study it can be concluded that the treatment algorithm proposed for managing MCF is reliable and easy to adopt. We observed that absolute indication for open reduction of MCF is inability to achieve satisfactory occlusion by closed method and absolute contraindication for open reduction is condylar head fracture irrespective of the age of the patient.

  15. Comparative study of comminuted posterior acetabular wall fracture treated with the Acetabular Tridimensional Memory Fixation System.

    PubMed

    Zhang, Yuntong; Zhao, Xue; Tang, Yang; Zhang, Chuncai; Xu, Shuogui; Xie, Yang

    2014-04-01

    Posterior wall fractures are one of the most common acetabular fractures. However, only 30% of these fractures involve a single large fragment, and comminuted acetabular posterior wall fractures pose a particular surgical challenge. The purpose of this study was to compare outcomes between patients who received fixation for comminuted posterior wall fracture using the Acetabular Tridimensional Memory Fixation System (ATMFS) and patients who underwent fixation with conventional screws and buttress plates (Plates group). Between April 2003 and May 2007, 196 consecutive patients who sustained a comminuted posterior wall fracture of acetabulum were treated with ATMFS or conventional screws and buttress plates. Operative time, fluoroscopy time, blood loss, and any intra-operative complications were recorded. Plain AP and lateral radiographs were obtained at all visits (Matta's criteria). Modified Merle d' Aubigne-Postel score, and Mos SF-36 score were compared between groups. Fifty patients were included in the analysis with 26 in the ATMFS group and 24 in the Plates group. The mean follow-up time was 57.5 months, ranging from 31 to 69 months. All patients had fully healed fractures at the final follow-up. There was no difference in clinical outcomes or radiological evaluations between groups. Patients with comminuted posterior wall fractures of the acetabulum treated with the ATMFS or conventional screws and buttress plate techniques achieve a good surgical result. Both techniques are safe, reliable, and practical. Use of the ATMFS technique may reduce blood loss and improve rigid support to marginal bone impaction. The use ATMFS may need additional support when fractures involve the superior roof. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Predicting mineral precipitation in fractures: The influence of local heterogeneity on the feedback between precipitation and permeability

    NASA Astrophysics Data System (ADS)

    Jones, T.; Detwiler, R. L.

    2016-12-01

    Long-term subsurface energy production and contaminant storage strategies often rely on induced-mineralization to control the transport of dissolved ions. In low-permeability rocks, precipitation is most likely to occur in fractures that act as leakage pathways for fluids that are in chemical disequilibrium with the formation minerals. These fractures are commonly idealized as parallel-plate channels with uniform surface mineralogy, and as a result, our predictions often suggest that precipitation leads to fast permeability reduction. However, natural fractures contain both heterogeneous mineralogy and three-dimensional surface roughness, and our understanding of how precipitation affects local permeability in these environments is limited. To examine the impacts of local heterogeneity on the feedback between mineral precipitation and permeability, we performed two long-term experiments in transparent analog fractures: (i) uniform-aperture and (ii) variable-aperture. We controlled the initial heterogeneous surface mineralogy in both experiments by seeding the bottom borosilicate fracture surfaces with randomly distributed clusters of CaCO3 crystals. Continuous flow ISCO pumps injected a well-mixed CaCl2-NaHCO3 solution, log(ΩCaCO3) = 1.44, into the fracture at 0.5 ml/min and transmitted-light techniques provided high-resolution (83 x 83 µm), direct measurements of aperture and fluid transport across the fracture. In experiment (i), precipitation decreased local aperture at discrete CaCO3 reaction sites near the fracture inlet, but transport variations across the fracture remained relatively small due to the initial lack of aperture heterogeneity. In contrast, the feedback between precipitation and aperture in experiment (ii) focused flow into large-aperture, preferential flow paths that contained significantly less CaCO3 area than the fracture scale average. Precipitation-induced aperture reduction in (ii) reduced dissolved ion transport into small-aperture regions of the fracture that were abundant with CaCO3 and led to a 72% decrease in measured precipitation rate. These results suggest that incorporating the effects of local heterogeneity may dramatically improve our ability to predict precipitation-induced permeability alterations in fractured rocks.

  17. Reliability and validity of selected measures associated with increased fall risk in females over the age of 45 years with distal radius fracture - A pilot study.

    PubMed

    Mehta, Saurabh P; MacDermid, Joy C; Richardson, Julie; MacIntyre, Norma J; Grewal, Ruby

    2015-01-01

    Clinical measurement. This study examined test-retest reliability and convergent/divergent construct validity of selected tests and measures that assess balance impairment, fear of falling (FOF), impaired physical activity (PA), and lower extremity muscle strength (LEMS) in females >45 years of age after the distal radius fracture (DRF) population. Twenty one female participants with DRF were assessed on two occasions. Timed Up and Go, Functional Reach, and One Leg Standing tests assessed balance impairment. Shortened Falls Efficacy Scale, Activity-specific Balance Confidence scale, and Fall Risk Perception Questionnaire assessed FOF. International Physical Activity Questionnaire and Rapid Assessment of Physical Activity were administered to assess PA level. Chair stand test and isometric muscle strength testing for hip and knee assessed LEMS. Intraclass correlation coefficients (ICC) examined the test-retest reliability of the measures. Pearson correlation coefficients (r) examined concurrent relationships between the measures. The results demonstrated fair to excellent test-retest reliability (ICC between 0.50 and 0.96) and low to moderate concordance between the measures (low if r ≤ 0.4; moderate if r = 0.4-0.7). The results provide preliminary estimates of test-retest reliability and convergent/divergent construct validity of selected measures associated with increased risk for falling in the females >45 years of age after DRF. Further research directions to advance knowledge regarding fall risk assessment in DRF population have been identified. Copyright © 2015 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  18. A sophisticated simulation for the fracture behavior of concrete material using XFEM

    NASA Astrophysics Data System (ADS)

    Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili

    2017-10-01

    The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.

  19. Three-dimensional finite element analysis and comparison of a new intramedullary fixation with interlocking intramedullary nail.

    PubMed

    Liu, Chang-cheng; Xing, Wen-zhao; Zhang, Ya-xing; Pan, Zheng-hua; Feng, Wen-ling

    2015-03-01

    This study was set to introduce a new intramedullary fixation, explore its biomechanical properties, and provide guidance for further biomechanical experiments. With the help of CT scans and finite element modeling software, finite element model was established for a new intramedullary fixation and intramedullary nailing of femoral shaft fractures in a volunteer adult. By finite element analysis software ANSYS 10.0, we conducted 235-2,100 N axial load, 200-1,000 N bending loads and 2-15 Nm torsional loading, respectively, and analyzed maximum stress distribution, size, and displacement of the fracture fragments of the femur and intramedullary nail. During the loading process, the maximum stress of our new intramedullary fixation were within the normal range, and the displacement of the fracture fragments was less than 1 mm. Our new intramedullary fixation exhibited mechanical reliability and unique advantages of anti-rotation, which provides effective supports during fracture recovery.

  20. Quantitative Nondestructive Evaluation

    DTIC Science & Technology

    1979-10-01

    reliability has been discussed by a number of researchers, including Pachman, et. al. [25,28], Hastings [29], Ehret [30], Kaplan and Reiman [31], and...123 REFERENCES (Continued) 31. Kaplan, M.P. and Reiman , J.A. "Use of Fracture Mechanics in Estimating Structural Life and Inspection Intervals

  1. Experimental and Numerical Study on the Cracked Chevron Notched Semi-Circular Bend Method for Characterizing the Mode I Fracture Toughness of Rocks

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Dong; Dai, Feng; Xu, Nu-Wen; Liu, Jian-Feng; Xu, Yuan

    2016-05-01

    The cracked chevron notched semi-circular bending (CCNSCB) method for measuring the mode I fracture toughness of rocks combines the merits (e.g., avoidance of tedious pre-cracking of notch tips, ease of sample preparation and loading accommodation) of both methods suggested by the International Society for Rock Mechanics, which are the cracked chevron notched Brazilian disc (CCNBD) method and the notched semi-circular bend (NSCB) method. However, the limited availability of the critical dimensionless stress intensity factor (SIF) values severely hinders the widespread usage of the CCNSCB method. In this study, the critical SIFs are determined for a wide range of CCNSCB specimen geometries via three-dimensional finite element analysis. A relatively large support span in the three point bending configuration was considered because the fracture of the CCNSCB specimen in that situation is finely restricted in the notch ligament, which has been commonly assumed for mode I fracture toughness measurements using chevron notched rock specimens. Both CCNSCB and NSCB tests were conducted to measure the fracture toughness of two different rock types; for each rock type, the two methods produce similar toughness values. Given the reported experimental results, the CCNSCB method can be reliable for characterizing the mode I fracture toughness of rocks.

  2. Clinical observation of biomimetic mineralized collagen artificial bone putty for bone reconstruction of calcaneus fracture

    PubMed Central

    Pan, Yong-Xiong; Yang, Guang-Gang; Li, Zhong-Wan; Shi, Zhong-Min; Sun, Zhan-Dong

    2018-01-01

    Abstract This study investigated clinical outcomes of biomimetic mineralized collagen artificial bone putty for bone reconstruction in the treatment of calcaneus fracture. Sixty cases of calcaneal fractures surgically treated with open reduction and internal fixation in our hospital from June 2014–2015 were chosen and randomly divided into two groups, including 30 cases treated with biomimetic mineralized collagen artificial bone putty as treatment group, and 30 cases treated with autogenous ilia as control group. The average follow-up time was 17.2 ± 3.0 months. The results showed that the surgery duration and postoperative drainage volume of treatment group were significantly lower than control group; there were no statistically significant differences in the fracture healing time, American Orthopaedic Foot and Ankle Society scores at 3 and 12 months after surgery, Böhler’s angle, Gissane’s angle and height of calcaneus between the two groups. There were no significant differences in wound complication and reject reaction between the two groups, while significant difference in donor site complication. As a conclusion, the implantation of biomimetic mineralized collagen artificial bone putty in the open reduction of calcaneal fracture resulted in reliable effect and less complications, which is suitable for clinical applications in the treatment of bone defect in calcaneal fractures. PMID:29644087

  3. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    DOE R&D Accomplishments Database

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  4. Explosive Bolt Dual-Initiated from One Side

    NASA Technical Reports Server (NTRS)

    Snow, Eric

    2011-01-01

    An explosive bolt has been developed that has a one-sided dual initiation train all the way down to the pyro charge for high reliability, while still allowing the other side of the bolt to remain in place after actuation to act as a thermal seal in an extremely high-temperature environment. This lightweight separation device separates at a single fracture plane, and has as much redundancy/reliability as possible. The initiation train comes into the explosive bolt from one side.

  5. Study on application of aerospace technology to improve surgical implants

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Youngblood, J. L.

    1982-01-01

    The areas where aerospace technology could be used to improve the reliability and performance of metallic, orthopedic implants was assessed. Specifically, comparisons were made of material controls, design approaches, analytical methods and inspection approaches being used in the implant industry with hardware for the aerospace industries. Several areas for possible improvement were noted such as increased use of finite element stress analysis and fracture control programs on devices where the needs exist for maximum reliability and high structural performance.

  6. ValuedCare program: a population health model for the delivery of evidence-based care across care continuum for hip fracture patients in Eastern Singapore.

    PubMed

    Mittal, Chikul; Lee, Hsien Chieh Daniel; Goh, Kiat Sern; Lau, Cheng Kiang Adrian; Tay, Leeanna; Siau, Chuin; Loh, Yik Hin; Goh, Teck Kheng Edward; Sandi, Chit Lwin; Lee, Chien Earn

    2018-05-30

    To test a population health program which could, through the application of process redesign, implement multiple evidence-based practices across the continuum of care in a functionally integrated health delivery system and deliver highly reliable and consistent evidence-based surgical care for patients with fragility hip fractures in an acute tertiary general hospital. The ValuedCare (VC) program was developed in three distinct phases as an ongoing collaboration between the Geisinger Health System (GHS), USA, and Changi General Hospital (CGH), Singapore, modelled after the GHS ProvenCare® Fragile Hip Fracture Program. Clinical outcome data on consecutive hip fracture patients seen in 12 months pre-intervention were then compared with the post-intervention group. Both pre- and post-intervention groups were followed up across the continuum of care for a period of 12 months. VC patients showed significant improvement in median time to surgery (97 to 50.5 h), as well as proportion of patients operated within 48 h from hospital admission (48% from 18.8%) as compared to baseline pre-intervention data. These patients also had significant reduction (p value < 0.001) of acute inpatient complications such as delirium, pneumonia, urinary tract infections, and pressure sores. VC program has shown significant reduction in median length of stay for acute hospital (13 to 9 days) as well as median combined length of stay for acute and sub-acute rehabilitation hospital (46 to 39 days), thus reducing the total duration of hospitalization and saving total hospital bed days. Operative and inpatient mortality, together with readmission rates, remained low and comparable to international Geriatric Fracture Centers (GFCs). The implementation of VC methodology has enabled consistent delivery of high-quality, reliable and comprehensive evidence-based care for hip fracture patients at Changi General Hospital. This has also reflected successful change management and interdisciplinary collaboration within the organization through the program. There is potential for testing this methodology as a quality improvement framework replicable to other disease groups in a functionally integrated healthcare system.

  7. The Data Evaluation for Obtaining Accuracy and Reliability

    NASA Astrophysics Data System (ADS)

    Kim, Chang Geun; Chae, Kyun Shik; Lee, Sang Tae; Bhang, Gun Woong

    2012-11-01

    Nemours scientific measurement results are flooded from the paper, data book, etc. as fast growing of internet. We meet many different measurement results on the same measurand. In this moment, we are face to choose most reliable one out of them. But it is not easy to choose and use the accurate and reliable data as we do at an ice cream parlor. Even expert users feel difficult to distinguish the accurate and reliable scientific data from huge amount of measurement results. For this reason, the data evaluation is getting more important as the fast growing of internet and globalization. Furthermore the expressions of measurement results are not in standardi-zation. As these need, the international movement has been enhanced. At the first step, the global harmonization of terminology used in metrology and the expression of uncertainty in measurement were published in ISO. These methods are wide spread to many area of science on their measurement to obtain the accuracy and reliability. In this paper, it is introduced that the GUM, SRD and data evaluation on atomic collisions.

  8. Reliability of Smartphone-Based Instant Messaging Application for Diagnosis, Classification, and Decision-making in Pediatric Orthopedic Trauma.

    PubMed

    Stahl, Ido; Katsman, Alexander; Zaidman, Michael; Keshet, Doron; Sigal, Amit; Eidelman, Mark

    2017-07-11

    Smartphones have the ability to capture and send images, and their use has become common in the emergency setting for transmitting radiographic images with the intent to consult an off-site specialist. Our objective was to evaluate the reliability of smartphone-based instant messaging applications for the evaluation of various pediatric limb traumas, as compared with the standard method of viewing images of a workstation-based picture archiving and communication system (PACS). X-ray images of 73 representative cases of pediatric limb trauma were captured and transmitted to 5 pediatric orthopedic surgeons by the Whatsapp instant messaging application on an iPhone 6 smartphone. Evaluators were asked to diagnose, classify, and determine the course of treatment for each case over their personal smartphones. Following a 4-week interval, revaluation was conducted using the PACS. Intraobserver agreement was calculated for overall agreement and per fracture site. The overall results indicate "near perfect agreement" between interpretations of the radiographs on smartphones compared with computer-based PACS, with κ of 0.84, 0.82, and 0.89 for diagnosis, classification, and treatment planning, respectively. Looking at the results per fracture site, we also found substantial to near perfect agreement. Smartphone-based instant messaging applications are reliable for evaluation of a wide range of pediatric limb fractures. This method of obtaining an expert opinion from the off-site specialist is immediately accessible and inexpensive, making smartphones a powerful tool for doctors in the emergency department, primary care clinics, or remote medical centers, enabling timely and appropriate treatment for the injured child. This method is not a substitution for evaluation of the images in the standard method over computer-based PACS, which should be performed before final decision-making.

  9. The effects of simulated bone loss on the implant-abutment assembly and likelihood of fracture: an in vitro study.

    PubMed

    Manzoor, Behzad; Suleiman, Mahmood; Palmer, Richard M

    2013-01-01

    The crestal bone level around a dental implant may influence its strength characteristics by offering protection against mechanical failures. Therefore, the present study investigated the effect of simulated bone loss on modes, loads, and cycles to failure in an in vitro model. Different amounts of bone loss were simulated: 0, 1.5, 3.0, and 4.5 mm from the implant head. Forty narrow-diameter (3.0-mm) implant-abutment assemblies were tested using compressive bending and cyclic fatigue testing. Weibull and accelerated life testing analysis were used to assess reliability and functional life. Statistical analyses were performed using the Fisher-Exact test and the Spearman ranked correlation. Compressive bending tests showed that the level of bone loss influenced the load-bearing capacity of implant-abutment assemblies. Fatigue testing showed that the modes, loads, and cycles to failure had a statistically significant relationship with the level of bone loss. All 16 samples with bone loss of 3.0 mm or more experienced horizontal implant body fractures. In contrast, 14 of 16 samples with 0 and 1.5 mm of bone loss showed abutment and screw fractures. Weibull and accelerated life testing analysis indicated a two-group distribution: the 0- and 1.5-mm bone loss samples had better functional life and reliability than the 3.0- and 4.5-mm samples. Progressive bone loss had a significant effect on modes, loads, and cycles to failure. In addition, bone loss influenced the functional life and reliability of the implant-abutment assemblies. Maintaining crestal bone levels is important in ensuring biomechanical sustainability and predictable long-term function of dental implant assemblies.

  10. Three-column classification and Schatzker classification: a three- and two-dimensional computed tomography characterisation and analysis of tibial plateau fractures.

    PubMed

    Patange Subba Rao, Sheethal Prasad; Lewis, James; Haddad, Ziad; Paringe, Vishal; Mohanty, Khitish

    2014-10-01

    The aim of the study was to evaluate inter-observer reliability and intra-observer reproducibility between the three-column classification and Schatzker classification systems using 2D and 3D CT models. Fifty-two consecutive patients with tibial plateau fractures were evaluated by five orthopaedic surgeons. All patients were classified into Schatzker and three-column classification systems using x-rays and 2D and 3D CT images. The inter-observer reliability was evaluated in the first round and the intra-observer reliability was determined during the second round 2 weeks later. The average intra-observer reproducibility for the three-column classification was from substantial to excellent in all sub classifications, as compared with Schatzker classification. The inter-observer kappa values increased from substantial to excellent in three-column classification and to moderate in Schatzker classification The average values for three-column classification for all the categories are as follows: (I-III) k2D = 0.718, 95% CI 0.554-0.864, p < 0.0001 and average 3D = 0.874, 95% CI 0.754-0.890, p < 0.0001. For Schatzker classification system, the average values for all six categories are as follows: (I-VI) k2D = 0.536, 95% CI 0.365-0.685, p < 0.0001 and average k3D = 0.552 95% CI 0.405-0.700, p < 0.0001. The values are statistically significant. Statistically significant inter-observer values in both rounds were noted with the three-column classification, making it statistically an excellent agreement. The intra-observer reproducibility for the three-column classification improved as compared with the Schatzker classification. The three-column classification seems to be an effective way to characterise and classify fractures of tibial plateau.

