Science.gov

Sample records for fast ion beam

  1. Physics with fast molecular-ion beams

    SciTech Connect

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  2. Fast Ion Beam Microscopy of Whole Cells

    NASA Astrophysics Data System (ADS)

    Watt, Frank; Chen, Xiao; Chen, Ce-Belle; Udalagama, Chammika Nb; Ren, Minqin; Pastorin, G.; Bettiol, Andrew

    2013-08-01

    The way in which biological cells function is of prime importance, and the determination of such knowledge is highly dependent on probes that can extract information from within the cell. Probing deep inside the cell at high resolutions however is not easy: optical microscopy is limited by fundamental diffraction limits, electron microscopy is not able to maintain spatial resolutions inside a whole cell without slicing the cell into thin sections, and many other new and novel high resolution techniques such as atomic force microscopy (AFM) and near field scanning optical microscopy (NSOM) are essentially surface probes. In this paper we show that microscopy using fast ions has the potential to extract information from inside whole cells in a unique way. This novel fast ion probe utilises the unique characteristic of MeV ion beams, which is the ability to pass through a whole cell while maintaining high spatial resolutions. This paper first addresses the fundamental difference between several types of charged particle probes, more specifically focused beams of electrons and fast ions, as they penetrate organic material. Simulations show that whereas electrons scatter as they penetrate the sample, ions travel in a straight path and therefore maintain spatial resolutions. Also described is a preliminary experiment in which a whole cell is scanned using a low energy (45 keV) helium ion microscope, and the results compared to images obtained using a focused beam of fast (1.2 MeV) helium ions. The results demonstrate the complementarity between imaging using low energy ions, which essentially produce a high resolution image of the cell surface, and high energy ions, which produce an image of the cell interior. The characteristics of the fast ion probe appear to be ideally suited for imaging gold nanoparticles in whole cells. Using scanning transmission ion microscopy (STIM) to image the cell interior, forward scattering transmission ion microscopy (FSTIM) to improve the

  3. Fast ion beam-plasma interaction system.

    PubMed

    Breun, R A; Ferron, J R

    1979-07-01

    A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).

  4. Features of Fast Ion Instability of Partly Compensated Ion Beams

    NASA Astrophysics Data System (ADS)

    Dudnikov, Vadim

    2000-10-01

    Compensation of a space charge of particle beams by ions have some significant features very different of the electrons compensation. Heavier ions have longer lifetime in the beam and it is possible to reach overcompensation with transformation of repulse forces to the focusing. This feature help to the long distance beam transportation inside a small apertures. But, an ability of heavy ions to keep coherent motion can be a reason of strong coherent instabilities of particle beams with a space charge compensation by ions. A strong coherent focusing of ions in space charge potential of the beam during accumulation can create very high local density of compensating ions with a very picked distribution (Christmas tree distribution). "Fast ion instability" have been observed recently in some storage rings.Very fast development of transverse instability have been observed during a first production of high intense negative ion beam from surface-plasma sources. This instability was observed as oscillation of the local current density of negative ion beam with low fluctuation of beam intensity.

  5. Spectroscopy of ions using fast beams and ion traps

    SciTech Connect

    Pinnington, E H; Trabert, E

    2004-10-01

    A knowledge of the spectra of ionized atoms is of importance in many fields. They can be studied in a wide variety of light sources. In recent years techniques coming under the broad heatings of fast beams and ion traps have been used extensively for such investigations. This article considers the advantages that various techniques have for particular applications.

  6. Ion beam requirements for fast ignition of inertial fusion targets

    SciTech Connect

    Honrubia, J. J.; Murakami, M.

    2015-01-15

    Ion beam requirements for fast ignition are investigated by numerical simulation taking into account new effects, such as ion beam divergence, not included before. We assume that ions are generated by the TNSA scheme in a curved foil placed inside a re-entrant cone and focused on the cone apex or beyond. From the focusing point to the compressed core, ions propagate with a given divergence angle. Ignition energies are obtained for two compressed fuel configurations heated by proton and carbon ion beams. The dependence of the ignition energies on the beam divergence angle and on the position of the ion beam focusing point has been analyzed. Comparison between TNSA and quasi-monoenergetic ions is also shown.

  7. Integrated simulations for ion beam assisted fast ignition

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-03-01

    Although the energy conversion efficiency from the heating laser to fast electrons is high, the coupling efficiency from fast electrons to the core is estimated to be very low due to large divergence angle of fast electrons in fast ignition experiments at ILE, Osaka University. To mitigate this problem, a plastic thin film or low-density foam, which can generate not only proton (H+) but also carbon (C6+) beams, is combined with currently used cone-guided targets and additional core heating by ions is expected. According to integrated simulations, it is found that these ion beams can enhance the core heating by 20∼60% and it shows a possibility of ion beam assisted fast ignition.

  8. Polarization Studies in Fast-Ion Beam Spectroscopy

    SciTech Connect

    Trabert, E

    2001-12-20

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams.

  9. Fast ion behavior during neutral beam injection in ATF

    SciTech Connect

    Wade, M.R.; Thomas, C.E.; Colchin, R.J.; Rome, J.A.; England, A.C.; Fowler, R.H.; Aceto, S.C.

    1993-09-01

    In stellarators, single-particle confinement properties can be more complex than in their tokamak counterparts. Fast-ion behavior in tokamaks has been well characterized through an abundance of measurements on various devices and in general has been shown to be consistent with classical slowing-down theory, although anomalous ion behavior has been observed during intense beam injection in ISX-B, during fishbone instabilities in PDX, and in experiments on TFR. In contrast, fast ion behavior in stellarators is not as wel established experimentally with the primary experiments to date focusing o near-perpendicular or perpendicular neutral beam injection (NBI) on the Wendelstein 7-A stellarator (91 and Heliotron-E. This paper addresses fast-ion confinement properties in a large-aspect-ratio, moderate-shear stellarator, the Advanced Toroidal Facility, during tangential NBI. The primary data used in this study are the experimentally measured energy spectra of charge-exchange neutrals escaping from the plasma, using a two-dimensional scanning neutral particle analyzer. This diagnostic method is well established, having been used on several devices since the early 1970`s. Various aspects of fast-ion behavior are investigated by comparing these data with computed theoretical spectra based on energeticion distributions derived from the fastion Fokker-Planck equation. Ion orbits are studied by computer orbit following, by the computation of J* surfaces, and by Monte Carlo calculations.

  10. Fast fall-time ion beam in neutron generators

    SciTech Connect

    Ji, Q.; Kwan, J.; Regis, M.; Wu, Y.; Wilde, S.B.; Wallig, J.

    2008-08-10

    Ion beam with a fast fall time is useful in building neutron generators for the application of detecting hidden, gamma-shielded SNM using differential die-away (DDA) technique. Typically a fall time of less than 1 {micro}s can't be achieved by just turning off the power to the ion source due to the slow decay of plasma density (partly determined by the fall time of the RF power in the circuit). In this paper, we discuss the method of using an array of mini-apertures (instead of one large aperture beam) such that gating the beamlets can be done with low voltage and a small gap. This geometry minimizes the problem of voltage breakdown as well as reducing the time of flight to produce fast gating. We have designed and fabricated an array of 16 apertures (4 x 4) for a beam extraction experiment. Using a gating voltage of 1400 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 {micro}s at various beam energies ranging between 400 eV to 800 eV. Usually merging an array of beamlets suffers the loss of beam brightness, i.e., emittance growth, but that is not an important issue for neutron source applications.

  11. Interpretation of fast-ion signals during beam modulation experiments

    DOE PAGES

    Heidbrink, W. W.; Collins, C. S.; Stagner, L.; ...

    2016-07-22

    Fast-ion signals produced by a modulated neutral beam are used to infer fast-ion transport. The measured quantity is the divergence of perturbed fast-ion flux from the phase-space volume measured by the diagnostic, ∇•more » $$\\bar{Γ}$$. Since velocity-space transport often contributes to this divergence, the phase-space sensitivity of the diagnostic (or “weight function”) plays a crucial role in the interpretation of the signal. The source and sink make major contributions to the signal but their effects are accurately modeled by calculations that employ an exponential decay term for the sink. Recommendations for optimal design of a fast-ion transport experiment are given, illustrated by results from DIII-D measurements of fast-ion transport by Alfv´en eigenmodes. Finally, the signal-to-noise ratio of the diagnostic, systematic uncertainties in the modeling of the source and sink, and the non-linearity of the perturbation all contribute to the error in ∇•$$\\bar{Γ}$$.« less

  12. Interpretation of fast-ion signals during beam modulation experiments

    SciTech Connect

    Heidbrink, W. W.; Collins, C. S.; Stagner, L.; Zhu, Y. B.; Petty, C. C.; Van Zeeland, M. A.

    2016-07-22

    Fast-ion signals produced by a modulated neutral beam are used to infer fast-ion transport. The measured quantity is the divergence of perturbed fast-ion flux from the phase-space volume measured by the diagnostic, ∇•$\\bar{Γ}$. Since velocity-space transport often contributes to this divergence, the phase-space sensitivity of the diagnostic (or “weight function”) plays a crucial role in the interpretation of the signal. The source and sink make major contributions to the signal but their effects are accurately modeled by calculations that employ an exponential decay term for the sink. Recommendations for optimal design of a fast-ion transport experiment are given, illustrated by results from DIII-D measurements of fast-ion transport by Alfv´en eigenmodes. Finally, the signal-to-noise ratio of the diagnostic, systematic uncertainties in the modeling of the source and sink, and the non-linearity of the perturbation all contribute to the error in ∇•$\\bar{Γ}$.

  13. Confinement and dynamics of neutral beam injected fast ions in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Liu, D.; Almagri, F.; Anderson, J. K.; den Hartog, D. J.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Fiksel, G.; Deichuli, P.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Stupishin, N.; Andre, R.; McCune, D.

    2010-11-01

    The new 1MW neutral beam injector (97% H, 3% D) on MST provides a good test-bed for study of fast ions in the RFP. Analysis of the D-D fusion neutron flux decay at beam turn-off reveals that the confinement time of the fast ions is at least 10 ms, ten-fold larger than the thermal conferment times for particles and energy in standard stochastic plasmas. Also, the fast ion confinement increases with magnetic field strength. Dependence of fast ion confinement on plasma parameters, beam energy, and injection direction will be characterized and compared with TRANSP simulations. In addition, an advanced neutral particle analyzer and a prototype of fast ion charge exchange spectroscopy are under construction to measure neutralized fast ions and induced Doppler-shifted Hα light, respectively, thereby resolving fast ion density and energy distribution. Initial measurements of fast-ion dynamics during magnetic reconnection events will be presented.

  14. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  15. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  16. Fast optimization and dose calculation in scanned ion beam therapy.

    PubMed

    Hild, S; Graeff, C; Trautmann, J; Kraemer, M; Zink, K; Durante, M; Bert, C

    2014-07-01

    Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  17. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  18. Fast Monte Carlo for ion beam analysis simulations

    NASA Astrophysics Data System (ADS)

    Schiettekatte, François

    2008-04-01

    A Monte Carlo program for the simulation of ion beam analysis data is presented. It combines mainly four features: (i) ion slowdown is computed separately from the main scattering/recoil event, which is directed towards the detector. (ii) A virtual detector, that is, a detector larger than the actual one can be used, followed by trajectory correction. (iii) For each collision during ion slowdown, scattering angle components are extracted form tables. (iv) Tables of scattering angle components, stopping power and energy straggling are indexed using the binary representation of floating point numbers, which allows logarithmic distribution of these tables without the computation of logarithms to access them. Tables are sufficiently fine-grained that interpolation is not necessary. Ion slowdown computation thus avoids trigonometric, inverse and transcendental function calls and, as much as possible, divisions. All these improvements make possible the computation of 107 collisions/s on current PCs. Results for transmitted ions of several masses in various substrates are well comparable to those obtained using SRIM-2006 in terms of both angular and energy distributions, as long as a sufficiently large number of collisions is considered for each ion. Examples of simulated spectrum show good agreement with experimental data, although a large detector rather than the virtual detector has to be used to properly simulate background signals that are due to plural collisions. The program, written in standard C, is open-source and distributed under the terms of the GNU General Public License.

  19. Fast ion confinement and stability in a neutral beam injected reversed field pincha)

    NASA Astrophysics Data System (ADS)

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A.; Lin, L.; Liu, D.; Fiksel, G.; Sakakita, H.; Spong, D. A.; Titus, J.

    2013-05-01

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3-5% D2) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ˜50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  20. Fast ion confinement and stability in a neutral beam injected reversed field pinch

    SciTech Connect

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A.; Lin, L.; Liu, D.; and others

    2013-05-15

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3–5% D{sub 2}) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ∼50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  1. A fast chopper for intensity adjustment of heavy-ion beams.

    SciTech Connect

    Novikov-Borodin, A. V.; Kutuzov, V. A.; Ostroumov, P. N.; Physics; INR RAS

    2005-01-01

    Several heavy-ion accelerators are being developed worldwide. It is desirable to provide simultaneous beam delivery to multiple users that can be efficiently implemented using a combination of rf-sweepers and DC magnets. A fast chopper can be used to modulate cw beam intensity by chopping away individual bunches at low beam energy. The major issue of fast choppers is the excessive power requirements from the voltage pulsers. By providing high wave impedance, {approx} 200 Ohm, of a traveling wave structure one can reduce the power requirements for the fast voltage pulser. Several design options of high-impedance structures are discussed.

  2. Laser fluorescence spectroscopy on fast ion beams at the Marburg separator

    NASA Astrophysics Data System (ADS)

    Wagner, H.; Dörschel, K.; Höhle, C.; Hühnermann, H.; Meier, Th.

    Optical hyperfine structure and isotope shift measurements have been performed on Xe +, Ba + and La +-ions using an electromagnetic mass separator for the preselection of the isotopes by fast ion beam laser spectroscopy. The different measuring techniques used are described and their precision and sensitivity are discussed.

  3. Development of a radio-frequency ion beam source for fast-ion studies on the large plasma device.

    PubMed

    Tripathi, S K P; Pribyl, P; Gekelman, W

    2011-09-01

    A helium ion beam source (23 kV/2.0 A) has been constructed for studying fast-ion physics in the cylindrical magnetized plasma of the large plasma device (LAPD). An inductive RF source produces a 10(19) m(-3) density plasma in a ceramic dome. A multi-aperture, rectangular (8 cm × 8 cm) three-grid system extracts the ion beam from the RF plasma. The ion beam is injected at a variety of pitch angles with Alfvénic speeds in the LAPD. The beam current is intense enough to excite magnetic perturbations in the ambient plasma. Measurements of the ion beam profile were made to achieve an optimum beam performance and a reliable source operation was demonstrated on the LAPD. © 2011 American Institute of Physics

  4. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  5. Fast ignition of an inertial fusion target with a solid noncryogenic fuel by an ion beam

    SciTech Connect

    Gus’kov, S. Yu.; Zmitrenko, N. V.; Il’in, D. V.; Sherman, V. E.

    2015-09-15

    The burning efficiency of a preliminarily compressed inertial confinement fusion (ICF) target with a solid noncryogenic fuel (deuterium-tritium beryllium hydride) upon fast central ignition by a fast ion beam is studied. The main aim of the study was to determine the extent to which the spatial temperature distribution formed under the heating of an ICF target by ion beams with different particle energy spectra affects the thermonuclear gain. The study is based on a complex numerical modeling including computer simulations of (i) the heating of a compressed target with a spatially nonuniform density and temperature distributions by a fast ion beam and (ii) the burning of the target with the initial spatial density distribution formed at the instant of maximum compression of the target and the initial spatial temperature distribution formed as a result of heating of the compressed target by the ion beam. The threshold energy of the igniting ion beam and the dependence of the thermonuclear gain on the energy deposited in the target are determined.

  6. Fast ignition of an inertial fusion target with a solid noncryogenic fuel by an ion beam

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.; Zmitrenko, N. V.; Il'in, D. V.; Sherman, V. E.

    2015-09-01

    The burning efficiency of a preliminarily compressed inertial confinement fusion (ICF) target with a solid noncryogenic fuel (deuterium-tritium beryllium hydride) upon fast central ignition by a fast ion beam is studied. The main aim of the study was to determine the extent to which the spatial temperature distribution formed under the heating of an ICF target by ion beams with different particle energy spectra affects the thermonuclear gain. The study is based on a complex numerical modeling including computer simulations of (i) the heating of a compressed target with a spatially nonuniform density and temperature distributions by a fast ion beam and (ii) the burning of the target with the initial spatial density distribution formed at the instant of maximum compression of the target and the initial spatial temperature distribution formed as a result of heating of the compressed target by the ion beam. The threshold energy of the igniting ion beam and the dependence of the thermonuclear gain on the energy deposited in the target are determined.

  7. High Harmonic Fast Wave Damping on an Ion Beam: NSTX and DIII-D Regimes Compared

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Choi, C. C.; Petty, C. C.; Porkolab, M.; Wilson, J. R.; Murakami, M.; Harvey, R. W.

    2004-11-01

    Both NSTX and DIII-D use the combination of fast Alfven waves (FW) and neutral beam injection (NBI) for central electron heating and current drive. Damping of the fast wave on the beam ions at moderate to high harmonics (4th--20th) of the beam ion cyclotron frequency represents a loss process. In DIII-D current drive experiments at low density in which 4th and 8th harmonics were compared, damping at the 8th harmonic damping was much weaker than at the 4th [1]. However, recent simulations have predicted that in higher density and higher beam power regimes (of interest to the Advanced Tokamak program) the beam ion absorption will transition to the unmagnetized ion regime, where the damping is significant and essentially independent of harmonic number. In the present work, the transition from magnetized to unmagnetized ion regimes for the NSTX and DIII-D HHFW experiments is studied theoretically, with a combination of simple semi-analytic models and numerical models. \\vspace0.25 em [1] C.C. Petty, et al., Plasma Phys. and Contr. Fusion 43, 1747 (2001).

  8. Comprehensive approach to fast ion measurements in the beam-driven FRC

    NASA Astrophysics Data System (ADS)

    Magee, Richard; Smirnov, Artem; Onofri, Marco; Dettrick, Sean; Korepanov, Sergey; Knapp, Kurt; the TAE Team

    2015-11-01

    The C-2U experiment combines tangential neutral beam injection, edge biasing, and advanced recycling control to explore the sustainment of field-reversed configuration (FRC) plasmas. To study fast ion confinement in such advanced, beam-driven FRCs, a synergetic technique was developed that relies on the measurements of the DD fusion reaction products and the hybrid code Q2D, which treats the plasma as a fluid and the fast ions kinetically. Data from calibrated neutron and proton detectors are used in a complementary fashion to constrain the simulations: neutron detectors measure the volume integrated fusion rate to constrain the total number of fast ions, while proton detectors with multiple lines of sight through the plasma constrain the axial profile of fast ions. One application of this technique is the diagnosis of fast ion energy transfer and pitch angle scattering. A parametric numerical study was conducted, in which additional ad hoc loss and scattering terms of varying strengths were introduced in the code and constrained with measurement. Initial results indicate that the energy transfer is predominantly classical, while, in some cases, non-classical pitch angle scattering can be observed.

  9. The Relationship of Ion Beams and Fast Flows in the Plasma Sheet Boundary Layer

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Reme, H.; Lin, R. P.; Sanderson, T.; Germany, G. A.; Spann, James F., Jr.; Brittnacher, M. J.; McCarthy, M.; Chen, L. J.; Larsen, D.; hide

    1998-01-01

    We report new findings on the behavior of plasmas in the vicinity of the plasma sheet boundary layer (PSBL). A large geometrical factor detector on WIND (3D plasma experiment) has discovered a unidirectional ion beam streaming in the tailward direction missed by previous observations. This tailward beam is as intense as the earthward streaming beam and it is found just inside the outer edge of the PSBL where earthward streaming beams are observed. The region where this tailward beam is observed includes an isotropic plasma component which is absent in the outer edge where earthward streaming beams are found. When these different distributions are convolved to calculate the velocity moments, fast flows (greater than 400 km/s) result in the earthward direction and much slower flows (less than 200 km/s) in the tailward direction. These new findings are substantially different from previous observations. Thus, the interpretation of fast flows and earthward and counterstreaming ion beams in terms of a neutral line model must be reexamined.

  10. Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam

    SciTech Connect

    Mills, Andrew A.; Siller, Brian M.; Porambo, Michael W.; Perera, Manori; Kreckel, Holger; McCall, Benjamin J.

    2011-12-14

    Direct spectroscopy of a fast molecular ion beam offers many advantages over competing techniques, including the generality of the approach to any molecular ion, the complete elimination of spectral confusion due to neutral molecules, and the mass identification of individual spectral lines. The major challenge is the intrinsic weakness of absorption or dispersion signals resulting from the relatively low number density of ions in the beam. Direct spectroscopy of an ion beam was pioneered by Saykally and co-workers in the late 1980s, but has not been attempted since that time. Here, we present the design and construction of an ion beam spectrometer with several improvements over the Saykally design. The ion beam and its characterization have been improved by adopting recent advances in electrostatic optics, along with a time-of-flight mass spectrometer that can be used simultaneously with optical spectroscopy. As a proof of concept, a noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) setup with a noise equivalent absorption of {approx}2 x 10{sup -11} cm{sup -1} Hz{sup -1/2} has been used to observe several transitions of the Meinel 1-0 band of N{sub 2}{sup +} with linewidths of {approx}120 MHz. An optical frequency comb has been used for absolute frequency calibration of transition frequencies to within {approx}8 MHz. This work represents the first direct spectroscopy of an electronic transition in an ion beam, and also represents a major step toward the development of routine infrared spectroscopy of rotationally cooled molecular ions.

  11. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1996-01-01

    An improved magnetically-confined anode plasma pulsed ion beam source. Beam rotation effects and power efficiency are improved by a magnetic design which places the separatrix between the fast field flux structure and the slow field structure near the anode of the ion beam source, by a gas port design which localizes the gas delivery into the gap between the fast coil and the anode, by a pre-ionizer ringing circuit connected to the fast coil, and by a bias field means which optimally adjusts the plasma formation position in the ion beam source.

  12. Investigation of fast-ion instabilities and tearing-mode reduction during neutral beam injection in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-10-01

    Neutral beam injection into the MST-RFP is observed to drive instabilities that induce fast-ion transport and quench the fast-ion density below classical predictions. These instabilities are detected for both super- and sub-Alfvénic fast ions, indicating that free energy arises from the real space gradient. As plasma current and fast-ion species are changed, the mode number of the dominant instability varies to maintain the wave-particle resonance condition. The dominant instability also exhibits a dependence on fast-ion velocity (v). As v increases, the mode frequency linearly increases and the spatial asymmetry of associated density fluctuations becomes more pronounced. These features link the observed instabilities to continuum modes destabilized by strong drive. In addition to driving instabilities, fast ions are observed to affect intrinsic tearing modes. For certain plasma scenarios, fast ions reduce the core-resonant tearing mode amplitude by 60% while enhancing the kinetic dynamo arising from coherent interactions between density and radial magnetic fluctuations. This implies the potential importance of kinetic dynamo in the tearing mode suppression. Tearing modes can also impact fast-ion redistribution as suggested by edge-resonant tearing mode triggering of a chirping fast-ion mode. Work supported by US DOE.

  13. Improving beam spectral and spatial quality by double-foil target in laser ion acceleration for ion-driven fast ignition

    SciTech Connect

    Huang, Chengkun; Albright, Brian J

    2010-07-16

    Mid-Z ion driven fast ignition inertial fusion requires ion beams of 100s of MeV energy and < 10% energy spread. An overdense run-scale foil target driven by a high intensity laser pulse can produce an ion beam that has attractive properties for this application. The Break Out Afterburner (BOA) is one laser-ion acceleration mechanism proposed to generate such beams, however the late stages of the BOA tend to produce too large of an energy spread. The spectral and spatial qualities of the beam quickly evolve as the ion beam and co-moving electrons continue to interact with the laser. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the co-moving electrons and improve the ion beam energy spread. Particle-In-Cell simulations reveal the dynamics of the ion beam under control. Optimal conditions for improving the spectral and spatial spread of the ion beam is explored for current laser and target parameters, leading to generation of ion beams of energy 100s of MeV and 6% energy spread, a vital step for realizing ion-driven fast ignition.

