Science.gov

Sample records for fast high peak-power

  1. High peak power diode stacks for high energy lasers

    NASA Astrophysics Data System (ADS)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg

    2015-02-01

    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  2. Multiphoton imaging with high peak power VECSELs

    NASA Astrophysics Data System (ADS)

    Mirkhanov, Shamil; Quarterman, Adrian H.; Swift, Samuel; Praveen, Bavishna B.; Smyth, Conor J. C.; Wilcox, Keith G.

    2016-03-01

    Multiphoton imaging (MMPI) has become one of thee key non-invasive light microscopy techniques. This technique allows deep tissue imaging with high resolution and less photo-damage than conventional confocal microscopy. MPI is type of laser-scanning microscopy that employs localized nonlinear excitation, so that fluorescence is excited only with is scanned focal volume. For many years, Ti: sapphire femtosecond lasers have been the leading light sources for MPI applications. However, recent developments in laser sources and new types of fluorophores indicate that longer wavelength excitation could be a good alternative for these applications. Mode-locked VECSEELs have the potential to be low cost, compact light sources for MPI systems, with the additional advantage of broad wavelength coverage through use of different semiconductor material systems. Here, we use a femtosecond fibber laser to investigate the effect average power and repetition rate has on MPI image quality, to allow us to optimize our mode-locked VVECSELs for MPI.

  3. Pulse shortening in high-peak-power Reltron tubes

    NASA Astrophysics Data System (ADS)

    Miller, R. Bruce

    1996-10-01

    Most high-peak-power (>= 100 MW) microwave tubes are seemingly limited to an output RF energy per pulse of about 100 J. While Titan's L-band Reltron tubes have achieved 250 J/pulse, we have also observed pulse-shortening phenomena in both the modulating cavity and output cavity regions. We have examined the effects of construction materials, fabrication techniques, vacuum pressure, and conditioning. We will present data from these experiments and discuss a plausible pulse-shortening hypothesis involving electric- field-induced gas evolution and subsequent ionization. We believe that our energy-per-pulse limitations are the result of our current tube construction approach which uses explosive emission cathodes, plastic insulators, and grids to define cavity boundaries. While some simple extensions of this approach offers some hope for increasing the energy per pulse to perhaps 500 joules in L-band, we believe that achieving >= 1 kJ/pulse will require the use of conventional microwave tube construction techniques, including thermionic cathodes, ceramic insulators, and brazed joining with high-temperature bakeout. We will present the design of an L-band Reltron tube having these features.

  4. High Peak Power Gain Switched Flared Waveguide Lasers

    SciTech Connect

    Chow, W.W.; Indik, R.; Koch, S.W.; Mar, Alan, Vawter, G. Allen; Moloney, J.

    1999-08-05

    We gain-switch flared waveguide lasers to obtain 14.5 W peak powers and 0.5 nJ pulse energies with laser structures compatible with the generation of diffraction-limited beams. The results are in excellent agreement with a microscopic laser model.

  5. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  6. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  7. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed. PMID:27131709

  8. Development of a single-longitudinal-mode, high-peak-power, tunable pulsed dye laser

    SciTech Connect

    Black, J.F.; Valentini, J.J. )

    1994-09-01

    A compact, high-peak-power, user-friendly, single-longitudinal-mode (SLM) tunable dye laser has been developed. The device yields [gt]12 mJ pulses of 6 ns duration and [similar to]2.7[times]transform-limited linewidths of [lt]200 MHz. Seamless single-mode tunability of [gt]20 cm[sup [minus]1] is possible without resetting. The dye laser makes efficient use of the pump laser, with [similar to]10% conversion of the 532 nm pump energy to tunable dye power and occupies [lt]4 m[sup 2] (including pump laser and all diagnostics). The linewidth of the device can be switched from [lt]200 MHz SLM operation to [lt]0.5 cm[sup [minus]1] broadband modeless operation by moving one mirror. This allows rapid interchange between high-resolution scanning and a fast survey scan'' mode of operation to isolate the spectral region of interest at low resolution.

  9. High repetition rate (100 Hz), high peak power, high contrast femtosecond laser chain

    NASA Astrophysics Data System (ADS)

    Clady, R.; Tcheremiskine, V.; Azamoum, Y.; Ferré, A.; Charmasson, L.; Utéza, O.; Sentis, M.

    2016-03-01

    High intensity femtosecond laser are now routinely used to produce energetic particles and photons via interaction with solid targets. However, the relatively low conversion efficiency of such processes requires the use of high repetition rate laser to increase the average power of the laser-induced secondary source. Furthermore, for high intensity laser-matter interaction, a high temporal contrast is of primary importance as the presence of a ns ASE pedestal (Amplified Spontaneous Emission) and/or various prepulses may significantly affect the governing interaction processes by creating a pre-plasma on the target surface. We present the characterization of a laser chain based on Ti:Sa technology and CPA technique, which presents unique laser characteristics : a high repetition rate (100 Hz), a high peak power (>5 TW) and a high contrast ratio (ASE<10-10) obtained thanks to a specific design with 3 saturable absorbers inserted in the amplification chain. A deformable mirror placed before the focusing parabolic mirror should allow us to focus the beam almost at the limit of diffraction. In these conditions, peak intensity above 1019W.cm-2 on target could be achieved at 100 Hz, allowing the study of relativistic optics at a high repetition rate.

  10. Robust Short-Pulse, High-Peak-Power Laser Transmitter for Optical Communications

    NASA Technical Reports Server (NTRS)

    Wright, Malcolm W.

    2009-01-01

    We report on a pulsed fiber based master oscillator power amplifier laser at 1550 nm to support moderate data rates with high peak powers in a compact package suitable for interplanetary optical communications. To accommodate pulse position modulation, the polarization maintaining laser transmitter generates pulses from 0.1 to 1 ns with variable duty cycle over a pulse repetition frequency range of 10 to 100 MHz.

  11. Asymptotically one-dimensional dynamics of high-peak-power ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Zheltikov, A. M.

    2016-11-01

    Laser fields with peak powers P well above the critical power of self-focusing P cr are intrinsically unstable with respect to modulation instabilities, breaking up into multiple filaments as a part of a quintessentially three-dimensional nonlinear beam dynamics. Here, however, we show that—even for P \\gg P cr—the spatiotemporal field evolution can stay effectively one-dimensional. In this regime, observed as an asymptotic case of large diffraction lengths, the laser field can undergo a rich diversity of pulse transformation scenarios, including, most notably, pulse self-compression to subcycle field waveforms with very high peak powers, while remaining decoupled, within a limited propagation length, from beam dynamics.

  12. High peak power sub-nanosecond mode-locked pulse characteristics of Nd:GGG laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jia; Zhao, Shengzhi; Li, Tao; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Feng, Chuansheng; Wang, Yonggang

    2015-10-01

    Based on the dual-loss modulation, i.e. electro-optic (EO) modulator and GaAs saturable absorber, a sub-nanosecond mode-locked pulsed Nd:GGG laser with kHz repetition rates is presented for the first time. The repetition rate (0.5-10 kHz) of this pulsed laser is controlled by the modulation rate of EO modulator, so high stability can be obtained. The sub-nanosecond pulse width depends on the mode-locked pulse underneath the Q-switched envelope in the Q-switched mode-locked (QML) laser and high peak power can be generated. The condition on the generation of sub-nanosecond pulse and the needed threshold power for different modulation rates of EO are given. The average output power, the pulse width and the peak power versus pump power for different repetition rates are demonstrated. The shortest pulse width is 426 ps and the highest peak power reaches 239.4 kW. The experimental results show that the dual-loss modulation technology with EO and GaAs saturable absorber in QML laser is an efficient method to generate sub-nanosecond mode-locked pulsed laser with kHz repetition rates.

  13. Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm.

    PubMed

    Liebetrau, Hartmut; Hornung, Marco; Seidel, Andreas; Hellwing, Marco; Kessler, Alexander; Keppler, Sebastian; Schorcht, Frank; Hein, Joachim; Kaluza, Malte C

    2014-10-01

    We present the results from a new frontend within a double-chirped pulse amplification architecture (DCPA) utilizing crossed-polarized wave generation (XPW) for generating ultra-high contrast, 150 μJ-level, femtosecond seed pulses at 1030 nm. These pulses are used in the high energy class diode-pumped laser system Polaris at the Helmholtz Institute in Jena. Within this frontend, laser pulses from a 75 MHz oscillator-pulse train are extracted at a repetition rate of 1 Hz, temporally stretched, amplified and then recompressed reaching a pulse energy of 2 mJ, a bandwidth of 12 nm and 112 fs pulse duration at a center wavelength of 1030 nm. These pulses are temporally filtered via XPW in a holographic-cut BaF₂ crystal, resulting in 150 μJ pulse energy with an efficiency of 13 %. Due to this non-linear filtering, the relative intensity of the amplified spontaneous emission preceding the main pulse is suppressed to 2×10⁻¹³. This is, to the best of our knowledge, the lowest value achieved in a high peak power laser system operating at 1030 nm center wavelength. PMID:25322052

  14. Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm.

    PubMed

    Liebetrau, Hartmut; Hornung, Marco; Seidel, Andreas; Hellwing, Marco; Kessler, Alexander; Keppler, Sebastian; Schorcht, Frank; Hein, Joachim; Kaluza, Malte C

    2014-10-01

    We present the results from a new frontend within a double-chirped pulse amplification architecture (DCPA) utilizing crossed-polarized wave generation (XPW) for generating ultra-high contrast, 150 μJ-level, femtosecond seed pulses at 1030 nm. These pulses are used in the high energy class diode-pumped laser system Polaris at the Helmholtz Institute in Jena. Within this frontend, laser pulses from a 75 MHz oscillator-pulse train are extracted at a repetition rate of 1 Hz, temporally stretched, amplified and then recompressed reaching a pulse energy of 2 mJ, a bandwidth of 12 nm and 112 fs pulse duration at a center wavelength of 1030 nm. These pulses are temporally filtered via XPW in a holographic-cut BaF₂ crystal, resulting in 150 μJ pulse energy with an efficiency of 13 %. Due to this non-linear filtering, the relative intensity of the amplified spontaneous emission preceding the main pulse is suppressed to 2×10⁻¹³. This is, to the best of our knowledge, the lowest value achieved in a high peak power laser system operating at 1030 nm center wavelength.

  15. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  16. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  17. Axicons for mode conversion in high peak power, higher-order mode, fiber amplifiers.

    PubMed

    Nicholson, J W; DeSantolo, A; Westbrook, P S; Windeler, R S; Kremp, T; Headley, C; DiGiovanni, D J

    2015-12-28

    Higher-order mode fiber amplifiers have demonstrated effective areas as large as 6000 μm2, allowing for high pulse energy and peak power amplification. Long-period gratings are used to convert the fundamental mode to the higher-order mode at the entrance to the amplifier, and reconvert back to the fundamental at the exit, to achieve a diffraction limited beam. However, long period gratings are susceptible to nonlinearity at high peak power. In this work, we propose and demonstrate axicons for linear bulk-optic mode conversion at the output of higher order mode amplifiers. We achieve an M2 of less than 1.25 for 80% mode conversion efficiency. Experiments with pulsed amplifiers confirm that the mode conversion is free from nonlinearity. Furthermore, chirp pulse amplifier experiments confirm that HOM amplifiers plus axicon mode convertors provide energy scalability in femtosecond pulses, compared to smaller effective area, fundamental mode fiber amplifiers. We also propose and demonstrate a route towards fiber integration of the axicon mode convertor by fabricating axicons directly on the tip of the fiber amplifier end-cap.

  18. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOEpatents

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  19. Design and cold testing of a high peak power x-band gyroklystron

    SciTech Connect

    Lawson, W.; Calame, J.; Granatstein, V.L.; Latham, P.E.; McAdoo, J.; Park, G.S.; Striffler, C.D.; Williams, F.J.; Chu, K.R.; Seftor, J.L.

    1985-01-01

    The main goal of the University of Maryland's gyroklystron project is to develop an efficient, high power, high gain, phase controllable amplifier at 10 GHz. While peak powers of several hundred megawatts are ultimately of interest, our initial experimental design values include 30 MW of output power in 1 ..mu..s pulses with a gain in excess of 50 dB. The 30 MW power level represents an enhancement of almost three orders of magnitude over the current state-of-the-art in gyroklystron amplifiers. This enhancement will be achieved by going to high beam energies (..gamma..approx. =2) and overmoded cavities (TE/sub 01//sup 0/). Outlined in this report are the steps being taken to realize our goal.

  20. Combining microwave beams with high peak power and long pulse duration

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Jin Zhenxing; Yang Jianhua

    2010-03-15

    The beam combining results with a metal dichroic plate illuminated by the S/X band gigawatt level high power microwaves are presented. According to the previous experiments, the microwave breakdown problem becomes obvious when the peak power and the pulse duration increase, thus, several methods for enhancing the power handling capacity have been considered, and the metal dichroic plates are redesigned to handle the S/X band high power microwaves. Then the design, fabrication, and testing procedure are discussed in detail. The further experimental results reveal that, operated on the self-built accelerator Spark-04, the radiated powers from the S and X band sources have reached 1.8 GW with pulse durations of about 80 ns, and both beams have been successfully operated on the selected dichroic plate without microwave breakdown.

  1. High peak power (≥10 mW) quantum cascade superluminescent emitter

    SciTech Connect

    Aung, Nyan L. Yu, Zhouchangwan; Yu, Ye; Liu, Peter Q.; Gmachl, Claire F.; Wang, Xiaojun; Fan, Jen-Yu; Troccoli, Mariano

    2014-12-01

    We report room temperature and milliwatt range mid-infrared superluminescent emission at 5 μm from Quantum Cascade (QC) devices. To achieve high power superluminescence, we utilize an ultrastrong coupling QC laser design, and employ a cavity formed by the combination of a 17° tilted cleaved facet and a wet etched rounded and sloped facet to introduce additional mirror loss. For pulsed mode operation, a 8 mm long and 15 μm wide device achieves ∼1.3 mW peak power at 300 K and a 25 μm wide device with Si{sub 3}N{sub 4} anti-reflection coated rounded facet achieves ∼10.2 mW peak optical output power at 250 K.

  2. Electron-Beam Switches For A High Peak Power Sled-II Pulse Compressor

    SciTech Connect

    Hirshfield, Jay, L.

    2015-12-02

    Omega-P demonstrated triggered electron-beam switches on the L=2 m dual-delay-line X-band pulse compressor at Naval Research Laboratory (NRL). In those experiments, with input pulses of up to 9 MW from the Omega-P/NRL X-band magnicon, output pulses having peak powers of 140-165 MW and durations of 16-20 ns were produced, with record peak power gains M of 18-20. Switch designs are described based on the successful results that should be suitable for use with the existing SLAC SLED-II delay line system, to demonstrate C=9, M=7, and n>>78%, yielding 173ns compressed pulses with peak powers up to 350MW with input of a single 50-MW.

  3. Brightness enhancement in a high-peak-power cladding-pumped Raman fiber amplifier.

    PubMed

    Sridharan, Arun Kumar; Heebner, John E; Messerly, Michael J; Dawson, Jay W; Beach, Raymond J; Barty, C P J

    2009-07-15

    We demonstrate a cladding-pumped Raman fiber amplifier (CPRFA) whose brightness-enhancement factor depends on the cladding-to-core diameter ratio. The pump and the signal are coupled independently into different input arms of a pump-signal combiner, and the output is spliced to the Raman amplifier fiber. The CPRFA generates 20 microJ, 7 ns pulses at 1100 nm at a 2.2 kHz repetition rate with 300 microJ (25.1 kW peak power) of input pump energy. The amplified signal's peak power is 2.77 kW, and the brightness-enhancement factor is 192--the highest peak power and brightness enhancement achieved in a CPRFA at any wavelength, to our knowledge.

  4. Brightness enhancement in a high-peak-power cladding-pumped Raman fiber amplifier.

    PubMed

    Sridharan, Arun Kumar; Heebner, John E; Messerly, Michael J; Dawson, Jay W; Beach, Raymond J; Barty, C P J

    2009-07-15

    We demonstrate a cladding-pumped Raman fiber amplifier (CPRFA) whose brightness-enhancement factor depends on the cladding-to-core diameter ratio. The pump and the signal are coupled independently into different input arms of a pump-signal combiner, and the output is spliced to the Raman amplifier fiber. The CPRFA generates 20 microJ, 7 ns pulses at 1100 nm at a 2.2 kHz repetition rate with 300 microJ (25.1 kW peak power) of input pump energy. The amplified signal's peak power is 2.77 kW, and the brightness-enhancement factor is 192--the highest peak power and brightness enhancement achieved in a CPRFA at any wavelength, to our knowledge. PMID:19823559

  5. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  6. High-speed power training in older adults: A shift of the external resistance at which peak power is produced

    PubMed Central

    Sayers, Stephen P.; Gibson, Kyle

    2013-01-01

    Studies have shown that power training increases peak power in older adults. Evaluating the external resistance (% one repetition-maximum [1RM]) at which peak power is developed is critical given that changes in the components of peak power (force and velocity) are dependent on the %1RM at which peak power occurs. The purpose of this study was to compare the changes in peak power (and the external resistance at which peak power occurred) after 12 weeks of high-speed power training versus traditional slow-speed strength training. Seventy-two older men and women were randomized to high-speed power training at 40% of the one-repetition maximum (1RM) (HSPT: n=24 [70.8±6.8 yrs]); traditional RT at 80% 1RM (STR: n=22 [68.6±7.8 yrs]); or control (CON: n=18 [71.5±6.1 yrs]). Measures of muscle performance were obtained at baseline and after the 12-week training intervention. Changes in muscle power and 1RM strength improved similarly with both HSPT and SSST, but HSPT shifted the external resistance at which peak power was produced to a lower external resistance (from 67%1RM to 52%1RM) compared to SSST (from 65%1RM to 62%1RM)(p<0.05), thus increasing the velocity component of peak power (change: HSPT=0.18±0.21m/s; SSST=−0.03±0.15 m/s)(p<0.05). Because sufficient speed of the lower limb is necessary for functional tasks related to safety (crossing a busy intersection, fall prevention), HSPT should be implemented in older adults to improve power at lower external resistances, thus increasing the velocity component of power and making older adults safer in their environment. These data provide clinicians with the necessary information to tailor exercise programs to the individual needs of the older adult, affecting the components of power. PMID:23897022

  7. High peak power optical pulses generated with a monolithic master-oscillator power amplifier.

    PubMed

    Wenzel, Hans; Schwertfeger, Sven; Klehr, Andreas; Jedrzejczyk, Daniel; Hoffmann, Thomas; Erbert, Götz

    2012-06-01

    We present results on a monolithic semiconductor-based master-oscillator power amplifier (MOPA) combining a distributed-feedback (DFB) laser and a tapered amplifier on a single chip. The MOPA reaches an output power of almost 12 W at an emission wavelength around 1064 nm in continuous-wave operation. Pulses with a length of around 100 ps can be obtained either by injecting nanosecond current pulses into the tapered amplifier alone or into both the DFB laser and the tapered amplifier. In the latter case, pulses with a width of 84 ps, a peak power of 42 W, and a spectral width of 160 pm are generated. PMID:22660042

  8. High-peak-power, high-repetition-rate LD end-pumped Nd:YVO4 burst mode laser

    NASA Astrophysics Data System (ADS)

    Pan, Hu; Yan, Renpeng; Fa, Xin; Yu, Xin; Ma, Yufei; Fan, Rongwei; Li, Xudong; Chen, Deying; Zhou, Zhongxiang

    2016-06-01

    A compact high-peak-power, high-repetition-rate burst mode laser is achieved by an acousto-optical Q-switched Nd:YVO4 1064 nm laser directly pumped at 878.6 nm. Pulse trains with 10-100 pulses are obtained using acousto-optical Q-switch at repetition rates of 10-100 kHz under a pulsed pumping with a 1 ms duration. At the maximum pump energy of 108.5 mJ, the pulse energy of 10 kHz burst mode laser reaches 44 mJ corresponding to a single pulse energy of 4.4 mJ and an optical-to-optical efficiency of 40.5 %.The maximum peak power of ~468.1 kW at 10 kHz is obtained with a pulse width of 9.4 ns. The beam quality factor is measured to be M 2 ~1.5 and the pulse jitter is estimated to be less than 1 % in both amplitude and time region.

  9. Dynamic and static concept of laser-thyristor for high-peak power lasing

    NASA Astrophysics Data System (ADS)

    Slipchenko, Sergey; Podoskin, Alexsandr; Pikhtin, Nikita; Yuferev, Valentin; Tarasov, Ilya

    2015-03-01

    The model of a new type of high-power laser light generators, based on epitaxially and functionally integrated fast highpower current switch and laser heterostructure, the so-called laser-thyristor, has been developed. In this model, the functional characteristics of the laser-thyristor were analyzed by considering the epitaxially integrated structure as an optoelectronic pair constituted by a heterophototransistor and a laser diode. It was demonstrated that the turn-on of lasing fundamentally affects the injection efficiency of the laser-thyristor. The dynamic characteristics of the laser-thyristor were examined by using analytical relations for the optical feedback. It is shown that the impact ionization can substantially raise the build-up rate of the through current across the laser-thyristor structure and, as a result, make shorter the leading edge of a laser pulse. It is demonstrated that the developed dynamic model is in good agreement with experimental results at the maximum blocking voltages.

  10. Diode-pumped 1 kW Q-switched Nd:YAG rod laser with high peak power and high beam quality

    SciTech Connect

    Furuta, Keisuke; Kojima, Tetsuo; Fujikawa, Shuichi; Nishimae, Jun-ichi

    2005-07-01

    We have demonstrated high-peak-power generation at 1 kW average power by applying an acousto-optic Q switch to a quasi-cw diode-pumped Nd:YAG master oscillator power amplifier. We achieved a maximum peak power of 2.3 MW by driving the Q switch in burst mode. The average repetition rate was 6 kHz. The corresponding beam quality was M{sup 2}=9.

  11. DNA damage in frog erythrocytes after in vitro exposure to a high peak-power pulsed electromagnetic field.

    PubMed

    Chemeris, Nikolai K; Gapeyev, Andrew B; Sirota, Nikolai P; Gudkova, Olga Yu; Kornienko, Natalia V; Tankanag, Arina V; Konovalov, Igor V; Buzoverya, Marina E; Suvorov, Valeriy G; Logunov, Vyacheslav A

    2004-03-14

    Till the present time, the genotoxic effects of high peak-power pulsed electromagnetic fields (HPPP EMF) on cultured cells have not been studied. We investigated possible genotoxic effects of HPPP EMF (8.8 GHz, 180 ns pulse width, peak power 65 kW, repetition rate 50 Hz) on erythrocytes of the frog Xenopus laevis. We used the alkaline comet assay, which is a highly sensitive method to assess DNA single-strand breaks and alkali-labile lesions. Blood samples were exposed to HPPP EMF for 40 min in rectangular wave guide. The specific absorption rate (SAR) calculated from temperature kinetics was about 1.6 kW/kg (peak SAR was about 300 MW/kg). The temperature rise in the blood samples at steady state was 3.5 +/- 0.1 degrees C. The data show that the increase in DNA damage after exposure of erythrocytes to HPPP EMF was induced by the rise in temperature in the exposed cell suspension. This was confirmed in experiments in which cells were incubated for 40 min under the corresponding temperature conditions. The results allow us to conclude that HPPP EMF-exposure at the given modality did not cause any a-thermal genotoxic effect on frog erythrocytes in vitro.

  12. Fiber-optic delivery of high-peak-power Q-switched laser pulses for in-cylinder flow measurement.

    PubMed

    Stephens, Timothy J; Haste, Martin J; Towers, David P; Thomson, Martin J; Taghizadeh, Mohammed R; Jones, Julian D C; Hand, Duncan P

    2003-07-20

    A bundle of optical fibers was constructed to deliver Q-switched frequency-doubled Nd:YAG laser pulses for the purpose of particle image velocimetry. Data loss that is due to fiber speckle was reduced by ensuring that each fiber was different in length by more than the coherence length of the laser being delivered. Hence, their speckle patterns will overlap but not interfere, producing more even illumination that is shown to reduce data loss. A custom-made diffractive optical element and careful endface preparation help to reduce damage to the fibers by the required high peak powers. With this method, pulse energies in excess of 25 mJ were delivered for a series of experimental trials within the cylinder head of an optically accessed internal combustion engine. Results from these trials are presented along with a comparison of measurements generated by conventionally delivered beams.

  13. [Thermoelastic excitation of acoustic waves in biological models under the effect of the high peak-power pulsed electromagnetic radiation of extremely high frequency].

    PubMed

    Gapeev, A B; Rubanik, A V; Pashovkin, T N; Chemeris, N K

    2007-01-01

    The capability of high peak-power pulsed electromagnetic radiation of extremely high frequency (35,27 GHz, pulse widths of 100 and 600 ns, peak power of 20 kW) to excite acoustic waves in model water-containing objects and muscular tissue of animals has been experimentally shown for the first time. The amplitude and duration of excited acoustic pulses are within the limits of accuracy of theoretical assessments and have a complex nonlinear dependence on the energy input of electromagnetic radiation supplied. The velocity of propagation of acoustic pulses in water-containing models and isolated muscular tissue of animals was close to the reference data. The excitation of acoustic waves in biological systems under the action of high peak-power pulsed electromagnetic radiation of extremely high frequency is the important phenomenon, which essentially contributes to the understanding of the mechanisms of biological effects of these electromagnetic fields.

  14. Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output

    NASA Astrophysics Data System (ADS)

    Wei, Kaihua; Guo, Yan; Lai, Xiaomin; Fan, Shanhui

    2016-07-01

    A high power mid-infrared optical parametric oscillator (OPO) with picosecond pulse bunch output is experimentally demonstrated. The pump source was a high power master oscillation power amplifier (MOPA) picosecond pulsed fiber amplifier. The seed of the MOPA was a gain-switched distributed Bragg reflector (DBR) laser diode (LD) with picosecond pulse operation at a high repetition rate. The seed laser was amplified to 50 W by two-stage pre-amplifiers and a large mode area (LMA) Yb fiber based power-amplifier. A fiber-pigtailed acousto-optic modulator with the first order diffraction transmission was inserted into the second pre-amplifier to form a picosecond pulse bunch train and to change the peak power simultaneously. The power-amplified pulse bunches were focused to pump a wavelength-tunable OPO for emitting high power mid-infrared laser. By adjusting the OPO cavity length, the maximum average idler powers obtained at 3.1, 3.3 and 3.5 μm were 7, 6.6 and 6.4 W respectively.

  15. Recent developments in widely tunable and high peak power ultrafast laser sources and their adoption in biological imaging

    NASA Astrophysics Data System (ADS)

    Klein, J.

    2016-03-01

    Widely tunable ultrafast lasers have enabled a large number of biological imaging techniques including point scanning multiphoton excited fluorescence (MPEF), SHG/THG and stimulated Raman imaging. Tunable ultrafast lasers offer spectral agility, covering the entire relative transparency window in live tissue (700-1300nnm) and flexibility with multi-color, synchronized outputs to support sophisticated label free techniques (e.g. stimulated Raman modalities). More recently newly available high peak power lasers based on Ytterbium technology drive advances in two-photon light-sheet, 3 photon excited fluorescence and holographic patterning for optogenetics photo-stimulation. These laser platforms offer a unique blend of compactness, ease of use and cost efficiency, and ideally complement tunable platforms typically based on Ti:Sapphire and IR optical parametric oscillators (OPO). We present various types of ultrafast laser architectures, link their optical characteristics to key bio-imaging requirements, and present relevant examples and images illustrating their impact in biological science. In particular we review the use of ultrafast lasers in optogenetics for photo-stimulation of networks of neurons.

  16. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  17. SBS-managed high-peak-power nanosecond-pulse fiber-based master oscillator power amplifier.

    PubMed

    Di Teodoro, F; Morais, J; McComb, T S; Hemmat, M K; Cheung, E C; Weber, M; Moyer, R

    2013-07-01

    We report on a compactly packaged Yb-doped fiber-based laser architecture featuring an actively pulse controlled, single-longitudinal-mode seeder and multistage amplifier chain terminated by a "folded" rod-type photonic crystal fiber. In this laser source, stimulated Brillouin scattering (SBS) is the power-limiting factor, but is managed by phase modulating the seeder with a pseudo-random noise signal. Pulse energy/peak power of ~2 mJ/1.5 MW at 10 kHz repetition rate are thus obtained within ~1.55 ns pulses of peak spectral brightness >20 kW cm(-2) sr(-1) Hz(-1). PMID:23811864

  18. SBS-managed high-peak-power nanosecond-pulse fiber-based master oscillator power amplifier.

    PubMed

    Di Teodoro, F; Morais, J; McComb, T S; Hemmat, M K; Cheung, E C; Weber, M; Moyer, R

    2013-07-01

    We report on a compactly packaged Yb-doped fiber-based laser architecture featuring an actively pulse controlled, single-longitudinal-mode seeder and multistage amplifier chain terminated by a "folded" rod-type photonic crystal fiber. In this laser source, stimulated Brillouin scattering (SBS) is the power-limiting factor, but is managed by phase modulating the seeder with a pseudo-random noise signal. Pulse energy/peak power of ~2 mJ/1.5 MW at 10 kHz repetition rate are thus obtained within ~1.55 ns pulses of peak spectral brightness >20 kW cm(-2) sr(-1) Hz(-1).

  19. 975nm high-peak power ns-diode laser based MOPA system suitable for water vapor DIAL applications

    NASA Astrophysics Data System (ADS)

    Sumpf, Bernd; Klehr, Andreas; Vu, Thi Nghiem; Erbert, Götz; Tränkle, Günther

    2015-03-01

    Micro-DIAL (differential absorption LIDAR) systems require light sources with peak powers in the range of several 10 W together with a spectral line width smaller than the width of absorption lines under study. For water vapor at atmospheric pressure this width should be smaller than 10 pm at 975 nm. In this paper, an all semiconductor master oscillator power amplifier system at an emission wavelength of 975 nm will be presented. This spectral range was selected with respect to a targeted absorption path length of 5000 m and H2O line strengths. A distributed feedback (DFB) ridge waveguide diode laser operated in continuous wave is used as master oscillator whereas a tapered amplifier consisting of a RW section and a flared section is implemented as power amplifier. The RW section acts as optical gate. The current pulses injected into the RW part have a length of 8 ns and the tapered part is driven with 15 ns long pulses. The delay between the pulses is adjusted for optimal pulse shape. The repetition rate is in both cases 25 kHz. A maximal pulse output power of about 16 W limited by the available current supply is achieved. The spectral line width of the system determined by the properties of the DFB laser is smaller than 10 pm. The tuning range amounts 0.9 nm and a SMSR of 40 dB is observed. From the dependence of the peak power on the power injected into the tapered amplifier, the saturation power is determined to 5.3 mW.

  20. High-peak-power low-threshold AlGaAs/GaAs stripe laser diodes on Si substrates grown by migration-enhanced molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Nouhi, Akbar; Radhakrishnan, Gouri; Liu, John K.; Lang, Robert J.

    1988-01-01

    A high-peak-power low-threshold AlGaAs/GaAs double-heterostructure stripe laser diode on Si substrats, grown by hybrid migration-enhanced molecular beam epitaxy (MEMBE) and metalorganic chemical vapor deposition (MOCVD) has been demonstrated for the first time. These devices showed the highest peak powers of up to 184 mW per facet reported so far for double-heterostructure stripe laser diodes on Si substrates, room-temperature pulsed threshold currents as low as 150 mA, and differential quantum efficiencies as high as 30 percent without mirror facet coating. An intrinsic threshold current density has been estimated to be about 2 kA/sq cm when taking current spreading and lateral diffusion effects into account. Low dislocation density shows that MEMBE can be a useful method to grow high-quality GaAs and AlGaAs/GaAs layers on Si substrates by combining with MOCVD.

  1. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    PubMed

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs. PMID:26831972

  2. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    PubMed

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.

  3. High-peak-power microwave pulses at 2. 37 GHz: No effects on vigilance performance in monkeys. Interim report, February 1988-February 1989

    SciTech Connect

    D'Andrea, J.A.; Knepton, J.; Cobb, B.L.; Klauenberg, B.J.; Merritt, J.H.

    1989-11-02

    The current safety standards for occupational exposure radio frequency and microwave exposure do not limit the peak power of microwave pulses. To evaluate whether short-duration (93 ns) high-peak-power microwave pulses can alter behavioral performance, four rhesus monkeys were exposed to peak powers of 7.02-11.30 kW/cm2 while they performed a vigilance task. The behavior consisted of two components: responding on a variable interval schedule on one lever and to reaction time on a second lever. Correct responding on each lever was signaled by auditory stimuli. Trained monkeys performed the task during exposure to 2.37-GHz microwave pulses delivered concurrently with the auditory signals. The estimated peak whole-body specific absorption rate (SAR) for each pulse was between 582.7 and 937.9 kW/kg (54-87 mJ/kg per pulse). Compared to sham irradiation, significant changes in behavioral performance were not observed.

  4. High average/peak power linearly polarized all-fiber picosecond MOPA seeded by mode-locked noise-like pulses

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Ma, P. F.; Tao, R. M.; Wang, X. L.; Zhou, P.; Chen, J. B.

    2015-06-01

    The characteristics of mode-locked noise-like pulses generated from a passively mode-locked fiber oscillator are experimentally investigated. By carefully adjusting the two polarization controllers, stable mode-locked noise-like pulse emission with a high radio frequency signal/noise ratio of  >55 dB is successfully achieved, ensuring the safety and possibility of high power amplification. To investigate the amplification characteristics of such pulses, one all-fiber master oscillator power amplifier (MOPA) is built to boost the power and energy of such pulses. Amplified noise-like pulses with average output power of 423 W, repetition rate of 18.71 MHz, pulse energy of 22.61 μJ, pulse duration of 72.1 ps and peak power of 314 kW are obtained. Near diffraction-limited beam is also demonstrated with M2 factor measured at full power operation of ~1.2 in the X and Y directions. The polarization extinction ratio at output power of 183 W is measured to be ~13 dB. To the best of our knowledge, this is the first demonstration of high-power amplification of noise-like pulses and the highest peak power ever reported in all-fiber picosecond MOPAs. The temporal self-compression process of such pulses and high peak power when amplified make it an ideal pump source for generation of high-power supercontinuum. Other potential applications, such as material processing and optical coherent tomography, could also be foreseen.

  5. 2.79 μm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser.

    PubMed

    Wang, Li; Wang, Jintao; Yang, Jingwei; Wu, Xianyou; Sun, Dunlu; Yin, Shaotang; Jiang, Haihe; Wang, Jiyang; Xu, Changqing

    2013-06-15

    A flash lamp pumped Cr,Er:YSGG laser utilizing a langasite (LGS) crystal as an electro-optic Q-switch is proposed and demonstrated. It is proved that a LGS crystal with relatively high damage threshold can be used as the electro-optic Q-switch at 2.79 μm, and 216 mJ pulse energy with 14.36 ns pulse width is achieved. Its corresponding peak power of pulse can reach 15 MW, to our knowledge the best result at a 2.79 μm wavelength.

  6. High brightness diode pumped Er:YAG laser system at 2.94 µm with nearly 1kW peak power

    NASA Astrophysics Data System (ADS)

    Messner, Manuel; Heinrich, Arne; Hagen, Clemens; Unterrainer, Karl

    2016-03-01

    We demonstrated a monolithic high-power diode-pumped Er:YAG laser at 2.94 μm with average output power of up to 50W and pulse energy beyond 300mJ in 400 μs pulses. The high peak power of nearly 1kW is delivered in a high quality beam (M2 < 15), maintained over a large cooling water temperature range of 18-25 °C. The improved resonator configuration allows for stable operation from 0-10% duty-cycle in contrast to prior developments showing saturation. As a first application, fiber-coupling into a 230 μm, 0.2NA GeO2-fiber with standard optics has been shown, reaching 30W average power and 200mJ pulse energy out of the fiber, only limited by the fiber..

  7. Liquid crystal near-IR laser beam shapers employing photoaddressable alignment layers for high-peak-power applications

    NASA Astrophysics Data System (ADS)

    Marshall, Kenneth L.; Saulnier, Debra; Xianyu, Haiqing; Serak, Svetlana; Tabiryan, Nelson

    2013-09-01

    Large-scale, high-energy Nd:glass laser systems require beam shapers to control the spatial distribution of the incident intensity. Commercially available liquid crystal (LC) electro-optical spatial light modulators (SLM's) are frequently employed for this purpose, but their intrinsic requirement for conductive metal or metal-oxide coatings limits their 1054-nm laser-damage thresholds to 230 mJ/cm2 (2.4 ns, 5 Hz), relegating them for use only in low-fluence areas of the laser system. Previously, we demonstrated that passive near-IR LC beam shapers employing coumarin alignment layers patterned by contact photolithography are capable of high resolution and contrast and can withstand incident 1054-nm laser-fluence levels of <30 J/cm2 (1-ns pulse). An evolutionary step to expand the scope of this simple and robust device would be to identify and incorporate into the device structure photoalignment layers that trigger LC bulk reorientation by undergoing reversible optical switching between two predetermined alignment patterns using low-energy polarized UV/visible incident light and have a high near-IR laser-damage threshold. Such "optically driven" LC beam shapers offer the in-system write/erase flexibility of the electro-optical LC SLM's while eliminating conductive coatings that compromise the laser-damage threshold and electrical interconnects that increase device fragility and complexity. To this end, we have recently identified and evaluated the 1054-nm laser-damage-resistance and coating properties of several commercial azobenzene-based photoswitchable alignment materials. In 1-on-1 and N-on-1 testing, these new materials displayed 1054-nm laser-damage thresholds that compare very favorably to those of previously tested coumarin photoalignment materials (30 to 60 J/cm2).

  8. New approach for high-peak power lasing based on epitaxially integrated AlGaAs/GaAs laser-thyristor heterostructure

    NASA Astrophysics Data System (ADS)

    Slipchenko, Sergey; Podoskin, Alexsandr; Rozhkov, Alexsandr; Pikhtin, Nikita; Tarasov, Il`ya; Bagaev, Timur; Ladugin, Maxim; Marmalyuk, Alexsandr; Padalitsa, Anatolii; Simakov, Vladimir

    2015-03-01

    A new approach to generation of high optical peak power by epitaxially and functionally integrated high-speed highpower current switch and laser heterostructure (so-called laser-thyristor) has been developed. This approach makes it possible to reduce the loss in external electrical connections, which is particularly important for the short-pulse highamplitude current pumping. In addition, it considerably simplifies the fabrication technology of pulsed laser sources as a commercial product and allows stacking of multiple-element systems. The epitaxially integrated AlGaAs/GaAs heterostructure of low-voltage laser-thyristor has been studied and optimized for generation of high-power pulses at a 900-nm wavelength. It is shown that the incomplete switch-on of the laserthyristor in the initial stage and the nonlinear dynamics of the emitted laser power are due to the insufficient efficiency of the vertical optical feedback in the epitaxially integrated heterostructure. Optimization of the composition and the interband absorption spectra of transistor base layers makes it possible to substantially raise the efficiency of control signals due to the rise in the photogeneration speed. Experimental laser-thyristor samples with a 200-μm aperture have been fabricated and studied. The maximum static blocking voltage does not exceed 20 V. It is shown that the generated laser pulses have a perfect bell-like shape without any indications of a nonlinear dynamics. This confirms that the changes introduced into the heterostructure design provide a sufficient efficiency of photogeneration of the control signal. As a result, the maximum optical peak power reaches 40 and 8 W at FWHM pulse durations of 95 and 13 ns, respectively. An analysis of the potential dynamics has shown that the heterostructure provides pumping of the active layer with up to 90-A pulses.

  9. All-fiber quasi-continuous wave supercontinuum generation in single-mode high-nonlinear fiber pumped by submicrosecond pulse with low peak power.

    PubMed

    Gao, Weiqing; Liao, Meisong; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake

    2012-05-01

    We demonstrate quasi-continuous wave supercontinuum generation in a single-mode high-nonlinear fiber (HNLF) in 1.55 μm band, which is pumped by the amplified passively Q-switched submicrosecond pulse. The pump wavelength is in the normal dispersion region of HNLF and near to the zero-dispersion wavelength. The broad SC spectral range from 1200 to 2260 nm is obtained with the low pump peak power of 17.8 W. The 20 dB bandwidth of 922 nm from 1285 to 2207 nm is obtained with the assumption that the peak near 1560 nm is filtered. The spectrum density for the 20 dB bandwidth is from -27.5 to -7.5 dbm/nm. PMID:22614410

  10. High-peak-power pulsed operation of 2.0 μm (AlGaIn)(AsSb) quantum-well ridge waveguide diode lasers

    NASA Astrophysics Data System (ADS)

    Eichhorn, M.; Rattunde, M.; Schmitz, J.; Kaufel, G.; Wagner, J.

    2006-03-01

    We have characterized 2.0 μm (aluminium-gallium-indium)(arsenide-antimonide) quantum-well diode lasers in pulsed operation (20-60 ns). A peak power of 1.25 W could be achieved. The near-field distribution on the output facet and the spectral output have been analyzed. Single transverse mode operation can only be maintained at low pulse currents. Above a certain current limit higher order modes occur and fluctuations between these modes have been resolved on a 10 ns time scale. The threshold for thermal and optical damage was investigated for ridge waveguide widths of 6, 8, and 16 μm. No systematic damage threshold could be determined up to current densities as high as 200 kA/cm2.

  11. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  12. Self-compression to 24 MW peak power in a fused silica solid-core fiber using a high-repetition rate thulium-based fiber laser system

    NASA Astrophysics Data System (ADS)

    Gebhardt, Martin; Gaida, Christian; Stutzki, Fabian; Hädrich, Steffen; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2016-03-01

    Complementing ultrafast thulium-doped fiber-laser systems with a subsequent nonlinear pulse compression stage can enable unique laser parameters at around 2 μm operation wavelength. Significant pulse shortening and peak power enhancement have been accomplished using a fused silica solid-core fiber. In this fiber a pulse peak power of 24 MW was achieved without catastrophic damage due to self-focusing. As compared to operation in the well-explored 1 μm wavelength region, increasing the emission wavelength to 2 μm has a twofold advantage for nonlinear compression in fused-silica solid-core fibers. This is because, on the one hand the self-focusing limit scales quadratically with the wavelength. On the other hand the dispersion properties of fused silica allow for self-compression of ultrashort pulses beyond 1.3 μm wavelength, which leads to strong spectral broadening from very compact setups without the need for external compression. Using this technique we have generated 1.1 μJpulses with 24 fs FWHM pulse duration (<4 optical cycles), 24 MW peak power and 24.6 W of average power. To the best of our knowledge, this is the highest average power obtained from any nonlinear compression experiment around 2 μm wavelength and the first demonstration of peak powers beyond 20 MW within a fused-silica solid-core fiber. This result emphasizes that thulium-doped fiber-based chirped-pulse amplification systems may outperform their ytterbiumdoped counterparts in terms of peak power due to the fourfold increase of the critical power of self-focusing.

  13. High-peak-power sub-nanosecond intracavity KTiOPO4 optical parametric oscillator pumped by a dual-loss modulated laser with acousto-optic modulator and single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Guiqiu; Li, Dechun; Li, Tao; Qiao, Wenchao; Lu, Jianren; Wang, Yonggang; Chu, Hongwei; Luan, Chao

    2016-08-01

    A high-peak-power low-repetition-rate sub-nanosecond intracavity KTiOPO4 (KTP) optical parametric oscillator (OPO) pumped by a doubly Q-switched and mode-locked (QML) YVO4/Nd:YVO4 laser with an acousto-optic modulator (AOM) and a single-walled carbon nanotube saturable absorber (SWCNT-SA) has been demonstrated. A maximum output power of 373 mW at a signal wavelength of 1570 nm was obtained. The smallest pulse width, highest pulse energy, and greatest peak power of mode-locking pulses were estimated to be 119 ps, 124 µJ, and 1.04 MW, respectively, under a maximum incident pump power of 8.3 W and an AOM repetition rate of 2 kHz. This OPO operation paves a simple way to produce eye-safe laser sources at 1570 nm with low repetition rates, small pulse widths, and high peak powers.

  14. High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier.

    PubMed

    Ding, Y; Aviles-Espinosa, R; Cataluna, M A; Nikitichev, D; Ruiz, M; Tran, M; Robert, Y; Kapsalis, A; Simos, H; Mesaritakis, C; Xu, T; Bardella, P; Rossetti, M; Krestnikov, I; Livshits, D; Montrosset, Ivo; Syvridis, D; Krakowski, M; Loza-Alvarez, P; Rafailov, E

    2012-06-18

    In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range. PMID:22714493

  15. High-peak-power optically-pumped AlGaInAs eye-safe laser with a silicon wafer as an output coupler: comparison between the stack cavity and the separate cavity.

    PubMed

    Wen, C P; Tuan, P H; Liang, H C; Tsou, C H; Su, K W; Huang, K F; Chen, Y F

    2015-11-30

    An intrinsic silicon wafer is exploited as an output coupler to develop a high-peak-power optically-pumped AlGaInAs laser at 1.52 μm. The gain chip is sandwiched with the diamond heat spreader and the silicon wafer to a stack cavity. It is experimentally confirmed that not only the output stability but also the conversion efficiency are considerably enhanced in comparison with the separate cavity in which the silicon wafer is separated from other components. The average output power obtained with the stack cavity was 2.02 W under 11.5 W average pump power, corresponding to an overall optical-to-optical efficiency of 17.5%; the slope efficiency was 18.6%. The laser operated at 100 kHz repetition rate and the pulse peak power was 0.4 kW.

  16. High-peak-power optically-pumped AlGaInAs eye-safe laser with a silicon wafer as an output coupler: comparison between the stack cavity and the separate cavity.

    PubMed

    Wen, C P; Tuan, P H; Liang, H C; Tsou, C H; Su, K W; Huang, K F; Chen, Y F

    2015-11-30

    An intrinsic silicon wafer is exploited as an output coupler to develop a high-peak-power optically-pumped AlGaInAs laser at 1.52 μm. The gain chip is sandwiched with the diamond heat spreader and the silicon wafer to a stack cavity. It is experimentally confirmed that not only the output stability but also the conversion efficiency are considerably enhanced in comparison with the separate cavity in which the silicon wafer is separated from other components. The average output power obtained with the stack cavity was 2.02 W under 11.5 W average pump power, corresponding to an overall optical-to-optical efficiency of 17.5%; the slope efficiency was 18.6%. The laser operated at 100 kHz repetition rate and the pulse peak power was 0.4 kW. PMID:26698707

  17. 1.2 MW peak power, all-solid-state picosecond laser with a microchip laser seed and a high gain single-passing bounce geometry amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Chunhua; Shen, Lifeng; Zhao, Zhiliang; Liu, Bin; Jiang, Hongbo; Chen, Jun; Liu, Chong

    2016-11-01

    A semiconductor saturable absorber mirror (SESAM) based passively Q-switched microchip Nd:YVO4 seed laser with pulse duration of 90 ps at repetition rate of 100 kHz is amplified by single-passing a Nd:YVO4 bounce amplifier with varying seed input power from 20 μW to 10 mW. The liquid pure metal greasy thermally conductive material is used to replace the traditional thin indium foil as the thermal contact material for better heat load transfer of the Nd:YVO4 bounce amplifier. Temperature distribution at the pump surface is measured by an infrared imager to compare with the numerically simulated results. A highest single-passing output power of 11.3 W is obtained for 10 mW averaged seed power, achieving a pulse peak power of ~1.25 MW and pulse energy of ~113 μJ. The beam quality is well preserved with M2 ≤1.25. The simple configuration of this bounce laser amplifier made the system flexible, robust and cost-effective, showing attractive potential for further applications.

  18. Harmonic generation at high peak power

    SciTech Connect

    Summers, M.A.; Williams, J.D.; Johnson, B.C.; Eimerl, D.

    1985-12-13

    This report reviews progress made in recent years in frequency conversion of laser radiation. By using a material such as potassium dihydrogen phosphate (KDP), intense, coherent light is made available at wavelengths unavailable from the source laser medium. Tests were performed on an array of KDP crystals at the Nova Facility. The tests revealed unexpected losses due to various non-linear effects. (JDH)

  19. Evaluation of peak power prediction equations in male basketball players.

    PubMed

    Duncan, Michael J; Lyons, Mark; Nevill, Alan M

    2008-07-01

    This study compared peak power estimated using 4 commonly used regression equations with actual peak power derived from force platform data in a group of adolescent basketball players. Twenty-five elite junior male basketball players (age, 16.5 +/- 0.5 years; mass, 74.2 +/- 11.8 kg; height, 181.8 +/- 8.1 cm) volunteered to participate in the study. Actual peak power was determined using a countermovement vertical jump on a force platform. Estimated peak power was determined using countermovement jump height and body mass. All 4 prediction equations were significantly related to actual peak power (all p < 0.01). Repeated-measures analysis of variance indicated significant differences between actual peak power and estimate peak power from all 4 prediction equations (p < 0.001). Bonferroni post hoc tests indicated that estimated peak power was significantly lower than actual peak power for all 4 prediction equations. Ratio limits of agreement for actual peak power and estimated peak power were 8% for the Harman et al. and Sayers squat jump prediction equations, 12% for the Canavan and Vescovi equation, and 6% for the Sayers countermovement jump equation. In all cases peak power was underestimated.

  20. Peak power prediction in junior basketballers: comparing linear and allometric models.

    PubMed

    Duncan, Michael J; Hankey, Joanne; Lyons, Mark; James, Rob S; Nevill, Alan M

    2013-03-01

    Equations, commonly used to predict peak power from jump height, have relied on linear additive models that are biologically unsound beyond the range of observations because of high negative intercept values. This study explored the utility of allometric multiplicative modeling to better predict peak power in adolescent basketball players. Seventy-seven elite junior basketball players (62 adolescent boys, 15 adolescent girls, age = 16.8 ± 0.8 years) performed 3 counter movement jumps (CMJs) on a force platform. Both linear and multiplicative models were then used to determine their efficacy. Four previously published linear equations were significantly associated with actual peak power (all p < 0.01), although here were significant differences between actual and estimated peak power using the SJ and CMJ equations by Sayers (both p < 0.001). Allometric modeling was used to determine an alternative biologically sound equation which was more strongly associated with (r = 0.886, p < 0.001), and not significantly different to (p > 0.05), actual peak power and predicted 77.9% of the variance in actual peak power (adjusted R = 0.779, p < 0.001). Exponents close to 1 for body mass and CMJ height indicated that peak power could also be determined from the product of body mass and CMJ height. This equation was significantly associated (r = 0.871, p < 0.001) with, and not significantly different to, actual peak power (adjusted R = 0.756, p > 0.05) and offered a more accurate estimation of peak power than previously validated linear additive models examined in this study. The allometric model determined from this study or the multiplicative model (body mass × CMJ height) provides biologically sound models to accurately estimate peak power in elite adolescent basketballers that are more accurate than equations based on linear additive models.

  1. onHigh-peak-power strain-compensated GaInAs/AlInAs quantum cascade lasers (λ ˜4.6 μm) based on a slightly diagonal active region design

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Lösch, R.; Bronner, W.; Hugger, S.; Fuchs, F.; Aidam, R.; Wagner, J.

    2008-12-01

    Employing a "slightly diagonal" active region design for the quantum cascade lasers compared to a reference sample based on the conventional vertical transition design [R. Köhler et al., Appl. Phys. Lett. 76, 1092 (2000)], we have improved the maximum operation temperature, room-temperature maximum peak power per facet, and room-temperature slope efficiency from 320 K, 200 mW, and 570 mW/A to higher than 360 K, 3.2 W, and 2200 mW/A, respectively, for the device size of 16 μm×3 mm with as-cleaved facets operated in pulsed mode.

  2. Examination of Peak Power Dependence in the UV Inactivation of Bacterial Spores

    PubMed Central

    Rice, Jane K.; Ewell, Michael

    2001-01-01

    We examine whether the rate of delivery of photons from a UV radiation source has an effect on the inactivation of spores. We directly compare the output of a high-peak-power UV laser source at 248 nm to a low-power continuous lamp source (254 nm) in the inactivation of Bacillus subtilis spores. The two UV sources differ by a factor of 108 in peak power. Contrary to previous reports, no clear differences in spore survival were observed. PMID:11722941

  3. Aerobic power and peak power of elite America's Cup sailors.

    PubMed

    Neville, Vernon; Pain, Matthew T G; Folland, Jonathan P

    2009-05-01

    Big-boat yacht racing is one of the only able bodied sporting activities where standing arm-cranking ('grinding') is the primary physical activity. However, the physiological capabilities of elite sailors for standing arm-cranking have been largely unreported. The purpose of the study was to assess aerobic parameters, VO(2peak) and onset of blood lactate (OBLA), and anaerobic performance, torque-crank velocity and power-crank velocity relationships and therefore peak power (P (max)) and optimum crank-velocity (omega(opt)), of America's Cup sailors during standing arm-cranking. Thirty-three elite professional sailors performed a step test to exhaustion, and a subset of ten grinders performed maximal 7 s isokinetic sprints at different crank velocities, using a standing arm-crank ergometer. VO(2peak) was 4.7 +/- 0.5 L/min (range 3.6-5.5 L/min) at a power output of 332 +/- 44 W (range 235-425 W). OBLA occurred at a power output of 202 +/- 31 W (61% of W(max)) and VO(2) of 3.3 +/- 0.4 L/min (71% of VO(2peak)). The torque-crank velocity relationship was linear for all participants (r = 0.9 +/- 0.1). P (max) was 1,420 +/- 37 W (range 1,192-1,617 W), and omega(opt) was 125 +/- 6 rpm. These data are among the highest upper-body anaerobic and aerobic power values reported. The unique nature of these athletes, with their high fat-free mass and specific selection and training for standing arm cranking, likely accounts for the high values. The influence of crank velocity on peak power implies that power production during on-board 'grinding' may be optimised through the use of appropriate gear-ratios and the development of efficient gear change mechanisms. PMID:19234715

  4. Aerobic power and peak power of elite America's Cup sailors.

    PubMed

    Neville, Vernon; Pain, Matthew T G; Folland, Jonathan P

    2009-05-01

    Big-boat yacht racing is one of the only able bodied sporting activities where standing arm-cranking ('grinding') is the primary physical activity. However, the physiological capabilities of elite sailors for standing arm-cranking have been largely unreported. The purpose of the study was to assess aerobic parameters, VO(2peak) and onset of blood lactate (OBLA), and anaerobic performance, torque-crank velocity and power-crank velocity relationships and therefore peak power (P (max)) and optimum crank-velocity (omega(opt)), of America's Cup sailors during standing arm-cranking. Thirty-three elite professional sailors performed a step test to exhaustion, and a subset of ten grinders performed maximal 7 s isokinetic sprints at different crank velocities, using a standing arm-crank ergometer. VO(2peak) was 4.7 +/- 0.5 L/min (range 3.6-5.5 L/min) at a power output of 332 +/- 44 W (range 235-425 W). OBLA occurred at a power output of 202 +/- 31 W (61% of W(max)) and VO(2) of 3.3 +/- 0.4 L/min (71% of VO(2peak)). The torque-crank velocity relationship was linear for all participants (r = 0.9 +/- 0.1). P (max) was 1,420 +/- 37 W (range 1,192-1,617 W), and omega(opt) was 125 +/- 6 rpm. These data are among the highest upper-body anaerobic and aerobic power values reported. The unique nature of these athletes, with their high fat-free mass and specific selection and training for standing arm cranking, likely accounts for the high values. The influence of crank velocity on peak power implies that power production during on-board 'grinding' may be optimised through the use of appropriate gear-ratios and the development of efficient gear change mechanisms.