  11. High-Speed Observations of Dynamic Fracture Propagation in Solids and Their Implications in Earthquake Rupture Dynamics

    NASA Astrophysics Data System (ADS)

    Uenishi, Koji

    2016-04-01

    This contribution outlines our experimental observations of seismicity-related fast fracture (rupture) propagation in solids utilising high-speed analog and digital photography (maximum frame rate 1,000,000 frames per second) over the last two decades. Dynamic fracture may be triggered or initiated in the monolithic or layered seismic models by detonation of micro explosives, a projectile launched by a gun, laser pulses and electric discharge impulses, etc. First, we have investigated strike-slip rupture along planes of weakness in transparent photoelastic (birefringent) materials at a laboratory scale and shown (at that time) extraordinarily fast rupture propagation in a bi-material system and its possible effect on the generation of large strong motion in the limited narrow areas in the Kobe region on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake (Uenishi Ph.D. thesis 1997, Uenishi et al. BSSA 1999). In this series of experiments, we have also modelled shallow dip-slip earthquakes and indicated a possible origin of the asymmetric ground motion in the hanging and foot-walls. In the photoelastic photographs, we have found the unique dynamic wave interaction and generation of specific shear and interface waves numerically predicted by Uenishi and Madariaga (Eos 2005), and considered as a case study the seismic motion associated with the 2014 Nagano-ken Hokubu (Kamishiro Fault), Japan, dip-slip earthquake (Uenishi EFA 2015). Second, we have experimentally shown that even in a monolithic material, rupture speed may exceed the local shear wave speed if we employ hyperelasically behaving materials like natural rubber (balloons) (Uenishi Eos 2006, Uenishi ICF 2009, Uenishi Trans. JSME A 2012) but fracture in typical monolithic thin fluid films (e.g. soap bubbles, which may be treated as a solid material) propagates at an ordinary subsonic (sub-Rayleigh) speed (Uenishi et al. SSJ 2006). More recent investigation handling three-dimensional rupture propagation in monolithic brittle materials (e.g. ice spheres, concrete blocks in the field) has repeatedly indicated some specific (rather simple and smooth) fracture patterns even without the existence of distinct planes of weakness, which may help in understanding how the dynamic fracture propagation is controlled in three-dimensional brittle solids like Earth's crust (Uenishi et al. Con. Buld. Mat. 2010, 2014, JSME 2013).

  12. A Study on the Correlation of Pertrochanteric Osteoporotic Fracture Severity with the Severity of Osteoporosis.

    PubMed

    Hayer, Prabhnoor Singh; Deane, Anit Kumar Samuel; Agrawal, Atul; Maheshwari, Rajesh; Juyal, Anil

    2016-04-01

    Osteoporosis is a metabolic bone disease caused by progressive bone loss. It is characterized by low Bone Mineral Density (BMD) and structural deterioration of bone tissue leading to bone fragility and increased risk of fractures. When classifying a fracture, high reliability and validity are crucial for successful treatment. Furthermore, a classification system should include severity, method of treatment, and prognosis for any given fracture. Since it is known that treatment significantly influences prognosis, a classification system claiming to include both would be desirable. Since there is no such classification system, which includes both the fracture type and the osteoporosis severity, we tried to find a correlation between fracture severity and osteoporosis severity. The aim of the study was to evaluate whether the AO/ASIF fracture classification system, which indicates the severity of fractures, has any relationship with the bone mineral status in patients with primary osteoporosis. We hypothesized that fracture severity and severity of osteoporosis should show some correlation. An observational analytical study was conducted over a period of one year during which 49 patients were included in the study at HIMS, SRH University, Dehradun. The osteoporosis status of all the included patients with a pertrochanteric fracture was documented using a DEXA scan and T-Score (BMD) was calculated. All patients had a trivial trauma. All the fractures were classified as per AO/ASIF classification. Pearson Correlation between BMD and fracture type was calculated. Data was entered on Microsoft Office Excel version 2007 and Interpretation and analysis of obtained data was done using summary statistics. Pearson Correlation between BMD and fracture type was calculated using the SPSS software version 22.0. The average age of the patients included in the study was 71.2 years and the average bone mineral density was -4.9. The correlation between BMD and fracture type was calculated and the r-values obtained was 0.180, which showed low a correlation and p-value was 0.215, which was insignificant. Statistically the pertrochanteric fracture configuration as per AO Classification does not correlate with the osteoporosis severity of the patient.

  13. Three-dimensional DFN Model Development and Calibration: A Case Study for Pahute Mesa, Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Parashar, R.; Sund, N. L.; Pohlmann, K.

    2017-12-01

    Pahute Mesa, located in the north-western region of the Nevada National Security Site, is an area where numerous underground nuclear tests were conducted. The mesa contains several fractured aquifers that can potentially provide high permeability pathways for migration of radionuclides away from testing locations. The BULLION Forced-Gradient Experiment (FGE) conducted on Pahute Mesa injected and pumped solute and colloid tracers from a system of three wells for obtaining site-specific information about the transport of radionuclides in fractured rock aquifers. This study aims to develop reliable three-dimensional discrete fracture network (DFN) models to simulate the BULLION FGE as a means for computing realistic ranges of important parameters describing fractured rock. Multiple conceptual DFN models were developed using dfnWorks, a parallelized computational suite developed by Los Alamos National Laboratory, to simulate flow and conservative particle movement in subsurface fractured rocks downgradient from the BULLION test. The model domain is 100x200x100 m and includes the three tracer-test wells of the BULLION FGE and the Pahute Mesa Lava-flow aquifer. The model scenarios considered differ from each other in terms of boundary conditions and fracture density. For each conceptual model, a number of statistically equivalent fracture network realizations were generated using data from fracture characterization studies. We adopt the covariance matrix adaptation-evolution strategy (CMA-ES) as a global local stochastic derivative-free optimization method to calibrate the DFN models using groundwater levels and tracer breakthrough data obtained from the three wells. Models of fracture apertures based on fracture type and size are proposed and the values of apertures in each model are estimated during model calibration. The ranges of fracture aperture values resulting from this study are expected to enhance understanding of radionuclide transport in fractured rocks and support development of improved large-scale flow and transport models for Pahute Mesa.

  14. Fast gas spectroscopy using pulsed quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Beyer, T.; Braun, M.; Lambrecht, A.

    2003-03-01

    Laser spectroscopy has found many industrial applications, e.g., control of automotive exhaust and process monitoring. The midinfrared region is of special interest because it has stronger absorption lines compared to the near infrared (NIR). However, in the NIR high quality reliable laser sources, detectors, and passive optical components are available. A quantum cascade laser could change this situation if fundamental advantages can be exploited with compact and reliable systems. It will be shown that, using pulsed lasers and available fast detectors, lower residual sensitivity levels than in corresponding NIR systems can be achieved. The stability is sufficient for industrial applications.

  15. Effect of precrack halos on kic determined by the surface crack in flexure method. Final report, August 1995-May 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swab, J.J.; Quinn, G.D.

    1997-12-01

    The surface crack in flexure (SCF) method, which is used to determine the fracture toughness of dense ceramics necessitates the measurement of precrack sizes by fractographic examination. Stable crack extension may occur from flaws under ambient room-temperature conditions, even in the relatively short time under load during fast fracture strength or fracture toughness testing. In this paper, fractographic techniques are used to characterize evidence of stable crack extension, a halo, around Knoop indentation surface cracks. Optical examination of the fracture surfaces of a high-purity Al2O3, an AlN, a glass-ceramic, and a MgF2 revealed the presence of a halo around themore » periphery of each precrack. The halo in the AlN was merely an optical effect due to crack reorientation, while the halo in the MgF2 was due to indentation-induced residual stresses initiating crack growth. However, for the Al2O3 and the glass-ceramic, environmentally assisted slow crack growth (SCG) was the cause of the halo. In the latter two materials, this stable crack extension must be included as part of the critical crack size in order to determine the appropriate fracture toughness.« less

  16. Hip fracture patients in India have vitamin D deficiency and secondary hyperparathyroidism.

    PubMed

    Dhanwal, D K; Sahoo, S; Gautam, V K; Saha, R

    2013-02-01

    This study evaluated the parameters of bone mineral homeostasis including 25(OH)D and PTH in 90 Indian patients with hip fracture and 90 controls. Hypovitaminosis D, secondary hyperparathyroidism, and biochemical osteomalacia was present in 77, 69, and 50 % patients, respectively, significantly higher compared to controls. Vitamin D deficiency is an important risk factor for hip fracture. The prevalence of vitamin D deficiency is not well known in hip fracture patients from India. Therefore, the present study was conducted to evaluate the parameters of bone mineral homeostasis including 25(OH)D and intact PTH in hip fracture from North India. Ninety consecutive patients with hip fracture and similar number of age- and sex-matched controls were enrolled in the study. The fasting venous samples were analyzed for 25-hydroxyvitamin D (25-OHD), intact parathyroid hormone (PTH), alkaline phosphatase (ALP), calcium, and phosphorus. Vitamin D deficiency was defined as serum 25-OHD of <20 ng/dl. The mean age of hip fracture subjects was 65.9 ± 12.6 which was comparable in men and women. Majority of study subjects were women (70 women and 20 men). The serum 25(OH)D and calcium levels were significantly lower, whereas the intact PTH and ALP levels were significantly higher in patients compared to controls. There was significant negative correlation between serum 25(OH)D and PTH. In the hip fracture group, 76.7 % of the subjects had vitamin D deficiency, and 68.9 % had secondary hyperparathyroidism. In the control group, vitamin D deficiency and elevated PTH levels were seen in 32.3 and 42.2 %, respectively. About three fourths of hip fracture patients have vitamin D deficiency, and two thirds have secondary hyperparathyroidism. Therefore, the serum 25-OHD level may be a useful index for the assessment of risk of hip fracture in India.

  17. A Microfluidics Study to Quantify the Impact of Microfracture Properties on Two-Phase Flow in Tight Rocks

    NASA Astrophysics Data System (ADS)

    Mehmani, A.; Kelly, S. A.; Torres-Verdin, C.; Balhoff, M.

    2017-12-01

    Microfluidics provides the opportunity for controlled experiments of immiscible fluid dynamics in quasi two-dimensional permeable media and allows their direct observation. We leverage microfluidics to investigate the impact of microfracture properties on water imbibition and drainage in a porous matrix. In the context of this work, microfractures are defined as apertures or preferential flow paths formed along planes of weakness, such as between two different rock fabrics. Patterns of pseudo-microfractures with orientations from parallel and perpendicular to fluid flow as well as variations in their connectivity were fabricated in glass micromodels; surface roughness of the micromodels was also varied utilizing a new method. Light microscopy and image analysis were used to quantify transient front advancement and trapped non-wetting phase saturation during imbibition as well as residual wetting phase saturation and its spatial distribution following drainage. Our experiments enable the assessment of quantitative relationships between fluid invasion rate and residual phase distributions as functions of microfracture network properties. Ultimately, the wide variety of microfluidic experiments performed in this study provide valuable insight into two-phase fluid dynamics in microfracture/matrix networks, the extent of fracture fluid invasion, and the saturation of trapped phases. In reservoir description, the geometries of subsurface fractures are often difficult to ascertain, but the distribution of rock types in a zone, from highly laminated to homogenous, can be reliably assessed with core data and well logs. Assuming that microcracks are functions of lamination planes (thin beds), then a priori predictions of the effect of microcracks on two-phase fluid flow across various geological conditions can possibly be upscaled via effective lamination properties. Such upscaling can significantly reduce the uncertainties associated with subsurface operations, including reservoir production, carbon storage and sequestration, and hazardous waste sequestration. A reliable prediction of capillary trapping, for instance, can determine the fracture fluid saturation subsequent to hydraulic fracturing of unconventional formations or the efficacy of water flooding in fractured reservoirs.

  18. Fracture mechanics. [review of fatigue crack propagation and technology of constructing safe structures

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1974-01-01

    Fracture mechanics is a rapidly emerging discipline for assessing the residual strength of structures containing flaws due to fatigue, corrosion or accidental damage and for anticipating the rate of which such flaws will propagate if not repaired. The discipline is also applicable in the design of structures with improved resistance to such flaws. The present state of the design art is reviewed using this technology to choose materials, to configure safe and efficient structures, to specify inspection procedures, to predict lives of flawed structures and to develop reliability of current and future airframes.

  19. Influence of diameter on particle transport in a fractured shale saprolite

    USGS Publications Warehouse

    Cumbie, D.H.; McKay, L.D.

    1999-01-01

    Experiments in an undisturbed, saturated column of weathered and fractured shale saprolite using fluorescent carboxylate-coated latex microspheres as tracers indicate that particle diameter plays a major role in controlling transport. In this study the optimum microsphere diameter for transport was approximately 0.5 ??m. Microspheres larger than the optimum size were present in the effluent at lower relative concentrations, apparently because of greater retention due to gravitational settling and/or physical straining. The smaller than optimum microspheres also experienced greater retention, apparently related to their higher rates of diffusion. Faster diffusion can lead to more frequent collisions with, and attachment to, fracture walls and may also lead to movement of particles into zones of relatively immobile pore water in the fractures or in the fine pore structure of the clay-rich matrix between fractures. Dismantling of the soil column and mapping of the distribution of retained microspheres indicated that there was substantial size-segregation of the microspheres between different fractures or in 'channels' within a fracture. Examination of small core samples showed that the smallest microspheres (0.05-0.1 ??m) were present in the fine pores of the matrix at distances of up to 3-4 mm from the nearest fracture, which supports the hypothesis that small particles can be retained by diffusion into the matrix. Calculations of settling velocity and diffusion rate using simple 1D approaches suggest that these processes could both cause significant retention of the larger and smaller particles, respectively, even for the fast advective transport rates (up to 32 m/day) observed during the experiments. Copyright (C) 1999 Elsevier Science B.V.

  20. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  1. Numerical Modeling of Methane Leakage from a Faulty Natural Gas Well into Fractured Tight Formations.

    PubMed

    Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.

  2. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott A. Ploger; Paul A. Demkowicz; John D. Hunn

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 x 105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplanemore » on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.« less

  3. Ceramics for engines

    NASA Technical Reports Server (NTRS)

    Kiser, James D.; Levine, Stanley R.; Dicarlo, James A.

    1987-01-01

    Structural ceramics were under nearly continuous development for various heat engine applications since the early 1970s. These efforts were sustained by the properties that ceramics offer in the areas of high-temperature strength, environmental resistance, and low density and the large benefits in system efficiency and performance that can result. The promise of ceramics was not realized because their brittle nature results in high sensitivity to microscopic flaws and catastrophic fracture behavior. This translated into low reliability for ceramic components and thus limited their application in engines. For structural ceramics to successfully make inroads into the terrestrial heat engine market requires further advances in low cost, net shape fabrication of high reliability components, and improvements in properties such as toughness, and strength. These advances will lead to very limited use of ceramics in noncritical applications in aerospace engines. For critical aerospace applications, an additional requirement is that the components display markedly improved toughness and noncatastrophic or graceful fracture. Thus the major emphasis is on fiber-reinforced ceramics.

  4. The American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale; translation and validation of the Dutch language version for ankle fractures.

    PubMed

    de Boer, A Siebe; Tjioe, Roderik J C; Van der Sijde, Fleur; Meuffels, Duncan E; den Hoed, Pieter T; Van der Vlies, Cornelis H; Tuinebreijer, Wim E; Verhofstad, Michael H J; Van Lieshout, Esther M M

    2017-08-03

    The American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale is among the most commonly used instruments for measuring outcome of treatment in patients who sustained a complex ankle or hindfoot injury. It consists of a patient-reported and a physician-reported part. A validated, Dutch version of this instrument is currently not available. The aim of this study was to translate the instrument into Dutch and to determine the measurement properties of the AOFAS Ankle-Hindfoot Scale Dutch language version (DLV) in patients with a unilateral ankle fracture. Multicentre (two Dutch hospitals), prospective observational study. In total, 142 patients with a unilateral ankle fracture were included. Ten patients were lost to follow-up. Patients completed the subjective (patient-reported) part of the AOFAS Ankle-Hindfoot Scale-DLV. A physician or trained physician-assistant completed the physician-reported part. For comparison and evaluation of the measuring characteristics, the Foot Function Index and the Short Form-36 were completed by the patient. Descriptive statistics (including floor and ceiling effects), reliability (ie, internal consistency), construct validity, reproducibility (ie, test-retest reliability, agreement and smallest detectable change) and responsiveness were determined. The AOFAS-DLV and its subscales showed good internal consistency (Cronbach's α >0.90). Construct validity and longitudinal validity were proven to be adequate (76.5% of predefined hypotheses were confirmed). Floor effects were not present. Ceiling effects were present from 6 months onwards, as expected. Responsiveness was adequate, with a smallest detectable change of 12.0 points. The AOFAS-DLV is a reliable, valid and responsive measurement instrument for evaluating functional outcome in patients with a unilateral ankle fracture. This implies that the questionnaire is suitable to compare different treatment modalities within this population or to compare outcome across hospitals. The Netherlands Trial Register (NTR5613; 05-jan-2016). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Minimally invasive treatment of trochanteric fractures with intramedullary nails. Technique and results.

    PubMed

    Todor, Adrian; Pojar, Adina; Lucaciu, Dan

    2013-01-01

    The aim of the study was to evaluate the results of minimally invasive treatment of trochanteric fractures with the use of intramedullary nails. From September 2010 to September 2012 we treated 21 patients with pertrochanteric fractures by a minimally invasive technique using the Gamma 3 (Stryker, Howmedica) nail. There were 13 females and 8 men with a mean age of 74.1 years, ranging from 58 to 88 years. Fractures were classified as being stable (AO type 31-A1) in 5 cases and unstable (AO type 31-A2 and A3) in the rest of 16 cases. Patients were reviewed at 6 weeks and 3 months postoperatively. Mean surgery time was 46.8 minutes and mean hospital stay was 14.9 days. No patients required blood transfusions. During the hospital stay all the patients were mobilized with weight bearing as tolerated. All patients were available for review at 6 weeks, and 2 were lost to the 3 months follow up. 16 patients regained the previous level of activity. This minimally invasive technique using a gamma nail device for pertrochanteric fractures gives reliable good results with excellent preservation of hip function.

  6. Fractographic study of epoxy fractured under mode I loading and mixed mode I/III loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fei; Wang, Jy-An John; Bertelsen, Williams D.

    2011-01-01

    Fiber reinforced polymeric composite materials are widely used in structural components such as wind turbine blades, which are typically subject to complicated loading conditions. Thus, material response under mixed mode loading is of great significance to the reliability of these structures. Epoxy is a thermosetting polymer that is currently used in manufacturing wind turbine blades. The fracture behavior of epoxy is relevant to the mechanical integrity of the wind turbine composite materials. In this study, a novel fracture testing methodology, the spiral notch torsion test (SNTT), was applied to study the fracture behavior of an epoxy material. SNTT samples weremore » tested using either monotonic loading or cyclic loading, while both mode I and mixed mode I/III loading conditions were used. Fractographic examination indicated the epoxy samples included in this study were prone to mode I failure even when the samples were subject to mixed mode loading. Different fatigue precracks were observed on mode I and mixed mode samples, i.e. precracks appeared as a uniform band under mode I loading, and a semi-ellipse under mixed mode loading. Fracture toughness was also estimated using quantitative fractography.« less

  7. Current Options for Determining Fracture Union

    PubMed Central

    2014-01-01

    Determining whether a bone fracture is healed is one of the most important and fundamental clinical determinations made in orthopaedics. However, there are currently no standardized methods of assessing fracture union, which in turn has created significant disagreement among orthopaedic surgeons in both clinical and research settings. An extensive amount of research has been dedicated to finding novel and reliable ways of determining healing with some promising results. Recent advancements in imaging techniques and introduction of new radiographic scores have helped decrease the amount of disagreement on this topic among physicians. The knowledge gained from biomechanical studies of bone healing has helped us refine our tools and create more efficient and practical research instruments. Additionally, a deeper understanding of the molecular pathways involved in the bone healing process has led to emergence of serologic markers as possible candidates in assessment of fracture union. In addition to our current physician centered methods, patient-centered approaches assessing quality of life and function are gaining popularity in assessment of fracture union. Despite these advances, assessment of union remains an imperfect practice in the clinical setting. Therefore, clinicians need to draw on multiple modalities that directly and indirectly measure or correlate with bone healing when counseling patients. PMID:26556422

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J.S.; Miyamoto, Y.