  14. Precipitation of fast ion beams from the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Zelenyi, L. M.; Bosqued, J. M.; Kovrazhkin, R. A.

    1992-01-01

    This paper presents a model of precipitated fluxes from the PSBL and CPS. Simulation results and data from Aureol-3 spacecraft indicate the presence of velocity dispersed precipitated ion structures (VDIS) at the poleward edge of the auroral oval. These structures are associated with fast ion beams in the PSBL region of the earth's magnetotail, confirming previous experimental results. The simulations also reveal possible substructuring of the VDIS. The bulk of the PSBL population which is not precipitated is very effectively thermalized and quasi-isotropized after multiple interactions with the magnetotail current layer. After each reflection cycle some part of the distribution is precipitated and forms multiple 'echoes' of VDIS. The CPS distributions occurring as a result of scattering, convection, multiple reflections and Fermi acceleration appear isotropic in the simulation model. This paper portrays the important role of the VDIS auroral region medium for complicated and energetically significant processes occurring in different regions of the distant magnetotail.

  15. Fast dose analysis of movement effects during treatments with scanned proton and carbon-ion beams

    NASA Astrophysics Data System (ADS)

    Vignati, A.; Varasteh Anvar, M.; Giordanengo, S.; Monaco, V.; Attili, A.; Donetti, M.; Marchetto, F.; Mas Milian, F.; Ciocca, M.; Russo, G.; Sacchi, R.; Cirio, R.

    2017-01-01

    Charged particle therapy delivered using scanned pencil beams shows the potential to produce better dose conformity than conventional radiotherapy, although the dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of engines to monitor the dose as it is being delivered is highly desirable, in order to enhance the development of adaptive treatment techniques in hadrontherapy. A tool for fast dose distributions analysis is presented, which integrates on GPU a Fast Forward Planning, a Fast Image Deformation algorithm, a fast computation of Gamma-Index and Dose-Volume Histogram. The tool is being interfaced with the Dose Delivery System and the Optical Tracking System of a synchrotron-based facility to investigate the feasibility to quantify, spill by spill, the effects of organ movements on dose distributions during treatment deliveries with protons and carbon-ions. The dose calculation and comparison times for a patient treated with protons on a 61.3 cm3 planning target volume, a CT matrix of 512x512x125 voxels, and a computation matrix of 170x170x125 voxels are within 1 s per spill. In terms of accuracy, the absolute dose differences compared with benchmarked Treatment Planning System results are negligible (<10-4 Gy).

  16. Ultra-Sensitive Collinear Fast Ion Beam Trace Detection of {sup 85}Kr

    SciTech Connect

    Lioubimov, V.; Kolomenskii, A. A.; Schuessler, H. A.; Belic, M.; Lassen, J.; Iimura, H.; Li, X.

    2009-03-17

    A novel scheme of collinear fast beam laser spectroscopy for the detection of the long lived rare isotope {sup 85}Kr by observing the optical hyperfine structure spectrum is presented. The technique utilizes cascade two-step excitation to pump metastable krypton atoms to a high-lying Rydberg level. The present work on krypton was motivated by the fact that {sup 85}Kr is a major tracer gas for exploring the reservoir structure of large oil fields. {sup 85}Kr detection in ambient air is also of importance for monitoring nuclear activities on a world wide scale. The technique has been successfully applied to stable krypton isotopes and to {sup 85}Kr. The selectivity is at the one part in 10{sup 10} level and the sensitivity at a few hundred ions/s.

  17. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  18. Nuclear Structure and Nuclear Astrophysics Studies with Fast Heavy-Ion Beams

    NASA Astrophysics Data System (ADS)

    Motobayashi, Tohru

    Collaboration between France and Japan on studies with fast RI (radioactive isotope) beams and related technical developments started in 1980s, when the GANIL accelerators and RIKEN cyclotron complex started operation and RI beam production technique was developed. Several examples of collaboration on nuclear physics and nuclear astrophysics experiments including related technical development are discussed.

  19. Absolute infrared vibrational band intensities of molecular ions determined by direct laser absorption spectroscopy in fast ion beams

    SciTech Connect

    Keim, E.R.; Polak, M.L.; Owrutsky, J.C.; Coe, J.V.; Saykally, R.J. )

    1990-09-01

    The technique of direct laser absorption spectroscopy in fast ion beams has been employed for the determination of absolute integrated band intensities ({ital S}{sup 0}{sub {ital v}}) for the {nu}{sub 3} fundamental bands of H{sub 3}O{sup +} and NH{sup +}{sub 4}. In addition, the absolute band intensities for the {nu}{sub 1} fundamental bands of HN{sup +}{sub 2} and HCO{sup +} have been remeasured. The values obtained in units of cm{sup {minus}2} atm{sup {minus}1} at STP are 1880(290) and 580(90) for the {nu}{sub 1} fundamentals of HN{sup +}{sub 2} and HCO{sup +}, respectively; and 4000(800) and 1220(190) for the {nu}{sub 3} fundamentals of H{sub 3}O{sup +} and NH{sup +}{sub 4}, respectively. Comparisons with {ital ab} {ital initio} results are presented.

  20. Fast ignition when heating the central part of an inertial confinement fusion target by an ion beam

    SciTech Connect

    Gus’kov, S. Yu.; Zmitrenko, N. V.; Il’in, D. V.; Sherman, V. E.

    2014-11-15

    We investigate the ignition and burning of a precompressed laser fusion target when it is rapidly heated by an ion beam with the formation of a temperature peak in the central part of the target. We present the results of our comprehensive numerical simulations of the problem that include the following components: (1) the target compression under the action of a profiled laser pulse, (2) the heating of the compressed target with spatially nonuniform density and temperature distributions by a beam of high-energy ions, and (3) the burning of the target with the initial spatial density distribution formed at the instant of maximum target compression and the initial spatial temperature distribution formed as a result of the compressed-target heating by an ion beam. The dependences of the threshold energies of the igniting ion beam and the thermonuclear gain on the width of the Gaussian beam ion energy spectrum have been established. The peculiarities of fast ignition by an ion beam related to the spatial distribution of parameters for the target precompressed by a laser pulse are discussed.

  1. New methods for high current fast ion beam production by laser-driven acceleration.

    PubMed

    Margarone, D; Krasa, J; Prokupek, J; Velyhan, A; Torrisi, L; Picciotto, A; Giuffrida, L; Gammino, S; Cirrone, P; Cutroneo, M; Romano, F; Serra, E; Mangione, A; Rosinski, M; Parys, P; Ryc, L; Limpouch, J; Laska, L; Jungwirth, K; Ullschmied, J; Mocek, T; Korn, G; Rus, B

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10(16)-10(19) W∕cm(2). The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  2. New methods for high current fast ion beam production by laser-driven accelerationa)

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Torrisi, L.; Picciotto, A.; Giuffrida, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Serra, E.; Mangione, A.; Rosinski, M.; Parys, P.; Ryc, L.; Limpouch, J.; Laska, L.; Jungwirth, K.; Ullschmied, J.; Mocek, T.; Korn, G.; Rus, B.

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 1016-1019 W/cm2. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  3. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  4. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source.

    PubMed

    Ostroumov, P N; Barcikowski, A; Dickerson, C A; Perry, A; Pikin, A I; Sharamentov, S I; Vondrasek, R C; Zinkann, G P

    2015-08-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  5. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    DOE PAGES

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; ...

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less

  6. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    SciTech Connect

    Ostroumov, P. N. Barcikowski, A.; Dickerson, C. A.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.; Pikin, A. I.

    2015-08-15

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  7. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    SciTech Connect

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  8. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.

    1987-01-01

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.

  9. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  10. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions.

    PubMed

    Svensson, Roger; Larsson, Susanne; Gudowska, Irena; Holmberg, Rickard; Brahme, Anders

    2007-03-01

    Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of

  11. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions

    SciTech Connect

    Svensson, Roger; Larsson, Susanne; Gudowska, Irena; Holmberg, Rickard; Brahme, Anders

    2007-03-15

    Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of

  12. Fast six-channel pyrometer for warm-dense-matter experiments with intense heavy-ion beams

    SciTech Connect

    Ni, P.A.; Kulish, M.I.; Mintsev, V.; Nikolaev, D.N.; Ternovoi, V.Ya.; Hoffmann, D.H.H.; Udrea, S.; Tahir, N.A.; Varentsov, D.; Hug, A.

    2008-12-01

    This paper describes a fast multi-channel radiation pyrometer that was developed for warmdense-matter experiments with intense heavy ion beams at Gesellschaft fur Schwerionenforschung mbH (GSI). The pyrometer is capable of measuring of brightness temperatures from 2000 K to 50000 K, at 6 wavelengths in visible and near-infrared parts of spectrum, with 5 nanosecond temporal resolution and several micrometers spatial resolution. The pyrometer's spectral discrimination technique is based on interference filters, which act as filters and mirrors to allow for simultaneous spectral discrimination of the same ray at multiple wavelengths.

  13. Strong-field isomerization dynamics of fast beams of hydrocarbon ions

    NASA Astrophysics Data System (ADS)

    Jochim, Bethany; Rajput, Jyoti; Berry, Ben; Severt, T.; Zohrabi, M.; Feizollah, Peyman; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2016-05-01

    Bond rearrangement and fragmentation of hydrocarbons in intense laser fields has been a topic of considerable interest in the strong-field community in recent years. We study the interactions of keV hydrocarbon ion beams with ultrafast, intense laser pulses, employing coincidence 3D momentum imaging to elucidate the fragmentation dynamics and identify laser parameters that might be used for controlling outcomes such as the branching ratios. We focus on dissociation to ensure that isomerization occurs on the particular electronic channels of the molecular ion investigated. In C2 H2+, for example, we measure the intensity-dependent branching ratios of the acetylene (CH++CH) and vinylidene (e . g . , C++ CH2) channels. The relative fragmentation rates between the acetylene and vinylidene channels change by a factor of ~ 2 over the range of experimental intensities (1013- 1015 W/ cm2). Other hydrocarbons of interest include not only cations but also anions, such as C2 H 2 -. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy. BJ was also supported in part by DOE-SCGF (DE-AC05-06OR23100).

  14. Modeling of fast neutral-beam-generated ions and rotation effects on RWM stability in DIII-D plasmas

    SciTech Connect

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; Navratil, Gerald A.

    2015-10-15

    Here, validation results for the MARS-K code for DIII-D equilibria, predict that the absence of fast Neutral Beam (NB) generated ions leads to a plasma response ~40–60% higher than in NB-sustained H-mode plasmas when the no-wall βN limit is reached. In a βN scan, the MARS-K model with thermal and fast-ions, reproduces the experimental measurements above the no-wall limit, except at the highest βN where the phase of the plasma response is overestimated. The dependencies extrapolate unfavorably to machines such as ITER with smaller fast ion fractions since elevated responses in the absence of fast ions indicate the potential onset of a resistive wall mode (RWM). The model was also tested for the effects of rotation at high βN, and recovers the measured response even when fast-ions are neglected, reversing the effect found in lower βN cases, but consistent with the higher βN results above the no-wall limit. The agreement in the response amplitude and phase for the rotation scan is not as good, and additional work will be needed to reproduce the experimental trends. In the case of current-driven instabilities, the magnetohydrodynamic spectroscopy system used to measure the plasma response reacts differently from that for pressure driven instabilities: the response amplitude remains low up to ~93% of the current limit, showing an abrupt increase only in the last ~5% of the current ramp. This makes it much less effective as a diagnostic for the approach to an ideal limit. However, the mode structure of the current driven RWM extends radially inwards, consistent with that in the pressure driven case for plasmas with qedge~2. This suggests that previously developed RWM feedback techniques together with the additional optimizations that enabled qedge~2 operation, can be applied to control of both current-driven and pressure-driven modes at high βN.

  15. Modeling of fast neutral-beam-generated ions and rotation effects on RWM stability in DIII-D plasmas

    DOE PAGES

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...

    2015-10-15

    Here, validation results for the MARS-K code for DIII-D equilibria, predict that the absence of fast Neutral Beam (NB) generated ions leads to a plasma response ~40–60% higher than in NB-sustained H-mode plasmas when the no-wall βN limit is reached. In a βN scan, the MARS-K model with thermal and fast-ions, reproduces the experimental measurements above the no-wall limit, except at the highest βN where the phase of the plasma response is overestimated. The dependencies extrapolate unfavorably to machines such as ITER with smaller fast ion fractions since elevated responses in the absence of fast ions indicate the potential onsetmore » of a resistive wall mode (RWM). The model was also tested for the effects of rotation at high βN, and recovers the measured response even when fast-ions are neglected, reversing the effect found in lower βN cases, but consistent with the higher βN results above the no-wall limit. The agreement in the response amplitude and phase for the rotation scan is not as good, and additional work will be needed to reproduce the experimental trends. In the case of current-driven instabilities, the magnetohydrodynamic spectroscopy system used to measure the plasma response reacts differently from that for pressure driven instabilities: the response amplitude remains low up to ~93% of the current limit, showing an abrupt increase only in the last ~5% of the current ramp. This makes it much less effective as a diagnostic for the approach to an ideal limit. However, the mode structure of the current driven RWM extends radially inwards, consistent with that in the pressure driven case for plasmas with qedge~2. This suggests that previously developed RWM feedback techniques together with the additional optimizations that enabled qedge~2 operation, can be applied to control of both current-driven and pressure-driven modes at high βN.« less

  16. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  17. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  18. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  19. Validation of fast-ion D-alpha spectrum measurements during EAST neutral-beam heated plasmas

    NASA Astrophysics Data System (ADS)

    Huang, J.; Heidbrink, W. W.; von Hellermann, M. G.; Stagner, L.; Wu, C. R.; Hou, Y. M.; Chang, J. F.; Ding, S. Y.; Chen, Y. J.; Zhu, Y. B.; Jin, Z.; Xu, Z.; Gao, W.; Wang, J. F.; Lyu, B.; Zang, Q.; Zhong, G. Q.; Hu, L.; Wan, B.

    2016-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been installed on EAST. Fast ion features can be inferred from the Doppler shifted spectrum of Balmer-alpha light from energetic hydrogenic atoms. This paper will focus on the validation of FIDA measurements performed using MHD-quiescent discharges in 2015 campaign. Two codes have been applied to calculate the Dα spectrum: one is a Monte Carlo code, Fortran 90 version FIDASIM, and the other is an analytical code, Simulation of Spectra (SOS). The predicted SOS fast-ion spectrum agrees well with the measurement; however, the level of fast-ion part from FIDASIM is lower. The discrepancy is possibly due to the difference between FIDASIM and SOS velocity distribution function. The details will be presented in the paper to primarily address comparisons of predicted and observed spectrum shapes/amplitudes.

  20. Validation of fast-ion D-alpha spectrum measurements during EAST neutral-beam heated plasmas

    SciTech Connect

    Huang, J. Wu, C. R.; Hou, Y. M.; Chang, J. F.; Ding, S. Y.; Chen, Y. J.; Jin, Z.; Xu, Z.; Gao, W.; Wang, J. F.; Lyu, B.; Zang, Q.; Zhong, G. Q.; Hu, L.; Wan, B.; Heidbrink, W. W.; Stagner, L.; Zhu, Y. B.; Hellermann, M. G. von

    2016-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been installed on EAST. Fast ion features can be inferred from the Doppler shifted spectrum of Balmer-alpha light from energetic hydrogenic atoms. This paper will focus on the validation of FIDA measurements performed using MHD-quiescent discharges in 2015 campaign. Two codes have been applied to calculate the D{sub α} spectrum: one is a Monte Carlo code, Fortran 90 version FIDASIM, and the other is an analytical code, Simulation of Spectra (SOS). The predicted SOS fast-ion spectrum agrees well with the measurement; however, the level of fast-ion part from FIDASIM is lower. The discrepancy is possibly due to the difference between FIDASIM and SOS velocity distribution function. The details will be presented in the paper to primarily address comparisons of predicted and observed spectrum shapes/amplitudes.

  1. Molecular structure studies by 3D imaging of fast ion beams

    SciTech Connect

    Kanter, E.P.; Vager, Z.; Both, G.; Cooney, P.J.; Faibis, A.; Koenig, W.; Zabransky, B.J.; Zajfman, D.

    1986-01-01

    The use of the Coulomb-explosion technique combined with a radically new multi-particle detector, extremely thin film targets, and low-excitation ion source has enabled, for the first time, direct measurements of the complete stereochemistry of complex polyatomic molecular ions. We outline the methods used and present results for protonated acetylene (C/sub 2/H/sub 3//sup +/) and the methane cation (CH/sub 4//sup +/) as examples. We demonstrate the techniques by which these methods can be generalized to determine directly vibrational motions in polyatomic molecules. 24 refs., 4 figs.

  2. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  3. Ion Beam Simulator

    SciTech Connect

    Kalvas, Taneli

    2005-11-08

    IBSimu(Ion Beam Simulator) is a computer program for making two and three dimensional ion optical simulations. The program can solve electrostatic field in a rectangular mesh using Poisson equation using Finite Difference method (FDM). The mesh can consist of a coarse and a fine part so that the calculation accuracy can be increased in critical areas of the geometry, while most of the calculation is done quickly using the coarse mesh. IBSimu can launch ion beam trajectories into the simulation from an injection surface or fomo plasma. Ion beam space charge of time independent simulations can be taken in account using Viasov iteration. Plasma is calculated by compensating space charge with electrons having Boltzmann energy distribution. The simulation software can also be used to calculate time dependent cases if the space charge is not calculated. Software includes diagnostic tools for plotting the geometry, electric field, space charge map, ion beam trajectories, emittance data and beam profiles.

  4. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  5. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  6. Development of a fast cyclotron gas stopper for intense rare isotope beams from projectile fragmentation: Study of ion extraction with a radiofrequency carpet

    SciTech Connect

    Bollen, Georg; Morrissey, David

    2011-01-16

    Research and development has been performed in support of the design of a future rare isotope beam facility in the US. An important aspect of plans for earlier RIA (Rare Isotope Accelerator) and a requirement of FRIB (Facility of Rare Isotope Beams) to be built at Michigan State University are the availability of so-called “stopped beams” for research that contributes to answering questions like how elements in the universe are created and to provide better insight into the nature of Fundamental Interactions. In order to create “stopped beams” techniques are required that transform fast rare isotopes beams as they are available directly after addresses questions like the origin of that will allow and High priority is given to the evaluation of intensity limitations and the efficiency of stopping of fast fragment beams in gas cells and to the exploration of options to increase the efficiency and the reduction of space charge effects. Systematic studies performed at MSU as part of the RIA R&D with a linear gas cell under conditions close to those expected at RIA and related simulations confirm that the efficiency of stopping and extracting ions decreases with increasing beam intensity. Similar results have also been observed at RIKEN in Japan. These results indicate the concepts presently under study will not be able to cover the full range of intensities of fast beams expected at RIA without major losses. The development of a more robust concept is therefore critical to the RIA concept. Recent new beam simulation studies performed at the NSCL show that the stopping of heavy ions in a weakly focusing gas-filled magnetic field can overcome the intensity limitation of present systems while simultaneously providing a much faster ion extraction. We propose to design and build such a cyclotron gas stopper and to test it at the NSCL under conditions as close as possible to those found at RIA.

  7. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  8. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  9. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  10. Ion beam surface modification

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.

    1982-01-01

    The essential details of a study on the practical applications and mechanisms of polymer sputtering via Argon ion impact are summarized. The potential to modify the properties of polymer surfaces to improve their adherence, durability, biocompatibility, or other desirable properties by ion beam sputtering was emphasized. Ion beam milling can be of benefit as an analytical tool to obtain composition versus depth information. Ion impact from a directed ion gun source specifically etches polymer structures according to their morphologies, therefore this technique may be useful to study unknown or new morphological features. Factors addressed were related to: (1) the texture that arises on a polymer target after ion impact; (2) the chemistry of the top surface after ion impact; (3) the chemistry of sputtered films of polymeric material deposited on substrates placed adjacent to targets during ion impact; and (4) practical properties of textured polymer targets, specifically the wettability and adhesive bonding properties.

  11. Main Design Principles of the Cold Beam Pipe in the FastRamped Superconducting Accelerator Magnets for Heavy Ion Synchrotron SIS100

    NASA Astrophysics Data System (ADS)

    Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.

    SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures < 10-12 mbar under dynamic machine conditions which are only achievable when the whole beam pipe is used as an huge cryopump. In order to find technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.

  12. Focused ion beam system

    DOEpatents

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  13. Focused ion beam system

    SciTech Connect

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  14. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  15. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  16. Electromagnetic ion beam instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Foosland, D. W.; Smith, C. W.; Lee, M. A.; Goldstein, M. L.

    1984-01-01

    The linear theory of electromagnetic instabilities driven by an energetic ion beam streaming parallel to a magnetic field in a homogeneous Vlasov plasma is considered. Numerical solutions of the full dispersion equation are presented. At propagation parallel to the magnetic field, there are four distinct instabilities. A sufficiently energetic beam gives rise to two unstable modes with right-hand polarization, one resonant with the beam, the other nonresonant. A beam with sufficiently large T (perpendicular to B)/T (parallel to B) gives rise to the left-hand ion cyclotron anisotropy instability at relatively small beam velocities, and a sufficiently hot beam drives unstable a left-hand beam resonant mode. The parametric dependences of the growth rates for the three high beam velocity instabilities are presented here. In addition, some properties at oblique propagation are examined. It is demonstrated that, as the beam drift velocity is increased, relative maxima in growth rates can arise at harmonics of the ion cyclotron resonance for both right and left elliptically polarized modes.

  17. Ion-beam technologies

    SciTech Connect

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  18. Fast Ion Conductors

    NASA Astrophysics Data System (ADS)

    Chadwick, Alan V.

    Fast ion conductors, sometimes referred to as superionic conductors or solid electrolytes, are solids with ionic conductivities that are comparable to those found in molten salts and aqueous solutions of strong electrolytes, i.e., 10-2-10 S cm-1. Such materials have been known of for a very long time and some typical examples of the conductivity are shown in Fig. 1, along with sodium chloride as the archetypal normal ionic solid. Faraday [1] first noted the high conductivity of solid lead fluoride (PbF2) and silver sulphide (Ag2S) in the 1830s and silver iodide was known to be unusually high ionic conductor to the German physicists early in the 1900s. However, the materials were regarded as anomalous until the mid 1960s when they became the focus of intense interest to academics and technologists and they have remained at the forefront of materials research [2-4]. The academic aim is to understand the fundamental origin of fast ion behaviour and the technological goal is to utilize the properties in applications, particularly in energy applications such as the electrolyte membranes in solid-state batteries and fuel cells, and in electrochemical sensors. The last four decades has seen an expansion of the types of material that exhibit fast ion behaviour that now extends beyond simple binary ionic crystals to complex solids and even polymeric materials. Over this same period computer simulations of solids has also developed (in fact these methods and the interest in fast ion conductors were almost coincidental in their time of origin) and the techniques have played a key role in this area of research.

  19. Ion beam generating apparatus

    DOEpatents

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  20. Ion beam mixing by focused ion beam

    NASA Astrophysics Data System (ADS)

    Barna, Árpád; Kotis, László; Lábár, János L.; Osváth, Zoltán; Tóth, Attila L.; Menyhárd, Miklós; Zalar, Anton; Panjan, Peter

    2007-09-01

    Si amorphous (41 nm)/Cr polycrystalline (46 nm) multilayer structure was irradiated by 30 keV Ga+ ions with fluences in the range of 25-820 ions/nm2 using a focused ion beam. The effect of irradiation on the concentration distribution was studied by Auger electron spectroscopy depth profiling, cross-sectional transmission electron microscopy, and atomic force microscopy. The ion irradiation did not result in roughening on the free surface. On the other hand, the Ga+ irradiation produced a strongly mixed region around the first Si/Cr interface. The thickness of mixed region depends on the Ga+ fluence and it is joined to the pure Cr matrix with an unusual sharp interface. With increasing fluence the width of the mixed region increases but the interface between the mixed layer and pure Cr remains sharp. TRIDYN simulation failed to reproduce this behavior. Assuming that the Ga+ irradiation induces asymmetric mixing, that is during the mixing process the Cr can enter the Si layer, but the Si cannot enter the Cr layer, the experimental findings can qualitatively be explained.