  5. Peak power prediction of a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Yu, V. K.; Chen, D.

    2014-12-01

    The vanadium redox flow battery (VRFB) is a promising grid-scale energy storage technology, but future widespread commercialization requires a considerable reduction in capital costs. Determining the appropriate battery size for the intended power range can help minimize the amount of materials needed, thereby reducing capital costs. A physics-based model is an essential tool for predicting the power range of large scale VRFB systems to aid in the design optimization process. This paper presents a modeling framework that accounts for the effects of flow rate on the pumping losses, local mass transfer rate, and nonuniform vanadium concentration in the cell. The resulting low-order model captures battery performance accurately even at high power densities and remains computationally practical for stack-level optimization and control purposes. We first use the model to devise an optimal control strategy that maximizes battery life during discharge. Assuming optimal control is implemented, we then determine the upper efficiency limits of a given VRFB system and compare the net power and associated overpotential and pumping losses at different operating points. We also investigate the effects of varying the electrode porosity, stack temperature, and total vanadium concentration on the peak power.

  6. Single-frequency polarized eye-safe all-fiber laser with peak power over kilowatt

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2014-04-01

    An all-fiber, single-frequency, linearly polarized, high peak-power, pulsed laser at 1,540 nm for Doppler wind lidar is presented. This laser is composed of a single-frequency, narrow-linewidth external cavity diode laser, and multistage fiber amplifiers. A peak power of 1.08 kW and a pulse width of 500 ns at 10 kHz repetition rate are achieved, which is the highest peak power with a linewidth of 800 kHz in erbium-doped silica fiber to our knowledge. The beam quality of M 2 < 1.3 and a polarization extinction ratio over 16 dB are obtained. This laser will be employed in a compact long-range coherent Doppler wind lidar.

  7. High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber.

    PubMed

    Kneis, Christian; Donelan, Brenda; Manek-Hönninger, Inka; Robin, Thierry; Cadier, Benoît; Eichhorn, Marc; Kieleck, Christelle

    2016-06-01

    A single-oscillator actively Q-switched mode-locked (QML) thulium-doped silica fiber laser is presented and used to pump a ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber for mid-infrared (mid-IR) supercontinuum (SC) generation. The fiber laser provided high-peak-power levels directly from the oscillator delivering single mode-locked pulse energies up to 48 μJ, being 2-4 orders of magnitude higher than conventional continuous wave mode-locked lasers. By pumping a ZBLAN fiber specially designed for high-output-power SC generation, 7.8 W have been achieved in all spectral bands with a spectrum extending to 4.2 μm. PMID:27244410

  8. High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber.

    PubMed

    Kneis, Christian; Donelan, Brenda; Manek-Hönninger, Inka; Robin, Thierry; Cadier, Benoît; Eichhorn, Marc; Kieleck, Christelle

    2016-06-01

    A single-oscillator actively Q-switched mode-locked (QML) thulium-doped silica fiber laser is presented and used to pump a ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber for mid-infrared (mid-IR) supercontinuum (SC) generation. The fiber laser provided high-peak-power levels directly from the oscillator delivering single mode-locked pulse energies up to 48 μJ, being 2-4 orders of magnitude higher than conventional continuous wave mode-locked lasers. By pumping a ZBLAN fiber specially designed for high-output-power SC generation, 7.8 W have been achieved in all spectral bands with a spectrum extending to 4.2 μm.

  9. In vivo two-photon imaging of mouse hippocampal neurons in dentate gyrus using a light source based on a high-peak power gain-switched laser diode.

    PubMed

    Kawakami, Ryosuke; Sawada, Kazuaki; Kusama, Yuta; Fang, Yi-Cheng; Kanazawa, Shinya; Kozawa, Yuichi; Sato, Shunichi; Yokoyama, Hiroyuki; Nemoto, Tomomi

    2015-03-01

    In vivo two-photon microscopy is an advantageous technique for observing the mouse brain at high resolution. In this study, we developed a two-photon microscopy method that uses a 1064-nm gain-switched laser diode-based light source with average power above 4 W, pulse width of 7.5-picosecond, repetition rate of 10-MHz, and a high-sensitivity photomultiplier tube. Using this newly developed two-photon microscope for in vivo imaging, we were able to successfully image hippocampal neurons in the dentate gyrus and obtain panoramic views of CA1 pyramidal neurons and cerebral cortex, regardless of age of the mouse. Fine dendrites in hippocampal CA1 could be imaged with a high peak-signal-to-background ratio that could not be achieved by titanium sapphire laser excitation. Finally, our system achieved multicolor imaging with neurons and blood vessels in the hippocampal region in vivo. These results indicate that our two-photon microscopy system is suitable for investigations of various neural functions, including the morphological changes undergone by neurons during physiological phenomena. PMID:25798313

  10. In vivo two-photon imaging of mouse hippocampal neurons in dentate gyrus using a light source based on a high-peak power gain-switched laser diode

    PubMed Central

    Kawakami, Ryosuke; Sawada, Kazuaki; Kusama, Yuta; Fang, Yi-Cheng; Kanazawa, Shinya; Kozawa, Yuichi; Sato, Shunichi; Yokoyama, Hiroyuki; Nemoto, Tomomi

    2015-01-01

    In vivo two-photon microscopy is an advantageous technique for observing the mouse brain at high resolution. In this study, we developed a two-photon microscopy method that uses a 1064-nm gain-switched laser diode-based light source with average power above 4 W, pulse width of 7.5-picosecond, repetition rate of 10-MHz, and a high-sensitivity photomultiplier tube. Using this newly developed two-photon microscope for in vivo imaging, we were able to successfully image hippocampal neurons in the dentate gyrus and obtain panoramic views of CA1 pyramidal neurons and cerebral cortex, regardless of age of the mouse. Fine dendrites in hippocampal CA1 could be imaged with a high peak-signal-to-background ratio that could not be achieved by titanium sapphire laser excitation. Finally, our system achieved multicolor imaging with neurons and blood vessels in the hippocampal region in vivo. These results indicate that our two-photon microscopy system is suitable for investigations of various neural functions, including the morphological changes undergone by neurons during physiological phenomena. PMID:25798313

  11. A circuit used for peak power detecting of the laser pulse

    NASA Astrophysics Data System (ADS)

    Gou, Yongsheng; Liu, Baiyu; Bai, Yonglin; Wang, Bo; Zhu, Bingli; Bai, Xiaohong; Qin, JunJun; Xu, Peng

    2015-02-01

    Based on the principle of capacitor pre-charging, an analog pulse stretch circuit is designed for detecting peak power of narrow laser impulse. Experimental test were carried out. And it could achieve regulation accuracy of 5ps, jitter<600ps. Due to the need of different delay ranges during the practical applications, the analog pulse stretch circuit is optimized. It doesn't only meet the different adjustment ranges, but also maintains high regulation accuracy.

  12. Narrow linewidth picosecond pulsed laser with mega-watt peak power at UV wavelength

    SciTech Connect

    Liu, Yun; Huang, Chunning; Deibele, Craig Edmond

    2013-01-01

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system to generate 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser is based on a direct electro-optic modulation of a fiber laser output. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of macropulses with tunable pulse duration. The light output form the amplifier is converted to 355 nm and over 1 MW UV peak power is obtained when the laser is operating in a 5- s/10-Hz macropulse mode. The laser output has a transform limited spectrum bandwidth with a very narrow linewidth of individual laser mode. The immediate application of the laser system is the laser assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  13. Reliability of a Cycle Ergometer Peak Power Test in Running-based Team Sport Athletes: A Technical Report.

    PubMed

    Wehbe, George M; Gabbett, Tim J; Hartwig, Timothy B; Mclellan, Christopher P

    2015-07-01

    Given the importance of ensuring athletes train and compete in a nonfatigued state, reliable tests are required to regularly monitor fatigue. The purpose of this study was to investigate the reliability of a cycle ergometer to measure peak power during short maximal sprint cycle efforts in running-based team sport athletes. Fourteen professional male Australian rules footballers performed a sprint cycle protocol during 3 separate trials, with each trial separated by 7 days. The protocol consisted of a standardized warm-up, a maximal 6-second sprint cycle effort, a 1-minute active recovery, and a second maximal 6-second sprint cycle effort. Peak power was recorded as the highest power output of the 2 sprint cycle efforts. Absolute peak power (mean ± SD) was 1502 ± 202, 1498 ± 191, and 1495 ± 210 W for trials 1, 2, and 3, respectively. The mean coefficient of variation, intraclass correlation coefficient, and SE of measurement for peak power between trials was 3.0% (90% confidence intervals [CIs] = 2.5-3.8%), 0.96 (90% CIs = 0.91-0.98), and 39 W, respectively. The smallest worthwhile change for relative peak power was 6.0%, which equated to 1.03 W·kg⁻¹. The cycle ergometer sprint test protocol described in this study is highly reliable in elite Australian rules footballers and can be used to track meaningful changes in performance over time, making it a potentially useful fatigue-monitoring tool.

  14. Attenuated Increase in Maximal Force of Rat Medial Gastrocnemius Muscle after Concurrent Peak Power and Endurance Training

    PubMed Central

    Furrer, Regula; Jaspers, Richard T.; Baggerman, Hein L.; Bravenboer, Nathalie; Lips, Paul; de Haan, Arnold

    2013-01-01

    Improvement of muscle peak power and oxidative capacity are generally presumed to be mutually exclusive. However, this may not be valid by using fibre type-specific recruitment. Since rat medial gastrocnemius muscle (GM) is composed of high and low oxidative compartments which are recruited task specifically, we hypothesised that the adaptive responses to peak power training were unaffected by additional endurance training. Thirty rats were subjected to either no training (control), peak power training (PT), or both peak power and endurance training (PET), which was performed on a treadmill 5 days per week for 6 weeks. Maximal running velocity increased 13.5% throughout the training and was similar in both training groups. Only after PT, GM maximal force was 10% higher than that of the control group. In the low oxidative compartment, mRNA levels of myostatin and MuRF-1 were higher after PT as compared to those of control and PET groups, respectively. Phospho-S6 ribosomal protein levels remained unchanged, suggesting that the elevated myostatin levels after PT did not inhibit mTOR signalling. In conclusion, even by using task-specific recruitment of the compartmentalized rat GM, additional endurance training interfered with the adaptive response of peak power training and attenuated the increase in maximal force after power training. PMID:23509812

  15. Development and Production of a 201 MHz, 5.0 MW Peak Power Klystron

    SciTech Connect

    Aymar, Galen; Eisen, Edward; Stockwell, Brad; Begum, rasheda; Lenci, Steve; Eisner, Rick; Cesca, Eugene

    2016-01-01

    Communications & Power Industries LLC has designed and manufactured the VKP-8201A, a high peak power, high gain, VHF band klystron. The klystron operates at 201.25 MHz, with 5.0 MW peak output power, 34 kW average output power, and a gain of 36 dB. The klystron is designed to operate between 1.0 MW and 4.5 MW in the linear range of the transfer curve. The klystron utilizes a unique magnetic field which enables the use of a proven electron gun design with a larger electron beam requirement. Experimental and predicted performance data are compared.

  16. Pump enhanced monochromatic terahertz-wave parametric oscillator toward megawatt peak power.

    PubMed

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-10-01

    Pump enhanced optical parametric oscillation under a cavity phase matching configuration is an effective way to obtain monochromatic THz waves with high pulse energy. Numerical simulations are conducted for THz wave generations using a GaP sheet cavity. By optimizing the optical pulse duration and cavity configuration, the estimated peak power of THz waves is 4 MW at 3 THz, which corresponds to the photon conversion efficiency of η≈0.81. Our proposed scheme can generate a THz wave with high pulse energy, which is suitable for the nonlinear optical effects in the THz frequency region.

  17. Method and device for remotely monitoring an area using a low peak power optical pump

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.

    2014-07-22

    A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.

  18. Optical generation of single-cycle 10 MW peak power 100 GHz waves.

    PubMed

    Wu, Xiaojun; Calendron, Anne-Laure; Ravi, Koustuban; Zhou, Chun; Hemmer, Michael; Reichert, Fabian; Zhang, Dongfang; Cankaya, Huseyin; Zapata, Luis E; Matlis, Nicholas H; Kärtner, Franz X

    2016-09-01

    We demonstrate the generation of 100 GHz single-cycle pulses with up to 10 MW of peak power using optical rectification and broadband phase matching via the tilted pulse front (TPF) technique in lithium niobate. The optical driver is a cryogenically cooled Yb:YAG amplifier providing tens of mJ energy, ~5 ps long laser pulses. We obtain a high THz pulse energy up to 65 µJ with 31.6 MV/m peak electric field when focused close to its diffraction limit of 2.5 mm diameter. A high optical-to-THz energy conversion efficiency of 0.3% at 85 K is measured in agreement with numerical simulations. This source is of great interest for a broad range of applications, such as nonlinear THz field-matter interaction and charged particle acceleration for ultrafast electron diffraction and table-top X-ray sources. PMID:27607709

  19. Optical generation of single-cycle 10 MW peak power 100 GHz waves.

    PubMed

    Wu, Xiaojun; Calendron, Anne-Laure; Ravi, Koustuban; Zhou, Chun; Hemmer, Michael; Reichert, Fabian; Zhang, Dongfang; Cankaya, Huseyin; Zapata, Luis E; Matlis, Nicholas H; Kärtner, Franz X

    2016-09-01

    We demonstrate the generation of 100 GHz single-cycle pulses with up to 10 MW of peak power using optical rectification and broadband phase matching via the tilted pulse front (TPF) technique in lithium niobate. The optical driver is a cryogenically cooled Yb:YAG amplifier providing tens of mJ energy, ~5 ps long laser pulses. We obtain a high THz pulse energy up to 65 µJ with 31.6 MV/m peak electric field when focused close to its diffraction limit of 2.5 mm diameter. A high optical-to-THz energy conversion efficiency of 0.3% at 85 K is measured in agreement with numerical simulations. This source is of great interest for a broad range of applications, such as nonlinear THz field-matter interaction and charged particle acceleration for ultrafast electron diffraction and table-top X-ray sources.

  20. High-power picosecond laser diodes based on different methods of fast gain control for high-precision radar applications

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey; Kostamovaara, Juha; Lantratov, Vladimir; Kaluzhniy, Nikolay; Mintairov, Sergey

    2007-05-01

    Current-pumped picosecond-range laser diodes with a peak power significantly exceeding that achievable from gainswitched lasers are of major interest for a large variety of commercial applications. A group of phenomena have been explored in which the peak transient gain is efficiently controlled by a fast reduction in the pumping current. Common to all these phenomena is the fact that the peak powers of the emitted picosecond optical pulses (15-100 ps) exceed that obtainable from gain-switched laser diodes by at least an order of magnitude, although the physical reasons for the high gain and the design principles of the semiconductor structures are different. The main problem in the realization of these picosecond modes in low-cost practical systems is the high sensitivity of the operation regime to structural and circuit parameters. A related problem is the questionable reproducibility of the fabrication processes used so far. Proper development of reliable high-power picosecond transmitters will require the use of more advanced fabrication methods and further study of the effect of structural parameters on the properties of the picosecond lasing mode. In this paper we report on a record value for the power density of the picosecond lasing (50W / 30ps) obtained from a laser diode chip of width 20 μm and give a qualitative interpretation of the operating mode. Use of the MOCVD process for diode fabrication should allow reproducible technology for picosecond laser diodes to be developed.

  1. Satisfying winter peak-power demand with phased gasification

    SciTech Connect

    Hall, E.H.; Moss, T.E.; Ravikumar, R.

    1987-01-01

    The purpose of this study, commissioned by the Bonneville Power Administration, was to investigate application of this concept to the Pacific Northwest. Coal gasification combined-cycle (GCC) plants are receiving serious attention from eastern utilities. Potomac Electric (PEPCO) has engaged Fluor Technology to perform conceptual and preliminary engineering for a nominal 375-MW coal GCC power generation facility to be located in northern Montgomery County, Maryland. Other eastern utilities are engaged in site-specific investigations of satisfying future power requirements employing this alternative, which involves an environmentally superior method of using coal. Coal is combined with oxygen to produce a medium-heating-value fuel gas as an alternative to natural gas. The fuel gas, cleaned to remove sulfur compounds, is burned in gas turbine-generator sets. The hot exhaust gas is used to generate steam for additional power generation. The gasification combined cycle plant is highly efficient and has a high level of flexibility to meet power demands. This study provided background for consideration of one alternative for satisfying winter peak-load demand. The concept is feasible, depending on the timing of the installation of the gasification system, projections of the cost and the availability of natural gas, and restrictions on the use of natural gas. It has the advantage of deferring capacity addition and capital outlay until power is needed and economics are favorable.

  2. Diversity-Enabled and Power-Efficient Transceiver Designs for Peak-Power-Limited SIMO-OFDM Systems

    NASA Astrophysics Data System (ADS)

    Liu, Qijia; Baxley, RobertJ; Ma, Xiaoli; Zhou, G. Tong

    2010-12-01

    Orthogonal frequency division multiplexing (OFDM) has been widely adopted for high data rate wireless transmissions. By deploying multiple receiving antennas, single-input multiple-output- (SIMO-) OFDM can further enhance the performance with spatial diversity. However, due to the large dynamic range of OFDM signals and the nonlinear nature of analog components, it is pragmatic to model the transmitter with a peak-power constraint. A natural question to ask is whether SIMO-OFDM transmissions can still enjoy the antenna diversity in this case. In this paper, the effect of the peak-power limit on the error performance of uncoded SIMO-OFDM systems is studied. In the case that the receiver has no information about the transmitter nonlinearity, we show that full antenna diversity can still be collected by carefully designing the transmitters, while the receiver performs a maximum ratio combining (MRC) method which is implemented the same as that in the average power constrained case. On the other hand, when the receiver has perfect knowledge of the peak-power-limited transmitter nonlinearity, zero-forcing (ZF) equalizer is able to collect full antenna diversity. In addition, an iterative method on joint MRC and clipping mitigation is proposed to achieve high performance with low complexity.

  3. Variability in Laboratory vs. Field Testing of Peak Power, Torque, and Time of Peak Power Production Among Elite Bicycle Motocross Cyclists.

    PubMed

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T

    2015-09-01

    The aim of this study was to ascertain the variation in elite male bicycle motocross (BMX) cyclists' peak power, torque, and time of power production during laboratory and field-based testing. Eight elite male BMX riders volunteered for the study, and each rider completed 3 maximal sprints using both a Schoberer Rad Messtechnik (SRM) ergometer in the laboratory and a portable SRM power meter on an Olympic standard indoor BMX track. The results revealed a significantly higher peak power (p ≤ 0.001, 34 ± 9%) and reduced time of power production (p ≤ 0.001, 105 ± 24%) in the field tests when compared with laboratory-derived values. Torque was also reported to be lower in the laboratory tests but not to an accepted level of significance (p = 0.182, 6 ± 8%). These results suggest that field-based testing may be a more effective and accurate measure of a BMX rider's peak power, torque, and time of power production.

  4. Variability in Laboratory vs. Field Testing of Peak Power, Torque, and Time of Peak Power Production Among Elite Bicycle Motocross Cyclists.

    PubMed

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T

    2015-09-01

    The aim of this study was to ascertain the variation in elite male bicycle motocross (BMX) cyclists' peak power, torque, and time of power production during laboratory and field-based testing. Eight elite male BMX riders volunteered for the study, and each rider completed 3 maximal sprints using both a Schoberer Rad Messtechnik (SRM) ergometer in the laboratory and a portable SRM power meter on an Olympic standard indoor BMX track. The results revealed a significantly higher peak power (p ≤ 0.001, 34 ± 9%) and reduced time of power production (p ≤ 0.001, 105 ± 24%) in the field tests when compared with laboratory-derived values. Torque was also reported to be lower in the laboratory tests but not to an accepted level of significance (p = 0.182, 6 ± 8%). These results suggest that field-based testing may be a more effective and accurate measure of a BMX rider's peak power, torque, and time of power production. PMID:26313579

  5. Appropriate Loads for Peak-Power During Resisted Sprinting on a Non-Motorized Treadmill

    PubMed Central

    Andre, Matthew J.; Fry, Andrew C.; Lane, Michael T.

    2013-01-01

    The purpose of this study was to determine the load which allows the highest peak power for resisted sprinting on a non-motorized treadmill and to determine if other variables are related to individual differences. Thirty college students were tested for vertical jump, vertical jump peak and mean power, 10 m sprint, 20 m sprint, leg press 1 RM, leg press 1 RM relative to body weight, leg press 1 RM relative to lean body mass, leg press 1 RM power, and leg press power at 80% of 1 RM. Participants performed eight resisted sprints on a non-motorized treadmill, with increasing relative loads expressed as percent of body weight. Sprint peak power was measured for each load. Pearson correlations were used to determine if relationships between the sprint peak power load and the other variables were significant. The sprint peak power load had a mode of 35% with 73% of all participants having a relative sprint peak power load between 25–35%. Significant correlations occurred between sprint peak power load and body weight, lean body mass, vertical jump peak and mean power, leg press 1 RM, leg press 1 RM relative to lean body mass, leg press 1 RM power, and leg press power at 80% of 1 RM (r = 0.44, 0.43, 0.39, 0.37, 0.47, 0.39, 0.46, and 0.47, respectively). Larger, stronger, more powerful athletes produced peak power at a higher relative load during resisted sprinting on a non-motorized treadmill. PMID:24233103

  6. Effects of age and recovery duration on peak power output during repeated cycling sprints.

    PubMed

    Ratel, S; Bedu, M; Hennegrave, A; Doré, E; Duché, P

    2002-08-01

    The aim of the present study was to investigate the effects of age and recovery duration on the time course of cycling peak power and blood lactate concentration ([La]) during repeated bouts of short-term high-intensity exercise. Eleven prepubescent boys (9.6 +/- 0.7 yr), nine pubescent boys (15.0 +/- 0.7 yr) and ten men (20.4 +/- 0.8 yr) performed ten consecutive 10 s cycling sprints separated by either 30 s (R30), 1 min (R1), or 5 min (R5) passive recovery intervals against a friction load corresponding to 50 % of their optimal force (50 % Ffopt). Peak power produced at 50 % Ffopt (PP50) was calculated at each sprint including the flywheel inertia of the bicycle. Arterialized capillary blood samples were collected at rest and during the sprint exercises to measure the time course of [La]. In the prepubescent boys, whatever recovery intervals, PP50 remained unchanged during the ten 10 s sprint exercises. In the pubescent boys, PP50 decreased significantly by 18.5 % (p < 0.001) with R30 and by 15.3 % (p < 0.01) with R1 from the first to the tenth sprint but remained unchanged with R5. In the men, PP50 decreased respectively by 28.5 % (p < 0.001) and 11.3 % (p < 0.01) with R30 and R1 and slightly diminished with R5. For each recovery interval, the increase in blood [La] over the ten sprints was significantly lower in the prepubescent boys compared with the pubescent boys and the men. To conclude, the prepubescent boys sustained their PP50 during the ten 10 s sprint exercises with only 30 s recovery intervals. In contrast, the pubescent boys and the men needed 5 min recovery intervals. It was suggested that the faster recovery of PP50 in the prepubescent boys was due to their lower muscle glycolytic activity and their higher muscle oxidative capacity allowing a faster resynthesis in phosphocreatine. PMID:12215957

  7. Effects of age and recovery duration on peak power output during repeated cycling sprints.

    PubMed

    Ratel, S; Bedu, M; Hennegrave, A; Doré, E; Duché, P

    2002-08-01

    The aim of the present study was to investigate the effects of age and recovery duration on the time course of cycling peak power and blood lactate concentration ([La]) during repeated bouts of short-term high-intensity exercise. Eleven prepubescent boys (9.6 +/- 0.7 yr), nine pubescent boys (15.0 +/- 0.7 yr) and ten men (20.4 +/- 0.8 yr) performed ten consecutive 10 s cycling sprints separated by either 30 s (R30), 1 min (R1), or 5 min (R5) passive recovery intervals against a friction load corresponding to 50 % of their optimal force (50 % Ffopt). Peak power produced at 50 % Ffopt (PP50) was calculated at each sprint including the flywheel inertia of the bicycle. Arterialized capillary blood samples were collected at rest and during the sprint exercises to measure the time course of [La]. In the prepubescent boys, whatever recovery intervals, PP50 remained unchanged during the ten 10 s sprint exercises. In the pubescent boys, PP50 decreased significantly by 18.5 % (p < 0.001) with R30 and by 15.3 % (p < 0.01) with R1 from the first to the tenth sprint but remained unchanged with R5. In the men, PP50 decreased respectively by 28.5 % (p < 0.001) and 11.3 % (p < 0.01) with R30 and R1 and slightly diminished with R5. For each recovery interval, the increase in blood [La] over the ten sprints was significantly lower in the prepubescent boys compared with the pubescent boys and the men. To conclude, the prepubescent boys sustained their PP50 during the ten 10 s sprint exercises with only 30 s recovery intervals. In contrast, the pubescent boys and the men needed 5 min recovery intervals. It was suggested that the faster recovery of PP50 in the prepubescent boys was due to their lower muscle glycolytic activity and their higher muscle oxidative capacity allowing a faster resynthesis in phosphocreatine.

  8. Operation of Direct Drive Systems: Experiments in Peak Power Tracking and Multi-Thruster Control

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Brophy, John R.

    2013-01-01

    Direct-drive power and propulsion systems have the potential to significantly reduce the mass of high-power solar electric propulsion spacecraft, among other advantages. Recent experimental direct-drive work has significantly mitigated or retired the technical risks associated with single-thruster operation, so attention is now moving toward systems-level areas of interest. One of those areas is the use of a Hall thruster system as a peak power tracker to fully use the available power from a solar array. A simple and elegant control based on the incremental conductance method, enhanced by combining it with the unique properties of Hall thruster systems, is derived here and it is shown to track peak solar array power very well. Another area of interest is multi-thruster operation and control. Dualthruster operation was investigated in a parallel electrical configuration, with both thrusters operating from discharge power provided by a single solar array. Startup and shutdown sequences are discussed, and it is shown that multi-thruster operation and control is as simple as for a single thruster. Some system architectures require operation of multiple cathodes while they are electrically connected together. Four different methods to control the discharge current emitted by individual cathodes in this configuration are investigated, with cathode flow rate control appearing to be advantageous. Dual-parallel thruster operation with equal cathode current sharing at total powers up to 10 kW is presented.

  9. Tm-based fiber-laser system with more than 200  MW peak power.

    PubMed

    Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jansen, Florian; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2015-01-01

    Tm-based fiber-laser systems are an attractive concept for the development of high-performance laser sources in the spectral region around 2 μm wavelength. Here we present a system delivering a pulse-peak power higher than 200 MW in combination with 24 W average power and 120 μJ pulse energy. Key components enabling this performance level are a Tm-doped large-pitch fiber with a mode-field diameter of 65 μm, highly efficient dielectric gratings, and a Tm-based fiber oscillator operating in the stretched-pulse regime. PMID:25531595

  10. Validation of a six second cycle test for the determination of peak power output.

    PubMed

    Herbert, Peter; Sculthorpe, Nick; Baker, Julien S; Grace, Fergal M

    2015-01-01

    The present study examined the agreement between peak power output during a standard Wingate anaerobic test (WAnT) and a six second 'all-out' test on a Wattbike Pro. Nine males (40.7 ± 19.4 yrs, 1.76 ± 0.03 cm, 82.11 ± 8.9 kg) underwent three testing protocols on separate days. The protocols consisted 30 second WAnT (WAnT30), a modified WAnT over 6 seconds (WAnT6) and a 6 second peak power test (PPT6). PPT6 was correlated with WAnT30 (r = 0.9; p < 0.001) with a mean bias of 105 W. PPT6 correlated with WAnT6 (r = 0.95; p < 0.001) with a mean bias of 74 W. WAnT6 correlated with WAnT30 (r = 0.99; p < 0.001) with a mean bias of 31 W. There was no difference in time to peak power between any trial. PPT6 resulted in significantly greater power outputs than in WAnT30 and WAnT6 (p < 0.001). We conclude that PPT6 and WAnT6 are valid measures of peak power output compared with WAnT30. This identifies that PPT6 and WAnT6 as short duration 'all-out' tests that have practical applications for researchers and coaches who wish to assess peak power output without the fatiguing effects associated with a standard WAnT.

  11. Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test.

    PubMed

    Coso, Juan Del; Mora-Rodríguez, Ricardo

    2006-06-01

    To validate the measurement of peak power output (PPO) using a short cycling sprint test (inertial load (IL) test), we compare it to the widely accepted Wingate anaerobic test (WAnT). Fifteen healthy, young, active subjects performed 2 experimental trials. In each trial, subjects warmed up and sprinted 4 times for the IL test. After recovery, they cycled for 30 s at maximum capacity for the WAnT. The experimental trial was replicated 3 d later to test for reliability. Inter- and intra-day PPO measured with the IL test was very reliable (R(1) = 0.99 and R(1) = 0.94, respectively). The correlation between the IL and WAnT was highly significant (r = 0.82; P < 0.001), although the absolute PPO values were markedly higher for the IL test (1268 +/- 41 W vs. 786 +/- 27 W; P < 0.001). In conclusion, cycling PPO can be validly assessed with the IL test. The higher PPO attained with an IL test could be related to better identification of peak power, since both velocity and resistance are free to vary during the sprint in comparison with the WAnT, where resistance is fixed. Owing to the short duration of the sprint (4 s) and high intra-day reliability despite a short recovery time (180 s), the IL test is optimal for repeated measurements of anaerobic performance.

  12. Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai

    2016-10-01

    To evaluate the continuous and instantaneous load capability of a battery, this paper describes a joint estimator for state-of-charge (SOC) and state-of-function (SOF) of lithium-ion batteries (LIB) based on Kalman filter (KF). The SOC is a widely used index for remain useful capacity left in a battery. The SOF represents the peak power capability of the battery. It can be determined by real-time SOC estimation and terminal voltage prediction, which can be derived from impedance parameters. However, the open-circuit-voltage (OCV) of LiFePO4 is highly nonlinear with SOC, which leads to the difficulties in SOC estimation. To solve these problems, this paper proposed an onboard SOC estimation method. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery, where the OCV is regarded as a linearized function of SOC. Then, the system states are estimated based on the KF. Besides, the factors that influence peak power capability are analyzed according to statistical data. Finally, the performance of the proposed methodology is demonstrated by experiments conducted on a LiFePO4 LIBs under different operating currents and temperatures. Experimental results indicate that the proposed approach is suitable for battery onboard SOC and SOF estimation.

  13. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    SciTech Connect

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype, we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.

  14. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    DOE PAGES

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype,more » we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.« less

  15. Push-pull converter with energy saving circuit for protecting switching transistors from peak power stress

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1981-01-01

    In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.

  16. Upper body contribution during leg cycling peak power in teenage boys and girls.

    PubMed

    Doré, Eric; Baker, Julian Steven; Jammes, Alban; Graham, Mike; New, Karl; Van Praagh, Emmanuel

    2006-01-01

    This study investigated gender differences in upper-body contribution to cycle muscle power in 23 adolescents. All subjects performed two 5-s and one 20-s cycling sprint, using two protocols: with handgrip (WG) and without handgrip (WOG). Maximal handgrip strength was assessed for each individual. Absolute peak and mean cycling power was corrected for total fat-free mass (FFM) and for lean leg volume (LLV). Males showed higher cycling performance than females. Peak power and 20-s mean power (flywheel inertia included), but not optimal velocity, were higher WG than WOG. Especially for peak power, absolute differences between both protocols were higher in males than in females, and were significantly related to handgrip strength. The significant contribution of the upper body suggested that, for standardisation of cycle muscle power, total FFM is a more relevant variable compared with LLV. Furthermore, in adolescents, the higher contribution of the upper body musculature in males partly explained gender differences in peak power. PMID:17214402

  17. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  18. Fast vortex core switching at high temperatures

    NASA Astrophysics Data System (ADS)

    Lebecki, Kristof M.; Legut, Dominik

    2016-08-01

    Fast ferromagnetic vortex core switching is investigated employing micromagnetic simulations. Short pulse (in the range of a few hundreds of picoseconds) of an in-plane oscillating magnetic field is applied to a thin disk (diameter 200 nm and thickness 20 nm) with material parameters resembling permalloy. Fundamental frequency of this excitation field is close to the resonance with the material spin waves. Thermal effects are introduced by replacing the Landau-Lifshitz-Gilbert equation by the Landau-Lifshitz-Bloch equation. Temperature from 300 K to 850 K is considered, just below the Curie temperature TC = 870 K. Calculations are done within the OOMMF simulation framework. We find that: (i) Period of the field necessary to switch the vortex increases approximately from 141 ps at 300 K to 572 ps for the high-temperature limit. (ii) Amplitude of the field necessary to switch the vortex core decreases roughly from 60 mT to 15 mT - even at high temperatures this amplitude is nonzero, contrary to the case of quasi-static switching. (iii) Time span between the excitation and switching (switching time) seems not to depend on the temperature. (iv) Duration of the switching itself (movement of the Bloch point in the sample) increases from a few picoseconds at low temperatures to tens of picoseconds at high temperatures.

  19. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    NASA Technical Reports Server (NTRS)

    Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection

  20. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power.

    PubMed

    Gaida, C; Gebhardt, M; Stutzki, F; Jauregui, C; Limpert, J; Tünnermann, A

    2016-09-01

    Thulium-doped fibers with ultra large mode-field areas offer new opportunities for the power scaling of mid-IR ultrashort-pulse laser sources. Here, we present a laser system delivering a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. This performance level has been achieved by optimizing the pulse shape, reducing the overlap with atmospheric absorption lines, and incorporating a climate chamber to reduce the humidity of the atmospheric environment. PMID:27607990

  1. ATF CO{sub 2} laser system upgrade to terawatt peak power

    SciTech Connect

    Pogorelsky, I.V.

    1995-05-01

    This document describes the proposed upgrade of the 10-GW peak power 50-ps CO{sub 2} laser presently operational at the ATF to the 1 TW level at a shorter, 3--10 ps, pulse duration. The approach adopted is based on state of the art CO{sub 2} laser technology and an experience gained in the course of the ATF laser design and application for the laser accelerator experiment. The proposed upgrade is an economical way for the ATF to become in a short time among leading users facilities available for next generation ({ge} 100 MeV) laser accelerator studies.

  2. On Point Designs for High Gain Fast Ignition

    SciTech Connect

    Key, M; Akli, K; Beg, F; Betti, R; Clark, D S; Chen, S N; Freeman, R R; Hansen, S; Hatchett, S P; Hey, D; King, J A; Kemp, A J; Lasinski, B F; Langdon, B; Ma, T; MacKinnon, A J; Meyerhofer, D; Patel, P K; Pasley, J; Phillips, T; Stephens, R B; Stoeckl, C; Foord, M; Tabak, M; Theobald, W; Storm, M; Town, R J; Wilks, S C; VanWoerkom, L; Wei, M S; Weber, R; Zhang, B

    2007-09-27

    Fast ignition research has reached the stage where point designs are becoming crucial to the identification of key issues and the development of projects to demonstrate high gain fast ignition. The status of point designs for cone coupled electron fast ignition and some of the issues they highlight are discussed.

  3. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

  4. Study and development of 22 kW peak power fiber coupled short pulse Nd:YAG laser for cleaning applications

    NASA Astrophysics Data System (ADS)

    Choubey, Ambar; Vishwakarma, S. C.; Vachhani, D. M.; Singh, Ravindra; Misra, Pushkar; Jain, R. K.; Arya, R.; Upadhyaya, B. N.; Oak, S. M.

    2014-11-01

    Free running short pulse Nd:YAG laser of microsecond pulse duration and high peak power has a unique capability to ablate material from the surface without heat propagation into the bulk. Applications of short pulse Nd:YAG lasers include cleaning and restoration of marble, stones, and a variety of metals for conservation. A study on the development of high peak power short pulses from Nd:YAG laser along with its cleaning and conservation applications has been performed. A pulse energy of 1.25 J with 55 μs pulse duration and a maximum peak power of 22 kW has been achieved. Laser beam has an M2 value of ~28 and a pulse-to-pulse stability of ±2.5%. A lower value of M2 means a better beam quality of the laser in multimode operation. A top hat spatial profile of the laser beam was achieved at the exit end of 200 μm core diameter optical fiber, which is desirable for uniform cleaning. This laser system has been evaluated for efficient cleaning of surface contaminations on marble, zircaloy, and inconel materials for conservation with cleaning efficiency as high as 98%. Laser's cleaning quality and efficiency have been analysed by using a microscope, a scanning electron microscope (SEM), and X-ray photon spectroscopy (XPS) measurements.

  5. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    PubMed Central

    Armstrong, G; Carlier, S; Fukamachi, K; Thomas, J; Marwick, T

    1999-01-01

    OBJECTIVES—To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity.
DESIGN—Development of a simplified method of measurement and observational study.
SETTING—Tertiary referral centre for cardiothoracic disease.
SUBJECTS—For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls).
METHODS—In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Δ SPP) was compared with maximum oxygen uptake (V̇O2max), measured from expired gas analysis.
RESULTS—SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, V̇O2max correlated with Δ SPP (r = 0.78) better than Δ ejection fraction (r = 0.18) and Δ rate-pressure product (r = 0.59).
CONCLUSIONS—The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake

  6. Giant-pulse Nd:YVO4 microchip laser with MW-level peak power by emission cross-sectional control.

    PubMed

    Kausas, Arvydas; Taira, Takunori

    2016-02-22

    We present a giant-pulse generation laser realized by the emission cross-section control of a gain medium in a passively Q-switched Nd:YVO4 microchip laser with a Cr4+:YAG saturable absorber. Up to 1.17 MW peak power and 1.03 mJ pulse energy were obtained with a 100 Hz repetition rate. By combining the Nd:YVO4 crystal with a Sapphire plate, lower temperature difference between a pump region in the gain crystal and a crystal holder was obtained which helped to keep the cavity in stability zone at elevated temperatures and allowed the achievement of the high peak power for this laser system. PMID:26906978

  7. Wavelength stabilized ns-MOPA diode laser system with 16 W peak power and a spectral line width below 10 pm

    NASA Astrophysics Data System (ADS)

    Nghiem Vu, Thi; Klehr, Andreas; Sumpf, Bernd; Wenzel, Hans; Erbert, Götz; Tränkle, Günther

    2014-03-01

    A master oscillator power amplifier system for the generation of ns-pulses with high peak power, stabilized wavelength and narrow spectral line width will be presented. The master oscillator is a distributed feedback (DFB) ridge waveguide (RW) laser. The tapered amplifier consists of three RW sections and one flared gain-guided section. The DFB laser is operated in continuous wave mode and emits at 1064 nm with a spectral line width below 10 pm. One RW section of the amplifier acts as an optical gate for pulse selection. The tapered section amplifies the generated optical pulse. By adjusting the delay time between the current pulses injected into the picker and into the tapered section, respectively, the power of the amplified spontaneous emission was reduced below 1% of the average laser power. For an optical pulse length of 2 ns, a peak power of 16 W was obtained. A side mode suppression ratio better than 46 dB was observed.

  8. Constant peak-power single-frequency linearly-polarized all-fiber laser for coherent detection based on closed-loop feedback technology

    NASA Astrophysics Data System (ADS)

    Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui

    2015-10-01

    In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.

  9. Effect of Load on Peak Power of the Bar, Body and System during the Deadlift.

    PubMed

    Blatnik, Justin A; Goodman, Courtney L; Capps, Christopher R; Awelewa, Olumide O; Triplett, Travis N; Erickson, Travis M; McBride, Jeffery M

    2014-09-01

    The purpose of this investigation was to examine how load would affect peak power (PP) of the bar, body and system (bar + body) during the deadlift. Eight healthy males (age = 22.00 ± 2.38 years; height = 1.80 ± 0.05 m; body mass = 88.97 ± 14.88 kg; deadlift one repetition maximum [1RM] = 203.44 ± 21.59 kg, 1RM/BM = 2.32 ± 0.31) with a minimum of 2 years' resistance training experience and a deadlift 1RM over 1.5 times their bodyweight participated in the investigation. During the first session, anthropometric data were recorded and a 1RM deadlift was obtained from the participants. During the second session, participants performed two repetitions at intensities of 30, 40, 50, 60, 70, 80 and 90% of their 1RM in a randomized order. Three-dimensional videography with a force plate was used for data collection and analysis. Peak force (PF), peak velocity (PV), an d PP were calculated for the bar, body, and system (bar + body) during the deadlift. PP occurred at 50%, 30%, and 70% of 1RM for the bar, body, and system, respectively. The optimal loading for the deadlift exercise may vary depending on the desired stimulus and whether the bar, body, or system variables are of most interest. Key pointsPeak power of the bar, body and system vary depending upon load.Loading should be chosen according to desired training effect, with considerations for sport specificity.Additional exercises should be investigated concerning the effect of various loads on power. PMID:25177175

  10. Effect of Load on Peak Power of the Bar, Body and System during the Deadlift

    PubMed Central

    Blatnik, Justin A.; Goodman, Courtney L.; Capps, Christopher R.; Awelewa, Olumide O.; Triplett, Travis N.; Erickson, Travis M.; McBride, Jeffery M.

    2014-01-01

    The purpose of this investigation was to examine how load would affect peak power (PP) of the bar, body and system (bar + body) during the deadlift. Eight healthy males (age = 22.00 ± 2.38 years; height = 1.80 ± 0.05 m; body mass = 88.97 ± 14.88 kg; deadlift one repetition maximum [1RM] = 203.44 ± 21.59 kg, 1RM/BM = 2.32 ± 0.31) with a minimum of 2 years’ resistance training experience and a deadlift 1RM over 1.5 times their bodyweight participated in the investigation. During the first session, anthropometric data were recorded and a 1RM deadlift was obtained from the participants. During the second session, participants performed two repetitions at intensities of 30, 40, 50, 60, 70, 80 and 90% of their 1RM in a randomized order. Three-dimensional videography with a force plate was used for data collection and analysis. Peak force (PF), peak velocity (PV), an d PP were calculated for the bar, body, and system (bar + body) during the deadlift. PP occurred at 50%, 30%, and 70% of 1RM for the bar, body, and system, respectively. The optimal loading for the deadlift exercise may vary depending on the desired stimulus and whether the bar, body, or system variables are of most interest. Key points Peak power of the bar, body and system vary depending upon load. Loading should be chosen according to desired training effect, with considerations for sport specificity. Additional exercises should be investigated concerning the effect of various loads on power. PMID:25177175

  11. Fast Faraday Cup With High Bandwidth

    SciTech Connect

    Deibele, Craig E

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  12. High power fast ramping power supplies

    SciTech Connect

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  13. Eye-safe single-frequency single-mode polarized all-fiber pulsed laser with peak power of 361  W.

    PubMed

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Zhu, Xiaopeng; Yang, Yan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2014-04-10

    An all-fiber, single-frequency, single-mode linearly polarized, high peak power pulsed laser at 1540 nm for coherent Doppler wind lidar is demonstrated. A narrow-linewidth seed laser is pulse modulated by an acousto-optic modulator and then amplified by two-stage cascade amplifiers. An 0.8 m long erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber of a power amplifier, and longitudinally varied strains are applied on the gain fiber to realize approximately 3.4 times enhancement of the stimulated Brillouin scattering threshold. Peak power of 361 W pulse width of 200 ns at 10 kHz repetition rate is achieved with transform-limited linewidth and diffraction-limited beam quality. To the best of our knowledge, it is the highest peak power of an eye-safe, single-mode narrow-linewidth pulsed fiber laser based on 10 μm core diameter silica fiber.

  14. Optimization of peak power of doubly Q-switched lasers with both an acousto-optic modulator and a Cr4+-doped saturable absorber

    SciTech Connect

    Li Dechun; Zhao Shengzhi; Li Guiqiu; Yang Kejian

    2006-08-01

    A doubly Q-switched laser can obtain a shorter pulse with a stable repetition rate and high pulse peak power, which has been experimentally proved. By taking into account the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density as well as the influence of the acousto-optic (AO) Q switch, we introduce the coupled rate equations for a doubly Q-switched laser with both an AO modulator and a Cr4+-doped saturable absorber. These coupled rate equations are solved numerically. The key parameters of an optimally coupled doubly Q-switched laser are determined based on maximizing the peak power, which include the optimal normalized coupling parameter, the optimal normalized saturable absorber parameters, and the normalized parameters of the AO Q switch. The optimal normalized peak power, the corresponding normalized energy, and the normalized pulse width are also given, and a group of general curves are generated for the first time to our knowledge. The curves can give us a good understanding of the dependence of the optimal key parameters on the parameters of the gain medium, the saturable absorber, the AO Q switch, the resonator, and the spatial distributions of the intracavity photon density. The optimal calculations for a diode-pumped Nd3+:YVO4 laser with both an AO modulator and a Cr4+:YAG saturable absorber are presented to demonstrate the use of the curves and the related formulas.

  15. Megawatt-level peak-power from a passively Q-switched hybrid fiber-bulk amplifier and its applications

    NASA Astrophysics Data System (ADS)

    Reiser, Axel; Bdzoch, Juraj; Höfer, Sven; Scholz-Riecke, Sina; Seitz, Daniel; Kugler, Nicolas; Genter, Peter

    2016-03-01

    A novel laser system with optical parameters that fill the gap between Q-switched and modelocked lasers has been developed. It consists of a high gain hybrid fiber-bulk amplifier seeded by a low power SESAM Q-switched oscillator. The mW level output power of the seed oscillator is preamplified by a single mode fiber which is limited by SRS effects. The final amplification stage is realized by a longitudinal pumped Nd:YVO4 crystal in a double pass setup. This MOPA configuration delivers sub-300ps pulses at repetition rates up to 1 MHz with an output power exceeding 60W. Nonlinear frequency conversion to 532nm and 355nm is achieved with efficiencies of >75% and >45%, respectively. Due to the high peak power, high repetition rate and high beam quality of this system, applications formerly only addressable at lower pulse repetition frequencies or with complex modelocked laser systems are now possible with high speed and lower cost of ownership. Application results that take benefit from these new laser parameters will be shown. Furthermore, the reduction of the pulse duration to sub-100ps and power scaling to output powers <100W by the use of the Innoslab concept are being presented.

  16. Cycling peak power in obese and lean 6- to 8-year-old girls and boys.

    PubMed

    Aucouturier, Julien; Lazaar, Nordine; Doré, Eric; Meyer, Martine; Ratel, Sebastien; Duché, Pascale

    2007-06-01

    The purpose of this study was to investigate the possible effect of the difference in percentage body fat (%BF) and fat-free mass (FFM) on cycling peak power (CPP) in 6- to 8-year-old obese and lean untrained girls and boys. Obese (35 girls, 35 boys) and lean (35 girls, 35 boys) children were measured for obesity, %BF, calculated from skinfold measurements. FFM was calculated as body mass (BM) minus body fat. A force-velocity test on a cycle ergometer was used to measure CPP. CPP was related to anthropometric variables using standard and allometric models. CPP in absolute terms was higher in obese children than in lean children irrespective of gender. BM-related CPP was significantly lower in obese children than in lean ones, whereas no effect of obesity appeared on FFM-related CPP. Velocity at CPP (Vopt) was significantly lower and force at CPP (Fopt) was significantly higher in girls than in boys. Muscle power production was unaffected by obesity in children. Low BM-related CPP could explain the difficulty of taking up physical activities that are body-mass related in obese children. Gender difference for Vopt and Fopt shows that girls and boys may have different maturation patterns affecting CPP. PMID:17510670

  17. Biological maturity-associated variance in peak power output and momentum in academy rugby union players.

    PubMed

    Howard, Sean M A; Cumming, Sean P; Atkinson, Mark; Malina, Robert M

    2016-11-01

    The study aimed to evaluate the mediating effect of biological maturation on anthropometrical measurements, performance indicators and subsequent selection in a group of academy rugby union players. Fifty-one male players 14-17 years of age were assessed for height, weight and BMI, and percentage of predicted mature status attained at the time of observation was used as an indicator of maturity status. Following this, initial sprint velocity (ISV), Wattbike peak power output (PPO) and initial sprint momentum (ISM) were assessed. A bias towards on-time (n = 44) and early (n = 7) maturers was evident in the total sample and magnified with age cohort. Relative to UK reference values, weight and height were above the 90th and 75th centiles, respectively. Significant (p ≤ .01) correlations were observed between maturity status and BMI (r = .48), weight (r = .63) and height (r = .48). Regression analysis (controlling for age) revealed that maturity status and height explained 68% of ISM variance; however, including BMI in the model attenuated the influence of maturity status below statistical significance (p = .72). Height and BMI explained 51% of PPO variance, while no initial significant predictors were identified for ISV. The sample consisted of players who were on-time and early in maturation with no late maturers represented. This was attributable, in part, to the mediating effect of maturation on body size, which, in turn, predicted performance variables. PMID:27485020

  18. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    PubMed

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-01

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  19. Local oscillator chain for 1.55 to 1.75 THz with 100-(mu)W peak power

    NASA Technical Reports Server (NTRS)

    Maestrini, Alain; Ward, John S.; Javadi, Hamid; Tripon-Canseliet, Charlotte; Gill, John; Chattopadhyay, Goutam; Schlecht, Erich; Mehdi, Imran

    2005-01-01

    We report on the design and performance of a fix-tuned x2x 3x 3 frequency multiplier chain that covers 1.55-1.75 THz. The chain is nominally pumped with 100 mW at W-band. At 120 K the measured output power is larger than 4 (mu)W across the band with a peak power of 100 (mu) W at 1.665 THz. A similar chain operated at room temperature produced a peak power of 21 (mu)W. These power levels now make it possible to deploy multipixel heterodyne imaging arrays in this frequency range.

  20. 1  MW peak-power subpicosecond optical pulse source based on a gain-switched laser diode.

    PubMed

    Fang, Yi-Cheng; Chaki, Tomohiro; Hung, Jui-Hung; Yamada, Hirohito; Yokoyama, Hiroyuki

    2016-09-01

    We have generated optical pulses of 1.2 MW peak power and 0.6 ps duration using a 1060 nm band gain-switched laser diode pulse oscillator. Optical pulses are amplified by three-stage ytterbium-doped fiber amplifiers, and remarkable reductions of amplified spontaneous emission noise and temporal duration have been accomplished based on self-phase modulation in the middle-stage amplifier. After the main amplifier, optical pulses were temporally compressed by a grating pair, and this enabled generation of subpicosecond optical pulses with over 1 MW peak power. PMID:27607964

  1. Relationships between match activities and peak power output and Creatine Kinase responses to professional reserve team soccer match-play.

    PubMed

    Russell, M; Sparkes, W; Northeast, J; Cook, C J; Bracken, R M; Kilduff, L P

    2016-02-01

    The specific movement demands of soccer that are linked to post-match recovery and readiness to train are unclear. Therefore, we examined the relationship between Global Positioning System (GPS) variables and the change (Δ; from baseline) in Creatine Kinase (CK) concentrations and peak power output (PPO; during the countermovement jump) at 24h and 48h post-match. Fifteen English Premier League reserve team players were examined over 1-4 matches. Measurements of CK and PPO were taken before (24h prior to match-play) and after (+24h and +48h) each game during which movement demands were quantified using 10Hz GPS data. High intensity distance covered (r=0.386, p=0.029; r=-0.349; p=0.050), high intensity distance covered⋅min(-1) (r=0.365, p=0.040; r=-0.364, p=0.040), high speed running distance (r=0.363, p=0.041; r=-0.360, p=0.043) and the number of sprints⋅min(-1) (r=0.410, p=0.020; r=-0.368, p=0.038) were significantly related to ΔCK and ΔPPO at +24h post-match, respectively. No relationships were observed between any match variables and ΔCK and ΔPPO after +48h of recovery. These findings highlight that high intensity match activities are related to ΔCK and ΔPPO in the 24h, but not 48h, following soccer match-play. Such information is likely of interest to those responsible for the design of soccer player's training schedules in the days following a match. PMID:26615476

  2. Fast-melting tablets based on highly plastic granules.

    PubMed

    Fu, Yourong; Jeong, Seong Hoon; Park, Kinam

    2005-12-01

    Highly plastic granules that can be compressed into tablets at low pressure were developed to make fast-melting tablets (FMTs) by compression method. The highly plastic granules are composed of three components: a plastic material, a material enhancing water penetration, and a wet binder. One of the unique properties of the highly plastic granules is that they maintain a porous structure even after compression into tablets. The porous and plastic nature of the granules allows fast absorption of water into the compressed tablet for fast melting/dissolution of the tablet. The prepared tablets possess tablet strength and friability that are suitable for multi-tablet packages. The three-component highly plastic granules provide an effective way of making FMTs by compression.

  3. Highly accurate fast lung CT registration

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Heldmann, Stefan; Kipshagen, Till; Fischer, Bernd

    2013-03-01

    Lung registration in thoracic CT scans has received much attention in the medical imaging community. Possible applications range from follow-up analysis, motion correction for radiation therapy, monitoring of air flow and pulmonary function to lung elasticity analysis. In a clinical environment, runtime is always a critical issue, ruling out quite a few excellent registration approaches. In this paper, a highly efficient variational lung registration method based on minimizing the normalized gradient fields distance measure with curvature regularization is presented. The method ensures diffeomorphic deformations by an additional volume regularization. Supplemental user knowledge, like a segmentation of the lungs, may be incorporated as well. The accuracy of our method was evaluated on 40 test cases from clinical routine. In the EMPIRE10 lung registration challenge, our scheme ranks third, with respect to various validation criteria, out of 28 algorithms with an average landmark distance of 0.72 mm. The average runtime is about 1:50 min on a standard PC, making it by far the fastest approach of the top-ranking algorithms. Additionally, the ten publicly available DIR-Lab inhale-exhale scan pairs were registered to subvoxel accuracy at computation times of only 20 seconds. Our method thus combines very attractive runtimes with state-of-the-art accuracy in a unique way.

  4. Single-frequency Raman fiber amplifier emitting 11 μj 150 W peak-power at 1645 nm for remote methane sensing applications

    NASA Astrophysics Data System (ADS)

    Benoit, Philippe; Cézard, Nicolas; Durécu, Anne; Mussot, Arnaud; Kudlinski, Alexandre; Canat, Guillaume

    2016-03-01

    Remote methane concentration measurement using a Differential Absorption Lidar system can be performed using a single-frequency pulsed laser source at 1645.55 nm. This wavelength cannot be efficiently amplified in conventional Erbium Doped Fiber Amplifier as the gain band stops around 1620 nm. We report on a single-frequency polarization-maintaining pulsed amplifier at 1645 nm relying on stimulated Raman scattering (SRS) in highly nonlinear silica fibers (HNLF). Considering that SRS converts pump photons to photons frequency-downshifted by 13.2 THz with a gain bandwidth of 2 THz, a 1545 nm pump can efficiently amplify a 1645 nm seed laser. The drawback of using a HNLF is that the single-frequency signal will also experience stimulated Brillouin scattering (SBS) through its amplification. This issue has been partially solved by designing a two-stage amplification setup minimizing SBS. In the first stage, a 20 m piece of HNLF has been used so that the effective length of the amplified signal stays under SBS threshold. In the second stage, we used a 2.5 m piece of HNLF and high pump peak-power to significantly reduce the effective length, allowing more amplification. We report on generation of single-frequency 11 μJ energy pulses at 1645 nm corresponding to 150 W peak-power and 80 ns pulse duration at 20 kHz pulse repetition frequency.