    The fracture behavior of graded Al{sub 2}O{sub 3}/TiC/Ni materials with a symmetric structure was investigated using single-edge notch-bend (SENB) specimens with surface compression. The fracture toughness of the graded materials was determined according to ASTM Standard E399. The results show that the effective fracture toughness increases with an increase in notch depth in the compressive stress zone, and reaches the maximum of 39.2 MPa m{sup 1/2} at the interface of compressive/tensile stress zones. Finite elements analysis reveals that the surface compression will be intensified at the notch root once the specimen is edge-notched because of the stress concentration, and themore » digress of the compressive stress intensification increases with an increase in notch depth. The dependence of the effective fracture toughness of the graded materials on the notch depth shows a behavior similar to the R-curve that is usually associated with microstructural toughening mechanisms. This toughening behavior is caused by the intensification of the compressive stress concentration with the increase of the notch depth. A theoretical analysis based on fracture mechanics verifies that the mechanical reliability of brittle ceramics can be improved effectively by tailoring and controlling the internal stresses.« less

  9. The prognostic value of the hawkins sign and diagnostic value of MRI after talar neck fractures.

    PubMed

    Chen, Hao; Liu, Wenzhou; Deng, Lianfu; Song, Weidong

    2014-12-01

    The early diagnosis of avascular necrosis of the talus (AVN) and prediction of ankle function for talar fractures are important. The Hawkins sign, as a radiographic predictor, could exclude the possibility of developing ischemic bone necrosis after talar neck fractures, but its relationship with ankle function remains unclear. The purpose of this study was to illustrate the prognostic effect of the Hawkins sign on ankle function after talar neck fractures and to study the value of early MRI in detecting the AVN changes after talus fractures. Cases of talar neck fractures between November 2008 and November 2013 were evaluated. The occurrences of the Hawkins sign and AVN were studied. X-ray imaging was performed at multiple time points from the 4th to the 12th week after the fractures, and MRI examinations were used in the Hawkins sign negative group, with the time span ranging from 1.5 to 12 months. AOFAS scores of the Hawkins sign positive and negative groups were compared during the follow-up. Forty-four cases (48 feet) were evaluated. The occurrence of positive Hawkins sign was 50%, 30%, and 33.3%, the incidence of AVN was 0%, 10%, and 50%, respectively, in type I, type II, and type III and IV talus fractures, respectively. The AOFAS scores showed no statistically significant difference between Hawkins sign positive group and negative group in type I and II fractures. The Hawkins sign positive group had better AOFAS scores than the negative group in type III and IV fractures. However, there was no statistically significant difference between Hawkins sign positive and negative groups when AVN cases were excluded in type III and IV fractures. The Hawkins sign was a reliable predictor excluding the possibility of AVN. It did not have predictive value on the ankle function in low-energy fractures and may predict better ankle function in high-energy fractures. MRI can diagnose AVN during an earlier period, and we believe Hawkins sign negative patients should undergo MRI examinations 12 weeks after the fractures, especially in high-energy traumatic cases. Level III, comparative case series. © The Author(s) 2014.

  10. Post-injection Multiphase Flow Modeling and Risk Assessments for Subsurface CO2 Storage in Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2015-12-01

    Subsurface storage of carbon dioxide in geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Successful geologic storage for sequestrated carbon dioxides must prove to be safe by means of risk assessments including post-injection analysis of injected CO2 plumes. Because fractured reservoirs exhibit a higher degree of heterogeneity, it is imperative to conduct such simulation studies in order to reliably predict the geometric evolution of plumes and risk assessment of post CO2injection. The research has addressed the pressure footprint of CO2 plumes through the development of new techniques which combine discrete fracture network and stochastic continuum modeling of multiphase flow in fractured geologic formations. A subsequent permeability tensor map in 3-D, derived from our preciously developed method, can accurately describe the heterogeneity of fracture reservoirs. A comprehensive workflow integrating the fracture permeability characterization and multiphase flow modeling has been developed to simulate the CO2plume migration and risk assessments. A simulated fractured reservoir model based on high-priority geological carbon sinks in central Alabama has been employed for preliminary study. Discrete fracture networks were generated with an NE-oriented regional fracture set and orthogonal NW-fractures. Fracture permeability characterization revealed high permeability heterogeneity with an order of magnitude of up to three. A multiphase flow model composed of supercritical CO2 and saline water was then applied to predict CO2 plume volume, geometry, pressure footprint, and containment during and post injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes, which are aligned with systematic fractures. The diffusive spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant upward lateral spreading of CO2 resulting in accumulation of CO2 directly under the seal unit because of its buoyancy and strata-bound vertical fractures. Risk assessment shows that lateral movement of CO2 along interconnected fractures requires widespread seals with high integrity to confine the injected CO2.

  11. [Using dynamic magnetotherapy and transdermal electroneurostimulation in the combined treatment of patients with mandibular fractures and concomitant periodontal inflammatory diseases].

    PubMed

    Lepilin, A V; Erokina, N L; Rogatina, T V; Khlusov, I Iu

    2009-01-01

    The objective of this study was to compare results of dynamic magnetotherapy (DMT), transdermal electroneurostimulation (TDENS), and traditional ultrahigh frequency (UHF) therapy in 473 patients with mandibular fractures and concomitant inflammatory diseases of paradontium. The parameters measured in the study included hygienic and paradontal indices, microcirculation patterns (using laser Doppler flowmetry), and the degree of mandibular fragment consolidation. It was shown that combined treatment with DMT and TDENS using an AMO-ATOS-E apparatus permits to eliminate clinical symptoms of paradontal inflammatory diseases twice as fast as traditional ultrahigh frequency therapy and ensures a two-fold reduction in the frequency of complications.

  12. A supercritical density of fast Na+ channels ensures rapid propagation of action potentials in GABAergic interneuron axons

    PubMed Central

    Hu, Hua; Jonas, Peter

    2014-01-01

    Fast-spiking, parvalbumin-expressing GABAergic interneurons/basket cells (BCs) play a key role in feedforward and feedback inhibition, gamma oscillations, and complex information processing. For these functions, fast propagation of action potentials (APs) from the soma to the presynaptic terminals is important. However, the functional properties of interneuron axons remain elusive. Here, we examined interneuron axons by confocally targeted subcellular patch-clamp recording in rat hippocampal slices. APs were initiated in the proximal axon ~20 μm from the soma, and propagated to the distal axon with high reliability and speed. Subcellular mapping revealed a stepwise increase of Na+ conductance density from the soma to the proximal axon, followed by a further gradual increase in the distal axon. Active cable modeling and experiments with partial channel block indicated that low axonal Na+ conductance density was sufficient for reliability, but high Na+ density was necessary for both speed of propagation and fast-spiking AP phenotype. Our results suggest that a supercritical density of Na+ channels compensates for the morphological properties of interneuron axons (small segmental diameter, extensive branching, and high bouton density), ensuring fast AP propagation and high-frequency repetitive firing. PMID:24657965

  13. Hydroformability study of seamless tube using Gurson-Tvergaard-Needleman (GTN) fracture model

    NASA Astrophysics Data System (ADS)

    Harisankar, K. R.; Omar, A.; Narasimhan, K.

    2017-09-01

    Tube hydroforming process is an advanced manufacturing process in which tube acting as blank is placed in between the dies and deformed with the help of hydraulic pressure. It has several advantages over conventional stamping process such as high strength to weight ratio, higher reliability, less tooling cost etc. Fracture surface investigation of tube hydroformed samples reveal dimple formation in the form of void coalescence which is a characteristic feature of ductile fracture. Hence, in order to accurately predict the limiting strains at fracture it is important to model the process using ductile damage criteria. Fracture criteria are broadly classified into two, microscopic and macroscopic. In the present work Gurson-Tvergaard-Neeedleman (GTN) model, which is a microscopic based ductile damage criteria, was used for predicting the limiting strains at fracture for seamless steel tubes and implemented in explicit finite element software, ABAQUS, for variety of strain path and boundary conditions to obtain fracture based forming limit diagram. The original void porosity, the critical porosity and fracture porosity of the Gurson-Tvergaard-Needleman model were determined by image analysis of scanning electron micrographs of the specimen at different testing conditions of the uniaxial tensile test. The other parameters of the model were determined by using inverse approach combined with uniaxial tensile test and simulation. Predicted FLD is found to be in good agreement with the experimental FLD. Furthermore, numerical simulation based parametric study was carried out to understand the impact of various GTN parameters on different aspects of formability parameters such as bursting pressure, bulge height, principal strains and strain path to develop the understanding of deformation and fracture behaviour at the micro-level during tube hydroforming process.

  14. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate.

    PubMed

    Gomes, Rafael Soares; Souza, Caroline Mathias Carvalho de; Bergamo, Edmara Tatiely Pedroso; Bordin, Dimorvan; Del Bel Cury, Altair Antoninha

    2017-01-01

    In this study, marginal and internal misfit and fracture load with and without thermal-mechanical aging (TMA) of monolithic ZLS and lithium disilicate (LDS) crowns were evaluated. Crowns were milled using a computer-aided design/computer-aided manufacturing system. Marginal gaps (MGs), absolute marginal discrepancy (AMD), axial gaps, and occlusal gaps were measured by X-ray microtomography (n=8). For fracture load testing, crowns were cemented in a universal abutment, and divided into four groups: ZLS without TMA, ZLS with TMA, LDS without TMA, and LDS with TMA (n=10). TMA groups were subjected to 10,000 thermal cycles (5-55°C) and 1,000,000 mechanical cycles (200 N, 3.8 Hz). All groups were subjected to compressive strength testing in a universal testing machine at a crosshead speed of 1 mm/min until failure. Student's t-test was used to examine misfit, two-way analysis of variance was used to analyze fracture load, and Pearson's correlation coefficients for misfit and fracture load were calculated (α=0.05). The materials were analyzed according to Weibull distribution, with 95% confidence intervals. Average MG (p<0.001) and AMD (p=0.003) values were greater in ZLS than in LDS crowns. TMA did not affect the fracture load of either material. However, fracture loads of ZLS crowns were lower than those of LDS crowns (p<0.001). Fracture load was moderately correlated with MG (r=-0.553) and AMD (r=-0.497). ZLS with TMA was least reliable, according to Weibull probability. Within the limitations of this study, ZLS crowns had lower fracture load values and greater marginal misfit than did LDS crowns, although these values were within acceptable limits.

  15. Anatomical predisposition of the ankle joint for lateral sprain or lateral malleolar fracture evaluated by radiographic measurements.

    PubMed

    Lee, Kyoung Min; Chung, Chin Youb; Sung, Ki Hyuk; Lee, SeungYeol; Kim, Tae Gyun; Choi, Young; Jung, Ki Jin; Kim, Yeon Ho; Koo, Seung Bum; Park, Moon Seok

    2015-01-01

    Injury mechanism and the amount of force are important factors determining whether a fracture or sprain occurs at the time of an ankle inversion injury. However, the anatomical differences between the ankle fracture and sprain have not been investigated sufficiently. This study was performed to investigate whether an anatomical predisposition of the ankle joint results in a lateral malleolar fracture or lateral ankle sprain. Two groups of consecutive patients, one with lateral malleolar fracture (274 patients, mean age 49.0 years) and the other with lateral ankle sprain (400 patients, mean age 38.4 years), were evaluated. Ankle radiographs were examined for 7 measures: distal tibial articular surface (DTAS) angle, bimalleolar tilt (BT), medial malleolar relative length (MMRL), lateral malleolar relative length (LMRL), medial malleolar slip angle (MMSA), anterior inclination of tibia (AI), and fibular position (FP). After an interobserver reliability test, the radiographic measurements were compared between the 2 groups. Linear regression analysis was performed to correct for age and sex effects between the groups. The fracture group and the sprain group showed significant differences in BT (P = .001), MMSA (P < .001), AI (P = .023), and FP (P < .001). In multiple regression analysis, after adjusting for age and sex effects, fracture and sprain groups showed a significant difference in BT (P = .001), MMRL (P < .001), MMSA (P < .001), and FP (P < .001). The lateral malleolar fracture group tended to show more bony constraint than that of the lateral ankle sprain group. Further 3-dimensional assessment of the bony structure and subsequent biomechanical studies are needed to elucidate the mechanism of injury according to the various types of ankle fractures and ankle sprain. Level III, retrospective comparative study. © The Author(s) 2014.

  16. Monolithic and bi-layer CAD/CAM lithium-disilicate versus metal-ceramic fixed dental prostheses: comparison of fracture loads and failure modes after fatigue.

    PubMed

    Schultheis, Stefan; Strub, Joerg R; Gerds, Thomas A; Guess, Petra C

    2013-06-01

    The authors analyzed the effect of fatigue on the survival rate and fracture load of monolithic and bi-layer CAD/CAM lithium-disilicate posterior three-unit fixed dental prostheses (FDPs) in comparison to the metal-ceramic gold standard. The authors divided 96 human premolars and molars into three equal groups. Lithium-disilicate ceramic (IPS-e.max-CAD) was milled with the CEREC-3-system in full-anatomic FDP dimensions (monolithic: M-LiCAD) or as framework (Bi-layer: BL-LiCAD) with subsequent hand-layer veneering. Metal-ceramic FDPs (MC) served as control. Single-load-to-failure tests were performed before and after mouth-motion fatigue. No fracture failures occurred during fatigue. Median fracture loads in [N], before and after fatigue were, respectively, as follows: M-LiCAD, 1,298/1,900; BL-LiCAD, 817/699; MC, 1,966/1,818. M-LiCAD and MC FPDs revealed comparable fracture loads and were both significantly higher than BL-LiCAD. M-LiCAD and BL-LiCAD both failed from core/veneer bulk fracture within the connector area. MC failures were limited to ceramic veneer fractures exposing the metal core. Fatigue had no significant effect on any group. Posterior monolithic CAD/CAM fabricated lithium-disilicate FPDs were shown to be fracture resistant with failure load results comparable to the metal-ceramic gold standard. Clinical investigations are needed to confirm these promising laboratory results. Monolithic CAD/CAM fabricated lithium-disilicate FDPs appeared to be a reliable treatment alternative for the posterior load-bearing area, whereas FDPs in bi-layer configuration were susceptible to low load fracture failure.

  17. Internal Fixation of Transverse Patella Fractures Using Cannulated Cancellous Screws with Anterior Tension Band Wiring.

    PubMed

    Khan, I; Dar, M Y; Rashid, S; Butt, M F

    2016-07-01

    Aims : To evaluate the effectiveness and safety of anterior tension band wiring technique using two cannulated cancellous screws in patients with transverse (AO34-C1) or transverse with mildly comminuted (AO34-C2) patellar fractures. Materials and Methods: This is a prospective study of 25 patients with transverse fracture or transverse fracture with mildly comminuted patella fractures. All the patients were treated with open reduction and internal fixation using two parallel cannulated screws and 18G stainless steel wire as per the tension band principle. Results : There were eighteen males (72%) and seven females (28%). The age group ranged from 24 to 58 years, with mean age of 38 years. The most common mode of injury was fall (72%) followed by road traffic accident (20%) and violent quadriceps contraction (8%). Transverse fracture was present in 60% and transverse fracture with mild comminution in 40% of patients. Mean time to achieve union was 10.7 weeks (range 8-12 weeks). Mean ROM at three months was 113.8 degree (90-130) and at final follow up this improved to 125.4 degrees (range 100-140). There was one case of knee stiffness and no case of implant failure was observed. Patients were evaluated using Bostman scoring, the mean score at three months being 26.04 which improved to 27.36 at the end of final follow up at one year. Conclusion : Cannulated cancellous screws with anterior tension band wiring is a safe, reliable and reproducible method in management of transverse patellar fractures, with less chances of implant failure and soft tissue irritation.

  18. The Efficacy of Platelet-Rich Plasma in the Treatment of Rib Fractures.

    PubMed

    Gunay, Samil; Candan, Huseyin; Yılmaz, Rahsan; Eser, Irfan; Aydoğmus, Umit

    2017-10-01

    Background  Rib fracture is the most common result of thoracic traumas. Intrapulmonary shunt, alveolar capillary membrane damage, intra-alveolar hemorrhage, and hypoxia may develop following rib fractures. Therefore, prompt treatment is important. The aim of this experimental study was to analyze the effects of platelet-rich plasma (PRP) on rib fractures to secure a speedier and more efficient treatment method. Materials and Methods  The study involved 18 New Zealand white rabbits, randomly divided into three groups as Group 1, the sham group with no surgical intervention; Group 2, the control group in which simple rib fractures were applied and no treatment; and Group 3, in which rib fractures were applied and then PRP treatment was administered. Results  The mean recovery plate thickness measurements were found to be statistically significantly higher in the PRP group compared with the other groups ( p  < 0.005). A thicker fibrotic cell proliferation and the formation of many capillaries were observed around the growth plate in the PRP group compared with the other groups. These structures were lesser in the control group compared with the PRP group and at the lowest level in the sham group. Larger and distinct callus formation was observed and a new intramedullary field in the PRP group. Conclusions  PRP is a reliable and effective autologous product with minimal side effects, which can be considered as an alternative treatment in patients with rib fractures and used easily in pseudoarthrosis, surgical fracture, or flail chest. Georg Thieme Verlag KG Stuttgart · New York.

  19. [The randomized controlled trial of the treatment for clavicular fracture by rotatory manual reduction with forceps holder and retrograde percutaneous pinning transfixation].

    PubMed

    Bi, Hong-zheng; Yang, Mao-qing; Tan, Yuan-chao; Fu, Song

    2008-07-01

    To study the curative effect and safety of rotatory manual reduction with forceps holder and retrograde percutaneous pinning transfixation in treating clavicular fracture. All 201 cases of clavicular fractures were randomly divided into treatment group (101 cases) and control group (100 cases). The treatment group was treated by rotatory manual reduction with forceps holder and retrograde percutaneous pinning transfixation. The control group was treated by open reduction and internal fixation with Kirschner pin. All cases were followed up for 4 to 21 months (mean 10.6 months). SPSS was used to analyze clinic healing time of fracture and shoulder-joint function in both two groups. After operation, 101 cases of treatment group achieved union of fracture and the clinical healing time was 28 to 49 days (mean 34.5+/-2.7 days). In control group,there were 4 cases with nonunion of fracture,the other 96 cases were union,the clinical healing time was 36 to 92 days (mean 55.3+/-4.8 days). The excellent and good rate of shoulder-joint function was 100% in treatment group and 83% in control group. By t-test and chi2-test, there was significant difference between the two groups in curative effect (P<0.05). Rotatory manual reduction with forceps holder and retrograde pinning transfixation can be used in various kinds of clavicular shaft fracture, with many virtues such as easy operation, reliable fixation, short union time of fracture, good functional recovery of shoulder-joint and no incision scar affecting appearance.

  20. Computer-aided design of polymers and composites

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.

    1985-01-01

    This book on computer-aided design of polymers and composites introduces and discusses the subject from the viewpoint of atomic and molecular models. Thus, the origins of stiffness, strength, extensibility, and fracture toughness in composite materials can be analyzed directly in terms of chemical composition and molecular structure. Aspects of polymer composite reliability are considered along with characterization techniques for composite reliability, relations between atomic and molecular properties, computer aided design and manufacture, polymer CAD/CAM models, and composite CAD/CAM models. Attention is given to multiphase structural adhesives, fibrous composite reliability, metal joint reliability, polymer physical states and transitions, chemical quality assurance, processability testing, cure monitoring and management, nondestructive evaluation (NDE), surface NDE, elementary properties, ionic-covalent bonding, molecular analysis, acid-base interactions, the manufacturing science, and peel mechanics.

  1. Cold in-place recycle phase III, supplemental - field protocol : short term field stability.

    DOT National Transportation Integrated Search

    2015-05-01

    CIR has become a useful tool in pavement rehabilitation due to cost savings. UDOT wishes to : improve the reliability of the process as well as improve the final outcome. A balance is achieved : between fracture durability and rutting resistance by c...

  2. Transoral Open Reduction for Subcondylar Fractures of the Mandible Using an Angulated Screwdriver System.

    PubMed

    Nam, Seung Min; Kim, Yong Bae; Cha, Han Gyu; Wee, Syeo Young; Choi, Chang Yong

    2015-09-01

    The management of subcondylar mandibular fractures has been a matter of controversy. Although closed reduction is the most useful method, it can be difficult to achieve anatomical reduction with this technique compared with open reduction and internal fixation (ORIF). Most surgeons prefer to treat subcondylar fractures by extraoral approaches rather than intraoral approaches because extraoral approaches provide good visualization of the operative field. The retromandibular, submandibular, and perilobular approaches are commonly performed in the treatment of displaced condylar or subcondylar fractures and that the functional results of these treatments are good. However, extraoral approaches have a high rate of surgical complications such as salivary fistula formation, visible scarring, and facial nerve injury, compared with intraoral approaches. Therefore, this clinical study evaluated the clinical results of ORIF for mandibular subcondylar fractures through a transoral approach using an angulated screwdriver system without endoscopic assistance. A study was conducted between March 2011 and October 2012. Eleven patients with subcondylar fractures of the mandible were treated through a transoral approach using an angulated screwdriver. There were 10 male patients and 1 female patient aged 21 to 72 years (mean, 38 years). Nine patients had a symphyseal or parasymphyseal fracture, and 2 patients had isolated subcondylar fractures of the mandible. Eleven patients with subcondylar fractures of the mandible were treated with a transoral approach using an angulated screwdriver. The subcondylar fracture was on the left side in 6 patients and on the right in 5. All patients achieved satisfactory ranges of temporomandibular joint movement with an interincisal distance of more than 40 mm without deviation and stable individual centric occlusion. The maximum operation duration was 165 minutes, and the average duration of ORIF was 97 minutes. The association between the operation duration and the number of operations was statistically significant. Our clinical study shows that subcondylar fractures of the mandible can be treated using an angulated screwdriver system through a transoral approach and that this technique provides reliable, satisfactory, and safe clinical outcomes.