  1. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas

    SciTech Connect

    Turco, F. Hanson, J. M.; Navratil, G. A.; Turnbull, A. D.

    2015-02-15

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β{sub N} limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β{sub N}, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)], which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ∼13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β{sub N} levels (∼90% of the ideal no-wall limit). The toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β{sub N}.

  2. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  3. Nonpropulsive applications of ion beams

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    Eight centimeter ion beam sources utilizing xenon and argon have been developed that operate over a wide range of beam energies and currents. Three types of processes have been studied: sputter deposition, ion beam machining, and ion beam surface texturing. The broad range of source operating conditions allows optimum sputter deposition of various materials. An ion beam source was used to ion mill laser reflection holograms using photoresist patterns on silicon. Ion beam texturing was tried with many materials and has a multitude of potential applications.

  4. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy.

    PubMed

    Schiavi, A; Senzacqua, M; Pioli, S; Mairani, A; Magro, G; Molinelli, S; Ciocca, M; Battistoni, G; Patera, V

    2017-09-05

    Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam-body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology. On the other hand, Monte Carlo (MC) simulations, which explicitly take into account all the details in the interaction of particles with human tissues, are considered to be the most reliable tool to address the complexity of mixed field irradiation in a heterogeneous environment. However, full MC calculations are not routinely used in clinical practice because they typically demand substantial computational resources. Therefore MC simulations are usually only used to check treatment plans for a restricted number of difficult cases. The advent of general-purpose programming GPU cards prompted the development of trimmed-down MC-based dose engines which can significantly reduce the time needed to recalculate a treatment plan with respect to standard MC codes in CPU hardware. In this work, we report on the development of fred, a new MC simulation platform for treatment planning in ion beam therapy. The code can transport particles through a 3D voxel grid using a class II MC algorithm. Both primary and secondary particles are tracked and their energy deposition is scored along the trajectory. Effective models for particle-medium interaction have been implemented, balancing accuracy in dose deposition with computational cost. Currently, the most refined module is the transport of proton beams in water: single pencil beam dose-depth distributions obtained with fred agree with those produced by standard MC codes within 1-2% of the

  5. Beam ion confinement on NSTX-U

    NASA Astrophysics Data System (ADS)

    Liu, D.; Heidbrink, W. W.; Hao, G. Z.; Podesta, M.; Darrow, D. S.; Fredrickson, E. D.

    2016-10-01

    A second and more tangential neutral beam line is a major upgrade component of the National Spherical Torus Experiment - Upgrade (NSTX-U) with the purpose of improving neutral beam current drive efficiency and providing more flexibility in current/pressure profile control. Good beam ion confinement is essential to achieve the anticipated improvements in performance. In the planned beam ion confinement experiment, various short and long (relative to fast ion slowing-down time) neutral beam (NB) pulses from six neutral beam sources will be injected into center-stack limited L-mode plasmas to characterize the beam ion confinement and distribution function produced by the new and the existing NBI lines. The neutron rate decay after the turn-off of short NB pulses will be used to estimate the beam ion confinement time and to investigate its dependence on NB source/geometry, injection energy, and plasma current. The tangential and vertical Fast-Ion D-Alpha (FIDA) diagnostics and multi-view Solid State Neutral Particle Analyzer (SSNPA) arrays will be used to measure beam ion slowing-down distribution function and spatial profile during the injection of relatively long NB pulses. Beam ion prompt losses will be monitored with a scintillator Fast Lost Ion Probe (sFLIP) diagnostic. The experimental data and comparisons with classical predictions from NUBEAM modeling will be presented. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.

  6. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Schiavi, A.; Senzacqua, M.; Pioli, S.; Mairani, A.; Magro, G.; Molinelli, S.; Ciocca, M.; Battistoni, G.; Patera, V.

    2017-09-01

    Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam–body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology. On the other hand, Monte Carlo (MC) simulations, which explicitly take into account all the details in the interaction of particles with human tissues, are considered to be the most reliable tool to address the complexity of mixed field irradiation in a heterogeneous environment. However, full MC calculations are not routinely used in clinical practice because they typically demand substantial computational resources. Therefore MC simulations are usually only used to check treatment plans for a restricted number of difficult cases. The advent of general-purpose programming GPU cards prompted the development of trimmed-down MC-based dose engines which can significantly reduce the time needed to recalculate a treatment plan with respect to standard MC codes in CPU hardware. In this work, we report on the development of fred, a new MC simulation platform for treatment planning in ion beam therapy. The code can transport particles through a 3D voxel grid using a class II MC algorithm. Both primary and secondary particles are tracked and their energy deposition is scored along the trajectory. Effective models for particle–medium interaction have been implemented, balancing accuracy in dose deposition with computational cost. Currently, the most refined module is the transport of proton beams in water: single pencil beam dose–depth distributions obtained with fred agree with those produced by standard MC codes within 1–2% of

  7. Introduction to Ion Beam Therapy

    SciTech Connect

    Martisikova, Maria

    2010-01-05

    Presently, ion beam therapy reaches an increasing interest within the field of radiation therapy, which is caused by the promising clinical results obtained in the last decades. Ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue in comparison to the standard therapy using high energy photons. Heavy ions, like carbon, offer in addition increased biological effectiveness, which makes them suitable for treatment of radioresistant tumors. This contribution gives an overview over the physical and biological properties of ion beams. Common fundamental principles of ion beam therapy are summarized and differences between standard therapy with high energy photons, proton and carbon ion therapy are discussed. The technologies used for the beam production and delivery are introduced, with emphasis to the differences between passive and active beam delivery systems. The last part concentrates on the quality assurance in ion therapy. Specialties of dosimetry in medical ion beams are discussed.

  8. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  9. Ion beam analysis

    SciTech Connect

    Robertson, J.D. )

    1990-01-01

    A new ion beam analysis facility has recently been installed at a Van de Graaff accelerator. Its use is expected to support many energy and environmental research projects. Material composition and spatial distribution analyses at the facility are based upon Rutherford backscattering spectrometry, particle-induced X-ray emission, and particle-induced gamma-ray emission analysis. An overview of these three techniques is presented in this article.

  10. Ion beam analysis of MgAl{sub 2}O{sub 4} spinel irradiated with fast neutrons to 50-250 dpa

    SciTech Connect

    Yu, Ning; Maggiore, C.J.; Sickafus, K.E.

    1995-12-31

    Non-destructive ion beam analysis techniques have been employed to examine the radiation damage in MgAl{sub 2}O{sub 4} spinel single crystals irradiated with fast neutrons at 400 and 750{degrees}C to high fluences ({>=}5 x 10{sup 22} n/cm{sup 2}, E{sub n} > 0.1 MeV). Rutherford backscattering and ion channeling measurements using 1-4 MeV He ion beams revealed that the radiation damage saturated after irradiation at 400{degrees}C to 50 displacements per atom. The energy dependence of dechanneling indicated the dominant extended defects present in the highly irradiated spinel are in the form of dislocations. Channeling angular scans of particle induced x-ray emission further suggested that neutron irradiation tends to randomize cation distribution for Mg{sup 2+} and Al{sup 3+} cations on the lattice sites. These results are compared to the microstructure observations of Kinoshita, et al. and the neutron scattering results of Sickafus, et al.

  11. Simulation analysis for ion assisted fast ignition using structured targets

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-05-01

    As the heating efficiency by fast electrons in the fast ignition scheme is estimated to be very low due to their large divergence angle and high energy. To mitigate this problem, low-density plastic foam, which can generate not only proton (H+) but also carbon (C6+) beams, can be introduced to currently used cone-guided targets and additional core heating by ions is expected. According to 2D PIC simulations, it is found that the ion beams also diverge by the static electric field and concave surface deformation. Thus structured targets are suggested to optimize ion beam characteristics, and their improvement and core heating enhancement by ion beams are confirmed.

  12. Stability of colliding ion beams

    SciTech Connect

    Foote, E.A.; Kulsrud, R.M.

    1980-11-01

    We determine conditions for stability of two identical colliding ion beams in the presence of neutralizing electrons, but no background ions. Such a situation is envisioned for the Counterstreaming Ion Torus. The ion beams are taken to be Maxwellian in their frames of reference. The approximation of electrostatic and electromagnetic modes is made. The stability of the electrostatic modes depends on the relation between the ion electron temperature ratio and the relative beam velocities. The stability of the electromagnetic mode depends on the relation between the ion plasma ..beta.. and the relative beam velocities.

  13. Heavy ion beam probing

    SciTech Connect

    Hickok, R L

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included.

  14. Ion beams for materials analysis

    SciTech Connect

    Bird, J.R.; Williams, J.S.

    1988-01-01

    The contents of this book are: Concepts and Principles of Ion Beam Analysis; Overview of Techniques and Equipment; High Energy Ion Scattering Spectrometry; Nuclear Reactions. Ion Induced X-Ray Emission; Channeling; Depth Profiling of Surface Layers During Ion Bombardment; Low Energy Ion Scattering from Surfaces and Interfaces; Microprobe Analysis; and Critical Assessment of Analysis Capabilities.

  15. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas [Modeling of fast neutral-beam-generated ion effects on MHD spectroscopic observations of RWM stability in DIII-D plasmas

    DOE PAGES

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...

    2015-02-03

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall βN limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing βN, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externallymore » applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest βN levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high βN.« less

  16. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas [Modeling of fast neutral-beam-generated ion effects on MHD spectroscopic observations of RWM stability in DIII-D plasmas

    SciTech Connect

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; Navratil, Gerald A.

    2015-02-03

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall βN limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing βN, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest βN levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high βN.

  17. Rotation driven by fast ions in tokamaks

    SciTech Connect

    Thyagaraja, A.; Schwander, F.; McClements, K. G.

    2007-11-15

    Collective fast ion effects on flows in tokamaks are investigated analytically and numerically. A general analysis of noncollisional electrodynamic momentum transfer from fast ions to bulk plasma is presented, with polarization effects and dissipation in the bulk plasma taken into account. The analysis is illustrated using idealized simulations of fast ion orbits and radial electric fields in the Mega-Ampere Spherical Tokamak (MAST) [A. Sykes, R. J. Akers, L. C. Appel et al., Nucl. Fusion 41, 1423 (2001)], the Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)], and ITER [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)]. In the MAST simulation, prompt losses of beam ions injected counter to the plasma current drive up a radial electric field that saturates at a level such that beam ions subsequently injected are confined electrostatically. Although the actual radial electric fields in counterinjected MAST discharges are lower than this, the scenario explored in the simulation would be approached in MAST plasmas with sufficiently low collisionality. The JET simulation, although unrealistic, shows that a similar process could be driven by losses of fusion {alpha}-particles from a burning plasma. Test-particle simulations of {alpha}-particles in ITER suggest that performance-limiting instabilities such as neoclassical tearing modes and resistive wall modes could be affected significantly by flows associated with radial fast particle currents.

  18. Rotation driven by fast ions in tokamaks

    NASA Astrophysics Data System (ADS)

    Thyagaraja, A.; Schwander, F.; McClements, K. G.

    2007-11-01

    Collective fast ion effects on flows in tokamaks are investigated analytically and numerically. A general analysis of noncollisional electrodynamic momentum transfer from fast ions to bulk plasma is presented, with polarization effects and dissipation in the bulk plasma taken into account. The analysis is illustrated using idealized simulations of fast ion orbits and radial electric fields in the Mega-Ampère Spherical Tokamak (MAST) [A. Sykes, R. J. Akers, L. C. Appel et al., Nucl. Fusion 41, 1423 (2001)], the Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)], and ITER [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)]. In the MAST simulation, prompt losses of beam ions injected counter to the plasma current drive up a radial electric field that saturates at a level such that beam ions subsequently injected are confined electrostatically. Although the actual radial electric fields in counterinjected MAST discharges are lower than this, the scenario explored in the simulation would be approached in MAST plasmas with sufficiently low collisionality. The JET simulation, although unrealistic, shows that a similar process could be driven by losses of fusion α-particles from a burning plasma. Test-particle simulations of α-particles in ITER suggest that performance-limiting instabilities such as neoclassical tearing modes and resistive wall modes could be affected significantly by flows associated with radial fast particle currents.

  19. Using neutral beams as a light ion beam probe (invited)

    DOE PAGES

    Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.; ...

    2014-08-05

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less

  20. Using neutral beams as a light ion beam probe (invited)

    SciTech Connect

    Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.; Kramer, Gerrit J.; Pace, David C.; Petty, Craig C.; Austin, Max E.; Fisher, Raymond K.; Hanson, Jeremy M.; Nazikian, Raffi; Zeng, L.

    2014-08-05

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  1. Using neutral beams as a light ion beam probe (invited)

    SciTech Connect

    Chen, Xi; Heidbrink, W. W.; Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K.; Kramer, G. J.; Nazikian, R.; Austin, M. E.; Hanson, J. M.; Zeng, L.

    2014-11-15

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  2. Coincidence laser spectroscopy: A new ultrasensitive technique for fast ionic or atomic beams

    NASA Astrophysics Data System (ADS)

    Eastham, D. A.; Walker, P. M.; Smith, J. R. H.; Griffith, J. A. R.; Evans, D. E.; Wells, S. A.; Fawcett, M. J.; Grant, I. S.

    1986-12-01

    A new technique for laser spectroscopy of fast ionic or atomic beams is described. This involves measuring coincidences between resonantly scattered photons and ions (or atoms) in the fast beam. Measurements on strontium ions have shown that Doppler-free spectroscopy is possible with fewer than 100 ions s -1.

  3. Ion Beam Modification of Materials

    SciTech Connect

    Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

    2005-10-10

    This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

  4. Ion recombination correction in carbon ion beams.

    PubMed

    Rossomme, S; Hopfgartner, J; Lee, N D; Delor, A; Thomas, R A S; Romano, F; Fukumura, A; Vynckier, S; Palmans, H

    2016-07-01

    In this work, ion recombination is studied as a function of energy and depth in carbon ion beams. Measurements were performed in three different passively scattered carbon ion beams with energies of 62 MeV/n, 135 MeV/n, and 290 MeV/n using various types of plane-parallel ionization chambers. Experimental results were compared with two analytical models for initial recombination. One model is generally used for photon beams and the other model, developed by Jaffé, takes into account the ionization density along the ion track. An investigation was carried out to ascertain the effect on the ion recombination correction with varying ionization chamber orientation with respect to the direction of the ion tracks. The variation of the ion recombination correction factors as a function of depth was studied for a Markus ionization chamber in the 62 MeV/n nonmodulated carbon ion beam. This variation can be related to the depth distribution of linear energy transfer. Results show that the theory for photon beams is not applicable to carbon ion beams. On the other hand, by optimizing the value of the ionization density and the initial mean-square radius, good agreement is found between Jaffé's theory and the experimental results. As predicted by Jaffé's theory, the results confirm that ion recombination corrections strongly decrease with an increasing angle between the ion tracks and the electric field lines. For the Markus ionization chamber, the variation of the ion recombination correction factor with depth was modeled adequately by a sigmoid function, which is approximately constant in the plateau and strongly increasing in the Bragg peak region to values of up to 1.06. Except in the distal edge region, all experimental results are accurately described by Jaffé's theory. Experimental results confirm that ion recombination in the investigated carbon ion beams is dominated by initial recombination. Ion recombination corrections are found to be significant and cannot be

  5. Ion beam probe diagnostic system

    NASA Astrophysics Data System (ADS)

    Hickok, R. L.; Jennings, W. C.; Woo, J. T.; Connor, K. A.

    1980-07-01

    Tokomak plasmas suitable for diagnostic development were produced in RENTOR following technological improvements in the vacuum chamber and discharge cleaning systems. Secondary ion signals were obtained from the heavy ion beam probe on RENTOR leading to initial estimates of the plasma space potential, which appears to vary by several hundred volts during the plasma pulse. The principle of measuring space potential in a minimum-B geometry was established using an ion gun mounted at the center of the ALEX baseball coil. The neutral beam probe was installed for measuring the space potential using actual secondary ion signals from a hollow cathode arc in ALEX and preliminary tests have begun. The ion beam test stand was significantly altered to allow more flexibility in testing energy analyzers, ion guns, and ion focusing concepts.

  6. Electron beam ion source and electron beam ion trap (invited).

    PubMed

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  7. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  8. Applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Gelerinter, E.; Spielberg, N.

    1980-01-01

    Wire adhesion in steel belted radial tires; carbon fibers and composite; cold welding, brazing, and fabrication; hydrogen production, separation, and storage; membrane use; catalysis; sputtering and texture; and ion beam implantation are discussed.

  9. Initial measurements of fast ion loss in KSTAR

    SciTech Connect

    Kim, Junghee; Yoon, S. W.; Kim, W. C.; Kim, Jun Young; Garcia-Munoz, M.; Isobe, M.

    2012-10-15

    A fast ion loss detector (FILD) has been installed and tested in Korea Superconducting Tokamak Advanced Research (KSTAR). KSTAR FILD measures the energy and the pitch-angle of the escaping ions with the striking positions on the scintillator plane. Measurements of the fast ion loss have been performed for the neutral beam heated plasmas. Initial experimental results indicate the prompt losses from neutral beam are dominant and the effects of the resonant magnetic perturbation on the fast ion loss are investigated. In addition, further design change of the detector-head in order to avoid excessive heat load and to detect the fusion products or the fast ions having order of MeV of energy is also discussed.

  10. Measuring Fast Ion Losses in a Reversed Field Pinch Plasma

    NASA Astrophysics Data System (ADS)

    Bonofiglo, P. J.; Anderson, J. K.; Almagri, A. F.; Kim, J.; Clark, J.; Capecchi, W.; Sears, S. H.

    2015-11-01

    The reversed field pinch (RFP) provides a unique environment to study fast ion confinement and transport. The RFP's weak toroidal field, strong magnetic shear, and ability to enter a 3D state provide a wide range of dynamics to study fast ions. Core-localized, 25 keV fast ions are sourced into MST by a tangentially injected hydrogen/deuterium neutral beam. Neutral particle analysis and measured fusion neutron flux indicate enhanced fast ion transport in the plasma core. Past experiments point to a dynamic loss of fast ions associated with the RFP's transition to a 3D state and with beam-driven, bursting magnetic modes. Consequently, fast ion transport and losses in the RFP have garnered recent attention. Valuable information on fast-ion loss, such as energy and pitch distributions, are sought to provide a better understanding of the transport mechanisms at hand. We have constructed and implemented two fast ion loss detectors (FILDs) for use on MST. The FILDs have two, independent, design concepts: collecting particles as a function of v⊥ or with pitch greater than 0.8. In this work, we present our preliminary findings and results from our FILDs on MST. This research is supported by US DOE.

  11. Fast beam studies of free radical photodissociation

    SciTech Connect

    Neumark, D.M.

    1993-12-01

    The authors have developed a novel technique for studying the photodissociation spectroscopy and dynamics of free radicals. In these experiments, radicals are generated by laser photodetachment of a fast (6-8 keV) mass-selected negative ion beam. The resulting radicals are photodissociated with a second laser, and the photofragments are collected and detected with high efficiency using a microchannel plate detector. The overall process is: ABC{sup -} {yields} ABC + e{sup -} {yields} A + BC, AB + C. Two types of fragment detection schemes are used. To map out the photodissociation cross-section of the radical, the photodissociation laser is scanned and the total photofragment yield is measured as a function of wavelength. In other experiments, the photodissociation frequency is fixed and the photofragment masses, kinetic energy release, and scattering angle is determined for each photodissociation event.

  12. Ions beams and ferroelectric plasma sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton

    of the source had a Gaussian shape with xrms =5 mm, which corresponds to a half-angle divergence of 0.87°. The measurements show that near-perfect charge neutralization with FEPS can be attained. No loss of ion beam current was detected, indicating the absence of a neutral cloud in the region of beam propagation, which would cause beam loss to charge exchange collisions. This provides evidence in favor of using FEPS in a future Heavy Ion Fusion accelerator. The FEPS discharge was investigated based on current-voltage measurements in the pulser circuit. Different values of series resistance and storage capacitance in the pulser circuit were used. The charged particle current emitted by the FEPS into vacuum was measured from the difference in forward and return currents in the driving circuit. It was found that FEPS is an emitter of negative charge, and that electron current emission begins approximately 0.5 mus after the fast-rising high voltage pulse is applied and lasts for tens of mus. The value of the series resistance in the pulser circuit was varied to change the rise time of the voltage pulse; plasma density was expected to decrease with increasing values of resistance. However, the data showed that changing the resistance had no significant effect. The average charge emitted per shot depends strongly on the value of the storage capacitance. Lowering the capacitance from 141 nF to 47 nF resulted in a near-complete shut-off of charge emission, although the amplitude of the applied voltage pulse was as high, and rise time as short, as when high-density plasma was produced. Increasing the capacitance from 141 nF to 235 nF increased the average charge emitted per shot by a factor of 2.

  13. Cold atomic beam ion source for focused ion beam applications

    NASA Astrophysics Data System (ADS)

    Knuffman, B.; Steele, A. V.; McClelland, J. J.

    2013-07-01

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 107 A m-2 sr-1 eV-1 and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 107 A m-2 sr-1 eV-1. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  14. Cold atomic beam ion source for focused ion beam applications

    SciTech Connect

    Knuffman, B.; Steele, A. V.; McClelland, J. J.

    2013-07-28

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1} and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1}. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  15. Faraday-cup-type lost fast ion detector on Heliotron J.

    PubMed

    Yamamoto, S; Ogawa, K; Isobe, M; Darrow, D S; Kobayashi, S; Nagasaki, K; Okada, H; Minami, T; Kado, S; Ohshima, S; Weir, G M; Nakamura, Y; Konoshima, S; Kemmochi, N; Ohtani, Y; Mizuuchi, T

    2016-11-01

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90(∘)-140(∘), especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  16. The Booster to AGS beam transfer fast kicker systems

    SciTech Connect

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-08-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented.

  17. Fast ion profile stiffness due to the resonance overlap of multiple Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Todo, Y.; Van Zeeland, M. A.; Heidbrink, W. W.

    2016-11-01

    Fast ion pressure profiles flattened by multiple Alfvén eigenmodes (AEs) are investigated for various neutral beam deposition powers in a multi-phase simulation, which is a combination of classical simulation and hybrid simulation for energetic particles interacting with a magnetohydrodynamic fluid. Monotonic degradation of fast ion confinement and fast ion profile stiffness is found with increasing beam deposition power. The confinement degradation and profile stiffness are caused by a sudden increase in fast ion transport flux brought about by AEs for fast ion pressure gradients above a critical value. The critical pressure gradient and the corresponding beam deposition power depend on the radial location. The fast ion pressure gradient stays moderately above the critical value, and the profiles of the fast ion pressure and fast ion transport flux spread radially outward from the inner region, where the beam is injected. It is found that the square root of the MHD fluctuation energy is proportional to the beam deposition power. Analysis of the time evolutions of the fast ion energy flux profiles reveals that intermittent avalanches take place with contributions from the multiple eigenmodes. Surface of section plots demonstrate that the resonance overlap of multiple eigenmodes accounts for the sudden increase in fast ion transport with increasing beam power. The critical gradient and critical beam power for the profile stiffness are substantially higher than the marginal stability threshold.