  5. Fasting biases brain reward systems towards high-calorie foods.

    PubMed

    Goldstone, Anthony P; Prechtl de Hernandez, Christina G; Beaver, John D; Muhammed, Kinan; Croese, Charlotte; Bell, Gabriel; Durighel, Giuliana; Hughes, Emer; Waldman, Adam D; Frost, Gary; Bell, Jimmy D

    2009-10-01

    Nutritional state (e.g. fasted vs. fed) and different food stimuli (e.g. high-calorie vs. low-calorie, or appetizing vs. bland foods) are both recognized to change activity in brain reward systems. Using functional magnetic resonance imaging, we have studied the interaction between nutritional state and different food stimuli on brain food reward systems. We examined how blood oxygen level-dependent activity within a priori regions of interest varied while viewing pictures of high-calorie and low-calorie foods. Pictures of non-food household objects were included as control stimuli. During scanning, subjects rated the appeal of each picture. Twenty non-obese healthy adults [body mass index 22.1 +/- 0.5 kg/m(2) (mean +/- SEM), age range 19-35 years, 10 male] were scanned on two separate mornings between 11:00 and 12:00 h, once after eating a filling breakfast ('fed': 1.6 +/- 0.1 h since breakfast), and once after an overnight fast but skipping breakfast ('fasted': 15.9 +/- 0.3 h since supper) in a randomized cross-over design. Fasting selectively increased activation to pictures of high-calorie over low-calorie foods in the ventral striatum, amygdala, anterior insula, and medial and lateral orbitofrontal cortex (OFC). Furthermore, fasting enhanced the subjective appeal of high-calorie more than low-calorie foods, and the change in appeal bias towards high-calorie foods was positively correlated with medial and lateral OFC activation. These results demonstrate an interaction between homeostatic and hedonic aspects of feeding behaviour, with fasting biasing brain reward systems towards high-calorie foods.

  6. High power l-band fast phase shifter

    SciTech Connect

    Terechkine, I.; Khabiboulline, T.; Solyak, N.; /Fermilab

    2008-10-01

    Following successful testing of a concept prototype of a waveguide-based high power phase shifter, a design of a fast, high power device has been developed. The shifter uses two magnetically biased blocks of Yttrium Iron Garnet (YIG) positioned along the side walls of a rectangular waveguide. The cross-section of the waveguide is chosen to suppress unwanted RF modes that could otherwise compromise performance of the phase shifter. Static bias field in the YIG blocks is created by employing permanent magnets. Low inductance coils in the same magnetic circuit excite fast component of the bias field. Design of the device ensures effective heat extraction from the YIG blocks and penetration of the fast magnetic field inside the waveguide with minimum delay. This paper summarizes main steps in this development and gives brief description of the system.

  7. 973 nm wavelength stabilized hybrid ns-MOPA diode laser system with 15.5 W peak power and a spectral line width below 10 pm

    NASA Astrophysics Data System (ADS)

    Vu, Thi N.; Klehr, Andreas; Sumpf, Bernd; Wenzel, Hans; Erbert, Götz; Tränkle, Günther

    2014-05-01

    A master oscillator power amplifier (MOPA) system for the generation of ns-pulses with high peak power, narrow spectral line width, and stabilized emission wavelength will be presented. The master oscillator is a distributed feedback (DFB) ridge waveguide (RW) laser. The tapered amplifier consists of one RW section and one flared gain-guided section. The DFB laser is operated in continuous wave mode and emits at 973.5 nm with a spectral line width below 10 pm. The RW section of the amplifier acts as an optical gate. The tapered section amplifies the generated optical pulse. An optical peak power of 15.5 W for a pulse width of 8 ns is obtained. The emission wavelength remains constant at all output power levels of the MOPA system for a fixed current into the DFB laser. The spectral power density of the ASE is 37 dB smaller than the lasing spectral power density. The spectral line width is smaller than 10 pm, limited by the resolution of the optical spectrum analyzer.

  8. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets

    NASA Astrophysics Data System (ADS)

    Jarrott, L. C.; Wei, M. S.; McGuffey, C.; Solodov, A. A.; Theobald, W.; Qiao, B.; Stoeckl, C.; Betti, R.; Chen, H.; Delettrez, J.; Döppner, T.; Giraldez, E. M.; Glebov, V. Y.; Habara, H.; Iwawaki, T.; Key, M. H.; Luo, R. W.; Marshall, F. J.; McLean, H. S.; Mileham, C.; Patel, P. K.; Santos, J. J.; Sawada, H.; Stephens, R. B.; Yabuuchi, T.; Beg, F. N.

    2016-05-01

    Recent progress in kilojoule-scale high-intensity lasers has opened up new areas of research in radiography, laboratory astrophysics, high-energy-density physics, and fast-ignition (FI) laser fusion. FI requires efficient heating of pre-compressed high-density fuel by an intense relativistic electron beam produced from laser-matter interaction. Understanding the details of electron beam generation and transport is crucial for FI. Here we report on the first visualization of fast electron spatial energy deposition in a laser-compressed cone-in-shell FI target, facilitated by doping the shell with copper and imaging the K-shell radiation. Multi-scale simulations accompanying the experiments clearly show the location of fast electrons and reveal key parameters affecting energy coupling. The approach provides a more direct way to infer energy coupling and guide experimental designs that significantly improve the laser-to-core coupling to 7%. Our findings lay the groundwork for further improving efficiency, with 15% energy coupling predicted in FI experiments using an existing megajoule-scale laser driver.

  9. Broadband supercontinuum generation in lead silicate photonic crystal fibers employing optical pulses of 50 W peak power

    NASA Astrophysics Data System (ADS)

    Sharma, Mohit; Konar, S.

    2016-12-01

    A unique solid core lead silicate photonic crystal fiber has been designed which promises to simultaneously exhibit large optical nonlinearity and almost uniform low dispersion. At 1064 and 1550 nm wavelengths, the fiber is expected to exhibit nonlinear coefficient ~ 1420 W-1 km-1 and ~ 923 W-1 km-1, respectively, and dispersion ~ 7 ps/km/nm and ~ 40 ps/km/nm, respectively. Employing numerical simulation, we have investigated supercontinuum (SC) generation in this fiber by pumping 1 ps and 50 fs pulses. An octave-spanning SC from 680 to 1500 nm is achievable at the end of 15 cm long fiber by pumping 50 fs pulses of 50 W peak power at 1064 nm. SC spectra from 1200 to 2600 nm are also achievable by pumping 50 fs pulses of 100 W peak power at 1550 nm. The simulated SC spectra due to 50 fs pulses are attributed to self-phase modulation. A flat spectrum from 650 to 980 nm is predicted due to pumping in the normal dispersion regime at 800 nm using 1 ps pulses of 300 W peak power in a 75 cm long fiber.

  10. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    NASA Astrophysics Data System (ADS)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  11. Fast ignition integrated experiments and high-gain point design

    SciTech Connect

    Shiraga, H.; Nagatomo, H.; Theobald, W.; Solodov, A. A.; Tabak, M.

    2014-04-17

    Here, integrated fast ignition experiments were performed at ILE, Osaka, and LLE, Rochester, in which a nanosecond driver laser implodes a deuterated plastic shell in front of the tip of a hollow metal cone and an intense ultrashort-pulse laser is injected through the cone to heat the compressed plasma. Based on the initial successful results of fast electron heating of cone-in-shell targets, large-energy short-pulse laser beam lines were constructed and became operational: OMEGA-EP at Rochester and LFEX at Osaka. Neutron enhancement due to heating with a ~kJ short-pulse laser has been demonstrated in the integrated experiments at Osaka and Rochester. The neutron yields are being analyzed by comparing the experimental results with simulations. Details of the fast electron beam transport and the electron energy deposition in the imploded fuel plasma are complicated and further studies are imperative. The hydrodynamics of the implosion was studied including the interaction of the imploded core plasma with the cone tip. Theory and simulation studies are presented on the hydrodynamics of a high-gain target for a fast ignition point design.

  12. Gain-guided broad area quantum cascade lasers emitting 23.5 W peak power at room temperature.

    PubMed

    Sergachev, Ilia; Maulini, Richard; Bismuto, Alfredo; Blaser, Stephane; Gresch, Tobias; Muller, Antoine

    2016-08-22

    We report gain-guided broad area quantum cascade lasers at 4.55 μm. The devices were processed in a buried heterostructure configuration with a current injector section much narrower than the active region. They demonstrate 23.5 W peak power at a temperature of 20°C and duty cycle of 1%, while their far field consists of a single symmetric lobe centered on the optical axis. These experimental results are supported well by 2D numerical simulations of electric currents and optical fields in a device cross-section. PMID:27557186

  13. Gain-guided broad area quantum cascade lasers emitting 23.5 W peak power at room temperature.

    PubMed

    Sergachev, Ilia; Maulini, Richard; Bismuto, Alfredo; Blaser, Stephane; Gresch, Tobias; Muller, Antoine

    2016-08-22

    We report gain-guided broad area quantum cascade lasers at 4.55 μm. The devices were processed in a buried heterostructure configuration with a current injector section much narrower than the active region. They demonstrate 23.5 W peak power at a temperature of 20°C and duty cycle of 1%, while their far field consists of a single symmetric lobe centered on the optical axis. These experimental results are supported well by 2D numerical simulations of electric currents and optical fields in a device cross-section.

  14. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  15. Frequency-tunable sub-two-cycle 60-MW-peak-power free-space waveforms in the mid-infrared.

    PubMed

    Lanin, A A; Voronin, A A; Stepanov, E A; Fedotov, A B; Zheltikov, A M

    2014-11-15

    A physical scenario whereby freely propagating mid-infrared pulses can be compressed to pulse widths close to the field cycle is identified. Generation of tunable few-cycle pulses in the wavelength range from 4.2 to 6.8 μm is demonstrated at a 1-kHz repetition rate through self-focusing-assisted spectral broadening in a normally dispersive, highly nonlinear semiconductor material, followed by pulse compression in the regime of anomalous dispersion, where the dispersion-induced phase shift is finely tuned by adjusting the overall thickness of anomalously dispersive components. Sub-two-cycle pulses with a peak power up to 60 MW are generated in the range of central wavelengths tunable from 5.9 to 6.3 μm.

  16. High Bandwidth Short Stroke Rotary Fast Tool Servo

    SciTech Connect

    Montesanti, R C; Trumper, D L

    2003-08-22

    This paper presents the design and performance of a new rotary fast tool servo (FTS) capable of developing the 40 g's tool tip acceleration required to follow a 5 micron PV sinusoidal surface at 2 kHz with a planned accuracy of 50 nm, and having a full stroke of 50 micron PV at lower frequencies. Tests with de-rated power supplies have demonstrated a closed-loop unity-gain bandwidth of 2 kHz with 20 g's tool acceleration, and we expect to achieve 40 g's with supplies providing {+-} 16 Amp to the Lorentz force actuator. The use of a fast tool servo with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. Our new rotary FTS was designed to specifically accommodate fabricating prescription textured surfaces on 5 mm diameter spherical target components for High Energy Density Physics experiments on the National Ignition Facility Laser (NIF).

  17. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  18. Fast high-temperature superconductor switch for high current applications

    NASA Astrophysics Data System (ADS)

    Solovyov, Vyacheslav F.; Li, Qiang

    2013-07-01

    Reversible operation of a high current superconductor switch based on the quench of high-resistance second generation high temperature superconducting wire is demonstrated. The quench is induced by a burst of an ac field generated by an inductively coupled radio-frequency coil. The switch makes a superconducting-to-normal transition within 5 ms and also has a rapid recovery to the superconducting state. The device has potential applications as an active current limiter or as a storage switch for superconducting magnetic energy storage systems. Operation in a full flux penetration/flow regime can effectively minimize the detrimental effects of the intrinsic conductor non-uniformity.

  19. A simple algorithm to compute the peak power output of GaAs/Ge solar cells on the Martian surface

    SciTech Connect

    Glueck, P.R.; Bahrami, K.A.

    1995-12-31

    The Jet Propulsion Laboratory`s (JPL`s) Mars Pathfinder Project will deploy a robotic ``microrover`` on the surface of Mars in the summer of 1997. This vehicle will derive primary power from a GaAs/Ge solar array during the day and will ``sleep`` at night. This strategy requires that the rover be able to (1) determine when it is necessary to save the contents of volatile memory late in the afternoon and (2) determine when sufficient power is available to resume operations in the morning. An algorithm was developed that estimates the peak power point of the solar array from the solar array short-circuit current and temperature telemetry, and provides functional redundancy for both measurements using the open-circuit voltage telemetry. The algorithm minimizes vehicle processing and memory utilization by using linear equations instead of look-up tables to estimate peak power with very little loss in accuracy. This paper describes the method used to obtain the algorithm and presents the detailed algorithm design.

  20. Peak power in the hexagonal barbell jump squat and its relationship to jump performance and acceleration in elite rugby union players.

    PubMed

    Turner, Thomas S; Tobin, Daniel P; Delahunt, Eamonn

    2015-05-01

    Recent research suggests that jump squats with a loaded hexagonal barbell are superior for peak power production to comparable loads in a traditional barbell loaded jump squat. The aim of this study was to investigate the relationship between relative peak power output during performance of the hexagonal barbell jump squat (HBJS), countermovement jump (CMJ) height, and linear acceleration speed in rugby union players. Seventeen professional rugby union players performed 10- and 20-m sprints, followed by a set of 3 unloaded CMJs and a set of 3 HBJS at a previously determined optimal load corresponding with peak power output. The relationship between HBJS relative peak power output, 10- and 20-m sprint time, and CMJ height was investigated using correlation analysis. The contribution of HBJS relative peak power output and CMJ height to 10- and 20-m sprint time was investigated using standard multiple regression. Strong, significant, inverse correlations were observed between HBJS relative peak power output, 10-m sprint time (r = -0.70, p < 0.01), and 20-m sprint time (r = -0.75, p < 0.01). A strong, significant, positive correlation was observed between HBJS relative peak power output and CMJ height (r = 0.80, p < 0.01). Together, HBJS relative peak power output and CMJ height explained 46% of the variance in 10-m sprint time while explaining 59% of the variance in 20-m sprint time. The findings of the current study demonstrate a significant relationship between relative peak power in the HBJS and athletic performance as quantified by CMJ height and 10- and 20-m sprint time.

  1. Superradiant Ka-band Cherenkov oscillator with 2-GW peak power

    NASA Astrophysics Data System (ADS)

    Rostov, V. V.; Romanchenko, I. V.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2016-09-01

    The generation of a 2-GW microwave superradiance (SR) pulses has been demonstrated at 29-GHz using a single-mode relativistic backward-wave oscillator possessing the beam-to-wave power conversion factor no worse than 100%. A record-breaking radiation power density in the slow-wave structure (SWS) of ˜1.5 GW/cm2 required the use of high guiding magnetic field (7 T) decreasing the beam losses to the SWS in strong rf fields. Despite the field strength at the SWS wall of 2 MV/cm, a single-pass transmission mode of a short SR pulse in the SWS allows one to obtain extremely high power density in subnanosecond time scale due to time delay in the development of the breakdown phenomena.

  2. Fast high-temperature superconductor switch for high current applications

    SciTech Connect

    Solovyov, VF; Li, Q

    2013-07-15

    Reversible operation of a high current superconductor switch based on the quench of high-resistance second generation high temperature superconducting wire is demonstrated. The quench is induced by a burst of an ac field generated by an inductively coupled radio-frequency coil. The switch makes a superconducting-to-normal transition within 5 ms and also has a rapid recovery to the superconducting state. The device has potential applications as an active current limiter or as a storage switch for superconducting magnetic energy storage systems. Operation in a full flux penetration/flow regime can effectively minimize the detrimental effects of the intrinsic conductor non-uniformity. (C) 2013 AIP Publishing LLC.

  3. Multi-tens of GW peak power plasma-based soft x-ray laser

    NASA Astrophysics Data System (ADS)

    Oliva, E.; Fajardo, M.; Li, L.; Le, T. T. T.; Ros, D.; Sebban, S.; Velarde, P.; Zeitoun, P.

    2013-09-01

    Ultra-intense X-ray sources have opened new avenues by creating new states of matter or probing and imaging living or inert matter. Free-electron lasers have a strong leadership by delivering pulses combining femtosecond duration and 10s of microJoules to milliJoule energy. However, these sources remain highly expensive limiting their number to a few worldwide. In parallel, laser-pumped soft X-ray lasers hold outstanding promises having demonstrated the most energetic monochromatic soft x-ray pulse and being intrinsically fully synchronized with any secondary source of the pump laser. Since the first successful demonstration of amplification of a high harmonic pulse in a plasma from gas in 2003 and from solid in 2008, we have developed an extensive numerical study. 2D hydrodynamic simulations showed that optimized Transient Collisional Excitation plasma amplifiers, may store up to 0.4 mJ in the population inversion. If carefully seeded, pulses of 80 fs and 20 μJ might be generated with table-top lasers (10J). As the energy extracted is far from the milliJoule requirements of most exciting applications, we studied the seminal experiment of Ditmire et al who seeded a plasma emitting milliJoules in the form of Amplified Spontaneous Emission (ASE).We retrieved and explained for the first time the experimental result (ASE 1,000 times stronger than amplified seed). We thus proposed and fully modeled the transposition of the so-called Chirped Pulse Amplification (CPA) in the soft X-ray range, showing that 6 mJ, 200 fs, fully coherent soft X-ray pulse is accessible with compact pump lasers.

  4. Optimized scheduling technique of null subcarriers for peak power control in 3GPP LTE downlink.

    PubMed

    Cho, Soobum; Park, Sang Kyu

    2014-01-01

    Orthogonal frequency division multiple access (OFDMA) is a key multiple access technique for the long term evolution (LTE) downlink. However, high peak-to-average power ratio (PAPR) can cause the degradation of power efficiency. The well-known PAPR reduction technique, dummy sequence insertion (DSI), can be a realistic solution because of its structural simplicity. However, the large usage of subcarriers for the dummy sequences may decrease the transmitted data rate in the DSI scheme. In this paper, a novel DSI scheme is applied to the LTE system. Firstly, we obtain the null subcarriers in single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, respectively; then, optimized dummy sequences are inserted into the obtained null subcarrier. Simulation results show that Walsh-Hadamard transform (WHT) sequence is the best for the dummy sequence and the ratio of 16 to 20 for the WHT and randomly generated sequences has the maximum PAPR reduction performance. The number of near optimal iteration is derived to prevent exhausted iterations. It is also shown that there is no bit error rate (BER) degradation with the proposed technique in LTE downlink system.

  5. Optimized Scheduling Technique of Null Subcarriers for Peak Power Control in 3GPP LTE Downlink

    PubMed Central

    Park, Sang Kyu

    2014-01-01

    Orthogonal frequency division multiple access (OFDMA) is a key multiple access technique for the long term evolution (LTE) downlink. However, high peak-to-average power ratio (PAPR) can cause the degradation of power efficiency. The well-known PAPR reduction technique, dummy sequence insertion (DSI), can be a realistic solution because of its structural simplicity. However, the large usage of subcarriers for the dummy sequences may decrease the transmitted data rate in the DSI scheme. In this paper, a novel DSI scheme is applied to the LTE system. Firstly, we obtain the null subcarriers in single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, respectively; then, optimized dummy sequences are inserted into the obtained null subcarrier. Simulation results show that Walsh-Hadamard transform (WHT) sequence is the best for the dummy sequence and the ratio of 16 to 20 for the WHT and randomly generated sequences has the maximum PAPR reduction performance. The number of near optimal iteration is derived to prevent exhausted iterations. It is also shown that there is no bit error rate (BER) degradation with the proposed technique in LTE downlink system. PMID:24883376

  6. 1.6  MW peak power, 90  ps all-solid-state laser from an aberration self-compensated double-passing end-pumped Nd:YVO4 rod amplifier.

    PubMed

    Wang, Chunhua; Liu, Chong; Shen, Lifeng; Zhao, Zhiliang; Liu, Bin; Jiang, Hongbo

    2016-03-20

    In this paper a delicately designed double-passing end-pumped Nd:YVO4 rod amplifier is reported that produces 10.2 W average laser output when seeded by a 6 mW Nd:YVO4 microchip laser at a repetition rate of 70 kHz with pulse duration of 90 ps. A pulse peak power of ∼1.6  MW and pulse energy of ∼143  μJ is achieved. The beam quality is well preserved by a double-passing configuration for spherical-aberration compensation. The laser-beam size in the amplifier is optimized to prevent the unwanted damage from the high pulse peak-power density. This study provides a simple and robust picosecond all-solid-state master oscillator power amplifier system with both high peak power and high beam quality, which shows great potential in the micromachining. PMID:27140580

  7. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  8. High pressure phase transformation in iron under fast compression

    SciTech Connect

    Bastea, M; Bastea, S; Becker, R

    2009-07-07

    We present experimental results on the solid-solid, {alpha} to {epsilon} phase transformation kinetics of iron under high pressure dynamic compression. We observe kinetic features - velocity loops - similar with the ones recently reported to occur when water is frozen into its ice VII phase under comparable experimental conditions. We analyze this behavior in terms of general ideas coupling the steady sample compression with phase nucleation and growth with a pressure dependent phase interface velocity. The model is used to predict the response of iron when steadily driven across the {alpha} - {epsilon} phase boundary on very short time scales, including those envisioned to be achieved in ultra-fast laser experiments.

  9. Generation of sheet currents by high frequency fast MHD waves

    NASA Astrophysics Data System (ADS)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  10. High-contrast and fast electrochromic switching enabled by plasmonics.

    PubMed

    Xu, Ting; Walter, Erich C; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J; Talin, A Alec

    2016-01-01

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light--propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer--present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer. PMID:26814453

  11. High-contrast and fast electrochromic switching enabled by plasmonics

    PubMed Central

    Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec

    2016-01-01

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer. PMID:26814453

  12. High-contrast and fast electrochromic switching enabled by plasmonics.

    PubMed

    Xu, Ting; Walter, Erich C; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J; Talin, A Alec

    2016-01-27

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light--propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer--present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.

  13. High-contrast and fast electrochromic switching enabled by plasmonics

    DOE PAGES

    Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec

    2016-01-27

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thinmore » electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. In conclusion, we further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.« less

  14. High-contrast and fast electrochromic switching enabled by plasmonics

    NASA Astrophysics Data System (ADS)

    Talin, Albert; Xu, Ting; Walter, Erich; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri

    With vibrant colors and simple, room-temperature processing methods, electrochromic polymers have long attracted attention as active materials for flexible, low-power consuming devices such as smart windows and displays. However, despite their many advantages, slow switching speed and complexity of combining several separate polymers to achieve full-color gamut has limited electrochromic materials to niche applications. Here we exploit the enhanced light-matter interaction associated with the deep-subwavelength mode confinement of surface plasmon polaritons propagating in metallic nanoslit arrays coated with ultra-thin electrochromic polymers to build a novel configuration for achieving high-contrast and fast electrochromic switching. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films while maintaining the high optical-contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-color response with high-contrast and fast switching-speeds while relying on just one electrochromic polymer.

  15. Peak power minimization in indoor CDMA communications using clusters of antennas

    NASA Astrophysics Data System (ADS)

    Abolhassani, Bahman

    "Battery life" and "cost" constraints are presenting new challenges for the design of wireless networks. The major focus of past research on transmit power control, diversity, modulation and coding techniques has been limited to maximizing coverage and/or capacity for cellular telephone systems. However, for battery powered wireless handsets connected through indoor wireless links, the optimization objective is shifting from link efficiency to battery efficiency and cost. In this thesis, the battery life of handsets and the cost of network are both addressed for an indoor code division multiple access (CDMA) communications system using time division duplex (TDD). A wireless handset needs a large dynamic range transmitter amplifier in order to overcome channel path loss and fading. This makes the amplifier inefficient such that its power consumption becomes proportional to the peak transmit power. Therefore, the amplifier needs a large, heavy and expensive battery which lasts for only a few hours. Indoor wireless users, however, need small, light, low cost handsets with batteries that last for days rather than for a few hours. To achieve a long battery life for handsets, a system architecture is proposed in which each cell uses a central base station along with several radioports. The radioports placed at optimal or near-optimal locations in order to minimize the maximum path loss experienced by handsets. Each radioport may use more than one antenna to combat Rayleigh fading. The central base station selects the radioport that provides the strongest maximally ratio combined signal. An infra-structure cost model is developed for the proposed system, which depends on the peak transmit power capability of handsets and of other system parameters and performances. The number of parameters affecting the network infra-structure cost is high, which makes the cost minimization problematic. To avoid large computation time, a new network planning approach is proposed: its

  16. The Nexawatt: A Strategy for Exawatt Peak Power Lasers Based on NIF and NIF-like Beam Lines

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2016-05-01

    An exawatt-scale, short-pulse amplification architecture based upon a novel pulse compressor arrangement and amplification of long-duration chirped beam pulses is described. This architecture is capable of extracting the full, stored energy of a NIF or NIF-like beam line and in doing so produce from one beam line a near-diffraction-limited, laser pulse whose peak power would exceed 0.2 EW. The architecture is well suited to either low-f-number focusing or to multi-beam, dipole focusing concepts that in principle enable focused intensities in the range of 1026 W/cm2 or 5 orders of magnitude beyond that possible from present PW systems based on chirped pulse amplification.

  17. All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses.

    PubMed

    Seidel, Marcus; Arisholm, Gunnar; Brons, Jonathan; Pervak, Vladimir; Pronin, Oleg

    2016-05-01

    Spectral broadening in bulk material is a simple, robust and low-cost method to extend the bandwidth of a laser source. Consequently, it enables ultrashort pulse compression. Experiments with a 38 MHz repetition rate, 50 W average power Kerr-lens mode-locked thin-disk oscillator were performed. The initially 1.2 μJ, 250 fs pulses are compressed to 43 fs by means of self-phase modulation in a single 15 mm thick quartz crystal and subsequent chirped-mirror compression. The losses due to spatial nonlinear effects are only about 40 %. A second broadening stage reduced the Fourier transform limit to 15 fs. It is shown that the intensity noise of the oscillator is preserved independent of the broadening factor. Simulations manifest the peak power scalability of the concept and show that it is applicable to a wide range of input pulse durations and energies.

  18. Fast Gibbs sampling for high-dimensional Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Lucka, Felix

    2016-11-01

    Solving ill-posed inverse problems by Bayesian inference has recently attracted considerable attention. Compared to deterministic approaches, the probabilistic representation of the solution by the posterior distribution can be exploited to explore and quantify its uncertainties. In applications where the inverse solution is subject to further analysis procedures can be a significant advantage. Alongside theoretical progress, various new computational techniques allow us to sample very high dimensional posterior distributions: in (Lucka 2012 Inverse Problems 28 125012), and a Markov chain Monte Carlo posterior sampler was developed for linear inverse problems with {{\\ell }}1-type priors. In this article, we extend this single component (SC) Gibbs-type sampler to a wide range of priors used in Bayesian inversion, such as general {{\\ell }}pq priors with additional hard constraints. In addition, a fast computation of the conditional, SC densities in an explicit, parameterized form, a fast, robust and exact sampling from these one-dimensional densities is key to obtain an efficient algorithm. We demonstrate that a generalization of slice sampling can utilize their specific structure for this task and illustrate the performance of the resulting slice-within-Gibbs samplers by different computed examples. These new samplers allow us to perform sample-based Bayesian inference in high-dimensional scenarios with certain priors for the first time, including the inversion of computed tomography data with the popular isotropic total variation prior.

  19. Fast Frontend Electronics for high luminosity particle detectors

    NASA Astrophysics Data System (ADS)

    Cardinali, M.

    Future experiments of nuclear and particle physics are moving towards the high luminosity regime, in order to access suppressed processes like rare B decays or exotic charmonium resonances. In this scenario, high rate capability is a key requirement for electronics instrumentation, together with excellent timing resolution for precise event reconstruction. The development of dedicated FrontEnd Electronics (FEE) for detectors has become increasingly challenging. A current trend in R&D is towards multipurpose FEE which can be easily adapted to a great variety of detectors, without impairing the required high performance. We report on high-precision timing solutions which utilise high-bandwidth preamplifiers and fast discriminators providing Time-over-Threshold information, which can be used for charge measurements or walk corrections thus improving the obtainable timing resolution. The output signal are LVDS and can be directly fed into a multi-hit TDC readout. The performance of the electronics was investigated for single photon signals, typical for imaging Cherenkov detectors. The opposite condition of light signals arising from plastic scintillators, was also studied. High counting rates per channel of several MHz were achieved, and a timing resolution of better than 100 ps could be obtained in a test experiment using the full readout chain.

  20. High performance infrared fast cooled detectors for missile applications

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  1. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  2. Design of a transportable high efficiency fast neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.

    2016-08-01

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  3. A Peak Power Reduction Method with Adaptive Inversion of Clustered Parity-Carriers in BCH-Coded OFDM Systems

    NASA Astrophysics Data System (ADS)

    Muta, Osamu; Akaiwa, Yoshihiko

    In this paper, we propose a simple peak power reduction (PPR) method based on adaptive inversion of parity-check block of codeword in BCH-coded OFDM system. In the proposed method, the entire parity-check block of the codeword is adaptively inversed by multiplying weighting factors (WFs) so as to minimize PAPR of the OFDM signal, symbol-by-symbol. At the receiver, these WFs are estimated based on the property of BCH decoding. When the primitive BCH code with single error correction such as (31,26) code is used, to estimate the WFs, the proposed method employs a significant bit protection method which assigns a significant bit to the best subcarrier selected among all possible subcarriers. With computer simulation, when (31,26), (31,21) and (32,21) BCH codes are employed, PAPR of the OFDM signal at the CCDF (Complementary Cumulative Distribution Function) of 10-4 is reduced by about 1.9, 2.5 and 2.5dB by applying the PPR method, while achieving the BER performance comparable to the case with the perfect WF estimation in exponentially decaying 12-path Rayleigh fading condition.

  4. A high peak power S-band switching system for the Advanced Photon Source (APS) Linear Accelerator (Linac).

    SciTech Connect

    Grelick, A. E.

    1998-09-11

    An S-band linear accelerator is the source of particles and front end of the Advanced Photon Source [1] injector. Additionally, it will be used to support a low-energy undulator test line (LEUTL) and to drive a free-electron laser (FEL). To provide maximum linac availability for all uses, an additional modulator-klystron subsystem has been built,and a waveguide-switching and distribution subsystem is now under construction. The combined subsystems provide a hot spare for any of the five S-band transmitters that power the lina cand have been given the additional function of powering an rf gun test stand whenever they are not otherwise needed. Design considerations for the waveguide-switching subsystem, topology selection, timing, control, and system protection provisions are described.

  5. Electron acceleration by a nonlinear wakefield generated by ultrashort (23-fs) high-peak-power laser pulses in plasma.

    PubMed

    Kando, M; Masuda, S; Zhidkov, A; Yamazaki, A; Kotaki, H; Kondo, S; Homma, T; Kanazawa, S; Nakajima, K; Hayashi, Y; Mori, M; Kiriyama, H; Akahane, Y; Inoue, N; Ueda, H; Nakai, Y; Tsuji, K; Yamamoto, Y; Yamakawa, K; Koga, J; Hosokai, T; Uesaka, M; Tajima, T

    2005-01-01

    We study experimentally the interaction of the shortest at present (23-fs) , relativistically intense (20-TW), tightly focused laser pulses with underdense plasma. MeV electrons constitute a two-temperature distribution due to different plasma wave-breaking processes at a plasma density of 10(20) cm(-3). These two groups of electrons are shown numerically to constitute bunches with very distinctive time durations.

  6. Reaching white-light radiation source of ultrafast laser pulses with tunable peak power using nonlinear self-phase modulation in neon gas

    NASA Astrophysics Data System (ADS)

    Tawfik, Walid

    2016-08-01

    A source of white-light radiation that generates few-cycle pulses with controlled peak power values has been developed. These ultrafast pulses have been observed by spectral broadening of 32 fs pulses through nonlinear self-phase modulation in a neon-filled hollow-fiber then compressed with a pair of chirped mirrors for dispersion compensation. The observed pulses reached transform-limited duration of 5.77 fs and their peak power values varied from 57 GW up to 104 GW at repetition rate of 1 kHz. Moreover, the applied method is used for a direct tuning of the peak power of the output pulses through varying the chirping of the input pulses at different neon pressures. The observed results may give an opportunity to control the ultrafast interaction dynamics on the femtosecond time scale and facilitate the regeneration of attosecond pulses.

  7. High frequency fast wave current drive for DEMO

    NASA Astrophysics Data System (ADS)

    Koch, R.; Lerche, E.; Van Eester, D.; Nightingale, M.

    2011-12-01

    A steady-state tokamak reactor (SSTR) requires a high efficiency current drive system, from plug to driven mega-amps. RF systems working in the ion-cyclotron range of frequencies (ICRF) have high efficiency from plug to antenna but a limited current drive (CD) efficiency and centrally peaked CD profiles. The latter feature is not adequate for a SSTR where the current should be sufficiently broad to keep the central safety factor (possibly significantly) above 1. In addition, the fact that the fast wave (FW) is evanescent at the edge limits coupling, requiring high voltage operation, which makes the system dependent on plasma edge properties and prone to arcing, reducing its reliability. A possible way to overcome these weaknesses is to operate at higher frequency (10 times or more the cyclotron frequency). The advantages are: (1) The coupling can be much better (waves propagate in vacuum) if the parallel refractive index n∥ is kept below one, (2) The FW group velocity tends to align to the magnetic field, so the power circumnavigates the magnetic axis and can drive off-axis current, (3) Due to the latter property, n∥ can be upshifted along the wave propagation path, allowing low n∥ launch (hence good coupling, large CD efficiency) with ultimately good electron absorption (which requires higher n∥). Note however that the n∥ upshift is a self-organized feature, that electron absorption is in competition with α-particle absorption and that uncoupling of the FW from the lower hybrid resonance at the edge requires n∥ slightly above one. The latter possibly counterproductive features might complicate the picture. The different aspects of this potentially attractive off-axis FWCD scheme are discussed.

  8. Formation of fast notched'' current waveforms through a high inductance

    SciTech Connect

    Spanjers, G.; Nelson, B.A.; Ribe, F.L. )

    1991-10-01

    A fast notch'' current has been produced on the (4 {mu}H) hardcore central conductor (C. M. Greenfield, M. E. Koepke, and F. L. Ribe, Phys. Fluids B {bold 2}, 133 (1990)) of the high beta Q machine, a 2.6 m theta pinch (S. O. Knox, H. Meuth, E. Sevillano, and F. L. Ribe, 3rd IEEE International Pulsed Power Conf., 1981, IEEE Publ. 81 CH1662/6, paper 3.1). With the notch circuitry, the current can be slowly ({tau}{sub 1/4} = 14 {mu}s) brought to a crowbarred dc value (20 kA) and then quickly ({tau}{sub 1/4} = 1.3 {mu}s) notched'' to a different value (typically either 0 kA or twice the dc value) and then quickly returned to the dc value. The use of a new inductively loaded spark gap switch eliminates extraneous ringing in the final crowbarred current waveform. As described here, by driving the hardcore circuit with two isolated capacitor banks, and a voltage stepup transformer, the notch current is created using spark gaps and ignitrons for switching, resulting in an inexpensive and technically simple circuit.

  9. Optimal load for the peak power and maximal strength of the upper body in Brazilian Jiu-Jitsu athletes.

    PubMed

    da Silva, Bruno Victor C; Simim, Mário A de Moura; Marocolo, Moacir; Franchini, Emerson; da Mota, Gustavo R

    2015-06-01

    We determined the optimal load for the peak power output (PPO) during the bench press throw (BPT) in Brazilian Jiu-Jitsu (BJJ) athletes and compared the PPO and maximal strength between advanced (AD) and nonadvanced (NA) athletes. Twenty-eight BJJ athletes (24.8 ± 5.7 years) performed the BPT at loads of 30, 40, 50, and 60% of their 1 repetition maximum (RM) in a randomized order (5-minute rest between BPTs). The PPO was determined by measuring the barbell displacement by an accelerometer (Myotest). The absolute (F = 7.25; p < 0.001; effect size [ES] = 0.21) and relative intensities were different (F = 7.11; p < 0.001; ES = 0.21) between the AD and NA. There was also a group and intensity interaction effect (F = 2.79; p = 0.046; ES = 0.10), but the differences were centered around the AD group, which achieved higher values using 40% (p = 0.001) and 50% of the 1RM (p < 0.001) than the PPO with 60% of 1RM. The AD athletes presented with higher 1RM than NA (p ≤ 0.05; ES = 1.0), but there was no difference (p > 0.05) in the PPO (30-60% 1RM). A polynomial adjustment indicated that the optimal load was ∼42% of 1RM for all groups and subgroups (R from 0.82 to 0.99). Our results suggest that there can be (1RM) differences between AD and NA BJJ athletes; however, there is no difference in the muscle power between the AD and NA groups. Additionally, ∼42% of 1RM seems to be the optimal load for developing maximal power using the BPT for the BJJ athletes.

  10. Anaerobic and aerobic peak power output and the force-velocity relationship in endurance-trained athletes: effects of aging.

    PubMed

    Chamari, K; Ahmaidi, S; Fabre, C; Massé-Biron, J; Préfaut, C

    1995-01-01

    The aim of this investigation was to test the hypothesis that the anaerobic peak power output (Pan, peak) declines more than the peak aerobic power (Paer, peak) with increasing age. In addition, the force-velocity (F-v) relationship was studied to determine which of these two factors is primarily responsible for the expected alterations in anaerobic power. The Pan, peak, the maximal F when v is equal to zero (F0) and the maximal v when F is equal to zero (v0) were assessed by F-v test i.e. a brief intense intermittent exercise test using incremental braking forces. The Paer, peak was measured by a maximal increment exercise test. A group of 12 young athletes (YA) and 12 master athletes (MA) mean age 24.8 (SEM 1.3) and 65.1 (SEM 1.2) years, respectively, participated in this study. The YA and MA had similar body masses, heights and endurance training schedules. The results showed that Pan, peak was 42.7% lower in the older subjects, corresponding to mean values of 1089 (SEM 40) compared to 624 (SEM 33) W (t = 8.9, P < 0.001) for YA compared to MA, respectively. The F0 and V0 indices showed values that were lower by 30.3% and 15.2%, respectively. The Paer, peak was 35% lower with mean values of 323 (SEM 12) W for YA compared to 210 (SEM 6) W for MA (t = 8.3, P < 0.001). The mean maximal oxygen uptake was 34.7% lower with 4240 (SEM 160) ml.min-1 for YA compared to 2770 (SEM 120) ml.min-1 for MA (t = 7.2, P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Between-Match Variability of Peak Power Output and Creatine Kinase Responses to Soccer Match-Play.

    PubMed

    Russell, Mark; Northeast, Jonny; Atkinson, Greg; Shearer, David A; Sparkes, William; Cook, Christian J; Kilduff, Liam P

    2015-08-01

    Post-match assessments of peak power output (PPO) during countermovement jumps and creatine kinase (CK) concentrations are common markers of recovery status in soccer players. Yet, the impact of soccer match-play on recovery in the 48 hours after competition is unclear, and the between-match variability of these responses has not been examined. Fourteen reserve team players from an English Premier League club were examined over 1-4 matches per player. Creatine kinase and PPO were measured before, 24, and 48 hours after each match. Data were analyzed with within-subjects linear mixed models. Compared with the prematch baseline, PPO was 237 ± 170 W and 98 ± 168 W lower at 24 and 48 hours, respectively (p ≤ 0.005) and CK was elevated (24 hours: 334.8 ± 107.2 μ·L(-1), 48 hours: 156.9 ± 121.0 μ·L(-1); both p ≤ 0.001) after match-play. These responses were consistent across the different matches and playing positions (p > 0.05). Within-subject correlations between PPO and CK were significant (r = -0.558; p ≤ 0.005). The between-match variability of PPO was 10.9, 11.0, and 9.9%, respectively at baseline, 24 and 48 hours, whereas for CK, the variability was 41.7, 30.0, and 34.3%, respectively. These findings highlight that more than 48 hours are needed to restore metabolic and performance perturbations after soccer match-play, and that CK demonstrates greater between-match variability than PPO. Such information is likely to be of interest to those responsible for the design of training schedules in the days after a match and sports scientists whose responsibilities include the monitoring of recovery status in soccer players.

  12. Generation of 25-ns pulses with a peak power of over 10 kW from a gain-switched, 2-mm Tm-doped fibre laser and amplifier system

    SciTech Connect

    Swiderski, J; Michalska, M; Pichola, W; Mamajek, M

    2014-04-28

    We report on an all-fibre, gain-switched, Tm{sup 3+}-doped silica fibre laser and amplifier system generating a train of pulses at a wavelength of 1994.4 nm. When operating at a pulse repetition frequency f=''100'' kHz, it delivered the maximum average power as high as 9.03 W with a slope efficiency of 36.4%. At f = 26 kHz, stable 25-ns pulses with an energy of 0.28 mJ corresponding to a peak power of 10.5 kW were obtained. The performance of the laser system is described. (lasers)

  13. Monitoring peak power and cooling energy savings of shade trees and white surfaces in the Sacramento Municipal Utility District (SMUD) service area: Project design and preliminary results

    SciTech Connect

    Akbari, H.; Bretz, S.; Hanford, J.; Rosenfeld, A.; Sailor, D.; Taha, H.; Bos, W.

    1992-12-01

    Urban areas in warm climates create summer heat islands of daily average intensity of 3--5{degrees}C, adding to discomfort and increasing air-conditioning loads. Two important factors contributing to urban heat islands are reductions in albedo (lower overall city reflectance) and loss of vegetation (less evapotranspiration). Reducing summer heat islands by planting vegetation (shade trees) and increasing surface albedos, saves cooling energy, allows down-sizing of air conditioners, lowers air-conditioning peak demand, and reduces the emission of CO{sub 2} and other pollutants from electric power plants. The focus of this multi-year project, jointly sponsored by SMUD and the California Institute for Energy Efficiency (CIEE), was to measure the direct cooling effects of trees and white surfaces (mainly roofs) in a few buildings in Sacramento. The first-year project was to design the experiment and obtain base case data. We also obtained limited post retrofit data for some sites. This report provides an overview of the project activities during the first year at six sites. The measurement period for some of the sites was limited to September and October, which are transitional cooling months in Sacramento and hence the interpretation of results only apply to this period. In one house, recoating the dark roof with a high-albedo coating rendered air conditioning unnecessary for the month of September (possible savings of up to 10 kWh per day and 2 kW of non-coincidental peak power). Savings of 50% relative to an identical base case bungalow were achieved when a school bungalow`s roof and southeast wall were coated with a high-albedo coating during the same period. Our measured data for the vegetation sites do not indicate conclusive results because shade trees were small and the cooling period was almost over. We need to collect more data over a longer cooling season in order to demonstrate savings conclusively.

  14. Coaxial fast metal-to-metal switch for high current.

    PubMed

    Boissady, C; Rioux-Damidau, F

    1978-11-01

    A fast mechanical switch of coaxial configuration, driven by a magnetic field, is described. It presents a low inductance (6 nH), a low resistance (3 muOmega) and delay-times of 25 micros with a jitter of 0.08 micros. PMID:18698995

  15. Fast-synchronizing high-fidelity spread-spectrum receiver

    DOEpatents

    Moore, Michael Roy; Smith, Stephen Fulton; Emery, Michael Steven

    2004-06-01

    A fast-synchronizing receiver having a circuit including an equalizer configured for manipulating an analog signal; a detector in communication with the equalizer; a filter in communication with the detector; an oscillator in communication with the filter; a gate for receiving the manipulated signal; a circuit portion for synchronizing and tracking the manipulated signal; a summing circuit in communication with the circuit portion; and an output gate.

  16. 1.1 MW peak power in doubly QML composite Nd:YVO4/Nd:YVO4/Nd:YVO4/KTP sub-nanosecond green laser with EO and Bi-GaAs.

    PubMed

    Li, Shixia; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Li, Xiangyang; Qiao, Hui

    2016-02-22

    By simultaneously employing electro-optic (EO) modulator and Bi-doped GaAs, dual-loss-modulated Q-switched and mode-locked (QML) multi-segment composite Nd:YVO4/Nd:YVO4/Nd:YVO4/KTP sub-nanosecond green laser is demonstrated with low repetition rate and high peak power. When the incident pump power is up to 6.93 W, only one mode-locking pulse underneath a Q-switching envelope is generated with sub-nanosecond pulse duration at one kilohertz repetition rate. An average output power of 445 mW and a pulse duration of 399 ps are obtained with the incident pump power of 11.13 W, corresponding to a peak power of 1.115 MW which is the highest one in doubly QML sub-nanosecond green laser by now. The laser characteristics are better than those obtained with EO and GaAs. The experimental results indicate that Bi-GaAs is a promising saturable absorber for dual-loss-modulated QML laser.

  17. Tunable 975 nm nanosecond diode-laser-based master-oscillator power-amplifier system with 16.3 W peak power and narrow spectral linewidth below 10 pm.

    PubMed

    Vu, Thi Nghiem; Klehr, Andreas; Sumpf, Bernd; Wenzel, Hans; Erbert, Götz; Tränkle, Günther

    2014-09-01

    A spectrally tunable, narrow linewidth master oscillator power amplifier system emitting ns pulses with high peak power is presented. The master oscillator is a distributed feedback ridge waveguide (DFB-RW) laser, which is operated in continuous wave (CW) mode and emits at about 975 nm with a spectral line width below 10 pm. The oscillator can be tuned over a range of 0.9 nm by varying the injection current. The tapered amplifier (TA) consists of an RW section and a flared gain-guided section. The RW section of the amplifier acts as an optical gate and converts the CW input beam emitted by the DFB-RW laser into a train of short optical pulses, which are subsequently amplified by the tapered section. The width of the pulses is 8 ns at a repetition rate of 25 kHz. The peak power is 16.3 W. The TA preserves the spectral properties of the emission of the DBR-RW laser. The amplified spontaneous emission is suppressed by about 40 dB. PMID:25166093

  18. Quantum-dot saturable absorber and Kerr-lens mode-locked Yb:KGW laser with >450  kW of peak power.

    PubMed

    Akbari, R; Zhao, H; Fedorova, K A; Rafailov, E U; Major, A

    2016-08-15

    The hybrid action of quantum-dot saturable absorber and Kerr-lens mode locking in a diode-pumped Yb:KGW laser was demonstrated. Using a quantum-dot saturable absorber with a 0.7% (0.5%) modulation depth, the mode-locked laser delivered 90 fs (93 fs) pulses with 3.2 W (2.9 W) of average power at the repetition rate of 77 MHz, corresponding to 462 kW (406 kW) of peak power and 41 nJ (38 nJ) of pulse energy. To the best of our knowledge, this represents the highest average and peak powers generated to date from quantum-dot saturable absorber-based mode-locked lasers.

  19. Fast rate fracture of aluminum using high intensity lasers

    NASA Astrophysics Data System (ADS)

    Dalton, Douglas Allen

    Laser induced shock experiments were performed to study the dynamics of various solid state material processes, including shock-induced melt, fast rate fracture, and elastic to plastic response. Fast rate fracture and dynamic yielding are greatly influenced by microstructural features such as grain boundaries, impurity particles and alloying atoms. Fast fracture experiments using lasers are aimed at studying how material microstructure affects the tensile fracture characteristics at strain rates above 106 s-1. We used the Z-Beamlet Laser at Sandia National Laboratories to drive shocks via ablation and we measured the maximum tensile stress of aluminum targets with various microstructures. Using a velocity interferometer and sample recovery, we are able to measure the maximum tensile stress and determine the source of fracture initiation in these targets. We have explored the role that grain size, impurity particles and alloying in aluminum play in dynamic yielding and spall fracture at tensile strain rates of ˜3x106 s-1. Preliminary results and analysis indicated that material grain size plays a vital role in the fracture morphology and spall strength results. In a study with single crystal aluminum specimens, velocity measurements and fracture analysis revealed that a smaller amplitude tensile stress was initiated by impurity particles; however, these particles served no purpose in dynamic yielding. An aluminum-magnesium alloy with various grain sizes presented the lowest spall strength, but the greatest dynamic yield strength. Fracture mode in this alloy was initiated by both grain boundaries and impurity particles. With respect to dynamic yielding, alloying elements such as magnesium serve to decrease the onset of plastic response. The fracture stress and yield stress showed no evidence of grain size dependence. Hydrodynamic simulations with material strength models are used to compare with our experiments. In order to study the strain rate dependence of spall

  20. Very fast motion planning for highly dexterous-articulated robots

    NASA Technical Reports Server (NTRS)

    Challou, Daniel J.; Gini, Maria; Kumar, Vipin

    1994-01-01

    Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.

  1. Fast, High-Resolution Terahertz Radar Imaging at 25 Meters

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Talukder, Ashit; Panangadan, Anand V.; Peay, Chris S.; Siegel, Peter H.

    2010-01-01

    We report improvements in the scanning speed and standoff range of an ultra-wide bandwidth terahertz (THz) imaging radar for person-borne concealed object detection. Fast beam scanning of the single-transceiver radar is accomplished by rapidly deflecting a flat, light-weight subreflector in a confocal Gregorian optical geometry. With RF back-end improvements also implemented, the radar imaging rate has increased by a factor of about 30 compared to that achieved previously in a 4 m standoff prototype instrument. In addition, a new 100 cm diameter ellipsoidal aluminum reflector yields beam spot diameters of approximately 1 cm over a 50x50 cm field of view at a range of 25 m, although some aberrations are observed that probably arise from misaligned optics. Through-clothes images of a concealed threat at 25 m range, acquired in 5 seconds, are presented, and the impact of reduced signal-to-noise from an even faster frame rate is analyzed. These results inform the system requirements for eventually achieving sub-second or video-rate THz radar imaging.

  2. Fast high-resolution terahertz radar imaging at 25 meters

    NASA Astrophysics Data System (ADS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Talukder, Ashit; Panangadan, Anand V.; Peay, Chris S.; Mehdi, Imran; Siegel, Peter H.

    2010-04-01

    We report improvements in the scanning speed and standoff range of an ultra-wide bandwidth terahertz (THz) imaging radar for person-borne concealed object detection. Fast beam scanning of the single-transceiver radar is accomplished by rapidly deflecting a flat, light-weight subreflector in a confocal Gregorian optical geometry. With RF back-end improvements also implemented, the radar imaging rate has increased by a factor of about 30 compared to that achieved previously in a 4 m standoff prototype instrument. In addition, a new 100 cm diameter ellipsoidal aluminum reflector yields beam spot diameters of approximately 1 cm over a 50×50 cm field of view at a range of 25 m, although some aberrations are observed that probably arise from misaligned optics. Through-clothes images of concealed pipes at 25 m range, acquired in 5 seconds, are presented, and the impact of reduced signal-to-noise from an even faster frame rate is analyzed. These results inform the requirements for eventually achieving sub-second or video-rate THz radar imaging.

  3. High gain, Fast Scan, Broad Spectrum Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect

    OHara, David

    2009-05-08

    During contract # DE-FG02-ER83545, Parallax Research, Inc. developed a High gain, Fast Scan Broad Spectrum Parallel beam Wavelength Dispersive X-ray Spectrometer for use on Scanning Electron Microscopes (SEM). This new spectrometer allows very fast high resolution elemental analysis of samples in an electron microscope. By comparison to previous WDS spectrometers, it can change from one energy position to another very quickly and has an extended range compared to some similar products.

  4. Polycrystalline CVD diamond detector: Fast response and high sensitivity with large area

    SciTech Connect

    Liu, Linyue Zhang, Xianpeng; Zhong, Yunhong; Ouyang, Xiaoping Zhang, Jianfu

    2014-01-15

    Polycrystalline diamond was successfully used to fabricate a large area (diameter up to 46 mm) radiation detector. It was proven that the developed detector shows a fast pulsed response time and a high sensitivity, therefore its rise time is lower than 5 ns, which is two times faster than that of a Si-PIN detector of the same size. And because of the large sensitive area, this detector shows good dominance in fast pulsed and low density radiation detection.

  5. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star. PMID:15191182

  6. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  7. High Temperature Ultrasonic Transducers for In-Service Inspection of Liquid Metal Fast Reactors

    SciTech Connect

    Griffin, Jeffrey W.; Posakony, Gerald J.; Harris, Robert V.; Baldwin, David L.; Jones, Anthony M.; Bond, Leonard J.

    2011-12-31

    In-service inspection of liquid metal (sodium) fast reactors requires the use of ultrasonic transducers capable of operating at high temperatures (>200°C), high gamma radiation fields, and the chemically reactive liquid sodium environment. In the early- to mid-1970s, the U.S. Atomic Energy Commission supported development of high-temperature, submersible single-element transducers, used for scanning and under-sodium imaging in the Fast Flux Test Facility and the Clinch River Breeder Reactor. Current work is building on this technology to develop the next generation of high-temperature linear ultrasonic transducer arrays for under-sodium viewing and in-service inspections.

  8. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    SciTech Connect

    Westover, B.; Chen, C. D.; Patel, P. K.; McLean, H.; Beg, F. N.

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  9. High-current, fast-switching transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    The design, wafer-processing techniques, and various measurements which include forward safe operating area, dc characteristics, and switching times are described for a larger-diameter (33) transistor. An improved base contact for equalizing the base-emitter voltage at high currents was developed along with an improved emitter contact preform which increases the silicon area available for current conduction. The electrical performance achieved is consistent with the proposed optimum design.

  10. FAST TRACK COMMUNICATION High rate straining of tantalum and copper

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Zerilli, F. J.

    2010-12-01

    High strain rate measurements reported recently for several tantalum and copper crystal/polycrystal materials are shown to follow dislocation mechanics-based constitutive relations, first at lower strain rates, for dislocation velocity control of the imposed plastic deformations and, then at higher rates, transitioning to nano-scale dislocation generation control by twinning or slip. For copper, there is the possibility of added-on slip dislocation displacements to be accounted for from the newly generated dislocations.

  11. High rate, fast timing Glass RPC for the high η CMS muon detectors

    NASA Astrophysics Data System (ADS)

    Lagarde, F.; Gouzevitch, M.; Laktineh, I.; Buridon, V.; Chen, X.; Combaret, C.; Eynard, A.; Germani, L.; Grenier, G.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Wang, Y.; Gong, A.; Moreau, N.; de la Taille, C.; Dulucq, F.; Cimmino, A.; Crucy, S.; Fagot, A.; Gul, M.; Rios, A. A. O.; Tytgat, M.; Zaganidis, N.; Aly, S.; Assran, Y.; Radi, A.; Sayed, A.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; Van Doninck, W.; Colafranceschi, S.; Sharma, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Bhatnagar, V.; Kumari, R.; Mehta, A.; Singh, J.; Ahmad, A.; Ahmed, W.; Asghar, H. M. I.; Awan, I. M.; Hoorani, R.; Muhammad, S.; Shahzad, H.; Shah, M. A.; Cho, S. W.; Choi, S. Y.; Hong, B.; Kang, M. H.; Lee, K. S.; Lim, J. H.; Park, S. K.; Kim, M. S.; Carpinteyro Bernardino, S.; Pedraza, I.; Uribe Estrada, C.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pant, L. M.; Buontempo, S.; Cavallo, N.; Esposito, M.; Fabozzi, F.; Lanza, G.; Orso, I.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Thyssen, F.; Braghieri, A.; Magnani, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Ban, Y.; Qian, S. J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Bagaturia, I.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J. C.; Crotty, I.; Vaitkus, J.

    2016-09-01

    The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to 6 · 1034 cm‑2s‑1. The region of the forward muon spectrometer (|η| > 1.6) is not equipped with RPC stations. The increase of the expected particles flux up to 2 kHz/cm2 (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provide a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity glass is proposed to equip at least the two most far away of the four high η muon stations of CMS. First the design of small size prototypes and studies of their performance in high-rate particles flux are presented. Then the proposed designs for large size chambers and their fast-timing electronic readout are examined and preliminary results are provided.