  3. Pelvic X-ray misses out on detecting sacral fractures in the elderly - Importance of CT imaging in blunt pelvic trauma.

    PubMed

    Schicho, Andreas; Schmidt, Stefan A; Seeber, Kevin; Olivier, Alain; Richter, Peter H; Gebhard, Florian

    2016-03-01

    Patients aged 75 years and older with blunt pelvic trauma are frequently seen in the ER. The standard diagnostic tool in these patients is the plain a.p.-radiograph of the pelvis. Especially lesions of the posterior pelvic ring are often missed due to e.g. bowel gas projection and enteric overlay. With a retrospective study covering these patients over a 3 year period in our level I trauma centre, we were able to evaluate the rate of missed injuries in the a.p.-radiograph whenever a corresponding CT scan was performed. Age, gender, and accompanying fractures of the pelvic ring were recorded. The intrinsic test characteristics and the performance in the population were calculated according to standard formulas. Thus, 233 consecutive patients with blunt pelvic trauma with both conventional radiographic examination and computed tomography (CT) were included. Thereof, 56 (23%) showed a sacral fracture in the CT scan. Of 233 pelvic X-ray-images taken, 227 showed no sacral fracture. 51 (21.7%) of these were false negative, yielding a sensitivity of just 10.5%. Average age of patients with sacral fractures was 85.1±6.1 years, with 88% being female. Sacral fractures were often accompanied by lesions of the anterior pelvic ring with pubic bone fractures in 75% of sacrum fracture cases. Second most concomitant fractures are found at the acetabulum (23.3%). Plain radiographic imaging is especially likely to miss out fractures of the posterior pelvic ring, which nowadays can be of therapeutic consequence. Besides the physicians experience in the ED, profound knowledge of insensitivity of plain radiographs in finding posterior pelvic ring lesions is crucial for a reliable diagnostic routine. Since the high mortality caused by prolonged immobilisation due to pelvic ring injuries, all fractures should be identified. We therefore provide a diagnostic algorithm for blunt pelvic trauma in the elderly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Agreement between physicians' and nurses' clinical decisions for the management of the fracture liaison service (4iFLS): the Lucky Bone™ program.

    PubMed

    Senay, A; Delisle, J; Raynauld, J P; Morin, S N; Fernandes, J C

    2016-04-01

    We determined if nurses can manage osteoporotic fractures in a fracture liaison service by asking a rheumatologist and an internist to assess their clinical decisions. Experts agreed on more than 94 % of all nurses' actions for 525 fragility fracture patients, showing that their management is efficient and safe. A major care gap exists in the investigation of bone fragility and initiation of treatment for individuals who have sustained a fragility fracture. The implementation of a fracture liaison service (FLS) managed by nurses could be the key in resolving this problem. The aim of this project was to obtain agreement between physicians' and nurses' clinical decisions and evaluate if the algorithm of care is efficient and reliable for the management of a FLS. Clinical decisions of nurses for 525 subjects in a fracture liaison service between 2010 and 2013 were assessed by two independent physicians with expertise in osteoporosis treatment. Nurses succeeded in identifying all patients at risk and needed to refer 27 % of patients to an MD. Thereby, they managed autonomously 73 % of fragility fracture patients. No needless referrals were made according to assessing physicians. Agreement between each evaluator and nurses was of >97 %. Physicians' decisions were the same in >96 %, and Gwet AC11 coefficient was of >0.960 (almost perfect level of agreement). All major comorbidities were adequately managed. High agreement between nurses' and physicians' clinical decisions indicate that the independent management by nurses of a fracture liaison service is safe and should strongly be recommended in the care of patients with a fragility fracture. This kind of intervention could help resolve the existing care gap in bone fragility care as well as the societal economic burden associated with prevention and treatment of fragility fractures.

  5. New techniques for modeling the reliability of reactor pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.I.; Simonen, F.A.; Liebetrau, A.M.

    1986-01-01

    In recent years several probabilistic fracture mechanics codes, including the VISA code, have been developed to predict the reliability of reactor pressure vessels. This paper describes several new modeling techniques used in a second generation of the VISA code entitled VISA-II. Results are presented that show the sensitivity of vessel reliability predictions to such factors as inservice inspection to detect flaws, random positioning of flaws within the vessel wall thickness, and fluence distributions that vary throughout the vessel. The algorithms used to implement these modeling techniques are also described. Other new options in VISA-II are also described in this paper.more » The effect of vessel cladding has been included in the heat transfer, stress, and fracture mechanics solutions in VISA-II. The algorithms for simulating flaws has been changed to consider an entire vessel rather than a single flaw in a single weld. The flaw distribution was changed to include the distribution of both flaw depth and length. A menu of several alternate equations has been included to predict the shift in RT/sub NDT/. For flaws that arrest and later re-initiate, an option was also included to allow correlating the current arrest toughness with subsequent initiation toughnesses.« less

  6. Cyclic activity at silicic volcanoes: A response to dynamic permeability variations

    NASA Astrophysics Data System (ADS)

    Lamur, Anthony; Lavallée, Yan; Kendrick, Jackie; Eggertsson, Gudjon; Ashworth, James; Wall, Richard

    2017-04-01

    Silicic volcanoes exhibit cyclic eruptive activity characterised by effusive (dome growth) to quiescent periods punctuated by short explosive episodes. The latter, characterised by fast emissions of gas and ash into the atmosphere, results from stress release through fracturing and causes significant hazards to the surrounding environment. Understanding the formation, development and closure of fractures as well as their impact on the volcanic system is hence vital for better constraining current models. Here, we present the results of two sets of experiments designed to understand first, the development of permeability through fracturing and second, the timescale over which these fractures can persist in magmas. To characterise the influence of a macro-fracture, the permeability of intact volcanic rocks with a wide porosity range (1-41%) was measured at varying effective pressures (-0.001-30 MPa). We then fractured each sample using the Brazilian disc method to induce a tensile macro-fracture, before measuring the permeability under the same conditions. While our results for intact samples are consistent with previous studies, the results for fractured samples display a distinct permeability-porosity relationship. We show that low porosity samples (<18%) suffer a net increase in permeability of up to 4 orders of magnitude upon fracturing, compared to high porosity samples (>18%) that show a less than 1 order of magnitude increase. This suggests that a macro-fracture has the ability to efficiently localise the flow in low porosity rocks by becoming the prevailing structure in a previously micro-fracture-dominated porous network, whereas at higher porosities fluid flow remains controlled by pore connectivity, irrespective of the presence of a fracture. To assess the longevity of fractures in magmas we developed a novel experimental set-up, in which two glass rods were placed in contact for different timescales at high temperatures before being pulled apart to test the tensile strength recovery of the fracture. We show that fracture healing starts within timescales 50-100 times longer than the structural relaxation time of the melt and that that full healing can be achieved within only a few hours of contact (timescale decreasing with decreasing viscosities) at magmatic temperatures. These results are important for understanding the permeability decrease associated with annealing. We postulate that rapid permeability evolution due to fracturing or fracture healing may be the cause of observed cyclicity at silicic volcanoes, whereby "instantaneous" increases in permeability occur through the development of macro-fractures drives explosions. We propose that the timescale for this cyclicity is governed by the competition between stress build up through gas accumulation under a relatively impervious plug until failure and fracture healing through annealing or, as shown in other studies, mineral precipitation and sintering of particulate material in fractures.

  7. A Trigger Mechanism for Volcanic Low-Frequency Seismic Events on Montserrat

    NASA Astrophysics Data System (ADS)

    Neuberg, J. W.; Tuffen, H.; Jolly, A.; Green, D.

    2003-12-01

    Seismic observations of low-frequency earthquake swarms on Montserrat point to a non-destructive, repeatable source mechanism in a confined area inside or near the conduit. While the seismic wave propagation pattern of the subsequent resonance in and around the conduit is well studied, the trigger mechanism has remained elusive. In this contribution we suggest a trigger mechanism based on new field evidence for fracture and healing of magma in volcanic conduits, together with seismic observations from Montserrat and finite element modelling of magma deformation during conduit flow. As a seismic trigger we suggest a stick-slip motion of highly-viscous magma in the glass transition, that periodically generates networks of seismogenic shear fractures a few metres in length. These fractures are rapidly filled by fine-grained material [cataclasite] that is generated by friction processes on the fracture surfaces, such as corner abrasion, and is locally redeposited by gas flowing within the fracture system. Filled fractures are then swiftly healed as reloading leads to annealing and a return to cohesive viscous deformation. Such a fast healing process, probably on the order of tens of seconds, leads to a repeatable trigger mechanism. Due to a strong lateral viscosity gradient in the conduit, highly-viscous magma near the conduit walls, which can exhibit brittle behaviour, co-exists with low-viscosity, fluid magma in the conduit centre; such that brittle failure provides the seismic trigger mechanism while the fluid part can still act as a seismic resonator.

  8. Thermal annealing recovery of fracture toughness in HT9 steel after irradation to high doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Baek, Jong-Hyuk; Anderoglu, Osman

    2013-08-03

    The HT9 ferritic/martensitic steel with a nominal chemistry of Fe(bal.)–12%Cr–1%MoVW has been used as a primary core material for fast fission reactors such as FFTF because of its high resistance to radiationinduced swelling and embrittlement. Both static and dynamic fracture test results have shown that the HT9 steel can become brittle when it is exposed to high dose irradiation at a relatively low temperature 430 °C). This article aims at a comprehensive discussion on the thermal annealing recovery of fracture toughness in the HT9 steel after irradiation up to 3–148 dpa at 378–504 °C. A specimen reuse technique has beenmore » established and applied to this study: the fracture specimens were tested Charpy specimens or broken halves of Charpy bars (13 3 4 mm). The post-anneal fracture test results indicated that much of the radiation-induced damage can be recovered by a simple thermal annealing schedule: the fracture toughness was incompletely recovered by 550 °C annealing, while nearly complete or complete recovery occurred after 650 °C annealing. This indicates that thermal annealing is a feasible damage mitigation technique for the reactor components made of HT9 steel. The partial recovery is probably due to the non-removable microstructural damages such as void or gas bubble formation, elemental segregation and precipitation.« less

  9. Dynamic deformation and fracture of single crystal silicon: Fracture modes, damage laws, and anisotropy

    DOE PAGES

    Huang, J. Y.; E, J. C.; Huang, J. W.; ...

    2016-05-25

    Impact fracture of single-crystal Si is critical to long-term reliability of electronic devices and solar cells for its wide use as components or substrates in semiconductor industry. Single-crystal Si is loaded along two different crystallographic directions with a split Hopkinson pressure bar integrated with an in situ x-ray imaging and diffraction system. Bulk stress histories are measured, simultaneously with x-ray phase contrast imaging (XPCI) and Laue diffraction. Damage evolution is quantified with grayscale maps from XPCI. Single-crystal Si exhibits pronounced anisotropy in fracture modes, and thus fracture strengths and damage evolution. For loading along [11¯ 0] and viewing along [001],more » (1¯1¯0)[11¯ 0] cleavage is activated and induces horizontal primary cracks followed by perpendicular wing cracks. However, for loading along [011¯] and viewing along [111], random nucleation and growth of shear and tensile-splitting crack networks lead to catastrophic failure of materials with no cleavage. The primary-wing crack mode leads to a lower characteristic fracture strength due to predamage, but a more concentrated strength distribution, i.e., a higher Weibull modulus, compared to the second loading case. Furthermore, the sequential primary cracking, wing cracking and wing-crack coalescence processes result in a gradual increase of damage with time, deviating from theoretical predictions. Particle size and aspect ratios of fragments are discussed with postmortem fragment analysis, which verifies fracture modes observed in XPCI.« less

  10. Low-dose CT of postoperative pelvic fractures: a comparison with radiography.

    PubMed

    Eriksson, Thomas; Berg, Per; Olerud, Claes; Shalabi, Adel; Hänni, Mari

    2018-01-01

    Background Computed tomography (CT) is superior to conventional radiography (CR) for assessing internal fixation of pelvic fractures, but with a higher radiation exposure. Low-dose CT (LDCT) could possibly have a sufficient diagnostic accuracy but with a lower radiation dose. Purpose To compare postoperative diagnostic accuracy of LDCT and CR after open reduction and internal fixation of pelvic fracture. Material and Methods Twenty-one patients were examined with LDCT and CR 0-9 days after surgery. The examinations were reviewed by two musculoskeletal radiologists. Hardware, degree of fracture reduction, image quality, and reviewing time were assessed, and effective radiation dose was calculated. Inter-reader agreement was calculated. Results LDCT was significantly better than CR in determining whether hardware positioning was assessable ( P < 0.001). Acetabular congruence was assessable in all fractured patients with LDCT. In 12 of the 32 assessments with CR of patients with an acetabular fracture, joint congruence was not assessable due to overlapping hardware ( P = 0.001). Image quality was significantly higher for LDCT. Median time to review was 240 s for LDCT compared to 180 s for CR. Effective dose was 0.79 mSv for LDCT compared to 0.32 mSv for CR ( P < 0.001). Conclusion LDCT is more reliable than CR in assessing hardware position and fracture reduction. Joint congruency is sometimes not possible to assess with CR, due to overlapping hardware. The image quality is higher, but also the effective dose, with LDCT than with CR.

  11. Transoral open reduction and fixation of mandibular condylar base and neck fractures in children and young teenagers--a beneficial treatment option?

    PubMed

    Schiel, Sebastian; Mayer, Peter; Probst, Florian; Otto, Sven; Cornelius, Carl-Peter

    2013-07-01

    To evaluate the possible benefits of open surgery, endoscopically assisted reduction and fixation using a transoral route was used in a selected series of pediatric patients with displaced condylar base and neck fractures. A cohort of 6 patients (1 male and 5 female; age range, 7 to 15 yr; mean, 13.4 yr) with displaced condylar base and neck fractures (n = 9) were included. Inclusion criteria were age younger than 16 years, fracture of the condylar base or neck, and displacement of the fracture by at least 45°. Fractures were classified using conventional radiography, cone-beam computed tomography, or computed tomography. Patients underwent transoral endoscopically assisted open reduction and fixation using miniplate osteosynthesis. Postoperatively, patients were followed clinically and radiographically for 18 months. Complete follow-up varied from 18 to 35 months (median, 24.5 months). All patients showed normal occlusion and pain-free unrestricted function of the temporomandibular joint at 3, 6, 12, and 18 months postoperatively. There were no signs of incomplete remodeling or deformation of the condyles. Transoral endoscopically assisted surgical treatment of severely displaced condylar base and neck fractures in children and young teenagers offers a reliable solution to preclude the sequelae of closed treatment, such as altered morphology and functional disturbances, eliminates visible scars, and lowers the risk of facial nerve damage compared with open reduction using an extraoral approach. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  12. Interpretation of Post-operative Distal Humerus Radiographs After Internal Fixation: Prediction of Later Loss of Fixation.

    PubMed

    Claessen, Femke M A P; Stoop, Nicky; Doornberg, Job N; Guitton, Thierry G; van den Bekerom, Michel P J; Ring, David

    2016-10-01

    Stable fixation of distal humerus fracture fragments is necessary for adequate healing and maintenance of reduction. The purpose of this study was to measure the reliability and accuracy of interpretation of postoperative radiographs to predict which implants will loosen or break after operative treatment of bicolumnar distal humerus fractures. We also addressed agreement among surgeons regarding which fracture fixation will loosen or break and the influence of years in independent practice, location of practice, and so forth. A total of 232 orthopedic residents and surgeons from around the world evaluated 24 anteroposterior and lateral radiographs of distal humerus fractures on a Web-based platform to predict which implants would loosen or break. Agreement among observers was measured using the multi-rater kappa measure. The sensitivity of prediction of failure of fixation of distal humerus fracture on radiographs was 63%, specificity was 53%, positive predictive value was 36%, the negative predictive value was 78%, and accuracy was 56%. There was fair interobserver agreement (κ = 0.27) regarding predictions of failure of fixation of distal humerus fracture on radiographs. Interobserver variability did not change when assessed for the various subgroups. When experienced and skilled surgeons perform fixation of type C distal humerus fracture, the immediate postoperative radiograph is not predictive of fixation failure. Reoperation based on the probability of failure might not be advisable. Diagnostic III. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  13. [Manipulative reduction and plaster external fixation for the treatment of the scaphoid fracture and perilunate dislocation].

    PubMed

    Zhang, Xin; Wei, Qiang; Ji, Fang; Tong, Da-Ke; Tang, Hao; Zhang, Hao; Yu, Jin-Guo; Yang, Ji-Dong; Cui, Rui; Huo, Ning-Ning

    2018-05-25

    To investigate the efficacy and complications of manual reduction and external fixation for the treatment of scaphoid fractures and perilunate dislocations. From January 2009 to January 2013, 43 patients suffered from scaphoid fractures and perilunate dislocations were retrospective analyzed. Among them, 17 cases were treated with manipulative reduction and plaster external fixation as conservation group including 10 males and 7 females, the other 26 cases were treated with application of surgical as operation group including 15 males and 11 females. The clinical effects were assessed by Cooney function score, radiological analysis and observation of complications. All patients were followed up for(45.00±8.72) months ranging from 36 to 60 months. At the final follow-up, the Cooney score of wrist function was 88.53±4.24 in conservation group and 89.58±4.59in operation group( t= 0.455, P >0.05). During the follow-up, 4 patients were found scaphoid avascular necrosis in the imaging performance in the conservation group(χ²=4.32, P <0.05). The difference of other complications between two groups was not statistically significant( P >0.05). For patients suffered from the scaphoid fractures and perilunate dislocation, the early manipulative reduction and plaster external fixation after injury as soon as possible is necessary. Maintaining a satisfactory reduction and reliable fixation at the same time can lead to good treatment effect and there's no weakness compared to surgical treatment. But there was an increase in danger of complications. The key of conservative treatment lies in early diagnosis and maintenance of reduction, reliable fixation, and timely and appropriate functional exercise. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  14. Preoperative classification assessment reliability and influence on the length of intertrochanteric fracture operations.

    PubMed

    Shen, Jing; Hu, FangKe; Zhang, LiHai; Tang, PeiFu; Bi, ZhengGang

    2013-04-01

    The accuracy of intertrochanteric fracture classification is important; indeed, the patient outcomes are dependent on their classification. The aim of this study was to use the AO classification system to evaluate the variation in classification between X-ray and computed tomography (CT)/3D CT images. Then, differences in the length of surgery were evaluated based on two examinations. Intertrochanteric fractures were reviewed and surgeons were interviewed. The rates of correct discrimination and misclassification (overestimates and underestimates) probabilities were determined. The impact of misclassification on length of surgery was also evaluated. In total, 370 patents and four surgeons were included in the study. All patients had X-ray images and 210 patients had CT/3D CT images. Of them, 214 and 156 patients were treated by intramedullary and extramedullary fixation systems, respectively. The mean length of surgery was 62.1 ± 17.7 min. The overall rate of correct discrimination was 83.8 % and in the classification of A1, A2 and A3 were 80.0, 85.7 and 82.4 %, respectively. The rate of misclassification showed no significant difference between stable and unstable fractures (21.3 vs 13.1 %, P = 0.173). The overall rates of overestimates and underestimates were significantly different (5 vs 11.25 %, P = 0.041). Subtracting the rate of overestimates from underestimates had a positive correlation with prolonged surgery and showed a significant difference with intramedullary fixation (P < 0.001). Classification based on the AO system was good in terms of consistency. CT/3D CT examination was more reliable and more helpful for preoperative assessment, especially for performance of an intramedullary fixation.