  18. Scaling of Kinetic Instability Induced Fast Ion Losses in NSTX

    SciTech Connect

    E.D. Fredrickson; D. Darrow; S. Medley; J. Menard; H. Park; L. Roquemore; D. Stutman; K. Tritz; S. Kubota; K.C. Lee

    2005-06-24

    During neutral beam injection (NBI) in the National Spherical Torus Experiment (NSTX), a wide variety of fast ion driven instabilities is excited by the large ratio of fast ion velocity to Alfven velocity, together with the relatively high fast ion beta, beta(sub)f. The fast ion instabilities have frequencies ranging from a few kilohertz to the ion cyclotron frequency. The modes can be divided roughly into three categories, starting with Energetic Particle Modes (EPM) in the lowest frequency range (0 to 120 kHz), the Toroidal Alfven Eigenmodes (TAE) in the intermediate frequency range (50 to 200 kHz) and the Compressional and Global Alfven Eigenmodes (CAE and GAE, respectively) from approximately equal to 300 kHz up to the ion cyclotron frequency. Each of these categories of modes exhibits a wide range of behavior, including quasi-continuous oscillation, bursting, chirping and, except for the lower frequency range, turbulence.

  19. Ion Beam Processing.

    DTIC Science & Technology

    1987-03-13

    ure are only those which had the greatest effect . Several features of this periodic chart are worth not- ing: i) some elements improve more than one...from nearly all the groups of the periodic table can have beneficial effects on a given property. iv) Ions which improve properties are highlighted...here, but ions which have deleterious effects may also be implanted which facilitates the study of mechanisms of wear and corrosion. v) Elements to

  20. Focused beams of fast neutral atoms in glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. N.; Melnik, Yu. A.; Metel, A. S.; Volosova, M. A.

    2017-06-01

    Glow discharge with electrostatic confinement of electrons in a vacuum chamber allows plasma processing of conductive products in a wide pressure range of p = 0.01 - 5 Pa. To assist processing of a small dielectric product with a concentrated on its surface beam of fast neutral atoms, which do not cause charge effects, ions from the discharge plasma are accelerated towards the product and transformed into fast atoms. The beam is produced using a negatively biased cylindrical or a spherical grid immersed in the plasma. Ions accelerated by the grid turn into fast neutral atoms at p > 0.1 Pa due to charge exchange collisions with gas atoms in the space charge sheaths adjoining the grid. The atoms form a diverging neutral beam and a converging beam propagating from the grid in opposite directions. The beam propagating from the concave surface of a 0.24-m-wide cylindrical grid is focused on a target within a 10-mm-wide stripe, and the beam from the 0.24-m-diameter spherical grid is focused within a 10-mm-diameter circle. At the bias voltage U = 5 kV and p ˜ 0.1 Pa, the energy of fast argon atoms is distributed continuously from zero to eU ˜ 5 keV. The pressure increase to 1 Pa results in the tenfold growth of their equivalent current and a decrease in the mean energy by an order of magnitude, which substantially raises the efficiency of material etching. Sharpening by the beam of ceramic knife-blades proved that the new method for the generation of concentrated fast atom beams can be effectively used for the processing of dielectric materials in vacuum.

  1. Fast Ion Transport in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Bonofiglo, P. J.; Anderson, J. K.; Capecchi, W.; Kim, J.; Sears, S. H.; Egedal, J.

    2016-10-01

    The reversed field pinch (RFP) provides a unique environment to study fast ion confinement and transport. The magnetic topology of the RFP establishes guiding center drifts along flux surfaces, resulting in naturally well-confined fast ions. Past experiments reveal reduced confinement and a redistribution of fast ions with beam-driven instabilities or transition to a 3D equilibrium state. A fast ion transport model characterized by a temporally and spatially dependent diffusion profile describes the fast ion evolution. The diffusion coefficient varies as the square of the measured mode amplitude, and the width is inferred from comparison with correlated density fluctuations. In studying multiple interacting modes, the model reproduces the dynamic NPA-measured 20 % drop in core fast ion concentration. In the case of long-lived frequency chirping modes, there is a consistent time evolution of the fast ion distribution and measured mode frequency on a spatially varying Alfven continuum. Additional studies probe the dynamics of energetic particle modes (EPMs) during the growth of the core-localized kink mode and the rapid loss of fast ion confinement as a transition to a 3D equilibrium occurs. This research is supported by US DOE.

  2. Fast-ion studies in the National Spherical Torus Experiment: Transport by instabilities and acceleration by high harmonic fast waves

    NASA Astrophysics Data System (ADS)

    Liu, Deyong

    2009-12-01

    An extensive set of fast-ion diagnostics, including neutron detectors, a E∣∣B type neutral particle analyzer (NPA) and the newly built four-chord solid state neutral particle analyzer array (SSNPA) and a 16-channel Fast-ion D-alpha (FIDA) diagnostic, provides a good test-bed to study fast ion physics in the National Spherical Torus Experiment (NSTX). During combined neutral beam injection (NBI) and High-Harmonic Fast-Wave (HHFW) heating, the acceleration of fast ions is evident in all fast ion diagnostics. The neutron rate is about three times larger during the HHFW heating. A fast-ion tail above the beam injection is observed in the NPA, SSNPA and FIDA diagnostics. It is also shown that the accelerated fast ions observed by the NPA and SSNPA diagnostics mainly come from passive charge exchange reactions at the edge due to the NPA/SSNPA localization in phase space. The spatial profile of accelerated fast ions that is measured by the FIDA diagnostic is much broader than in conventional tokamaks because of the multiple resonance layers and large orbits in NSTX. The fast-ion distribution function calculated by the CQL3D Fokker-Planck code differs from the measured spatial profile, presumably because the current version of CQL3D uses a zero-banana-width model. In addition, the effects of bursting instabilities on the fast ion distribution in neutral beam heated plasmas are examined. Fishbone events generally have a minor effect on the fast ion distribution and no clear correlation is observed in the NPA and SSNPA diagnostics. However, sawteeth or the combinations of fishbones and CAEs always cause neutron rate drops up to 25% and bursts at outer chords of the SSNPA, which indicate fast ion loss. It is also observed that high energy fast ions respond earlier than low energy fast ions.

  3. Ion Beam Driven Warm Dense Matter Experiments

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Leitner, M. A.; Lidia, S. M.; Logan, B. G.; More, R. M.; Ni, P. A.; Seidl, P. A.; Waldron, W. L.; Barnard, J. J.

    2008-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments use a 0.3 MeV K+ beam from the NDCX-I accelerator. The WDM conditions are to be achieved by longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a 1-mm beam spot size, and 2-ns pulse length. As a technique for heating matter to high energy density, intense ion beams can deliver precise and uniform beam energy deposition, in a relatively large sample size, and can heat any solid-phase target material. The range of the beams in solid targets is less than 1 micron, which can be lengthened by using reduced density porous targets. We have developed a WDM target chamber and target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial experiments will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  4. Fast-ion Dα spectrum diagnostic in the EAST

    NASA Astrophysics Data System (ADS)

    Hou, Y. M.; Wu, C. R.; Huang, J.; Heidbrink, W. W.; von Hellermann, M. G.; Xu, Z.; Jin, Z.; Chang, J. F.; Zhu, Y. B.; Gao, W.; Chen, Y. J.; Lyu, B.; Hu, R. J.; Zhang, P. F.; Zhang, L.; Gao, W.; Wu, Z. W.; Yu, Y.; Ye, M. Y.

    2016-11-01

    In toroidal magnetic fusion devices, fast-ion D-alpha diagnostic (FIDA) is a powerful method to study the fast-ion feature. The fast-ion characteristics can be inferred from the Doppler shifted spectrum of Dα light according to charge exchange recombination process between fast ions and probe beam. Since conceptual design presented in the last HTPD conference, significant progress has been made to apply FIDA systems on the Experimental Advanced Superconducting Tokamak (EAST). Both co-current and counter-current neutral beam injectors are available, and each can deliver 2-4 MW beam power with 50-80 keV beam energy. Presently, two sets of high throughput spectrometer systems have been installed on EAST, allowing to capture passing and trapped fast-ion characteristics simultaneously, using Kaiser HoloSpec transmission grating spectrometer and Bunkoukeiki FLP-200 volume phase holographic spectrometer coupled with Princeton Instruments ProEM 1024B eXcelon and Andor DU-888 iXon3 1024 CCD camera, respectively. This paper will present the details of the hardware descriptions and experimental spectrum.

  5. Maskless, resistless ion beam lithography

    SciTech Connect

    Ji, Qing

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  6. DEVELOPMENT OF EMITTANCE ANALYSIS SOFTWARE FOR ION BEAM CHARACTERIZATION

    SciTech Connect

    Padilla, M. J.; Liu, Y.

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a fi gure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally a high quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifi eld Radioactive Ion beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profi les, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fi tting are also incorporated into the software. The software will provide a simplifi ed, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate.

  7. Ion Beam Therapy in Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Gerhard

    2009-03-01

    At present, seven facilities in Europe treat deep-seated tumors with particle beams, six with proton beams and one with carbon ions. Three of these facilities are in Moscow, St. Petersburg and Dubna, Russia. Other facilities include the TSL Uppsala, Sweden, CPO Orsay, France, and PSI Villigen, Switzerland, all for proton therapy, and GSI, Darmstadt, Germany, which utilizes carbon ions only. But only two of these facilities irradiate with scanned ion beams: the Paul Scherer Institute (PSI), Villigen (protons) and the Gesellschaft für Schwerionenforschung (GSI), Darmstadt. These two facilities are experimental units within physics laboratories and have developed the technique of intensity-modulated beam scanning in order to produce irradiation conforming to a 3-D target. There are three proton centers presently under construction in Munich, Essen and Orsay, and the proton facility at PSI has added a superconducting accelerator connected to an isocentric gantry in order to become independent of the accelerator shared with the physics research program. The excellent clinical results using carbon ions at National Institute of Radiological Science (NIRS) in Chiba and GSI have triggered the construction of four new heavy-ion therapy projects (carbon ions and protons), located in Heidelberg, Pavia, Marburg and Kiel. The projects in Heidelberg and Pavia will begin patient treatment in 2009, and the Marburg and Kiel projects will begin in 2010 and 2011, respectively. These centers use different accelerator designs but have the same kind of treatment planning system and use the same approach for the calculation of the biological effectiveness of the carbon ions as developed at GSI [1]. There are many other planned projects in the works. Do not replace the word "abstract," but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your "Enter" key. You may want to print this page and refer to it as a style

  8. Fundamentals of the fast neutral beams diagnostics

    NASA Astrophysics Data System (ADS)

    Kudrya, V.; Maishev, Yu.

    2016-12-01

    Physical principles of fast neutral beams diagnostics methods are considered. In the opening sections an analysis of the methods intended for measurement of beam composition and energy characteristics of the beam components is presented. For the high resolution Doppler spectroscopy method some relations for energy resolution are derived. For the ionization method an approach to the atomic content calculations is developed in cases of a working gas like H2, N2, O2. Further on, the secondary electron emission, calorimetric, and quartz resonator probes are considered. Dependences of the probe responses on the beam parameters are presented. The results obtained can be used for development and design of fast neutral beams diagnostics systems.

  9. Fast wire scanner for intense electron beams

    NASA Astrophysics Data System (ADS)

    Moore, T.; Agladze, N. I.; Bazarov, I. V.; Bartnik, A.; Dobbins, J.; Dunham, B.; Full, S.; Li, Y.; Liu, X.; Savino, J.; Smolenski, K.

    2014-02-01

    We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20 m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell's high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  10. ION BEAM FOCUSING MEANS FOR CALUTRON

    DOEpatents

    Backus, J.G.

    1959-06-01

    An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

  11. Ion-beam Plasma Neutralization Interaction Images

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  12. Time resolved ion beam induced charge collection

    SciTech Connect

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  13. Precision fast kickers for kiloampere electron beams

    SciTech Connect

    Caporaso, G.J.; Chen, Y.J.; Weir, J.T.

    1999-10-06

    These kickers will be used to make fast dipoles and quadrupoles which are driven by sharp risetime pulsers to provide precision beam manipulations for high current kA electron beams. This technology will be used on the 2nd axis of the DARHT linac at LANL. It will be used to provide 4 micropulses of pulse width 20 to 120 nsec. selected from a 2 {micro}sec., 2kA, 20MeV macropulse. The fast pulsers will have amplitude modulation capability to compensate for beam-induced steering effects and other slow beam centroid motion to within the bandwidth of the kicker system. Scaling laws derived from theory will be presented along with extensive experimental data obtained on the test bed ETA-II.

  14. Radioactive Ion Beams and Radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Laxdal, R. E.; Morton, A. C.; Schaffer, P.

    2014-02-01

    Experiments performed at radioactive ion beam facilities shed new light on nuclear physics and nuclear structure, as well as nuclear astrophysics, materials science and medical science. The many existing facilities, as well as the new generation of facilities being built and those proposed for the future, are a testament to the high interest in this rapidly expanding field. The opportunities inherent in radioactive beam facilities have enabled the search for radioisotopes suitable for medical diagnosis or therapy. In this article, an overview of the production techniques and the current status of RIB facilities and proposals will be presented. In addition, accelerator-generated radiopharmaceuticals will be reviewed.

  15. Ion beam deposited protective films

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1981-01-01

    Single or dual ion beam sources were used to deposit thin films for different applications. Metal and metal oxide films were evaluated as protective coatings for the materials. Film adherence was measured and the most promising films were then tested under environments similar to operating conditions. It was shown that some materials do protect die material (H-13 steel) and do reduce thermal fatigue. Diamondlike films have many useful applications. A series of experiments were conducted to define and optimize new approaches to the manufacture of such films. A dual beam system using argon and methane gases was developed to generate these films.

  16. Fast ion JET diagnostics: confinement and losses

    SciTech Connect

    Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; Syme, D. B.; Cecconello, M.; Darrow, D.; Hill, K.; Goloborod'ko, V.; Yavorskij, V.; Johnson, T.; Murari, A.; Reich, M.; Gorini, G.; Zoita, V.

    2008-03-12

    A study of magnetically confined fast ions in tokamaks plays an important role in burning plasma research. To reach ignition and steady burning of a reactor plasma an adequate confinement of energetic ions produced by NBI heating, accelerated with ICRF and born in fusion reactions is essential to provide efficient heating of the bulk plasma. Thus, investigation of the fast ion behaviour is an immediate task for present-day large machines, such as JET, in order to understand the main mechanisms of slowing down, redistribution and losses, and to develop optimal plasma scenarios. Today's JET has an enhanced suite of fast ion diagnostics both of confined and lost ions that enable to significantly contribute to this important area of research. Fast ion populations of p, d, t, {sup 3}He and {sup 4}He, made with ICRF, NBI, and fusion reactions have been investigated in experiments on JET with sophisticated diagnostics in conventional and shear-reversed plasmas, exploring a wide range of effects. This paper will introduce to the JET fast-ion diagnostic techniques and will give an overview of recent observations. A synergy of the unique diagnostic set was utilised in JET, and studies of the response of fast ions to MHD modes (e.g. tornado modes, sawtooth crashes), fast {sup 3}He-ions behaviour in shear-reversed plasmas are impressive examples of that. Some results on fast ion losses in JET experiments with various levels of the toroidal field ripple will be demonstrated.

  17. Ion beam microtexturing of surfaces

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1981-01-01

    Some recent work in surface microtecturing by ion beam sputtering is described. The texturing is accomplished by deposition of an impurity onto a substrate while simultaneously bombarding it with an ion beam. A summary of the theory regarding surface diffusion of impurities and the initiation of cone formation is provided. A detailed experimental study of the time-development of individual sputter cones is described. A quasi-liquid coating was observed that apparently reduces the sputter rate of the body of a cone compared to the bulk material. Experimental measurements of surface diffusion activation energies are presented for a variety of substrate-seed combinations and range from about 0.3 eV to 1.2 eV. Observations of apparent crystal structure in sputter cones are discussed. Measurements of the critical temperature for cone formation are also given along with a correlation of critical temperature with substrate sputter rate.

  18. Ion beam effects in diacetylenes

    NASA Astrophysics Data System (ADS)

    Elman, B. S.; Blackburn, Gary F.; Thakur, M. K.; Sandman, D. J.; Samuelson, L. A.; Kenneson, D. G.

    Due to their unique backbone structure and crystalline organization, polydiacetylenes (PDAs) are considered to be prototype one-dimensional systems. They were shown to have properties considered important to realize concepts of all-optical signal processing. Macroscopic, nearly defect-free, highly anisotropic PDA single crystals are prepared by exposure of diacteylene monomers to various forms of radiation. These materials can also be prepared as thin film crystals and Langmuir-Blodgett (LB) assemblies. We have studied and compared the effects of ion beam irradiation on different configurations of diacetylenes: bulk crystals, thin films and LB structures. Exposure of monomeric diacetylene films to very low fiuence ion beams results in their polymerization and in the formation of good quality anisotropic films of controlled thickness. Significant changes in optical and electrical properties of PDAs were observed and studied by optical absorption and do temperature dependent conductivity measurements.

  19. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  20. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  1. Ion beam inertial confinement target

    DOEpatents

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  2. Fast ion beta limit measurements by collimated neutron detection in MST plasmas

    NASA Astrophysics Data System (ADS)

    Capecchi, William; Anderson, Jay; Bonofiglo, Phillip; Kim, Jungha; Sears, Stephanie

    2015-11-01

    Fast ion orbits in the reversed field pinch (RFP) are well ordered and classically confined despite magnetic field stochasticity generated by multiple tearing modes. Classical TRANSP modeling of a 1MW tangentially injected hydrogen neutral beam in MST deuterium plasmas predicts a core-localized fast ion density that can be up to 25% of the electron density and a fast ion beta of many times the local thermal beta. However, neutral particle analysis of an NBI-driven mode (presumably driven by a fast ion pressure gradient) shows mode-induced transport of core-localized fast ions and a saturated fast ion density. The TRANSP modeling is presumed valid until the onset of the beam-driven mode and gives an initial estimate of the volume-averaged fast ion beta of 1-2% (local core value up to 10%). A collimated neutron detector for fusion product profile measurements will be used to determine the spatial distribution of fast ions, allowing for a first measurement of the critical fast-ion pressure gradient required for mode destabilization. Testing/calibration data and initial fast-ion profiles will be presented. Characterization of both the local and global fast ion beta will be done for deuterium beam injection into deuterium plasmas for comparison to TRANSP predictions. Work supported by US DOE.

  3. Summary: Electron-cloud effects and fast-ion instability

    SciTech Connect

    Furman, Miguel A.

    2000-03-22

    This is my summary of the talks on the electron-cloud effect and the fast-ion instability that were presented at the 8th ICFA Beam Dynamics Mini-Work shop on Two-Stream Instabilities in Particle Accelerators and Storage Rings,Santa Fe, NM, February 16--18, 2000.

  4. Single-beam heterodyne FAST CARS microscopy.

    PubMed

    Shen, Yujie; Voronine, Dmitri V; Sokolov, Alexei V; Scully, Marlan O

    2016-09-19

    We demonstrate, for the first time, single-beam heterodyne FAST CARS imaging without data post-processing and with nonresonant background subtraction in a simple setup via the real-time piezo modulation of the probe delay. Our fast signal acquisition scheme does not require a spatial light modulator in the pulse shaper, and is suitable for high-resolution imaging and time-resolved dynamics. In addition, the spectral detection of the back-scattered FAST CARS signal is incorporated into the pulse shaper, allowing for a compact and more efficient design. Such epi-detection capability is demonstrated by imaging Si and MoS2 microstructures.

  5. Linear induction accelerator requirements for ion fast ignition

    SciTech Connect

    Logan, G.

    1998-01-26

    Fast ignition (fast heating of DT cores afief compression) reduces driver energy (by 10 X or more) by reducing the implosion velocity and energy for a given fuel compression ratio. For any type of driver that can deliver the ignition energy fast enough, fast ignition increases the target gain compared to targets using fast implosions for central ignition, as long as the energy to heat the core after compression is comparable to or less than the slow compression energy, and as long as the coupling efficiency of the fast ignitor beam to heat the core is comparable to the overall efficiency of compressing the core (in terms of beam energy-to-DT-efficiency). Ion driven fast ignition, compared to laser-driven fast ignition, has the advantage of direct (dE/dx) deposition of beam energy to the DT, eliminating inefficiencies for conversion into hot electrons, and direct ion heating also has a more favorable deposition profile with the Bragg-peak near the end of an ion range chosen to be deep inside a compressed DT core. While Petawatt laser experiments at LLNL have demonstrated adequate light-to-hot-electron conversion efficiency, it is not yet known if light and hot electrons can channel deeply enough to heat a small portion of a IOOOxLD compressed DT core to ignition. On the other hand, lasers with chirped-pulse amplification giving thousand-fold pulse compressions have been demonstrated to produce the short pulses, small focal spots and Petawatt peak powers approaching those required for fast ignition, whereas ion accelerators that can produce sufficient beam quality for similar compression ratios and focal spot sizes of ion bunches have not yet been demonstrated, where an imposed coherent velocity tilt plays the analogous role for beam compression as does frequency chirp with lasers. Accordingly, it is the driver technology, not the target coupling physics, that poses the main challenge to ion-driven fast ignition. As the mainline HIF program is concentrating on

  6. Observation of Beam ION Instability in Spear3

    SciTech Connect

    Teytelman, D.; Cai, Y.; Corbett, W.J.; Raubenheimer, T.O.; Safranek, J.A.; Schmerge, J.F.; Sebek, J.J.; Wang, L.; /SLAC

    2011-12-14

    Weak vertical coupled bunch instability with oscillation amplitude at {mu}m level has been observed in SPEAR3. The instability becomes stronger when there is a vacuum pressure rise by partially turning off vacuum pumps and it becomes weaker when the vertical beam emittance is increased by turning off the skew quadrupole magnets. These confirmed that the instability was driven by ions in the vacuum. The threshold of the beam ion instability when running with a single bunch train is just under 200 mA. This paper presents the comprehensive observations of the beam ion instability in SPEAR3. The effects of vacuum pressure, beam current, beam filling pattern, chromaticity, beam emittance and bunch-by-bunch feedback are investigated in great detail. In an electron accelerator, ions generated from the residual gas molecules can be trapped by the beam. Then these trapped ions interact resonantly with the beam and cause beam instability and emittance blow-up. Most existing light sources use a long single bunch train filling pattern, followed by a long gap to avoid multi-turn ion trapping. However, such a gap does not preclude ions from accumulating during one passage of the single bunch train beam, and those ions can still cause a Fast Ion Instability (FII) as predicted by Raubenheimer and Zimmermann. FII has been observed in ALS, and PLS by artificially increasing the vacuum pressure by injecting helium gas into the vacuum chamber or by turning off the ion pumps in order to observe the beam ion instability. In some existing rings, for instance B factory, the beam ion instability was observed at the beginning of the machine operation after a long period of shutdown and then it automatically disappeared when the vacuum was better. However, when the beam emittance becomes smaller, the FII can occur at nominal conditions as observed in PLS, SOLEIL and SSRF. This paper reports the observations of beam ion instabilities in SPEAR3 under different condition during a period of one

  7. Diagnostics for ion beam driven high energy density physics experiments.

    PubMed

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  8. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  9. Diagnostics for ion beam driven high energy density physics experimentsa)

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Lidia, S.; Ni, P. A.

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K+ beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  10. Module for dielectric surfaces modification by fast neutral particles beams

    NASA Astrophysics Data System (ADS)

    Barchenko, V. T.; Lisenkov, A. A.; Babinov, N. A.

    2014-11-01

    In this paper, we describe the module for dielectric and wide-gap semiconductor surfaces modification by fast neutral beam. The module can be used for cleaning, etching or assisting of films deposition. The surface proceeding by neutral beam can prevent an accumulation of surface charge without using current compensation by inserting electrons to the beam or RF power supply. The module beside cathode and anode contains an electrode with floating potential. Insertion of the additional electrode causes electron retention in an electrostatic trap resulting the reducing of the module operating pressure. Moreover, the electrode with floating potential allows increasing the current efficient of the module. An important feature of the module is that neutralization of the ions extracted from the plasma occurs in the cathode potential well. Thereby ions that have not neutralized cannot leave nearcathode region and there are no fast ions in the output beam. Module does not contain sources of the magnetic fields or elements heated by external sources. Module operates with free cooling. Thus, the module does not need water cooling and can be freely moved in the vacuum chamber.