  12. High rate, fast timing Glass RPC for the high η CMS muon detectors

    NASA Astrophysics Data System (ADS)

    Lagarde, F.; Gouzevitch, M.; Laktineh, I.; Buridon, V.; Chen, X.; Combaret, C.; Eynard, A.; Germani, L.; Grenier, G.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Wang, Y.; Gong, A.; Moreau, N.; de la Taille, C.; Dulucq, F.; Cimmino, A.; Crucy, S.; Fagot, A.; Gul, M.; Rios, A. A. O.; Tytgat, M.; Zaganidis, N.; Aly, S.; Assran, Y.; Radi, A.; Sayed, A.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; Van Doninck, W.; Colafranceschi, S.; Sharma, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Bhatnagar, V.; Kumari, R.; Mehta, A.; Singh, J.; Ahmad, A.; Ahmed, W.; Asghar, H. M. I.; Awan, I. M.; Hoorani, R.; Muhammad, S.; Shahzad, H.; Shah, M. A.; Cho, S. W.; Choi, S. Y.; Hong, B.; Kang, M. H.; Lee, K. S.; Lim, J. H.; Park, S. K.; Kim, M. S.; Carpinteyro Bernardino, S.; Pedraza, I.; Uribe Estrada, C.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pant, L. M.; Buontempo, S.; Cavallo, N.; Esposito, M.; Fabozzi, F.; Lanza, G.; Orso, I.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Thyssen, F.; Braghieri, A.; Magnani, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Ban, Y.; Qian, S. J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Bagaturia, I.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J. C.; Crotty, I.; Vaitkus, J.

    2016-09-01

    The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to 6 · 1034 cm-2s-1. The region of the forward muon spectrometer (|η| > 1.6) is not equipped with RPC stations. The increase of the expected particles flux up to 2 kHz/cm2 (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provide a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity glass is proposed to equip at least the two most far away of the four high η muon stations of CMS. First the design of small size prototypes and studies of their performance in high-rate particles flux are presented. Then the proposed designs for large size chambers and their fast-timing electronic readout are examined and preliminary results are provided.

  13. 23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm

    NASA Astrophysics Data System (ADS)

    Duval, Simon; Olivier, Michel; Fortin, Vincent; Bernier, Martin; Piché, Michel; Vallée, Réal

    2016-03-01

    The recent development of soliton femtosecond fiber lasers emitting at 2.8 μm opens a new avenue for the generation of ultrashort pulses in the mid-infrared spectral region. In this paper, we investigate the peak power scalability of such lasers. By optimizing the output coupling ratio and the length of the Er3+: fluoride fiber in the cavity, we demonstrate the generation of 270-fs pulses with an energy of 7 nJ and an estimated peak power of 23 kW. These record performances at 2.8 μm surpass by far those obtained from standard soliton lasers at 1.55 μm. A numerical model of the laser including the effect of the intracavity atmospheric absorption is also presented. Numerical simulations agree well with the experimental results and suggest that the atmospheric propagation in the cavity could prevent the laser from self-starting in a mode-locked regime. This femtosecond laser could be the building block for simple and compact mid-infrared frequency combs and supercontinuum sources.

  14. The left ventricle as a mechanical engine: from Leonardo da Vinci to the echocardiographic assessment of peak power output-to-left ventricular mass.

    PubMed

    Dini, Frank L; Guarini, Giacinta; Ballo, Piercarlo; Carluccio, Erberto; Maiello, Maria; Capozza, Paola; Innelli, Pasquale; Rosa, Gian M; Palmiero, Pasquale; Galderisi, Maurizio; Razzolini, Renato; Nodari, Savina

    2013-03-01

    The interpretation of the heart as a mechanical engine dates back to the teachings of Leonardo da Vinci, who was the first to apply the laws of mechanics to the function of the heart. Similar to any mechanical engine, whose performance is proportional to the power generated with respect to weight, the left ventricle can be viewed as a power generator whose performance can be related to left ventricular mass. Stress echocardiography may provide valuable information on the relationship between cardiac performance and recruited left ventricular mass that may be used in distinguishing between adaptive and maladaptive left ventricular remodeling. Peak power output-to-mass, obtained during exercise or pharmacological stress echocardiography, is a measure that reflects the number of watts that are developed by 100 g of left ventricular mass under maximal stimulation. Power output-to-mass may be calculated as left ventricular power output per 100 g of left ventricular mass: 100× left ventricular power output divided by left ventricular mass (W/100 g). A simplified formula to calculate power output-to-mass is as follows: 0.222 × cardiac output (l/min) × mean blood pressure (mmHg)/left ventricular mass (g). When the integrity of myocardial structure is compromised, a mismatch becomes apparent between maximal cardiac power output and left ventricular mass; when this occurs, a reduction of the peak power output-to-mass index is observed.

  15. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes.

  16. Determinants of Fast Food Consumption among Iranian High School Students Based on Planned Behavior Theory

    PubMed Central

    Sharifirad, Gholamreza; Yarmohammadi, Parastoo; Azadbakht, Leila; Morowatisharifabad, Mohammad Ali; Hassanzadeh, Akbar

    2013-01-01

    Objective. This study was conducted to identify some factors (beliefs and norms) which are related to fast food consumption among high school students in Isfahan, Iran. We used the framework of the theory planned behavior (TPB) to predict this behavior. Subjects & Methods. Cross-sectional data were available from high school students (n = 521) who were recruited by cluster randomized sampling. All of the students completed a questionnaire assessing variables of standard TPB model including attitude, subjective norms, perceived behavior control (PBC), and the additional variables past behavior, actual behavior control (ABC). Results. The TPB variables explained 25.7% of the variance in intentions with positive attitude as the strongest (β = 0.31, P < 0.001) and subjective norms as the weakest (β = 0.29, P < 0.001) determinant. Concurrently, intentions accounted for 6% of the variance for fast food consumption. Past behavior and ABC accounted for an additional amount of 20.4% of the variance in fast food consumption. Conclusion. Overall, the present study suggests that the TPB model is useful in predicting related beliefs and norms to the fast food consumption among adolescents. Subjective norms in TPB model and past behavior in TPB model with additional variables (past behavior and actual behavior control) were the most powerful predictors of fast food consumption. Therefore, TPB model may be a useful framework for planning intervention programs to reduce fast food consumption by students. PMID:23936635

  17. High derivatives for fast sensitivity analysis in linear magnetodynamics

    SciTech Connect

    Petin, P. |; Coulomb, J.L.; Conraux, P.

    1997-03-01

    In this article, the authors present a method of sensitivity analysis using high derivatives and Taylor development. The principle is to find a polynomial approximation of the finite elements solution towards the sensitivity parameters. While presenting the method, they explain why this method is applicable with special parameters only. They applied it on a magnetodynamic problem, simple enough to be able to find the analytical solution with a formal calculus tool. They then present the implementation and the good results obtained with the polynomial, first by comparing the derivatives themselves, then by comparing the approximate solution with the theoretical one. After this validation, the authors present results on a real 2D application and they underline the possibilities of reuse in other fields of physics.

  18. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration

    PubMed Central

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18–35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate—acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04–0.15 Hz) to high (0.15–0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system. PMID:26284521

  19. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    PubMed

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz) to high (0.15-0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system. PMID:26284521

  20. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    PubMed

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz) to high (0.15-0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system.

  1. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    SciTech Connect

    Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.

    2013-11-15

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  2. Ultra fast elemental synthesis of high yield copper Chevrel phase with high electrochemical performance

    SciTech Connect

    Gershinsky, Gregory; Haik, Ortal; Salitra, Gregory; Grinblat, Judith; Levi, Elena; Daniel Nessim, Gilbert; Zinigrad, Ella; Aurbach, Doron

    2012-04-15

    Self-propagating High-temperature Synthesis (SHS) was applied for the first time to prepare Chevrel phases, M{sub x}Mo{sub 6}T{sub 8} (M=metal, T=S, Se). Combined electron microscopy and X-ray powder diffraction were used to clarify the chemical reactions in the Cu-Mo-S system. It was shown that the replacement of the frontal combustion by thermal explosion increased the Cu{sub 2}Mo{sub 6}S{sub 8} yield from 86 to 96%, while the synthesis remained ultra-fast: 10-20 min in a hot furnace (1000 Degree-Sign C), as compared to at least 17 h of heating for the conventional solid state technique. The synthesized material conformed to the requirements of cathode precursors for Mg batteries, and its electrochemically activity was similar to that of the conventional product. - Graphical abstarct: Schematic diagram of the combustion process. Highlights: Black-Right-Pointing-Pointer Self-propagating high-temperature synthesis was applied for the first time for preparing Chevrel phases. Black-Right-Pointing-Pointer Combined electron microscopy and X-ray powder diffraction were used to clarify the chemical reactions in the Cu-Mo-S system. Black-Right-Pointing-Pointer The synthesized Cu{sub 2}Mo{sub 6}S{sub 8} product conforms to the requirements of cathode precursors for Mg batteries.

  3. Precise reconstruction of fast moving cardiac valve in high frame rate synthetic transmit aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Suzuki, Mayumi; Ikeda, Teiichiro; Ishihara, Chizue; Takano, Shinta; Masuzawa, Hiroshi

    2016-04-01

    To diagnose heart valve incompetence, i.e., one of the most serious cardiac dysfunctions, it is essential to obtain images of fast-moving valves at high spatial and temporal resolution. Ultrasound synthetic transmit aperture (STA) imaging has the potential to achieve high spatial resolution by synthesizing multiple pre-beamformed images obtained with corresponding multiple transmissions. However, applying STA to fast-moving targets is difficult due to serious target deformation. We propose a high-frame-rate STA (fast STA) imaging method that uses a reduced number of transmission events needed for each image. Fast STA is expected to suppress deformation of moving targets; however, it may result in deteriorated spatial resolution. In this study, we conducted a simulation study to evaluate fast STA. We quantitatively evaluated the reduction in deformation and deterioration of spatial resolution with a model involving a radially moving valve at the maximum speed of 0.5 m/s. The simulated raw channel data of the valve phantom was processed with offline beamforming programs. We compared B-mode images obtained through single received-line in a transmission (SRT) method, STA, and fast STA. The results show that fast STA with four-times-reduced events is superior in reconstructing the original shape of the moving valve to other methods. The accuracy of valve location is 97 and 100% better than those with SRT and STA, respectively. The resolution deterioration was found to be below the annoyance threshold considering the improved performance of the shape reconstruction. The obtained results are promising for providing more precise diagnostic information on cardiovascular diseases.

  4. Fast Decompression Of Ultra-Thin Targets For High-Energy, High-Contrast Laser Pulses

    SciTech Connect

    Antici, P.; Fuchs, J.; Brambrink, E.; Audebert, P.; Lefebvre, E.; Gremillet, L.; Pepin, H.

    2010-02-02

    In the laser-plasma interaction process, for ultra-high temporal contrast laser pulses, experimental measurements show that reducing the thickness of solid targets increases the laser-to-fast electrons energy conversion and the hot electron temperature. We have performed an experiment using the LULI 100 TW laser facility working in the chirped pulse amplification (CPA) mode at a wavelength {lambda}{sub 0} = 1.057 {mu}m, pulse duration 320 fs, laser spot size FWHM {approx}6 {mu}m and intensity {approx}1x10{sup 18} W/cm{sup 2} in which the laser pulses were temporal-contrast enhanced by the use of two plasma mirrors. Shots were performed on Si{sub 3}N{sub 4} aluminum coated targets of thickness 30 nm to 500 nm. Spectra of the laser-accelerated electrons were recorded with a spectrometer and are compared to PIC simulations performed with the CALDER code. The simulations allow an insight into the electron heating process during the laser-matter interaction.

  5. Fast Decompression Of Ultra-Thin Targets For High-Energy, High-Contrast Laser Pulses

    NASA Astrophysics Data System (ADS)

    Antici, P.; Fuchs, J.; Lefebvre, E.; Gremillet, L.; Brambrink, E.; Audebert, P.; Pépin, H.

    2010-02-01

    In the laser-plasma interaction process, for ultra-high temporal contrast laser pulses, experimental measurements show that reducing the thickness of solid targets increases the laser-to-fast electrons energy conversion and the hot electron temperature. We have performed an experiment using the LULI 100 TW laser facility working in the chirped pulse amplification (CPA) mode at a wavelength λ0 = 1.057 μm, pulse duration 320 fs, laser spot size FWHM ˜6 μm and intensity ˜1×1018 W/cm2 in which the laser pulses were temporal-contrast enhanced by the use of two plasma mirrors. Shots were performed on Si3N4 aluminum coated targets of thickness 30 nm to 500 nm. Spectra of the laser-accelerated electrons were recorded with a spectrometer and are compared to PIC simulations performed with the CALDER code. The simulations allow an insight into the electron heating process during the laser-matter interaction.

  6. SECONDARY ELECTRON TRAJECTORIES IN HIGH-GRADIENT VACUUM INSULATORS WITH FAST HIGH-VOLTAGE PULSES

    SciTech Connect

    Chen, Y; Blackfield, D; Nelson, S D; Poole, B

    2010-04-21

    Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. Primary or secondary electrons (emitted from the insulator surface) can be deflected by magnetic fields from external sources, the high-current electron beam, the conduction current in the transmission line, or the displacement current in the insulator. These electrons are deflected either toward or away from the insulator surface and this affects the performance of the vacuum insulator. This paper shows the effects of displacement current from short voltage pulses on the performance of high gradient insulators. Generally, vacuum insulator failure is due to surface flashover, initiated by electrons emitted from a triple junction. These electrons strike the insulator surface thus producing secondary electrons, and can lead to a subsequent electron cascade along the surface. The displacement current in the insulator can deflect electrons either toward or away from the insulator surface, and affects the performance of the vacuum insulator when the insulator is subjected to a fast high-voltage pulse. Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. HGIs, being tolerant of the direct view of high-current electron and ion beams, and having desirable RF properties for accelerators, are a key enabling technology for the dielectric-wall accelerators (DWA) being developed at Lawrence Livermore National Laboratory (LLNL). Characteristically, insulator surface breakdown thresholds go up as the applied voltage pulse width decreases. To attain the highest accelerating gradient in the DWA, short accelerating voltage pulses are only applied locally, along the HGI accelerator tube, in sync with the charged particle bunch, and the effects of

  7. Self-compression in a solid fiber to 24 MW peak power with few-cycle pulses at 2 μm wavelength.

    PubMed

    Gaida, C; Gebhardt, M; Stutzki, F; Jauregui, C; Limpert, J; Tünnermann, A

    2015-11-15

    We report on the experimental realization of a compact, fiber-based, ultrashort-pulse laser system in the 2 μm wavelength region delivering 24 fs pulse duration with 24 MW pulse peak power and 24.6 W average power. This performance level has been enabled by the favorable quadratic wavelength-dependence of the self-focusing limit, which has been experimentally verified to be at approximately 24 MW for circular polarization in a solid-core fused-silica fiber operated at a wavelength around 2 μm. The anomalous dispersion in this wavelength region allows for a simultaneous nonlinear spectral broadening and temporal pulse compression. This makes an additional compression stage redundant and facilitates a very simple and power-scalable approach. Simulations that include both the nonlinear pulse evolution and the transverse optical Kerr effect support the experimental results.

  8. Thermally accelerated life testing of single mode, double-heterostructure, AlGaAs laser diodes operated pulsed at 50 mW peak power

    SciTech Connect

    Barry, J.D.; Archambeault, W.J.; Dye, R.A.; Einhorn, A.J.; Mecherle, G.S.; Nelson, P.

    1985-04-01

    Single spatial mode, double-heterostructure, channel-substrate-planar AlGaAs laser diodes have been life tested under thermally accelerated conditions to characterize the reliability of the diodes in a digital, optical communication system intended for space application. The diodes were operated pulsed under constant drive current conditions at 50 mW peak power, 25 ns pulse width, and 1 percent duty cycle in a dry, inert environment at ambient test temperatures at 40, 55, and 70/sup 0/C. Diode performance parameters as related to the space application, such as pulsewidth, peak power, wavelength spectrum, spatial mode, and threshold current, were periodically monitored. Tests have continued for over 14 000 h. The test results for all diodes with failure defined by power degradation alone is compared to the test results for single mode diodes with failure defined by power degradation, wavelength shift and spatial mode changes. It is found that the life test results are substantially equivalent but differ from earlier published reports for laser diodes operated CW. An activation energy of about 0.39 eV is deduced with a predicted median life of about 5 X 10/sup 4/ h at 20/sup 0/C. These values are somewhat lower than those found for diodes operated CW and are attributed to the use of single mode laser diodes here. It is concluded that thermally accelerated life testing for single spatial mode laser diodes must incorporate a means to separate bulk material, current, and optical density induced degradation effects. A test scheme is proposed.

  9. Los Alamos compact toroid, fast-liner, and high-density Z-pinch programs

    SciTech Connect

    Linford, R.K.; Sherwood, A.R.; Hammel, J.E.

    1981-03-01

    The Compact Toroid (CT) and High Density Z-Pinch (HDZP) are two of the plasma configurations presently being studied at Los Alamos. The purpose of these two programs, plus the recently terminated (May 1979) Fast Liner (FL) program, is summarized in this section along with a brief description of the experimental facilities. The remaining sections summarize the recent results and the experimental status.

  10. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    SciTech Connect

    Montesanti, Richard Clement

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  11. Graphene/GaSe-Nanosheet Hybrid: Towards High Gain and Fast Photoresponse

    NASA Astrophysics Data System (ADS)

    Lu, Rongtao; Liu, Jianwei; Luo, Hongfu; Chikan, Viktor; Wu, Judy Z.

    2016-01-01

    While high photoconductive gain has been recently achieved in graphene-based hybrid phototransistors using semiconductor two-dimensional transition/post-transition metal dichalcogenides or quantum dots sensitizers, obtaining fast photoresponse simutaneously remains a challenge that must be addressed for practical applications. In this paper we report a graphene/GaSe nanosheets hybrid photodetector, in which GaSe nanosheets provide a favorable geometric link to graphene conductive layer through van Der Waals force. After a vacuum annealing process, a high gain in exceeding 107 has been obtained simitaneously with a dynamic response time of around 10 ms for both light on and off. We attribute the high performance to the elimination of possible deep charge traps, most probably at the graphene/GaSe nanosheets interface. This result demonstrates high photoconductive gain and fast photoresponse can be achieved simultaneously and a clean interface is the key to the high performance of these hybrid devices.

  12. Graphene/GaSe-Nanosheet Hybrid: Towards High Gain and Fast Photoresponse

    PubMed Central

    Lu, Rongtao; Liu, Jianwei; Luo, Hongfu; Chikan, Viktor; Wu, Judy Z.

    2016-01-01

    While high photoconductive gain has been recently achieved in graphene-based hybrid phototransistors using semiconductor two-dimensional transition/post-transition metal dichalcogenides or quantum dots sensitizers, obtaining fast photoresponse simutaneously remains a challenge that must be addressed for practical applications. In this paper we report a graphene/GaSe nanosheets hybrid photodetector, in which GaSe nanosheets provide a favorable geometric link to graphene conductive layer through van Der Waals force. After a vacuum annealing process, a high gain in exceeding 107 has been obtained simitaneously with a dynamic response time of around 10 ms for both light on and off. We attribute the high performance to the elimination of possible deep charge traps, most probably at the graphene/GaSe nanosheets interface. This result demonstrates high photoconductive gain and fast photoresponse can be achieved simultaneously and a clean interface is the key to the high performance of these hybrid devices. PMID:26776942

  13. Fast neural network surrogates for very high dimensional physics-based models in computational oceanography.

    PubMed

    van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M

    2007-05-01

    We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.

  14. A fast chopper for the Fermilab High Intensity Neutrino Source (HINS)

    SciTech Connect

    Madrak, R.; Wildman, D.; Dymokde-Bradshaw, A.; Hares, J.; Kellett, P.

    2008-10-01

    A fast chopper capable of kicking single 2.5 MeV H-bunches spaced at 325 MHz, at rates greater than 50 MHz is needed for the Fermilab High Intensity Neutrino Source (HINS) [1]. Four 1.2 kV fast pulsers, designed and manufactured by Kentech Instruments Ltd., will drive a 0.5 m long meander made from a copper plated ceramic composite. Test results showing pulses from the first 1.2 kV pulser and meander results will be presented.

  15. Fast neural network surrogates for very high dimensional physics-based models in computational oceanography.

    PubMed

    van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M

    2007-05-01

    We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather. PMID:17517493

  16. High-Resolution Strain Analysis of the Human Heart with Fast-DENSE

    NASA Astrophysics Data System (ADS)

    Aletras, Anthony H.; Balaban, Robert S.; Wen, Han

    1999-09-01

    Single breath-hold displacement data from the human heart were acquired with fast-DENSE (fast displacement encoding with stimulated echoes) during systolic contraction at 2.5 × 2.5 mm in-plane resolution. Encoding strengths of 0.86-1.60 mm/π were utilized in order to extend the dynamic range of the phase measurements and minimize effects of physiologic and instrument noise. The noise level in strain measurements for both contraction and dilation corresponded to a strain value of 2.8%. In the human heart, strain analysis has sufficient resolution to reveal transmural variation across the left ventricular wall. Data processing required minimal user intervention and provided a rapid quantitative feedback. The intrinsic temporal integration of fast-DENSE achieves high accuracy at the expense of temporal resolution.

  17. Note: High resolution ultra fast high-power pulse generator for inductive load using digital signal processor

    NASA Astrophysics Data System (ADS)

    Flaxer, Eli

    2014-08-01

    We present a new design of a compact, ultra fast, high resolution and high-powered, pulse generator for inductive load, using power MOSFET, dedicated gate driver and a digital signal controller. This design is an improved circuit of our old version controller. We demonstrate the performance of this pulse generator as a driver for a new generation of high-pressure supersonic pulsed valves.

  18. Note: High resolution ultra fast high-power pulse generator for inductive load using digital signal processor.

    PubMed

    Flaxer, Eli

    2014-08-01

    We present a new design of a compact, ultra fast, high resolution and high-powered, pulse generator for inductive load, using power MOSFET, dedicated gate driver and a digital signal controller. This design is an improved circuit of our old version controller. We demonstrate the performance of this pulse generator as a driver for a new generation of high-pressure supersonic pulsed valves.

  19. Recent Developments in High-Harmonic Fast Wave Physics in NSTX

    SciTech Connect

    B.P. LeBlanc, R.E. Bell, P. Bonoli, R. Harvey, W.W. Heidbrink, J.C. Hosea, S.M. Kaye, D. Liu, R. Maingi, S.S. Medley, M. Ono, M. Podestà, C.K. Phillips, P.M. Ryan, A.L. Roquemore, G. Taylor, J.R. Wilson and the NSTX Team

    2010-10-06

    Understanding the interaction between ion cyclotron range of frequency (ICRF) fast waves and the fast-ions created by neutral beam injection (NBI) is critical for future devices such as ITER, which rely on a combination ICRF and NBI. Experiments in NSTX which use 30 MHz High-Harmonic Fast-Wave (HHFW) ICRF and NBI heating show a competition between electron heating via Landau damping and transit-time magnetic pumping, and radio-frequency wave acceleration of NBI generated fast ions. Understanding and mitigating some of the power loss mechanisms outside the last closed flux surface (LCFS) has resulted in improved HHFW heating inside the LCFS. Nevertheless a significant fraction of the HHFW power is diverted away from the enclosed plasma. Part of this power is observed locally on the divertor. Experimental observations point toward the radio-frequency (RF) excitation of surface waves, which disperse wave power outside the LCFS, as a leading loss mechanism. Lithium coatings lower the density at the antenna, thereby moving the critical density for perpendicular fast-wave propagation away from the antenna and surrounding material surfaces. Visible and infrared imaging reveal flows of RF power along open field lines into the divertor region. In L-mode -- low average NBI power -- conditions, the fast-ion D-alpha (FIDA) diagnostic measures a near doubling and broadening of the density profile of the upper energetic level of the fast ions concurrent with the presence of HHFW power launched with k// =-8m-1. We are able to heat NBI-induced H-mode plasmas with HHFW. The captured power is expected to be split between absorption by the electrons and absorption by the fast ions, based on TORIC calculation. In the case discussed here the Te increases over the whole profile when ~2MW of HHFW power with antenna k// =13m-1 is applied after the H-mode transition.. But somewhat unexpectedly fast-ion diagnostics do not observe a change between the HHFW heated NBI discharge and the

  20. Development and fabrication of a fast recovery, high voltage power diode

    NASA Technical Reports Server (NTRS)

    Berman, A. H.; Balodis, V.; Duffin, J. J.; Gaugh, C.; Kkaratnicki, H. M.; Troutman, G.

    1981-01-01

    The use of positive bevels for P-I-N mesa structures to achieve high voltages is described. The technique of glass passivation for mesa structures is described. The utilization of high energy radiation to control the lifetime of carriers in silicon is reported as a means to achieve fast recovery times. Characterization data is reported and is in agreement with design concepts developed for power diodes.

  1. Fast, high temperature and thermolabile GC--MS in supersonic molecular beams

    NASA Astrophysics Data System (ADS)

    Dagan, Shai; Amirav, Aviv

    1994-05-01

    This work describes and evaluates the coupling of a fast gas chromatograph (GC) based on a short column and high carrier gas flow rate to a supersonic molecular beam mass spectrometer (MS). A 50 cm long megabore column serves for fast GC separation and connects the injector to the supersonic nozzle source. Sampling is achieved with a conventional syringe based splitless sample injection. The injector contains no septum and is open to the atmosphere. The linear velocity of the carrier gas is controlled by a by-pass (make-up) gas flow introduced after the column and prior to the supersonic nozzle. The supersonic expansion serves as a jet separator and the skimmed supersonic molecular beam (SMB) is highly enriched with the heavier organic molecules. The supersonic molecular beam constituents are ionized either by electron impact (EI) or hyperthermal surface ionization (HSI) and mass analyzed. A 1 s fast GC--MS of four aromatic molecules in methanol is demonstrated and some fundamental aspects of fast GC--MS with time limit constraints are outlined. The flow control (programming) of the speed of analysis is shown and the analysis of thermolabile and relatively non-volatile molecules is demonstrated and discussed. The tail-free, fast GC--MS of several mixtures is shown and peak tailing of caffeine is compared with that of conventional GC--MS. The improvement of the peak shapes with the SMB--MS is analyzed with the respect to the elimination of thermal vacuum chamber background. The extrapolated minimum detected amount was about 400 ag of anthracence-d10, with an elution time which was shorter than 2s. Repetitive injections could be performed within less than 10 s. The fast GC--MS in SMB seems to be ideal for fast target compound analysis even in real world, complex mixtures. The few seconds GC--MS separation and quantification of lead (as tetraethyllead) in gasoline, caffeine in coffee, and codeine in a drug is demonstrated. Controlled HSI selectivity is demonstrated in

  2. Design of gas circulation system in the high power fast axial flow CO2 laser

    NASA Astrophysics Data System (ADS)

    Huang, Hongyan; Wang, Youqing; Li, Qing; Jia, Xinting

    2009-08-01

    Increasing the output power of the fast axial flow CO2 laser requires a proportional growth of the mass flow with the laser power for convective cooling of the active laser medium. The previous research on high power CO2 laser was mostly focused on gas discharge. However, little attention was focused on the gas circulation system, which is also an essential technology to ensure the long time stable work of the high power fast axial flow CO2 laser. Based on the analysis of the characteristics of the 7 KW fast axial flow CO2 laser, expounded the important role of the gas circulation system, and then analyzed the parameters, the structure and the design of the system. After that, this paper compared various types of blowers and heat exchangers, chose magnetic levitation radial turbine blower and rectangle finned heat exchanger, in light of the prominent performance and compact structure. Further more, this paper also supplied the methods of the blower and heat exchanger selection and design. The results indicate that the magnetic levitation radial turbine blower and rectangle finned heat exchanger which have been chosen are suitable to the 7 kW fast axial flow CO2 laser.

  3. Statin myalgia is not associated with reduced muscle strength, mass or protein turnover in older male volunteers, but is allied with a slowing of time to peak power output, insulin resistance and differential muscle mRNA expression.

    PubMed

    Mallinson, Joanne E; Marimuthu, Kanagaraj; Murton, Andrew; Selby, Anna; Smith, Kenneth; Constantin-Teodosiu, Dumitru; Rennie, Michael J; Greenhaff, Paul L

    2015-03-01

    Statins are associated with muscle myalgia and myopathy, which probably reduce habitual physical activity. This is particularly relevant to older people who are less active, sarcopaenic and at increased risk of statin myalgia. We hypothesised that statin myalgia would be allied to impaired strength and work capacity in older people, and determined whether differences aligned with divergences in lean mass, protein turnover, insulin sensitivity and the molecular regulation of these processes. Knee extensor strength and work output during 30 maximal isokinetic contractions were assessed in healthy male volunteers, nine with no statin use (control 70.4 ± 0.7 years) and nine with statin myalgia (71.5 ± 0.9 years). Whole body and leg glucose disposal, muscle myofibrillar protein synthesis (MPS) and leg protein breakdown (LPB) were measured during fasting (≈5 mU l(-1) insulin) and fed (≈40 mU l(-1) insulin + hyperaminoacidaemia) euglyceamic clamps. Muscle biopsies were taken before and after each clamp. Lean mass, MPS, LPB and strength were not different but work output during the initial three isokinetic contractions was 19% lower (P < 0.05) in statin myalgic subjects due to a delay in time to reach peak power output. Statin myalgic subjects had reduced whole body (P = 0.05) and leg (P < 0.01) glucose disposal, greater abdominal adiposity (P < 0.05) and differential expression of 33 muscle mRNAs (5% false discovery rate (FDR)), six of which, linked to mitochondrial dysfunction and apoptosis, increased at 1% FDR. Statin myalgia was associated with impaired muscle function, increased abdominal adiposity, whole body and leg insulin resistance, and evidence of mitochondrial dysfunction and apoptosis.

  4. Fish oil decreases hepatic lipogenic genes in rats fasted and refed on a high fructose diet.

    PubMed

    de Castro, Gabriela S; Cardoso, João Felipe R; Calder, Philip C; Jordão, Alceu A; Vannucchi, Helio

    2015-03-01

    Fasting and then refeeding on a high-carbohydrate diet increases serum and hepatic triacylglycerol (TAG) concentrations compared to standard diets. Fructose is a lipogenic monosaccharide which stimulates de novo fatty acid synthesis. Omega-3 (n-3) fatty acids stimulate hepatic β-oxidation, partitioning fatty acids away from TAG synthesis. This study investigated whether dietary n-3 fatty acids from fish oil (FO) improve the hepatic lipid metabolic response seen in rats fasted and then refed on a high-fructose diet. During the post-prandial (fed) period, rats fed a FO rich diet showed an increase in hepatic peroxisome proliferator-activated receptor α (PPAR-α) gene expression and decreased expression of carbohydrate responsive element binding protein (ChREBP), fatty acid synthase (FAS) and microsomal triglyceride transfer protein (MTTP). Feeding a FO rich diet for 7 days prior to 48 h of fasting resulted in lower hepatic TAG, lower PPAR-α expression and maintenance of hepatic n-3 fatty acid content. Refeeding on a high fructose diet promoted an increase in hepatic and serum TAG and in hepatic PPAR-α, ChREBP and MTTP expression. FO did not prevent the increase in serum and hepatic TAG after fructose refeeding, but did decrease hepatic expression of lipogenic genes and increased the n-3 fatty acid content of the liver. n-3 Fatty acids can modify some components of the hepatic lipid metabolic response to later feeding with a high fructose diet.

  5. An instrument to measure fast gas phase radical kinetics at high temperatures and pressures.

    PubMed

    Stone, Daniel; Blitz, Mark; Ingham, Trevor; Onel, Lavinia; Medeiros, Diogo J; Seakins, Paul W

    2016-05-01

    Fast radical reactions are central to the chemistry of planetary atmospheres and combustion systems. Laser-induced fluorescence is a highly sensitive and selective technique that can be used to monitor a number of radical species in kinetics experiments, but is typically limited to low pressure systems owing to quenching of fluorescent states at higher pressures. The design and characterisation of an instrument are reported using laser-induced fluorescence detection to monitor fast radical kinetics (up to 25 000 s(-1)) at high temperatures and pressures by sampling from a high pressure reaction region to a low pressure detection region. Kinetics have been characterised at temperatures reaching 740 K and pressures up to 2 atm, with expected maximum operational conditions of up to ∼900 K and ∼5 atm. The distance between the point of sampling from the high pressure region and the point of probing within the low pressure region is critical to the measurement of fast kinetics. The instrumentation described in this work can be applied to the measurement of kinetics relevant to atmospheric and combustion chemistry. PMID:27250442

  6. Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity.

    PubMed

    Ito, Kohji; Kashiyama, Taku; Shimada, Kiyo; Yamaguchi, Akira; Awata, Jun ya; Hachikubo, You; Manstein, Dietmar J; Yamamoto, Keiichi

    2003-12-26

    The mechanism and structural features that are responsible for the fast motility of Chara corallina myosin (CCM) have not been elucidated, so far. The low yields of native CCM that can be purified to homogeneity were the major reason for this. Here, we describe the expression of recombinant CCM motor domains, which support the fast movement of actin filaments in an in vitro motility assay. A CCM motor domain without light chain binding site moved actin filaments at a velocity of 8.8 microm/s at 30 degrees C and a CCM motor domain with an artificial lever arm consisting of two alpha-actinin repeats moved actin filaments at 16.2 microm/s. Both constructs displayed high actin-activated ATPase activities ( approximately 500 Pi/s/head), which is indicative of a very fast hydrolysis step. Our results provide an excellent system to dissect the specific structural and functional features that distinguish the myosin responsible for fast cytoplasmic streaming.

  7. Advances in High-harmonic Fast Wave Physics in the National Spherical Torus Experiment

    SciTech Connect

    Taylor, G; Hosea, J C; LeBlanc, B P; Phillips, C K; Podesta, M; Valeo, E J; Wilson, J R; Ahn, J -W; Chen, G; Green, D L; Jaeger, E F; Maingi, R; Ryan, P M; Wilgen, J B; Heidbrink, W W; Liu, D; Bonoli, P T; Brecht, T; Choi, M

    2009-12-01

    Improved core high-harmonic fast wave (HHFW) heating at longer wavelengths and during start-up and plasma current ramp-up, has now been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for perpendicular fast-wave propagation away from the vessel wall. Lithium conditioning allowed significant HHFW core electron heating of deuterium neutral beam injection (NBI) fuelled H-mode plasmas to be observed for the first time. Large edge localized modes were observed immediately after the termination of rf power. Visible and infrared camera images show that fast wave interactions can deposit considerable rf energy on the outboard divertor. HHFW-generated parametric decay instabilities were observed to heat ions in the plasma edge and may be the cause for a measured drag on edge toroidal rotation during HHFW heating. A significant enhancement in neutron rate and fast-ion profile were measured in NBI-fuelled plasmas when HHFW heating was applied. __________________________________________________

  8. Advances in high-harmonic fast wave physics in the National Spherical Torus Experiment

    SciTech Connect

    Taylor, G.; Bell, R. E.; Hosea, J. C.; LeBlanc, B. P.; Phillips, C. K.; Podesta, M.; Valeo, E. J.; Wilson, J. R.; Ahn, J-W.; Chen, G.; Green, D. L.; Jaeger, E. F.; Maingi, R.; Ryan, P. M.; Wilgen, J. B.; Heidbrink, W. W.; Liu, D.; Bonoli, P. T.; Brecht, T.; Choi, M.

    2010-05-15

    Improved core high-harmonic fast wave (HHFW) heating at longer wavelengths and during start-up and plasma current ramp-up has now been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for perpendicular fast-wave propagation away from the vessel wall. Lithium conditioning allowed significant HHFW core electron heating of deuterium neutral beam injection (NBI) fuelled H-mode plasmas to be observed for the first time. Large edge localized modes were observed immediately after the termination of rf power. Visible and infrared camera images show that fast wave interactions can deposit considerable rf energy on the outboard divertor. HHFW-generated parametric decay instabilities were observed to heat ions in the plasma edge and may be the cause for a measured drag on edge toroidal rotation during HHFW heating. A significant enhancement in neutron rate and fast-ion profile was measured in NBI-fuelled plasmas when HHFW heating was applied.

  9. Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W.; Hill, Gerald F.; Wade, Larry O.; Perry, Murray G.

    1987-01-01

    A tunable diode laser instrument, denoted as DACOM (Differential Absorption CO Measurement), has been developed to meet the fast-response, high-precision CO measurement needs of the GTE (Global Tropospheric Experiment) program. Under the GTE program, DACOM participated in the three field missions of CITE 1 (Chemical Instrumentation Test and Evaluation 1), a project involving the intercomparison of trace gas measurement techniques. DACOM performance, including analyses of measurement error sources, is discussed for the ground-based mission at Wallops Island, VA (summer 1983), and two missions on the NASA CV-990 (fall 1983 and spring 1984). Examples of fast-response (about 1 s), high-precision (+ or - 1 part per billion by volume, + or - 1.5 percent of reading) airborne data are included to illustrate the capability of this instrument.

  10. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  11. A fast high-order method to calculate wakefield forces in an electron beam

    SciTech Connect

    Qiang, Ji; Mitchell, Chad; Ryne, Robert D.

    2012-03-22

    In this paper we report on a high-order fast method to numerically calculate wakefield forces in an electron beam given a wake function model. This method is based on a Newton-Cotes quadrature rule for integral approximation and an FFT method for discrete summation that results in an O(Nlog(N)) computational cost, where N is the number of grid points. Using the Simpson quadrature rule with an accuracy of O(h4), where h is the grid size, we present numerical calculation of the wakefields from a resonator wake function model and from a one-dimensional coherent synchrotron radiation (CSR) wake model. Besides the fast speed and high numerical accuracy, the calculation using the direct line density instead of the first derivative of the line density avoids numerical filtering of the electron density function for computing the CSR wakefield force. I. INTRODUCTION

  12. Intermittent Theta Burst Over M1 May Increase Peak Power of a Wingate Anaerobic Test and Prevent the Reduction of Voluntary Activation Measured with Transcranial Magnetic Stimulation.

    PubMed

    Giboin, Louis-Solal; Thumm, Patrick; Bertschinger, Raphael; Gruber, Markus

    2016-01-01

    Despite the potential of repetitive transcranial magnetic stimulation (rTMS) to improve performances in patients suffering from motor neuronal afflictions, its effect on motor performance enhancement in healthy subjects during a specific sport task is still unknown. We hypothesized that after an intermittent theta burst (iTBS) treatment, performance during the Wingate Anaerobic Test (WAnT) will increase and supraspinal fatigue following the exercise will be lower in comparison to a control treatment. Ten subjects participated in two randomized experiments consisting of a WAnT 5 min after either an iTBS or a control treatment. We determined voluntary activation (VA) of the right knee extensors with TMS (VATMS) and with peripheral nerve stimulation (VAPNS) of the femoral nerve, before and after the WAnT. T-tests were applied to the WAnT results and a two way within subject ANOVA was applied to VA results. The iTBS treatment increased the peak power and the maximum pedalling cadence and suppressed the reduction of VATMS following the WAnT compared to the control treatment. No behavioral changes related to fatigue (mean power and fatigue index) were observed. These results indicate for the first time that iTBS could be used as a potential intervention to improve anaerobic performance in a sport specific task. PMID:27486391

  13. Pulsed hybrid dual wavelength Y-branch-DFB laser-tapered amplifier system suitable for water vapor detection at 965 nm with 16 W peak power

    NASA Astrophysics Data System (ADS)

    Vu, Thi N.; Klehr, Andreas; Sumpf, Bernd; Hoffmann, Thomas; Liero, Armin; Tränkle, Günther

    2016-03-01

    A master oscillator power amplifier system emitting alternatingly at two neighbored wavelengths around 965 nm is presented. As master oscillator (MO) a Y-branch DFB-laser is used. The two branches, which can be individually controlled, deliver the two wavelengths needed for a differential absorption measurement of water vapor. Adjusting the current through the DFB sections, the wavelength can be adjusted with respect to the targeted either "on" or "off" resonance, respectively wavelength λon or wavelength λoff. The emission of this laser is amplified in a tapered amplifier (TA). The ridge waveguide section of the TA acts as optical gate to generate short pulses with duration of 8 ns at a repetition rate of 25 kHz, the flared section is used for further amplification to reach peak powers up to 16 W suitable for micro-LIDAR (Light Detection and Ranging). The necessary pulse current supply user a GaN-transistor based driver electronics placed close to the power amplifier (PA). The spectral properties of the emission of the MO are preserved by the PA. A spectral line width smaller than 10 pm and a side mode suppression ratio (SMSR) of 37 dB are measured. These values meet the demands for water vapor absorption measurements under atmospheric conditions.

  14. Intermittent Theta Burst Over M1 May Increase Peak Power of a Wingate Anaerobic Test and Prevent the Reduction of Voluntary Activation Measured with Transcranial Magnetic Stimulation

    PubMed Central

    Giboin, Louis-Solal; Thumm, Patrick; Bertschinger, Raphael; Gruber, Markus

    2016-01-01

    Despite the potential of repetitive transcranial magnetic stimulation (rTMS) to improve performances in patients suffering from motor neuronal afflictions, its effect on motor performance enhancement in healthy subjects during a specific sport task is still unknown. We hypothesized that after an intermittent theta burst (iTBS) treatment, performance during the Wingate Anaerobic Test (WAnT) will increase and supraspinal fatigue following the exercise will be lower in comparison to a control treatment. Ten subjects participated in two randomized experiments consisting of a WAnT 5 min after either an iTBS or a control treatment. We determined voluntary activation (VA) of the right knee extensors with TMS (VATMS) and with peripheral nerve stimulation (VAPNS) of the femoral nerve, before and after the WAnT. T-tests were applied to the WAnT results and a two way within subject ANOVA was applied to VA results. The iTBS treatment increased the peak power and the maximum pedalling cadence and suppressed the reduction of VATMS following the WAnT compared to the control treatment. No behavioral changes related to fatigue (mean power and fatigue index) were observed. These results indicate for the first time that iTBS could be used as a potential intervention to improve anaerobic performance in a sport specific task. PMID:27486391

  15. Pulsed Yb:fiber system capable of >250kW peak power with tunable pulses in the 50ps to 1.5ns range

    NASA Astrophysics Data System (ADS)

    McComb, Timothy S.; Lowder, Tyson L.; Leadbetter, Vickie; Reynolds, Mitch; Saracco, Matthieu J.; Hutchinson, Joel; Green, Jared; McCal, Dennis; Burkholder, Gary; Kutscha, Tim; Dittli, Adam; Hamilton, Chuck; Kliner, Dahv A. V.; Randall, Matthew; Fanning, Geoff; Bell, Jake

    2013-03-01

    We have demonstrated a pulsed 1064 nm PM Yb:fiber laser system incorporating a seed source with a tunable pulse repetition rate and pulse duration and a multistage fiber amplifier, ending in a large core (>650 μm2 mode field area), tapered fiber amplifier. The amplifier chain is all-fiber, with the exception of the final amplifier's pump combiner, allowing robust, compact packaging. The air-cooled laser system is rated for >60 W of average power and beam quality of M2 < 1.3 at repetition rates below 100 kHz to 10's of MHz, with pulses discretely tunable over a range spanning 50 ps to greater than 1.5 ns. Maximum pulse energies, limited by the onset of self phase modulation and stimulated Raman scattering, are greater than 12.5 μJ at 50 ps and 375 μJ at 1.5 ns , corresponding to >250 kW peak power across the pulse tuning range. We present frequency conversion to 532 nm with efficiency greater than 70% and conversion to UV via frequency tripling, with initial feasibility experiments showing >30% UV conversion efficiency. Application results of the laser in scribing, thin film removal and micro-machining will be discussed.

  16. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    NASA Astrophysics Data System (ADS)

    Koptev, M. Yu; Anashkina, E. A.; Bobkov, K. K.; Likhachev, M. E.; Levchenko, A. E.; Aleshkina, S. S.; Semjonov, S. L.; Denisov, A. N.; Bubnov, M. M.; Lipatov, D. S.; Laptev, A. Yu; Gur'yanov, A. N.; Andrianov, A. V.; Muravyev, S. V.; Kim, A. V.

    2015-05-01

    We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm range and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier.

  17. High-definition velocity-space tomography of fast-ion dynamics

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Geiger, B.; Jacobsen, A. S.; Hansen, P. C.; Heidbrink, W. W.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Nocente, M.; Odstrčil, T.; Rasmussen, J.; Stagner, L.; Stejner, M.; Weiland, M.; the ASDEX Upgrade Team

    2016-10-01

    Velocity-space tomography of the fast-ion distribution function in a fusion plasma is usually a photon-starved tomography method due to limited optical access and signal-to-noise ratio of fast-ion D α (FIDA) spectroscopy as well as the strive for high-resolution images. In high-definition tomography, prior information makes up for this lack of data. We restrict the target velocity space through the measured absence of FIDA light, impose phase-space densities to be non-negative, and encode the known geometry of neutral beam injection (NBI) sources. We further use a numerical simulation as prior information to reconstruct where in velocity space the measurements and the simulation disagree. This alternative approach is demonstrated for four-view as well as for two-view FIDA measurements. The high-definition tomography tools allow us to study fast ions in sawtoothing plasmas and the formation of NBI peaks at full, half and one-third energy by time-resolved tomographic movies.

  18. 0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser.

    PubMed

    Yang, Linyong; Zhang, Bin; Yin, Ke; Yao, Jinmei; Liu, Guangchen; Hou, Jing

    2016-06-13

    An ultra-broadband supercontinuum was generated in a short piece of step-index germania-core fiber using a fiber laser with a peak power of 4.4 kW. The pure germania core made this fiber capable of propagating light towards the desirable mid-infrared region. The spectral broadening characteristics towards the mid-infrared region under different lengths of germania-core fiber were investigated using pump pulses of 4.4 kW and 1.1 ns at 1550 nm. The large nonlinear refractive index of germania and the small core size of germania-core fiber produced a nonlinear coefficient as high as 11.8 (W km)-1 at 1550 nm, which was beneficial for supercontinuum generation. The pump wavelength was located in the anomalous dispersion regime and close to the zero dispersion wavelength of this germania-core fiber, 1.426 μm. Eventually, an ultra-broadband supercontinuum source with a spectrum spanning from 0.6 to 3.2 μm was obtained and had a total output power of 350 mW at an optimized germania-core fiber length of 0.8 m. This work is the first demonstration, to the best of our knowledge, of a germania-core fiber-based ultra-broadband supercontinuum source that spans from the visible region to the mid-infrared region. PMID:27410281

  19. Design concept and performance considerations for fast high power semiconductor switching for high repetition rate and high power excimer laser

    NASA Astrophysics Data System (ADS)

    Goto, Tatsumi; Kakizaki, Kouji; Takagi, Shigeyuki; Satoh, Saburoh; Shinohe, Takashi; Ohashi, Hiromichi; Endo, Fumihiko; Okamura, Katsuya; Ishii, Akira; Teranishi, Tsuneharu; Yasuoka, Koichi

    1997-07-01

    A semiconductor switching power supply has been developed, in which a novel structure semiconductor device, metal-oxide-semiconductor assisted gate-triggered thyristor (MAGT) was incorporated with a single stage magnetic pulse compression circuit (MPC). The MAGT was specially designed to directly replace thyratrons in a power supply for a high repetition rate laser. Compared with conventional high power semiconductor switching devices, it was designed to enable a fast switching, retaining a high blocking voltage and to extremely reduce the transient turn-on power losses, enduring a higher peak current. A maximum peak current density of 32 kA/cm2 and a current density risetime rate di/dt of 142 kA/(cm2×μs) were obtained at the chip area with an applied anode voltage of 1.5 kV. A MAGT switching unit connecting 32 MAGTs in series was capable of switching on more than 25 kV-300 A at a repetition rate of 5 kHz, which, coupled with the MPC, was equivalent to the capability of a high power thyratron. A high repetition rate and high power XeCl excimer laser was excited by the power supply. The results confirmed the stable laser operation of a repetition rate of up to 5 kHz, the world record to our knowledge. An average output power of 0.56 kW was obtained at 5 kHz where the shortage of the total discharge current was subjoined by a conventional power supply with seven parallel switching thyratrons, simultaneously working, for the MAGT power supply could not switch a greater current than that switched by one thyratron. It was confirmed by those excitations that the MAGT unit with the MPC could replace a high power commercial thyratron directly for excimer lasers. The switching stability was significantly superior to that of the thyratron in a high repetition rate region, judging from the discharge current wave forms. It should be possible for the MAGT unit, in the future, to directly switch the discharge current within a rise time of 0.1 μs with a magnetic assist.

  20. Comparison of moulting methods for layers: high-zinc diet versus fasting.

    PubMed

    Silva-Mendonça, M C A; Fagundes, N S; Mendonça, G A; Gonçalves, F C; Fonseca, B B; Mundim, A V; Fernandes, E A

    2015-01-01

    The serum biochemical profiles, thyroid hormones, body weights and the production and quality of eggs subsequent to moulting, were compared in laying hens subjected to conventional forced moulting or forced moulting with a diet high in zinc. A total of 200 Dekalb White laying hens in their second production cycle were studied. Blood sampling was conducted in a factorial experimental design (2 × 3) with two methods of moulting (fasting or zinc) and three sampling periods (pre-moult, moult and subsequent peak). Total egg protein content, including globulins, was greater with the zinc diet, whereas egg weight and albumen percentage were greater after fasting. The zinc method resulted in an increased shell thickness and calcium percentage but lower percentage of phosphorus. During the moulting period, the hens in the zinc group had heavier mean body weights. It was concluded that moulting with a high-zinc diet could replace fasting, without negative effects on body weight, biochemical variables or subsequent egg quality and production. The zinc method was also better for the birds' welfare.

  1. Modeling of high harmonic fast wave current drive on EAST tokamak

    SciTech Connect

    Li, J. C.; Gong, X. Y. Li, F. Y.; Dong, J. Q.; Gao, Q. D.; Zhang, N.

    2015-10-15

    High harmonic fast waves (HHFW) are among the candidates for non-inductive current drive (CD), which is essential for long-pulse or steady-state operation of tokamaks. Current driven with HHFW in EAST tokamak plasmas is numerically studied. The HHFW CD efficiency is found to increase non-monotonically with the wave frequency, and this phenomenon is attributed to the multi-pass absorption of HHFW. The sensitivity of CD efficiency to the value of the parallel refraction index of the launched wave is confirmed. The quasilinear effects, assessed as significant in HHFW current drive with the GENRAY/CQL3D package, cause a significant increase in CD efficiency as RF power is increased, which is very different from helicon current drive. Simulations for a range of toroidal dc electric fields, in combination with a range of fast wave powers, are also presented and indicate that the presence of the DC field can also enhance the CD efficiency.

  2. Fast ignition by laser driven particle beams of very high intensity

    SciTech Connect

    Hora, H.; Read, M. N.; Badziak, J.; Glowacz, S.; Jablonski, S.; Wolowski, J.; Skladanowski, Z.; Li, Y.-T.; Liang, T.-J.; Liu Hong; Sheng Zhengming; Zhang Jie; Cang Yu; Osman, F.; Miley, G. H.; Zhang Weiyan; He Xiantu; Peng Hansheng; Jungwirth, K.; Rohlena, K.

    2007-07-15

    Anomalous observations using the fast ignition for laser driven fusion energy are interpreted and experimental and theoretical results are reported which are in contrast to the very numerous effects usually observed at petawatt-picosecond laser interaction with plasmas. These anomalous mechanisms result in rather thin blocks (pistons) of these nonlinear (ponderomotive) force driven highly directed plasmas of modest temperatures. The blocks consist in space charge neutral plasmas with ion current densities above 10{sup 10} A/cm{sup 2}. For the needs of applications in laser driven fusion energy, much thicker blocks are required. This may be reached by a spherical configuration where a conical propagation may lead to thick blocks for interaction with targets. First results are reported in view of applications for the proton fast igniter and other laser-fusion energy schemes.

  3. Design Considerations of Fast Kicker Systems for High Intensity Proton Accelerators

    SciTech Connect

    Zhang, W; Sandberg, J; Parson, W M; Walstrom, P; Murray, M M; Cook, E; Hartouni, E

    2001-06-12

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed.

  4. DESIGN CONSIDERATIONS OF FAST KICKER SYSTEMS FOR HIGH INTENSITY PROTON ACCELERATORS.

    SciTech Connect

    ZHANG,W.; SANDBERG,J.; PARSONS,W.M.; WALSTROM,P.; MURRAY,M.M.; COOK,E.; HARTOUNI,E.

    2001-06-17

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed.

  5. Absorption of Fast Waves at Moderate to High Ion Cyclotron Harmonics: Experimental Results and Theoretical Models

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Choi, M.; Prater, R.; Heidbrink, W. W.; Luo, Y.; Baity, F. W.; Murakami, M.; Porkolab, M.

    2006-10-01

    Strong absorption of fast Alfvén waves (FW) by ion cyclotron damping has been observed in DIII-D at the 4th and 5th harmonic of an injected beam while only weak absorption is observed at the 8th harmonic. The experimental results are compared with three different theoretical models; differences between the predictions of the models suggest the possible importance of finite-width orbit effects at high harmonics. In a linear model, it is found that damping on fast ions from neutral beam injection can be significant even at the 8th harmonic under experimentally relevant conditions. This is tested in experiments in DIII-D with FW power at 60 MHz and at 116 MHz. A novel Dα charge exchange recombination diagnostic is used to observe interaction of the FW power with beam ions. The results are compared with modeling with quasilinear and with orbit-following codes.

  6. Advances in High-Harmonic Fast Wave Physics in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Taylor, Gary

    2009-11-01

    Improved core high-harmonic fast wave (HHFW) heating, particularly at longer wavelengths and during low-density start-up and current ramp-up, has now been obtained by lowering the edge density with lithium conditioning, thereby moving the propagation onset away from the vessel wall. Significant core electron heating of deuterium neutral beam injection (NBI) fuelled H-modes has been observed for the first time over a range of launched wavelengths. The observed broadening of the electron heating profile in H-mode relative to L-mode plasmas is consistent with simulations obtained with ray tracing and full wave models. Newly taken camera images indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFW-generated parametric decay instabilities that drive ions in the edge onto direct loss orbits that intersect the wall, and may be the cause for an observed drag on edge toroidal rotation in combined HHFW and NBI discharges. Fast-Ion D-alpha emission clearly shows fast-ion profile broadening in the plasma core that is much greater than predicted by Fokker-Planck modeling when HHFW power is applied to NBI-fuelled plasmas, pointing to the need for a full-orbit treatment in the simulation. Large ELMs have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. RF power has been successfully applied during large ELMs by setting the source reflection coefficient trip levels to relatively high values -- an approach potentially important for ITER ICRF heating. Plans for an HHFW ELM-resilience upgrade will be presented.

  7. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and

  8. Calorie Underestimation When Buying High-Calorie Beverages in Fast-Food Contexts.

    PubMed

    Franckle, Rebecca L; Block, Jason P; Roberto, Christina A

    2016-07-01

    We asked 1877 adults and 1178 adolescents visiting 89 fast-food restaurants in New England in 2010 and 2011 to estimate calories purchased. Calorie underestimation was greater among those purchasing a high-calorie beverage than among those who did not (adults: 324 ±698 vs 102 ±591 calories; adolescents: 360 ±602 vs 198 ±509 calories). This difference remained significant for adults but not adolescents after adjusting for total calories purchased. Purchasing high-calorie beverages may uniquely contribute to calorie underestimation among adults.