  15. Recommendation for measuring clinical outcome in distal radius fractures: a core set of domains for standardized reporting in clinical practice and research.

    PubMed

    Goldhahn, Jörg; Beaton, Dorcas; Ladd, Amy; Macdermid, Joy; Hoang-Kim, Amy

    2014-02-01

    Lack of standardization of outcome measurement has hampered an evidence-based approach to clinical practice and research. We adopted a process of reviewing evidence on current use of measures and appropriate theoretical frameworks for health and disability to inform a consensus process that was focused on deriving the minimal set of core domains in distal radius fracture. We agreed on the following seven core recommendations: (1) pain and function were regarded as the primary domains, (2) very brief measures were needed for routine administration in clinical practice, (3) these brief measures could be augmented by additional measures that provide more detail or address additional domains for clinical research, (4) measurement of pain should include measures of both intensity and frequency as core attributes, (5) a numeric pain scale, e.g. visual analogue scale or visual numeric scale or the pain subscale of the patient-reported wrist evaluation (PRWE) questionnaires were identified as reliable, valid and feasible measures to measure these concepts, (6) for function, either the Quick Disability of the arm, shoulder and hand questionnaire or PRWE-function subscale was identified as reliable, valid and feasible measures, and (7) a measure of participation and treatment complications should be considered core outcomes for both clinical practice and research. We used a sound methodological approach to form a comprehensive foundation of content for outcomes in the area of distal radius fractures. We recommend the use of symptom and function as separate domains in the ICF core set in clinical research or practice for patients with wrist fracture. Further research is needed to provide more definitive measurement properties of measures across all domains.

  16. Fracture characterization by hybrid enumerative search and Gauss-Newton least-squares inversion methods

    NASA Astrophysics Data System (ADS)

    Alkharji, Mohammed N.

    Most fracture characterization methods provide a general description of the fracture parameters as part of the reservoirs parameters; the fracture interaction and geometry within the reservoir is given less attention. T-Matrix and Linear Slip effective medium fracture models are implemented to invert the elastic tensor for the parameters and geometries of the fractures within the reservoir. The fracture inverse problem has an ill-posed, overdetermined, underconstrained rank-deficit system of equations. Least-squares inverse methods are used to solve the problem. A good starting initial model for the parameters is a key factor in the reliability of the inversion. Most methods assume that the starting parameters are close to the solution to avoid inaccurate local minimum solutions. The prior knowledge of the fracture parameters and their geometry is not available. We develop a hybrid, enumerative and Gauss-Newton, method that estimates the fracture parameters and geometry from the elastic tensor with no prior knowledge of the initial parameter values. The fracture parameters are separated into two groups. The first group contains the fracture parameters with no prior information, and the second group contains the parameters with known prior information. Different models are generated from the first group parameters by sampling the solution space over a predefined range of possible solutions for each parameter. Each model generated by the first group is fixed and used as a starting model to invert for the second group of parameters using the Gauss-Newton method. The least-squares residual between the observed elastic tensor and the estimated elastic tensor is calculated for each model. The model parameters that yield the least-squares residual corresponds to the correct fracture reservoir parameters and geometry. Two synthetic examples of fractured reservoirs with oil and gas saturations were inverted with no prior information about the fracture properties. The results showed that the hybrid algorithm successfully predicted the fracture parametrization, geometry, and the fluid content within the modeled reservoir. The method was also applied on an elastic tensor extracted from the Weyburn field in Saskatchewan, Canada. The solution suggested no presence of fractures but only a VTI system caused by the shale layering in the targeted reservoir, this interpretation is supported by other Weyburn field data.

  17. The new ATLAS Fast Calorimeter Simulation

    NASA Astrophysics Data System (ADS)

    Schaarschmidt, J.; ATLAS Collaboration

    2017-10-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  18. Expedited CT-Based Methods for Evaluating Fracture Severity to Assess Risk of Post-Traumatic Osteoarthritis After Articular Fractures.

    PubMed

    Anderson, Donald D; Kilburg, Anthony T; Thomas, Thaddeus P; Marsh, J Lawrence

    2016-01-01

    Post-traumatic osteoarthritis (PTOA) is common after intra-articular fractures of the tibial plafond. An objective CT-based measure of fracture severity was previously found to reliably predict whether PTOA developed following surgical treatment of such fractures. However, the extended time required obtaining the fracture energy metric and its reliance upon an intact contralateral limb CT limited its clinical applicability. The objective of this study was to establish an expedited fracture severity metric that provided comparable PTOA predictive ability without the prior limitations. An expedited fracture severity metric was computed from the CT scans of 30 tibial plafond fractures using textural analysis to quantify disorder in CT images. The expedited method utilized an intact surrogate model to enable severity assessment without requiring a contralateral limb CT. Agreement between the expedited fracture severity metric and the Kellgren-Lawrence (KL) radiographic OA score at two-year follow-up was assessed using concordance. The ability of the metric to differentiate between patients that did or did not develop PTOA was assessed using the Wilcoxon Ranked Sum test. The expedited severity metric agreed well (75.2% concordance) with the KL scores. The initial fracture severity of cases that developed PTOA differed significantly (p = 0.004) from those that did not. Receiver operating characteristic analysis showed that the expedited severity metric could accurately predict PTOA outcome in 80% of the cases. The time required to obtain the expedited severity metric averaged 14.9 minutes/ case, and the metric was obtained without using an intact contralateral CT. The expedited CT-based methods for fracture severity assessment present a solution to issues limiting the utility of prior methods. In a relatively short amount of time, the expedited methodology provided a severity score capable of predicting PTOA risk, without needing to have the intact contralateral limb included in the CT scan. The described methods provide surgeons an objective, quantitative representation of the severity of a fracture. Obtained prior to the surgery, it provides a reasonable alternative to current subjective classification systems. The expedited severity metric offers surgeons an objective means for factoring severity of joint insult into treatment decision-making.

  19. Borehole characterization of hydraulic properties and groundwater flow in a crystalline fractured aquifer of a headwater mountain watershed, Laramie Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Ren, Shuangpo; Gragg, Samuel; Zhang, Ye; Carr, Bradley J.; Yao, Guangqing

    2018-06-01

    Fractured crystalline aquifers of mountain watersheds may host a significant portion of the world's freshwater supply. To effectively utilize water resources in these environments, it is important to understand the hydraulic properties, groundwater storage, and flow processes in crystalline aquifers and field-derived insights are critically needed. Based on borehole hydraulic characterization and monitoring data, this study inferred hydraulic properties and groundwater flow of a crystalline fractured aquifer in Laramie Range, Wyoming. At three open holes completed in a fractured granite aquifer, both slug tests and FLUTe liner profiling were performed to obtain estimates of horizontal hydraulic conductivity (Kh). Televiewer (i.e., optical and acoustic) and flowmeter logs were then jointly interpreted to identify the number of flowing fractures and fracture zones. Based on these data, hydraulic apertures were obtained for each borehole. Average groundwater velocity was then computed using Kh, aperture, and water level monitoring data. Finally, based on all available data, including cores, borehole logs, LIDAR topography, and a seismic P-wave velocity model, a three dimensional geological model of the site was built. In this fractured aquifer, (1) borehole Kh varies over ∼4 orders of magnitude (10-8-10-5 m/s). Kh is consistently higher near the top of the bedrock that is interpreted as the weathering front. Using a cutoff Kh of 10-10 m/s, the hydraulically significant zone extends to ∼40-53 m depth. (2) FLUTe-estimated hydraulic apertures of fractures vary over 1 order of magnitude, and at each borehole, the average hydraulic aperture by FLUTe is very close to that obtained from slug tests. Thus, slug test can be used to provide a reliable estimate of the average fracture hydraulic aperture. (3) Estimated average effective fracture porosity is 4.0 × 10-4, therefore this fractured aquifer can host significant quantity of water. (4) Natural groundwater velocity is estimated to range from 0.4 to 81.0 m/day, implying rapid pathways of fracture flow. (5) The average ambient water table position follows the boundary between saprolite and fractured bedrock. Groundwater flow at the site appears topography driven.

  20. Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution

    NASA Astrophysics Data System (ADS)

    Wang, L.; Cardenas, M. B.

    2017-12-01

    Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self-enhancing process is relevant. References: Wang, L., and M. B. Cardenas (2017), Linear permeability evolution of expanding conduits due to feedback between flow and fast phase change, Geophys. Res. Lett., 44(9), 4116-4123, doi: 10.1002/2017gl073161.

  1. Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process.

    PubMed

    Wang, Lei; Li, Guoyuan; Ren, Ling; Kong, Xiangdong; Wang, Yugang; Han, Xiuguo; Jiang, Wenbo; Dai, Kerong; Yang, Ke; Hao, Yongqiang

    2017-01-01

    Treatment for fractures requires internal fixation devices, which are mainly produced from stainless steel or titanium alloy without biological functions. Therefore, we developed a novel nano-copper-bearing stainless steel with nano-sized copper-precipitation (317L-Cu SS). Based on previous studies, this work explores the effect of 317L-Cu SS on fracture healing; that is, proliferation, osteogenic differentiation, osteogenesis-related gene expression, and lysyl oxidase activity of human bone mesenchymal stem cells were detected in vitro. Sprague-Dawley rats were used to build an animal fracture model, and fracture healing and callus evolution were investigated by radiology (X-ray and micro-CT), histology (H&E, Masson, and safranin O/fast green staining), and histomorphometry. Further, the Cu 2+ content and Runx2 level in the callus were determined, and local mechanical test of the fracture was performed to assess the healing quality. Our results revealed that 317L-Cu SS did not affect the proliferation of human bone mesenchymal stem cells, but promoted osteogenic differentiation and the expression of osteogenesis-related genes. In addition, 317L-Cu SS upregulated the lysyl oxidase activity. The X-ray and micro-CT results showed that the callus evolution efficiency and fracture healing speed were superior for 317L-Cu SS. Histological staining displayed large amounts of fibrous tissues at 3 weeks, and cartilage and new bone at 6 weeks. Further, histomorphometric analysis indicated that the callus possessed higher osteogenic efficiency at 6 weeks, and a high Cu 2+ content and increased Runx2 expression were observed in the callus for 317L-Cu SS. Besides, the mechanical strength of the fracture site was much better than that of the control group. Overall, we conclude that 317L-Cu SS possesses the ability to increase Cu 2+ content and promote osteogenesis in the callus, which could accelerate the callus evolution process and bone formation to provide faster and better fracture healing.

  2. Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process

    PubMed Central

    Kong, Xiangdong; Wang, Yugang; Han, Xiuguo; Jiang, Wenbo; Dai, Kerong; Yang, Ke; Hao, Yongqiang

    2017-01-01

    Treatment for fractures requires internal fixation devices, which are mainly produced from stainless steel or titanium alloy without biological functions. Therefore, we developed a novel nano-copper-bearing stainless steel with nano-sized copper-precipitation (317L-Cu SS). Based on previous studies, this work explores the effect of 317L-Cu SS on fracture healing; that is, proliferation, osteogenic differentiation, osteogenesis-related gene expression, and lysyl oxidase activity of human bone mesenchymal stem cells were detected in vitro. Sprague–Dawley rats were used to build an animal fracture model, and fracture healing and callus evolution were investigated by radiology (X-ray and micro-CT), histology (H&E, Masson, and safranin O/fast green staining), and histomorphometry. Further, the Cu2+ content and Runx2 level in the callus were determined, and local mechanical test of the fracture was performed to assess the healing quality. Our results revealed that 317L-Cu SS did not affect the proliferation of human bone mesenchymal stem cells, but promoted osteogenic differentiation and the expression of osteogenesis-related genes. In addition, 317L-Cu SS upregulated the lysyl oxidase activity. The X-ray and micro-CT results showed that the callus evolution efficiency and fracture healing speed were superior for 317L-Cu SS. Histological staining displayed large amounts of fibrous tissues at 3 weeks, and cartilage and new bone at 6 weeks. Further, histomorphometric analysis indicated that the callus possessed higher osteogenic efficiency at 6 weeks, and a high Cu2+ content and increased Runx2 expression were observed in the callus for 317L-Cu SS. Besides, the mechanical strength of the fracture site was much better than that of the control group. Overall, we conclude that 317L-Cu SS possesses the ability to increase Cu2+ content and promote osteogenesis in the callus, which could accelerate the callus evolution process and bone formation to provide faster and better fracture healing. PMID:29225463

  3. Nonlinear Fluid Migration Patterns in Fractured Reservoirs due to Stress-Pressure Coupling induced Changes in Reservoir Permeabilities

    NASA Astrophysics Data System (ADS)

    Annewandter, R.; Geiger, S.; Main, I. G.

    2011-12-01

    Sustainable storage of carbon dioxide (CO2) requires a thorough understanding of injection induced pressure build-up and its effects on the storage formation's integrity, since it determines the cap rock's sealing properties as well as the total storable amount of carbon dioxide. Fractures are abundant in the subsurface and difficult to detect due to their subseismic characteristic. If present in the cap during injection, they can be primary pathways for CO2 leakage. The North Sea is considered as Europe's most important carbon dioxide storage area. However, almost all of the potential storage formations have been exposed to post-glacial lithospheric flexure, possibly causing the generation of new fracture networks in the overburden whilst rebounding. Drawing upon, fast carbon dioxide uprise can be facilitated due to opening of fractures caused by changes in the stress field over time. The overall effective permeability, and hence possible leakage rates, of a fractured storage formation is highly sensitive to the fracture aperture which itself depends on the far field and in situ stress field. For this reason, our in-house general purpose reservoir simulator Complex System Modeling Platform (CSMP++) has been expanded, which is particularly designed to simulate multiphase flow on fractured porous media. It combines finite element (FE) and finite volume (FV) methods on mixed-dimensional hybrid-element meshes. The unstructured FE-FV based scheme allows us to model complex geological structures, such as fractures, at great detail. The simulator uses a compositional model for NaCl-H2O-CO2-systems for compressible fluids for computing thermophysical properties as a function of formation pressure and temperature. A fixed stress-split sequential procedure is being used to calculate coupled fluid flow and geomechanics. Numerical proof of concept studies will be presented showing the impact of fracture opening and closure on fluid migration patterns due to coupled stress-pressure induced changes in effective permeabilities.

  4. RF-MEMS capacitive switches with high reliability

    DOEpatents

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  5. Coding for reliable satellite communications

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1984-01-01

    Several error control coding techniques for reliable satellite communications were investigated to find algorithms for fast decoding of Reed-Solomon codes in terms of dual basis. The decoding of the (255,223) Reed-Solomon code, which is used as the outer code in the concatenated TDRSS decoder, was of particular concern.

  6. Effect of Joint Scale and Processing on the Fracture of Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumps in 3D Packages

    NASA Astrophysics Data System (ADS)

    Talebanpour, B.; Huang, Z.; Chen, Z.; Dutta, I.

    2016-01-01

    In 3-dimensional (3D) packages, a stack of dies is vertically connected to each other using through-silicon vias and very thin solder micro-bumps. The thinness of the micro-bumps results in joints with a very high volumetric proportion of intermetallic compounds (IMCs), rendering them much more brittle compared to conventional joints. Because of this, the reliability of micro-bumps, and the dependence thereof on the proportion of IMC in the joint, is of substantial concern. In this paper, the growth kinetics of IMCs in thin Sn-3Ag-0.5Cu joints attached to Cu substrates were analyzed, and empirical kinetic laws for the growth of Cu6Sn5 and Cu3Sn in thin joints were obtained. Modified compact mixed mode fracture mechanics samples, with adhesive solder joints between massive Cu substrates, having similar thickness and IMC content as actual micro-bumps, were produced. The effects of IMC proportion and strain rate on fracture toughness and mechanisms were investigated. It was found that the fracture toughness G C decreased with decreasing joint thickness ( h Joint). In addition, the fracture toughness decreased with increasing strain rate. Aging also promoted alternation of the crack path between the two joint-substrate interfaces, possibly proffering a mechanism to enhance fracture toughness.

  7. Simulation of Grouting Process in Rock Masses Under a Dam Foundation Characterized by a 3D Fracture Network

    NASA Astrophysics Data System (ADS)

    Deng, Shaohui; Wang, Xiaoling; Yu, Jia; Zhang, Yichi; Liu, Zhen; Zhu, Yushan

    2018-06-01

    Grouting plays a crucial role in dam safety. Due to the concealment of grouting activities, complexity of fracture distribution in rock masses and rheological properties of cement grout, it is difficult to analyze the effects of grouting. In this paper, a computational fluid dynamics (CFD) simulation approach of dam foundation grouting based on a 3D fracture network model is proposed. In this approach, the 3D fracture network model, which is based on an improved bootstrap sampling method and established by VisualGeo software, can provide a reliable and accurate geometric model for CFD simulation of dam foundation grouting. Based on the model, a CFD simulation is performed, in which the Papanastasiou regularized model is used to express the grout rheological properties, and the volume of fluid technique is utilized to capture the grout fronts. Two sets of tests are performed to verify the effectiveness of the Papanastasiou regularized model. When applying the CFD simulation approach for dam foundation grouting, three technical issues can be solved: (1) collapsing potential of the fracture samples, (2) inconsistencies in the geometric model in actual fractures under complex geological conditions, and (3) inappropriate method of characterizing the rheological properties of cement grout. The applicability of the proposed approach is demonstrated by an illustrative case study—a hydropower station dam foundation in southwestern China.

  8. Impact geologists, beware!

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.

    2017-09-01

    Impact geologists have long assumed that shock metamorphic features, such as planar fractures and Planar Deformation Features (PDFs) in quartz are reliable indicators of an extraterrestrial impact. A new paper by Chen et al. (2017) now shows that such features might arise in terrestrial lightning strikes, thus raising the bar for identification of impact sites.

  9. Investigation of a fatigue failure in a stainless steel femoral plate.

    PubMed

    Marcomini, J B; Baptista, C A R P; Pascon, J P; Teixeira, R L; Reis, F P

    2014-10-01

    Surgical implants are exposed to severe working conditions and therefore a wide range of failure mechanisms may occur, including fatigue, corrosion, wear, fretting and combinations of them. The mechanical failures of metallic implants may also be influenced by several other factors, including the design, material, manufacturing, installation, postoperative complications and misuse. An 83-year-old patient suffered an oblique femoral shaft fracture due to a fall at home. A stainless steel locking compression plate (LCP) employed in the fracture reduction failed after four months and was sent back to the producer. A second LCP of the same type was implanted and also failed after six months. A failure analysis of the second femoral LCP is performed in this paper. The results demonstrate that poor material quality was decisive to the failure. The chemical analysis revealed a high P content in the steel, which is not in accordance to the standards. A combination of factors lead to LCP fracture and these include: brittle crack initiation due to phosphorus, segregation at grain boundaries, crack propagation due to cyclic loading and final fast fracture favored by the loss of ductility due to cold work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. [Pharmacologic treatment of osteoporosis--2011].

    PubMed

    Lakatos, Péter

    2011-08-14

    Osteoporosis affects approximately 9% of the population in Hungary resulting in about 100 000 osteoporotic fractures annually. Thirty-five percent of patients with hip fractures due to osteoporosis will die within 1 year. Direct costs of osteoporosis exceed 25 billion forints per year. Apparently, cost-effective reduction of bone loss and consequent fracture risk will add up to not only financial savings but improvement in quality of life, as well. A number of pharmacological modalities are available for this purpose. The mainstay of the treatment of osteoporosis is the bisphosphonate group that includes effective anti-resorptive compounds mitigating bone loss and fragility. The recently registered denosumab exhibits similar efficacy by neutralizing RANK ligand, however, marked differences can be observed between the two drug classes. Strontium has a unique mechanism of action by rebalancing bone turnover, and thus, providing an efficient treatment option for the not fast bone losers who are at high fracture risk. The purely anabolic teriparatide is available for the extremely severe osteoporotic patients and for those who do not respond to other types of therapy. Older treatment options such as hormone replacement therapy, raloxifene, tibolone or calcitonin may also have a restricted place in the management of osteoporosis.