  11. Neurosurgical applications of ion beams

    NASA Astrophysics Data System (ADS)

    Fabrikant, Jacob I.; Levy, Richard P.; Phillips, Mark H.; Frankel, Kenneth A.; Lyman, John T.

    1989-04-01

    The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect more than half a million Americans. Stereotactic heavy-charged-particle Bragg peak radiosurgery, using narrow beams of heavy ions, demonstrates superior biological and physical characteristics in brain over X-and γ-rays, viz., improved dose distribution in the Bragg peak and sharp lateral and distal borders and less scattering of the beam. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is carried out using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy charged particles of over 300 patients, with cerebral angiography, CT scanning and MRI and PET scanning of selected patients, plus extensive clinical and neuroradiological followup, it appears that Stereotactic charged-particle Bragg peak radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and no mortality. Discussion will include the method of evaluation, the clinical research protocol, the Stereotactic neuroradiological preparation, treatment planning, the radiosurgery procedure and the protocol for followup. Emphasis will be placed on the neurological results, including the neuroradiological and clinical response and early and late delayed injury in brain leading to complications (including vasogenic edema

  12. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J. Warren; Kaplan, Selig N.; Pyle, Robert V.; Anderson, L. Wilmer; Ruby, Lawrence; Schlachter, Alfred S.

    1988-01-01

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  13. Numerical Simulation of Beam-Beam Effects in the Proposed Electron-Ion Colider at Jefferson Lab

    SciTech Connect

    Balsa Terzic, Yuhong Zhang

    2010-05-01

    One key limiting factor to a collider luminosity is beam-beam interactions which usually can cause serious emittance growth of colliding beams and fast reduction of luminosity. Such nonlinear collective beam effect can be a very serious design challenge when the machine parameters are pushed into a new regime. In this paper, we present simulation studies of the beam-beam effect for a medium energy ring-ring electron-ion collider based on CEBAF.

  14. Fast Beam-Based BPM Calibration

    SciTech Connect

    Bertsche, K.; Loos, H.; Nuhn, H.-D.; Peters, F.; /SLAC

    2012-10-15

    The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of the gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.

  15. The NSTX fast-ion D-alpha diagnostic

    SciTech Connect

    Podesta, M.; Heidbrink, W. W.; Bell, R. E.; Feder, R.

    2008-10-15

    A new diagnostic, aimed at energy-resolved measurements of the spatial and temporal dynamics of fast ions in NSTX plasmas, is described. It is based on active charge-exchange recombination spectroscopy. The fast-ion signal is inferred from light emitted in the wavelength range of the D{sub {alpha}} line by fast ions recombining with an injected neutral beam. Two complementary systems are operational. The first system, based on a spectrometer coupled to a charge coupled device detector, has 16 channels with space, time, and energy resolution of 5 cm, 10 ms, and 10 keV, respectively. The second system monitors the energy-integrated fast-ion signal on time scales of {approx}20 {mu}s at three different radii. Signals are measured by a multianode photomultiplier tube. For both systems, each channel includes two paired views, intercepting and missing the neutral beam for a direct subtraction of the background signal not associated with fast ions. Examples of signals from the 2008 NSTX run are presented.

  16. Production of negatively charged radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Stracener, D. W.; Stora, T.

    2017-08-01

    Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridge National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities. ).

  17. Ions Beams and Ferroelectric Plasma Sources

    SciTech Connect

    Stepanov, Anton

    2014-09-01

    transverse current density profile 33~cm downstream of the source had a Gaussian shape with $x_{rms}$=5~mm, which corresponds to a half-angle divergence of 0.87$^\\circ$. The measurements show that near-perfect charge neutralization with FEPS can be attained. No loss of ion beam current was detected, indicating the absence of a neutral cloud in the region of beam propagation, which would cause beam loss to charge exchange collisions. This provides evidence in favor of using FEPS in a future Heavy Ion Fusion accelerator. The FEPS discharge was investigated based on current-voltage measurements in the pulser circuit. Different values of series resistance and storage capacitance in the pulser circuit were used. The charged particle current emitted by the FEPS into vacuum was measured from the difference in forward and return currents in the driving circuit. It was found that FEPS is an emitter of negative charge, and that electron current emission begins approximately 0.5~$\\mu$s after the fast-rising high voltage pulse is applied and lasts for tens of $\\mu$s. The value of the series resistance in the pulser circuit was varied to change the rise time of the voltage pulse; plasma density was expected to decrease with increasing values of resistance. However, the data showed that changing the resistance had no significant effect. The average charge emitted per shot depends strongly on the value of the storage capacitance. Lowering the capacitance from 141~nF to 47~nF resulted in a near-complete shut-off of charge emission, although the amplitude of the applied voltage pulse was as high, and rise time as short, as when high-density plasma was produced. Increasing the capacitance from 141~nF to 235~nF increased the average charge emitted per shot by a factor of$~$2.

  18. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  19. Nanofabrication by Focused Ion Beam

    DTIC Science & Technology

    1993-09-28

    MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES AD-A271 290 )N PAGE orhan Sand .01fMI.,r re ~’.nq tn., Oiurda N0o.me 0& Of .018l 04v~~t P - .L...Institute of Technology Cambridge, MA 02139 APPROVED FOR PUBLIC RELEASE; N, S c; . DISTRIBUTION UNLIMITED u..d.. `. B y .. . . . . . .. Dist A-jr I...defined sidewalls indicate that much finer lithography would be possible with a1 more optimum beam. b ) Preferential Oxide growth after ion exposure. (In

  20. A fast chopper for medium energy beams

    SciTech Connect

    Madrak, R.; Wildman, D.

    2014-10-30

    The key elements have been constructed for a fast chopper system capable of removing single 2.5 MeV proton bunches spaced at 325 MHz. The average chopping rate is ~ 1 MHz. The components include a pulse delaying microstrip structure for deflecting the beam, high voltage (1.2 kV) fast (ns rise time) pulsers, and an associated wideband combiner. Various designs for the deflecting structures have been studied. Measurements of the microstrip structures' coverage factors and pulse shapes are presented.

  1. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  2. The electromagnetic ion cyclotron beam anisotropy instability

    NASA Technical Reports Server (NTRS)

    Peter Gary, S.; Schriver, David

    1987-01-01

    Electromagnetic instabilities driven by an anisotropic, relatively cool ion beam are studied for the case in which both the beam and the instabilities propagate parallel or antiparallel to a uniform magnetic field. At modest beam-core relative drift speeds, sufficiently large perpendicular-to-parallel beam temperature ratios and sufficiently large plasma beta, the mode of fastest growth rate is the ion cyclotron beam anisotropy instability. Because the right-hand polarized waves observed upstream of slow shocks in the earth's magnetotail can lead to the appropriate beam anisotropy, the ion cyclotron instability may be present and account for the left-hand polarized magnetic waves observed there. Also, because of its relatively low phase speed, the ion cyclotron beam anisotropy instability may provide the scattering necessary for ion Fermi acceleration at slow shocks of sufficiently high plasma beta.

  3. Negative Ion Beam Extraction and Emittance

    SciTech Connect

    Holmes, Andrew J. T.

    2007-08-10

    The use of magnetic fields to both aid the production of negative ions and suppress the co-extracted electrons causes the emittance and hence the divergence of the negative ion beam to increase significantly due to the plasma non-uniformity from jxB drift. This drift distorts the beam-plasma meniscus and experimental results of the beam emittance are presented, which show that non-uniformity causes the square of the emittance to be proportional to the 2/3 power of the extracted current density. This can cause the divergence of the negative ion beam to be significantly larger than its positive ion counterpart. By comparing results from positive and negative ion beam emittances from the same source, it is also possible to draw conclusions about their vulnerability to magnetic effects. Finally emittances of caesiated and un-caesiated negative ion beams are compared to show how the surface and volume modes of production interact.

  4. Are fast radio bursts wandering narrow beams?

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2017-05-01

    It is generally assumed that the sources of fast radio bursts (FRB) radiate roughly isotropically, so that the observed low duty cycle of any individual source indicates a similar low duty cycle of its radio-frequency emission. An alternative hypothesis is that the radiative duty cycle is O(1), but that the radiation is emitted in a beam with a solid angle comparable to the observed duty cycle, whose direction wanders or sweeps across the sky. This hypothesis relaxes the extreme power demands of isotropically radiating models of FRB at the price of multiplying the number of sources. The constraints on pulsar models are relaxed; rather than being unprecedentedly fast-spinning and highly magnetized with short spin-down times, their parameters may be closer to those of typical radio pulsars. In general, it is not possible to distinguish intermittent isotropic emission from wandering beams on purely phenomenological grounds.

  5. Critical Gradient Threshold for Alfvén Eigenmode Induced Fast-Ion Transport

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.

    2016-10-01

    Experiments on the DIII-D tokamak have identified how multiple simultaneous Alfvén eigenmodes (AEs) lead to overlapping wave-particle resonances and stochastic fast ion transport in fusion grade plasmas. The behavior results in a sudden increase in fast ion transport at a threshold that is well above the linear stability threshold for Alfvén instability. This causes fast ion transport to become stiff, leading to virtually unchanged equilibrium fast-ion density profiles as beam drive increases further. A novel beam modulation technique in conjunction with an array of fast-ion diagnostics probes the critical gradient by measuring the fast-ion flux in different phase-space volumes. Above a threshold, which occurs when more than four AEs are simultaneously destabilized, the modulated flux suddenly increases. Fast-ion D α (FIDA) spectroscopy indicates the peak of the modulated flux is localized to mid-core radii, corresponding to the radial location of AEs. As distributions and instability behavior are manipulated further through variations in electron cyclotron heating and beam deposition, measured thresholds track the resulting shifts in resonances. Well above threshold, the fast-ion losses often become intermittent and exhibit a bursty behavior. Theoretical analysis confirms that fast-ion orbits become stochastic in the measured modes. This critical gradient transport, wherein the fast-ion pressure gradient destabilizes AEs and the fast ions respond by diffusing in phase space to flatten the pressure profile, suggests that reduced models for fast ion transport in ITER can effectively describe the fusion alpha and beam ion profiles. Work supported by the US Department of Energy under DE-FC02-04ER54698.

  6. Laser ion source for high brightness heavy ion beam

    SciTech Connect

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  7. Laser ion source for high brightness heavy ion beam

    DOE PAGES

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less

  8. Laser ion source for high brightness heavy ion beam

    SciTech Connect

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  9. Laser ion source for high brightness heavy ion beam

    NASA Astrophysics Data System (ADS)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  10. A Multicusp Ion Source for Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  11. Plasma formed ion beam projection lithography system

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  12. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Wang, Joseph

    2010-05-21

    Ion beam emission/neutralization is one of the most fundamental problems in spacecraft plasma interactions and electric propulsion. Although ion beam neutralization is readily achieved in experiments, the understanding of the underlying physical process remains at a rather primitive level. No theoretical or simulation models have convincingly explained the detailed neutralization mechanism, and no conclusions have been reached. This paper presents a fully kinetic simulation of ion beam neutralization and plasma beam propagation and discusses the physics of electron-ion coupling and the resulting propagation of a neutralized mesothermal plasma.

  13. The Electron Beam Ion Source (EBIS)

    SciTech Connect

    Brookhaven Lab

    2009-06-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  14. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2016-07-12

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  15. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  16. Power deposition of deuteron beam in fast ignition

    NASA Astrophysics Data System (ADS)

    Azadifar, R.; Mahdavi, M.

    2017-02-01

    In ion fast ignition (FI) inertial confinement fusion (ICF), a laser accelerated ion beam called igniter provides energy required for ignition of a fuel pellet. The laser accelerated deuteron beam is considered as igniter. The deuteron beam with Maxwellian energy distribution produced at the distance d = 500 μm, from fuel surface, travels during time t = 20 ps and arrives with power P1D(t,TD) to the fuel surface. Then, the deuteron beam deposits its energy into fuel by Coulomb and nuclear interactions with background plasma particles during time t = 10 ps, with power P2D(t,TD,Tb). Since time and power of the two stages have same order, to calculate the total power deposited by igniter beam, both stages must be considered simultaneously. In this paper, the exact power of each stage has been calculated separately, and the total power Ptotal(t,TD,Tb) has been obtained. The obtained results show that the total power deposition Ptotal(t,TD,Tb) is significantly reduced due to reducing different temperature between projectile and target particles.

  17. Prompt loss of beam ions in KSTAR plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Rhee, T.; Kim, Junghee; Yoon, S. W.; Park, B. H.; Isobe, M.; Ogawa, K.; Ko, W.-H.

    2016-10-01

    For a toroidal plasma facility to realize fusion energy, researching the transport of fast ions is important not only due to its close relation to the heating and current drive efficiencies but also to determine the heat load on the plasma-facing components. We present a theoretical analysis and orbit simulation for the origin of lost fast-ions during neutral beam injection (NBI) heating in Korea Superconducting Tokamak Advanced Research (KSTAR) device. We adopted a two-dimensional phase diagram of the toroidal momentum and magnetic moment and describe detectable momentums at the fast-ion loss detector (FILD) position as a quadratic line. This simple method was used to model birth ions deposited by NBI and drawn as points in the momentum phase space. A Lorentz orbit code was used to calculate the fast-ion orbits and present the prompt loss characteristics of the KSTAR NBI. The scrape-off layer deposition of fast ions produces a significant prompt loss, and the model and experimental results closely agreed on the pitch-angle range of the NBI prompt loss. Our approach can provide wall load information from the fast ion loss.

  18. Laser cooling of a stored ion beam: A first step towards crystalline beams

    SciTech Connect

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  19. Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Gorelenkova, M.; Green, D. L.; RF SciDAC Team

    2016-10-01

    Fast wave (FW) heating in the ion cyclotron range of frequency (ICRF) has been successfully used to sustain and control the fusion plasma performance, and it will likely play an important role in the ITER experiment. As demonstrated in the NSTX and DIII-D experiments the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection. In fact, it has been recently found in NSTX that FWs can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes and global Alfvén eigenmodes and fishbones. This paper examines such interactions in NSTX/NSTX-U plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Particular attention is given to the evolution of the fast ions distribution function w/ and w/o RF. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code. Work supported by US DOE Contract DE-AC02-09CH11466.

  20. Ion Beam Bombardment of Biological Tissue

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Yu, L. D.; Vilaithong, T.; Phanchaisri, B.; Anuntalabhochai, S.; Brown, I. G.

    2003-10-01

    While ion implantation has become a well-established technique for the surface modification of inorganic materials, the ion bombardment of cellular tissue has received little research attention. A program in ion beam bioengineering has been initiated at Chiang Mai University, and the ion beam induced transfer of plasmid DNA molecules into bacterial cells (E. coli) has been demonstrated. Subsequent work has been directed toward exploration of ion beam bombardment of plant cells in an effort to understand the possible mechanisms involved in the DNA transfer. In particular, ion beam bombardment of onion cells was carried out and the effects investigated. Among the novel features observed is the formation of "microcraters" - sub-micron surface features that could provide a pathway for the transfer of large molecules into the interior cell region. Here we describe our onion skin ion bombardment investigations.

  1. TOPICAL REVIEW Dosimetry for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Karger, Christian P.; Jäkel, Oliver; Palmans, Hugo; Kanai, Tatsuaki

    2010-11-01

    Recently, ion beam radiotherapy (including protons as well as heavier ions) gained considerable interest. Although ion beam radiotherapy requires dose prescription in terms of iso-effective dose (referring to an iso-effective photon dose), absorbed dose is still required as an operative quantity to control beam delivery, to characterize the beam dosimetrically and to verify dose delivery. This paper reviews current methods and standards to determine absorbed dose to water in ion beam radiotherapy, including (i) the detectors used to measure absorbed dose, (ii) dosimetry under reference conditions and (iii) dosimetry under non-reference conditions. Due to the LET dependence of the response of films and solid-state detectors, dosimetric measurements are mostly based on ion chambers. While a primary standard for ion beam radiotherapy still remains to be established, ion chamber dosimetry under reference conditions is based on similar protocols as for photons and electrons although the involved uncertainty is larger than for photon beams. For non-reference conditions, dose measurements in tissue-equivalent materials may also be necessary. Regarding the atomic numbers of the composites of tissue-equivalent phantoms, special requirements have to be fulfilled for ion beams. Methods for calibrating the beam monitor depend on whether passive or active beam delivery techniques are used. QA measurements are comparable to conventional radiotherapy; however, dose verification is usually single field rather than treatment plan based. Dose verification for active beam delivery techniques requires the use of multi-channel dosimetry systems to check the compliance of measured and calculated dose for a representative sample of measurement points. Although methods for ion beam dosimetry have been established, there is still room for developments. This includes improvement of the dosimetric accuracy as well as development of more efficient measurement techniques.

  2. Focused ion beam source method and apparatus

    DOEpatents

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  3. Focused Ion Beam Technology for Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Reithmaier, J. P.; Bach, L.; Forchel, A.

    2003-08-01

    High-resolution proximity free lithography was developed using InP as anorganic resist for ion beam exposure. InP is very sensitive on ion beam irradiation and show a highly nonlinear dose dependence with a contrast function comparable to organic electron beam resists. In combination with implantation induced quantum well intermixing this new lithographic technique based on focused ion beams is used to realize high performance nano patterned optoelectronic devices like complex coupled distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers.

  4. Beam emittance measurements on multicusp ion sources

    NASA Astrophysics Data System (ADS)

    Sarstedt, M.; Lee, Y.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Weber, M.; Williams, M. D.

    1996-03-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source is planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 μm patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of a rf-generated plasma.

  5. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1983-01-01

    Electron beam experiments using rocket-borne instrumentation confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes were observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Of these, 102 echoes could unambiguously be identified with known accelerator operations at 2, 4 or 8 keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher energy electrons led the lower energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. The injection process is discussed as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection.

  6. Profiles of fast ions that are accelerated by high harmonic fast waves in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Liu, D.; Heidbrink, W. W.; Podestà, M.; Bell, R. E.; Fredrickson, E. D.; Medley, S. S.; Harvey, R. W.; Ruskov, E.

    2010-02-01

    Combined neutral beam injection and high-harmonic fast-wave (HHFW) heating accelerate deuterium fast ions in the National Spherical Torus Experiment (NSTX). With 1.1 MW of HHFW power, the neutron emission rate is about three times larger than in the comparison discharge without HHFW heating. Acceleration of fast ions above the beam injection energy is evident on an E||B type neutral particle analyzer (NPA), a 4-chord solid state neutral particle analyzer (SSNPA) array and a 16-channel fast-ion D-alpha (FIDA) diagnostic. The accelerated fast ions observed by the NPA and SSNPA diagnostics mainly come from passive charge exchange reactions at the edge due to the NPA/SSNPA localization in phase space. The spatial profile of accelerated fast ions that is measured by the FIDA diagnostic is much broader than in conventional tokamaks because of the multiple resonance layers and large orbits in NSTX. The fast-ion distribution function calculated by the CQL3D Fokker-Planck code differs from the measured spatial profile, presumably because the current version of CQL3D uses a zero-banana-width model. In addition, compressional Alfven eigenmode activity is stronger during the HHFW heating and it may affect the fast-ion spatial profile.

  7. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  8. Elastic wave from fast heavy ion irradiation on solids

    NASA Astrophysics Data System (ADS)

    Kambara, T.; Kageyama, K.; Kanai, Y.; Kojima, T. M.; Nanai, Y.; Yoneda, A.; Yamazaki, Y.

    2002-06-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al 2O 3), fused silica (SiO 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the wave source was estimated. The result was compared with ion ranges calculated for these materials by TRIM code.

  9. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.

    1984-10-19

    The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.

  10. Faraday-cup-type lost fast ion detector on Heliotron J

    SciTech Connect

    Yamamoto, S. Kobayashi, S.; Nagasaki, K.; Okada, H.; Minami, T.; Kado, S.; Ohshima, S.; Weir, G. M.; Konoshima, S.; Mizuuchi, T.; Ogawa, K.; Isobe, M.; Darrow, D. S.; Nakamura, Y.; Ohtani, Y.; Kemmochi, N.

    2016-11-15

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7–42.5 keV (proton) and pitch angle of 90{sup ∘}–140{sup ∘}, especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  11. Ion beam microtexturing and enhanced surface diffusion

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1982-01-01

    Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.

  12. Ion beams in radiotherapy - from tracks to treatment planning

    NASA Astrophysics Data System (ADS)

    Krämer, M.; Scifoni, E.; Wälzlein, C.; Durante, M.

    2012-07-01

    Several dozen clinical sites around the world apply beams of fast light ions for radiotherapeutical purposes. Thus there is a vested interest in the various physical and radiobiological processes governing the interaction of ion beams with matter, specifically living systems. We discuss the various modelling steps which lead from basic interactions to the application in actual patient treatment planning. The nano- and microscopic scale is covered by sample calculations with our TRAX code. On the macroscopic scale we feature the TRiP98 treatment planning system, which was clinically used in GSI's radiotherapy pilot project.

  13. Ion distributions in coronal holes and fast solar wind

    SciTech Connect

    Maneva, Y. G.; Marsch, E.; Araneda, J. A.

    2010-03-25

    We perform 1 D hybrid simulations to investigate the nonlinear kinetic behavior of the tenuous collisionless magnetized plasma in coronal holes and fast solar wind. Initially isotropic ion distributions are reshaped via wave-particle interactions with resonant daughter waves that are born by parametrically unstable large-amplitude Alfven-cyclotron waves. Decay processes lead to the formation of both acoustic and electromagnetic micro-turbulence, which further influence the motion of the ions via Landau damping and pitch-angle scattering. This leads to a depletion of the pump and destroys the fluid coherence of the medium. Parametric instabilities act to randomize the ion distributions, causing anisotropic heating and resulting in differential streaming and formation of ion beams. Due to their low mass densities and charge-to-mass ratios heavy ions are preferentially heated and obtain higher anisotropies than protons.

  14. Anomalous flattening of the fast-ion profile during Alfvén-Eigenmode activity.

    PubMed

    Heidbrink, W W; Gorelenkov, N N; Luo, Y; Van Zeeland, M A; White, R B; Austin, M E; Burrell, K H; Kramer, G J; Makowski, M A; McKee, G R; Nazikian, R

    2007-12-14

    Neutral-beam injection into plasmas with negative central shear produces a rich spectrum of toroidicity-induced and reversed-shear Alfvén eigenmodes in the DIII-D tokamak. The first application of fast-ion D_{alpha} (FIDA) spectroscopy to Alfvén-eigenmode physics shows that the central fast-ion profile is anomalously flat in the inner half of the discharge. Neutron and equilibrium measurements corroborate the FIDA data. The current density driven by fast ions is also strongly modified. Calculations based on the measured mode amplitudes do not explain the observed fast-ion transport.

  15. Ion-beam assisted, electron-beam physical vapor deposition

    SciTech Connect

    Singh, J.

    1996-12-01

    Electron beam-physical vapor deposition (EB-PVD) is a relatively new technology that has overcome some of the difficulties associated with chemical vapor deposition, physical vapor deposition, and thermal spray processes. In the EB-PVD process, focused high-energy electron beams generated from electron guns are directed to melt and evaporate ingots, as well as preheat the substrate inside a vacuum chamber. By adding the assistance of ion beams to the process, coating density and adhesion are improved, while costs are reduced. This article describes physical vapor deposition and ion-beam processes, explains the advantages of EB-PVD, shows how ion beams optimize the benefits of EB-PVD, and enumerates a variety of applications.

  16. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, Joshua (Inventor); Hubbell, Theodore E. (Inventor)

    1987-01-01

    A surface of a steel substrate is nitrided without external heating by exposing it to a beam of nitrogen ions under low pressure, a pressure much lower than that employed for ion-nitriding. An ion source is used instead of a glow discharge. Both of these features reduce the introduction of impurities into the substrate surface.