  9. Advances in High Harmonic Fast Wave Heating of NSTX H-mode Plasmas

    SciTech Connect

    Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.; Bonoli, P.; Chen, Guangye; Green, David L; Harvey, R. W.; Hosea, J.; Jaeger, Erwin Frederick; Kaye, S.; LeBlanc, B; Maingi, Rajesh; Phillips, Cynthia; Podesta, M.; Taylor, G.; Wilgen, John B; Wilson, J. R.

    2010-01-01

    High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths and during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal

  10. Impairment of 40-km time-trial performance but not peak power output with external iliac kinking: a case study in a world-class cyclist.

    PubMed

    Lamberts, Robert P; Mann, T N; Rietjens, Gerard J; Tijdink, Hendrik H

    2014-07-01

    Iliac blood-flow restrictions causing painful and "powerless" legs are often attributed to overtraining and may develop for some time before being correctly diagnosed. In the current study, differences between actual performance parameters and performance parameters predicted from the Lamberts and Lambert Submaximal Cycle Test (LSCT) were studied in a world-class cyclist with bilateral kinking of the external iliac artery before and after surgery. Two performance-testing sessions, including a peak-power-output (PPO) test and a 40-km time trial (TT) were conducted before surgery, while 1 testing session was conducted after the surgery. Actual vs LSCT-predicted performance parameters in the world-class cyclists were compared with 82 symptom-free trained to elite male cyclists. No differences were found between actual and LSCT-predicted PPO before and after surgical intervention. However, there were differences between actual and LSCT-predicted 40-km TT time in the tests performed before the surgery (2:51and 2:55 min:s, respectively). These differences were no longer apparent in the postsurgery 40-km TT (2 s). This finding suggests that iliac blood-flow restrictions seem to mainly impair endurance performance rather than peak cycling performance. A standard PPO test without brachial ankle blood-pressure measurements might not be able to reflect iliac blood-flow restrictions. Differences between actual and LSCT-predicted 40-km TT time may assist in earlier referral to a cardiovascular specialist and result in earlier detection of iliac blood-flow restrictions.

  11. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.

  12. Compact, highly sensitive optical gyros and sensors with fast-light

    NASA Astrophysics Data System (ADS)

    Christensen, Caleb A.; Zavriyev, Anton; Cummings, Malcolm; Beal, A. C.; Lucas, Mark; Lagasse, Michael

    2015-09-01

    Fast-light phenomena can enhance the sensitivity of an optical gyroscope of a given size by several orders of magnitude, and could be applied to other optical sensors as well. MagiQ Technologies has been developing a compact fiber-based fast light Inertial Measurement Unit (IMU) using Stimulated Brillouin Scattering in optical fibers with commercially mature technologies. We will report on our findings, including repeatable fast-light effects in the lab, numerical analysis of noise and stability given realistic optical specs, and methods for optimizing efficiency, size, and reliability with current technologies. The technology could benefit inertial navigation units, gyrocompasses, and stabilization techniques, and could allow high grade IMUs in spacecraft, unmanned aerial vehicles or sensors, where the current size and weight of precision gyros are prohibitive. By using photonic integrated circuits and telecom-grade components along with specialty fibers, we also believe that our design is appropriate for development without further advances in the state of the art of components.

  13. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid. PMID:24013358

  14. Absorption of Fast Waves at Moderate to High Ion Cyclotron Harmonics on DIII-D

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Porkolab, M.; Heidbrink, W. W.; Luo, Y.; Petty, C. C.; Prater, R.; Choi, M.; Baity, F. W.; Fredd, E.; Hosea, J. C.; Harvey, R. W.; Smirnov, A. P.; Murakami, M.; Van Zeeland, M. A.

    2005-09-01

    The absorption of fast Alfvén waves (FW) by ion cyclotron harmonic damping in the range of harmonics from fourth to eighth is studied theoretically and with experiments in the DIII-D tokamak. A formula for linear ion cyclotron absorption on Maxwellian ion species is used to estimate the single-pass damping for various cases of experimental interest. It is found that damping on fast ions from neutral beam injection can be significant even at the eighth harmonic if the fast ion beta and the background plasma density are both high enough. The predictions are tested in several L-mode experiments in DIII-D with FW power at 60 MHz and at 116 MHz. It is found that 4th and 5th harmonic absorption of the 60 MHz power on the beam ions can be quite strong, but 8th harmonic absorption of the 116 MHz power appears to be weaker than expected. Possible explanations of the discrepancy are discussed.

  15. Absorption of fast waves at moderate to high ion cyclotron harmonics on DIII-D

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Porkolab, M.; Heidbrink, W. W.; Luo, Y.; Petty, C. C.; Prater, R.; Choi, M.; Schaffner, D. A.; Baity, F. W.; Fredd, E.; Hosea, J. C.; Harvey, R. W.; Smirnov, A. P.; Murakami, M.; Van Zeeland, M. A.

    2006-07-01

    The absorption of fast Alfvén waves (FW) by ion cyclotron harmonic damping in the range of harmonics from 4th to 8th is studied theoretically and with experiments in the DIII-D tokamak. A formula for linear ion cyclotron absorption on ions with an arbitrary distribution function which is symmetric about the magnetic field is used to estimate the single-pass damping for various cases of experimental interest. It is found that damping on fast ions from neutral beam injection can be significant even at the 8th harmonic if the fast ion beta, the beam injection energy and the background plasma density are high enough and the beam injection geometry is appropriate. The predictions are tested in several L-mode experiments in DIII-D with FW power at 60 MHz and at 116 MHz. It is found that 4th and 5th harmonic absorption of the 60 MHz power on the beam ions can be quite strong, but 8th harmonic absorption of the 116 MHz power appears to be weaker than expected. The linear modelling predicts a strong dependence of the 8th harmonic absorption on the initial pitch-angle of the injected beam, which is not observed in the experiment. Possible explanations of the discrepancy are discussed.

  16. Absorption of Fast Waves at Moderate to High Ion Cyclotron Harmonics on DIII-D

    SciTech Connect

    Pinsker, R.I.; Petty, C.C.; Prater, R.; Choi, M.; Porkolab, M.; Heidbrink, W.W.; Luo, Y.; Baity, F.W.; Murakami, M.; Fredd, E.; Hosea, J.C.; Harvey, R.W.; Smirnov, A.P.; Van Zeeland, M.A.

    2005-09-26

    The absorption of fast Alfven waves (FW) by ion cyclotron harmonic damping in the range of harmonics from fourth to eighth is studied theoretically and with experiments in the DIII-D tokamak. A formula for linear ion cyclotron absorption on Maxwellian ion species is used to estimate the single-pass damping for various cases of experimental interest. It is found that damping on fast ions from neutral beam injection can be significant even at the eighth harmonic if the fast ion beta and the background plasma density are both high enough. The predictions are tested in several L-mode experiments in DIII-D with FW power at 60 MHz and at 116 MHz. It is found that 4th and 5th harmonic absorption of the 60 MHz power on the beam ions can be quite strong, but 8th harmonic absorption of the 116 MHz power appears to be weaker than expected. Possible explanations of the discrepancy are discussed.

  17. High-throughput microplate enzymatic assays for fast sugar and acid quantification in apple and tomato.

    PubMed

    Vermeir, S; Nicolaï, B M; Jans, K; Maes, G; Lammertyn, J

    2007-05-01

    In this article, we report on the use of miniaturized and automated enzymatic assays as an alternative technology for fast sugar and acid quantification in apples and tomatoes. Enzymatic assays for d-glucose, d-fructose, sucrose, D-sorbitol/xylitol, L-malic acid, citric acid, succinic acid, and L-glutamic acid were miniaturized from the standard 3 mL assays in cuvettes into assays of 200 microL or lower in 96 or 384 well microplates. The miniaturization and the automation were achieved with a four channel automatic liquid handling system in order to reduce the dispensing errors and to obtain an increased sample throughput. Performance factors (limit of detection, linearity of calibration curve, and repeatability) of the assays with standard solutions were proven to be satisfactory. The automated and miniaturized assays were validated with high-pressure liquid chromatography (HPLC) analyses for the quantification of sugars and acids in tomato and apple extracts. The high correlation between the two techniques for the different components indicates that the high-throughput microplate enzymatic assays can serve as a fast, reliable, and inexpensive alternative for HPLC as the standard analysis technique in the taste characterization of fruit and vegetables. In addition to the analysis of extracts, the high-throughput microplate enzymatic assays were used for the direct analysis of centrifuged and filtered tomato juice with an additional advantage that the sample preparation time and analysis costs are reduced significantly.

  18. High speed Infrared imaging method for observation of the fast varying temperature phenomena

    NASA Astrophysics Data System (ADS)

    Moghadam, Reza; Alavi, Kambiz; Yuan, Baohong

    With new improvements in high-end commercial R&D camera technologies many challenges have been overcome for exploring the high-speed IR camera imaging. The core benefits of this technology is the ability to capture fast varying phenomena without image blur, acquire enough data to properly characterize dynamic energy, and increase the dynamic range without compromising the number of frames per second. This study presents a noninvasive method for determining the intensity field of a High Intensity Focused Ultrasound Device (HIFU) beam using Infrared imaging. High speed Infrared camera was placed above the tissue-mimicking material that was heated by HIFU with no other sensors present in the HIFU axial beam. A MATLAB simulation code used to perform a finite-element solution to the pressure wave propagation and heat equations within the phantom and temperature rise to the phantom was computed. Three different power levels of HIFU transducers were tested and the predicted temperature increase values were within about 25% of IR measurements. The fundamental theory and methods developed in this research can be used to detect fast varying temperature phenomena in combination with the infrared filters.

  19. Fast response temperature and humidity sensors for measurements in high Reynolds number flows

    NASA Astrophysics Data System (ADS)

    Fan, Yuyang; Arwatz, Gilad; Vallikivi, Margit; Hultmark, Marcus

    2013-11-01

    Conventional hot/cold wires have been widely used in measuring velocity and temperature in turbulent flows due to their fine resolutions and fast response. However, for very high Reynolds number flows, limitations on the resolution appear. A very high Reynolds number flow is the atmospheric boundary layer. In order to accurately predict the energy balance at the Earth's surface, one needs information about the different turbulent scalar fields, mainly temperature and humidity, which together with velocity, contribute to the turbulent fluxes away from the surface. The nano-scaled thermal anemometry probe (NSTAP) was previously developed at Princeton and has proven to have much higher spatial and temporal resolution than the regular hot wires. Here we introduce new fast-response temperature and humidity sensors that have been developed and tested. These sensors are made in-house using standard MEMS manufacturing techniques, leaving high flexibility in the process for optimization to different conditions. The small dimensions of these novel sensors enable very high spatial resolution while the small thermal mass allows significant improvements in the frequency response. These sensors have shown promising results in acquiring un-biased data of turbulent scalar and vector fields. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  20. Post flight operation of a high peak power neodymium YAG laser aboard the G-449 payload flown on Space Shuttle Columbia mission 61-C

    NASA Technical Reports Server (NTRS)

    Muckerheide, M. C.

    1992-01-01

    The Nd Yag laser flown on board the G-449 payload completed its postflight testing successfully. There was no indication that the laser had undergone any electronic or optical component failure. A postflight video was taken immediately following the return of the payload to the laboratory. Early anticipation of vibration and temperature changes contributed to the successful operation of the laser. Photographic material resulting from post flight videotape are presented. NASA safety reviews and recommendations supplied the insights which helped contribute to the successful operation of the Nd Yag laser. The safety review data is part of the technical presentation and gives some insight into why the system survived the severe environment of temperature and vibration during the flight of Space Shuttle 61-C.

  1. Post flight operation of a high peak power neodymium YAG laser aboard the G-449 payload flown on Space Shuttle Columbia mission 61-C

    NASA Astrophysics Data System (ADS)

    Muckerheide, M. C.

    1992-10-01

    The Nd Yag laser flown on board the G-449 payload completed its postflight testing successfully. There was no indication that the laser had undergone any electronic or optical component failure. A postflight video was taken immediately following the return of the payload to the laboratory. Early anticipation of vibration and temperature changes contributed to the successful operation of the laser. Photographic material resulting from post flight videotape are presented. NASA safety reviews and recommendations supplied the insights which helped contribute to the successful operation of the Nd Yag laser. The safety review data is part of the technical presentation and gives some insight into why the system survived the severe environment of temperature and vibration during the flight of Space Shuttle 61-C.

  2. Off-peak power use in passive solar homes: Performance, monitoring, and analysis of periodic heating and cooling in high mass homes

    NASA Astrophysics Data System (ADS)

    Peck, J. F.

    1981-08-01

    The thermal performance of two passive solar homes and an identical standard home used as a control are described. The peak hour electrical demand rates of these homes are compared and off peak refrigeration of homes with large quantities of thermal mass is discussed. A computer model which is being developed to assess the potential of off peak refrigeration is also described.

  3. Interferometric adaptive optics for high-power laser beam correction in fast ignition experiments

    SciTech Connect

    Homoelle, D C; Baker, K L; Patel, P K; Utterback, E; Rushford, M C; Siders, C W; Barty, C J

    2009-10-22

    We present the design for a high-speed adaptive optics system that will be used to achieve the necessary laser pointing and beam-quality performance for initial fast-ignition coupling experiments. This design makes use of a 32 x 32 pixellated MEMS device as the adaptive optic and a two-channel interferometer as the wave-front sensor. We present results from a system testbed that demonstrates improvement of the Strehl ratio from 0.09 to 0.61 and stabilization of beam pointing from {approx}75{micro}rad to <2{micro}rad.

  4. Interferometric adaptive optics for high-power laser beam correction in fast ignition experiments

    NASA Astrophysics Data System (ADS)

    Homoelle, D.; Baker, K. L.; Patel, P. K.; Utterback, E.; Rushford, M. C.; Siders, C. W.; Barty, C. P. J.

    2010-08-01

    We present the design for a high-speed adaptive optics system that will be used to achieve the necessary laser pointing and beam-quality performance for initial fast-ignition coupling experiments. This design makes use of a 32×32 pixellated MEMS device as the adaptive optic and a two-channel interferometer as the wave-front sensor. We present results from a system testbed that demonstrates improvement of the Strehl ratio from 0.09 to 0.61 and stabilization of beam pointing from ~75μrad to <2μrad.

  5. Molecularly imprinted photonic hydrogels for fast screening of atropine in biological samples with high sensitivity.

    PubMed

    Meng, Liang; Meng, Pinjia; Tang, Bugang; Zhang, Qingqing; Wang, Yanji

    2013-09-10

    Based on molecularly imprinted photonic hydrogels (MIPHs) that combined the colloidal-crystal with molecular imprinting technique, a novel label-free colorimetric chemosensor for convenient and fast efficient detection of atropine with high sensitivity and specificity was developed. Due to the special inverse opal arrays with a thin polymer wall in which the imprinted nanocavities of atropine moleculars distributed, the proposed MIPHs designed as water-compatible exhibited high sensitive (as low as 1 pg/mL), rapid responsive (less than 30 s) and specific detection of atropine in complex matrix. The unique three-dimensional, highly-ordered photonic hydrogels would be obviously swelling in response to the specific atropine molecular recognition process and the response would be directly transferred into visually perceptible optical signal (change in color) that could be detected by the naked eye through Bragg diffractive shifts of ordered macroporous arrays. With a broad concentration range varying from 1 pg/mL to 1 μg/mL of atropine, the distinct color changes of MIPHs almost covered the whole visible-light wavelength range from blue to red for semi-quantitative analysis. The smart chemosensor was successfully employed to determine the trace level atropine in human urine samples, providing a fast and effective alternative for semi-quantitative detection of atropine for clinical analysis and forensic investigations.

  6. High-frame-rate intensified fast optically shuttered TV cameras with selected imaging applications

    SciTech Connect

    Yates, G.J.; King, N.S.P.

    1994-08-01

    This invited paper focuses on high speed electronic/electro-optic camera development by the Applied Physics Experiments and Imaging Measurements Group (P-15) of Los Alamos National Laboratory`s Physics Division over the last two decades. The evolution of TV and image intensifier sensors and fast readout fast shuttered cameras are discussed. Their use in nuclear, military, and medical imaging applications are presented. Several salient characteristics and anomalies associated with single-pulse and high repetition rate performance of the cameras/sensors are included from earlier studies to emphasize their effects on radiometric accuracy of electronic framing cameras. The Group`s test and evaluation capabilities for characterization of imaging type electro-optic sensors and sensor components including Focal Plane Arrays, gated Image Intensifiers, microchannel plates, and phosphors are discussed. Two new unique facilities, the High Speed Solid State Imager Test Station (HSTS) and the Electron Gun Vacuum Test Chamber (EGTC) arc described. A summary of the Group`s current and developmental camera designs and R&D initiatives are included.

  7. Adaptive AFM scan speed control for high aspect ratio fast structure tracking

    SciTech Connect

    Ahmad, Ahmad; Schuh, Andreas; Rangelow, Ivo W.

    2014-10-15

    Improved imaging rates in Atomic Force Microscopes (AFM) are of high interest for disciplines such as life sciences and failure analysis of semiconductor wafers, where the sample topology shows high aspect ratios. Also, fast imaging is necessary to cover a large surface under investigation in reasonable times. Since AFMs are composed of mechanical components, they are associated with comparably low resonance frequencies that undermine the effort to increase the acquisition rates. In particular, high and steep structures are difficult to follow, which causes the cantilever to temporarily loose contact to or crash into the sample. Here, we report on a novel approach that does not affect the scanner dynamics, but adapts the lateral scanning speed of the scanner. The controller monitors the control error signal and, only when necessary, decreases the scan speed to allow the z-piezo more time to react to changes in the sample's topography. In this case, the overall imaging rate can be significantly increased, because a general scan speed trade-off decision is not needed and smooth areas are scanned fast. In contrast to methods trying to increase the z-piezo bandwidth, our method is a comparably simple approach that can be easily adapted to standard systems.

  8. Anomalous fast ion losses at high β on the tokamak fusion test reactor

    SciTech Connect

    Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R.

    2015-03-15

    This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of β-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the β-limit in high field plasmas were not found at low field, even for β's 50% higher than the empirical β-limit of β{sub n} ≈ 2 at high field. Comparisons of experimentally measured β's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest β, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.

  9. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method.

    PubMed

    Yang, Kewei; Delaney, Joseph T; Schubert, Ulrich S; Fahr, Alfred

    2012-03-01

    A new strategy for fast, convenient high-throughput screening of liposomal formulations was developed, utilizing the automation of the so-called ethanol-injection method. This strategy was illustrated by the preparation and screening of the liposomal formulation library of a potent second-generation photosensitizer, temoporfin. Numerous liposomal formulations were efficiently prepared using a pipetting robot, followed by automated size characterization, using a dynamic light scattering plate reader. Incorporation efficiency of temoporfin and zeta potential were also detected in selected cases. To optimize the formulation, different parameters were investigated, including lipid types, lipid concentration in injected ethanol, ratio of ethanol to aqueous solution, ratio of drug to lipid, and the addition of functional phospholipid. Step-by-step small liposomes were prepared with high incorporation efficiency. At last, an optimized formulation was obtained for each lipid in the following condition: 36.4 mg·mL(-1) lipid, 13.1 mg·mL(-1) mPEG(2000)-DSPE, and 1:4 ethanol:buffer ratio. These liposomes were unilamellar spheres, with a diameter of approximately 50 nm, and were very stable for over 20 weeks. The results illustrate this approach to be promising for fast high-throughput screening of liposomal formulations.

  10. Metabolic compensation during high energy output in fasting, lactating grey seals (Halichoerus grypus): metabolic ceilings revisited.

    PubMed Central

    Mellish, J A; Iverson, S J; Bowen, W D

    2000-01-01

    Lactation is the most energetically expensive period for female mammals and is associated with some of the highest sustained metabolic rates (SusMR) in vertebrates (reported as total energy throughput). Females typically deal with this energy demand by increasing food intake and the structure of the alimentary tract may act as the central constraint to ceilings on SusMR at about seven times resting or standard metabolic rate (SMR). However, demands of lactation may also be met by using a form of metabolic compensation such as reducing locomotor activities or entering torpor. In some phocid seals, cetaceans and bears, females fast throughout lactation and thus cannot offset the high energetic costs of lactation through increased food intake. We demonstrate that fasting grey seal females sustain, for several weeks, one of the highest total daily energy expenditures (DEE; 7.4 x SMR) reported in mammals, while progressively reducing maintenance metabolic expenditures during lactation through means not explained by reduction in lean body mass or behavioural changes. Simultaneously, the energy-exported in milk is progressively increased, associated with increased lipoprotein lipase activity in the mammary gland, resulting in greater offspring growth. Our results suggest that females use compensatory mechanisms to help meet the extraordinary energetic costs of lactation. Additionally, although the concepts of SusMR and ceilings on total DEE may be somewhat different in fasting lactating species, our data on phocid seals demonstrate that metabolic ceilings on milk energy output, in general, are not constrained by the same kind of peripheral limitations as are other energy-consuming tissues. In phocid seals, the high ceilings on DEE during lactation, coupled with metabolic compensation, are undoubtedly important factors enabling shortened lactation. PMID:10902691

  11. Fast isolation of highly active photosystem II core complexes from spinach.

    PubMed

    Wang, Zhao-Gai; Xu, Tian-Hua; Liu, Cheng; Yang, Chun-Hong

    2010-09-01

    Purification of photosystem II (PSII) core complexes is a time-consuming and low-efficiency process. In order to isolate pure and active PSII core complexes in large amounts, we have developed a fast method to isolate highly active monomeric and dimeric PSII core complexes from spinach leaves by using sucrose gradient ultracentrifugation. By using a vertical rotor the process was completed significantly faster compared with a swing-out rotor. In order to keep the core complexes in high activity, the whole isolation procedure was performed in the presence of glycine betain and pH at 6.3. The isolated pigment-protein complexes were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, absorption spectroscopy, 77 K fluorescence spectroscopy and high performance liquid chromatography. Our results show that this method is a better choice for quick and efficient isolation of functionally active PSII core complexes. PMID:20738723

  12. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit.

    PubMed

    Liu, Shusen; Li, Pengcheng; Luo, Qingming

    2008-09-15

    Laser speckle contrast analysis (LASCA) is a non-invasive, full-field optical technique that produces two-dimensional map of blood flow in biological tissue by analyzing speckle images captured by CCD camera. Due to the heavy computation required for speckle contrast analysis, video frame rate visualization of blood flow which is essentially important for medical usage is hardly achieved for the high-resolution image data by using the CPU (Central Processing Unit) of an ordinary PC (Personal Computer). In this paper, we introduced GPU (Graphics Processing Unit) into our data processing framework of laser speckle contrast imaging to achieve fast and high-resolution blood flow visualization on PCs by exploiting the high floating-point processing power of commodity graphics hardware. By using GPU, a 12-60 fold performance enhancement is obtained in comparison to the optimized CPU implementations.

  13. A fast profile monitor with scintillating fiber hodoscopes for high-intensity photon beams

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Fujimura, H.; Hamano, H.; Hashimoto, R.; Honda, Y.; Ishida, T.; Kaida, S.; Kanda, H.; Kido, S.; Matsumura, Y.; Miyabe, M.; Mizutani, K.; Nagasawa, I.; Nakamura, A.; Nanbu, K.; Nawa, K.; Ogushi, S.; Shibasaki, Y.; Shimizu, H.; Sugai, H.; Suzuki, K.; Takahashi, K.; Takahashi, S.; Taniguchi, Y.; Tokiyasu, A. O.; Tsuchikawa, Y.; Yamazaki, H.

    2016-03-01

    A fast beam-profile monitor has been developed for high-energy photon beamlines at the Research Center for Electron Photon Science, Tohoku University. The position of the photon converted into an electron-positron pair in a 0.5 mm-thick aluminum plate is measured with two hodoscopes made of scintillating fibers with cross-sections of 3 × 3mm2. Events in which charged particles are produced upstream are rejected with a charge veto plastic scintillator placed in front of the plate, and pair-production events are identified with a trigger plastic scintillator placed behind the plate. The position is determined by a developed logic module with a field-programmable gate array. The dead time for processing an event is 35 ns, and a high data acquisition efficiency (~ 100 %) can be achieved with this monitor for high-intensity photon beams corresponding to 20 MHz tagging signals.

  14. A fast and high performance multiple data integration algorithm for identifying human disease genes

    PubMed Central

    2015-01-01

    Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620

  15. Fast intra-prediction algorithms for high efficiency video coding standard

    NASA Astrophysics Data System (ADS)

    Kibeya, Hassan; Belghith, Fatma; Ben Ayed, Mohammed Ali; Masmoudi, Nouri

    2016-01-01

    High efficiency video coding (HEVC) is the latest video compression standard that provides significant performance improvement on the compression ratio compared to all existing video coding standards. The intra-prediction procedure plays an important role in the HEVC encoder, and it is being achieved by providing up to 35 intra-modes with a larger coding unit requiring a high computational complexity that needs to be alleviated. Toward this end, the paper proposes two fast intra-mode decision algorithms that exploit the features of video sequences. First, an early detection of zero transform and quantified coefficients method is applied to generate threshold values employed for early termination of the intra-decision process and hence accelerates the encoding procedure. Another fast intra-mode decision algorithm is elaborated that relies on a refinement technique. Based on statistical analyses of frequently chosen modes, only a small part of the candidate modes is chosen for intra-prediction process, which reduces the complexity of the intra-encoding procedure. The performance of the proposed algorithms is verified through comparative analysis of encoding time, visual image quality, and compression ratio. Compared to HM 10.0, the encoding time reduction can reach 69% with only a slight degradation of image quality and compression ratio.

  16. Unique charge distribution in surface loops confers high velocity on the fast motor protein Chara myosin.

    PubMed

    Ito, Kohji; Yamaguchi, Yukie; Yanase, Kenji; Ichikawa, Yousuke; Yamamoto, Keiichi

    2009-12-22

    Most myosins have a positively charged loop 2 with a cluster of lysine residues that bind to the negatively charged N-terminal segment of actin. However, the net charge of loop 2 of very fast Chara myosin is zero and there is no lysine cluster in it. In contrast, Chara myosin has a highly positively charged loop 3. To elucidate the role of these unique surface loops of Chara myosin in its high velocity and high actin-activated ATPase activity, we have undertaken mutational analysis using recombinant Chara myosin motor domain. It was found that net positive charge in loop 3 affected V(max) and K(app) of actin activated ATPase activity, while it affected the velocity only slightly. The net positive charge in loop 2 affected K(app) and the velocity, although it did not affect V(max). Our results suggested that Chara myosin has evolved to have highly positively charged loop 3 for its high ATPase activity and have less positively charged loop 2 for its high velocity. Since high positive charge in loop 3 and low positive charge in loop 2 seem to be one of the reasons for Chara myosin's high velocity, we manipulated charge contents in loops 2 and 3 of Dictyostelium myosin (class II). Removing positive charge from loop 2 and adding positive charge to loop 3 of Dictyostelium myosin made its velocity higher than that of the wild type, suggesting that the charge strategy in loops 2 and 3 is widely applicable.

  17. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    SciTech Connect

    Milanesio, D. Maggiora, R.

    2015-12-10

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  18. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  19. Electric eels use high-voltage to track fast-moving prey

    PubMed Central

    Catania, Kenneth C.

    2015-01-01

    Electric eels (Electrophorus electricus) are legendary for their ability to incapacitate fish, humans, and horses with hundreds of volts of electricity. The function of this output as a weapon has been obvious for centuries but its potential role for electroreception has been overlooked. Here it is shown that electric eels use high-voltage simultaneously as a weapon and for precise and rapid electrolocation of fast-moving prey and conductors. Their speed, accuracy, and high-frequency pulse rate are reminiscent of bats using a ‘terminal feeding buzz' to track insects. Eel's exhibit ‘sensory conflict' when mechanosensory and electrosensory cues are separated, striking first toward mechanosensory cues and later toward conductors. Strikes initiated in the absence of conductors are aborted. In addition to providing new insights into the evolution of strongly electric fish and showing electric eels to be far more sophisticated than previously described, these findings reveal a trait with markedly dichotomous functions. PMID:26485580

  20. Highly Sensitive and Fast Anion-Selective InN Quantum Dot Electrochemical Sensors

    NASA Astrophysics Data System (ADS)

    Hassan Alvi, Naveed ul; Rodriguez, Paul E. D. Soto; Gómez, Victor J.; Kumar, Praveen; Willander, Magnus; Nötzel, Richard

    2013-11-01

    Epitaxial InN quantum dots (QDs) are demonstrated as ion-selective electrode for potentiometric anion concentration measurements. The sensor reveals high sensitivity above 90 mV/decade for the detection of chlorine and hydroxyl ions in sodium chloride (NaCl), calcium chloride (CaCl2), and sodium hydroxide (NaOH) solutions. The response time is less than two seconds after which the signal is very stable and repeatable. The sensitivity for the InN QDs is about two times that for a reference InN thin film and the response time is about five times shorter. In pH buffer solutions the sensor reveals no clear response to cations. A model is presented for the high sensitivity, fast response, and ion selectivity based on the unique electronic properties of the InN surface together with the zero-dimensional nature of the QDs.

  1. Direct and fast detection of Alexandrium minutum algae by using high frequency microbalance.

    PubMed

    Sousa, Célia; Compère, Chantal; Dreanno, Catherine; Crassous, Marie-Pierre; Gas, Fabienne; Baus, Beatrice; Perrot, Hubert

    2014-09-01

    In this paper, a simple detection of a toxic algae, Alexandrium minutum, was developed using highly sensitive quartz crystal microbalance. In terms of performance, compared with other conventional analytical tools, the main interest of our immunosensor is based on a fast and direct detection of these living cells. This system requires the use of one monoclonal antibody directed against the surface antigen of A. minutum. We demonstrate that the whole living and motile algae are caught and detected. The high specificity of the biosensor is also demonstrated by testing several other dinoflagellate species. The frequency shift is correlated to the A. minutum cell concentration. This simple system is potentially promising for environmental monitoring purposes. PMID:24927989

  2. A high-order fast method for computing convolution integral with smooth kernel

    SciTech Connect

    Qiang, Ji

    2009-09-28

    In this paper we report on a high-order fast method to numerically calculate convolution integral with smooth non-periodic kernel. This method is based on the Newton-Cotes quadrature rule for the integral approximation and an FFT method for discrete summation. The method can have an arbitrarily high-order accuracy in principle depending on the number of points used in the integral approximation and a computational cost of O(Nlog(N)), where N is the number of grid points. For a three-point Simpson rule approximation, the method has an accuracy of O(h{sup 4}), where h is the size of the computational grid. Applications of the Simpson rule based algorithm to the calculation of a one-dimensional continuous Gauss transform and to the calculation of a two-dimensional electric field from a charged beam are also presented.

  3. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  4. Electric eels use high-voltage to track fast-moving prey.

    PubMed

    Catania, Kenneth C

    2015-10-20

    Electric eels (Electrophorus electricus) are legendary for their ability to incapacitate fish, humans, and horses with hundreds of volts of electricity. The function of this output as a weapon has been obvious for centuries but its potential role for electroreception has been overlooked. Here it is shown that electric eels use high-voltage simultaneously as a weapon and for precise and rapid electrolocation of fast-moving prey and conductors. Their speed, accuracy, and high-frequency pulse rate are reminiscent of bats using a 'terminal feeding buzz' to track insects. Eel's exhibit 'sensory conflict' when mechanosensory and electrosensory cues are separated, striking first toward mechanosensory cues and later toward conductors. Strikes initiated in the absence of conductors are aborted. In addition to providing new insights into the evolution of strongly electric fish and showing electric eels to be far more sophisticated than previously described, these findings reveal a trait with markedly dichotomous functions.

  5. Spatio-temporal correlation-based fast coding unit depth decision for high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Chengtao; Zhou, Fan; Chen, Yaowu

    2013-10-01

    The exhaustive block partition search process in high efficiency video coding (HEVC) imposes a very high computational complexity on test module of HEVC encoder (HM). A fast coding unit (CU) depth algorithm using the spatio-temporal correlation of the depth information to fasten the search process is proposed. The depth of the coding tree unit (CTU) is predicted first by using the depth information of the spatio-temporal neighbor CTUs. Then, the depth information of the adjacent CU is incorporated to skip some specific depths when encoding the sub-CTU. As compared with the original HM encoder, experimental results show that the proposed algorithm can save more than 20% encoding time on average for intra-only, low-delay, low-delay P slices, and random access cases with almost the same rate-distortion performance.

  6. Investigation of high power impulse magnetron sputtering (HIPIMS) discharge using fast ICCD camera

    NASA Astrophysics Data System (ADS)

    Hecimovic, Ante

    2012-10-01

    High power impulse magnetron sputtering (HIPIMS) combines impulse glow discharges at power levels up to the MW range with conventional magnetron cathodes to achieve a highly ionised sputtered flux. The dynamics of the HIPIMS discharge was investigated using fast Intensified Charge Coupled Device (ICCD) camera. In the first experiment the HIPIMS plasma was recorded from the side with goal to analyse the plasma intensity using Abel inversion to obtain the emissivity maps of the plasma species. Resulting emissivity maps provide the information on the spatial distribution of Ar and sputtered material and evolution of the plasma chemistry above the cathode. In the second experiment the plasma emission was recorded with camera facing the target. The images show that the HIPIMS plasma develops drift wave type instabilities characterized by well defined regions of high and low plasma emissivity along the racetrack of the magnetron. The instabilities cause periodic shifts in the floating potential. The structures rotate in ExB direction at velocities of 10 kms-1 and frequencies up to 200 kHz. The high emissivity regions comprise Ar and metal ion emission with strong Ar and metal neutral emission depletion. A detailed analysis of the temporal evolution of the saturated instabilities using four consequently triggered fast ICCD cameras is presented. Furthermore working gas pressure and discharge current variation showed that the shape and the speed of the instability strongly depend on the working gas and target material combination. In order to better understand the mechanism of the instability, different optical interference band pass filters (of metal and gas atom, and ion lines) were used to observe the spatial distribution of each species within the instability.

  7. A fast and high-quality cone beam reconstruction pipeline using the GPU

    NASA Astrophysics Data System (ADS)

    Schiwietz, Thomas; Bose, Supratik; Maltz, Jonathan; Westermann, Rüdiger

    2007-03-01

    Cone beam scanners have evolved rapidly in the past years. Increasing sampling resolution of the projection images and the desire to reconstruct high resolution output volumes increases both the memory consumption and the processing time considerably. In order to keep the processing time down new strategies for memory management are required as well as new algorithmic implementations of the reconstruction pipeline. In this paper, we present a fast and high-quality cone beam reconstruction pipeline using the Graphics Processing Unit (GPU). This pipeline includes the backprojection process and also pre-filtering and post-filtering stages. In particular, we focus on a subset of five stages, but more stages can be integrated easily. In the pre-filtering stage, we first reduce the amount of noise in the acquired projection images by a non-linear curvature-based smoothing algorithm. Then, we apply a high-pass filter as required by the inverse Radon transform. Next, the backprojection pass reconstructs a raw 3D volume. In post-processing, we first filter the volume by a ring artifact removal. Then, we remove cupping artifacts by our novel uniformity correction algorithm. We present the algorithm in detail. In order to execute the pipeline as quickly as possible we take advantage of GPUs that have proven to be very fast parallel processors for numerical problems. Unfortunately, both the projection images and the reconstruction volume are too large to fit into 512 MB of GPU memory. Therefore, we present an efficient memory management strategy that minimizes the bus transfer between main memory and GPU memory. Our results show a 4 times performance gain over a highly optimized CPU implementation using SSE2/3 commands. At the same time, the image quality is comparable to the CPU results with an average per pixel difference of 10 -5.

  8. High School Dual Enrollment Programs: Are We Fast-Tracking Students Too Fast? An NCPR Working Paper

    ERIC Educational Resources Information Center

    Speroni, Cecilia

    2011-01-01

    Dual enrollment (DE), an arrangement by which high school students take college courses, is becoming increasingly popular as a means of improving high school education. However, there is very little rigorous evidence on its impact on student outcomes. A particular concern in evaluating its effects is the selection bias that arises because more…

  9. High-density lipoprotein remains elevated despite reductions in total cholesterol in fasting adult male elephant seals (Mirounga angustirostris).

    PubMed

    Tift, Michael S; Houser, Dorian S; Crocker, Daniel E

    2011-08-01

    We examined changes in lipid profiles of 40 adult northern elephant seal bulls over the 3-month breeding fast and the 1-month molting fast to investigate impacts of fasting on serum total cholesterol (TC), triglycerides (TG) and lipoproteins. Total cholesterol and low-density lipoprotein (LDL) levels were initially high (3930 ± 190mgL(-1)and 1610 ± 170mgL(-1), respectively) and decreased significantly over the breeding season. Total cholesterol and LDL declined significantly with adipose tissue reserves (p<0.001), and LDL levels as low as 43 mgL(-1) were measured in seals late in the breeding fast. Less dramatic but similar changes in lipid metabolism were observed across the molting fast. High-density lipoproteins (HDL) remained consistently elevated (>1750 mgL(-1)) suggesting that elephant seals defend HDL concentrations, despite significant depletion of TC and LDL across the breeding fast. Triglyceride levels were significantly higher during the molt, consistent with lower rates of lipid oxidation needed to meet metabolic energy demands during this period. The maintenance of HDL during breeding is consistent with its role in delivering cholesterol from adipose tissue for steroidogenesis and spermatogenesis and potentially mitigates oxidative stress associated with fasting.

  10. Ultra-Fast Timing and the Application of High Energy Physics Technologies to Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Tu; Kao, Chien-Min; Xie, Quigguo; Frisch, Henry; Heinz, Mary; Sanders, Harold; Tang, Fukung; Anderson, John; Byrum, Karen; Drake, Gary; Heartly, Camden; Le Dû, Patrick; Royon, Christophe; Genat, Jean François; Va'Vra, Jerry

    2008-06-01

    We propose to apply the ultra fast Time Of Flight technique (TOF) developed for High Energy Physics (HEP) particle detectors to biomedical imaging. The similarity of the problem in the two fields as well as the remarkable opportunities in biomedical imaging to use technologies developed in HEP have the potential to make major advances in the medical world, in particular for Positron Emission Tomography (PET). We will describe and present some preliminary results of the development of a new complete read-out chain able to manage signals from various types of modern photo detectors (MCP, APD, SiPM). This innovative architecture is made of a fast front-end electronics ASIC with novel Digital Signal Processing (DSP) concepts able to reach the Pico-second timing resolution, a time-to-digital converter, a pipelined digital readout and an integrated trigger/filter with real-time data treatment and display. In parallel with the hardware development, we have begun a systematic program to simulate system characteristics from the initial particle interaction to the final digital data, including a bit-by-bit mapping of the front end/data acquisition system. The introduction of these techniques and tools, common in HEP, has the potential to make improvement to biomedical imaging systems.

  11. Visualizing the formation of an RNA folding intermediate through a fast highly modular secondary structure switch

    PubMed Central

    Xue, Yi; Gracia, Brant; Herschlag, Daniel; Russell, Rick; Al-Hashimi, Hashim M.

    2016-01-01

    Intermediates play important roles in RNA folding but can be difficult to characterize when short-lived or not significantly populated. By combining 15N relaxation dispersion NMR with chemical probing, we visualized a fast (kex=k1+k−1≈423 s−1) secondary structural switch directed towards a low-populated (∼3%) partially folded intermediate in tertiary folding of the P5abc subdomain of the ‘Tetrahymena' group I intron ribozyme. The secondary structure switch changes the base-pairing register across the P5c hairpin, creating a native-like structure, and occurs at rates of more than two orders of magnitude faster than tertiary folding. The switch occurs robustly in the absence of tertiary interactions, Mg2+ or even when the hairpin is excised from the three-way junction. Fast, highly modular secondary structural switches may be quite common during RNA tertiary folding where they may help smoothen the folding landscape by allowing folding to proceed efficiently via additional pathways. PMID:27292179

  12. Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core

    NASA Astrophysics Data System (ADS)

    Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin

    2013-02-01

    For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.

  13. High-precision investigations of the fast range imaging camera SwissRanger

    NASA Astrophysics Data System (ADS)

    Kahlmann, T.; Ingensand, H.

    2007-09-01

    Many applications need fast measurement systems that capture their environment in three dimensions. Adequate measurement sensors are required that provide fast, accurate, and reliable 3-D data. Automotive applications long for real time and reliable data, not only for driving assistance systems but for safety, also. Until now, most solutions, like multi image photogrammetry, radar sensors or laser scanners, lack in one of these aspects at least. With the upcoming range imaging cameras, new sensors with a performance never seen before are to be taken into consideration. Range imaging has already been proved as an emerging technology for automotive applications. These cameras provide a distance measurement system in each pixel and therefore produce 3-D data with up to video frame rates with a single sensor. But because of their new measurement concept classical calibration approaches cannot be used. This paper will present results of research about the calibration of the SwissRanger TM, a range imaging camera introduced by CSEM Switzerland. Special emphasis is given to the determination of the influence of the diverse parameters on the distance measurement accuracy. These parameters are the temperature, the reflectivity and the distance itself, for example. The influences are represented in functional dependencies in order to reach high accuracy of the system. Temperature compensation by means of a specialized setup is addressed. A successful implementation of a temperature drift compensation by means of a differential setup is presented.

  14. Towards the understanding of PETN initiation by a fast, high power arc source

    SciTech Connect

    Grant, C D; Tang, V; Glascoe, E A; McCarrick, J F

    2010-03-05

    We present a thorough characterization of a capacitor driven arc source that can deliver up to 200 mJ of energy to the arc and high explosive in a well-controlled, repeatable manner on the hundreds of nanoseconds time-scale. Our ultimate purpose is to create a platform to study high explosive kinetics under extreme conditions of high-temperature. In the current paper, we characterize the behavior of our arc source by electrical discharge over a thin PETN film. Temperature and density are determined by time-resolved atomic emission spectroscopy on the nano- to microsecond time scale along with fast photographic imaging to capture time-resolved images of the expanding plasma. We also discuss preliminary simulations of arc plasma using a 1-D hydrodynamic model. Comparisons of these simulations with experimental data are presented. Ultimately our goal is to create a platform that will generate conditions of high temperature in order to study high explosive kinetics. We believe that our arc source platform can be further combined with a time-resolved vibrational spectroscopy (e.g. IR or Raman) to study chemical kinetics under extreme conditions. High temperature conditions may access novel reactive pathways that are different from either shock or slower thermal processes that are substantially lower in temperature.

  15. Fast generation model of high density surface EMG signals in a cylindrical conductor volume.

    PubMed

    Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy; Ayachi, Fouaz Sofiane

    2016-07-01

    In the course of the last decade, fast and qualitative computing power developments have undoubtedly permitted for a better and more realistic modeling of complex physiological processes. Due to this favorable environment, a fast, generic and reliable model for high density surface electromyographic (HD-sEMG) signal generation with a multilayered cylindrical description of the volume conductor is presented in this study. Its main peculiarity lies in the generation of a high resolution potential map over the skin related to active Motor Units (MUs). Indeed, the analytical calculus is fully performed in the frequency domain. HD-sEMG signals are obtained by surfacic numerical integration of the generated high resolution potential map following a variety of electrode shapes. The suggested model is implemented using parallel computing techniques as well as by using an object-oriented approach which is comprehensive enough to be fairly quickly understood, used and potentially upgraded. To illustrate the model abilities, several simulation analyses are put forward in the results section. These simulations have been performed on the same muscle anatomy while varying the number of processes in order to show significant speed improvement. Accuracy of the numerical integration method, illustrating electrode shape diversity, is also investigated in comparison to analytical transfer functions definition. An additional section provides an insight on the volume detection of a circular electrode according to its radius. Furthermore, a large scale simulation is introduced with 300MUs in the muscle and a HD-sEMG electrode grid composed of 16×16 electrodes for three constant isometric contractions in 12s. Finally, advantages and limitations of the proposed model are discussed with a focus on perspective works. PMID:27183535

  16. Fast generation model of high density surface EMG signals in a cylindrical conductor volume.

    PubMed

    Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy; Ayachi, Fouaz Sofiane

    2016-07-01

    In the course of the last decade, fast and qualitative computing power developments have undoubtedly permitted for a better and more realistic modeling of complex physiological processes. Due to this favorable environment, a fast, generic and reliable model for high density surface electromyographic (HD-sEMG) signal generation with a multilayered cylindrical description of the volume conductor is presented in this study. Its main peculiarity lies in the generation of a high resolution potential map over the skin related to active Motor Units (MUs). Indeed, the analytical calculus is fully performed in the frequency domain. HD-sEMG signals are obtained by surfacic numerical integration of the generated high resolution potential map following a variety of electrode shapes. The suggested model is implemented using parallel computing techniques as well as by using an object-oriented approach which is comprehensive enough to be fairly quickly understood, used and potentially upgraded. To illustrate the model abilities, several simulation analyses are put forward in the results section. These simulations have been performed on the same muscle anatomy while varying the number of processes in order to show significant speed improvement. Accuracy of the numerical integration method, illustrating electrode shape diversity, is also investigated in comparison to analytical transfer functions definition. An additional section provides an insight on the volume detection of a circular electrode according to its radius. Furthermore, a large scale simulation is introduced with 300MUs in the muscle and a HD-sEMG electrode grid composed of 16×16 electrodes for three constant isometric contractions in 12s. Finally, advantages and limitations of the proposed model are discussed with a focus on perspective works.

  17. The High-Potential Fast-Flying Achiever: Themes from the English Language Literature 1976-1995.

    ERIC Educational Resources Information Center

    Altman, Yochanan

    1997-01-01

    Review of business management literature from the United States, United Kingdom, and Canada identified the following: the images of high flyer, fast track, and high achiever; the meaning of success; emphasis on performance; corporate rites of passage; and opportunities for women to be high flyers. (SK)

  18. Simple Fabrication of a Highly Sensitive and Fast Glucose Biosensor using Enzyme Immobilized in Mesocellular Carbon Foam

    SciTech Connect

    Lee, Dohoon; Lee, Jinwoo; Kim, Jungbae; Kim, Jaeyun; Na, Hyon Bin; Kim, Bokie; Shin, Chae-Ho; Kwak, Ja Hun; Dohnalkova, Alice; Grate, Jay W.; Hyeon, Taeghwan; Kim, Hak Sung

    2005-12-05

    We fabricated a highly sensitive and fast glucose biosensor by simply immobilizing glucose oxidase in mesocellular carbon foam. Due to its unique structure, the MSU-F-C enabled high enzyme loading without serious mass transfer limitation, resulting in high catalytic efficiency. As a result, the glucose biosensor fabricated with MSU-F-C/GOx showed a high sensitivity and fast response. Given these results and the inherent electrical conductivity, we anticipate that MSU-F-C will make a useful matrix for enzyme immobilization in various biocatalytic and electrobiocatalytic applications.

  19. Statin myalgia is not associated with reduced muscle strength, mass or protein turnover in older male volunteers, but is allied with a slowing of time to peak power output, insulin resistance and differential muscle mRNA expression

    PubMed Central

    Mallinson, Joanne E.; Marimuthu, Kanagaraj; Murton, Andrew; Selby, Anna; Smith, Kenneth; Constantin‐Teodosiu, Dumitru; Rennie, Michael J.

    2015-01-01

    ) and fed (≈40 mU l−1 insulin + hyperaminoacidaemia) euglyceamic clamps. Muscle biopsies were taken before and after each clamp. Lean mass, MPS, LPB and strength were not different but work output during the initial three isokinetic contractions was 19% lower (P < 0.05) in statin myalgic subjects due to a delay in time to reach peak power output. Statin myalgic subjects had reduced whole body (P = 0.05) and leg (P < 0.01) glucose disposal, greater abdominal adiposity (P < 0.05) and differential expression of 33 muscle mRNAs (5% false discovery rate (FDR)), six of which, linked to mitochondrial dysfunction and apoptosis, increased at 1% FDR. Statin myalgia was associated with impaired muscle function, increased abdominal adiposity, whole body and leg insulin resistance, and evidence of mitochondrial dysfunction and apoptosis. PMID:25620655

  20. A fast and automatic mosaic method for high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing

    2015-12-01

    We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.

  1. Modeling of low- and high-frequency noise by slow and fast fluctuators

    NASA Astrophysics Data System (ADS)

    Nesterov, Alexander I.; Berman, Gennady P.

    2012-05-01

    We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.

  2. High-Harmonic Fast Wave Driven H-mode Plasmas on NSTX

    SciTech Connect

    B.P. LeBlanc; R.E. Bell; S.I. Bernabei; K. Indireshkumar; S.M. Kaye; R. Maingi; T.K. Mau; D.W. Swain; G. Taylor; P.M. Ryan; J.B Wilgen; J.R. Wilson

    2003-05-01

    The launch of High-Harmonic Fast Waves (HHFW) routinely provides auxiliary power to NSTX plasmas, where it is used to heat electrons and pursue drive current. H-mode transitions have been observed in deuterium discharges, where only HHFW and ohmic heating, and no neutral beam injection (NBI), were applied to the plasma. The usual H-mode signatures are observed. A drop of the Da light marks the start of a stored energy increase, which can double the energy content. These H-mode plasmas also have the expected kinetic profile signatures with steep edge density and electron temperature pedestal. Similar to its NBI driven counterpart--also observed on NSTX-- the HHFW H mode have density profiles that features ''ears'' in the peripheral region. These plasmas are likely candidates for long pulse operation because of the combination of bootstrap current, associated with H-mode kinetic profiles, and active current drive, which can be generated with HHFW power.

  3. Fast cavity-enhanced atom detection with low noise and high fidelity.

    PubMed

    Goldwin, J; Trupke, M; Kenner, J; Ratnapala, A; Hinds, E A

    2011-01-01

    Cavity quantum electrodynamics describes the fundamental interactions between light and matter, and how they can be controlled by shaping the local environment. For example, optical microcavities allow high-efficiency detection and manipulation of single atoms. In this regime, fluctuations of atom number are on the order of the mean number, which can lead to signal fluctuations in excess of the noise on the incident probe field. Here we demonstrate, however, that nonlinearities and multi-atom statistics can together serve to suppress the effects of atomic fluctuations when making local density measurements on clouds of cold atoms. We measure atom densities below 1 per cavity mode volume near the photon shot-noise limit. This is in direct contrast to previous experiments where fluctuations in atom number contribute significantly to the noise. Atom detection is shown to be fast and efficient, reaching fidelities in excess of 97% after 10 μs and 99.9% after 30 μs.

  4. Investigation of Ion Absorption of the High Harmonic Fast Wave in NSTX using HPRT

    SciTech Connect

    Rosenberg, A.; Menard, J.E.; and LeBlanc, B.P.

    2001-05-18

    Understanding high harmonic fast wave (HHFW) power absorption by ions in a spherical torus (ST) is of critical importance to assessing the wave's viability as a means of heating and especially driving current. In this work, the HPRT code is used to calculate absorption for helium and deuterium, with and without minority hydrogen in National Spherical Torus Experiment (NSTX) plasmas using experimental EFIT code equilibria and kinetic profiles. HPRT is a two-dimensional ray-tracing code which uses the full hot plasma dielectric to compute the perpendicular wave number along the hot electron and cold ion plasma ray path. Ion and electron absorption dependence on antenna phasing, ion temperature, beta (subscript t), and minority temperature and concentration is analyzed. These results form the basis for comparisons with other codes, such as CURRAY, METS, TORIC, and AORSA.

  5. Instruments to study fast neutrons fluxes in upper atmosphere with high-altitude balloons

    NASA Astrophysics Data System (ADS)

    Iyudin, Anatoly; Svertilov, Sergei; Bogomolov, Vitalij V.; Osedlo, Vladislav; Golovanov, Ilya; Krasnov, Alexej; Rozhkov, Georgij; Khalikov, Emil; Markelov, Igor; Morgunova, Yulia

    Successful circumpolar flight in northern hemisphere of the X-ray polarimeter POGOLITE during summer of 2013 campaign inspired us, a team consisting of mostly students and senior researches, to develop a Modular Monitor of the Cosmic Neutral Emission (MMCNE) prototype that can be flown on the high-altitude balloons to study two components of neutral emission in upper layers of Earth atmosphere. Namely, the spectrum and angular distribution of fast secondary neutrons, as well, as gamma-ray spectrum for energies above 1 MeV, can be studied with this instrument that is now in a R&D phase. Instrument layout, time sequence of MMNE development and the simulated instrument parameters will be presented in this paper.

  6. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

    PubMed Central

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-01-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  7. 4D STEM: High efficiency phase contrast imaging using a fast pixelated detector

    NASA Astrophysics Data System (ADS)

    Yang, H.; Jones, L.; Ryll, H.; Simson, M.; Soltau, H.; Kondo, Y.; Sagawa, R.; Banba, H.; MacLaren, I.; Nellist, P. D.

    2015-10-01

    Phase contrast imaging is widely used for imaging beam sensitive and weak phase objects in electron microscopy. In this work we demonstrate the achievement of high efficient phase contrast imaging in STEM using the pnCCD, a fast direct electron pixelated detector, which records the diffraction patterns at every probe position with a speed of 1000 to 4000 frames per second, forming a 4D STEM dataset simultaneously with the incoherent Z-contrast imaging. Ptychographic phase reconstruction has been applied and the obtained complex transmission function reveals the phase of the specimen. The results using GaN and Ti, Nd- doped BiFeO3 show that this imaging mode is especially powerful for imaging light elements in the presence of much heavier elements.

  8. Fast asthenosphere motion in high-resolution global mantle flow models

    NASA Astrophysics Data System (ADS)

    Weismüller, Jens; Gmeiner, Björn; Ghelichkhan, Siavash; Huber, Markus; John, Lorenz; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter

    2015-09-01

    A variety of geologic observations point to fast upper mantle flow that may exceed plate tectonic velocities by an order of magnitude. At the same time there is mounting evidence from seismology for flow-like structures in the upper 100-200 km of the mantle. Here we present a set of geodynamic simulations to link these observations. In a synthetic setting, we include asthenospheric channels of varying thickness, with an extreme case of 100 km, and a significant viscosity contrast of up to 4 orders of magnitude relative to the deeper mantle. Using our new global high-resolution code TERRA-NEO, we obtain an increase in velocity by a factor of 10 between a 1000 km thick and the very thin channel, translating into velocities of ˜ 20 cm/a within the narrow asthenosphere. We further present and verify a simple Poiseuille flow model, predicting that the upper mantle velocity scales with the inverse of the asthenosphere thickness.

  9. Estimation of the burn-back rate in high breaking capacity fuses using fast imagery

    NASA Astrophysics Data System (ADS)

    Bussière, W.

    2001-03-01

    The viewing of the erosion rate of the fuse element in high breaking capacity fuses is carried out using fast imagery. The rotating drum camera we have used provides up to 160 frames to observe the arc extinction throughout the phenomenon which lasts 4 ms. From these frames, we show that three stages follow each other with different values of burn-back rates: the maximum values are obtained at the beginning of the phenomenon and are equal to 6.65 m s-1 and 5.81 m s-1 for silver and copper fuse elements, respectively. The direct observation of the burn-back mechanism shows a reproducible disequilibrium depending on the nature of the electrode: the cathode erosion rate is 1.7 times that of the anode rate in the case of silver, and 1.2 times that of the anode in the case of copper.