  11. Slow and fast motion of cracks in inelastic solids. Part 1: Slow growth of cracks in a rate sensitive tresca solid. Part 2: Dynamic crack represented by the Dugdale model

    NASA Technical Reports Server (NTRS)

    Wnuk, M. P.; Sih, G. C.

    1972-01-01

    An extension is proposed of the classical theory of fracture to viscoelastic and elastic-plastic materials in which the plasticity effects are confined to a narrow band encompassing the crack front. It is suggested that the Griffith-Irwin criterion of fracture, which requires that the energy release rate computed for a given boundary value problem equals the critical threshold, ought to be replaced by a differential equation governing the slow growth of a crack prior to the onset of rapid propagation. A new term which enters the equation of motion in the dissipative media is proportional to the energy lost within the end sections of the crack, and thus reflects the extent of inelastic behavior of a solid. A concept of apparent surface energy is introduced to account for the geometry dependent and the rate dependent phenomena which influence toughness of an inelastic solid. Three hypotheses regarding the condition for fracture in the subcritical range of load are compared. These are: (1) constant fracture energy (Cherepanov), (2) constant opening displacement at instability (Morozov) and (3) final stretch criterion (Wnuk).

  12. Cognitive and Psychomotor Entrustable Professional Activities: Can Simulators Help Assess Competency in Trainees?

    PubMed

    Dwyer, Tim; Wadey, Veronica; Archibald, Douglas; Kraemer, William; Shantz, Jesse Slade; Townley, John; Ogilvie-Harris, Darrell; Petrera, Massimo; Ferguson, Peter; Nousiainen, Markku

    2016-04-01

    An entrustable professional activity describes a professional task that postgraduate residents must master during their training. The use of simulation to assess performance of entrustable professional activities requires further investigation. (1) Is simulation-based assessment of resident performance of entrustable professional activities reliable? (2) Is there evidence of important differences between Postgraduate Year (PGY)-1 and PGY-4 residents when performing simulated entrustable professional activities? Three entrustable professional activities were chosen from a list of competencies: management of the patient for total knee arthroplasty (TKA); management of the patient with an intertrochanteric hip fracture; and management of the patient with an ankle fracture. Each assessment of entrustable professional activity was 40 minutes long with three components: preoperative management of a patient (history-taking, examination, image interpretation); performance of a technical procedure on a sawbones model; and postoperative management of a patient (postoperative orders, management of complications). Residents were assessed by six faculty members who used checklists based on a modified Delphi technique, an overall global rating scale as well as a previously validated global rating scale for the technical procedure component of each activity. Nine PGY-1 and nine PGY-4 residents participated in our simulated assessment. We assessed reliability by calculating the internal consistency of the mean global rating for each activity as well as the interrater reliability between the faculty assessment and blinded review of videotaped encounters. We sought evidence of a difference in performance between PGY-1 and PGY-4 residents on the overall global rating scale for each station of each entrustable professional activity. The reliability (Cronbach's α) for the hip fracture activity was 0.88, it was 0.89 for the ankle fracture activity, and it was 0.84 for the TKA activity. A strong correlation was seen between blinded observer video review and faculty scores (mean 0.87 [0.07], p < 0.001). For the hip fracture entrustable professional activity, the PGY-4 group had a higher mean global rating scale than the PGY-1 group for preoperative management (3.56 [0.5] versus 2.33 [0.5], p < 0.001), postoperative management (3.67 [0.5] versus 2.22 [0.7], p < 0.001), and technical procedures (3.11 [0.3] versus 3.67 [0.5], p = 0.015). For the TKA activity, the PGY-4 group scored higher for postoperative management (3.5 [0.8] versus 2.67 [0.5], p = 0.016) and technical procedures (3.22 [0.9] versus 2.22 [0.9], p = 0.04) than the PGY-1 group, but no difference for preoperative management with the numbers available (PGY-4, 3.44 [0.7] versus PGY-1 2.89 [0.8], p = 0.14). For the ankle fracture activity, the PGY-4 group scored higher for postoperative management (3.22 [0.8] versus 2.33 [0.7], p = 0.18) and technical procedures (3.22 [1.2] versus 2.0 [0.7], p = 0.018) than the PGY-1 groups, but no difference for preoperative management with the numbers available (PGY-4, 3.22 [0.8] versus PGY-1, 2.78 [0.7], p = 0.23). The results of our study show that simulated assessment of entrustable professional activities may be used to determine the ability of a resident to perform professional tasks that are critical components of medical training. In this manner, educators can ensure that competent performance of these skills in the simulated setting occurs before actual practice with patients in the clinical setting.

  13. Reliability and Failure Modes of a Hybrid Ceramic Abutment Prototype.

    PubMed

    Silva, Nelson Rfa; Teixeira, Hellen S; Silveira, Lucas M; Bonfante, Estevam A; Coelho, Paulo G; Thompson, Van P

    2018-01-01

    A ceramic and metal abutment prototype was fatigue tested to determine the probability of survival at various loads. Lithium disilicate CAD-milled abutments (n = 24) were cemented to titanium sleeve inserts and then screw attached to titanium fixtures. The assembly was then embedded at a 30° angle in polymethylmethacrylate. Each (n = 24) was restored with a resin-cemented machined lithium disilicate all-ceramic central incisor crown. Single load (lingual-incisal contact) to failure was determined for three specimens. Fatigue testing (n = 21) was conducted employing the step-stress method with lingual mouth motion loading. Failures were recorded, and reliability calculations were performed using proprietary software. Probability Weibull curves were calculated with 90% confidence bounds. Fracture modes were classified with a stereomicroscope, and representative samples imaged with scanning electron microscopy. Fatigue results indicated that the limiting factor in the current design is the fatigue strength of the abutment screw, where screw fracture often leads to failure of the abutment metal sleeve and/or cracking in the implant fixture. Reliability for completion of a mission at 200 N load for 50K cycles was 0.38 (0.52% to 0.25 90% CI) and for 100K cycles was only 0.12 (0.26 to 0.05)-only 12% predicted to survive. These results are similar to those from previous studies on metal to metal abutment/fixture systems where screw failure is a limitation. No ceramic crown or ceramic abutment initiated fractures occurred, supporting the research hypothesis. The limiting factor in performance was the screw failure in the metal-to-metal connection between the prototyped abutment and the fixture, indicating that this configuration should function clinically with no abutment ceramic complications. The combined ceramic with titanium sleeve abutment prototype performance was limited by the fatigue degradation of the abutment screw. In fatigue, no ceramic crown or ceramic abutment components failed, supporting the research hypothesis with a reliability similar to that of all-metal abutment fixture systems. A lithium disilcate abutment with a Ti alloy sleeve in combination with an all-ceramic crown should be expected to function clinically in a satisfactory manner. © 2016 by the American College of Prosthodontists.

  14. FAST: a framework for simulation and analysis of large-scale protein-silicon biosensor circuits.

    PubMed

    Gu, Ming; Chakrabartty, Shantanu

    2013-08-01

    This paper presents a computer aided design (CAD) framework for verification and reliability analysis of protein-silicon hybrid circuits used in biosensors. It is envisioned that similar to integrated circuit (IC) CAD design tools, the proposed framework will be useful for system level optimization of biosensors and for discovery of new sensing modalities without resorting to laborious fabrication and experimental procedures. The framework referred to as FAST analyzes protein-based circuits by solving inverse problems involving stochastic functional elements that admit non-linear relationships between different circuit variables. In this regard, FAST uses a factor-graph netlist as a user interface and solving the inverse problem entails passing messages/signals between the internal nodes of the netlist. Stochastic analysis techniques like density evolution are used to understand the dynamics of the circuit and estimate the reliability of the solution. As an example, we present a complete design flow using FAST for synthesis, analysis and verification of our previously reported conductometric immunoassay that uses antibody-based circuits to implement forward error-correction (FEC).

  15. [Surgical treatment of inferior pole comminuted fractures of patella with new type tension band].

    PubMed

    Sun, B; Zhang, Z S; Zhou, F; Tian, Y; Ji, H Q; Guo, Y; Lv, Y; Yang, Z W

    2015-04-18

    To study the effectiveness of inferior pole fracture of patella treating by the new tension band. From Dec. 2011 to Dec. 2013, 21 patients with inferior pole fracture of patella were treated with the new tension band which consisted of cannulated screw, titanium cable and shims. There were 21 patients[10 males, 11 females, the average age was 54 years(21 to 79)],of whom,all were "fell on knees". The average operation time was 89 min (57-197 min),the follow-up visits were done from 7-31 months (average 18 months), the bone healing time was from 8-12 weeks (average 10.5 weeks). The post operation assessment was done by Bostman score, from 20-30 (average 27),10 excellent,and 11 good. No complication occurred. The new tension band is the effective treatment for inferior pole fracture of patella. The internal fixation is reliable, it is simple to operate, and patients can take exercises as early as possible. Therefore, the new tension band has a better clinical value.

  16. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.

    PubMed

    Cao, H

    1996-06-01

    An experimental procedure has been developed for rigorous characterization of the fracture resistance and fatigue crack extension in pyrolytic carbon for prosthetic heart valve application. Experiments were conducted under sustained and cyclic loading in a simulated biological environment using Carbomedics Pyrolite carbon. While the material was shown to have modest fracture toughness, it exhibited excellent resistance to subcritical crack growth. The crack growth kinetics in pyrolytic carbon were formulated using a phenomenological description. A fatigue threshold was observed below which the crack growth rate diminishes. A damage tolerance concept based on fracture mechanics was used to develop an engineering design approach for mechanical heart valve prostheses. In particular, a new quantity, referred to as the safe-life index, was introduced to assess the design adequacy against subcritical crack growth in brittle materials. In addition, a weakest-link statistical description of the fracture strength is provided and used in the design of component proof-tests. It is shown that the structural reliability of mechanical heart valves can be assured by combining effective flaw detection and manufacturing quality control with adequate damage tolerance design.

  17. Fracture and crack growth resistance studies of 304 stainless steel weldments relating to retesting of cryogenic vessels

    NASA Technical Reports Server (NTRS)

    Hall, L. R.; Finger, R. W.

    1972-01-01

    Fracture and crack growth resistance characteristics of 304 stainless steel alloy weldments as relating to retesting of cryogenic vessels were examined. Welding procedures were typical of those used in full scale vessel fabrication. Fracture resistance survey tests were conducted in room temperature air, liquid nitrogen and liquid hydrogen. In air, both surface-flawed and center-cracked panels containing cracks in weld metal, fusion line, heat-affected zone, or parent metal were tested. In liquid nitrogen and liquid hydrogen, tests were conducted using center-cracked panels containing weld centerline cracks. Load-unload, sustained load, and cyclic load tests were performed in air or hydrogen gas, liquid nitrogen, and liquid hydrogen using surface-flawed specimens containing weld centerline cracks. Results were used to evaluate the effectiveness of periodic proof overloads in assuring safe and reliable operation of over-the-road cryogenic dewars.

  18. Microstructure formation and fracturing characteristics of grey cast iron repaired using laser.

    PubMed

    Yi, Peng; Xu, Pengyun; Fan, Changfeng; Yang, Guanghui; Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased.

  19. Microstructure Formation and Fracturing Characteristics of Grey Cast Iron Repaired Using Laser

    PubMed Central

    Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased. PMID:25032230

  20. [Treatment of fractures of proximal phalanx of fingers by Eiffel Tower percutaneous pinning method. A review of 45 cases].

    PubMed

    Chbani, B; Amar, M F; Loudyi, D; Boutayeb, F

    2010-04-01

    The authors report in the treatment of fractures of the proximal phalanx of the fingers, the use of Eiffel Tower pinning, a relatively simple method, fast and stable, associated to a protection and early rehabilitation. The objective of this method is to offer to the patient a pollici-digital grip. Our study is a retrospective study of 45 patients treated for fractures of the proximal phalanx of the fingers by percutaneous pinning according to Eiffel Tower method. We detail this simple and economic technique and examine the functional and radiological results of this series of patients. The amplitude of the active total motion of the proximal interphalangeal joint is on average 94.16 degrees (78.5 % of the normal active mobility of the proximal interphalangeal joint), and the amplitude of the active total motion of the metacarpo-phalangeal joint is on average 90.05 degrees (75 % of the normal active mobility of the metacarpo-phalangeal joint). Copyright 2010 Elsevier Masson SAS. All rights reserved.

  1. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Franceschini, Andrea; Ferronato, Massimiliano; Janna, Carlo; Teatini, Pietro

    2016-06-01

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion according to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions.

  2. Mechanistic aspects of fracture and R-curve behavior in elk antler bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Launey, Maximilien E.; Chen, Po-Yu; McKittrick, Joanna

    Bone is an adaptative material that is designed for different functional requirements; indeed, bones have a variety of properties depending on their role in the body. To understand the mechanical response of bone requires the elucidation of its structure-function relationships. Here, we examine the fracture toughness of compact bone of elk antler which is an extremely fast growing primary bone designed for a totally different function than human (secondary) bone. We find that antler in the transverse (breaking) orientation is one of the toughest biological materials known. Its resistance to fracture is achieved during crack growth (extrinsically) by a combinationmore » of gross crack deflection/twisting and crack bridging via uncracked 'ligaments' in the crack wake, both mechanisms activated by microcracking primarily at lamellar boundaries. We present an assessment of the toughening mechanisms acting in antler as compared to human cortical bone, and identify an enhanced role of inelastic deformation in antler which further contributes to its (intrinsic) toughness.« less

  3. Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment

    PubMed Central

    Imai, Kazuhiro

    2015-01-01

    Finite element analysis (FEA) is a computer technique of structural stress analysis and developed in engineering mechanics. FEA has developed to investigate structural behavior of human bones over the past 40 years. When the faster computers have acquired, better FEA, using 3-dimensional computed tomography (CT) has been developed. This CT-based finite element analysis (CT/FEA) has provided clinicians with useful data. In this review, the mechanism of CT/FEA, validation studies of CT/FEA to evaluate accuracy and reliability in human bones, and clinical application studies to assess fracture risk and effects of osteoporosis medication are overviewed. PMID:26309819

  4. Damage Tolerance Assessment Branch

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2013-01-01

    The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.

  5. [Application of three-dimensional printing technology in treatment of internal or external ankle distal avulsed fracture].

    PubMed

    Shi, Weixiang; Luo, Xiaozhong; Wu, Gang; Ding, Yong; Zhou, Xin

    2018-02-01

    To explore the effectiveness and advantage of three-dimensional (3D) printing technology in treatment of internal or external ankle distal avulsed fracture. Between January 2015 and January 2017, 20 patients with distal avulsed fracture of internal or external ankle were treated with the 3D guidance of shape-blocking steel plate fixation (group A), and 18 patients were treated with traditional plaster external fixation (group B). There was no significant difference in gender, age, injury cause, disease duration, fracture side, and fracture type between 2 groups ( P >0.05). Recording the fracture healing rate, fracture healing time, the time of starting to ankle functional exercise, residual ankle pain, and evaluating ankle function recovery of both groups by the American Orthopaedic Foot and Ankle Society (AOFAS) score. All patients were followed up 8-24 months, with an average of 15.5 months. In group A: all incisions healed by first intention, the time of starting to ankle functional exercise was (14±3) days, fracture healing rate was 100%, and the fracture healing time was (10.15±2.00) weeks. At 6 months, the AOFAS score was 90.35±4.65. Among them, 13 patients were excellent and 7 patients were good. All patients had no post-operative incision infection, residual ankle pain, or dysfunction during the follow-up. In group B: the time of starting to ankle functional exercise was (40±10) days, the fracture healing rate was 94.44%, and the fracture healing time was (13.83±7.49) weeks. At 6 months, the AOFAS score was 79.28±34.28. Among them, 15 patients were good, 2 patients were medium, and 1 patient was poor. During the follow-up, 3 patients (16.67%) had pain of ankle joint with different degrees. There were significant differences in the postoperative fracture healing rate, fracture healing time, the time of starting to ankle functional exercise, and postoperative AOFAS score between 2 groups ( P <0.05). Application of 3D printing technology in treatment of internal or external ankle distal avulsed fracture is simple, safe, reliable, and effective. In particular, it is an ideal treatment for avulsed fracture.

  6. Comparison of the dynamic fatigue behavior of two monolithic SiC and an Al{sub 2}O{sub 3}/SiC composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breder, K.; Tennery, V.J.

    1994-09-01

    Two monolithic silicon carbides, NT230 siliconized SiC from Norton Saint Gobain and sintered {beta}-SiC from Coors, and a silicon carbide particulate reinforced alumina ceramic composite from Lanxide, which all are candidate materials for pressurized heat exchangers in coal-fired power plants have been evaluated. The fast fracture flexure strength was measured as a function of temperature. All candidate materials retained a sufficient strength level up to 1400C. The susceptibility to slow crack growth (SCG) was evaluated by the dynamic fatigue method at 1100C and 1400C. None of the materials exhibited SCG at 1100C. At 1400C the siliconized SiC ceramic showed limitedmore » SCG and the composite ceramic exhibited creep damage when stressed to 50% of fast fracture strength at the intermediate and slow stressing rates. This prevented the evaluation of the SCG properties of this material at 1400C. Fractography supported the mechanical observations and with the exception of the specimens which exhibited creep damage, only the siliconized SiC showed a small SCG damage zone at long times at 1400C.« less

  7. Implicit level set algorithms for modelling hydraulic fracture propagation.

    PubMed

    Peirce, A

    2016-10-13

    Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture 'tip screen-out'; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research. This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  8. Implicit level set algorithms for modelling hydraulic fracture propagation

    PubMed Central

    2016-01-01

    Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture ‘tip screen-out’; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research.  This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597787

  9. [Rib cage ostheosynthesis. Literature review and case reports].

    PubMed

    Jiménez-Quijano, Andrés; Varón-Cotés, Juan Carlos; García-Herreros-Hellal, Luis Gerardo; Espinosa-Moya, Beatriz; Rivero-Rapalino, Oscar; Salazar-Marulanda, Michelle

    2015-01-01

    Fractures of the chest wall include sternum and rib fractures. Traditionally they are managed conservatively due to the anatomy of the rib cage that allows most of them to remain stable and to form a callus that unites the fractured segments. In spite of this management, some patients present with chronic pain or instability of the wall which makes them require some type of fixation. The present article performs a literature review based on 4 cases. The first case was a 61 year-old man with blunt chest trauma, with a great deformity of the chest wall associated with subcutaneous emphysema, and pneumothorax. The second case was a 51 year-old man with blunt chest trauma, initially managed at another institution, who despite treatment, had persistent pain and dyspnoea. The third case was a 30 year-old man that suffered a motor vehicle accident, with resulting pain and crepitation of the rib cage and with diagnostic images showing multiple rib fractures. The last case is a 62 year-old man that fell down the stairs, with blunt chest trauma with high intensity pain, dyspnoea and basal ipsilateral hypoventilation. Rib fracture fixation offers a good alternative in selected patients to decrease associated morbidity, leading to a patient's fast return to his or her working life. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  10. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate

    PubMed Central

    GOMES, Rafael Soares; de SOUZA, Caroline Mathias Carvalho; BERGAMO, Edmara Tatiely Pedroso; BORDIN, Dimorvan; DEL BEL CURY, Altair Antoninha

    2017-01-01

    Abstract Zirconia-reinforced lithium silicate (ZLS) is a ceramic that promises to have better mechanical properties than other materials with the same indications as well as improved adaptation and fracture strength. Objective In this study, marginal and internal misfit and fracture load with and without thermal-mechanical aging (TMA) of monolithic ZLS and lithium disilicate (LDS) crowns were evaluated. Material and methods Crowns were milled using a computer-aided design/computer-aided manufacturing system. Marginal gaps (MGs), absolute marginal discrepancy (AMD), axial gaps, and occlusal gaps were measured by X-ray microtomography (n=8). For fracture load testing, crowns were cemented in a universal abutment, and divided into four groups: ZLS without TMA, ZLS with TMA, LDS without TMA, and LDS with TMA (n=10). TMA groups were subjected to 10,000 thermal cycles (5-55°C) and 1,000,000 mechanical cycles (200 N, 3.8 Hz). All groups were subjected to compressive strength testing in a universal testing machine at a crosshead speed of 1 mm/min until failure. Student’s t-test was used to examine misfit, two-way analysis of variance was used to analyze fracture load, and Pearson’s correlation coefficients for misfit and fracture load were calculated (α=0.05). The materials were analyzed according to Weibull distribution, with 95% confidence intervals. Results Average MG (p<0.001) and AMD (p=0.003) values were greater in ZLS than in LDS crowns. TMA did not affect the fracture load of either material. However, fracture loads of ZLS crowns were lower than those of LDS crowns (p<0.001). Fracture load was moderately correlated with MG (r=-0.553) and AMD (r=-0.497). ZLS with TMA was least reliable, according to Weibull probability. Conclusion Within the limitations of this study, ZLS crowns had lower fracture load values and greater marginal misfit than did LDS crowns, although these values were within acceptable limits. PMID:28678947

  11. Serial Versus Direct Dilation of Small Diameter Stents Results in a More Predictable and Complete Intentional Transcatheter Stent Fracture: A PICES Bench Testing Study.