  17. Turbulent transport of fast ions due to magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Preiwisch, Adam

    The transport of fast ions in magnetic flux ropes in a laboratory plasma is studied. Strong perturbing flux ropes (deltaE ~175 V/m, deltaB ~7 G) are generated by secondary cathode-anode pair at the upgraded LArge Plasma Device (LAPD). A 500-1000 eV lithium ion test beam is passed through the turbulent region and recollected by a gridded collimated analyzer, revealing enhanced fast ion broadening attributable to flux rope perturbations. The broadening is observed to be well in excess of Coulomb scattering levels. Monte Carlo simulation is performed with model electrostatic and magnetic fields, revealing negligible spreading as a result of the magnetic perturbations. Modeled electrostatic perturbations are observed to broaden the beam by 3.0 mm2 at the closest recollection plane, increasing as the transit time squared further downstream. Transport attributed to electrostatic fluctuations has been shown to decrease with energy while magnetic transport does not. Enhanced fast ion transport observed during the flux rope off phase is presently unexplained.

  18. Developments of fast emittance monitors for ion sources at RCNP

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K.

    2016-02-15

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  19. Developments of fast emittance monitors for ion sources at RCNP

    NASA Astrophysics Data System (ADS)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K.

    2016-02-01

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  20. Fast ion dynamics measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Bindslev, Henrik

    2001-10-01

    In magnetically confined fusion plasmas, fast ions, from fusion reactions and auxiliary heating, typically carry a third of the total plasma kinetic energy, and even more of the free energy. This free energy must be channelled into heating the bulk plasma, but is also available for driving waves in the plasma, affecting confinement of bulk and fast ions. We know that fast ions can drive Alfvén waves, affect sawteeth and fishbones. In turn all three can redistribute or ejects the fast ions. Wave particle interaction, also the basis of Ion Cyclotron Resonance Heating (ICRH), depends crucially on the phase space distribution of the fast ions. Conversely the effect waves and instabilities have of fast ions will manifest itself in the detail of the fast ion phase space distribution. To explore the dynamics of fast ions and their interaction with the plasma thus begs for measurements of the fast ion distribution resolved in space, time and velocity. This has long been the promise of Collective Thomson Scattering (CTS) [1]. First demonstrated at JET [2]and subsequently at TEXTOR [3], CTS is living up to its promise and is now contributing to the understanding of fast ion dynamics. With the TEXTOR CTS, temporal behaviours of fast ion velocity distributions have been uncovered. The fast ion populations are produced by ICRH and Neutral Beam Injection (NBI). At sawteeth, we see clear variations in the fast ion population, which depend on ion energy, pitch angle and spatial location. Investigating the region just inside the inversion radius, we find that ions with small parallel energy, and with perpendicular energies up to a soft threshold well above thermal, are lost from the high field side near the inversion radius, while more energetic ions in the same pitch angle range remain insensitive to the sawteeth. The sensitive population could include the potato and stagnation orbit particles identified theoretically as being sensitive the sawteeth [4]. Under the same conditions

  1. Intense non-relativistic cesium ion beam

    SciTech Connect

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm.

  2. Modified betatron for ion beam fusion

    SciTech Connect

    Rostoker, N.; Fisher, A.

    1986-01-01

    An intense neutralized ion beam can be injected and trapped in magnetic mirror or tokamak geometry. The details of the process involve beam polarization so that the beam crosses the fringing fields without deflection and draining the polarization when the beam reaches the plasma. Equilibrium requires that a large betatron field be added in tokamak geometry. In mirror geometry a toroidal field must be added by means of a current along the mirror axis. In either case, the geometry becomes that of the modified betatron which has been studied experimentally and theoretically in recent years. We consider beams of d and t ions with a mean energy of 500 kev and a temperature of about 50 kev. The plasma may be a proton plasma with cold ions. It is only necessary for beam trapping or to carry currents. The ion energy for slowing down is initially 500 kev and thermonuclear reactions depend only on the beam temperature of 50 kev which changes very slowly. This new configuration for magnetic confinement fusion leads to an energy gain of 10--20 for d-t reactions whereas previous studies of beam target interaction predicted a maximum energy gain of 3--4. The high beam energy available with pulsed ion diode technology is also essential for advanced fuels. 16 refs., 3 figs.

  3. Parametric Dependence Of Fast-ion Transport Events On The National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, Erik; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B.; Bortolon, A.

    2014-03-31

    Neutral-beam heated tokamak plasmas commonly have more than one third of the plasma kinetic energy in the non-thermal energetic beam ion population. This population of fast ions heats the plasma, provides some of the current drive, and can affect the stability (positively or negatively) of magnetohydrodynamic instabilities. This population of energetic ions is not in thermodynamic equilibrium, thus there is free-energy available to drive instabilities, which may lead to redistribution of the fast ion population. Understanding under what conditions beam-driven instabilities arise, and the extent of the resulting perturbation to the fast ion population, is important for predicting and eventually demonstrating non-inductive current ramp-up and sustainment in NSTX-U, as well as the performance of future fusion plasma experiments such as ITER. This paper presents an empirical approach towards characterizing the stability boundaries for some common energetic-ion-driven instabilities seen on NSTX.

  4. The LICPA accelerator of dense plasma and ion beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabloński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Raczka, P.; Rosiński, M.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.; Torrisi, L.

    2014-04-01

    Laser-induced cavity pressure acceleration (LICPA) is a novel scheme of acceleration of dense matter having a potential to accelerate plasma projectiles with the energetic efficiency much higher than the achieved so far with other methods. In this scheme, a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and accelerated along a guiding channel by the thermal pressure created in the cavity by the laser-produced plasma or by the photon pressure of the ultraintense laser radiation trapped in the cavity. This paper summarizes briefly the main results of our recent LICPA studies, in particular, experimental investigations of ion beam generation and heavy macroparticle acceleration in the hydrodynamic LICPA regime (at moderate laser intensities ~ 1015W/cm2) and numerical, particle-in-cell (PIC) studies of production of ultraintense ion beams and fast macroparticles using the photon pressure LICPA regime (at high laser intensities > 1020 W/cm2). It is shown that in both LICPA regimes the macroparticles and ion beams can be accelerated much more efficiently than in other laser-based acceleration scheme commonly used and the accelerated plasma/ion bunches can have a wide variety of parameters. It creates a prospect for a broad range of applications of the LICPA accelerator, in particular in such domains as high energy density physics, ICF research (ion fast ignition, impact ignition) or nuclear physics.

  5. Laser ion source for low charge heavy ion beams

    SciTech Connect

    Okamura,M.; Pikin, A.; Zajic, V.; Kanesue, T.; Tamura, J.

    2008-08-03

    For heavy ion inertial fusion application, a combination of a laser ion source and direct plasma injection scheme into an RFQ is proposed. The combination might provide more than 100 mA of singly charged heavy ion beam from a single laser shot. A planned feasibility test with moderate current is also discussed.

  6. Beam ion instability: Measurement, analysis, and simulation

    SciTech Connect

    Wang, L.; Safranek, J.; Cai, Y.; Corbett, J.; Hettel, B.; Raubenheimer, T. O.; Schmerge, J.; Sebek, J.; /SLAC

    2013-10-03

    A weak vertical coupled-bunch instability with oscillation amplitude of the order of a few μ m has been observed in SPEAR3 at nominal vacuum pressure. The instability becomes stronger with increasing neutral gas pressure as observed by turning off vacuum pumps, and becomes weaker when the vertical beam emittance is increased. These observations indicate that the vertical beam motion is driven by ions trapped in the periodic potential of the electron beam. In this paper we present a series of comprehensive beam measurements, impedance-based stability analysis, and numerical simulations of beam-ion interactions in SPEAR3. The effects of vacuum pressure, gas species, beam current, bunch fill pattern, chromaticity, and vertical beam emittance are investigated.

  7. Ion-beam-driven warm dense matter experiments

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Barnard, J. J.; Friedman, A.; Henestroza, E.; Jung, J. Y.; Leitner, M. A.; Lidia, S.; Logan, B. G.; More, R. M.; Ni, P. A.; Roy, P. K.; Seidl, P. A.; Waldron, W. L.

    2010-08-01

    As a technique for heating matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition to a relatively large sample. The US heavy ion fusion science program has developed techniques for heating and diagnosing warm dense matter (WDM) targets. We have developed a WDM target chamber and a suite of target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments heat targets by both the compressed and uncompressed parts of the NDCX-I beam, and explore measurement of temperature, droplet formation and other target parameters. Continued improvements in beam tuning, bunch compression, and other upgrades are expected to yield higher temperature and pressure in the WDM targets. Future experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  8. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, Donald J.

    1988-01-01

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  9. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  10. Multicusp sources for ion beam projection lithography

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Vujic, J.; Williams, M. D.; Wutte, D.; Zahir, N.

    1998-02-01

    Multicusp ion sources are capable of producing positive and negative ions with good beam quality and low energy spread. The ion energy spread of multicusp sources has been measured by three different techniques. The axial ion energy spread has been reduced by introducing a magnetic filter inside the multicusp source chamber which adjusts the plasma potential distribution. The axial energy spread is further reduced by optimizing the source configuration. Values as low as 0.8 eV have been achieved.

  11. Plasma ion sources and ion beam technology inmicrofabrications

    SciTech Connect

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  12. Fast Quantum Rabi Model with Trapped Ions

    PubMed Central

    Moya-Cessa, Héctor M.

    2016-01-01

    We show how to produce a fast quantum Rabi model with trapped ions. Its importance resides not only in the acceleration of the phenomena that may be achieved with these systems, from quantum gates to the generation of nonclassical states of the vibrational motion of the ion, but also in reducing unwanted effects such as the decay of coherences that may appear in such systems. PMID:27941846

  13. Fast Quantum Rabi Model with Trapped Ions.

    PubMed

    Moya-Cessa, Héctor M

    2016-12-12

    We show how to produce a fast quantum Rabi model with trapped ions. Its importance resides not only in the acceleration of the phenomena that may be achieved with these systems, from quantum gates to the generation of nonclassical states of the vibrational motion of the ion, but also in reducing unwanted effects such as the decay of coherences that may appear in such systems.

  14. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  15. Investigation of ion capture in an electron beam ion trap charge-breeder for rare isotopes

    NASA Astrophysics Data System (ADS)

    Kittimanapun, Kritsada

    Charge breeding of rare isotope ions has become an important ingredient for providing reaccelerated rare isotope beams for science. At the National Superconducting Cyclotron Laboratory (NSCL), a reaccelerator, ReA, has been built that employs an advanced Electron Beam Ion Trap (EBIT) as a charge breeder. ReA will provide rare-isotope beams with energies of a few hundred keV/u up to tens of MeV/u to enable the study of properties of rare isotopes via low energy Coulomb excitation and transfer reactions, and to investigate nuclear reactions important for nuclear astrophysics. ReA consists of an EBIT charge breeder, a charge-over-mass selector, a room temperature radio-frequency quadrupole accelerator, and a superconducting radio-frequency linear accelerator. The EBIT charge breeder features a high-current electron gun, a long trap structure, and a hybrid superconducting magnet to reach both high acceptance for injected low-charge ions as well as high-electron beam current densities for fast charge breeding. In this work, continuous ion injection and capture in the EBIT have been investigated with a dedicated Monte-Carlo simulation code and in experimental studies. The Monte-Carlo code NEBIT considers the electron-impact ionization cross sections, space charge due to the electron beam current, ion dynamics, electric field from electrodes, and magnetic field from the superconducting magnet. Experiments were performed to study the capture efficiency as a function of injected ion beam current, electron beam current, trap size, and trap potential depth. The charge state evolution of trapped ions was studied, providing information about the effective current density of the electron beam inside the EBIT. An attempt was made to measure the effective space-charge potential of the electron beam by studying the dynamics of a beam injected and reflected inside the trap.

  16. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  17. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  18. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  19. Ion-beam technology and applications

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Robson, R. R.; Sovey, J. S.

    1977-01-01

    Ion propulsion research and development yields a mature technology that is transferable to a wide range of nonpropulsive applications, including terrestrial and space manufacturing. A xenon ion source was used for an investigation into potential ion-beam applications. The results of cathode tests and discharge-chamber experiments are presented. A series of experiments encompassing a wide range of potential applications is discussed. Two types of processes, sputter deposition, and erosion were studied. Some of the potential applications are thin-film Teflon capacitor fabrication, lubrication applications, ion-beam cleaning and polishing, and surface texturing.

  20. Comparison of measurements and simulations of fast ion profiles during high harmonic fast wave heating in NSTX

    NASA Astrophysics Data System (ADS)

    Liu, D.; Heidbrink, W. W.; Podesta, M.; Medley, S. S.; Harvey, R. W.; Choi, M.; Green, D.

    2009-11-01

    Combined neutral beam injection (NBI) and high harmonic fast wave (HHFW) heating at cyclotron harmonics accelerate deuterium fast ions in the National Spherical Torus Experiment (NSTX). Acceleration of fast ions above the beam injection energy is evident in the data from neutron, E||B type Neutral Particle Analyzer (NPA), Solid State Neutral Particle Analyzer (SSNPA) array and Fast-Ion D-Alpha (FIDA) diagnostics. The fast-ion spatial profiles measured by the FIDA diagnostic show that the acceleration is at four harmonics (7-10) simultaneously and it is much broader than in DIII-D. This is because of the multiple resonance layers and large orbits in NSTX. The measured spatial profile of accelerated fast ions is farther from the magnetic axis and broader than predicted by the CQL3D Fokker-Planck code, for which we conjecture that finite Larmor radius and banana-width can have significant effects on the fast ions in NSTX. To test this hypothesis, simulations with ORBIT-RF code coupled with full wave code AORSA are in progress.

  1. Ion Beam Scattering by Background Helium

    NASA Astrophysics Data System (ADS)

    Grillet, Anne; Hughes, Thomas; Boerner, Jeremiah

    2015-11-01

    The presence of background gases can cause charged particle beams to become more diffuse due to scattering. Calculations for the transport of an ion beam have been performed using Aleph, a particle-in-cell plasma modeling code, and verified against a general envelop equation for charged particle beams. We have investigated the influence of background helium on the coherence and transmitted current of the ion beam. Collisions between ions and neutral particles were calculated assuming isotropic elastic scattering. Since this tends to predict larger scattering angles than are expected at high energies, these are conservative estimates for beam scattering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.

  2. First Fast-Ion D-alpha (FIDA) Measurements and Simulations on C-2U

    NASA Astrophysics Data System (ADS)

    Bolte, Nathan; Gupta, Deepak; Stagner, Luke; Onofri, Marco; Dettrick, Sean; Granstedt, Erik; TAE Team

    2016-10-01

    In Tri Alpha Energy's C-2U experiment, advanced beam-driven field-reversed configuration (FRC) plasmas were sustained via tangential neutral beam injection1. The dominant fast ion population made a dramatic impact on the overall plasma performance. A fast-ion D-alpha (FIDA)2 diagnostic, which is based on the Doppler-shifted Balmer-alpha light from neutralized fast ions, was recently added to the C-2U fast-ion diagnostics suite. The first ever FIDA measurements on an FRC topology have been carried out. Bandpass-filtered FIDA measurements (>6 keV ions) were made with a photomultiplier tube and are forward modeled by FIDASIM. Line-integrated signals were taken at eight radial locations and eight times during the FRC lifetime. While the measurements share some salient features with the simulation, they are 4.5x larger, suggesting a higher fast-ion content than the Monte Carlo distribution. Highly Doppler-shifted beam radiation is also measured with a high-speed camera and is spatially well-correlated with FIDASIM. Having shown the feasibility of FIDA on C-2U, we will further explore the use of FIDA on the upgraded C-2W machine to estimate fast-ion densities and to infer the local fast-ion distribution function. Tri Alpha Energy, Inc.

  3. Biomedical applications of ion-beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Gibbons, D. F.; Vankampen, C. L.; Babbush, C. A.

    1979-01-01

    Microscopically-rough surface texture of various biocompatible alloys and polymers produced by ion-beam sputtering may result in improvements in response of hard or soft tissue to various surgical implants.

  4. Tuning ferromagnetism by varying ion beam profiles

    NASA Astrophysics Data System (ADS)

    Hariwal, Rajesh V.; Malik, Hitendra K.; Asokan, K.

    2017-02-01

    Present study demonstrates a novel technique to tune the ferromagnetism at room temperature by varying the ion beam profiles from 3 to 7 mm during Carbon ion implantation in ZnO matrix and keeping other beam parameters constant. The interaction of implanted C ions with host ZnO matrix at different profiles result in variable ferromagnetism from 0.75 to 3.0  ×  10‑4 emu gm‑1 due to difference in the induced radiation pressure. Similar variation is also observed in the optical bandgap from 3.35 to 3.24 eV for different beam profiles. This study shows that the material properties can be tuned and controlled by the variation of beam profiles during the ion implantation.

  5. Biomedical applications of ion-beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Gibbons, D. F.; Vankampen, C. L.; Babbush, C. A.

    1979-01-01

    Microscopically-rough surface texture of various biocompatible alloys and polymers produced by ion-beam sputtering may result in improvements in response of hard or soft tissue to various surgical implants.

  6. Warm Dense Matter Experiments Driven by Ion Beams

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Jung, J. Y.; Leitner, M. A.; Lidia, S.; Logan, B. G.; More, R. M.; Ni, P. A.; Roy, P. K.; Seidl, P. A.; Waldron, W. L.; Barnard, J. J.; Friedman, A.

    2009-11-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. We present results from warm dense matter (WDM) experiments at NDCX-I. The 0.3 MeV, 30-mA K^+ beam from the NDCX-I accelerator heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam to a spot size ˜ 1 mm, and compressed pulse length ˜ 2 ns. The uncompressed beam flux is >=500 kW/cm^2, and the compressed pulse flux is > 5 MW/cm^2. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. Future plans include construction of the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-4 MeV lithium ion beam. We have developed a target chamber and target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, and high-speed gated cameras. We compare measurements of temperature, droplet formation and other target parameters with model predictions. Continued improvements in beam tuning, bunch compression, and other upgrades are expected to yield higher flux on target.

  7. Injection optimization through generation of flat ion beams

    NASA Astrophysics Data System (ADS)

    Appel, S.; Groening, L.; El Hayek, Y.; Maier, M.; Xiao, C.

    2017-09-01

    An excellent interfacing between injector linac and synchrotron is mandatory to provide ion beams of unprecedented intensities and qualities. One consequence of the single-plane Multi-Turn Injection (MTI) is that the required injection emittance for the injection plane (usually the horizontal one) is very demanding; to the other plane not. Re-partitioning of the injected beam emittances, i.e. round-to-flat transformation would increase the injection efficiency. This benefit effect to the MTI performance of a smaller emittance has been measured as a function of the amount of flatness of the beam. An excellent agreement between simulation and measured injection performance as a function of the injected emittance was achieved thanks to fast adjustment of the beam flatness without changing other beam parameters.

  8. TXRF spectrometry at ion beam excitation

    NASA Astrophysics Data System (ADS)

    Egorov, V.; Egorov, E.; Afanas’ef, M.

    2017-02-01

    The work presents short discussion of TXRF and PIXE methods peculiarities. Taking into account of these peculiarities we elaborate the experimental scheme for TXRF measurements at ion beam excitation of characteristical fluorescence. The scheme is built on base of the planar X-ray waveguide-resonator with specific design. Features of the new experimental method and possibilities of Sokol-3 ion beam analytical complex were used for the method application in real measurements.

  9. Radioactive-ion-beam research at Livermore

    NASA Astrophysics Data System (ADS)

    Haight, R. C.; Mathews, G. J.; Ward, R. A.; Woosley, S. E.

    1983-06-01

    The ability to produce secondary radioactive heavy ion beams which can be isolated, focused, and transported to a secondary target can enable reaction studies and other research with the approximately more than 1300 nuclei with decay lifetimes approximately more than 1 microsec. Current research in secondary beam production and future applications in astrophysics, nuclear structure, heavy ion physics, and radiotherapy are examined as well as associated spin off and technology transfer in applied physics.

  10. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  11. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  12. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1985-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  13. Nuclear data for ion beam analysis applications

    NASA Astrophysics Data System (ADS)

    Dimitriou, Paraskevi; Semkova, Valentina; Zerkin, Viktor

    2017-09-01

    Nuclear data for Ion Beam Analysis have been compiled and disseminated by the Nuclear Data Section through the Ion Beam Analysis Nuclear Data Library (IBANDL) for over a decade. Recent efforts to enrich IBANDL with gamma-ray producing nuclear reaction cross sections, and to improve search and retrieval features are presented. The coordinated effort to produce reliable evaluated cross-section data for charged-particle reactions for a wider range of applications is also discussed.

  14. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1985-01-01

    Electron beam experiments using rocketborne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes have been observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2-, 4-, or 8-keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher-energy electrons led the lower-energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. An alternative interpretation is briefly examined, and its relative merit in describing the observations is evaluated. The injection process is discussed in some detail as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection for both processes.

  15. Ion reflection by shock waves and pulse generation by cross-field ion beams

    NASA Astrophysics Data System (ADS)

    Ohsawa, Yukiharu

    2017-02-01

    Comparisons are made of two different particle simulations: one for the study of plasma-based accelerators (Gueroult & Fisch, Phys. Plasmas, vol. 23, 2016, 032113) and the other for the study of shock formation in the interstellar medium (Yamauchi & Ohsawa, Phys. Plasmas, vol. 14, 2007, 053110). In the former, shock waves used for plasma density control create ion beams by reflection. In the latter, a fast and dense beam of exploding ions penetrates a surrounding plasma. In both simulations, magnetic bumps are generated from the motion of ion beams perpendicular to a magnetic field. Despite the apparent differences of their purposes, configurations and spatial scales, the two simulations show strong similarities in the generation processes and effects of the bumps, suggesting that these are not rare plasma phenomena. The bump created by the exploding ions develops into backward and forward magnetosonic pulses.

  16. Autoresonance Cooling of Ions in an Electrostatic Ion Beam Trap

    NASA Astrophysics Data System (ADS)

    Gangwar, R. K.; Saha, K.; Heber, O.; Rappaport, M. L.; Zajfman, D.

    2017-09-01

    Autoresonance (AR) cooling of a bunch of ions oscillating inside an electrostatic ion beam trap is demonstrated for the first time. The relatively wide initial longitudinal velocity distribution is reduced by at least an order of magnitude using AR acceleration and ramping forces. The hot ions escaping the bunch are not lost from the system but continue to oscillate in the trap outside of the bunch and may be further cooled by successive AR processes. Ion-ion collisions inside the bunch close to the turning points in the trap's mirrors contribute to the thermalization of the ions. This cooling method can be applied to any mass and any charge.

  17. A pencil beam algorithm for helium ion beam therapy.

    PubMed

    Fuchs, Hermann; Strobele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar

    2012-11-01

    To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10(7) ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy fall off of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a γ-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the γ-index criterion was exceeded in some areas giving a maximum γ-index of 1.75 and 4.9% of the voxels showed γ-index values larger than one. The calculation precision of the presented algorithm was considered to be sufficient

  18. A pencil beam algorithm for helium ion beam therapy

    SciTech Connect

    Fuchs, Hermann; Stroebele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar

    2012-11-15

    Purpose: To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. Methods: The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10{sup 7} ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. Results: In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy falloff of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a {gamma}-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the {gamma}-index criterion was exceeded in some areas giving a maximum {gamma}-index of 1.75 and 4.9% of the voxels showed {gamma}-index values larger than one. The calculation precision of the

  19. Improving beam spectral and spatial quality by double-foil target in laser ion acceleration

    NASA Astrophysics Data System (ADS)

    Huang, C.-K.; Albright, B. J.; Yin, L.; Wu, H.-C.; Bowers, K. J.; Hegelich, B. M.; Fernández, J. C.

    2011-03-01

    Mid-Z ion driven fast ignition inertial fusion requires ion beams of hundreds of MeV energy and <10% energy spread. The break-out afterburner (BOA) is one mechanism proposed to generate such beams; however, the late stages of the BOA tend to produce too large of an energy spread. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the comoving electrons and improve the ion beam energy spread, leading to ion beams of energy hundreds of MeV and 6% energy spread.