  10. Leaf hue measurements offer a fast, high-throughput initial screening of photosynthesis in leaves.

    PubMed

    Majer, Petra; Sass, László; Horváth, Gábor V; Hideg, Eva

    2010-01-01

    Experiments with tobacco and grapevine leaves having different color due to varying stages of senescence showed that leaf hue is significantly linearly correlated with chlorophyll content up to 80% loss of pigment. Samples from leaves with more pronounced loss of chlorophyll did not fit into this linear relationship, and the hue data set as a whole followed a saturating exponential dependence on chlorophyll content. In leaves with less than 80% chlorophyll loss, the hue parameter was also proportional to the photochemical yield of photosystem (PS) II measured in the light. These results suggest that leaf hue measurements offer a fast, high-throughput initial screening system to precede more specific but more time consuming photosynthesis measurements, with the possibility of applications not only for senescing plants, but also for stress conditions accompanied by chlorophyll loss.

  11. A new type of MHD activity in JET ICRF-only discharges with high fast-ion energy contents

    NASA Astrophysics Data System (ADS)

    Mantsinen, M. J.; Sharapov, S.; Alper, B.; Gondhalekar, A.; McDonald, D. C.

    2000-12-01

    The question of sawtooth stabilization at very high fast-ion energy contents has been addressed in discharges carried out in the JET tokamak with ion cyclotron resonance frequency (ICRF) heating and varying plasma density, controlled by deuterium gas puffs. In these experiments dramatic differences in the sawtooth behaviour have been observed. When the plasma density ne decreases below a certain threshold, the sawtooth frequency and the crash duration time increase by a factor of five. Since the fast-ion energy content increases with decreasing ne due to the inverse proportionality of the fast-ion slowing-down time on ne, the threshold in ne corresponds to a threshold in the fast-ion energy content. In the present experiments, this threshold is reached when the fast-ion energy contribution to the total plasma diamagnetic energy content becomes larger than 45%. The sawtooth activity with short sawtooth free period is accompanied by MHD activity, with a toroidal mode number n = 1 at frequencies between 55 and 65 kHz. This activity is interpreted as an energetic particle fishbone mode that is resonant with the ICRF-driven fast ions. The experimental results appear to be consistent with the stability diagram for sawtooth and fishbone modes (White 1989 Theory of Tokamak Plasmas (Amsterdam: North-Holland)), exploring the part of the diagram with a very large fast-ion population.

  12. Ultra-high throughput real-time instruments for capturing fast signals and rare events

    NASA Astrophysics Data System (ADS)

    Buckley, Brandon Walter

    Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and

  13. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

    PubMed Central

    Chen, Maoqi

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield.

  14. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition.

    PubMed

    Chen, Maoqi; Holobar, Ales; Zhang, Xu; Zhou, Ping

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield.

  15. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

    PubMed Central

    Chen, Maoqi

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield. PMID:27642525

  16. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition.

    PubMed

    Chen, Maoqi; Holobar, Ales; Zhang, Xu; Zhou, Ping

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield. PMID:27642525

  17. Development and fabrication of a high current, fast recovery power diode

    NASA Astrophysics Data System (ADS)

    Berman, A. H.; Balodis, V.; Devance, D. C.; Gaugh, C. E.; Karlsson, E. A.

    1983-10-01

    A high voltage (VR = 1200 V), high current (IF = 150 A), fast recovery ( 700 ns) and low forward voltage drop ( 1.5 V) silicon rectifier was designed and the process developed for its fabrication. For maximum purity, uniformity and material characteristic stability, neutron transmutation n-type doped float zone silicon is used. The design features a hexagonal chip for maximum area utilization of space available in the DO-8 diode package, PIN diffused junction structure with deep diffused D(+) anode and a shallow high concentration n(+) cathode. With the high temperature glass passivated positive bevel mesa junction termination, the achieved blocking voltage is close to the theoretical limit of the starting material. Gold diffusion is used to control the lifetime and the resulting effect on switching speed and forward voltage tradeoff. For solder reflow assembly, trimetal (Al-Ti-Ni) contacts are used. The required major device electrical characteristics were achieved. Due to the tradeoff nature of forward voltage drop and reverse recovery time, a compromise was reached for these values.

  18. High ion-harmonics fast wave heating in NSTX and CDX-U

    NASA Astrophysics Data System (ADS)

    Menard, J.; Majeski, R.; Ono, M.; Wilson, J. R.

    1996-02-01

    Low-aspect-ratio tokamaks (LARTs) have received recent attention because of encouraging results from small scale experiments and because of the LART's potential for attaining high stable β in next generation devices. For this potential to be realized, efficient methods of non-inductive heating and current drive required to heat and sustain such plasmas must be found. A typical next generation high β LART experiment has an unusually large dielectric ω2pe/Ω2ce˜100, compared to the conventional tokamak value of ˜1. In the high dielectric regime considered here, lower hybrid and electron cyclotron waves have severe accessibility problems. In contrast to these limitations, recent calculations by M. Ono [1] indicate that fast waves in the intermediate frequency regime with ω≊20Ωci≪ωLH experience sufficient damping on electrons to consider localized power deposition and have a high ion β accessibility limit. In an attempt to model this regime, ray tracing calculations for NSTX and CDX-U have been performed and modelling results will be presented for cases of interest.

  19. High ion-harmonics fast wave heating in NSTX and CDX-U

    SciTech Connect

    Menard, J.; Majeski, R.; Ono, M.; Wilson, J.R.

    1996-02-01

    Low-aspect-ratio tokamaks (LARTs) have received recent attention because of encouraging results from small scale experiments and because of the LART{close_quote}s potential for attaining high stable {beta} in next generation devices. For this potential to be realized, efficient methods of non-inductive heating and current drive required to heat and sustain such plasmas must be found. A typical next generation high {beta} LART experiment has an unusually large dielectric {omega}{sup 2}{sub {ital pe}}/{Omega}{sup 2}{sub {ital ce}}{approximately}100, compared to the conventional tokamak value of {approximately}1. In the high dielectric regime considered here, lower hybrid and electron cyclotron waves have severe accessibility problems. In contrast to these limitations, recent calculations by M. Ono [1] indicate that fast waves in the intermediate frequency regime with {omega}{approx_equal}20{Omega}{sub {ital ci}}{lt}{omega}{sub {ital LH}} experience sufficient damping on electrons to consider localized power deposition and have a high ion {beta} accessibility limit. In an attempt to model this regime, ray tracing calculations for NSTX and CDX-U have been performed and modelling results will be presented for cases of interest. {copyright} {ital 1996 American Institute of Physics.}

  20. Development and fabrication of a high current, fast recovery power diode

    NASA Technical Reports Server (NTRS)

    Berman, A. H.; Balodis, V.; Devance, D. C.; Gaugh, C. E.; Karlsson, E. A.

    1983-01-01

    A high voltage (VR = 1200 V), high current (IF = 150 A), fast recovery ( 700 ns) and low forward voltage drop ( 1.5 V) silicon rectifier was designed and the process developed for its fabrication. For maximum purity, uniformity and material characteristic stability, neutron transmutation n-type doped float zone silicon is used. The design features a hexagonal chip for maximum area utilization of space available in the DO-8 diode package, PIN diffused junction structure with deep diffused D(+) anode and a shallow high concentration n(+) cathode. With the high temperature glass passivated positive bevel mesa junction termination, the achieved blocking voltage is close to the theoretical limit of the starting material. Gold diffusion is used to control the lifetime and the resulting effect on switching speed and forward voltage tradeoff. For solder reflow assembly, trimetal (Al-Ti-Ni) contacts are used. The required major device electrical characteristics were achieved. Due to the tradeoff nature of forward voltage drop and reverse recovery time, a compromise was reached for these values.

  1. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  2. Effects of high thermal and high fast fluences on the mechanical properties of type 6061 aluminum in the HFBR

    SciTech Connect

    Weeks, J.R.; Czajkowski, C.J.; Tichler, P.R.

    1988-01-01

    The High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) is an epithermal, externally moderated (by D/sub 2/O) facility designed to produce neutron beams for research. Type 6061 T-6 aluminum was used for the beam tubes, pressure vessel, fuel cladding, and most other components in the high flux area. The HFBR has operated since 1965. The epithermal, external moderation of the HFBR means that materials irradiated in different areas of the facility receive widely different flux spectra. Thus, specimens from a control rod drive follower tube (CRDF) have received 1.5 /times/ 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV) and 3.2 /times/ 10/sup 23/ n/cm/sup 2/ thermal fluence, while those from a vertical thimble flow shroud received 1.9 /times/ 10/sup 23/ n/cm/sup 2/ (E > 0.1 MeV) and 1.0 /times/ 10/sup 23/ n/cm/sup 2/ thermal. These numbers correspond to fast to thermal fluence ratios ranging from 0.05 to 1.9. Irradiations are occurring at approximately 333/degree/K. The data indicate that the increase in tensile strength and decrease in ductility result primarily from the thermal fluence, i.e., the transmutation of aluminum to silicon. These effects appear to be saturating at fluences above approximately 1.8 /times/ 10/sup 23/ n/cm/sup 2/ thermal at values of 90,000 psi (6700 Kg/mm/sup 2/) and 9%, respectively. The specimens receiving the highest fluence ratios appear to have less increase in tensile strength and less decrease in ductility than specimens with a lower fast to thermal fluence ratio and the same thermal fluence, suggesting a possible beneficial effect of the high energy neutrons in preventing formation of silicon crystallites. 7 refs., 11 figs., 3 tabs.

  3. Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector

    PubMed Central

    Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph

    2015-01-01

    Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744

  4. A search for highly dispersed fast radio bursts in three Parkes multibeam surveys

    NASA Astrophysics Data System (ADS)

    Crawford, F.; Rane, A.; Tran, L.; Rolph, K.; Lorimer, D. R.; Ridley, J. P.

    2016-08-01

    We have searched three Parkes multibeam 1.4 GHz surveys for the presence of fast radio bursts (FRBs) out to a dispersion measure (DM) of 5000 pc cm-3. These surveys originally targeted the Magellanic Clouds (in two cases) and unidentified gamma-ray sources at mid-Galactic latitudes (in the third case) for new radio pulsars. In previous processing, none of these surveys were searched to such a high DM limit. The surveys had a combined total of 719 h of Parkes multibeam on-sky time. One known FRB, 010724, was present in our data and was detected in our analysis but no new FRBs were found. After adding in the on-sky Parkes time from these three surveys to the on-sky time (7512 h) from the five Parkes surveys analysed by Rane et al., all of which have now been searched to high DM limits, we improve the constraint on the all-sky rate of FRBs above a fluence level of 3.8 Jy ms at 1.4 GHz to R = 3.3^{+3.7}_{-2.2} × 103 events per day per sky (at the 99 per cent confidence level). Future Parkes surveys that accumulate additional multibeam on-sky time (such as the ongoing high-resolution Parkes survey of the Large Magellanic Cloud) can be combined with these results to further constrain the all-sky FRB rate.

  5. Fast response double series resonant high-voltage DC-DC converter

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Iqbal, S.; Kamarol, M.

    2012-10-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  6. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Murase, Kohta; Olinto, Angela V.

    2016-04-01

    Relativistic winds of fast-spinning pulsars have been proposed as a potential site for cosmic-ray acceleration from very high energies (VHE) to ultrahigh energies (UHE). We re-examine conditions for high-energy neutrino production, considering the interaction of accelerated particles with baryons of the expanding supernova ejecta and the radiation fields in the wind nebula. We make use of the current IceCube sensitivity in diffusive high-energy neutrino background, in order to constrain the parameter space of the most extreme neutron stars as sources of VHE and UHE cosmic rays. We demonstrate that the current non-observation of 1018 eV neutrinos put stringent constraints on the pulsar scenario. For a given model, birthrates, ejecta mass and acceleration efficiency of the magnetar sources can be constrained. When we assume a proton cosmic ray composition and spherical supernovae ejecta, we find that the IceCube limits almost exclude their significant contribution to the observed UHE cosmic-ray flux. Furthermore, we consider scenarios where a fraction of cosmic rays can escape from jet-like structures piercing the ejecta, without significant interactions. Such scenarios would enable the production of UHE cosmic rays and help remove the tension between their EeV neutrino production and the observational data.

  7. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    SciTech Connect

    J.R. Wilson; R.E. Bell; S. Bernabei; M. Bitter; P. Bonoli; D. Gates; J. Hosea; B. LeBlanc; T.K. Mau; S. Medley; J. Menard; D. Mueller; M. Ono; C.K. Phillips; R.I. Pinsker; R. Raman; A. Rosenberg; P. Ryan; S. Sabbagh; D. Stutman; D. Swain; Y. Takase; J. Wilgen; the NSTX Team

    2003-02-11

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.

  8. A fast boundary element method for the scattering analysis of high-intensity focused ultrasound.

    PubMed

    van 't Wout, Elwin; Gélat, Pierre; Betcke, Timo; Arridge, Simon

    2015-11-01

    High-intensity focused ultrasound (HIFU) techniques are promising modalities for the non-invasive treatment of cancer. For HIFU therapies of, e.g., liver cancer, one of the main challenges is the accurate focusing of the acoustic field inside a ribcage. Computational methods can play an important role in the patient-specific planning of these transcostal HIFU treatments. This requires the accurate modeling of acoustic scattering at ribcages. The use of a boundary element method (BEM) is an effective approach for this purpose because only the boundaries of the ribs have to be discretized instead of the standard approach to model the entire volume around the ribcage. This paper combines fast algorithms that improve the efficiency of BEM specifically for the high-frequency range necessary for transcostal HIFU applications. That is, a Galerkin discretized Burton-Miller formulation is used in combination with preconditioning and matrix compression techniques. In particular, quick convergence is achieved with the operator preconditioner that has been designed with on-surface radiation conditions for the high-frequency approximation of the Neumann-to-Dirichlet map. Realistic computations of acoustic scattering at 1 MHz on a human ribcage model demonstrate the effectiveness of this dedicated BEM algorithm for HIFU scattering analysis. PMID:26627749

  9. Fast Food Consumption Pattern and Its Association with Overweight Among High School Boys in Mangalore City of Southern India

    PubMed Central

    Nelliyanil, Maria; Rai, Sharada; Y.P., Raghavendra Babu; Kotian, Shashidhar M.; Ghosh, Tanima; Singh, Manisha

    2015-01-01

    Context Fast foods are quite popular among children owing to taste, appearance and hype created by mass media. However, the increased incidence of lifestyle disorders seen now-a-days at an early age could be attributed to fast foods. Aim This study was done to assess the awareness of health hazards, consumption pattern of fast foods and to find out its association with overweight among high school students. Settings and Design This cross-sectional study was done among boys of 3 private schools in Mangalore city in March 2012. Materials and Methods Data was collected using a semi-structured self-administered questionnaire. Statistical Analysis Chi-square test, one-way ANOVA and binary logistic regression analysis was used for analysis. P-value ≤ 0.05 was considered as statistically significant association. Results Mean age of boys was 13.5±0.9 years. Out of 300 participants, 41(13.7%) were overweight and 8 (2.7%) were obese. 292(97.3%) were fast food users of which 42(14.4%) consumed it every day. Majority of participants were introduced to fast foods through television commercials 193(64.3%). 73(57%) developed this habit as they were bored with home food. Awareness of harmful effects of fast food consumption was known to 186(62%) students and this was found to be associated with the perceived need to control its usage (p<0.001). Parental consumption of fast foods was found to influence fast food consumption among children (p=0.024). As many as 68(22.7%) and 206(68.7%) children were not eating vegetables and fruits respectively every day. Increased frequency of fast food consumption in a week was found to be associated with overweight or obesity among children after adjusting the effects of confounders (p=0.003). Conclusion Awareness on health hazards of fast foods needs to be taught at schools so as to minimize its consumption. Parents have to set an example themselves by not eating fast foods and improving home food to support discouragement of fast foods. This

  10. Non-contact profiling for high precision fast asphere topology measurement

    NASA Astrophysics Data System (ADS)

    Petter, Jürgen; Berger, Gernot

    2013-04-01

    Quality control in the fabrication of high precision optics these days needs nanometer accuracy. However, the fast growing number of optics with complex aspheric shapes demands an adapted measurement method as existing metrology systems more and more reach their limits. In this contribution the authors present a unique and highly flexible approach for measuring spheric and aspheric optics with diameters from 2mm up to 420mm and with almost unlimited spheric departures. Based on a scanning point interferometer the system combines the high precision and the speed of an optical interferometer with the high form flexibility of a classical tactile scanning system. This enables the measurement of objects with steep or strongly changing slopes such as "pancake" or "gull wing" objects. The high accuracy of ±50nm over the whole surface is achieved by using a full reference concept ensuring the position control even over long scanning paths. The core of the technology is a multiwavelength interferometer (MWLI); by use of several wavelengths this sensor system allows for the measurement of objects with polished as well as with ground surfaces. Furthermore, a large absolute measurement range facilitates measuring surfaces with steps or discontinuities like diffractive structures or even segmented objects. As all the measurements can be done using one and the same system, a direct comparison is possible during production and after finishing an object. The contribution gives an insight into the functionality of the MWLI-sensor as well as into the concept of the reference system of the scanning metrology system. Furthermore, samples of application are discussed.

  11. High-resolution, high-sensitivity, ground-based solar spectropolarimetry with a new fast imaging polarimeter. I. Prototype characterization

    NASA Astrophysics Data System (ADS)

    Iglesias, F. A.; Feller, A.; Nagaraju, K.; Solanki, S. K.

    2016-05-01

    Context. Remote sensing of weak and small-scale solar magnetic fields is of utmost relevance when attempting to respond to a number of important open questions in solar physics. This requires the acquisition of spectropolarimetric data with high spatial resolution (~10-1 arcsec) and low noise (10-3 to 10-5 of the continuum intensity). The main limitations to obtain these measurements from the ground, are the degradation of the image resolution produced by atmospheric seeing and the seeing-induced crosstalk (SIC). Aims: We introduce the prototype of the Fast Solar Polarimeter (FSP), a new ground-based, high-cadence polarimeter that tackles the above-mentioned limitations by producing data that are optimally suited for the application of post-facto image restoration, and by operating at a modulation frequency of 100 Hz to reduce SIC. Methods: We describe the instrument in depth, including the fast pnCCD camera employed, the achromatic modulator package, the main calibration steps, the effects of the modulation frequency on the levels of seeing-induced spurious signals, and the effect of the camera properties on the image restoration quality. Results: The pnCCD camera reaches 400 fps while keeping a high duty cycle (98.6%) and very low noise (4.94 e- rms). The modulator is optimized to have high (>80%) total polarimetric efficiency in the visible spectral range. This allows FSP to acquire 100 photon-noise-limited, full-Stokes measurements per second. We found that the seeing induced signals that are present in narrow-band, non-modulated, quiet-sun measurements are (a) lower than the noise (7 × 10-5) after integrating 7.66 min, (b) lower than the noise (2.3 × 10-4) after integrating 1.16 min and (c) slightly above the noise (4 × 10-3) after restoring case (b) by means of a multi-object multi-frame blind deconvolution. In addition, we demonstrate that by using only narrow-band images (with low S/N of 13.9) of an active region, we can obtain one complete set of high

  12. Fast Ion Confinement in High Beta, Steady-State Scenario Plasmas

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.; Chen, X.; Ferron, J. R.; van Zeeland, M. A.; Grierson, B. A.; Holcomb, C. T.

    2013-10-01

    Fast-ion confinement is studied for qmin between 1.2-2.8 in plasmas with normalized β > 2 . 6 . Fast-ion D-alpha (FIDA), neutron, and neutral-particle diagnostics measure the confined fast ions. Tearing modes and a ``sea'' of unstable Alfvén eigenmodes (AE) are observed. In preliminary analysis, the degradation in fast-ion confinement increases with qmin ; increased AE activity appears responsible. Predictions of a model that assumes that AE-induced fast-ion transport is stiff are compared with the data. Work supported by the US Department of Energy under SC-G903402, DE-FC-02-04ER54698, DE-AC02-09CH11466, and DE-AC52-07NA27344.

  13. High-harmonic fast wave heating experiments in CDX-U

    SciTech Connect

    Menard, J.; Majeski, R.; Ono, M.; Wilson, J.R.; Munsat, T.; Seki, T.

    1997-12-01

    One of the primary objectives of the proposed National Spherical Tokamak Experiment (NSTX) is the investigation of very high {beta} regimes. Consequently, finding efficient methods of non-inductive heating and current drive required to heat and sustain such plasmas is of considerable importance. High-frequency fast waves are a promising candidate in this regard. However, in NSTX, the field-line pitch at the outer midplane will range from 0 up to 60 degrees from plasma start-up to current flattop. Thus, antenna strap orientation with respect to the edge magnetic field may have a serious impact on power coupling and absorption. To address this issue, the vacuum vessel of the Current Drive Experiment -- Upgrade (CDX-U) spherical tokamak has been upgraded to accommodate a rotatable two-strap antenna capable of handling several hundred kilowatts in short pulses. Details of the antenna design and results from loading measurements made as a function of power, strap angle, and strap phasing will be presented. Results from microwave scattering experiments will also be discussed.

  14. High-harmonic fast wave heating experiments in CDX-U

    NASA Astrophysics Data System (ADS)

    Menard, J.; Majeski, R.; Ono, M.; Wilson, J. R.; Munsat, T.; Seki, T.

    1997-04-01

    One of the primary objectives of the proposed National Spherical Tokamak Experiment (NSTX) [1] is the investigation of very high β regimes. Consequently, finding efficient methods of non-inductive heating and current drive required to heat and sustain such plasmas is of considerable importance. High frequency fast waves are a promising candidate in this regard. However, in NSTX, the field-line pitch at the outer midplane will range from 0 to up to 60 degrees from plasma start-up to current flat-top. Thus, antenna strap orientation with respect to the edge magnetic field may have a serious impact on power coupling and absorption. To address this issue, the vacuum vessel of the Current Drive Experiment—Upgrade (CDX-U) spherical tokamak has been upgraded to accommodate a rotatable two-strap antenna capable of handling several hundred kilowatts in short pulses. Details of the antenna design and results from loading measurements made as a function of power, strap angle, and strap phasing will be presented. Results from microwave scattering experiments will also be discussed.

  15. High-harmonic fast wave heating experiments in CDX-U

    SciTech Connect

    Menard, J.; Majeski, R.; Ono, M.; Wilson, J.R.; Munsat, T.; Seki, T.

    1997-04-01

    One of the primary objectives of the proposed National Spherical Tokamak Experiment (NSTX) [1] is the investigation of very high {beta} regimes. Consequently, finding efficient methods of non-inductive heating and current drive required to heat and sustain such plasmas is of considerable importance. High frequency fast waves are a promising candidate in this regard. However, in NSTX, the field-line pitch at the outer midplane will range from 0 to up to 60 degrees from plasma start-up to current flat-top. Thus, antenna strap orientation with respect to the edge magnetic field may have a serious impact on power coupling and absorption. To address this issue, the vacuum vessel of the Current Drive Experiment{emdash}Upgrade (CDX-U) spherical tokamak has been upgraded to accommodate a rotatable two-strap antenna capable of handling several hundred kilowatts in short pulses. Details of the antenna design and results from loading measurements made as a function of power, strap angle, and strap phasing will be presented. Results from microwave scattering experiments will also be discussed. {copyright} {ital 1997 American Institute of Physics.}

  16. High Tg and fast curing epoxy-based anisotropic conductive paste for electronic packaging

    NASA Astrophysics Data System (ADS)

    Keeratitham, Waralee; Somwangthanaroj, Anongnat

    2016-03-01

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (Tg) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that Tg obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage by weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (˜90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.

  17. Transition From High Harmonic Fast Wave to Whistler/Helicon Regime in Tokamaks

    NASA Astrophysics Data System (ADS)

    Harris, S. P.; Pinsker, R. I.; Porkolab, M.

    2014-10-01

    Experiments are being prepared1 on DIII-D in which fast waves (FWs) at 0.5 GHz will be used to drive current noninductively in the mid-radius region. Previous DIII-D experiments used FWs at ~0.1 GHz to drive central current; in this work we examine the frequency dependence of wave propagation and damping in the 0.1-1.0 GHz range with the goal of identifying the optimum frequency range for a particular application. Strongly enhanced electron damping and reduced ion damping at higher frequencies must be weighed against increasing coupling difficulties at higher frequencies and more restrictive wave accessibility at low toroidal field. Wave propagation and accessibility is studied with ray tracing models in slab, cylindrical, and fully toroidal geometries. Analytic expressions for electron and ion damping will be derived with an emphasis on understanding the transition from the moderate-to-high ion cyclotron harmonic regime to the very high harmonic or ``whistler''/``helicon''/lower hybrid FW regime. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US Department of Energy under DE-FC02-04ER54698.

  18. High-speed optical shutter coupled to fast-readout CCD camera

    NASA Astrophysics Data System (ADS)

    Yates, George J.; Pena, Claudine R.; McDonald, Thomas E., Jr.; Gallegos, Robert A.; Numkena, Dustin M.; Turko, Bojan T.; Ziska, George; Millaud, Jacques E.; Diaz, Rick; Buckley, John; Anthony, Glen; Araki, Takae; Larson, Eric D.

    1999-04-01

    A high frame rate optically shuttered CCD camera for radiometric imaging of transient optical phenomena has been designed and several prototypes fabricated, which are now in evaluation phase. the camera design incorporates stripline geometry image intensifiers for ultra fast image shutters capable of 200ps exposures. The intensifiers are fiber optically coupled to a multiport CCD capable of 75 MHz pixel clocking to achieve 4KHz frame rate for 512 X 512 pixels from simultaneous readout of 16 individual segments of the CCD array. The intensifier, Philips XX1412MH/E03 is generically a Generation II proximity-focused micro channel plate intensifier (MCPII) redesigned for high speed gating by Los Alamos National Laboratory and manufactured by Philips Components. The CCD is a Reticon HSO512 split storage with bi-direcitonal vertical readout architecture. The camera main frame is designed utilizing a multilayer motherboard for transporting CCD video signals and clocks via imbedded stripline buses designed for 100MHz operation. The MCPII gate duration and gain variables are controlled and measured in real time and up-dated for data logging each frame, with 10-bit resolution, selectable either locally or by computer. The camera provides both analog and 10-bit digital video. The camera's architecture, salient design characteristics, and current test data depicting resolution, dynamic range, shutter sequences, and image reconstruction will be presented and discussed.

  19. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?

    PubMed Central

    Jones, Peter D.; Stelzle, Martin

    2016-01-01

    Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology—rather than microfluidic—will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years. PMID:27065794

  20. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    PubMed

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.

  1. A fast general-purpose clustering algorithm based on FPGAs for high-throughput data processing

    NASA Astrophysics Data System (ADS)

    Annovi, A.; Beretta, M.

    2010-05-01

    We present a fast general-purpose algorithm for high-throughput clustering of data "with a two-dimensional organization". The algorithm is designed to be implemented with FPGAs or custom electronics. The key feature is a processing time that scales linearly with the amount of data to be processed. This means that clustering can be performed in pipeline with the readout, without suffering from combinatorial delays due to looping multiple times through all the data. This feature makes this algorithm especially well suited for problems where the data have high density, e.g. in the case of tracking devices working under high-luminosity condition such as those of LHC or super-LHC. The algorithm is organized in two steps: the first step (core) clusters the data; the second step analyzes each cluster of data to extract the desired information. The current algorithm is developed as a clustering device for modern high-energy physics pixel detectors. However, the algorithm has much broader field of applications. In fact, its core does not specifically rely on the kind of data or detector it is working for, while the second step can and should be tailored for a given application. For example, in case of spatial measurement with silicon pixel detectors, the second step performs center of charge calculation. Applications can thus be foreseen to other detectors and other scientific fields ranging from HEP calorimeters to medical imaging. An additional advantage of this two steps approach is that the typical clustering related calculations (second step) are separated from the combinatorial complications of clustering. This separation simplifies the design of the second step and it enables it to perform sophisticated calculations achieving offline quality in online applications. The algorithm is general purpose in the sense that only minimal assumptions on the kind of clustering to be performed are made.

  2. High-speed, multi-channel detector readout electronics for fast radiation detectors

    SciTech Connect

    Hennig, Wolfgang

    2012-06-22

    In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps, MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications.The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the SHARC

  3. Fast asthenosphere motion in high-resolution global mantle flow models

    NASA Astrophysics Data System (ADS)

    Weismüller, Jens; Gmeiner, Björn; Bunge, Hans-Peter

    2016-04-01

    A variety of geologic observations point to fast upper mantle flow that may exceed plate tectonic velocities by an order of magnitude. At the same time there is mounting evidence from seismology for flow like structures in the upper 100-200 km of the mantle. Here we present a set of geodynamic simulations to link these observations. We model asthenospheric channels of varying thickness, in a range from a wide 1000 km channel to an extremely thin channel of 100 km, and viscosity contrasts between one and four orders of magnitude relative to the lower mantle. Using our new global high resolution mantle convection prototype Terra-Neo, we obtain an increase in velocity by a factor of ten between the thick and the very thin channel, translating into velocities of about 20 cm/a within the narrow asthenosphere. We further present and verify a simple Poiseuille flow model, which predicts that the upper mantle velocity scales with the inverse of the asthenosphere thickness.

  4. Fast, high-throughput measurement of collective behaviour in a bacterial population.

    PubMed

    Colin, R; Zhang, R; Wilson, L G

    2014-09-01

    Swimming bacteria explore their environment by performing a random walk, which is biased in response to, for example, chemical stimuli, resulting in a collective drift of bacterial populations towards 'a better life'. This phenomenon, called chemotaxis, is one of the best known forms of collective behaviour in bacteria, crucial for bacterial survival and virulence. Both single-cell and macroscopic assays have investigated bacterial behaviours. However, theories that relate the two scales have previously been difficult to test directly. We present an image analysis method, inspired by light scattering, which measures the average collective motion of thousands of bacteria simultaneously. Using this method, a time-varying collective drift as small as 50 nm s(-1) can be measured. The method, validated using simulations, was applied to chemotactic Escherichia coli bacteria in linear gradients of the attractant α-methylaspartate. This enabled us to test a coarse-grained minimal model of chemotaxis. Our results clearly map the onset of receptor methylation, and the transition from linear to logarithmic sensing in the bacterial response to an external chemoeffector. Our method is broadly applicable to problems involving the measurement of collective drift with high time resolution, such as cell migration and fluid flows measurements, and enables fast screening of tactic behaviours.

  5. Z: A Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    SciTech Connect

    Asay, J.R.; Bailey, J.E.; Bernard, M.A.; Hall, C.A.; McDaniel, D.H.; Spielman, R.B.; Struve, K.W.; Stygar, W.A.

    1998-11-04

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times - 100 ns. The largest such pulsed power drive r today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z is capable of delivering more than 20 MA with a time-to-peak of 105 ns to low inductance (- 1 nH)loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 -cm3, volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression scheme~: are not new and are, in fact, the basis of all explosive flux-compression generators but we propose the use of plasma armatures rather than solid, conducting armatures. We will present experimental results from the Z accelerator in which magnetic fields - 2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields will be reviewed in context with Z experiments. We will describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

  6. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    SciTech Connect

    Das, Sadhan Chandra; Majumdar, Abhijit E-mail: majumdar@uni-greifswald.de; Hippler, R.; Katiyal, Sumant; Shripathi, T.

    2014-02-15

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (∼10{sup −6} mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  7. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    SciTech Connect

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  8. High time resolution electron measurement by Fast Electron energy Spectrum Analyzer (FESA)

    SciTech Connect

    Saito, Yoshifumi; Fujimoto, Masaki; Maezawa, Kiyoshi; Shinohara, Iku; Tsuda, Yuichi; Sasaki, Shintaro; Kojima, Hirotsugu

    2009-06-16

    We have newly developed an electron energy analyzer FESA (Fast Electron energy Spectrum Analyzer) for a future magnetospheric satellite mission SCOPE. The SCOPE mission is designed in order that observational studies from the cross-scale coupling viewpoint are enabled. One of the key observations necessary for the SCOPE mission is high-time resolution electron measurement. Eight FESAs on a spinning spacecraft are capable of measuring three dimensional electron distribution function with time resolution of 8 msec. FESA consists of two electrostatic analyzers that are composed of three nested hemispherical deflectors. Single FESA functions as four top-hat type electrostatic analyzers that can measure electrons with four different energies simultaneously. By measuring the characteristics of the test model FESA, we proved the validity of the design concept of FESA. Based on the measured characteristics, we designed FESA optimized for the SCOPE mission. This optimized analyzer has good enough performance to measure three dimensional electron distribution functions around the magnetic reconnection region in the Earth's magnetotail.

  9. Change in physical properties of high density isotropic graphites irradiated in the ?JOYO? fast reactor

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.

    1995-08-01

    Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor "JOYO" to fluences from 2.11 to 2.86 × 10 26 n/m 2 ( E > 0.1 MeV) at temperatures from 549 to 597°C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens.

  10. FASTDEF: fast defocus and astigmatism estimation for high-throughput transmission electron microscopy.

    PubMed

    Vargas, J; Otón, J; Marabini, R; Jonic, S; de la Rosa-Trevín, J M; Carazo, J M; Sorzano, C O S

    2013-02-01

    In this work we present a fast and automated algorithm for estimating the contrast transfer function (CTF) of a transmission electron microscope. The approach is very suitable for High Throughput work because: (a) it does not require any initial defocus estimation, (b) it is almost an order of magnitude faster than existing approaches, (c) it opens the way to well-defined extensions to the estimation of higher order aberrations, at the same time that provides defocus and astigmatism estimations comparable in accuracy to well established methods, such as Xmipp and CTFFIND3 approaches. The new algorithm is based on obtaining the wrapped modulating phase of the power spectra density pattern by the use of a quadrature filter. This phase is further unwrapped in order to obtain the continuous and smooth absolute phase map; then a Zernike polynomial fitting is performed and the defocus and astigmatism parameters are determined. While the method does not require an initial estimation of the defocus parameters or any non-linear optimization procedure, these approaches can be used if further refinement is desired. Results of the CTF estimation method are presented for standard negative stained images, cryo-electron microscopy images in the absence of carbon support, as well as micrographs with only ice. Additionally, we have also tested the proposed method with micrographs acquired from tilted and untilted samples, obtaining good results. The algorithm is freely available as a part of the Xmipp package [http://xmipp.cnb.csic.es].

  11. Repeating Fast Radio Bursts from Highly Magnetized Pulsars Traveling through Asteroid Belts

    NASA Astrophysics Data System (ADS)

    Dai, Z. G.; Wang, J. S.; Wu, X. F.; Huang, Y. F.

    2016-09-01

    Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has such a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.

  12. Profile Modifications Resulting from Early High-harmonic Fast Wave heating in NSTX

    SciTech Connect

    Mendard, J.E.; LeBlanc, Wilson, J.R.; Sabbagh, S.A.; Stutman, D.; and Swain, D.W.

    2001-05-18

    Experiments have been performed in the National Spherical Torus Experiment (NSTX) to inject high harmonic fast wave (HHFW) power early during the plasma current ramp-up in an attempt to reduce the current penetration rate to raise the central safety factor during the flattop phase of the discharge. To date, up to 2 MW of HHFW power has been coupled to deuterium plasmas as early as t = 50 ms using the slowest interstrap phasing of k|| approximately equals 14 m(superscript)-1 (nf = 24). Antenna-plasma gap scans have been performed and find that for small gaps (5-8 cm), electron heating is observed with relatively small density rises and modest reductions in current penetration rate. For somewhat larger gaps (10-12 cm), weak electron heating is observed but with a spontaneous density rise at the plasma edge similar to that observed in NSTX H-modes. In the larger gap configuration, EFIT code reconstructions (without MSE [motional Stark effect]) find that resistive flux consumption is reduced as much as 30%, the internal inductance is maintained below 0.6 at 1 MA into the flattop, q(0) is increased significantly, and the MHD stability character of the discharges is strongly modified.

  13. Hypothesis testing at the extremes: fast and robust association for high-throughput data.

    PubMed

    Zhou, Yi-Hui; Wright, Fred A

    2015-07-01

    A number of biomedical problems require performing many hypothesis tests, with an attendant need to apply stringent thresholds. Often the data take the form of a series of predictor vectors, each of which must be compared with a single response vector, perhaps with nuisance covariates. Parametric tests of association are often used, but can result in inaccurate type I error at the extreme thresholds, even for large sample sizes. Furthermore, standard two-sided testing can reduce power compared with the doubled [Formula: see text]-value, due to asymmetry in the null distribution. Exact (permutation) testing is attractive, but can be computationally intensive and cumbersome. We present an approximation to exact association tests of trend that is accurate and fast enough for standard use in high-throughput settings, and can easily provide standard two-sided or doubled [Formula: see text]-values. The approach is shown to be equivalent under permutation to likelihood ratio tests for the most commonly used generalized linear models (GLMs). For linear regression, covariates are handled by working with covariate-residualized responses and predictors. For GLMs, stratified covariates can be handled in a manner similar to exact conditional testing. Simulations and examples illustrate the wide applicability of the approach. The accompanying mcc package is available on CRAN http://cran.r-project.org/web/packages/mcc/index.html.

  14. A compact high resolution ion mobility spectrometer for fast trace gas analysis.

    PubMed

    Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan

    2013-09-21

    Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.

  15. Novel polymeric ionic liquid microspheres with high exchange capacity for fast extraction of plasmid DNA.

    PubMed

    Wang, Xiaofeng; Xing, Ligang; Shu, Yang; Chen, Xuwei; Wang, Jianhua

    2014-07-21

    A novel polymeric ionic liquid (PIL) microsphere, poly(1-vinyl-3-(2-methoxy-2-oxyl ethyl)imidazolium) hexafluorophosphate, is prepared via W/O emulsion polymerization. Rapid ion-exchange between the anionic moieties of PIL and DNA fragments is demonstrated facilitating the exchange equilibrium to be reached within 1 min. The PIL microspheres exhibit a high capacity of 190.7 μg mg(-1) for DNA adsorption. A fast DNA isolation protocol is thus developed with the PIL microspheres as solid phase adsorbent. It is feasible to facilitate DNA adsorption or stripping from the microspheres by simply regulating the concentration of salt. DNA adsorption is facilitated at low salt concentration, while higher concentration of salt entails DNA recovery from the microspheres. In practice, the retained DNA could be readily recovered with 1.0 mol L(-1) NaCl as stripping reagent, giving rise to a recovery of ca. 80.7%. The PIL microspheres are used for the adsorption/isolation of plasmid DNA from E. coli cell culture, demonstrating a superior adsorption performance with respect to that achieved by a commercial Plasmid Miniprep Kit.

  16. Fast preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles.

    PubMed

    Zhang, Rongwei; Lin, Wei; Moon, Kyoung-sik; Wong, C P

    2010-09-01

    We show the fast preparation of printable highly conductive polymer nanocomposites for future low-cost electronics. Highly conductive polymer nanocomposites, consisting of an epoxy resin, silver flakes, and incorporated silver nanoparticles, have been prepared by fast sintering between silver flakes and the incorporated silver nanoparticles. The fast sintering is attributed to: 1) the thermal decomposition of silver carboxylate-which is present on the surface of the incorporated silver flakes-to form in situ highly reactive silver nanoparticles; 2) the surface activation of the incorporated silver nanoparticles by the removal of surface residues. As a result, polymer nanocomposites prepared at 230 °C for 5 min, at 260 °C for 10 min, and using a typical lead-free solder reflow process show electrical resistivities of 8.1×10(-5), 6.0×10(-6), and 6.3×10(-5) Ω cm, respectively. The correlation between the rheological properties of the adhesive paste and the noncontact printing process has been discussed. With the optimal rheological properties, the formulated highly viscous pastes (221 mPa s at 2500 s(-1)) can be non-contact-printed into dot arrays with a radius of 130 μm. The noncontact printable polymer nanocomposites with superior electrical conductivity and fast processing are promising for the future of printed electronics.

  17. Silicone-based tough hydrogels with high resilience, fast self-recovery, and self-healing properties.

    PubMed

    Si, Liqi; Zheng, Xiaowen; Nie, Jun; Yin, Ruixue; Hua, Yujie; Zhu, Xiaoqun

    2016-06-28

    Tough hydrogels are prepared from two monomers via photopolymerization of hydroxyethyl acrylate and sol-gel of methyltrimethoxysilane. Constitution and water content could be tuned easily because of the good water solubility of both monomers and two non-interfering polymerization processes. The hydrogels exhibit excellent integrated performance with toughness, high resilience, fast self-recovery, and self-healing. PMID:27257636

  18. H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors

    SciTech Connect

    Liu, Ping; Tracy, C. Edwin; Pitts, J. Roland; Lee, Se-Hee

    2011-03-22

    An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

  19. Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D

    DOE PAGES

    Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Solomon, W. M.; Gong, X.; Mueller, D.; Grierson, B.; Bass, E. M.; et al

    2015-05-22

    The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing βN and the noninductive current drive. However, in scenarios with qmin>2 that target the typical range of q95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reducesmore » the absorbed neutral beam heating power and current drive and limits the achievable βN. Conversely similar plasmas except with qmin just above 1 have approximately classical fast-ion transport. Experiments that take qmin>3 plasmas to higher βP with q95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-qmin scenario, the high βP cases have shorter slowing-down time and lower ∇βfast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, βN, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q95, high-qmin plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less

  20. Fast-ion transport in q min > 2 , high- β steady-state scenarios on DIII-Da)

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Solomon, W. M.; Gong, X.; Mueller, D.; Grierson, B.; Bass, E. M.; Collins, C.; Park, J. M.; Kim, K.; Luce, T. C.; Turco, F.; Pace, D. C.; Ren, Q.; Podesta, M.

    2015-05-01

    Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high- q min confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min > 2 that target the typical range of q 95 = 5-7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable βN. In contrast, similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min > 3 plasmas to higher β P with q 95 = 11-12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high- q min scenario, the high β P cases have shorter slowing-down time and lower ∇ β fast , and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N , and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower- q 95 , high- q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.

  1. Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D

    SciTech Connect

    Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Solomon, W. M.; Gong, X.; Mueller, D.; Grierson, B.; Bass, E. M.; Collins, C.; Park, J. M.; Kim, K.; Luce, T. C.; Turco, F.; Pace, D. C.; Ren, Q.; Podesta, M.

    2015-05-22

    The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing βN and the noninductive current drive. However, in scenarios with qmin>2 that target the typical range of q95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable βN. Conversely similar plasmas except with qmin just above 1 have approximately classical fast-ion transport. Experiments that take qmin>3 plasmas to higher βP with q95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-qmin scenario, the high βP cases have shorter slowing-down time and lower ∇βfast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, βN, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q95, high-qmin plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.

  2. High-Voltage Power Supply With Fast Rise and Fall Times

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B.; Acker, Richard M.; Kapuslka, Robert E.

    2007-01-01

    A special-purpose high-voltage power supply can be electronically switched on and off with fast rise and fall times, respectively. The output potential is programmable from 20 to 1,250 V. An output current of 50 A can be sustained at 1,250 V. The power supply was designed specifically for electronically shuttering a microchannel plate in an x-ray detector that must operate with exposure times as short as 1 ms. The basic design of the power supply is also adaptable to other applications in which there are requirements for rapid slewing of high voltages. The power-supply circuitry (see figure) includes a preregulator, which is used to program the output at 1/30 of the desired output potential. After the desired voltage has been set, the outputs of a pulse width modulator (PWM) are enabled and used to amplify the preregulator output potential by 30. The amplification is achieved by use of two voltage doublers with a transformer that has two primary and two secondary windings. A resistor is used to limit the current by controlling the drive voltage of two field-effect transistors (FETs) during turn-on of the PWM. A pulse transformer is used to turn on four FETs to short-circuit four output capacitors when the outputs of the PWM have been disabled. The most notable aspects of the performance of the power supply are a rise time of only 80 s and a fall time of only 60 s at a load current of 50 A or less. Another notable aspect is that the application of a 0-to-5-V square wave to a shutdown pin of the PWM causes the production of a 0-to-1,250-V square wave at the output terminals.

  3. Electron emission in collisions of fast highly charged bare ions with helium atoms

    NASA Astrophysics Data System (ADS)

    Mondal, Abhoy; Mandal, Chittranjan; Purkait, Malay

    2016-01-01

    We have studied the electron emission from ground state helium atom in collision with fast bare heavy ions at intermediate and high incident energies. In the present study, we have applied the present three-body formalism of the three Coulomb wave (3C-3B) model and the previously adopted four-body formalism of the three Coulomb wave (3C-4B). To represent the active electron in the helium atom in the 3C-3B model, the initial bound state wavefunction is chosen to be hydrogenic with an effective nuclear charge. The wavefunction for the ejected electron in the exit channel has been approximated to be a Coulomb continuum wavefunction with same effective nuclear charge. Effectively the continuum-continuum correlation effect has been considered in the present investigation. Here we have calculated the energy and angular distribution of double differential cross sections (DDCS) at low and high energy electron emission from helium atom. The large forward-backward asymmetry is observed in the angular distribution which is explained in terms of the two-center effect (TCE). Our theoretical results are compared with available experimental results as well as other theoretical calculations based on the plain wave Born approximation (PWBA), continuum-distorted wave (CDW) approximation, continuum-distorted wave eikonal-initial state (CDW-EIS) approximation, and the corresponding values obtained from the 3C-4B model [S. Jana, R. Samanta, M. Purkait, Phys. Scr. 88, 055301 (2013)] respectively. It is observed that the four-body version of the present investigation produces results which are in better agreement with experimental observations for all cases.

  4. Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX

    SciTech Connect

    T.M. Biewer; R.E. Bell; S.J. Diem; C.K. Phillips; J.R. Wilson; P.M. Ryan

    2004-12-01

    A new spectroscopic diagnostic on the National Spherical Torus Experiment (NSTX) measures the velocity distribution of ions in the plasma edge simultaneously along both poloidal and toroidal views. An anisotropic ion temperature is measured during high-power high harmonic fast wave (HHFW) radio-frequency (rf) heating in helium plasmas, with the poloidal ion temperature roughly twice the toroidal ion temperature. Moreover, the measured spectral distribution suggests that two populations of ions are present and have temperatures of typically 500 eV and 50 eV with rotation velocities of -50 km/s and -10 km/s, respectively (predominantly perpendicular to the local magnetic field). This bi-modal distribution is observed in both the toroidal and poloidal views (for both He{sup +} and C{sup 2+} ions), and is well correlated with the period of rf power application to the plasma. The temperature of the hot component is observed to increase with the applied rf power, which was scanned between 0 and 4.3 MW . The 30 MHz HHFW launched by the NSTX antenna is expected and observed to heat core electrons, but plasma ions do not resonate with the launched wave, which is typically at >10th harmonic of the ion cyclotron frequency in the region of observation. A likely ion heating mechanism is parametric decay of the launched HHFW into an Ion Bernstein Wave (IBW). The presence of the IBW in NSTX plasmas during HHFW application has been directly confirmed with probe measurements. IBW heating occurs in the perpendicular ion distribution, consistent with the toroidal and poloidal observations. Calculations of IBW propagation indicate that multiple waves could be created in the parametric decay process, and that most of the IBW power would be absorbed in the outer 10 to 20 cm of the plasma, predominantly on fully stripped ions. These predictions are in qualitative agreement with the observations, and must be accounted for when calculating the energy budget of the plasma.

  5. A novel small area fast block matching algorithm based on high-accuracy gyro in digital image stabilization

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhao, Yuejin; Yu, Fei; Zhu, Weiwen; Lang, Guanqing; Dong, Liquan

    2010-11-01

    This paper presents a novel fast block matching algorithm based on high-accuracy Gyro for steadying shaking image. It acquires motion vector from Gyro firstly. Then determines searching initial position and divides image motion into three modes of small, medium and large using the motion vector from Gyro. Finally, fast block matching algorithm is designed by improving four types of templates (square, diamond, hexagon, octagon). Experimental result shows that the algorithm can speed up 50% over common method (such as NTSS, FSS, DS) and maintain the same accuracy.

  6. High-Harmonic Fast-Wave Power Flow Along Magnetic Field Lines in the Scrape-Off Layer of NSTX

    SciTech Connect

    Perkins, R. J.; Hosea, J.; Kramer, G.; Ahn, Joonwook; Bell, R. E.; Diallo, A.; Gerhardt, S.; Gray, T. K.; Green, David L; Jaeger, Erwin Frederick; Jaworski, M. A.; LeBlanc, B; McLean, Adam G; Maingi, Rajesh; Phillips, C. K.; Roquemore, L.; Ryan, Philip Michael; Sabbagh, S. A.; Taylor, G.; Wilson, J. R.

    2012-01-01

    A significant fraction of high-harmonic fast-wave (HHFW) power applied to NSTX can be lost to the scrape-off layer (SOL) and deposited in bright and hot spirals on the divertor rather than in the core plasma. We show that the HHFW power flows to these spirals along magnetic field lines passing through the SOL in front of the antenna, implying that the HHFW power couples across the entire width of the SOL rather than mostly at the antenna face. This result will help guide future efforts to understand and minimize these edge losses in order to maximize fast-wave heating and current drive.

  7. High-harmonic fast-wave power flow along magnetic field lines in the scrape-off layer of NSTX.

    PubMed

    Perkins, R J; Hosea, J C; Kramer, G J; Ahn, J-W; Bell, R E; Diallo, A; Gerhardt, S; Gray, T K; Green, D L; Jaeger, E F; Jaworski, M A; LeBlanc, B P; McLean, A; Maingi, R; Phillips, C K; Roquemore, L; Ryan, P M; Sabbagh, S; Taylor, G; Wilson, J R

    2012-07-27

    A significant fraction of high-harmonic fast-wave (HHFW) power applied to NSTX can be lost to the scrape-off layer (SOL) and deposited in bright and hot spirals on the divertor rather than in the core plasma. We show that the HHFW power flows to these spirals along magnetic field lines passing through the SOL in front of the antenna, implying that the HHFW power couples across the entire width of the SOL rather than mostly at the antenna face. This result will help guide future efforts to understand and minimize these edge losses in order to maximize fast-wave heating and current drive.

  8. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    NASA Astrophysics Data System (ADS)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  9. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images

    NASA Astrophysics Data System (ADS)

    Ghaffarian, Saman; Ghaffarian, Salar

    2014-11-01

    This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.

  10. Sampling frequency, response times and embedded signal filtration in fast, high efficiency liquid chromatography: A tutorial.

    PubMed

    Wahab, M Farooq; Dasgupta, Purnendu K; Kadjo, Akinde F; Armstrong, Daniel W

    2016-02-11

    With increasingly efficient columns, eluite peaks are increasingly narrower. To take full advantage of this, choice of the detector response time and the data acquisition rate a.k.a. detector sampling frequency, have become increasingly important. In this work, we revisit the concept of data sampling from the theorem variously attributed to Whittaker, Nyquist, Kotelnikov, and Shannon. Focusing on time scales relevant to the current practice of high performance liquid chromatography (HPLC) and optical absorbance detection (the most commonly used method), even for very narrow simulated peaks Fourier transformation shows that theoretical minimum sampling frequency is still relatively low (<10 Hz). However, this consideration alone may not be adequate for real chromatograms when an appreciable amount of noise is present. Further, depending on the instrument, the manufacturer's choice of a particular data bunching/integration/response time condition may be integrally coupled to the sampling frequency. In any case, the exact nature of signal filtration often occurs in a manner neither transparent to nor controllable by the user. Using fast chromatography on a state-of-the-art column (38,000 plates), we evaluate the responses produced by different present generation instruments, each with their unique black box digital filters. We show that the common wisdom of sampling 20 points per peak can be inadequate for high efficiency columns and that the sampling frequency and response choices do affect the peak shape. If the sampling frequency is too low or response time is too large, the observed peak shapes will not remain as narrow as they really are - this is especially true for high efficiency and high speed separations. It is shown that both sampling frequency and digital filtering affect the retention time, noise amplitude, peak shape and width in a complex fashion. We show how a square-wave driven light emitting diode source can reveal the nature of the embedded filter

  11. Sampling frequency, response times and embedded signal filtration in fast, high efficiency liquid chromatography: A tutorial.

    PubMed

    Wahab, M Farooq; Dasgupta, Purnendu K; Kadjo, Akinde F; Armstrong, Daniel W

    2016-02-11

    With increasingly efficient columns, eluite peaks are increasingly narrower. To take full advantage of this, choice of the detector response time and the data acquisition rate a.k.a. detector sampling frequency, have become increasingly important. In this work, we revisit the concept of data sampling from the theorem variously attributed to Whittaker, Nyquist, Kotelnikov, and Shannon. Focusing on time scales relevant to the current practice of high performance liquid chromatography (HPLC) and optical absorbance detection (the most commonly used method), even for very narrow simulated peaks Fourier transformation shows that theoretical minimum sampling frequency is still relatively low (<10 Hz). However, this consideration alone may not be adequate for real chromatograms when an appreciable amount of noise is present. Further, depending on the instrument, the manufacturer's choice of a particular data bunching/integration/response time condition may be integrally coupled to the sampling frequency. In any case, the exact nature of signal filtration often occurs in a manner neither transparent to nor controllable by the user. Using fast chromatography on a state-of-the-art column (38,000 plates), we evaluate the responses produced by different present generation instruments, each with their unique black box digital filters. We show that the common wisdom of sampling 20 points per peak can be inadequate for high efficiency columns and that the sampling frequency and response choices do affect the peak shape. If the sampling frequency is too low or response time is too large, the observed peak shapes will not remain as narrow as they really are - this is especially true for high efficiency and high speed separations. It is shown that both sampling frequency and digital filtering affect the retention time, noise amplitude, peak shape and width in a complex fashion. We show how a square-wave driven light emitting diode source can reveal the nature of the embedded filter

  12. Hypothesis testing at the extremes: fast and robust association for high-throughput data

    PubMed Central

    Zhou, Yi-Hui; Wright, Fred A.

    2015-01-01

    A number of biomedical problems require performing many hypothesis tests, with an attendant need to apply stringent thresholds. Often the data take the form of a series of predictor vectors, each of which must be compared with a single response vector, perhaps with nuisance covariates. Parametric tests of association are often used, but can result in inaccurate type I error at the extreme thresholds, even for large sample sizes. Furthermore, standard two-sided testing can reduce power compared with the doubled \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$\\end{document}-value, due to asymmetry in the null distribution. Exact (permutation) testing is attractive, but can be computationally intensive and cumbersome. We present an approximation to exact association tests of trend that is accurate and fast enough for standard use in high-throughput settings, and can easily provide standard two-sided or doubled \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$\\end{document}-values. The approach is shown to be equivalent under permutation to likelihood ratio tests for the most commonly used generalized linear models (GLMs). For linear regression, covariates are handled by working with covariate-residualized responses and predictors. For GLMs, stratified covariates can be handled in a manner similar to exact conditional testing. Simulations and examples illustrate the wide applicability of the approach. The accompanying mcc package is available on CRAN http://cran.r-project.org/web/packages/mcc/index.html. PMID:25792622

  13. High Cholesterol Obviates a Prolonged Hemifusion Intermediate in Fast SNARE-Mediated Membrane Fusion

    PubMed Central

    Kreutzberger, Alex J.B.; Kiessling, Volker; Tamm, Lukas K.