    PubMed

    Crystal, Matthew A; Morgan, Gareth J; Danon, Saar; Gray, Robert G; Gruenstein, Daniel H; Gordon, Brent M; Goldstein, Bryan H

    2018-01-01

    Balloon-expandable stents, implanted in infants and children with congenital heart disease (CHD), often require redilation to match somatic growth. Small diameter stents may eventually require longitudinal surgical transection to prevent iatrogenic vascular stenosis. Intentional transcatheter stent fracture (TSF) is an emerging alternative approach to stent transection, but little is known about the optimal stent substrate and best protocol to improve the likelihood of successful TSF. Bench testing was performed with a stent dilation protocol. After recording baseline characteristics, stents were serially or directly dilated using ultra-high-pressure balloons (UHPB) until fracture occurred or further stent dilation was not possible. Stent characteristics recorded were as follows: cell design, metallurgy, mechanism, and uniformity of fracture. Stents tested included bare-metal coronary stents, premounted small diameter stents, and ePTFE-covered small diameter premounted stents. Ninety-four stents representing 9 distinct models were maximally dilated, with 80 (85%) demonstrating evidence of fracture. Comprehensive fracture details were recorded in 64 stents: linear and complete in 34/64 stents (53.1%), linear and incomplete in 9/64 stents (14.1%), transverse/complex and complete in 6/64 stents (9.4%), and transverse/complex and incomplete in 15/64 stents (23.4%). Stent fracture was not accomplished in some stent models secondary to significant shortening, i.e., "napkin-ring" formation. Serial dilation resulted in evidence of fracture in 62/67 (92.5%) stents compared with 18/27 (66.7%) stents in the direct dilation group (p = 0.003). Intentional TSF is feasible in an ex vivo model. Serial dilation more reliably expanded the stent and allowed for ultimate stent fracture, whereas direct large diameter dilation of stents was more likely to generate a "napkin-ring" configuration, which may be more resistant to fracture. In vivo animal and human testing is necessary to better understand the response to attempted TSF for newly developed stents as well as those currently in use.

  12. Dynamic locked plating for fixation of distal femur fractures using near- cortical over-drilling: Preliminary results of a prospective observational study.

    PubMed

    Galal, Sherif

    2017-01-01

    Nonunion after locked plating of distal femur fractures is not uncommon. Authors wanted to assess if "Dynamic" locked plating using near-cortex over-Drilling technique would provide a mechanical environment the promotes callus formation, thereby avoiding non-union encountered when applying locked plates with the conventional method. This study was conducted at an academic Level 1 Trauma Center. This is a prospective study conducted from November 2015 to November 2016. Follow-up was 10 months on average (ranging from 8 to 12 months). The study included 20 patients with 20 fractures (13 males, 7 females). The average patients' age was 41.2 years (18-64 years). According to the Müller AO classification of distal femur fractures (33A-C) there were 15 cases with extra-articular fractures (AO 33A), 5 patients with intra-articular fractures (AO 33C). Dynamic Locked plating using near-cortical over-drilling technique was done for all patients. Two blinded observers assessed callus score on 6-week radiographs using a 4-point ordinal scale. A 2-tailed t -test. Two-way mixed intra-class correlation testing was performed to determine reliability of the callus measurements by the 2 observers. All patients achieved union, time to union was 13.4 weeks on average (range form 8-24 weeks). Delayed union was observed in 2 patients. The average callus score for fractures was 1.8 (SD 0.6). All fractures united in alignment except 1 fracture which united in valgus malalignment, the deformity was appreciated in the postoperative radiographs. No wound related complications, no loss of reduction, no catastrophic implant failure or screw breakage were detected. Dynamic locked plating using near-cortex over-drilling is a simple technique that uses standard locked plates that promotes callus formation when used for fixing distal femur fractures.

  13. The Relationship Between Fractures and DXA Measures of BMD in the Distal Femur of Children and Adolescents With Cerebral Palsy or Muscular Dystrophy

    PubMed Central

    Henderson, Richard C; Berglund, Lisa M; May, Ryan; Zemel, Babette S; Grossberg, Richard I; Johnson, Julie; Plotkin, Horacio; Stevenson, Richard D; Szalay, Elizabeth; Wong, Brenda; Kecskemethy, Heidi H; Harcke, H Theodore

    2010-01-01

    Children with limited or no ability to ambulate frequently sustain fragility fractures. Joint contractures, scoliosis, hip dysplasia, and metallic implants often prevent reliable measures of bone mineral density (BMD) in the proximal femur and lumbar spine, where BMD is commonly measured. Further, the relevance of lumbar spine BMD to fracture risk in this population is questionable. In an effort to obtain bone density measures that are both technically feasible and clinically relevant, a technique was developed involving dual-energy X-ray absorptiometry (DXA) measures of the distal femur projected in the lateral plane. The purpose of this study is to test the hypothesis that these new measures of BMD correlate with fractures in children with limited or no ability to ambulate. The relationship between distal femur BMD Z-scores and fracture history was assessed in a cross-sectional study of 619 children aged 6 to 18 years with muscular dystrophy or moderate to severe cerebral palsy compiled from eight centers. There was a strong correlation between fracture history and BMD Z-scores in the distal femur; 35% to 42% of those with BMD Z-scores less than −5 had fractured compared with 13% to 15% of those with BMD Z-scores greater than −1. Risk ratios were 1.06 to 1.15 (95% confidence interval 1.04–1.22), meaning a 6% to 15% increased risk of fracture with each 1.0 decrease in BMD Z-score. In clinical practice, DXA measure of BMD in the distal femur is the technique of choice for the assessment of children with impaired mobility. © 2010 American Society for Bone and Mineral Research PMID:19821773

  14. Analysis of factors associated with cracked teeth.

    PubMed

    Seo, Deog-Gyu; Yi, Young-Ah; Shin, Su-Jung; Park, Jeong-Won

    2012-03-01

    The purpose of this study was to analyze the characteristics, distribution, and associated factors of longitudinal fractured teeth according to the well-defined criteria of the American Association of Endodontists (AAE). One hundred seven teeth with longitudinal fracture from 103 patients were diagnosed and analyzed. The patients' signs, symptoms, age, and sex were noted as well as the tooth number, dental arch, filling materials, size/classification of restoration, crack direction, pulp vitality, whether the patient had undergone endodontic treatment, bite test results, percussion test results, wear facet, and periodontal pocket depth. Eighty-seven teeth were diagnosed with a cracked tooth (81.3%), 14 were diagnosed with vertical root fracture (VRF, 13.1%), 4 had a split tooth (3.7%), and 2 had a fractured cusp (1.9%); 82.2% showed a sensitive reaction on the bite test. Longitudinal tooth fractures were observed most frequently in patient in their 40s. The upper first molar (28.0%) was most frequently cracked, followed by the lower first molar (25.2%), the lower second molar (20.6%), and the upper second molar (16.8%). Most longitudinal tooth fractures (72.0%) occurred mainly in restored teeth, whereas only 28.0% were found in intact teeth. Compared with resin (4.7%) or porcelain (0.9%), the use of nonbonded inlay restoration materials such as gold (20.5%) or amalgam (18.7%) increased the occurrence of longitudinal tooth fractures. Out of 107 of longitudinal fractured teeth, 33 (30.8%) were treated endodontically and 74 (69.2%) were not. VRF was associated with endodontic treatment. The bite test is most reliable for reproducing symptoms. The combined use of various examination methods is recommended for detecting cracks and minutely inspecting all directions of a tooth. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. The First AO Classification System for Fractures of the Craniomaxillofacial Skeleton: Rationale, Methodological Background, Developmental Process, and Objectives

    PubMed Central

    Audigé, Laurent; Cornelius, Carl-Peter; Ieva, Antonio Di; Prein, Joachim

    2014-01-01

    Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal. PMID:25489387

  16. Integrated In Situ Stress Estimation by Hydraulic Fracturing, Borehole Observations and Numerical Analysis at the EXP-1 Borehole in Pohang, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Hanna; Xie, Linmao; Min, Ki-Bok; Bae, Seongho; Stephansson, Ove

    2017-12-01

    It is desirable to combine the stress measurement data produced by different methods to obtain a more reliable estimation of in situ stress. We present a regional case study of integrated in situ stress estimation by hydraulic fracturing, observations of borehole breakouts and drilling-induced fractures, and numerical modeling of a 1 km-deep borehole (EXP-1) in Pohang, South Korea. Prior to measuring the stress, World Stress Map (WSM) and modern field data in the Korean Peninsula are used to construct a best estimate stress model in this area. Then, new stress data from hydraulic fracturing and borehole observations is added to determine magnitude and orientation of horizontal stresses. Minimum horizontal principal stress is estimated from the shut-in pressure of the hydraulic fracturing measurement at a depth of about 700 m. The horizontal stress ratios ( S Hmax/ S hmin) derived from hydraulic fracturing, borehole breakout, and drilling-induced fractures are 1.4, 1.2, and 1.1-1.4, respectively, and the average orientations of the maximum horizontal stresses derived by field methods are N138°E, N122°E, and N136°E, respectively. The results of hydraulic fracturing and borehole observations are integrated with a result of numerical modeling to produce a final rock stress model. The results of the integration give in situ stress ratios of 1.3/1.0/0.8 ( S Hmax/ S V/ S hmin) with an average azimuth of S Hmax in the orientation range of N130°E-N136°E. It is found that the orientation of S Hmax is deviated by more than 40° clockwise compared to directions reported for the WSM in southeastern Korean peninsula.

  17. Using borehole flow logging to optimize hydraulic-test procedures in heterogeneous fractured aquifers

    USGS Publications Warehouse

    Paillet, F.L.

    1995-01-01

    Hydraulic properties of heterogeneous fractured aquifers are difficult to characterize, and such characterization usually requires equipment-intensive and time-consuming applications of hydraulic testing in situ. Conventional coring and geophysical logging techniques provide useful and reliable information on the distribution of bedding planes, fractures and solution openings along boreholes, but it is often unclear how these locally permeable features are organized into larger-scale zones of hydraulic conductivity. New boreholes flow-logging equipment provides techniques designed to identify hydraulically active fractures intersecting boreholes, and to indicate how these fractures might be connected to larger-scale flow paths in the surrounding aquifer. Potential complications in interpreting flowmeter logs include: 1) Ambient hydraulic conditions that mask the detection of hydraulically active fractures; 2) Inability to maintain quasi-steady drawdowns during aquifer tests, which causes temporal variations in flow intensity to be confused with inflows during pumping; and 3) Effects of uncontrolled background variations in hydraulic head, which also complicate the interpretation of inflows during aquifer tests. Application of these techniques is illustrated by the analysis of cross-borehole flowmeter data from an array of four bedrock boreholes in granitic schist at the Mirror Lake, New Hampshire, research site. Only two days of field operations were required to unambiguously identify the few fractures or fracture zones that contribute most inflow to boreholes in the CO borehole array during pumping. Such information was critical in the interpretation of water-quality data. This information also permitted the setting of the available string of two packers in each borehole so as to return the aquifer as close to pre-drilling conditions as possible with the available equipment.

  18. [Medial versus lateral plating in distal tibial fractures: a prospective study of 40 fractures].

    PubMed

    Encinas-Ullán, C A; Fernandez-Fernandez, R; Rubio-Suárez, J C; Gil-Garay, E

    2013-01-01

    Tibial plafond fractures are one of the most challenging injuries in orthopaedic surgery. Their results could be improved by following the new guidelines for the management, and modern plating techniques. The results and complication rate between anteromedial and anterolateral approach for open reduction and internal fixation of these fractures were compared. A study was conducted on 40 patients treated by open reduction an internal fixation between 2007 and 2008. The surgical approach was selected by the surgeon in charge, depending on fracture pattern and skin situation. Patients were evaluated clinically and radiographically by an independent orthopaedic surgeon, not involved in the surgical procedure, using clinical (American Orthopaedic Foot and Ankle Society score) and radiological criteria at a minimum of two years. The appearance of complications after both approaches was recorded. Forty patients were included. The mean age was 53 years, with 24 males and 16 females. Seventeen of the injuries were of high energy, and there were 8 open fractures (3 of type i, 4 type ii and one type iii), and 12 of the closed injuries were grade ii or iii in the Tscherne classification. Six patients (15%) had associated injuries. At final follow-up there were 33 (82%) excellent or good results. No statistical differences were found between either surgical approach regarding time to bone union, rate of delayed union and infection rate. Three plates of the anteromedial group and none of the anterolateral group needed to be removed. Open reduction and internal fixation of distal tibia fractures produced reliable results, with no statistical differences found between anteromedial and anterolateral surgical approaches. Clinical and radiological results and complication rate were mainly related to the fracture type. Copyright © 2012 SECOT. Published by Elsevier Espana. All rights reserved.

  19. The First AO Classification System for Fractures of the Craniomaxillofacial Skeleton: Rationale, Methodological Background, Developmental Process, and Objectives.

    PubMed

    Audigé, Laurent; Cornelius, Carl-Peter; Di Ieva, Antonio; Prein, Joachim

    2014-12-01

    Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal.

  20. [ANALYSIS OF CLINICAL EFFECT IN SURGICAL TREATMENT OF Maisonneuve FRACTURE].

    PubMed

    Zhang, Zhiwen; Cai, Xianhua; Wei, Shijun; Liu, Ximing

    2015-03-01

    To investigate the operative method and short-term effectiveness in the surgical treatment of Maisonneuve fracture. Between January 2010 and February 2013, 23 patients with Maisonneuve fracture were treated. There were 14 males and 9 females with an average age of 40.3 years (range, 30-68 years). The causes of injuries were falling injury in 11 patients, sports related injury in 5 patients, traffic accident injury in 4 patients, and falling injury from height in 3 patients. The interval between injury and operation was 7-10 days (mean, 8.5 days). All of fractures were closed. Three patients had combined injury of deltoid ligament. The surgical procedures included surgical reduction and fixation of medial malleolus fracture and posterior malleolus fracture, repair of the deltoid ligament with ground anchor suture, and fixation of the disrupted distal tibiofibular syndesmosis. All incisions achieved primary healing, no postoperative complications such as infection occurred. Twenty-one patients were followed up 24-36 months (mean, 26.5 months). No patients complained of pain, tenderness, and obvious swelling of the ankle. At 3-6 months (mean, 4.6 months) after operation, X-ray films showed bony union of fractures and normal mortises in 21 patients. And no traumatic arthritis was observed with reliable fixation. The range of motion of ankle dorsi flexion and plantar flexion was 30-40 degrees) (mean, 34.5 degrees) Baird-Jackson anide functional score was 85-100 (mean, 94); 16 cases were rated as excellent, 4 as good, and 1 as fair with an excellent and good rate of 95.2%. Surgical treatments of Maisonneuve fracture include surgical reduction and fixation of the medial malleolus and posterior malleolus, repair of the deltoid ligament and fixation of the disrupted distal tibiofibular syndesmosis, and good effectiveness can be achieved.

  1. Spatial Brain Control Interface using Optical and Electrophysiological Measures

    DTIC Science & Technology

    2013-08-27

    appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 27-08-2013 13...Machine (LSVM) was the most appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method was applied to the imaging data...local field potentials proved to be fast and strongly tuned for the spatial parameters of the task. Thus, a reliable BCI that can predict upcoming

  2. A linearized microstructural model for hydraulic conductivity evolution due to brittle damage: application to Hydraulic Fracturing treatments

    NASA Astrophysics Data System (ADS)

    Caramiello, G.; Montanino, A.; Della Vecchia, G., Sr.; Pandolfi, A., Sr.

    2017-12-01

    Among the features of geological structures, fractures and discontinuities play a dominant role, due to their significant influence on both the hydraulic and the mechanical behavior of the rock mass. Despite the current availability of fault and fracture mappings, the understanding of the influence of faults on fluid flow is nowadays not satisfactory, in particular when hydro-mechanical coupling is significant. In engineering technology fracture processes are often exploited. Hydraulic fracturing is one of the most important example. Hydraulic fracturing is a process characterized by the inception and propagation of fractures as a consequence of a hydraulic driven solicitation and it is used to improve the production and optimize well stimulation in low permeability reservoirs. Due to the coupling of several different phenomena (hydro-thermo-chemical coupling) there is not a reliable complete mathematical model able to simulate in a proper way the process. To design hydraulic fracturing treatments, it is necessary to predict the growth of fracture geometry as a function of treatment parameters. In this contribution we present a recently developed model of brittle damage of confined rock masses, with particular emphasis on the influence of mechanical damage on the evolution of porosity and permeability. The model is based on an explicit micromechanical construction of connected patterns of parallel equi-spaced cracks. A relevant feature of the model is that the fracture patterns are not arbitrary, but their inception, orientation and spacing follow from energetic consideration. The model, based on the Terzaghi effective stress concepts, has been then implemented into a coupled hydro-mechanical finite element code, where the linear momentum and the fluid mass balance equations are numerically solved via a staggered approach. The coupled code is used to simulate fracturing processes induced by an increase in pore pressure. The examples show the capability of the model in reproducing three-dimensional multiscale complex fracture patterns and permeability enhancement in the damaged porous medium. The numerical code, has been used to verify the influence of the distance between the different perforation slots as well of the wellbore-deviation from the minimum stress axis on the propagation of multiple.

  3. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotte, F.P.; Doughty, C.; Birkholzer, J.

    2010-11-01

    The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computationmore » of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.« less

  4. Laboratory imaging of hydraulic fractures using microseismicity

    NASA Astrophysics Data System (ADS)

    Zeng, Zhengwen

    2002-09-01

    This dissertation starts with an investigation of the industry's needs for future research and development of hydraulic fracturing (HF) technology. Based on the investigation results of a questionnaire answered by some industrial experts, it was found that reliable hydraulic fracturing diagnostic techniques are in need. Further critical review showed that the microseismic method was one of the most promising techniques that needed further development. Developing robust algorithms and software for locating the coordinates of hydraulic fracturing-induced microseismic events, and for simulating the first motion of the induced waveforms were central tasks for this research. In addition, initiation and propagation characteristics of asymmetrical hydraulic fractures were investigated; a recent discovered tight gas sandstone was systematically characterized; a method for measuring Mode-I fracture toughness was upgraded; and the packer influence on the initiation of asymmetrical fractures was numerically simulated. By completing this research, the following contributions have been made: (1) Development of a simplex-based microseismic LOCATION program. This program overcame the shortcoming of ill-conditioning-prone conditions encountered in conventional location programs. (2) Development of a variance-based computer program, ArrTime, to automatically search the first arrival times from the full waveform data points. (3) Development of the first motion simulator of the induced microseismic waveforms. Using this program, the first motion waveform amplitude in any direction at any location induced from seismic sources at an arbitrary location in a known fracturing mode can be calculated. (4) Complete characterization of a newly discovered tight gas formation, the Jackfork sandstone. (5) Upgrade of a core sample-based method for the measurement of fracture toughness. Mode-I fracture toughness of common core samples in any direction can be measured using this method. (6) Discern of the packer influence on HF initiation. It is numerically shown that a properly functioning packer would transfer tensile stress concentrations from the sealed ends to the borehole wall in the maximum principal stress direction. In contrast, a malfunctioning packer would induce tensile stress concentrations at the sealed ends that, in turn, induces transverse fractures. (7) Image of dynamics of the asymmetrical hydraulic fracture initiation and propagation.