  20. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfven Eigenmodes in the Large Helical Device

    SciTech Connect

    Ogawa, K.; Isobe, M.; Watanabe, F.; Spong, Donald A; Shimizu, A.; Osakabe, M.; Ohdachi, S.; Sakakibara, S.

    2012-01-01

    Beam-ion losses induced by fast-ion-driven toroidal Alfven eigenmodes (TAE) were measured with a scintillator-based lost fast-ion probe (SLIP) in the large helical device (LHD). The SLIP gave simultaneously the energy E and the pitch angle chi = arccos(v(parallel to)/v) distribution of the lost fast ions. The loss fluxes were investigated for three typical magnetic configurations of R{sub ax{_}vac} = 3.60 m, 3.75 m, and 3.90 m, where R{sub ax{_}vac} is the magnetic axis position of the vacuum field. Dominant losses induced by TAEs in these three configurations were observed in the E/chi regions of 50 similar to 190 keV/40 degrees, 40 similar to 170 keV/25 degrees, and 30 similar to 190 keV/30 degrees, respectively. Lost-ion fluxes induced by TAEs depend clearly on the amplitude of TAE magnetic fluctuations, R{sub ax{_}vac} and the toroidal field strength B{sub t}. The increment of the loss fluxes has the dependence of (b{sub TAE}/B{sub t}){sup s}. The power s increases from s = 1 to 3 with the increase of the magnetic axis position in finite beta plasmas.

  1. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  2. Graphene engineering by neon ion beams

    SciTech Connect

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of graphene based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.

  3. Graphene engineering by neon ion beams

    DOE PAGES

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; ...

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of graphenemore » based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.« less

  4. Future Directions in Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Habermehl, Daniel; Combs, Stephanie; Debus, Jürgen

    There is a growing interest in ion beam therapy (IBT) worldwide which has led to an increasing number of new treatment facilities. This development is accompanied by intensive radiobiological, physical and clinical research of both proton therapy (PT) and carbon ion radiotherapy (CIRT). Current developments in IBT with high impact for future challenges will be summarized in this chapter.

  5. Beam current controller for laser ion source

    DOEpatents

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  6. Ion beam parameters of a plasma accelerator

    SciTech Connect

    Nazarov, V.G.; Vinogradov, A.M.; Veselovzorov, A.N.; Efremov, V.K.

    1987-08-01

    The aim of this investigation was to determine the dependences of the current density, the energy, and the divergence of the ion beams of an UZDP-type source (a plasma accelerator with closed electron drift in the accelerator channel and an extended zone of ion acceleration) on the parameters which determine its performance, and to establish qualitative relationships between these values.

  7. Particle radiotherapy with carbon ion beams

    PubMed Central

    2013-01-01

    Carbon ion radiotherapy offers superior dose conformity in the treatment of deep-seated malignant tumours compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. The algorithm of treatment planning and beam delivery system is tailored to the individual parameters of the patient. The present article reviews the available literatures for various disease sites including the head and neck, skull base, lung, liver, prostate, bone and soft tissues and pelvic recurrence of rectal cancer as well as physical and biological properties. PMID:23497542

  8. The Effect of Different Fast-ion Instabilities on the Fast-ion Profile

    NASA Astrophysics Data System (ADS)

    Ruskov, E.; Heidbrink, W.; Liu, D.; Fredrickson, E.; Bortolon, A.

    2014-10-01

    Fast-ion driven instabilities in NSTX take many forms, including steady, bursting, and avalanching toroidal Alfven eigenmodes (TAE), avalanching global AEs, energetic particle modes (EPM), long-lived modes (LLM) and abrupt large-amplitude events (ALE). The occurrence or absence of these modes on Mirnov signals correlates with the ratio of fast-ion to Alfven speed and the ratio of fast-ion to thermal pressure. The drop in neutron rate at these events correlates differently with mode amplitude for the different types of events. In this study, we expand this database to investigate the correlation of vertical fast-ion D-alpha (FIDA) data with the different types of MHD. The measured profiles are compared with classically-predicted profiles. Work supported by US DOE Grant DE-FG02-06ER54867.

  9. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  10. Holifield Radioactive Ion Beam Facility Status

    SciTech Connect

    Stracener, Daniel W; Beene, James R; Dowling, Darryl T; Juras, Raymond C; Liu, Yuan; Meigs, Martha J; Mendez, II, Anthony J; Mueller, Paul Edward; Sinclair, John William; Tatum, B Alan; Sinclair IV, John W

    2009-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) produces high-quality beams of short-lived radioactive isotopes for nuclear science research, and is currently unique worldwide in the ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier. HRIBF is undergoing a multi-phase upgrade. Phase I (completed 2005) was construction of the High Power Target Laboratory to provide the on-going Isotope Separator On-Line (ISOL) development program with a venue for testing new targets, ion sources, and radioactive ion beam (RIB) production techniques with high-power beams. Phase II, which is on schedule for completion in September 2009, is the Injector for Radioactive Ion Species 2 (IRIS2), a second RIB production station that will improve facility reliability and accommodate new ion sources, new RIB production targets, and some innovative RIB purification techniques, including laser applications. The Phase III goal is to substantially improve facility performance by replacing or supplementing the Oak Ridge Isochronous Cyclotron (ORIC) production accelerator with either a high-power 25-50 MeV electron accelerator or a high-current multi-beam commercial cyclotron. Either upgrade is applicable to R&D on isotope production for medical or other applications.

  11. Ion sources and targets for radioactive beams

    SciTech Connect

    Schiffer, J.P.; Back, B.B.; Ahmad, I.

    1995-08-01

    A high-intensity ISOL-type radioactive beam facility depends critically on the performance of the target/ion source system. We developed a concept for producing high-intensity secondary beams of fission fragments, such as {sup 132}Sn, using a two-part target and ion source combination. The idea involves stopping a 1000-kW beam of 200-MeV deuterons in a target of Be or U to produce a secondary beam of neutrons. Just behind the neutron production target is a second target, typically a porous form of UC, coupled to an ISOL-type ion source. In December 1994, we tested this concept with 200-MeV deuterons at low intensity in an experiment at the NSCL. The yields of characteristic gamma rays were measured and confirmed our predictions.

  12. Laser-cooled continuous ion beams

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    A collaboration with a group in Arhus, Denmark, using their storage ring ASTRID, brought about better understanding of ion beams cooled to very low temperatures. The longitudinal Schottky fluctuation noise signals from a cooled beam were studied. The fluctuation signals are distorted by the effects of space charge as was observed in earlier measurements at other facilities. However, the signal also exhibits previously unobserved coherent components. The ions` velocity distribution, measured by a laser fluorescence technique suggests that the coherence is due to suppression of Landau damping. The observed behavior has important implications for the eventual attainment of a crystalline ion beam in a storage ring. A significant issue is the transverse temperature of the beam -- where no direct diagnostics are available and where molecular dynamics simulations raise interesting questions about equilibrium.

  13. Ion beam driven HEDP experiments on NDCX

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Lidia, S.; More, R. M.; Ni, P. A.; Roy, P. K.; Seidl, P. A.; Barnard, J. J.

    2010-11-01

    Intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition, with the capability to heat volumetric samples of any solid-phase target material to high energy density. The WDM conditions are achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm. Initial experiments use a 0.3 MeV, 30-mA K^+ beam from the NDCX-I accelerator to heat foil targets such as Au, Pt, W, Al and Si. The NDCX-1 beam contains a low-intensity uncompressed pulse up to >10 μs of intensity ˜0.4 MW/cm^2, and a high-intensity compressed pulse (FWHM 2-3 ns and fluence ˜4 mJ). WDM experiments heat targets by both the compressed and uncompressed parts of the NDCX-I beam, and explore measurement of temperature, droplet formation and other target parameters. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 2-3 MeV lithium ion beam.

  14. Ion beam driven warm dense matter experiments

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Ni, P. A.; Leitner, M.; Roy, P. K.; More, R.; Barnard, J. J.; Kireeff Covo, M.; Molvik, A. W.; Yoneda, H.

    2007-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments at LBNL are at 0.3-1 MeV K+ beam (below the Bragg peak), increasing toward the Bragg peak in future versions of the accelerator. The WDM conditions are envisioned to be achieved by combined longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. Initial experiments include an experiment to study transient darkening at LBNL; and a porous target experiment at GSI heated by intense heavy-ion beams from the SIS 18 storage ring. Further experiments will explore target temperature and other properties such as electrical conductivity to investigate phase transitions and the critical point.

  15. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  16. Fundamental Concepts of Ion-Beam Processing

    NASA Astrophysics Data System (ADS)

    Averback, R. S.; Bellon, P.

    The basic concepts underlying the response of materials to ion-beam irradiation are outlined. These include the slowing of energetic ions, the creation of defects, sputtering, ion-beam mixing, the acceleration of kinetic processes, and phase transformations. Several examples are cited to illustrate how each of these concepts can be exploited to modify materials in ways not easily achieved, or not even possible, by more conventional processing methods. The chapter attempts to provide a physical understanding of the basic effects of ion-beam irradiation on materials, to enable readers in other areas of research to better understand the more technical chapters that follow, and to develop ideas relevant to their own disciplines. We provide references to more quantitative treatments of the topics covered here.

  17. Surface modification using ionic liquid ion beams

    NASA Astrophysics Data System (ADS)

    Takaoka, Gikan H.; Hamaguchi, Takuya; Takeuchi, Mitsuaki; Ryuto, Hiromichi

    2014-12-01

    We developed an ionic liquid (IL) ion source using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and produced IL ion beams by applying a high electric field between the tip and the extractor. Time-of-flight measurements showed that small cluster and fragment ions were contained in the positive and negative ion beams. The positive and negative cluster ions were deposited on Si(1 0 0) substrates. X-ray photoelectron spectroscopy measurements showed that the composition of the deposited layers was similar to that of an IL solvent. This suggests that a cation (A+) or an anion (B-) was attached to an IL cluster (AB)n, resulting in the formation of positive cluster ions (AB)nA+ or negative cluster ions (AB)nB-, respectively. The surfaces of the IL layers deposited on Si(1 0 0) substrates were flat at an atomic level for positive and negative cluster ion irradiation. Moreover, the contact angles of the deposited layers were similar to that of the IL solvent. Thus, surface modification of Si(1 0 0) substrates was successfully demonstrated with BMIM-PF6 cluster ion beams.

  18. Electron Cooling of Intense Ion Beam

    SciTech Connect

    Dietrich, J.; Kamerdjiev, V.; Maier, R.; Prasuhn, D.; Stein, J.; Stockhorst, H.; Korotaev, Yu.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-03-20

    Results of experimental studies of the electron cooling of a proton beam at COSY (Juelich, Germany) are presented. Intensity of the proton beam is limited by two general effects: particle loss directly after the injection and development of instability in a deep cooled ion beam. Results of the instability investigations performed at COSY during last years are presented in this report in comparison with previous results from HIMAC (Chiba, Japan) CELSIUS (Uppsala, Sweden) and LEAR (CERN). Methods of the instability suppression, which allow increasing the cooled beam intensity, are described. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584.

  19. Fast ion transport induced by saturated infernal mode

    SciTech Connect

    Marchenko, V. S.

    2014-05-15

    Tokamak discharges with extended weak-shear central core are known to suffer from infernal modes when the core safety factor approaches the mode ratio. These modes can cause an outward convection of the well-passing energetic ions deposited in the core by fusion reactions and/or neutral beam injection. Convection mechanism consists in collisional slowing down of energetic ions trapped in the Doppler-precession resonance with a finite-amplitude infernal mode. Convection velocity can reach a few m/s in modern spherical tori. Possible relation of this transport with the enhanced fast ion losses in the presence of “long lived modes” in the MAST tokamak [I. T. Chapman et al., Nucl. Fusion 50, 045007 (2010)] is discussed.

  20. Development of a fast position-sensitive laser beam detector

    SciTech Connect

    Chavez, Isaac; Huang Rongxin; Henderson, Kevin; Florin, Ernst-Ludwig; Raizen, Mark G.

    2008-10-15

    We report the development of a fast position-sensitive laser beam detector. The detector uses a fiber-optic bundle that spatially splits the incident beam, followed by a fast balanced photodetector. The detector is applied to the study of Brownian motion of particles on fast time scales with 1 A spatial resolution. Future applications include the study of molecule motors, protein folding, as well as cellular processes.

  1. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  2. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanisms and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  3. Rhenium ion beam for implantation into semiconductors

    SciTech Connect

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.; Kraevsky, S. V.; Yakushin, P. E.; Khoroshilov, V. V.; Gerasimenko, N. N.; Smirnov, D. I.; Fedorov, P. A.; Temirov, A. A.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics and nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.

  4. Surface processing using water cluster ion beams

    NASA Astrophysics Data System (ADS)

    Takaoka, Gikan H.; Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku

    2013-07-01

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO2, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  5. Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements

    NASA Astrophysics Data System (ADS)

    Reimer, René; Dinklage, Andreas; Wolf, Robert; Dunne, Mike; Geiger, Benedikt; Hobirk, Jörg; Reich, Matthias; ASDEX Upgrade Team; McCarthy, Patrick J.

    2017-04-01

    High precision measurements of fast ion effects on the magnetic equilibrium in the ASDEX Upgrade tokamak have been conducted in a high-power (10 MW) neutral-beam injection discharge. An improved analysis of the spectral motional Stark effect data based on forward-modeling, including the Zeeman effect, fine-structure and non-statistical sub-level distribution, revealed changes in the order of 1% in |B| . The results were found to be consistent with results from the equilibrium solver CLISTE. The measurements allowed us to derive the fast ion pressure fraction to be Δ {{p}\\text{FI}}/{{p}\\text{mhd}}≈ 10 % and variations of the fast ion pressure are consistent with calculations of the transport code TRANSP. The results advance the understanding of fast ion confinement and magneto-hydrodynamic stability in the presence of fast ions.

  6. Numerical simulation of ion rings and ion beam propagation

    NASA Astrophysics Data System (ADS)

    Manofsky, A.

    The development of numerical simulation techniques for studying the physics of ion beams and rings in a background plasma as applicable to certain problems in magnetic and inertial confinement fusion is presented. Two codes were developed for these purposes: RINGA and CIDER. The 2 and 1/2 dimensional particle code RINGA follows the trajectories of ions in their self consistent magnetic field. The code assumes strict charge neutrality and admits currents only in the azimuthal direction. The injection and resistive trapping of ion rings was with RINGA. Modifications to RINGA to include finite pressure of confined plasma and beam ion electron slowing down collisions are discussed. In the CIDER hybrid code, ions are represented by particles and electrons by an inertialess thermal fluid which obeys a generalized Ohm's law. Fields are solved in the quasineutral Darwin approximation. Several collisional and atomic processes are included.

  7. Selection of targets and ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Alton, G.D.

    1995-12-31

    In this report, the authors describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the Holifield Radioactive Ion Beam Facility (HRIBF) as well as prototype ion sources that show promise for future use for RIB applications. A brief review of present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect fast and efficient diffusion release of the short-lived species is also given.

  8. Spectroscopic investigations of beam-plasma interactions in an ion plume

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Peng, X.; Celenza, J. A.; Keefer, D.

    1993-01-01

    We report the results of spectroscopic investigations of beam-plasma interactions in the plume from a 3 cm ion source operated on argon. Ion-electron, ion-neutral, and electron-neutral scattering are identified by studying the dependence of neutral and ion emission intensities on chamber pressure and mass flow rate, and by analyzing the emission lineshapes at a non-orthogonal angle to the plume axis. Through the Doppler shift, we are able to separate contributions from fast beam ions and fast charge-exchange neutrals on the one hand, and of slow neutrals and slow ions on the other. We discuss the application of this new technique to the characterization of beam plasma interactions in the downstream region of ion thruster engines, and its potential for identifying the processes which lead to grid erosion.

  9. Quantitative evaluation of wall heat loads by lost fast ions in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Morimoto, Junki; Suzuki, Yasuhiro; Seki, Ryosuke

    2016-10-01

    In fusion plasmas, fast ions are produced by neutral beam injections (NBI), ion cyclotron heating (ICH) and fusion reactions. Some of fast ions are lost from fusion plasmas because of some kinds of drift and instability. These lost fast ions may cause damages on plasma facing components such as divertors and diagnostic instruments in fusion reactors. Therefore, wall heat loads by lost fast ions in the Large Helical Device (LHD) is under investigation. For this purpose, we have been developing the Monte-Carlo code for the quantitative evaluation of wall heat loads based on following the guiding center orbits of fast ions. Using this code, we investigate wall heat loads and hitting points of lost fast ions produced by NBI in LHD. Magnetic field configurations, which depend on beta values, affect orbits of fast ions and wall heat loads. Therefore, the wall heat loads by fast ions in equilibrium magnetic fields including finite beta effect and magnetic islands are quantitatively evaluated. The differences of wall heat loads and particle deposition patterns for cases of the vacuum field and various beta equilibrium fields will be presented at the meeting.

  10. Neutral Beam Ion Loss Modeling for NSTX

    SciTech Connect

    D. Mikkelsen; D.S. Darrow; L. Grisham; R. Akers; S. Kaye

    1999-06-01

    A numerical model, EIGOL, has been developed to calculate the loss rate of neutral beam ions from NSTX and the resultant power density on the plasma facing components. This model follows the full gyro-orbit of the beam ions, which can be a significant fraction of the minor radius. It also includes the three-dimensional structure of the plasma facing components inside NSTX. Beam ion losses from two plasma conditions have been compared: {beta} = 23%, q{sub 0} = 0.8, and {beta} = 40%, q{sub 0} = 2.6. Global losses are computed to be 4% and 19%, respectively, and the power density on the rf antenna is near the maximum tolerable levels in the latter case.

  11. Radiotherapy with beams of carbon ions

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo; Kraft, Gerhard

    2005-08-01

    In cancer treatment, the introduction of MeV bremsstrahlung photons has been instrumental in delivering higher doses to deep-seated tumours, while reducing the doses absorbed by the surrounding healthy tissues. Beams of protons and carbon ions have a much more favourable dose-depth distribution than photons (called 'x-rays' by medical doctors) and are the new frontiers of cancer radiation therapy. Section 2 presents the status of the first form of hadrontherapy which uses beams of 200-250 MeV protons. The central part of this review is devoted to the discussion of the physical, radiobiological and clinical bases of the use of 400 MeV µ-1 carbon ions in the treatment of radio-resistant tumours. These resist irradiation with photon as well as proton beams. The following section describes the carbon ion facilities that are either running or under construction. Finally, the projects recently approved or proposed are reviewed here.

  12. Ion beam and laser induced surface modifications

    NASA Astrophysics Data System (ADS)

    Appleton, B. R.

    1984-01-01

    The capabilities of energetic ion beam and laser processing of surfaces are reviewed. Ion implantation doping, ion beam mixing, and laser and electron beam processing techniques are capable of producing new and often unique surface properties. The inherent control of these techniques has led to significant advances in our ability to tailor the properties of solids for a wide range of technological applications. Equally important, these techniques have allowed tests of fundamental materials interactions under conditions not heretofore achievable and have resulted in increased understanding of a broad range of materials phenomena. These include new metastable phase formation, rapid nucleation and crystal growth kinetics, amorphous metals and metaglasses, supersaturated solid solutions and substitutional alloys, interface interactions, solute trapping, laser-assisted chemical modifications, and a host of other.

  13. Scanning He+ Ion Beam Microscopy and Metrology

    SciTech Connect

    Joy, David C.

    2011-11-10

    The CD-SEM has been the tool of choice for the imaging and metrology of semiconductor devices for the past three decades but now, with critical dimensions at the nanometer scale, electron beam instruments can no longer deliver adequate performance. A scanning microscope using a He+ ion beam offers superior resolution and depth of field, and provides enhanced imaging contrast. Device metrology performed using ion beam imaging produces data which is comparable to or better than that from a conventional CD-SEM although there are significant differences in the experimental conditions required and in the details of image formation. The charging generated by a He+ beam, and the sample damage that it can cause, require care in operation but are not major problems.

  14. Development of an external beam ion milliprobe

    NASA Astrophysics Data System (ADS)

    MacLaren, Stephan A.

    1990-05-01

    The goals of this Trident Project were the design, construction, testing, and initial application of an external beam ion milliprobe. The ion milliprobe is a tool for elemental analysis that employs the 1.7 million volt tandem electrostatic accelerator in Michelson C-7 to provide a beam of charged particles. The mechanism used for the analysis of elemental concentration is particle induced x ray emission (PIXE). This technique involves detecting and counting the x rays produced when the focused beam of charged particles strikes the sample to be analyzed. The design and construction of several essential specialized devices is described including an electrostatic quadrupole triplet lens, a current measuring collimator, an exit tip, and a sample enclosure. The procedures necessary to align, focus, and determine the size of the beam are discussed. Finally, the results of the initial analysis are evaluated and presented.

  15. Redistribution of fast ions during sawtooth reconnection

    NASA Astrophysics Data System (ADS)

    Jaulmes, F.; Westerhof, E.; de Blank, H. J.

    2014-10-01

    In a tokamak-based fusion power plant, possible scenarios may include regulated sawtooth oscillations to remove thermalized helium from the core of the plasma. During a sawtooth crash, the helium ash and other impurities trapped in the core are driven by the instability to an outer region. However, in a fusion plasma, high energy ions will represent a significant population. We thus study the behaviour of these energetic particles during a sawtooth. This paper presents the modelling of the redistribution of fast ions during a sawtooth reconnection event in a tokamak plasma. Along the lines of the model for the evolution of the flux surfaces during a sawtooth collapse described in Ya.I. Kolesnichenko and Yu.V. Yakovenko 1996 Nucl. Fusion 36 159, we have built a time-dependent electromagnetic model of a sawtooth reconnection. The trajectories of the ions are described by a complete gyro-orbit integration. The fast particles were evolved from specific initial parameters (given energy and uniform spread in pitch) or distributed initially according to a slowing-down distribution created by fusion reactions. Our modelling is used to understand the main equilibrium parameters driving the motions during the collapse and to determine the evolution of the distribution function of energetic ions when different geometries of reconnection are considered.

  16. Interaction of Tearing Modes and Fast Ions in the MST RFP

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Anderson, J. K.; Eilerman, S.; Falk, J.; Koliner, J. J.; Nornberg, M. D.; Waksman, J.; Lin, L.; Liu, D.; Tsidulko, Y.

    2013-10-01

    Energetic ions sourced by a 1 MW, 25 keV, tangential neutral-beam injector (NBI) are well confined in RFP discharges in MST. In beam blip experiments, classical slowing and charge exchange loss can often account for the measured neutron flux decay. While these experiments give a sense of the global fast ion confinement, there are many important details that are lost in such an analysis. To gain insight into the effects of tearing modes on the fast ion distribution, a full orbit particle tracing code (RIO) has been used. RIO is capable of taking as input the 3D time varying electric and magnetic field output from the nonlinear resistive MHD code DEBS. While the tearing modes present in MST do not appear to cause significant direct loss of the highest energy ions due to drift orbit averaging, the ions do begin to interact with the tearing modes as they slow down, leading to a flattening of the ion density profile and an enhancement in the fast ion loss rate. While RIO allows the study of the effect of tearing modes on the fast ions we have also observed, in a separate set of long pulse NBI experiments, that the fast ions affect the tearing modes. Specifically, the core-most tearing mode amplitude is suppressed during NBI with the degree of suppression tracking directly with neutral particle analyzer measurements of the core localized circulating fast ions. The interaction of fast ions with the tearing modes in both beam blip and long pulse experiments will be presented. This work supported by the US DOE and NSF.