    2015-01-01

    Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays. PMID:26200867

  14. Escherichia coli W shows fast, highly oxidative sucrose metabolism and low acetate formation.

    PubMed

    Arifin, Yalun; Archer, Colin; Lim, SooA; Quek, Lake-Ee; Sugiarto, Haryadi; Marcellin, Esteban; Vickers, Claudia E; Krömer, Jens O; Nielsen, Lars K

    2014-11-01

    Sugarcane is the most efficient large-scale crop capable of supplying sufficient carbon substrate, in the form of sucrose, needed during fermentative feedstock production. However, sucrose metabolism in Escherichia coli is not well understood because the two most common strains, E. coli K-12 and B, do not grow on sucrose. Here, using a sucrose utilizing strain, E. coli W, we undertake an in-depth comparison of sucrose and glucose metabolism including growth kinetics, metabolite profiling, microarray-based transcriptome analysis, labelling-based proteomic analysis and (13)C-fluxomics. While E. coli W grew comparably well on sucrose and glucose integration of the omics, datasets showed that during growth on each carbon source, metabolism was distinct. The metabolism was generally derepressed on sucrose, and significant flux rearrangements were observed in central carbon metabolism. These included a reduction in the flux of the oxidative pentose phosphate pathway branch, an increase in the tricarboxylic acid cycle flux and a reduction in the glyoxylate shunt flux due to the dephosphorylation of isocitrate dehydrogenase. But unlike growth on other sugars that induce cAMP-dependent Crp regulation, the phosphoenol-pyruvate-glyoxylate cycle was not active on sucrose. Lower acetate accumulation was also observed in sucrose compared to glucose cultures. This was linked to induction of the acetate catabolic genes actP and acs and independent of the glyoxylic shunt. Overall, the cells stayed highly oxidative. In summary, sucrose metabolism was fast, efficient and led to low acetate accumulation making it an ideal carbon source for industrial fermentation with E. coli W. PMID:25125039

  15. Tidal Evolution of the Moon from a High-Obliquity Fast-Spinning Earth

    NASA Astrophysics Data System (ADS)

    Cuk, Matija; Stewart, Sarah; Lock, Simon; Hamilton, Douglas

    2015-11-01

    In the conventional Giant Impact (GI) model of lunar formation, the Moon forms primarily from the debris of the impactor that is launched into Earth orbit. This is in conflict with extremely Earth-like isotopic composition of the Moon. All pre-2012 GI models relied on the classic picture of lunar tidal evolution (e.g. Goldreich 1965, Touma and Wisdom 1994) in which angular momentum (AM) of the Earth-Moon system has been conserved since lunar formation. Cuk and Stewart (2012) showed that a high-AM Earth-Moon system can lose AM through the evection resonance between the Moon and the Sun, allowing for GIs that are more conducive to incorporating Earth material into the Moon. More recently, Lock et al. (2015) show that a very-fast spinning Earth should be heavily coupled to the protolunar disk, resulting in the uniform composition of the Moon and Earth's mantle. While the geophysical and geochemical benefits of the high-AM GI are clear, further confirmation is needed that AM loss is both likely and consistent with observed lunar orbit. Not only does the evection resonance not explain the current 5-degree lunar inclination, but Chen and Nimmo (2013) show that the conventional model of lunar spin evolution (Ward 1975) would lead to large-scale damping of lunar inclination in the past. The prospect of a past high-inclination Moon requires complete revision of lunar tidal evolution models. We use a numerical integrator that follows both the orbit and the spin of the Moon, and find that the Moon was likely in non-synchronous rotation for a prolonged period during Cassini state transition, implying inclination damping in excess of that in synchronous rotation. We propose that the Moon's composition and past large inclination can be explained by Earth's post-GI obliquity of about 70 degrees, which led to instability of lunar orbit at the Laplace plane transition (Tremaine et al. 2009), causing AM loss, Earth obliquity reduction and lunar inclination excitation. Subsequent

  16. A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Crain, K.; Keller, G. R.

    2011-12-01

    We present an algorithm to rapidly calculate the vertical gravity and full tensor gravity (FTG) values due to a 3-D geologic model. This algorithm can be implemented on single, multi-core CPU and graphical processing units (GPU) architectures. Our technique is based on the line element approximation with a constant density within each grid cell. This type of parameterization is well suited for high-resolution elevation datasets with grid size typically in the range of 1m to 30m. The large high-resolution data grids in our studies employ a pre-filtered mipmap pyramid type representation for the grid data known as the Geometry clipmap. The clipmap was first introduced by Microsoft Research in 2004 to do fly-through terrain visualization. This method caches nested rectangular extents of down-sampled data layers in the pyramid to create view-dependent calculation scheme. Together with the simple grid structure, this allows the gravity to be computed conveniently on-the-fly, or stored in a highly compressed format. Neither of these capabilities has previously been available. Our approach can perform rapid calculations on large topographies including crustal-scale models derived from complex geologic interpretations. For example, we used a 1KM Sphere model consisting of 105000 cells at 10m resolution with 100000 gravity stations. The line element approach took less than 90 seconds to compute the FTG and vertical gravity on an Intel Core i7 CPU at 3.07 GHz utilizing just its single core. Also, unlike traditional gravity computational algorithms, the line-element approach can calculate gravity effects at locations interior or exterior to the model. The only condition that must be met is the observation point cannot be located directly above the line element. Therefore, we perform a location test and then apply appropriate formulation to those data points. We will present and compare the computational performance of the traditional prism method versus the line element

  17. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  18. Picosecond pulse amplification up to a peak power of 42  W by a quantum-dot tapered optical amplifier and a mode-locked laser emitting at 1.26 µm.

    PubMed

    Weber, Christoph; Drzewietzki, Lukas; Rossetti, Mattia; Xu, Tianhong; Bardella, Paolo; Simos, Hercules; Mesaritakis, Charis; Ruiz, Mike; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Syvridis, Dimitris; Montrosset, Ivo; Rafailov, Edik U; Elsäßer, Wolfgang; Breuer, Stefan

    2015-02-01

    We experimentally study the generation and amplification of stable picosecond-short optical pulses by a master oscillator power-amplifier configuration consisting of a monolithic quantum-dot-based gain-guided tapered laser and amplifier emitting at 1.26 µm without pulse compression, external cavity, gain- or Q-switched operation. We report a peak power of 42 W and a figure-of-merit for second-order nonlinear imaging of 38.5  W2 at a repetition rate of 16 GHz and an associated pulse width of 1.37 ps. PMID:25680056

  19. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  20. Recent experiment on fast electron transport in ultra-high intensity laser interaction

    NASA Astrophysics Data System (ADS)

    Batani, D.; Baton, S.; Koenig, M.; Guillou, P.; Loupias, B.; Vinci, T.; Rousseaux, C.; Gremillet, L.; Morace, A.; Redaelli, R.; Nakatsutsumi, M.; Kodama, R.; Ozaki, N.; Norimatsu, T.; Rassuchine, J.; Cowan, T.; Dorchies, F.; Fourment, C.; Santos, J. J.

    2008-05-01

    We performed an experiment with cone targets in planar geometry devoted to the study of fast electron generation, propagation, and target heating. This was done at LULI with the 100 TW laser at intensities up to 1019 W/cm2. Fast electrons penetration, with and without cones, was studied with different diagnostics (Kα imaging, Kα spectroscopy, visible emission) for ω or 2ω irradiation. At ω, the pre-plasma generated by the laser pedestal fills the cone and prevents the beam from reaching the tip.

  1. Tunable, high-power, continuous-wave dual-polarization Yb-fiber oscillator.

    PubMed

    Zeil, Peter; Pasiskevicius, Valdas; Laurell, Fredrik

    2015-06-29

    We demonstrate a high-power, dual-polarization Yb-fiber oscillator, by separately locking the two linear polarization states defined by slow and fast axis of a polarization-maintaining gain fiber with volume Bragg gratings. Dual-line lasing is achieved with a tunable wavelength separation from 0.03 to 2 THz, while exceeding output powers of 78 W over the entire tuning range, maintaining a high beam-quality with M(2)<1.2. With this laser configuration we achieve a peak-to-peak power variation of <1% for the dual-line signal and <3% for the individual signals. PMID:26191754

  2. Tunable, high-power, continuous-wave dual-polarization Yb-fiber oscillator.

    PubMed

    Zeil, Peter; Pasiskevicius, Valdas; Laurell, Fredrik

    2015-06-29

    We demonstrate a high-power, dual-polarization Yb-fiber oscillator, by separately locking the two linear polarization states defined by slow and fast axis of a polarization-maintaining gain fiber with volume Bragg gratings. Dual-line lasing is achieved with a tunable wavelength separation from 0.03 to 2 THz, while exceeding output powers of 78 W over the entire tuning range, maintaining a high beam-quality with M(2)<1.2. With this laser configuration we achieve a peak-to-peak power variation of <1% for the dual-line signal and <3% for the individual signals.

  3. Babich's expansion and the fast Huygens sweeping method for the Helmholtz wave equation at high frequencies

    NASA Astrophysics Data System (ADS)

    Lu, Wangtao; Qian, Jianliang; Burridge, Robert

    2016-05-01

    In some applications, it is reasonable to assume that geodesics (rays) have a consistent orientation so that the Helmholtz equation can be viewed as an evolution equation in one of the spatial directions. With such applications in mind, starting from Babich's expansion, we develop a new high-order asymptotic method, which we dub the fast Huygens sweeping method, for solving point-source Helmholtz equations in inhomogeneous media in the high-frequency regime and in the presence of caustics. The first novelty of this method is that we develop a new Eulerian approach to compute the asymptotics, i.e. the traveltime function and amplitude coefficients that arise in Babich's expansion, yielding a locally valid solution, which is accurate close enough to the source. The second novelty is that we utilize the Huygens-Kirchhoff integral to integrate many locally valid wavefields to construct globally valid wavefields. This automatically treats caustics and yields uniformly accurate solutions both near the source and remote from it. The third novelty is that the butterfly algorithm is adapted to accelerate the Huygens-Kirchhoff summation, achieving nearly optimal complexity O (Nlog ⁡ N), where N is the number of mesh points; the complexity prefactor depends on the desired accuracy and is independent of the frequency. To reduce the storage of the resulting tables of asymptotics in Babich's expansion, we use the multivariable Chebyshev series expansion to compress each table by encoding the information into a small number of coefficients. The new method enjoys the following desired features. First, it precomputes the asymptotics in Babich's expansion, such as traveltime and amplitudes. Second, it takes care of caustics automatically. Third, it can compute the point-source Helmholtz solution for many different sources at many frequencies simultaneously. Fourth, for a specified number of points per wavelength, it can construct the wavefield in nearly optimal complexity in terms

  4. Elevation of Fasting Ghrelin in Healthy Human Subjects Consuming a High-Salt Diet: A Novel Mechanism of Obesity?

    PubMed Central

    Zhang, Yong; Li, Fenxia; Liu, Fu-Qiang; Chu, Chao; Wang, Yang; Wang, Dan; Guo, Tong-Shuai; Wang, Jun-Kui; Guan, Gong-Chang; Ren, Ke-Yu; Mu, Jian-Jun

    2016-01-01

    Overweight/obesity is a chronic disease that carries an increased risk of hypertension, diabetes mellitus, and premature death. Several epidemiological studies have demonstrated a clear relationship between salt intake and obesity, but the pathophysiologic mechanisms remain unknown. We hypothesized that ghrelin, which regulates appetite, food intake, and fat deposition, becomes elevated when one consumes a high-salt diet, contributing to the progression of obesity. We, therefore, investigated fasting ghrelin concentrations during a high-salt diet. Thirty-eight non-obese and normotensive subjects (aged 25 to 50 years) were selected from a rural community in Northern China. They were sequentially maintained on a normal diet for three days at baseline, a low-salt diet for seven days (3 g/day, NaCl), then a high-salt diet for seven days (18 g/day). The concentration of plasma ghrelin was measured using an immunoenzyme method (ELISA). High-salt intake significantly increased fasting ghrelin levels, which were higher during the high-salt diet (320.7 ± 30.6 pg/mL) than during the low-salt diet (172.9 ± 8.9 pg/mL). The comparison of ghrelin levels between the different salt diets was statistically-significantly different (p < 0.01). A positive correlation between 24-h urinary sodium excretion and fasting ghrelin levels was demonstrated. Our data indicate that a high-salt diet elevates fasting ghrelin in healthy human subjects, which may be a novel underlying mechanism of obesity. PMID:27240398

  5. Fasting hypochlorhydria with gram positive gastric flora is highly prevalent in healthy old people.

    PubMed Central

    Husebye, E; Skar, V; Høverstad, T; Melby, K

    1992-01-01

    Fifteen healthy old people mean age 84 years (range 80-91 years), were examined to assess the effect of advanced age on the microecology of the upper gastrointestinal tract. Twelve of 15 (80%) were hypochlorhydric with pH 6.6 (0.3) (mean (SEM) and a mean bacterial count of 10(8) colony forming units (CFU) per ml (range 10(5)-10(10)) in fasting gastric aspirate. Normochlorhydric subjects had low counts (< or = 10(1) CFU/ml). The microbial flora was dominated by viridans streptococci, coagulase negative staphylococci, and Haemophilus sp. Only one subject harboured significant concentrations of Gram negative bacilli with Escherichia coli (10(4-5) CFU/ml) and Klebsiella (10(4-5)). Strict anaerobes were not found. The total concentration of short chain fatty acids in gastric aspirate was 10.6 (2.9) mmol/l (mean (SEM). Absence of significant, intraluminal fermentation of xylose to CO2 was shown by the 14C-d Xylose breath test, and ambulatory manometry showed preserved fasting motility pattern of the small intestine. Serum immunoglobulins were normal. Advanced age is accompanied by fasting hypochlorhydria and colonisation with mainly Gram positive flora in the upper gut. Other factors than old age and fasting hypochlorhydria are required for colonisation with Gram negative bacilli. PMID:1446855

  6. Fast and Simplified Method for High Through-put Isolation of miRNA from Highly Purified High Density Lipoprotein

    PubMed Central

    Seneshaw, Mulugeta; Mirshahi, Faridoddin; Min, Hae-Ki; Asgharpour, Amon; Mirshahi, Shervin; Daita, Kalyani; Boyett, Sherry; Santhekadur, Prasanna K.; Fuchs, Michael; Sanyal, Arun J.

    2016-01-01

    Small non-coding RNAs (miRNAs) have been implicated in a variety of human diseases including metabolic syndromes. They may be utilized as biomarkers for diagnosis and prognosis or may serve as targets for drug development, respectively. Recently it has been shown that miRNAs are carried in lipoproteins, particularly high density lipoproteins (HDL) and are delivered to recipient cells for uptake. This raises the possibility that miRNAs play a critical and pivotal role in cellular and organ function via regulation of gene expression as well as messenger for cell-cell communications and crosstalk between organs. Current methods for miRNA isolation from purified HDL are impractical when utilizing small samples on a large scale. This is largely due to the time consuming and laborious methods used for lipoprotein isolation. We have developed a simplified approach to rapidly isolate purified HDL suitable for miRNA analysis from plasma samples. This method should facilitate investigations into the role of miRNAs in health and disease and in particular provide new insights into the variety of biological functions, outside of the reverse cholesterol transport, that have been ascribed to HDL. Also, the miRNA species which are present in HDL can provide valuable information of clinical biomarkers for diagnosis of various diseases. PMID:27501005

  7. Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration

    SciTech Connect

    Larsen, R

    2009-10-17

    High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

  8. Fast time resolution measurements of high concentrations of iodine above a Laminaria Digitata seaweed bed

    NASA Astrophysics Data System (ADS)

    Ball, Stephen; Adams, Thomas; Leblanc, Catherine; Potin, Philippe

    2013-04-01

    -distant seaweeds whose emissions are better-mixed into the atmosphere. The peak I2 concentrations observed here are three to five times greater than the maximum amounts recorded above/closeby laminaria beds in previous studies: 350 pptv max in O Grove, Galicia, Spain (Mahajan et al., ACP, 11, 2545, 2011), and 302 and 547 pptv max at Mweenish Bay, near Mace Head, County Galway, Ireland (Huang et al., GRL, 37, L03803, 2010; ACPD, 12, 25915, 2012). In part, the larger peak concentrations seen here are a consequence of deploying a fast response instrument very close to the source, enabling the emission's high temporal variability to be captured with fewer averaging effects. Nevertheless, the I2 concentrations averaged over the 30 minute period around the tidal minimum were still typically 750 pptv, suggesting laminaria beds are even stronger emitters of I2 into coastal atmospheres than previously thought. Some implications for such high concentrations of iodine for the local atmospheric chemistry are considered. We acknowledge support from the European Community FP7 project "ASSEMBLE", grant 227799.

  9. Ultra-fast high temperature microwave processing of silicon carbide and gallium nitride

    NASA Astrophysics Data System (ADS)

    Sundaresan, Siddarth G.

    A novel solid-state microwave annealing technique is developed in this work for post-implantation annealing of SiC and GaN, and for the controlled growth of SiC nanowires. This technique is capable of heating SiC samples to temperatures in excess of 2100°C, at ultra-fast temperature ramping rates >600°C/s. Microwave annealing of ion-implantation doped (both p-type and n-type) hexagonal SiC was performed in an uncontrolled (air) ambient, as well as a controlled 100% atmosphere of nitrogen, with or without a protective graphite cap. Microwave annealing was performed in the temperature range of 1500°C--2120°C, for durations of 5s--60s. Uncontrolled ambient microwave annealing of SiC at temperatures >1700°C resulted in a significant oxidation of the SiC surface, leading to a loss of the implanted layer. Annealing in a 100% nitrogen atmosphere eliminated the oxidation problem. For microwave annealing at temperatures ≥1800°C, significant SiC sublimation was observed, even for 15 s annealing. Microwave annealing with a photoresist-converted graphite cap solved this surface sublimation problem for annealing temperatures up to 2100°C. For the P+ and Al+-implanted SiC, sheet resistances as low as 14O/ and 1.9 kO/ and majority carrier mobilities as high as 100 cm2/Vs and 8.3 cm 2/Vs, respectively, were obtained. For the Al+-implanted SiC, sheet resistances as low as 1.9 kO/ and hole mobilities as high as 8.3 cm2/Vs were obtained. These values constitute the best ever reported electrical characteristics for ion-implanted SiC. Microwave annealing at temperatures >1800°C not only removed the implantation-induced lattice damage but also the defects introduced during crystal growth. Microwave annealing of in-situ as well as ion-implantation acceptor doped GaN was performed in the temperature range of 1200°C--1600°C, for a duration of 5s, using different protective caps (AlN, MgO, graphite) for protecting GaN surfaces during annealing. Pulsed-laser deposited AlN was

  10. Fast food (image)

    MedlinePlus

    Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated fat, ...

  11. A fast, high spatial resolution optical tomographic scanner for measurement of absorption in gel dosimetry.

    PubMed

    van Doom, T; Bhat, M; Rutten, T P; Tran, T; Costanzo, A

    2005-06-01

    A fast tomographic optical density measurement system has been constructed and evaluated for application in Fricke 3D gel dosimetry. Although the potential for full three-dimensional radiation dosimetry with Fricke gel dosimeters has been extensively reported, its application has been limited due to a lack of fast optical density measurement systems. In this work, the emphasis of the design has been to achieve a short scan time through the use of precision optics and minimal moving parts. The system has been demonstrated in the laboratory to be able to achieve better than 1mm resolution and a scanning time per tomographic slice of 2.4 seconds. Full volumetric sampling of a 10 cm diameter by 7cm long cylinder can be achieved in 3 minutes. When applied with a Fricke based gel dosimeter a linear response between reconstructed CT number and absolute dose was better than 3%.

  12. A fast IPv6 route lookup scheme for high-speed optical link

    NASA Astrophysics Data System (ADS)

    Yao, Xingmiao; Li, Lemin

    2004-05-01

    A fast IPv6 route lookup scheme implemented by hardware is proposed in this paper. It supports a fast IP address lookup and can insert and delete the prefixes effectively. A novel compressed multibit trie algorithm that decreases the memory space occupied and the average searching time is applied. The scheme proposed in this paper is superior to other IPV6 route lookup ones, for example, by using SRAM pipeline, a lookup speed of 125 x 106 per second can be realized to satisfy 40Gbps optical link rate with only 1.9Mbyte consumption of memory space. As there is no actual IPv6 route prefix, we generate various simulation databases in which prefix length distribution is different. Simulation results show that our scheme has reasonable lookup time, memory space for all the prefix length distribution.

  13. High fasting serum insulin level due to autoantibody interference in insulin immunoassay discloses autoimmune insulin syndrome: a case report.

    PubMed

    Lamy, Pierre-Jean; Sault, Corinne; Renard, Eric

    2016-08-01

    Insulin-antibodies are a cause of misleading results in insulin immunoassays. They may also mediate deleterious blood glucose variations. A patient presented with overtiredness, recurrent episodes of sweating, dizziness and fainting fits. A fasting serum insulin assay performed on a Modular platform (Modular analytic E170, Roche Diagnostic, Meylan, France) showed a highly elevated value of 194.7 mIU/L, whereas on the same sample glucose and C-peptide levels were normal. Other immunometric insulin assays were performed, as well as antibodies anti-insulin radiobinding assay (RBA) and gel filtration chromatography (GFC). While complementary insulin assays yielded closer to normal fasting levels, the free insulin concentration assessed after PEG precipitation was 14.0 mIU/L and the RBA was positive. GFC revealed that most of the insulin was complexed with a 150 kDa molecule, corresponding to an immunoglobulin G (IgG). A high fasting serum insulin level in a patient with neuroglucopenic symptoms was related to a high insulin-antibody level, suggesting an insulin autoimmune syndrome. PMID:27492703

  14. High-speed gas chromatography in doping control: fast-GC and fast-GC/MS determination of beta-adrenoceptor ligands and diuretics.

    PubMed

    Brunelli, Claudio; Bicchi, Carlo; Di Stilo, Antonella; Salomone, Alberto; Vincenti, Marco

    2006-12-01

    In official doping controls, about 300 drugs and metabolites have to be screened for each sample. Moreover, the number of determinations to be routinely processed increases continuously as the number of both samples and potential illicit drugs keeps growing. As a consequence, increasingly specific, sensitive, and, above all, fast methods for doping controls are needed. The present study presents an efficient fast-GC/MS approach to the routine screening of two different classes of doping agents, namely beta-adrenoceptor ligands and diuretics (belonging to the S3, P2, and S5 groups of the WADA list of prohibited substances). Narrow bore columns (100 mm id) of different lengths and coated with apolar stationary phases were successfully used to separate the derivatized analytes; preliminary experiments (results not shown) showed better performances with OV-1701 for the separation of beta-adrenoceptor ligands. On the same stationary phase some diuretics required too high a temperature or a long isothermal time for elution, in which case a DB1-MS column was preferred. Two methods of sample preparation, derivatization, and analysis were used on aqueous standard mixtures of, respectively, (i) eight beta-adrenoceptor ligands, including five beta-antagonists (acebutolol, alprenolol, atenolol, metoprolol, pindolol) and three beta2-agonists (salbutamol, clenbuterol, terbutaline) and (ii) seventeen diuretic drugs (acetazolamide, althiazide, bendroflumethiazide, bumethanide, canrenone, chlorothiazide, chlortalidone, clopamide, ethacrinic acid, furosemide, hydrochlorothiazide, hydroflumethiazide, indapamide, indomethacine, spironolactone, triamterene, trichloromethiazide) and one masking agent (probenecid). The mixture of beta-adrenoceptor ligand derivatives was efficiently separated in about 5.6 min, while the one of 18 diuretics and masking agents required less than 5 min for analysis. Limits of detection were from 1 microg/L for pindolol, ethacrinic acid, furosemide

  15. Quaternized graphene oxide nanocomposites as fast hydroxide conductors.

    PubMed

    Zarrin, Hadis; Fu, Jing; Jiang, Gaopeng; Yoo, Skylar; Lenos, Jared; Fowler, Michael; Chen, Zhongwei

    2015-02-24

    Nanocomposites play a key role in performance improvements of hydroxide conductors employed in a wide range of alkaline-electrochemical systems such as fuel cells and metal-air batteries. Graphene oxide (GO) nanosheets are considered to be outstanding nanofillers for polymeric nanocomposites on account of their excellent physicochemical strength and electrochemical properties. In this work, a fast hydroxide conductor was developed on the basis of a chemically modified GO nanocomposite membrane. The high surface area of GO was functionalized with highly stable hydroxide-conductive groups using a dimethyloctadecyl [3-(trimethoxysilyl)propyl]ammonium chloride (DMAOP) precursor, named QAFGO, and then composed with porous polybenzimidazole PBI (pPBI) as a well-suited polymeric backbone. The nanocomposite exhibited outstanding hydroxide conductivity of 0.085 S cm(-1), high physicochemical strength, and electrochemical stability for 21 days. An alkaline fuel cell (AFC) setup was fabricated to determine the functionality of QAFGO/pPBI nanocomposite in an alkaline-based system. The high AFC performance with peak power density of 86.68 mW cm(-2) demonstrated that QAFGO/pPBI nanocomposite membrane has promising potential to be employed as a reliable hydroxide conductor for electrochemical systems working in alkaline conditions. PMID:25644712

  16. Fast P-wave precursors in New Zealand: high velocity material associated with the subducted Hikurangi Plateau

    NASA Astrophysics Data System (ADS)

    Love, H.; LeGood, M.; Stuart, G.; Reyners, M.; Eberhart-Phillips, D. E.; Gubbins, D.

    2015-08-01

    Seismic tomography has revealed very high P-wave velocities, over 8.5 km s-1, at shallow depths, 30-100 km, beneath New Zealand. Here we study fast, high-frequency arrivals at North and South Island stations that contain additional information about the crust and mantle structure. These arrivals, which are from earthquakes within or close to the land mass, have a characteristic high-frequency precursor followed by a lower frequency, larger amplitude, main phase. Precursors were seen on at least one station from 262 of 306 candidate events; the best-recorded 76 events were analysed for wave speed, frequency content and polarization. Time-distance plots are consistent with two phases travelling at 8.38 ± 0.03 and 6.93 ± 0.05 km s-1. The precursor has typical frequencies 4-9 Hz, the second arrival 2-4 Hz. Polarizations are off-azimuth by 30° and steeper than predicted by ray tracing through a smooth 3-D tomographic model. These results are explained by propagation through a dipping layer of order 10 km thick with seismic velocity around 8.5 km s-1; it is too thin to propagate frequencies below 4 Hz and waves refract from it at a steep, out-of-plane angle, explaining the anomalous polarization. Ray paths cover a region coinciding with the subducted Hikurangi Plateau; the fast layer is interpreted as the lowest section of the plateau that has transformed to eclogite, which has the same fast seismic velocity that we observe. Unlike the fast, eclogitic layers identified in subduction zones such as the Kermadecs, this layer is shallower, at 30 km, than the eclogite transformation; we therefore propose that it formed at the base of the thick plateau prior to subduction.

  17. VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

    SciTech Connect

    FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.; LAKE,PATRICK WAYNE; NASH,THOMAS J.; NOACK,DONALD D.; MARON,Y.

    2000-03-20

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  18. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    SciTech Connect

    Li, Runbing; Zhu, Chengjie; Deng, L.; Hagley, E. W.

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  19. Shot-to-shot reproducibility in the emission of fast highly charged metal ions from a laser ion source

    SciTech Connect

    Krasa, J.; Velyhan, A.; Margarone, D.; Krousky, E.; Laska, L.; Jungwirth, K.; Rohlena, K.; Ullschmied, J.; Parys, P.; Ryc, L.; Wolowski, J.

    2012-02-15

    The generation of fast highly charged metal ions with the use of the sub-nanosecond Prague Asterix Laser System, operated at a fundamental wavelength of 1315 nm, is reported. Particular attention is paid to shot-to-shot reproducibility in the ion emission. Au and Pd targets were exposed to intensities up to 5 x 10{sup 16} W/cm{sup 2}. Above the laser intensity threshold of {approx}3 x 10{sup 14} W/cm{sup 2} the plasma is generated in a form of irregular bursts. The maximum energy of protons constituting the leading edge of the fastest burst reaches a value up to 1 MeV. The fast ions in the following bursts have energy gradually decreasing with the increasing burst number, namely, from a value of about 0.5 MeV/charge regardless of the atomic number and mass of the ionized species.

  20. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  1. A high-speed readout scheme for fast optical correlation-based pattern recognition

    NASA Astrophysics Data System (ADS)

    McDonald, Gregor J.; Lewis, Meirion F.; Wilson, Rebecca

    2004-12-01

    We describe recent developments to a novel form of hybrid electronic/photonic correlator, which exploits component innovations in both electronics and photonics to provide fast, compact and rugged target recognition, applicable to a wide range of security applications. The system benefits from a low power, low volume, optical processing core which has the potential to realise man portable pattern recognition for a wide range of security based imagery and target databases. In the seminal Vander Lugt correlator the input image is Fourier transformed optically and multiplied optically with the conjugate Fourier transform of a reference pattern; the required correlation function is completed by taking the inverse Fourier transform of the product optically. The correlator described here is similar in principle, but performs the initial Fourier transforms and multiplication electronically, with only the final most computationally demanding output Fourier transform being performed optically. In this scheme the Fourier transforms of both the input scene and reference pattern are reduced to a binary phase-only format, where the multiplication process simplifies to a simple Boolean logic XOR function. The output of this XOR gate is displayed on a state-of-the-art Fast Bit Plane Spatial Light Modulator (FBPSLM). A novel readout scheme has been developed which overcomes the previous system output bottleneck and for the first time allows correlation frame readout rates capable of matching the inherently fast nature of the SLM. Readout rates of up to ~1 MHz are now possible, exceeding current SLM capabilities and meeting potential medium term SLM developments promised by SLMs based on novel materials and architectures.

  2. Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer

    PubMed Central

    Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.

    2014-01-01

    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications. PMID:25425458

  3. Differences in perceptions and fast food eating behaviours between Indians living in high- and low-income neighbourhoods of Chandigarh, India

    PubMed Central

    2013-01-01

    Background Increased density of fast food restaurants is associated with increased prevalence of obesity in developed countries. However, less is known about this relationship in developing countries undergoing rapid urbanization and how differences in neighbourhood income affect the patronage of fast food outlets. The purpose of the study is to explore the differences in fast food preferences, perceptions, and patronage between Indians living in high- and low-income neighbourhoods. Methods This cross-sectional study recruited 204 men and women (35 to 65 years in age) from high- and low-income neighbourhoods who completed a questionnaire on fast food consumption. The questionnaire asked participants to define fast food and to provide reasons for and frequency of visits to fast food restaurants. The differences were analyzed using Chi square and t-tests for categorical and continuous variables, respectively. Results Participants from a high-income neighbourhood were more likely to perceive Western -style fast food as fast food, while people from the low-income neighbourhood were more likely to identify food sold by street vendors as fast food (p <0.001). Furthermore, compared to participants from the high-income neighbourhood, people from the low-income neighbourhood were more likely to report buying food from street vendors while less likely to dine out at both fast food and non-fast food restaurants (p<0.001). Although the high-income neighbourhood group was more likely to report enjoying eating at fast food restaurants than their low-income neighbourhood counterparts, there were no significant differences in the reasons for visiting fast food restaurants (convenience, price, social enjoyment, and quality of meals) between the two groups. Both groups preferred home cooked over restaurant meals, and they recognized that home cooked food was healthier. Conclusions Overall, consumption of fast food was low. People from a high-income neighbourhood dined out more

  4. Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain

    PubMed Central

    Wu, Xue; Eggebrecht, Adam T.; Ferradal, Silvina L.; Culver, Joseph P.; Dehghani, Hamid

    2015-01-01

    Real-time imaging of human brain has become an important technique within neuroimaging. In this study, a fast and efficient sensitivity map generation based on Finite Element Models (FEM) is developed which utilises a reduced sensitivitys matrix taking advantage of sparsity and parallelisation processes. Time and memory efficiency of these processes are evaluated and compared with conventional method showing that for a range of mesh densities from 50000 to 320000 nodes, the required memory is reduced over tenfold and computational time fourfold allowing for near real-time image recovery. PMID:26601019

  5. Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain.

    PubMed

    Wu, Xue; Eggebrecht, Adam T; Ferradal, Silvina L; Culver, Joseph P; Dehghani, Hamid

    2015-11-01

    Real-time imaging of human brain has become an important technique within neuroimaging. In this study, a fast and efficient sensitivity map generation based on Finite Element Models (FEM) is developed which utilises a reduced sensitivitys matrix taking advantage of sparsity and parallelisation processes. Time and memory efficiency of these processes are evaluated and compared with conventional method showing that for a range of mesh densities from 50000 to 320000 nodes, the required memory is reduced over tenfold and computational time fourfold allowing for near real-time image recovery. PMID:26601019

  6. Study of high-beta magnetohydrodynamic modes and fast-ion losses in PDX

    SciTech Connect

    McGuire, K.; Goldston, R.; Bell, M.

    1983-03-21

    Strong magnetohydrodynamic activity has been observed in PDX neutral-beam--heated discharges. It occurs for ..beta../sub T/q> or =0.045 and is associated with a significant loss of fast ions and a drop in neutron emission. As much as 20%--40% of the beam heating power may be lost. The instability occurs in repetitive bursts of oscillations of < or =1 msec duration at 1--6 msec intervals. The magnetohydrodynamic activity has been dubbed the ''fishbone instability'' from its characteristic signature on the Mirnov coils.

  7. Study of High-Beta Magnetohydrodynamic Modes and Fast-Ion Losses in PDX

    NASA Astrophysics Data System (ADS)

    McGuire, K.; Goldston, R.; Bell, M.; Bitter, M.; Bol, K.; Brau, K.; Buchenauer, D.; Crowley, T.; Davis, S.; Dylla, F.; Eubank, H.; Fishman, H.; Fonck, R.; Grek, B.; Grimm, R.; Hawryluk, R.; Hsuan, H.; Hulse, R.; Izzo, R.; Kaita, R.; Kaye, S.; Kugel, H.; Johnson, D.; Manickam, J.; Manos, D.; Mansfield, D.; Mazzucato, E.; McCann, R.; McCune, D.; Monticello, D.; Motley, R.; Mueller, D.; Oasa, K.; Okabayashi, M.; Owens, K.; Park, W.; Reusch, M.; Sauthoff, N.; Schmidt, G.; Sesnic, S.; Strachan, J.; Surko, C.; Slusher, R.; Takahashi, H.; Tenney, F.; Thomas, P.; Towner, H.; Valley, J.; White, R.

    1983-03-01

    Strong magnetohydrodynamic activity has been observed in PDX neutral-beam-heated discharges. It occurs for βTq>=0.045 and is associated with a significant loss of fast ions and a drop in neutron emission. As much as 20%-40% of the beam heating power may be lost. The instability occurs in repetitive bursts of oscillations of <= 1 msec duration at 1-6-msec intervals. The magnetohydrodynamic activity has been dubbed the "fishbone instability" from its characteristic signature on the Mirnov coils.

  8. Effects of fast-acting high-frequency compression on the intelligibility of speech in steady and fluctuating background sounds.

    PubMed

    Stone, M A; Moore, B C; Wojtczak, M; Gudgin, E

    1997-08-01

    This study examines whether speech intelligibility in background sounds can be improved for persons with loudness recruitment by the use of fast-acting compression applied at high frequencies, when the overall level of the sounds is held constant by means of a slow-acting automatic gain control (AGC) system and when appropriate frequency-response shaping is applied. Two types of fast-acting compression were used in the high-frequency channel of a two-channel system: a compression limiter with a 10:1 compression ratio and with a compression threshold about 9 dB below the peak level of the signal in the high-frequency channel; and a wide dynamic range compressor with a 2:1 compression ratio and with the compression threshold about 24 dB below the peak level of the signal in the high-frequency channel. A condition with linear processing in the high-frequency channel was also used. Speech reception thresholds (SRTs) were measured for two background sounds: a steady speech-shaped noise and a single male talker. All subjects had moderate-to-severe sensorineural hearing loss. Three different types of speech material were used: the adaptive sentence lists (ASL), the Bamford-Kowal-Bench (BKB) sentence lists and the Boothroyd word lists. For the steady background noise, the compression generally led to poorer performance than for the linear condition, although the deleterious effect was only significant for the 10:1 compression ratio. For the background of a single talker, the compression had no significant effect except for the ASL sentences, where the 10:1 compression gave significantly better performance than the linear condition. Overall, the results did not show any clear benefits of the fast-acting compression, possibly because the slow-acting AGC allowed the use of gains in the linear condition that were markedly higher than would normally be used with linear hearing aids.

  9. Generation of sub-100 ps pulses with a peak power of 65 W by gain switching, pulse shortening, and pulse amplification using a semiconductor-based master oscillator-power amplifier system.

    PubMed

    Schwertfeger, Sven; Klehr, Andreas; Hoffmann, Thomas; Liero, Armin; Wenzel, Hans; Erbert, Götz

    2013-05-10

    We present a method of the generation of sub-100 ps pulses with an all-semiconductor master oscillator-power amplifier (MOPA) system, consisting of a three section distributed Bragg reflector (DBR) laser as MO and a two section tapered PA. The pulses generated by the gain-switched DBR laser are first shortened by the ridge-waveguide input section of the PA acting as a saturable absorber and then amplified by the tapered gain region section. We generate laser pulses with a minimum duration of 35 ps and a peak power of more than 65 W. The spectral width is less than 0.25 nm around a center wavelength of 1063 nm. PMID:23669852

  10. A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus

    SciTech Connect

    Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson

    2009-12-02

    Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (approx10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at approx100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of approx130 kA, this source produces approx1x10{sup 7} (DD) n/pulse. The neutron pulse widths are approx10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D{sub 2} gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.

  11. Development and characterization of a high sensitivity segmented Fast Neutron Spectrometer (FaNS-2)

    NASA Astrophysics Data System (ADS)

    Langford, T. J.; Beise, E. J.; Breuer, H.; Heimbach, C. R.; Ji, G.; Nico, J. S.

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

  12. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    SciTech Connect

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  13. High Resolution Plasma Measurements From The Fast Plasma Investigation On Magnetospheric Multiscale

    NASA Astrophysics Data System (ADS)

    Pollock, C. J.

    2015-12-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March 2015, targets understanding of the fundamental physics of magnetic reconnection using Earth's magnetosphere as a laboratory within which to study this naturally occurring process. The first mission phase, currently in progress, focuses on reconnection occurring at Earth's dayside magnetopause. The relevant electron and ion scale processes have never before been fully resolved and differentiated, owing to limitations in the time (thus spatial) resolution available. The Fast Plasma Investigation (FPI) was developed for flight on MMS in order to fully resolve 3D plasma distribution functions on both the ion scale and the substantially smaller electron scale. MMS is designed to provide multi-point measurements of fast plasma, electric and magnetic fields, ion composition and energetic particles at the four points of a variably sized tetrahedron. Thus, MMS enables specification of all relevant plasma parameters and their spatial derivatives in order to understand the roles of the various terms in the Generalized Ohm's Law that governs the plasma behavior at reconnection sites. In this talk, we provide a brief description of FPI and show a sampling of early results, including MMS crossings of the magnetopause.

  14. Three novel high-resolution nonlinear methods for fast signal processing

    NASA Astrophysics Data System (ADS)

    Belkić, Dž.; Dando, P. A.; Main, J.; Taylor, H. S.

    2000-10-01

    Three novel nonlinear parameter estimators are devised and implemented for accurate and fast processing of experimentally measured or theoretically generated time signals of arbitrary length. The new techniques can also be used as powerful tools for diagonalization of large matrices that are customarily encountered in quantum chemistry and elsewhere. The key to the success and the common denominator of the proposed methods is a considerably reduced dimensionality of the original data matrix. This is achieved in a preprocessing stage called beamspace windowing or band-limited decimation. The methods are decimated signal diagonalization (DSD), decimated linear predictor (DLP), and decimated Padé approximant (DPA). Their mutual equivalence is shown for the signals that are modeled by a linear combination of time-dependent damped exponentials with stationary amplitudes. The ability to obtain all the peak parameters first and construct the required spectra afterwards enables the present methods to phase correct the absorption mode. Additionally, a new noise reduction technique, based upon the stabilization method from resonance scattering theory, is proposed. The results obtained using both synthesized and experimental time signals show that DSD/DLP/DPA exhibit an enhanced resolution power relative to the standard fast Fourier transform. Of the three methods, DPA is found to be the most efficient computationally.

  15. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    NASA Astrophysics Data System (ADS)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  16. Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times.

    PubMed

    Ahn, Chang Won; Amarsanaa, Gantsooj; Won, Sung Sik; Chae, Song A; Lee, Dae Su; Kim, Ill Won

    2015-12-01

    We demonstrate a capacitor with high energy densities, low energy losses, fast discharge times, and high temperature stabilities, based on Pb(0.97)Y(0.02)[(Zr(0.6)Sn(0.4))(0.925)Ti(0.075)]O3 (PYZST) antiferroelectric thin-films. PYZST thin-films exhibited a high recoverable energy density of U(reco) = 21.0 J/cm(3) with a high energy-storage efficiency of η = 91.9% under an electric field of 1300 kV/cm, providing faster microsecond discharge times than those of commercial polypropylene capacitors. Moreover, PYZST thin-films exhibited high temperature stabilities with regard to their energy-storage properties over temperatures ranging from room temperature to 100 °C and also exhibited strong charge-discharge fatigue endurance up to 1 × 10(7) cycles. PMID:26606502

  17. Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times.

    PubMed

    Ahn, Chang Won; Amarsanaa, Gantsooj; Won, Sung Sik; Chae, Song A; Lee, Dae Su; Kim, Ill Won

    2015-12-01

    We demonstrate a capacitor with high energy densities, low energy losses, fast discharge times, and high temperature stabilities, based on Pb(0.97)Y(0.02)[(Zr(0.6)Sn(0.4))(0.925)Ti(0.075)]O3 (PYZST) antiferroelectric thin-films. PYZST thin-films exhibited a high recoverable energy density of U(reco) = 21.0 J/cm(3) with a high energy-storage efficiency of η = 91.9% under an electric field of 1300 kV/cm, providing faster microsecond discharge times than those of commercial polypropylene capacitors. Moreover, PYZST thin-films exhibited high temperature stabilities with regard to their energy-storage properties over temperatures ranging from room temperature to 100 °C and also exhibited strong charge-discharge fatigue endurance up to 1 × 10(7) cycles.

  18. Peak Power Markets for Satellite Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    This paper introduces first Indonesia, comprises 15,000 islands, has land area of two millions square kilometers. Extending from 95 to 141 degrees East longitude and from 6 degrees North to 11 degrees South latitude. Further the market of the Space Solar Power/SPS must be worldwide, including Indonesia. As we know, it can provide electricity anywhere in the world from the Earth's orbit, mostly Indonesia an equator country. We have to perform case studies of various countries to understand their benefits and disadvantages provided by the SSP, because each country has much different condition on energy from other countries. We are at the moment starting the international collaboration between Indonesia and Japan to carry out the case study for Indonesia. We understand that in Indonesia itself each province has much different micro-climate between one province compared to the other. In Japan, METI (Ministry of Economy, Trade and Industry) has already organized a committee to investigate the feasibility of Space Solar Power and to make a plan to launch a space demonstration of the SPS. While, Indonesia is quickly developing economy and increasing their energy demand. We are investigating the detailed energy conditions of Indonesia, the benefits and disadvantages of the Space Solar Power for Indonesia. Especially, we will perform the investigation on the receiving system for the Japanese pilot Space Power Satellite.

  19. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice.

    PubMed

    Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra

    2016-01-01

    Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µM dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role. PMID:26893251

  20. Mechanism of Fast Current Interruption in p -π -n Diodes for Nanosecond Opening Switches in High-Voltage-Pulse Applications

    NASA Astrophysics Data System (ADS)

    Sharabani, Y.; Rosenwaks, Y.; Eger, D.

    2015-07-01

    Step-recovery diodes operating in the snappy recovery regime are used as opening switches for generating narrow pulses with high-voltage amplitude. Physical modeling of the switching process is complex due to the large number of parameters involved, including diode structure, the extreme physical conditions, and the effect of external driving conditions. In this work, we address the problem by using a physical device simulator for solving the coupled device and electrical driving circuit equations. This method allows deciphering of the physical processes to take place in the diode during the fast current interruption phase. Herein we analyze the complete hard (snappy) reverse recovery process in short-base devices and determine the fast-transition-phase mechanism. It was found that the fast current interruption phase is constructed of two processes; the main parameters governing the switching time duration and the prepulse magnitude are the diode's reverse current density and its base-doping concentration. We describe the dependence of the switching performance in these parameters.

  1. HIGH RESOLUTION AND FAST SCANNING SQUID BASED NON-DESTRUCTIVE INSPECTION SYSTEM OF NIOBIUM SHEETS FOR SRF CAVITIES

    SciTech Connect

    SHU, QUAN-SHENG

    2008-06-08

    Applications in high energy physics accelerators and other fields require the use of thousands of superconducting RF (SRF) cavities that are made of high purity Nb material and the purity of niobium is critical for these cavities to reach the highest accelerating fields. Tantalum is the most prolific of metal inclusions, which can cause thermal breakdown and prevent the cavities from reaching their theoretical performance limits of 45-50 MV/m, and DOE Labs are searching for a technology that could detect small impurities in superconducting Nb sheets reaching the highest possible accelerating fields. The proposed innovative SQUID-based Nondestructive system can scan Niobium sheets used in the manufacturing of SRF cavities with both high speed and high resolution. A highly sensitive SQUID system with a gradiometer probe, non-magnetic dewar, data acquisition system, and a scanning system will be developed for fast detection of impurities in planar Nb sheets. In phase I, we will modify our existing SQUID-based eddy current system to detect 100 micron size Ta defects and a great effort will focus on achieving fast scanning of a large number of niobium sheets in a shorter time and with reasonable resolution. An older system operated by moving the sample 1 mm, stopping and waiting for 1-2 seconds, then activating a measurement by the SQUID after the short settle time is modified. A preliminary designed and implemented a SQUID scanning system that is fast and is capable of scanning a 30 cm x 30 cm Nb sheet in 15 minutes by continuously moving the table at speeds up to 10 mm/s while activating the SQUID at 1mm interval is modified and reached the Phase I goal of 100mm resolution. We have successfully demonstrated the feasibility that a fast speed SQUID scanner without sacrificing the resolution of detection can be done, and a data acquisition and analysis system is also preliminary developed. The SQUID based scanner will help reach the highest accelerating field in SRF

  2. High glucose selectivity in pressurized water hydrolysis of cellulose using ultra-fast reactors.

    PubMed

    Cantero, Danilo A; Dolores Bermejo, M; José Cocero, M

    2013-05-01

    A new reactor was developed for the selective hydrolysis of cellulose. In this study, the glucose selectivity obtained from cellulose was improved by using ultra-fast reactions in which a selective medium was combined with an effective residence time control. A selective production of glucose, fructose and cellobiose (50%) or total mono-oligo saccharides (>96%) was obtained from the cellulose in a reaction time of 0.03 s. Total cellulose conversion was achieved with a 5-hydroxymethylfural concentration lower than 5 ppm in a novel micro-reactor. Reducing the residence time from minutes to milliseconds opens the possibility of moving from the conventional m(3) to cm(3) reactor volumes.

  3. Fast analytical modeling of SEM images at a high level of accuracy

    NASA Astrophysics Data System (ADS)

    Babin, S.; Borisov, S. S.; Trifonenkov, V. P.

    2015-03-01

    Simulating SEM images is important in order to optimize SEM subsystems and the setup of the SEM for specific tasks, such as new devices and fabrication methods, as well as to complete simulation flows in lithography and nanofabrication. Monte Carlo simulators have been used for these purposes, but their disadvantage is the low speed of simulation. A fast analytic simulator of SEM images, ASEM, is presented in this paper, which takes into account the most important factors in SEM: electron scattering in 3D samples composed of various materials, electrical fields, the properties and geometry of detectors, and charging. This allows for a simulation accuracy approaching that of Monte Carlo, while the simulation time is on the scale of one minute. Examples of simulations and their comparison to actual experiments are presented with various detectors, samples, electrical fields and charging, including the contrast reversal effect due to charging. Simulations of SEM images using resist profiles exported from a lithography simulator are also presented.

  4. Fast, Accurate RF Propagation Modeling and Simulation Tool for Highly Cluttered Environments

    SciTech Connect

    Kuruganti, Phani Teja

    2007-01-01

    As network centric warfare and distributed operations paradigms unfold, there is a need for robust, fast wireless network deployment tools. These tools must take into consideration the terrain of the operating theater, and facilitate specific modeling of end to end network performance based on accurate RF propagation predictions. It is well known that empirical models can not provide accurate, site specific predictions of radio channel behavior. In this paper an event-driven wave propagation simulation is proposed as a computationally efficient technique for predicting critical propagation characteristics of RF signals in cluttered environments. Convincing validation and simulator performance studies confirm the suitability of this method for indoor and urban area RF channel modeling. By integrating our RF propagation prediction tool, RCSIM, with popular packetlevel network simulators, we are able to construct an end to end network analysis tool for wireless networks operated in built-up urban areas.

  5. Fast and highly selective determination of cyanide with 2,2-dihydroxy-1,3-indanedione.

    PubMed

    Drochioiu, G

    2002-04-01

    A very simple, accurate, fast, selective and sensitive assay of cyanide based on its reaction with 2,2-dihydroxy-l,3-indanedione at basic pH is proposed. As little as 0.01 mug ml(-1) of cyanide can be determined. The molar absorptivity may reach 5.1-8.0x10(4) l mol(-1) cm(-1) depending on the reaction conditions. Thus, 1 ml of sample solution is mixed with 500 mul of 5 mg ml(-1) solution of 2,2-dihydroxy-1,3-indanedione monohydrate in 2% sodium carbonate. The absorbance of the purple color is measured at 510 nm in 1-cm glass cuvettes, 10-15 min after mixing the reagents. The procedure could also be used to identify free CN(-) in natural waters and hydrocyanic acid in the environment. PMID:18968597

  6. Fast and high light yield scintillation in the Ga2O3 semiconductor material

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Okada, Go; Kato, Takumi; Nakauchi, Daisuke; Yanagida, Satoko

    2016-04-01

    We report the distinct scintillation properties of the well-known Ga2O3 semiconductor material. Under UV excitation, the photoluminescence (PL) emission peak appeared near a wavelength of 380 nm with a quantum yield of 6%, and fast decays of 8 and 793 ns were observed. In contrast, the X-ray-induced scintillation spectrum showed an intense emission band near a wavelength of 380 nm, whose decay curve was reproduced using two exponential decay components with time constants of 8 and 977 ns. The pulse height spectrum of 137Cs γ-rays measured using Ga2O3 showed a clear photoabsorption peak with a light yield of 15000 ± 1500 photons/MeV.

  7. High effective cytosolic H+ buffering in mouse cortical astrocytes attributable to fast bicarbonate transport.

    PubMed

    Theparambil, Shefeeq M; Deitmer, Joachim W

    2015-09-01

    Cytosolic H(+) buffering plays a major role for shaping intracellular H(+) shifts and hence for the availability of H(+) for biochemical reactions and acid/base-coupled transport processes. H(+) buffering is one of the prime means to protect the cell from large acid/base shifts. We have used the H(+) indicator dye BCECF and confocal microscopy to monitor the cytosolic H(+) concentration, [H(+)]i, in cultured cortical astrocytes of wild-type mice and of mice deficient in sodium/bicarbonate cotransporter NBCe1 (NBCe1-KO) or in carbonic anhydrase isoform II (CAII-KO). The steady-state buffer strength was calculated from the amplitude of [H(+)]i transients as evoked by CO2/HCO3(-) and by butyric acid in the presence and absence of CO2/HCO3(-). We tested the hypotheses if, in addition to instantaneous physicochemical H(+) buffering, rapid acid/base transport across the cell membrane contributes to the total, "effective" cytosolic H(+) buffering. In the presence of 5% CO2/26 mM HCO3(-), H(+) buffer strength in astrocytes was increased 4-6 fold, as compared with that in non-bicarbonate, HEPES-buffered solution, which was largely attributable to fast HCO3 (-) transport into the cells via NBCe1, supported by CAII activity. Our results show that within the time frame of determining physiological H(+) buffering in cells, fast transport and equilibration of CO2/H(+)/HCO3(-) can make a major contribution to the total "effective" H(+) buffer strength. Thus, "effective" cellular H(+) buffering is, to a large extent, attributable to membrane transport of base equivalents rather than a purely passive physicochemical process, and can be much larger than reported so far. Not only physicochemical H(+) buffering, but also rapid import of HCO3(-) via the electrogenic sodium-bicarbonate cotransporter NBCe1, supported by carbonic anhydrase II (CA II), was identified to enhance cytosolic H(+) buffer strength substantially.

  8. Fast high-throughput screening of H1N1 virus by parallel detection with multichannel microchip electrophoresis.

    PubMed

    Zhang, Peng; Nan, He; Lee, Seungah; Kang, Seong Ho

    2015-01-01

    Influenza is one of the acute respiratory diseases of human caused by the influenza A (H1N1) virus and accounted for major public health concerns worldwide. The polymerase chain reaction (PCR) methods are the most popular tools for clinical diagnosis of influenza A virus. Microchip electrophoresis is a widely used method for DNA molecules separation. Herein, we describe the fast and high-throughput separation of hemagglutinin (HA) and nucleocapsid protein (NP) gene PCR products (116 bp and 195 bp, respectively) by parallel detection with multichannel microchip electrophoresis and programmed step electric field strength (PSEFS). PMID:25673484

  9. Damage detection in a cantilever beam under dynamic conditions using a distributed, fast, and high spatial resolution Brillouin interrogator

    NASA Astrophysics Data System (ADS)

    Motil, A.; Davidi, R.; Bergman, A.; Botsev, Y.; Hahami, M.; Tur, M.

    2016-05-01

    The ability of Brillouin-based fiber-optic sensing to detect damage in a moving cantilever beam is demonstrated. A fully computerized, distributed and high spatial resolution (10cm) Fast-BOTDA interrogator (50 full-beam Brillouin-gain-spectra per second) successfully directly detected an abnormally stiffened (i.e., `damaged') 20cm long segment in a 6m Aluminum beam, while the beam was in motion. Damage detection was based on monitoring deviations of the measured strain distribution along the beam from that expected in the undamaged case.

  10. Fast high-throughput screening of H1N1 virus by parallel detection with multichannel microchip electrophoresis.

    PubMed

    Zhang, Peng; Nan, He; Lee, Seungah; Kang, Seong Ho

    2015-01-01

    Influenza is one of the acute respiratory diseases of human caused by the influenza A (H1N1) virus and accounted for major public health concerns worldwide. The polymerase chain reaction (PCR) methods are the most popular tools for clinical diagnosis of influenza A virus. Microchip electrophoresis is a widely used method for DNA molecules separation. Herein, we describe the fast and high-throughput separation of hemagglutinin (HA) and nucleocapsid protein (NP) gene PCR products (116 bp and 195 bp, respectively) by parallel detection with multichannel microchip electrophoresis and programmed step electric field strength (PSEFS).

  11. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    SciTech Connect

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  12. High-repetition-rate Q-modulation in solid-state laser using fast saturable absorber V:YAG

    NASA Astrophysics Data System (ADS)

    Ma, Jia-Sai; Wang, Feng; Li, Pei-Xin; Hu, Wei-Wei; Yin, Chun-Hao; Xu, Jin-Long

    2015-07-01

    A high-repetition-rate Q-modulation operation in a solid-state Nd:GdVO4 laser with a V3+:YAG saturable absorber has been demonstrated in this paper. The V3+:YAG crystal behaves as a fast saturable absorber in this laser because of its very short lifetime of 22 ns. Taking advantage of such fast bleaching recovery and effective cooling of the V:YAG by a home-made copper holder, we realized a pulse repetition rate of 2.4 MHz, which is, to our best knowledge, the maximum among the reported passively Q-switched lasers. The corresponding average output power and pulse width were 1.28 W and 170 ns, respectively, giving a slope efficiency of 15.9% and a pulse energy of 0.53 µJ. This compact high-repetition-rate Q-switched laser offers a potential application in the construction of low-cost, integrated and portable sensing detection equipment which needs a high laser pulse repetition rate.

  13. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization.