  5. A review of failure models for unidirectional ceramic matrix composites under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  6. A new technique in the surgical treatment of Hangman's fractures: Neurospinal Academy (NSA) technique

    PubMed Central

    Dalbayrak, Sedat; Yaman, Onur; Yılmaz, Mesut

    2013-01-01

    Context: Treatment of Hangman's fractures is still controversial. Hangman's fractures Type II and IIA are usually treated with surgical procedures. Aim: This study aims at describing the Neurospinal Academy (NSA) technique as an attempt to achieve an approximation of the fracture line to the axis body, which may be used for Type II and IIA patients with severe displacement and angulation. Settings and Design: NSA technique both pars or pedicle screws are placed bicortically to ensure that anterior surface of C2 vertebral body will be crossed 1-2 mm. A rod is prepared in suitable length and curve to connect the two screws. For placing the rod, sufficient amount of bone is resected from the C2 spinous process. C2 vertebral body is pulled back by means of the screws that crossed the anterior surface of C2 vertebral body. Materials and Methods: Hangman II and IIA patient are treated with NSA technique. Result: Angulated and tilted C2 vertebral body was pulled back and approximated to posterior elements. Conclusions: In Hangman's fractures Type II and IIA with severe vertebral body and pedicle displacement, NSA technique is an effective and reliable treatment alternative for the approximation of posterior elements to the C2 vertebral body, which is tilted, angulated, and dislocated. PMID:24744563

  7. A new technique in the surgical treatment of Hangman's fractures: Neurospinal Academy (NSA) technique.

    PubMed

    Dalbayrak, Sedat; Yaman, Onur; Yılmaz, Mesut

    2013-07-01

    Treatment of Hangman's fractures is still controversial. Hangman's fractures Type II and IIA are usually treated with surgical procedures. This study aims at describing the Neurospinal Academy (NSA) technique as an attempt to achieve an approximation of the fracture line to the axis body, which may be used for Type II and IIA patients with severe displacement and angulation. NSA technique both pars or pedicle screws are placed bicortically to ensure that anterior surface of C2 vertebral body will be crossed 1-2 mm. A rod is prepared in suitable length and curve to connect the two screws. For placing the rod, sufficient amount of bone is resected from the C2 spinous process. C2 vertebral body is pulled back by means of the screws that crossed the anterior surface of C2 vertebral body. Hangman II and IIA patient are treated with NSA technique. Angulated and tilted C2 vertebral body was pulled back and approximated to posterior elements. In Hangman's fractures Type II and IIA with severe vertebral body and pedicle displacement, NSA technique is an effective and reliable treatment alternative for the approximation of posterior elements to the C2 vertebral body, which is tilted, angulated, and dislocated.

  8. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  9. The Distal Humerus Axial View: Assessment of Displacement in Medial Epicondyle Fractures.

    PubMed

    Souder, Christopher D; Farnsworth, Christine L; McNeil, Natalie P; Bomar, James D; Edmonds, Eric W

    2015-01-01

    The assessment and treatment of childhood medial epicondyle humerus fractures continues to be associated with significant debate. Several studies demonstrate that standard radiographic views are unable to accurately portray the true displacement. Without reliable ways to assess the amount of displacement, how can we debate treatment and outcomes? This study introduces a novel imaging technique for the evaluation of medial epicondyle fractures. An osteotomy of a cadaveric humerus was performed to simulate a medial epicondyle fracture. Plain radiographs were obtained with the fracture fragment displaced anteriorly in 2-mm increments between 0 and 18 mm. Anteroposterior (AP), internal oblique (IR), lateral (LAT), and distal humerus axial (AXIAL) views were performed. Axial images were obtained by positioning the central ray above the shoulder at 15 to 20 degrees from the long axis of the humerus, centered on the distal humerus. Displacement (mm) was measured by 7 orthopaedic surgeons on digital radiographs. At 10 mm displacement, AP views underestimated displacement by 5.5±0.6 mm and IR views underestimated by 3.8±2.1 mm. On LAT views, readers were not able to visualize fragments with <10 mm displacement. Displacement ≥10 mm from LAT views was overestimated by 1 reader by up to 4.6 mm and underestimated by others by up to 18.0 mm. AXIAL images more closely estimated the true amount of displacement, with a mean 1.5±1.1 mm error in measurement for <10 mm displacement and a mean 0.8±0.7 mm error for displacements of ≥10 mm. AXIAL measurements correlated strongly with the actual displacement (r=0.998, P<0.05); AP measurements did not (r=0.655, P=0.55). Intraclass correlation coefficient (ICC) was 0.257 for AP and IR measurements; ICC was 0.974 for AXIAL measurements. Standard imaging, consisting of AP, IR, and LAT radiographs, consistently underestimates the actual displacement of medial epicondyle humerus fractures. The newly described AXIAL projection more accurately and reliably demonstrated the true displacement while reducing the need for advanced imaging such as computed tomography. This simple view can be easily obtained at a clinic visit, enhancing the surgeon's ability to determine the true displacement.

  10. Facial nerve stimulation associated with cochlear implant use following temporal bone fractures.

    PubMed

    Espahbodi, Mana; Sweeney, Alex D; Lennon, Kristen J; Wanna, George B

    2015-01-01

    To describe the incidence and management of patients with facial nerve stimulation (FNS) associated with cochlear implant (CI) use in the setting of a prior temporal bone fracture. One adult CI recipient is reported who experienced implant associated FNS with a history of a temporal bone fracture. Additionally, a literature search was performed to identify similar patients from previous descriptions of CI related FNS. Presence of FNS after implantation and ability to modify implant programming to avoid FNS. The patient in the present report experienced FNS for middle and basal electrodes during intraoperative neural response telemetry (NRT) in the absence of any surgical exposure or manipulation of the facial nerve. FNS was absent during device activation, but it recurred during follow-up programming sessions. However, additional programming has prevented further FNS during regular implant use. Four other patients with FNS after temporal bone fracture were identified from the literature, and the present case represents the one of two cases in which reprogramming allowed for implant use without FNS. CI associated FNS is uncommon in patients with a history of a temporal bone fracture, but it is likely that fracture lines provide a lower impedance pathway to the adjacent facial nerve and thus reduce the threshold for FNS. The present report suggests that, in the setting of a prior temporal bone fracture, NRT is not always a reliable predictor of FNS during implant use, and programming changes can help to mitigate FNS when it occurs. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Comparing diagnostic accuracy of bedside ultrasound and radiography for bone fracture screening in multiple trauma patients at the ED.

    PubMed

    Bolandparvaz, Shahram; Moharamzadeh, Payman; Jamali, Kazem; Pouraghaei, Mahboob; Fadaie, Maryam; Sefidbakht, Sepideh; Shahsavari, Kavous

    2013-11-01

    Long bone fractures are currently diagnosed using radiography, but radiography has some disadvantages (radiation and being time consuming). The present study compared the diagnostic accuracy of bedside ultrasound and radiography in multiple trauma patients at the emergency department (ED). The study assessed 80 injured patients with multiple trauma from February 2011 to July 2012. The patients were older than 18 years and triaged to the cardiopulmonary resuscitation ward of the ED. Bedside ultrasound and radiography were conducted for them. The findings were separately and blindly assessed by 2 radiologists. Sensitivity, specificity, the positive and negative predictive value, and κ coefficient were measured to assess the accuracy and validity of ultrasound as compared with radiography. The sensitivity of ultrasound for diagnosis of limb bone fractures was not high enough and ranged between 55% and 75% depending on the fracture site. The specificity of this diagnostic method had an acceptable range of 62% to 84%. Ultrasound negative prediction value was higher than other indices under study and ranged between 73% and 83%, but its positive prediction value varied between 33.3% and 71%. The κ coefficient for diagnosis of long bone fractures of upper limb (κ = 0.58) and upper limb joints (κ = 0.47) and long bones of lower limb (κ = 0.52) was within the medium range. However, the value for diagnosing fractures of lower limb joints (κ = 0.47) was relatively low. Bedside ultrasound is not a reliable method for diagnosing fractures of upper and lower limb bones compared with radiography. © 2013 Elsevier Inc. All rights reserved.

  12. Repairing Fractured Bones by Use of Bioabsorbable Composites

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    2006-01-01

    A proposed method of surgical repair of fractured bones would incorporate recent and future advances in the art of composite materials. The composite materials used in this method would be biocompatible and at least partly bioabsorbable: that is, during the healing process following surgery, they would be wholly or at least partly absorbed into the bones and other tissues in which they were implanted. Relative to the traditional method, the proposed method would involve less surgery, pose less of a risk of infection, provide for better transfer of loads across fracture sites, and thereby promote better healing while reducing the need for immobilization by casts and other external devices. One requirement that both the traditional and proposed methods must satisfy is to fix the multiple segments of a broken bone in the correct relative positions. Mechanical fixing techniques used in the traditional method include the use of plates spanning the fracture site and secured to the bone by screws, serving of wire along the bone across the fracture site, insertion of metallic intramedullary rods through the hollow portion of the fractured bone, and/or inserting transverse rods through the bone, muscle, and skin to stabilize the fractured members. After the bone heals, a second surgical operation is needed to remove the mechanical fixture(s). In the proposed method, there would be no need for a second surgical operation. The proposed method is based partly on the observation that in the fabrication of a structural member, it is generally more efficient and reliable to use multiple small fasteners to transfer load across a joint than to use a single or smaller number of larger fasteners, provided that the stress fields of neighboring small fasteners do not overlap or interact. Also, multiple smaller fasteners are more reliable than are larger and fewer fasteners. However, there is a trade-off between structural efficiency and the cost of insertion time and materials. The proposed method is further based partly on the conjecture that through-the-thickness reinforcements could be excellent for fixing bone segments for surgical repair. The through-the-thickness reinforcements would superficially resemble nails in both form and function. Denoted small-diameter rods (SDRs) to distinguish them from other narrow rods, these reinforcements would be shot or otherwise inserted through adjacent segments of fractured bone to fix them in their correct relative positions (see figure). Shot insertion would be effected by use an applicator that would amount to a miniaturized and highly refined version of the pneumatic guns often used in carpentry to drive nails and brads. The applicator, envisioned to be about the size of a ball-point-pen, would be driven by pressurized carbon dioxide. To further promote stabilization of the segments, layers of bone glue could be applied to the fracture surfaces prior to insertion of the SDRs. The bone glue could be therapeutically loaded with chemicals to promote growth of bone and fight infection

  13. Low‐Level Cadmium Exposure Is Associated With Decreased Bone Mineral Density and Increased Risk of Incident Fractures in Elderly Men: The MrOS Sweden Study

    PubMed Central

    Barregard, Lars; Sallsten, Gerd; Lundh, Thomas; Karlsson, Magnus K; Lorentzon, Mattias; Ohlsson, Claes; Mellström, Dan

    2015-01-01

    ABSTRACT One risk factor for osteoporosis that has attracted increasing attention in recent years is exposure to cadmium. The aim of this study was to examine the associations between low‐level cadmium exposure, from diet and smoking, and bone mineral density (BMD) and incident fractures in elderly men. The study population consisted of 936 men from the Swedish cohort of the Osteoporotic Fractures in Men (MrOS) study, aged 70 to 81 years at inclusion (years 2002 to 2004), with reliable data on cadmium in urine (U‐Cd) analyzed using inductively coupled plasma mass spectrometry in baseline samples. The participants also answered a questionnaire on lifestyle factors and medical history. BMD was measured at baseline using dual‐energy X‐ray absorptiometry (DXA) in the total body, hip, and lumbar spine. During the follow‐up period (until 2013), all new fractures were registered by date and type. Associations between BMD and U‐Cd were assessed using multiple linear regression, and associations between incident fractures and baseline U‐Cd were analyzed using Cox regression. In both cases, a number of potential confounders and other risk factors (eg, age, smoking, body mass index [BMI], and physical activity) were included in the models. We found significant negative associations between U‐Cd and BMD, with lower BMD (4% to 8%) for all sites in the fourth quartile of U‐Cd, using the first quartile as the reference. In addition, we found positive associations between U‐Cd and incident fractures, especially nonvertebral osteoporosis fractures in the fourth quartile of U‐Cd, with hazard ratios of 1.8 to 3.3 in the various models. U‐Cd as a continuous variable was significantly associated with nonvertebral osteoporosis fractures (adjusted hazard ratio 1.3 to 1.4 per μg Cd/g creatinine), also in never‐smokers, but not with the other fracture groups (all fractures, hip fractures, vertebral fractures, and other fractures). Our results indicate that even relatively low cadmium exposure through diet and smoking increases the risk of low BMD and osteoporosis‐related fractures in elderly men. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR). PMID:26572678

  14. A refined definition improves the measurement reliability of the tip-apex distance.

    PubMed

    Sakagoshi, Daigo; Sawaguchi, Takeshi; Shima, Yosuke; Inoue, Daisuke; Oshima, Takeshi; Goldhahn, Sabine

    2016-07-01

    Tip-apex distance (TAD) is reported as a good predictor for cut-outs of lag screws and spiral blades in the treatment of intertrochanteric fractures, and surgeons are advised to strive for TAD within 20 mm. However, the femoral neck axis and the position of the lower limb in the lateral radiograph are not clearly defined and can lead to measurement errors. We propose a refined TAD by defining these factors. The objective of this study was to analyze the reliability of this refined TAD. The radiographs of 130 prospective cases with unstable trochanteric fractures were used for the analysis of the refined TAD. The refined TAD was independently measured by 2 raters with clinical experience of more than 10 years (rater 1, 2) and 2 raters with much less clinical experience (rater 3, 4) after they received a training about the new measurement method. Intraclass correlation coefficient (ICC [2,4]) was calculated to assess the interrater reliability. The mean refined TADs were 18.2:18.4:18.2:18.2 mm for rater 1:2:3:4. There was a strong correlation among all four raters (ICC 0.998, (95% CI: 0.998, 0.999). Regardless of the clinical experience of raters, the refined TAD is a reliable tool and can be used to develop new TAD recommendations for predicting failure of fixation. Future studies with larger samples are needed to evaluate the predictive value of the refined TAD. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  15. Engineering Design Handbook: Reliable Military Electronics

    DTIC Science & Technology

    1976-01-15

    p. 30. CBS-Hytron: "I..ow-o::stPower Trall8istors," E1a::Drnic Design, 1 Nov. 1956, p. 24. Chang, C. M.: "An NPN High-Power Fast Germanium Col:e...34Monovibrator Has Fast Recovery Time," Electronics, Dec. 1957, p. 158. Carlson, A W. : "Junction Transistor Counters," EledronicDesign, 1 March 1957, p. 28...Method Makes Fast Pulses in Transistor Circuits," Electronic Design, 28 May 1958, p. 44. Stassior, R. A : "Pulse Applications cf a Diffused-Meltback

  16. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility of permanent, time-independent (plastic) rock deformation significantly increases the pore space compressibility (compaction), which becomes a leading term in the total compressibility. Inclusion of rock and fluid compressibilities in the model can explain both linear and nonlinear leak­off. In particular, inclusion of rock compaction and decompaction may be important for description of naturally fractured and tight gas reservoirs for which very strong dependence of permeability on porosity has been reported. Carter R.D. Derivation of the general equation for estimating the extent of the fractured area. Appendix I of "Optimum fluid characteristics for fracture extension", Drilling and Production Practice, G.C. Howard and C.R.Fast, New York, New York, USA, American Petroleum Institute (1957), 261-269.

  17. The Qtracer2 Program for Tracer-Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other Hydrologic Systems (2002)

    EPA Science Inventory

    Tracer testing is generally regarded as the most reliable and efficient method of gathering surface and subsurface hydraulic information. This is especially true for karstic and fractured-rock aquifers. Qualitative tracing tests have been conventionally employed in most karst s...

  18. Investigation on the accuracy and reliability of in-situ stress measurements using hydraulic fracturing in perforated cased holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    At present, the only viable technique for accurately measuring stresses at depth in a borehole is hydraulic fracturing. These have been termed microfracs because very small amounts of fluid are injected at low flow rates into the formation. When the well is shut in, the pressure immediately drops from the injection pressure to the instantaneous shut-in pressure (ISIP) which is approximately equal to sigma/sub min/. In general, the ISIP can be measured quite accurately in open holes. For most oil and gas applications, however, it is impossible or impractical to conduct these tests in an open-hole environment. The effects ofmore » the casing, cement annulus, explosive perforation damage, and random performation orientation are impossible to predict theoretically, and laboratory tests are usually conducted under nonrealistic conditions. A set of in situ experiments was conducted to evaluate the accuracy and reliability of this technique, to aid in the selection of an optimum perforation schedule, and to develop a diagnostic capability from the pressure response.« less

  19. Transport of Gas Phase Radionuclides in a Fractured, Low-Permeability Reservoir

    NASA Astrophysics Data System (ADS)

    Cooper, C. A.; Chapman, J.

    2001-12-01

    The U.S. Atomic Energy Commission (predecessor to the Department of Energy, DOE) oversaw a joint program between industry and government in the 1960s and 1970s to develop technology to enhance production from low-permeability gas reservoirs using nuclear stimulation rather than conventional means (e.g., hydraulic and/or acid fracturing). Project Rio Blanco, located in the Piceance Basin, Colorado, was the third experiment under the program. Three 30-kiloton nuclear explosives were placed in a 2134 m deep well at 1780, 1899, and 2039 m below the land surface and detonated in May 1973. Although the reservoir was extensively fractured, complications such as radionuclide contamination of the gas prevented production and subsequent development of the technology. Two-dimensional numerical simulations were conducted to identify the main transport processes that have occurred and are currently occurring in relation to the detonations, and to estimate the extent of contamination in the reservoir. Minor modifications were made to TOUGH2, the multiphase, multicomponent reservoir simulator developed at Lawrence Berkeley National Laboratories. The simulator allows the explicit incorporation of fractures, as well as heat transport, phase change, and first order radionuclide decay. For a fractured two-phase (liquid and gas) reservoir, the largest velocities are of gases through the fractures. In the gas phase, tritium and one isotope of krypton are the principle radionuclides of concern. However, in addition to existing as a fast pathway, fractures also permit matrix diffusion as a retardation mechanism. Another retardation mechanism is radionuclide decay. Simulations show that incorporation of fractures can significantly alter transport rates, and that radionuclides in the gas phase can preferentially migrate upward due to the downward gravity drainage of liquid water in the pores. This project was funded by the National Nuclear Security Administration, Nevada Operations Office, under DOE Contract no. DE-AC08-00NV13609.

  20. Heterogeneous alternation of fractured rock driven by preferential carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Wen, H.; Zhi, W.; Li, L.

    2016-12-01

    Understanding the alternation of fractured rock induced by geochemical reactions is critical for predicting the flow, solute transport and energy production in geosystems. Most existing studies on fracture alterations focus on rocks with single minerals where reactions occur at the fracture wall resulting in fracture aperture alteration while ignoring rock matrix properties (e.g. the formation and development of altered zones). In this work, we aimed to mechanistically understand the role of preferential calcite dissolution in the long-term evolution of fracture and rock matrix. We use direct simulation of physics-based reactive transport processes in an image of fractured rock at the resolution of tens of micrometers. Three numerical experiments were carried out with the same initial physical properties however different calcite content. Simulation results show that the formation and development of altered zones in the rock matrix is highly related to the abundance of fast-dissolving calcite. Abundant calcite (50% (v/v), calcite50) leads to a localized, thick zone of large porosity increase while low calcite content (10% (v/v), calcite10) creates an extended and narrow zone of small porosity increase resulting in surprisingly larger change in effective transport property. After 300 days of dissolution, although with relatively similar dissolved calcite mass and matrix porosity increase, effective matrix diffusion coefficients increase by 9.9 and 19.6 times in calcite50 and calcite10, respectively. In turn, calcite dissolution rates are directly limited by diffusive transport in the altered matrix and the shape of the altered zone. This work sheds light on the unique characteristics of reactive transport in fractured, mineralogically complex rocks that are different from those with single minerals (Wen et al., 2016). Reference: Wen, H., Li, L., Crandall, D. and Hakala, J.A. (2016) Where Lower Calcite Abundance Creates More Alteration: Enhanced Rock Matrix Diffusivity Induced by Preferential Carbonate Dissolution. Energy & Fuels.

Top