    PubMed

    Thoen, D J; Bongers, W A; Westerhof, E; Oosterbeek, J W; de Baar, M R; van den Berg, M A; van Beveren, V; Bürger, A; Goede, A P H; Graswinckel, M F; Hennen, B A; Schüller, F C

    2009-10-01

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200,000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range. PMID:19895061

  14. Is fast food addictive?

    PubMed

    Garber, Andrea K; Lustig, Robert H

    2011-09-01

    Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations.

  15. Is fast food addictive?

    PubMed

    Garber, Andrea K; Lustig, Robert H

    2011-09-01

    Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations. PMID:21999689

  16. Fast generation of a high-quality computer-generated hologram using a scalable and flexible PC cluster.

    PubMed

    Song, Joongseok; Kim, Changseob; Park, Hanhoon; Park, Jong-Il

    2016-05-01

    In order to efficiently generate a high-quality computer-generated hologram (HQ-CGH), which requires that both a three-dimensional object image and its computer-generated hologram (CGH) are in high-definition resolution, we implement a fast CGH generation system using a scalable and flexible personal computer (PC) cluster. From experimental results obtained in generating a HQ-CGH with a CGH resolution of 1536×1536 and 2,155,898 light sources using a PC cluster comprising a server PC and nine client PCs, it is verified that the proposed system is approximately 4.7 times faster than a single PC with two high-performance GPUs.

  17. Phase Transfer-Catalyzed Fast CO2 Absorption by MgO-Based Absorbents with High Cycling Capacity

    SciTech Connect

    Zhang, Keling; Li, Xiaohong S.; Li, Weizhen; Rohatgi, Aashish; Duan, Yuhua; Singh, Prabhakar; Li, Liyu; King, David L.

    2014-06-01

    CO2 capture from pre-combustion syngas in the temperature range of 250-400°C is highly desirable from an energy efficiency perspective. Thermodynamically, MgO is a promising material for CO2 capture, but the gas-solid reaction to produce MgCO3 is kinetically slow due to high lattice energy. We report here fast CO2 absorption over a solid MgO-molten nitrate/nitrite aggregate through phase transfer catalysis, in which the molten phase serves as both a catalyst and reaction medium. Reaction with CO2 at the gas-solid-liquid triple phase boundary results in formation of MgCO3 with significant reaction rate and a high conversion of MgO. This methodology is also applicable to other alkaline earth oxides, inspiring the design of absorbents which require activation of the bulk material.

  18. High resolution fast wave reflectometry: JET design and implications for ITER

    SciTech Connect

    Cupido, L.; Igreja, R.; Serra, F.; Manso, M. E.; Cardinali, A.; Murari, A.

    2008-10-15

    The measurement of the fuel mixture remains a very difficult task in thermonuclear plasmas, where the hydrogen isotopes are fully stripped and do not emit line radiation. On the other hand, direct determination of the ion species mix will be essential in the reactor to keep the mixture close to 50/50 and maximize the fusion output. In this paper, the design of fast wave reflectometry for JET is reviewed to show the potential of such a method in the perspective of ITER. The main design elements of the antenna and the detection system, based on vectorial measurements, are reported. The main challenges to such a diagnostic, mainly the intrinsic ion cyclotron emission from the plasma and the extensive use of ion cyclotron radiofrequencies as additional heating, are addressed in detail. The overall design indicates that the proposed system would be able to provide a measurement of the fuel ratio with spatial resolution in the range of few centimeters and temporal resolution in the range of 1 ms in the vast majority of JET scenarios.

  19. Motion-based, high-yielding, and fast separation of different charged organics in water.

    PubMed

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications.

  20. High-sensitivity fast neutron detector KNK-2-7M

    NASA Astrophysics Data System (ADS)

    Koshelev, A. S.; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M.; Chuklyaev, S. V.

    2015-12-01

    The construction of the fast neutron detector KNK-2-7M is briefly described. The results of the study of the detector in the pulse-counting mode are given for the fissions of 237Np nuclei in the radiator of the neutron-sensitive section and in the current mode with the separation of sectional currents of functional sections. The possibilities of determining the effective number of 237Np nuclei in the radiator of the neutronsensitive section are considered. The diagnostic possibilities of the detector in the counting mode are shown by example of the analysis of the reference data from the neutron-field characteristics in the working hall of the BR-K1 reactor. The diagnostic possibilities of the detector in the current operating mode are shown by example of the results of measuring the 237Np-fission intensity in the BR-K1 reactor power start-ups implemented in the mode of fission-pulse generation on delayed neutrons at the detector arrangement inside the reactor core cavity under conditions of a wide variation of the reactor radiation field.

  1. High-sensitivity fast neutron detector KNK-2-7M

    SciTech Connect

    Koshelev, A. S. Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M.; Chuklyaev, S. V.

    2015-12-15

    The construction of the fast neutron detector KNK-2-7M is briefly described. The results of the study of the detector in the pulse-counting mode are given for the fissions of {sup 237}Np nuclei in the radiator of the neutron-sensitive section and in the current mode with the separation of sectional currents of functional sections. The possibilities of determining the effective number of {sup 237}Np nuclei in the radiator of the neutronsensitive section are considered. The diagnostic possibilities of the detector in the counting mode are shown by example of the analysis of the reference data from the neutron-field characteristics in the working hall of the BR-K1 reactor. The diagnostic possibilities of the detector in the current operating mode are shown by example of the results of measuring the {sup 237}Np-fission intensity in the BR-K1 reactor power start-ups implemented in the mode of fission-pulse generation on delayed neutrons at the detector arrangement inside the reactor core cavity under conditions of a wide variation of the reactor radiation field.

  2. Ultra-fast laser enhanced printing of nanomaterial for high quality transparent electrode

    NASA Astrophysics Data System (ADS)

    Nian, Qiong

    Direct printing of nanomaterials, which integrate nanomaterials into a film via low cost mean, is designed to fabricate transparent conductive electrode (TCE) film. Following laser processing is utilized as the post treatment to enhance the film performance. The laser processing is proposed in order to weld nanomaterials in nanoscale and enhance the electrical conductance of the nanomaterials film after direct printing. Rigid glass substrate was chosen as the substrate to load nanomaterials printing; however, this laser processing also can be utilized to nanomaterials printed on flexible substrate like polymer and bendable glass. Aluminum doped zinc oxide nanoparticles and silver nanowires were chosen as the printable nanomaterials. The laser -- nanomaterial interaction and temperature evolution was studied by Comsol Multiphysics software. The nature intrinsic of laser induced localized nanowelding was simulated by Molecular Dynamic simulation. The SEM, TEM and XRD results show that microstructure of nanomaterials film was improved significantly after laser induced nanowelding. The performance evaluation confirms the improved optoelectronic property of nanomaterials printing film. The theoretical study of the electrical conductance enhancement is presented in the thesis. The direct printing techniques and ultra-fast laser processing have the potential to boost the efficiency when used in commercial mass -- production.

  3. Numerical modeling for energy transport and isochoric heating in ultra-fast heated high Z target

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Sentoku, Yasuhiko; Hakel, Peter; Mancini, Roberto C.

    2010-11-01

    Collisional Particle-in-Cell (PIC) code is an effective tool to study extreme energy density conditions achieved in intense laser-solid interactions. In the continuous process of developing PIC code, we have recently implemented models to incorporate dynamic ionizations, namely Saha and Thomas Fermi, and radiation cooling (due to Bremsstrahlung and line emissions). We have also revised the existing collision model to take into account bounded electrons in dynamically ionizing target (partially ionized target). One-dimensional PIC simulation of a gold target with new collision model shows strong local heating in a micron distance due to shorter stopping range of fast electrons, which reflects the increased collision frequency due to bound electrons. The peak temperature in the heated region drops significantly due to the radiation cooling to a level of a few hundred eV from keV. We also discuss the target Z dependence on radiation loss and two-dimensional effects such as the resistive magnetic fields in the hot electron transport in metal targets.

  4. DIFFUSIVE SHOCK ACCELERATION OF HIGH-ENERGY CHARGED PARTICLES AT FAST INTERPLANETARY SHOCKS: A PARAMETER SURVEY

    SciTech Connect

    Giacalone, Joe

    2015-01-20

    We present results from numerical simulations of the acceleration of solar energetic particles (SEPs) associated with strong, fast, and radially propagating interplanetary shocks. We focus on the phase of the SEP event at the time of the shock passage at 1 AU, which is when the peak intensity at energies below a few MeV is the highest. The shocks in our study start between 2 and 10 solar radii and propagate beyond 1 AU. We study the effect of various shock and particle input parameters, such as the spatial diffusion coefficient, shock speed, solar wind speed, initial location of the shock, and shock deceleration rate, on the total integrated differential intensity, I, of SEPs with kinetic energies > 10 MeV. I is the integral over energy of the differential intensity spectrum at the time of the shock passage at 1 AU. We find that relatively small changes in the parameters can lead to significant event-to-event changes in I. For example, a factor of 2 increase in the diffusion coefficient at a given energy and spatial location, can lead to a decrease in I by as much as a factor of 50. This may help explain why there are fewer large SEP events seen during the current solar maximum compared to previous maxima. It is known that the magnitude of the interplanetary magnetic field is noticeably weaker this solar cycle than it was in the previous cycle and this will naturally lead to a somewhat larger diffusion coefficient of SEPs.

  5. Fast-scanning high-flux microprobe for biological X-ray fluorescence microscopy and microXAS

    SciTech Connect

    Barrea, R.A.; Gore, D.; Kujala, N.; Karanfil, C.; Kozyrenko, S.; Heurich, R.; Vukonich, M.; Huang, R.; Paunesku, T.; Woloschak, G.; Irving, T.C.

    2010-07-23

    There is a growing interest in the biomedical community in obtaining information concerning the distribution and local chemical environment of metals in tissues and cells. Recently, biological X-ray fluorescence microscopy (XFM) has emerged as the tool of choice to address these questions. A fast-scanning high-flux X-ray microprobe, built around a recently commissioned pair of 200 mm-long Rh-coated silicon Kirkpatrick-Baez mirrors, has been constructed at BioCAT beamline 18ID at the Advanced Photon Source. The new optical system delivers a flux of 1.3 x 10{sup 12} photons s{sup -1} into a minimum focal spot size of {approx}3-5 {micro}m FWHM. A set of Si drift detectors and bent Laue crystal analyzers may be used in combination with standard ionization chambers for X-ray fluorescence measurements. BioCAT's scanning software allows fast continuous scans to be performed while acquiring and storing full multichannel analyzer spectra per pixel on-the-fly with minimal overhead time (<20 ms per pixel). Together, the high-flux X-ray microbeam and the rapid-scanning capabilities of the BioCAT beamline allow the collection of XFM and micro X-ray absorption spectroscopy (microXAS) measurements from as many as 48 tissue sections per day. This paper reports the commissioning results of the new instrument with representative XFM and microXAS results from tissue samples.

  6. High-performance compression and double cryptography based on compressive ghost imaging with the fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Leihong, Zhang; Zilan, Pan; Luying, Wu; Xiuhua, Ma

    2016-11-01

    To solve the problem that large images can hardly be retrieved for stringent hardware restrictions and the security level is low, a method based on compressive ghost imaging (CGI) with Fast Fourier Transform (FFT) is proposed, named FFT-CGI. Initially, the information is encrypted by the sender with FFT, and the FFT-coded image is encrypted by the system of CGI with a secret key. Then the receiver decrypts the image with the aid of compressive sensing (CS) and FFT. Simulation results are given to verify the feasibility, security, and compression of the proposed encryption scheme. The experiment suggests the method can improve the quality of large images compared with conventional ghost imaging and achieve the imaging for large-sized images, further the amount of data transmitted largely reduced because of the combination of compressive sensing and FFT, and improve the security level of ghost images through ciphertext-only attack (COA), chosen-plaintext attack (CPA), and noise attack. This technique can be immediately applied to encryption and data storage with the advantages of high security, fast transmission, and high quality of reconstructed information.

  7. Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam.

    PubMed

    Mills, Andrew A; Siller, Brian M; Porambo, Michael W; Perera, Manori; Kreckel, Holger; McCall, Benjamin J

    2011-12-14

    Direct spectroscopy of a fast molecular ion beam offers many advantages over competing techniques, including the generality of the approach to any molecular ion, the complete elimination of spectral confusion due to neutral molecules, and the mass identification of individual spectral lines. The major challenge is the intrinsic weakness of absorption or dispersion signals resulting from the relatively low number density of ions in the beam. Direct spectroscopy of an ion beam was pioneered by Saykally and co-workers in the late 1980s, but has not been attempted since that time. Here, we present the design and construction of an ion beam spectrometer with several improvements over the Saykally design. The ion beam and its characterization have been improved by adopting recent advances in electrostatic optics, along with a time-of-flight mass spectrometer that can be used simultaneously with optical spectroscopy. As a proof of concept, a noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) setup with a noise equivalent absorption of ~2 × 10(-11) cm(-1) Hz(-1/2) has been used to observe several transitions of the Meinel 1-0 band of N(2) (+) with linewidths of ~120 MHz. An optical frequency comb has been used for absolute frequency calibration of transition frequencies to within ~8 MHz. This work represents the first direct spectroscopy of an electronic transition in an ion beam, and also represents a major step toward the development of routine infrared spectroscopy of rotationally cooled molecular ions. PMID:22168687

  8. Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam

    SciTech Connect

    Mills, Andrew A.; Siller, Brian M.; Porambo, Michael W.; Perera, Manori; Kreckel, Holger; McCall, Benjamin J.

    2011-12-14

    Direct spectroscopy of a fast molecular ion beam offers many advantages over competing techniques, including the generality of the approach to any molecular ion, the complete elimination of spectral confusion due to neutral molecules, and the mass identification of individual spectral lines. The major challenge is the intrinsic weakness of absorption or dispersion signals resulting from the relatively low number density of ions in the beam. Direct spectroscopy of an ion beam was pioneered by Saykally and co-workers in the late 1980s, but has not been attempted since that time. Here, we present the design and construction of an ion beam spectrometer with several improvements over the Saykally design. The ion beam and its characterization have been improved by adopting recent advances in electrostatic optics, along with a time-of-flight mass spectrometer that can be used simultaneously with optical spectroscopy. As a proof of concept, a noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) setup with a noise equivalent absorption of {approx}2 x 10{sup -11} cm{sup -1} Hz{sup -1/2} has been used to observe several transitions of the Meinel 1-0 band of N{sub 2}{sup +} with linewidths of {approx}120 MHz. An optical frequency comb has been used for absolute frequency calibration of transition frequencies to within {approx}8 MHz. This work represents the first direct spectroscopy of an electronic transition in an ion beam, and also represents a major step toward the development of routine infrared spectroscopy of rotationally cooled molecular ions.

  9. Easy and fast detection and genotyping of high-risk human papillomavirus by dedicated DNA microarrays.

    PubMed

    Albrecht, Valérie; Chevallier, Anne; Magnone, Virginie; Barbry, Pascal; Vandenbos, Fanny; Bongain, André; Lefebvre, Jean-Claude; Giordanengo, Valérie

    2006-11-01

    Persistent cervical high-risk human papillomavirus (HPV) infection is correlated with an increased risk of developing a high-grade cervical intraepithelial lesion. A two-step method was developed for detection and genotyping of high-risk HPV. DNA was firstly amplified by asymmetrical PCR in the presence of Cy3-labelled primers and dUTP. Labelled DNA was then genotyped using DNA microarray hybridization. The current study evaluated the technical efficacy of laboratory-designed HPV DNA microarrays for high-risk HPV genotyping on 57 malignant and non-malignant cervical smears. The approach was evaluated for a broad range of cytological samples: high-grade squamous intraepithelial lesions (HSIL), low-grade squamous intraepithelial lesions (LSIL) and atypical squamous cells of high-grade (ASC-H). High-risk HPV was also detected in six atypical squamous cells of undetermined significance (ASC-US) samples; among them only one cervical specimen was found uninfected, associated with no histological lesion. The HPV oligonucleotide DNA microarray genotyping detected 36 infections with a single high-risk HPV type and 5 multiple infections with several high-risk types. Taken together, these results demonstrate the sensitivity and specificity of the HPV DNA microarray approach. This approach could improve clinical management of patients with cervical cytological abnormalities. PMID:16879879

  10. Ultra-fast high-resolution agarose electrophoresis of DNA and RNA using low-molarity conductive media.

    PubMed

    Brody, Jonathan R; Calhoun, Eric S; Gallmeier, Eike; Creavalle, Talisa D; Kern, Scott E

    2004-10-01

    Current DNA electrophoretic solutions employ high ionic concentrations and require long electrophoretic run times. Here we demonstrate that high and low molecular weight double-stranded DNA, single-stranded DNA (ssDNA), and RNA can be separated rapidly in agarose-based low-molarity conductive media. Separation of small DNA fragments was optimized by substituting 1-mM solutions of alkali metals or a nonbiological amine that distributed voltage with a minute current. These ultra-dilute solutions can separate DNA at least 15-fold faster Low-molarity media at 5-10 mM adequately separated RNA and larger DNA fragments as well. These novel media reduce the Joule heating of the electrophoretic system and allow for easy-to-use, ultra-fast separation of DNA fragments.

  11. Design and fabrication of hollow-core photonic crystal fibers for high power fast laser beam transportation and pulse compression

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Peng, Xiang; Alharbi, M.; Dutin, C. F.; Bradley, T. D.; Mielke, Michael; Booth, Timothy; Benabid, F.

    2012-03-01

    We report on recent design and fabrication of Kagome type hollow-core photonic crystal fiber (HC-PCF) for the purpose of high power fast laser beam transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all Kagome fibers) of 40dB/km over a broadband transmission centered at 1500nm. We show that the large core size, low attenuation, broadband transmission, single modedness, low dispersion and relatively low banding loss makes it an ideal host for high power laser beam transportation. By filling the fiber with helium gas, a 74μJ, 850fs and 40kHz repetition rate ultra-short pulse at 1550nm has been faithfully delivered with little propagation pulse distortion. Compression of a 105μJ laser pulse from 850fs to 300fs has been achieved by operating the fiber in ambient air.

  12. L1Track: A fast Level 1 track trigger for the ATLAS high luminosity upgrade

    NASA Astrophysics Data System (ADS)

    Cerri, Alessandro

    2016-07-01

    With the planned high-luminosity upgrade of the LHC (HL-LHC), the ATLAS detector will see its collision rate increase by approximately a factor of 5 with respect to the current LHC operation. The earliest hardware-based ATLAS trigger stage ("Level 1") will have to provide a higher rejection factor in a more difficult environment: a new improved Level 1 trigger architecture is under study, which includes the possibility of extracting with low latency and high accuracy tracking information in time for the decision taking process. In this context, the feasibility of potential approaches aimed at providing low-latency high-quality tracking at Level 1 is discussed.

  13. Intensity-based quantification of fast retinal blood flow in 3D via high resolution resonant Doppler spectral OCT

    NASA Astrophysics Data System (ADS)

    Michaely, R.; Bachmann, A. H.; Villiger, M. L.; Blatter, C.; Lasser, T.; Leitgeb, R. A.

    2007-07-01

    Resonant Doppler Fourier Domain Optical Coherence Tomography is a functional imaging modality for quantifying fast tissue flow. The method profits from the effect of interference fringe blurring in spectrometer-based FDOCT in the presence of sample motion. If the reference path length is changed in resonance with the Doppler frequency of the sample flow the signals of resting structures will be suppressed whereas the signals of blood flow are enhanced. This allows for an easy extraction of vascularization structure. 3D images of blood vessels at the human optic nerve head are obtained with high axial resolution of 8 μm in air and an imaging speed of 17.400 depth profiles per second. An electro-optic modulator allows controlled reference phase shifting during camera integration. A differential approach is presented for the quantification of fast flows that are un-accessible via standard phase sensitive Doppler analysis. Flow velocity analysis extracts only the axial component which is dependent on the orientation of the vessel with respect to the optical axis. 3D information of the segmented vessel structure is readily used to obtain the flow velocity vectors along the individual vessels and to calculate the true angle-corrected flow speed.

  14. High dose flaxseed oil supplementation may affect fasting blood serum glucose management in human type 2 diabetics.

    PubMed

    Barre, Douglas E; Mizier-Barre, Kazimiera A; Griscti, Odette; Hafez, Kevin

    2008-01-01

    Type 2 diabetes is characterized partially by elevated fasting blood serum glucose and insulin concentrations and the percentage of hemoglobin as HbA1c. It was hypothesized that each of blood glucose and its co-factors insulin and HbA1c and would show a more favorable profile as the result of flaxseed oil supplementation. Patients were recruited at random from a population pool responding to a recruitment advertisement in the local newspaper and 2 area physicians. Completing the trial were 10 flaxseed oil males, 8 flaxseed oil females, 8 safflower (placebo) oil males and 6 safflower oil females. Patients visited on two pre-treatment occasions each three months apart (visits 1 and 2). At visit 2 subjects were randomly assigned in double blind fashion and in equal gender numbers to take flaxseed oil or safflower oil for three further months until visit 3. Oil consumption in both groups was approximately 10 g/d. ALA intake in the intervention group was approximately 5.5 g/d. Power was 0.80 to see a difference of 1 mmol of glucose /L using 12 subjects per group with a p < 0.05. Flaxseed oil had no impact on fasting blood serum glucose, insulin or HbA1c levels. It is concluded that high doses of flaxseed oil have no effect on glycemic control in type 2 diabetics.

  15. High Harmonic Fast Wave Heating Efficiency Enhancement and Current Drive at Longer Wavelength on the National Spherical Torus Experiment

    SciTech Connect

    Hosea, J.; Bell, R. E.; LeBlanc, B; Phillips, Cynthia; Taylor, G.; Valeo, Dr Ernest; Wilson, J. R.; Jaeger, Erwin Frederick; Ryan, Philip Michael; Wilgen, John B; Yuh, H.; Levinton, F.; Sabbagh, S. A.; Tritz, K.; Parker, J.; Bonoli, P.; Harvey, R. W.

    2008-01-01

    High harmonic fast wave heating and current drive CD are being developed on the National Spherical Torus Experiment M. Ono et al., Nucl. Fusion 41, 1435 2001 for supporting startup and sustainment of the spherical torus plasma. Considerable enhancement of the core heating efficiency from 44% to 65% has been obtained for CD phasing of the antenna strap-to-strap = 90 , k= 8 m 1 by increasing the magnetic field from 4.5 to 5.5 kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation nonsetBk 2 / away from the antenna face and wall, and hence reducing the propagating surface wave fields. Radio frequency RF waves propagating close to the wall at lower B and k can enhance power losses from both the parametric decay instability PDI and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations.

  16. Multi-stencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains.

    PubMed

    Hassouna, M Sabry; Farag, A A

    2007-09-01

    A wide range of computer vision applications require an accurate solution of a particular Hamilton- Jacobi (HJ) equation, known as the Eikonal equation. In this paper, we propose an improved version of the fast marching method (FMM) that is highly accurate for both 2D and 3D Cartesian domains. The new method is called multi-stencils fast marching (MSFM), which computes the solution at each grid point by solving the Eikonal equation along several stencils and then picks the solution that satisfies the upwind condition. The stencils are centered at each grid point and cover its entire nearest neighbors. In 2D space, 2 stencils cover the 8-neighbors of the point, while in 3D space, 6 stencils cover its 26-neighbors. For those stencils that are not aligned with the natural coordinate system, the Eikonal equation is derived using directional derivatives and then solved using higher order finite difference schemes. The accuracy of the proposed method over the state-of-the-art FMM-based techniques has been demonstrated through comprehensive numerical experiments.

  17. High Fasting Plasma Glucose Mortality Effect: A Comparative Risk Assessment in 25–64 Years Old Iranian Population

    PubMed Central

    Peykari, Niloofar; Saeedi, Moghaddam Sahar; Djalalinia, Shirin; Kasaeian, Amir; Sheidaei, Ali; Mansouri, Anita; Mohammadi, Younes; Parsaeian, Mahboubeh; Mehdipour, Parinaz; Larijani, Bagher; Farzadfar, Farshad

    2016-01-01

    Background: High fasting plasma glucose (FPG) is one of the main leading risk factors of ischemic heart disease (IHD), stroke, and chronic kidney diseases (CKDs). We estimated population attributable fraction (PAF) and attributed death of these fatal outcomes of high FPG at national and subnational levels in 25–64 years old Iranian adult. Methods: We used national and subnational data of the Non-Communicable Disease Surveillance Survey for exposure to risk factors in 2005 and 2011 among Iranian adults of 25–64 years old. For estimating the attributed death, using the death registration system data of Iran, we multiply the cause-specific PAFs by the number of outcome-specific deaths. Results: In Iran, high FPG was responsible for about 31% of attributed total deaths of IHD, stroke, and CKD in 2011. The related attributed deaths had increased from 2005 to 2011. In females, the PAFs for the effect of high FPG on IHD, stroke, and CKD were higher in 2011 than 2005 in all age groups. In males, this increase has occurred in over 45 years old. The highest PAFs of high FPG outcomes mostly related to central provinces of Iran. The central region of Iran had the highest and the southeast of the country had the lowest levels of attributed deaths. Conclusions: Considering the global 25 × 25 targets for noncommunicable disease mortality reduction, high FPG as a leading risk factor of fatal outcomes should be more targeted through the dietary, behavioral, and pharmacological interventions in Iran. PMID:27280011

  18. High-speed light field camera and frequency division multiplexing for fast multi-plane velocity measurements.

    PubMed

    Fischer, Andreas; Kupsch, Christian; Gürtler, Johannes; Czarske, Jürgen

    2015-09-21

    Non-intrusive fast 3d measurements of volumetric velocity fields are necessary for understanding complex flows. Using high-speed cameras and spectroscopic measurement principles, where the Doppler frequency of scattered light is evaluated within the illuminated plane, each pixel allows one measurement and, thus, planar measurements with high data rates are possible. While scanning is one standard technique to add the third dimension, the volumetric data is not acquired simultaneously. In order to overcome this drawback, a high-speed light field camera is proposed for obtaining volumetric data with each single frame. The high-speed light field camera approach is applied to a Doppler global velocimeter with sinusoidal laser frequency modulation. As a result, a frequency multiplexing technique is required in addition to the plenoptic refocusing for eliminating the crosstalk between the measurement planes. However, the plenoptic refocusing is still necessary in order to achieve a large refocusing range for a high numerical aperture that minimizes the measurement uncertainty. Finally, two spatially separated measurement planes with 25×25 pixels each are simultaneously acquired with a measurement rate of 0.5 kHz with a single high-speed camera.

  19. Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process

    NASA Astrophysics Data System (ADS)

    Yun, Myeong Gu; Kim, Ye Kyun; Ahn, Cheol Hyoun; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun; Kim, Yong-Hoon

    2016-08-01

    We have demonstrated that photo-thin film transistors (photo-TFTs) fabricated via a simple defect-generating process could achieve fast recovery, a high signal to noise (S/N) ratio, and high sensitivity. The photo-TFTs are inverted-staggered bottom-gate type indium-gallium-zinc-oxide (IGZO) TFTs fabricated using atomic layer deposition (ALD)-derived Al2O3 gate insulators. The surfaces of the Al2O3 gate insulators are damaged by ion bombardment during the deposition of the IGZO channel layers by sputtering and the damage results in the hysteresis behavior of the photo-TFTs. The hysteresis loops broaden as the deposition power density increases. This implies that we can easily control the amount of the interface trap sites and/or trap sites in the gate insulator near the interface. The photo-TFTs with large hysteresis-related defects have high S/N ratio and fast recovery in spite of the low operation voltages including a drain voltage of 1 V, positive gate bias pulse voltage of 3 V, and gate voltage pulse width of 3 V (0 to 3 V). In addition, through the hysteresis-related defect-generating process, we have achieved a high responsivity since the bulk defects that can be photo-excited and eject electrons also increase with increasing deposition power density.

  20. Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process.

    PubMed

    Yun, Myeong Gu; Kim, Ye Kyun; Ahn, Cheol Hyoun; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun; Kim, Yong-Hoon

    2016-01-01

    We have demonstrated that photo-thin film transistors (photo-TFTs) fabricated via a simple defect-generating process could achieve fast recovery, a high signal to noise (S/N) ratio, and high sensitivity. The photo-TFTs are inverted-staggered bottom-gate type indium-gallium-zinc-oxide (IGZO) TFTs fabricated using atomic layer deposition (ALD)-derived Al2O3 gate insulators. The surfaces of the Al2O3 gate insulators are damaged by ion bombardment during the deposition of the IGZO channel layers by sputtering and the damage results in the hysteresis behavior of the photo-TFTs. The hysteresis loops broaden as the deposition power density increases. This implies that we can easily control the amount of the interface trap sites and/or trap sites in the gate insulator near the interface. The photo-TFTs with large hysteresis-related defects have high S/N ratio and fast recovery in spite of the low operation voltages including a drain voltage of 1 V, positive gate bias pulse voltage of 3 V, and gate voltage pulse width of 3 V (0 to 3 V). In addition, through the hysteresis-related defect-generating process, we have achieved a high responsivity since the bulk defects that can be photo-excited and eject electrons also increase with increasing deposition power density. PMID:27553518

  1. Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process

    PubMed Central

    Yun, Myeong Gu; Kim, Ye Kyun; Ahn, Cheol Hyoun; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun; Kim, Yong-Hoon

    2016-01-01

    We have demonstrated that photo-thin film transistors (photo-TFTs) fabricated via a simple defect-generating process could achieve fast recovery, a high signal to noise (S/N) ratio, and high sensitivity. The photo-TFTs are inverted-staggered bottom-gate type indium-gallium-zinc-oxide (IGZO) TFTs fabricated using atomic layer deposition (ALD)-derived Al2O3 gate insulators. The surfaces of the Al2O3 gate insulators are damaged by ion bombardment during the deposition of the IGZO channel layers by sputtering and the damage results in the hysteresis behavior of the photo-TFTs. The hysteresis loops broaden as the deposition power density increases. This implies that we can easily control the amount of the interface trap sites and/or trap sites in the gate insulator near the interface. The photo-TFTs with large hysteresis-related defects have high S/N ratio and fast recovery in spite of the low operation voltages including a drain voltage of 1 V, positive gate bias pulse voltage of 3 V, and gate voltage pulse width of 3 V (0 to 3 V). In addition, through the hysteresis-related defect-generating process, we have achieved a high responsivity since the bulk defects that can be photo-excited and eject electrons also increase with increasing deposition power density. PMID:27553518

  2. Enhanced high-frequency membrane potential fluctuations control spike output in striatal fast-spiking interneurones in vivo

    PubMed Central

    Schulz, Jan M; Pitcher, Toni L; Savanthrapadian, Shakuntala; Wickens, Jeffery R; Oswald, Manfred J; Reynolds, John N J

    2011-01-01

    Abstract Fast-spiking interneurones (FSIs) constitute a prominent part of the inhibitory microcircuitry of the striatum; however, little is known about their recruitment by synaptic inputs in vivo. Here, we report that, in contrast to cholinergic interneurones (CINs), FSIs (n = 9) recorded in urethane-anaesthetized rats exhibit Down-to-Up state transitions very similar to spiny projection neurones (SPNs). Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55–95 Hz). The membrane potential exhibited short and steep trajectories preceding spontaneous spike discharge, suggesting that fast input components controlled spike output in FSIs. Spontaneous spike data contained a high proportion (43.6 ± 32.8%) of small inter-spike intervals (ISIs) of <30 ms, setting FSIs clearly apart from SPNs and CINs. Cortical-evoked inputs had slower dynamics in SPNs than FSIs, and repetitive stimulation entrained SPN spike output only if the stimulation was delivered at an intermediate frequency (20 Hz), but not at a high frequency (100 Hz). Pharmacological induction of an activated ECoG state, known to promote rapid FSI spiking, mildly increased the power (by 43 ± 55%, n = 13) at gamma frequencies in the membrane potential of SPNs, but resulted in few small ISIs (<30 ms; 4.3 ± 6.4%, n = 8). The gamma frequency content did not change in CINs (n = 8). These results indicate that FSIs are uniquely responsive to high-frequency input sequences. By controlling the spike output of SPNs, FSIs could serve gating of top-down signals and long-range synchronisation of gamma-oscillations during behaviour. PMID:21746788

  3. Highly accurate and fast optical penetration-based silkworm gender separation system

    NASA Astrophysics Data System (ADS)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  4. Melt-cast organic glasses as high-efficiency fast neutron scintillators

    NASA Astrophysics Data System (ADS)

    Carlson, Joseph S.; Feng, Patrick L.

    2016-10-01

    In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. The combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.

  5. Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage.

    PubMed

    Yao, Xiangdong; Wu, Chengzhang; Du, Aijun; Lu, Gao Qing; Cheng, Huiming; Smith, Sean C; Zou, Jin; He, Yinghe

    2006-06-22

    Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

  6. Melt-cast organic glasses as high-efficiency fast neutron scintillators

    DOE PAGES

    Carlson, Joseph S.; Feng, Patrick L.

    2016-06-24

    In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. In conclusion, themore » combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.« less

  7. Life in the fast lane: high-throughput chemistry for lead generation and optimisation.

    PubMed

    Hunter, D

    2001-01-01

    The pharmaceutical industry has come under increasing pressure due to regulatory restrictions on the marketing and pricing of drugs, competition, and the escalating costs of developing new drugs. These forces can be addressed by the identification of novel targets, reductions in the development time of new drugs, and increased productivity. Emphasis has been placed on identifying and validating new targets and on lead generation: the response from industry has been very evident in genomics and high throughput screening, where new technologies have been applied, usually coupled with a high degree of automation. The combination of numerous new potential biological targets and the ability to screen large numbers of compounds against many of these targets has generated the need for large diverse compound collections. To address this requirement, high-throughput chemistry has become an integral part of the drug discovery process.

  8. High thermal stable and fast switching Ni-Ge-Te alloy for phase change memory applications

    NASA Astrophysics Data System (ADS)

    Cao, Liangliang; Wu, Liangcai; Zhu, Wenqing; Ji, Xinglong; Zheng, Yonghui; Song, Zhitang; Rao, Feng; Song, Sannian; Ma, Zhongyuan; Xu, Ling

    2015-12-01

    Ni-Ge-Te phase change material is proposed and investigated for phase change memory (PCM) applications. With Ni addition, the crystallization temperature, the data retention ability, and the crystallization speed are remarkably improved. The Ni-Ge-Te material has a high crystallization temperature (250 °C) and good data retention ability (149 °C). A reversible switching between SET and RESET state can be achieved by an electrical pulse as short as 6 ns. Up to ˜3 × 104 SET/RESET cycles are obtained with a resistance ratio of about two orders of magnitude. All of these demonstrate that Ni-Ge-Te alloy is a promising material for high speed and high temperature PCM applications.

  9. Low Power, High Voltage Power Supply with Fast Rise/Fall Time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  10. Low power, high voltage power supply with fast rise/fall time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  11. Design and Development of a Large Diameter, High Pressure, Fast Acting Propulsion Valve and Valve Actuator

    NASA Technical Reports Server (NTRS)

    Srinivasan, K. V.

    1986-01-01

    This paper describes the design and development of a large diameter high pressure quick acting propulsion valve and valve actuator. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing gear systems. The valve opens in less than 300 milliseconds releasing a 46 cm (18 in) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.

  12. Design and development of a large diameter high pressure fast acting propulsion valve and valve actuator

    NASA Technical Reports Server (NTRS)

    Srinivasan, K. V.

    1986-01-01

    The design and development of a large diameter high pressure quick acting propulsion valve and valve actuator is described. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing systems. The valve opens in less than 300 milliseconds releasing a 46-centimeter- (18-in.-) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.

  13. Fast Oxidative Cyclooligomerization towards Low- and High-Symmetry Thiophene Macrocycles.

    PubMed

    Maier, Stefan K; Poluektov, Georgiy; Jester, Stefan-S; Möller, Heiko M; Höger, Sigurd

    2016-01-22

    Macrocycles with quaterthiophene subunits were obtained by cyclooligomerization by direct oxidative coupling of unsubstituted dithiophene moieties. The rings were closed with high selectivity by an α,β'-connection of the thiophenes as proven by NMR spectroscopy. The reaction of the precursor with terthiophene moieties yielded the symmetric α,α'-linked macrocycle in low yield together with various differently connected isomers. Blocking of the β-position of the half-rings yielded selectively the α,α'-linked macrocycle. Selected cyclothiophenes were investigated by scanning tunneling microscopy, which displayed the formation of highly ordered 2D crystalline monolayers. PMID:26669967

  14. High transition temperature superconductor/insulator bilayers for the development of ultra-fast electronics

    NASA Astrophysics Data System (ADS)

    Sirena, M.; Félix, L. Avilés; Haberkorn, N.

    2013-07-01

    High transition temperature superconductor (HTc)/SrTiO3 (STO) bilayers were fabricated by sputtering deposition on (100) STO substrates. Their transport and morphological properties were characterized using conductive atomic force microscopy. The STO barriers present good insulating properties, with long attenuation lengths (λ ˜ 1 nm) which reduce the junction resistance and increase the operating critical current. The samples present roughness values smaller than 1 nm, with an extremely low density of surface defects (˜5 × 10-5 defects/μm2). The high control of the barrier quality over large defect free surfaces is encouraging for the development of microelectronics devices based in HTc Josephson junctions.

  15. High-Resolution Fast Spin Echo Imaging of the Human Brain at 4.7 T: Implementation and Sequence Characteristics

    PubMed Central

    Thomas, David L.; Vita, Enrico De; Roberts, Steven; Turner, Robert; Yousry, Tarek A.; Ordidge, Roger J.

    2007-01-01

    In this work, a number of important issues associated with fast spin echo (FSE) imaging of the human brain at 4.7 T are addressed. It is shown that FSE enables the acquisition of images with high resolution and good tissue contrast throughout the brain at high field strength. By employing an echo spacing (ES) of 22 ms, one can use large flip angle refocusing pulses (162°) and a low acquisition bandwidth (50 kHz) to maximize the signal-to-noise ratio (SNR). A new method of phase encode (PE) ordering (called “feathering”) designed to reduce image artifacts is described, and the contributions of RF (B1) inhomogeneity, different echo coherence pathways, and magnetization transfer (MT) to FSE signal intensity and contrast are investigated. B1 inhomogeneity is measured and its effect is shown to be relatively minor for high-field FSE, due to the self-compensating characteristics of the sequence. Thirty-four slice data sets (slice thickness = 2 mm; in-plane resolution = 0.469 mm; acquisition time = 11 min 20 s) from normal volunteers are presented, which allow visualization of brain anatomy in fine detail. This study demonstrates that high-field FSE produces images of the human brain with high spatial resolution, SNR, and tissue contrast, within currently prescribed power deposition guidelines. Magn Reson Med 51:1254-1264, 2004. PMID:15170847

  16. Life in the Fast Lane: Effects of Early Grade Acceleration on High School and College Outcomes

    ERIC Educational Resources Information Center

    McClarty, Katie Larsen

    2015-01-01

    Research has repeatedly demonstrated the positive effects of acceleration for gifted and talented students. This study expands the literature by not only evaluating the impact of early grade skipping on high school and college outcomes but also examining the role of postacceleration opportunities on subsequent performance. Using a representative…

  17. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal.

    PubMed

    Yan, Jin; Li, Yan; Wu, Shin-Tson

    2011-04-15

    We demonstrate a tunable phase grating using a polymer-stabilized blue phase liquid crystal. Because of the electric-field-induced rectangularlike phase profile, a high diffraction efficiency of 40% is achieved. Moreover, this device shows submillisecond response time. The proposed tunable phase grating holds great potential for photonics and display applications. PMID:21499371

  18. Fast gradient separation by very high pressure liquid chromatography: reproducibility of analytical data and influence of delay between successive runs.

    PubMed

    Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges

    2013-11-29

    Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.

  19. BODIPY fluorescent chemosensor for Cu2+ detection and its applications in living cells: fast response and high sensitivity.

    PubMed

    Quan, Li; Sun, Tingting; Lin, Wenhai; Guan, Xingang; Zheng, Min; Xie, Zhigang; Jing, Xiabin

    2014-05-01

    Copper is an essential trace element for the proper functioning of organ and metabolic process in humans. However, both its excess and deficiency in the body can result in adverse health effects. A BODIPY containing 2,2'-bipyridyl group was synthesized and used as a fluorescent chemodosimeter for selective Cu2+ detection in mild condition. This BODIPY shows fast response (~1 min) and high sensitivity for Cu2+ in aqueous solution due to the photoinduced electron transfer from the excited state of fluorophore to the bipyridyl unit complexed to Cu2+. The fluorescence quenching mechanism revealed by MALDI-TOF Mass spectra showed one Cu2+ could coordinate with two BODIPY molecules, and this coordination is reversible. This simple BODIPY dyes also could be used for sensing the Cu2+ in living cell. This work contributes to extend the potential applications of BODIPY to the biological and environmental areas. PMID:24522344

  20. Fast-switching system for injection seeding of a high-power Ti:sapphire laser.

    PubMed

    Khalesifard, Hamid R; Fix, Andreas; Ehret, Gerhard; Schiller, Max; Wulfmeyer, Volker

    2009-07-01

    A high frequency switching and tunable seed laser system has been designed and constructed for injection seeding of a high-power pulsed Ti:sapphire laser. The whole laser system operates as the transmitter of a scanning, ground-based, water-vapor differential absorption lidar (DIAL). The output of two seed lasers can be tuned in the wavelength range of 815-840 nm up to the power of 20 mW and switched between the online and offline wavelengths of the DIAL at frequencies of 0-1 kHz. The frequency stability of online and offline seed lasers is better than +/-20 MHz rms and the mode-hop-free tuning range is greater than 40 GHz with external cavity diode lasers. The advantage of this system for efficient injection seeding of the Ti:sapphire cavity is that it is modular, robust, fully fiber-coupled, and polarization maintaining.

  1. New methods for high current fast ion beam production by laser-driven acceleration

    SciTech Connect

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B.; Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Picciotto, A.; Serra, E.; Giuffrida, L.; Mangione, A.; Rosinski, M.; Parys, P.; and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  2. High transition temperature superconductor/insulator bilayers for the development of ultra-fast electronics

    SciTech Connect

    Sirena, M.; Félix, L. Avilés; Haberkorn, N.

    2013-07-29

    High transition temperature superconductor (HTc)/SrTiO{sub 3} (STO) bilayers were fabricated by sputtering deposition on (100) STO substrates. Their transport and morphological properties were characterized using conductive atomic force microscopy. The STO barriers present good insulating properties, with long attenuation lengths (λ ∼ 1 nm) which reduce the junction resistance and increase the operating critical current. The samples present roughness values smaller than 1 nm, with an extremely low density of surface defects (∼5 × 10{sup −5} defects/μm{sup 2}). The high control of the barrier quality over large defect free surfaces is encouraging for the development of microelectronics devices based in HTc Josephson junctions.

  3. Fast-switching system for injection seeding of a high-power Ti:sapphire laser.

    PubMed

    Khalesifard, Hamid R; Fix, Andreas; Ehret, Gerhard; Schiller, Max; Wulfmeyer, Volker

    2009-07-01

    A high frequency switching and tunable seed laser system has been designed and constructed for injection seeding of a high-power pulsed Ti:sapphire laser. The whole laser system operates as the transmitter of a scanning, ground-based, water-vapor differential absorption lidar (DIAL). The output of two seed lasers can be tuned in the wavelength range of 815-840 nm up to the power of 20 mW and switched between the online and offline wavelengths of the DIAL at frequencies of 0-1 kHz. The frequency stability of online and offline seed lasers is better than +/-20 MHz rms and the mode-hop-free tuning range is greater than 40 GHz with external cavity diode lasers. The advantage of this system for efficient injection seeding of the Ti:sapphire cavity is that it is modular, robust, fully fiber-coupled, and polarization maintaining. PMID:19655946

  4. High-current fast electron beam propagation in a dielectric target

    SciTech Connect

    Klimo, Ondrej; Tikhonchuk, V. T.; Debayle, A.

    2007-01-15

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10{sup 12} A cm{sup -2}. The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  5. High-current fast electron beam propagation in a dielectric target.

    PubMed

    Klimo, Ondrej; Tikhonchuk, V T; Debayle, A

    2007-01-01

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  6. Design of a fast and high-precision polygonal scanner for HDTV

    NASA Astrophysics Data System (ADS)

    Risse, Stefan; Guyenot, Volker

    1997-07-01

    With the continuing development of laser-display-technology, a new possibility for the production high level image projection is forwarded and with it the beginning of a new era in television: TV picture formats previously thought impossible, the sharpness, color intensity and unsurpassed resolution of which make the dream of home cinema a reality. The key to this experience is visible laser light in red, green and blue, projected on a screen with the aid of horizontal and vertical deflection units. In this paper, a primarily horizontal deflection system in the form of a rotating polygonal scanner is described. The design of this scanner assembly combines a double spherical air bearing with an integrated polygonal mirror for deflection and a high torque inside drive for quickly reaching high rotation. The Fraunhofer Institute of Applied Optics and Precision Engineering (IOF Jena) develops, from conception to assembled prototype, new self-acting precision bearing systems. This new scanner solution developed out of IOF's previous developments resulting in the first ever sealed, minimal-maintenance, self- acting bearing.

  7. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air.

    PubMed

    Ding, Su; Jiu, Jinting; Tian, Yanhong; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki

    2015-12-14

    Copper nanowire transparent electrodes have received increasing interest due to the low price and nearly equal electrical conductivity compared with other TEs based on silver nanowires and indium tin oxide (ITO). However, a post-treatment at high temperature in an inert atmosphere or a vacuum environment was necessary to improve the conductivity of Cu NW TEs due to the easy oxidation of copper in air atmosphere, which greatly cancelled out the low price advantage of Cu NWs. Here, a high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate these Cu NWs into a highly conductive network at room temperature in air. The strong light absorption capacity of Cu NWs enabled the welding of the nanowires at contact spots, as well as the removal of the thin layer of residual organic compounds, oxides and hydroxide of copper even in air. The Cu NW TE with a sheet resistance of 22.9 Ohm sq(-1) and a transparency of 81.8% at 550 nm has been successfully fabricated within only 6 milliseconds exposure treatment, which is superior to other films treated at high temperature in a hydrogen atmosphere. The HIPL process was simple, convenient and fast to fabricate easily oxidized Cu NW TEs in large scale in an air atmosphere, which will largely extend the application of cheap Cu NW TEs.

  8. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion

    SciTech Connect

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; Anderson, K. S.; Beg, F. N.; Epstein, R.; Fiksel, G.; Giraldez, E. M.; Glebov, V. Yu.; Habara, H.; Ivancic, S.; Jarrott, L. C.; Marshall, F. J.; McKiernan, G.; McLean, H. S.; Mileham, C.; Nilson, P. M.; Patel, P. K.; Pérez, F.; Sangster, T. C.; Santos, J. J.; Sawada, H.; Shvydky, A.; Stephens, R. B.; Wei, M. S.

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm -2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.

  9. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion.

    PubMed

    Theobald, W; Solodov, A A; Stoeckl, C; Anderson, K S; Beg, F N; Epstein, R; Fiksel, G; Giraldez, E M; Glebov, V Yu; Habara, H; Ivancic, S; Jarrott, L C; Marshall, F J; McKiernan, G; McLean, H S; Mileham, C; Nilson, P M; Patel, P K; Pérez, F; Sangster, T C; Santos, J J; Sawada, H; Shvydky, A; Stephens, R B; Wei, M S

    2014-01-01

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm(-2) with a nanosecond-duration compression pulse--the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma. PMID:25503788

  10. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air.

    PubMed

    Ding, Su; Jiu, Jinting; Tian, Yanhong; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki

    2015-12-14

    Copper nanowire transparent electrodes have received increasing interest due to the low price and nearly equal electrical conductivity compared with other TEs based on silver nanowires and indium tin oxide (ITO). However, a post-treatment at high temperature in an inert atmosphere or a vacuum environment was necessary to improve the conductivity of Cu NW TEs due to the easy oxidation of copper in air atmosphere, which greatly cancelled out the low price advantage of Cu NWs. Here, a high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate these Cu NWs into a highly conductive network at room temperature in air. The strong light absorption capacity of Cu NWs enabled the welding of the nanowires at contact spots, as well as the removal of the thin layer of residual organic compounds, oxides and hydroxide of copper even in air. The Cu NW TE with a sheet resistance of 22.9 Ohm sq(-1) and a transparency of 81.8% at 550 nm has been successfully fabricated within only 6 milliseconds exposure treatment, which is superior to other films treated at high temperature in a hydrogen atmosphere. The HIPL process was simple, convenient and fast to fabricate easily oxidized Cu NW TEs in large scale in an air atmosphere, which will largely extend the application of cheap Cu NW TEs. PMID:26536570

  11. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion

    DOE PAGES

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; Anderson, K. S.; Beg, F. N.; Epstein, R.; Fiksel, G.; Giraldez, E. M.; Glebov, V. Yu.; Habara, H.; et al

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achievemore » areal densities in excess of 300 mg cm -2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.« less

  12. Fast imaging readout and electronics—a novel high-speed imaging system for micro-channel plates

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Rees, K.

    2002-01-01

    The band-width of charge division readout anodes used with micro-channel plates (MCP) is usually limited by the speed of the acquisition electronics. We present a novel charge division anode that does not require analogue to digital conversion. The Fast Imaging Readout and Electronics is a new concept in high-speed imaging using an MCP detector. The imaging system described comprises an MCP intensifier coupled to a charge division image readout using high-speed, multichannel electronics. It has a projected spatial resolution of up to 128×128 pixels, though the image format is inherently flexible, and the potential for rates up to 100 million events per second with nanosecond timing resolution. The readout pattern has a planar electrode structure and the collected charge from each event is shared amongst all electrodes, grouped in pairs. The unique design of the readout obviates the need for charge measurement, usually the dominant process determining the event-processing deadtime. Instead, high-speed signal comparators, each of which act on the signals from an electrode pair, are used to define a binary code from which the position co-ordinate is directly mapped. We describe a proof of the concept of prototype anode and associated electronics using a novel application of very high-speed digital circuitry. We present preliminary results showing signal waveforms measured using a one-dimensional 16-pixel anode pattern.

  13. High performance organic-inorganic perovskite-optocoupler based on low-voltage and fast response perovskite compound photodetector

    NASA Astrophysics Data System (ADS)

    Li, Dong; Dong, Guifang; Li, Wenzhe; Wang, Liduo

    2015-01-01

    Organic-inorganic hybrid photodetectors attract considerable attention because they can combine the advantages of both organic and inorganic systems. Here, a perovskite compound with a broad absorption spectrum and high power conversion efficiency is used as a photosensitive layer in an organic/inorganic hybrid heterojunction photodetector with a high and fast response. The high sensitivity exceeding 104 is obtained at bias of 0-4 V. Using a tandem organic light-emitting diode (OLED) as the light source, we fabricated an optocoupler device. The optocoupler achieved a maximum photoresponsivity of 1.0 A W-1 at 341.3 μWcm-2 at an input voltage of 6 V. The device also exhibits rapid response times of τrise ~ 20 μs and τfall ~ 17 μs as well as a high current transfer ratio (CTR) of 28.2%. After applying an amplification circuit, the CTR of the optocoupler increases to 263.3%, which is comparable with that of commercial inorganic optocouplers. The developed hybrid optocoupler thus shows great promise for use in photonics.

  14. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    SciTech Connect

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-15

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle’s position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  15. Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography.

    PubMed

    Fitz, Brian D; Mannion, Brandyn C; To, Khang; Hoac, Trinh; Synovec, Robert E

    2015-05-01

    Low thermal mass gas chromatography (LTM-GC) was evaluated for rapid, high peak capacity separations with three injection methods: liquid, headspace solid phase micro-extraction (HS-SPME), and direct vapor. An Agilent LTM equipped with a short microbore capillary column was operated at a column heating rate of 250 °C/min to produce a 60s separation. Two sets of experiments were conducted in parallel to characterize the instrumental platform. First, the three injection methods were performed in conjunction with in-house built high-speed cryo-focusing injection (HSCFI) to cryogenically trap and re-inject the analytes onto the LTM-GC column in a narrower band. Next, the three injection methods were performed natively with LTM-GC. Using HSCFI, the peak capacity of a separation of 50 nl of a 73 component liquid test mixture was 270, which was 23% higher than without HSCFI. Similar peak capacity gains were obtained when using the HSCFI with HS-SPME (25%), and even greater with vapor injection (56%). For the 100 μl vapor sample injected without HSCFI, the preconcentration factor, defined as the ratio of the maximum concentration of the detected analyte peak relative to the analyte concentration injected with the syringe, was determined to be 11 for the earliest eluting peak (most volatile analyte). In contrast, the preconcentration factor for the earliest eluting peak using HSCFI was 103. Therefore, LTM-GC is demonstrated to natively provide in situ analyte trapping, although not to as great an extent as with HSCFI. We also report the use of LTM-GC applied with time-of-flight mass spectrometry (TOFMS) detection for rapid, high peak capacity separations from SPME sampled banana peel headspace.

  16. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads.

    PubMed

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm(2), a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  17. Fast and accurate probability density estimation in large high dimensional astronomical datasets

    NASA Astrophysics Data System (ADS)

    Gupta, Pramod; Connolly, Andrew J.; Gardner, Jeffrey P.

    2015-01-01

    Astronomical surveys will generate measurements of hundreds of attributes (e.g. color, size, shape) on hundreds of millions of sources. Analyzing these large, high dimensional data sets will require efficient algorithms for data analysis. An example of this is probability density estimation that is at the heart of many classification problems such as the separation of stars and quasars based on their colors. Popular density estimation techniques use binning or kernel density estimation. Kernel density estimation has a small memory footprint but often requires large computational resources. Binning has small computational requirements but usually binning is implemented with multi-dimensional arrays which leads to memory requirements which scale exponentially with the number of dimensions. Hence both techniques do not scale well to large data sets in high dimensions. We present an alternative approach of binning implemented with hash tables (BASH tables). This approach uses the sparseness of data in the high dimensional space to ensure that the memory requirements are small. However hashing requires some extra computation so a priori it is not clear if the reduction in memory requirements will lead to increased computational requirements. Through an implementation of BASH tables in C++ we show that the additional computational requirements of hashing are negligible. Hence this approach has small memory and computational requirements. We apply our density estimation technique to photometric selection of quasars using non-parametric Bayesian classification and show that the accuracy of the classification is same as the accuracy of earlier approaches. Since the BASH table approach is one to three orders of magnitude faster than the earlier approaches it may be useful in various other applications of density estimation in astrostatistics.

  18. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    NASA Astrophysics Data System (ADS)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm2, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  19. Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors.

    PubMed

    Bocoum, Maïmouna; Thévenet, Maxence; Böhle, Frederik; Beaurepaire, Benoît; Vernier, Aline; Jullien, Aurélie; Faure, Jérôme; Lopez-Martens, Rodrigo

    2016-05-01

    We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry. PMID:27203328

  20. Construction of a fast ionization chamber for high-rate particle identification

    NASA Astrophysics Data System (ADS)

    Chae, K. Y.; Ahn, S.; Bardayan, D. W.; Chipps, K. A.; Manning, B.; Pain, S. D.; Peters, W. A.; Schmitt, K. T.; Smith, M. S.; Strauss, S. Y.

    2014-07-01

    A new gas-filled ionization chamber for high count rate particle identification has been constructed and commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL). To enhance the response time of the ionization chamber, a design utilizing a tilted entrance window and tilted electrodes was adopted, which is modified from an original design by Kimura et al. [1]. A maximum counting rate of ~700,000 particles per second has been achieved. The detector has been used for several radioactive beam measurements performed at the HRIBF.