  17. Focused-Ion-Beam Material Removal Rates

    DTIC Science & Technology

    1993-09-01

    AD-A270 852 SIll II 111111111 lillI I ARMY RESEARCH LABORATORY Focused -Ion-Beam Material Removal Rates by Bruce GeOl ARL-MR-1 14 September 1993 93...DATES COVERED September 1993 Summary, January 1991-present 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Focused -Ion-Beam Material Removal Rates PE: 91A 6...AUTHOR( S ) Bruce Geil 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION U.S. Army Research Laboratory REPORT NUMBER Attn

  18. A multipurpose fast neutron beam capability at the MASURCA facility

    SciTech Connect

    Dioni, Luca; Stout, Brian

    2015-07-01

    In this paper we investigate the possible future use of the CEA Cadarache MASURCA experimental fast reactor to generate a fairly high-intensity continuous beam of fast neutrons, having energies distributed in the 1 KeV to 5 MeV range. Such an extracted beam of fast neutrons, tailorable in intensity, size and energy, would be rather unique; it would be of interest to neutron-based research and could open a range of new applications at MASURCA. We report the results of numerical simulations which have been performed to evaluate the feasibility of such a beam port and to characterize it spectrally. (authors)

  19. Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ying, C. K.; Bolst, David; Tran, Linh T.; Guatelli, Susanna; Rosenfeld, A. B.; Kamil, W. A.

    2017-05-01

    Heavy-particle therapy such as carbon ion therapy is currently very popular because of its superior conformality in terms of dose distribution and higher Relative Biological Effectiveness (RBE). However, carbon ion beams produce a complex mixed radiation field, which needs to be fully characterised. In this study, the fragmentation of a 290 MeV/u primary carbon ion beam was studied using the Geant4 Monte Carlo Toolkit. When the primary carbon ion beam interacts with water, secondary light charged particles (H, He, Li, Be, B) and fast neutrons are produced, contributing to the dose, especially after the distal edge of the Bragg peak.

  20. Dynamics of the ion-ion acoustic instability in the thermalization of ion beams

    SciTech Connect

    Han, J.H.; Horton, W.; Leboeuf, J.N.

    1992-07-01

    Particle simulation using a nonlinear adiabatic electron response with two streaming ion species and nonlinear theory are used to study the collisionless thermalization of ion beams in a hot electron plasma. The slow beam or subsonic regime is investigated and the criterion for the transition from predominantly light ion to predominantly heavy ion heating is developed. Long-lived ion hole structures a-re observed in the final state.

  1. Ion beam sculpting molecular scale devices

    NASA Astrophysics Data System (ADS)

    Stein, Derek Martin

    We envision solid-state nanopores at the heart of a device capable of detecting, manipulating, and ultimately sequencing individual DNA molecules. To reliably fabricate holes whose diameter is commensurate with that of the DNA molecule (˜2nm), low energy ion beams are employed to tailor the size of holes in solid-state membranes by a new technique we call "ion beam sculpting". The transmission rate of ions through the hole is monitored to provide a direct, real-time measure of the hole area that is used as a feedback signal to trigger the termination of the ion irradiation process when the desired hole size is obtained. The sensitivity of the transmitted ion count rate to atomic-scale material rearrangements at the perimeter of a hole led to a surprising discovery: Low-energy ion beams stimulate the lateral transport of matter when incident on a surface, resulting in the growth of a thin film from the boundary of a hole that closes the hole. The net flow of matter is determined by a competition between sputter erosion, which opens the hole, and a hole closing process that dominates at high temperature and low flux. The timescale for lateral matter transport under ion irradiation is surprisingly long---on the order of a second. Two physical models are proposed to account for the surprising ion-stimulated transport of matter. One model is based on the viscous flow of a stressed surface layer, while the other is based on the diffusion of mobile, ion-stimulated species at the surface of the material into the hole. The predictions of the latter are compared to ion beam sculpting experiments. We exploit ion beam sculpting to fabricate solid-state nanopores used as electronic detectors of individual DNA molecules. In ionic solution, negatively charged DNA molecules are drawn to the nanopore by an applied electrochemical potential, resulting in a detectable characteristic ionic current blockade when a molecules occludes the nanopore. The applicability of the ion sculpting

  2. High-powered pulsed-ion-beam acceleration and transport

    SciTech Connect

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  3. Beam Control for Ion Induction Accelerators

    SciTech Connect

    Sangster, T.C.; Ahle, L.

    2000-02-17

    Coordinated bending and acceleration of an intense space-charge-dominated ion beam has been achieved for the first time. This required the development of a variable waveform, precision, bi-polar high voltage pulser and a precision, high repetition rate induction core modulator. Waveforms applied to the induction cores accelerate the beam as the bi-polar high voltage pulser delivers a voltage ramp to electrostatic dipoles which bend the beam through a 90 degree permanent magnet quadrupole lattice. Further work on emittance minimization is also reported.

  4. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    SciTech Connect

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.

    2008-10-15

    The Doppler-shifted cyclotron resonance ({omega}-k{sub z}v{sub z}={omega}{sub f}) between fast ions and shear Alfven waves is experimentally investigated ({omega}, wave frequency; k{sub z}, axial wavenumber; v{sub z}, fast-ion axial speed; {omega}{sub f}, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li{sup +} source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude {delta} B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8{omega}{sub ci}. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  5. A subnanosecond pulsed ion source for micrometer focused ion beams.

    PubMed

    Höhr, C; Fischer, D; Moshammer, R; Dorn, A; Ullrich, J

    2008-05-01

    A new, compact design of an ion source delivers nanosecond pulsed ion beams with low emittance, which can be focused to micrometer size. By using a high-power, 25 fs laser pulse focused into a gas region of 10(-6) mbar, ions at very low temperatures are produced in the small laser focal volume of 5 mum diameter by 20 mum length through multiphoton ionization. These ions are created in a cold environment, not in a hot plasma, and, since the ionization process itself does not significantly heat them, have as a result essentially room temperature. The generated ion pulse, up to several thousand ions per pulse, is extracted from the source volume with ion optical elements that have been carefully designed by simulation calculations. Externally triggered, its subnanosecond duration and even smaller time jitter allow it to be superimposed with other pulsed particle or laser beams. It therefore can be combined with any type of collision experiment where the size and the time structure of the projectile beam crucially affect the achievable experimental resolution.

  6. Beam dynamics in heavy ion fusion

    SciTech Connect

    Seidl, P.

    1995-04-01

    A standard design for heavy ion fusion drivers under study in the US is an induction linac with electrostatic focusing at low energy and magnetic focusing at higher energy. The need to focus the intense beam to a few-millimeter size spot at the deuterium-tritium target establishes the emittance budget for the accelerator. Economic and technological considerations favor a larger number of beams in the low-energy, electrostatic-focusing section than in the high-energy, magnetic-focusing section. Combining four beams into a single focusing channel is a viable option, depending on the growth in emittance due to the combining process. Several significant beam dynamics issues that are, or have been, under active study are discussed: large space charge and image forces, beam wall clearances, halos, alignment, longitudinal instability, and bunch length control.

  7. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Chang, O.; Wang, J.

    2011-05-20

    Full particle PIC simulations are performed to study the neutralization of an ion beam in the cohesionless, mesothermal regime. Simulations further confirmed that neutralization is achieved through interactions between the trapped electrons and the potential well established by the propagation of the beam front along the beam direction and is not through plasma instabilities as previous studies suggested. In the transverse direction, the process is similar to that of the expansion of mesothermal plasma into vacuum. Parametric simulations are also performed to investigate the effects of beam radius and domain boundary condition on the neutralization process. The results suggests that, while the qualitative behavior may be similar in ground tests, quantitative parameters such as the beam potential will be affected significantly by the vacuum chamber because of the limits imposed on the expansion process by the finite chamber space.

  8. ALLIGATOR - An apparatus for ion beam assisted deposition with a broad-beam ion source

    NASA Astrophysics Data System (ADS)

    Wituschek, H.; Barth, M.; Ensinger, W.; Frech, G.; Rück, D. M.; Leible, K. D.; Wolf, G. K.

    1992-04-01

    Ion beam assisted deposition is a versatile technique for preparing thin films and coatings for various applications. Up to now a prototype setup for research purposes has been used in our laboratory. Processing of industrial standard workpieces requires a high current ion source with broad beam and high uniformity for homogeneous bombardment. In this contribution a new apparatus for large area samples will be described. It is named ALLIGATOR (German acronym of facility for ion assisted evaporation on transverse movable or rotary targets). In order to have a wide energy range available two ion sources are used. One delivers a beam energy up to 1.3 keV. The other is suitable for energies from 5 keV up to 40 keV. The ``high-energy'' ion source is a multicusp multiaperture source with 180-mA total current and a beam diameter of 280 mm at the target position.

  9. Fermilab HINS Proton Ion Source Beam Measurements

    SciTech Connect

    Tam, W.M.; Apollinari, G.; Chaurize, S.; Hays, S.; Romanov, G.; Scarpine, V.; Schmidt, C.; Webber, R.; /Fermilab

    2009-05-01

    The proton ion source for the High Intensity Neutrino Source (HINS) Linac front-end at Fermilab has been successfully commissioned. It produces a 50 keV, 3 msec beam pulse with a peak current greater than 20mA at 2.5Hz. The beam is transported to the radio-frequency quadrupole (RFQ) by a low energy beam transport (LEBT) that consists of two focusing solenoids, four steering dipole magnets and a beam current transformer. To understand beam transmission through the RFQ, it is important to characterize the 50 keV beam before connecting the LEBT to the RFQ. A wire scanner and a Faraday cup are temporarily installed at the exit of the LEBT to study the beam parameters. Beam profile measurements are made for different LEBT settings and results are compared to those from computer simulations. In lieu of direct emittance measurements, solenoid variation method based on profile measurements is used to reconstruct the beam emittance.

  10. Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Rosenberg, A. L.; Menard, J. E.; Wilson, J. R.; Medley, S. S.; Andre, R.; Phillips, C. K.; Darrow, D. S.; LeBlanc, B. P.; Redi, M. H.; Fisch, N. J.; NSTX Team, Harvey, R. W.; Mau, T. K.; Jaeger, E. F.; Ryan, P. M.; Swain, D. W.; Sabbagh, S. A.; Egedal, J.

    2004-05-01

    Ion absorption of the high harmonic fast wave in a spherical torus [Y.-K. M. Peng et al., Nucl. Fusion 26, 769 (1986)] is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] shots has revealed that under some conditions when neutral beam and rf power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the rf-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is a rf interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering are presented, along with results from the TRANSP [R. J. Hawryluk, Physics of Plasmas Close to Thermonuclear Conditions 1, 19 (1981); J. P. H. E. Ongena et al., Fusion Technol. 33, 181 (1998)] transport analysis code, ray-tracing codes HPRT [J. Menard et al., Phys. Plasmas 6, 2002 (1999)], and CURRAY [T. K. Mau et al., RF Power in Plasmas: 13th Topical Conference (1999), p. 148], full-wave code AORSA [E. F. Jaeger et al., RF Power in Plasmas: 14th Topical Conference, 2001, p. 369], quasilinear code CQL3D [R. W. Harvey et al., in Proceedings of the IAEA TCM on Advances in Simulation and Modeling of Thermonuclear Plasmas, 1992], and ion loss codes EIGOL [D. S. Darrow et al., in Proceedings of the 6th IAEA TCM on

  11. Fast wave current drive in neutral beam heated plasmas on DIII-D

    SciTech Connect

    Petty, C.C.; Forest, C.B.; Pinsker, R.I.

    1997-04-01

    The physics of non-inductive current drive and current profile control using the fast magnetosonic wave has been demonstrated on the DIII-D tokamak. In non-sawtoothing discharges formed by neutral beam injection (NBI), the radial profile of the fast wave current drive (FWCD) was determined by the response of the loop voltage profile to co, counter, and symmetric antenna phasings, and was found to be in good agreement with theoretical models. The application of counter FWCD increased the magnetic shear reversal of the plasma and delayed the onset of sawteeth, compared to co FWCD. The partial absorption of fast waves by energetic beam ions at high harmonics of the ion cyclotron frequency was also evident from a build up of fast particle pressure near the magnetic axis and a correlated increase in the neutron rate. The anomalous fast particle pressure and neutron rate increased with increasing NBI power and peaked when a harmonic of the deuterium cyclotron frequency passed through the center of the plasma. The experimental FWCD efficiency was highest at 2 T where the interaction between the fast waves and the beam ions was weakest; as the magnetic field strength was lowered, the FWCD efficiency decreased to approximately half of the maximum theoretical value.

  12. Radioactive Ion Beam Production Capabilities at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Beene, James R; Dowling, Darryl T; Gross, Carl J; Juras, Raymond C; Liu, Yuan; Meigs, Martha J; Mendez, II, Anthony J; Nazarewicz, Witold; Sinclair, John William; Stracener, Daniel W; Tatum, B Alan

    2011-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility for research with radioactive ion beams (RIBs) that has been in routine operation since 1996. It is located at Oak Ridge National Laboratory (ORNL) and operated by the ORNL Physics Division. The principal mission of HRIBF is the production of high-quality beams of short-lived radioactive isotopes to support research in nuclear structure physics and nuclear astrophysics. HRIBF is currently unique worldwide in its ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier for nuclear reactions.

  13. Reversal ion source - A new source of negative ion beams

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.; Alajajian, S. H.

    1985-01-01

    A new type of ion source utilizing beams of electrons and target molecules, rather than a diffuse, volume plasma, is described. The source utilizes an electrostatic electron 'mirror' which reverses trajectories in an electron beam, producing electrons at their turning point having a distribution of velocities centered at zero velocity. A gas which attaches zero-velocity electrons is introduced at this turning point. Negative ions are produced by an attachment or dissociative attachment process. For many of the thermal electron-attaching molecules the cross sections can be quite large, varying as the inverse square root of the electron energy or just the s-wave threshold law. The efficiency and current density of the ion source for production of Cl(-) through the large, thermal energy attachment process is estimated. It is argued that the source can be used for the production of negative ions through attachment resonances located at higher energies as well.

  14. [Heavy charged particles radiotherapy--mainly carbon ion beams].

    PubMed

    Yanagi, Takeshi; Tsuji, Hiroshi; Tsujii, Hirohiko

    2003-12-01

    Carbon ion beams have superior dose distribution allowing selective irradiation to the tumor while minimizing irradiation to the surrounding normal tissues. Furthermore, carbon ions produce an increased density of local energy deposition with high-energy transfer (LET) components, resulting in radiobiological advantages. Stimulated by the favorable results in fast neutrons, helium ions, and neon ions, a clinical trial of carbon ion therapy was begun at the National Institute of Radiological Sciences in 1994. Carbon ions were generated by a medically dedicated accelerator (HIMAC, Heavy Ion Medical Accelerator in Chiba, Japan), which was the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. In general, patients were selected for treatment when their tumors could not be expected to respond favorably to conventional forms of therapy. A total of 1601 patients were registered in this clinical trial so far. The normal tissue reactions were acceptable, and there were no carbon related deaths. Carbon ion radiotherapy seemed to be a clinically feasible curative treatment modality, and appears to offer improved results not only over conventional X-rays but also even over surgery in some selected carcinomas.

  15. A tangentially viewing fast ion D-alpha diagnostic for NSTX

    SciTech Connect

    Bortolon, A.; Heidbrink, W. W.; Podesta, M.

    2010-10-15

    A second fast ion D-alpha (FIDA) installation is planned at NSTX to complement the present perpendicular viewing FIDA diagnostics. Following the present diagnostic scheme, the new diagnostic will consist of two instruments: a spectroscopic diagnostic that measures fast ion spectra and profiles at 16 radial points with 5-10 ms resolution and a system that uses a band pass filter and photomultiplier to measure changes in FIDA light with 50 kHz sampling rate. The new pair of FIDA instruments will view the heating beams tangentially. The viewing geometry minimizes spectral contamination by beam emission or edge sources of background emission. The improved velocity-space resolution will provide detailed information about neutral-beam current drive and about fast ion acceleration and transport by injected radio frequency waves and plasma instabilities.

  16. Extraction Simulations and Emittance Measurements of a Holifield Radioactive Ion Beam Facility Electron Beam Plasma Source for Radioactive Ion Beams

    SciTech Connect

    Mendez, II, Anthony J; Liu, Yuan

    2010-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory has a variety of ion sources used to produce radioactive ion beams (RIBs). Of these, the workhorse is an electron beam plasma (EBP) ion source. The recent addition of a second RIB injector, the Injector for Radioactive Ion Species 2 (IRIS2), for the HRIBF tandem accelerator prompted new studies of the optics of the beam extraction from the EBP source. The source was modeled using SIMION V8.0, and results will be presented, including comparison of the emittances as predicted by simulation and as measured at the HRIBF offline ion source test facilities. Also presented will be the impact on phase space shape resulting from extraction optics modifications implemented at IRIS2.

  17. Ion-beam etching enhances adhesive bonding

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Sovey, J. S.

    1980-01-01

    Metals and fluoropolymers exposed to 0.5 to 1.0 keV argon ions at current densities of 0.2 to 1.5 mA/sq cm develop surface texturing that increases tensile and shear strength of epoxy bonds. Bonds are 46 to 100 percent stronger than those of chemically etched surfaces. Metals require 3 to 4 hours of bombardment to become properly textured. Fluoropolymers require 5 seconds to 30 minutes. Ion beam will not texture nickel. Unlike chemical treatments, bonding of fluoropolymers can be done days or months after ion treatment.

  18. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  19. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  20. Ion beam analysis techniques in interdisciplinary applications

    SciTech Connect

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-11-16

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  1. Ion Beam Analysis Techniques in Interdisciplinary Applications

    SciTech Connect

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-12-31

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  2. Metal assisted focused-ion beam nanopatterning

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates.

  3. Graphene engineering by neon ion beams

    NASA Astrophysics Data System (ADS)

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-03-01

    Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne+ beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

  4. Beam monitor calibration in scanned light-ion beams.

    PubMed

    Palmans, Hugo; Vatnitsky, Stanislav M

    2016-11-01

    To propose a formalism for the reference dosimetry of scanned light-ion beams consistent with IAEA TRS-398 and Alfonso et al. [Med. Phys. 35, 5179-5186 (2008)]. To identify machine-specific reference (msr) fields and plan-class specific reference (pcsr) fields consistent with the definitions given by Alfonso et al. To review the literature of beam monitor calibration in scanned beams using three different methods in terms of this common formalism. Four types of msr fields are identified as those that are meant to calibrate the beam monitor for scanned beams with particular energies. Two types of pcsr fields are identified as those that are meant to apply one or more tuning factors to the entire delivery chain. The formalism establishes the energy-dependent relation between the number of particles incident on the phantom surface and the beam monitor reading and distinguishes three routes to determine the beam monitor calibration function: (i) the use of a calibrated reference ionization chamber in a single-layer scanned beam, (ii) the use of a cross-calibrated large-area parallel plate ionization chamber in a single-energy beamlet, and (iii) the use of a calibrated reference ionization chamber in a box field to adjust a calibration curve obtained by a Faraday cup or an ionization chamber. Examples of all three methods and comparisons between them from the literature are analysed. The formalism can form the basis of future dosimetry recommendations for scanned particle beams and the analysis of the literature data in terms of this formalism can form the basis of data compilations for the application of the dosimetry procedures.

  5. Fokker-Planck model for collisional loss of fast ions in tokamaks

    NASA Astrophysics Data System (ADS)

    Yavorskij, V.; Goloborod'ko, V.; Schoepf, K.

    2016-11-01

    Modelling of the collisional loss of fast ions from tokamak plasmas is important from the point of view of the impact of fusion alphas and neutral beam injection ions on plasma facing components as well as for the development of diagnostics of fast ion losses [1-3]. This paper develops a Fokker-Planck (FP) method for the assessment of distributions of collisional loss of fast ions as depending on the coordinates of the first wall surface and on the velocities of lost ions. It is shown that the complete 4D drift FP approach for description of fast ions in axisymmetric tokamak plasmas can be reduced to a 2D FP problem for lost ions with a boundary condition delivered by the solution of a 3D boundary value problem for confined ions. Based on this newly developed FP approach the poloidal distribution of neoclassical loss, depending on pitch-angle and energy, of fast ions from tokamak plasma may be examined as well as the contribution of this loss to the signal detected by the scintillator probe may be evaluated. It is pointed out that the loss distributions obtained with the novel FP treatment may serve as an alternative approach with respect to Monte-Carlo models [4, 5] commonly used for simulating fast ion loss from toroidal plasmas.

  6. The Collinear Fast Beam laser Spectroscopy (CFBS) experiment at TRIUMF

    NASA Astrophysics Data System (ADS)

    Voss, A.; Procter, T. J.; Shelbaya, O.; Amaudruz, P.; Buchinger, F.; Crawford, J. E.; Daviel, S.; Mané, E.; Pearson, M. R.; Tamimi, W. Al

    2016-03-01

    Laser spectroscopy experiments at radioactive ion beam facilities around the world investigate properties of exotic nuclei for scientific endeavours such as, but not limited to, the investigation of nuclear structure. Advancements in experimental sensitivity and performance are continuously needed in order to extend the reach of nuclei that can be measured. The collinear fast beam laser spectroscopy (CFBS) setup at TRIUMF, coupled to an out-of-plane radio-frequency quadrupole Paul trap, enables measurements of some of the most fundamental nuclear properties for long-lived ground and isomeric states. The first comprehensive overview of the CFBS experiment is provided along with descriptions of key developments that extend the reach of laser spectroscopy experiments. A novel data acquisition technique structured around three-dimensional spectra is presented, where the integration of a custom multi-channel-scalar provides photon counts correlated with arrival time and acceleration voltage for post-experiment analysis. In addition, new rapid light manipulation techniques are discussed that suppress undesirable hyperfine pumping effects and regain losses in experimental efficiency.

  7. First absolute measurements of fast-ion losses in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ramos, M.; Garcia-Munoz, M.; Jimenez-Ramos, M. C.; Garcia Lopez, J.; Galdon-Quiroga, J.; Sanchis-Sanchez, L.; Ayllon-Guerola, J.; Faitsch, M.; Gonzalez-Martin, J.; Hermann, A.; de Marne, P.; Rivero-Rodriguez, J. F.; Sieglin, B.; Snicker, A.; the ASDEX Upgrade Team

    2017-10-01

    A new diagnostic technique that allows to obtain absolute fluxes of fast-ion losses measured with absolutely calibrated scintillator based fast-ion loss detectors (FILD) is presented here. First absolute fluxes of fast-ion losses have been obtained in the ASDEX Upgrade tokamak. An instrument function that includes the scintillator efficiency, collimator geometry, optical transmission and camera efficiency has been constructed. The scintillator response to deuterium ions in the relevant energy range of fast-ions has been characterized using a tandem accelerator. Absolute flux of neutral beam injection (NBI) prompt losses has been obtained in magnetohydrodynamic quiescent plasmas. The temporal evolution of the heat load measured with FILD follows that measured at the FILD entrance obtained with an Infra-Red camera looking at the FILD detector head. ASCOT simulations are in good agreement with the absolute heat load of NBI prompt losses measured with FILD.

  8. Laser-cooled bunched ion beam

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  9. Surface alloying by ion, electron and laser beams

    SciTech Connect

    Rehn, L.E.; Picraux, S.T.; Wiedersich, H.

    1986-01-01

    This book presents the papers given at a conference on the surface treatments of alloys using ion, electron, and laser beams. Topics considered at the conference included energy deposition, heat flow, rapid solidification, physical radiation effects, ion implantation, ion-irradiated materials, microstructure, solute redistribution, surface-melted alloys, solute trapping in ion-implanted metals, and the industrial applications of ion beam processes.

  10. Ion beam deposition in materials research

    NASA Astrophysics Data System (ADS)

    Zuhr, R. A.; Pennycook, S. J.; Noggle, T. S.; Herbots, N.; Haynes, T. E.; Appleton, B. R.

    1989-02-01

    Ion beam deposition (IBD) is the direct formation of thin films using a low-energy (tens of eV) mass-analyzed ion beam. The process allows depositions in which the energy, isotopic species, deposition rate, defect production, and many other beam and sample parameters can be accurately controlled. This paper will review recent research at ORNL on the IBD process and the effects of deposition parameters on the materials properties of deposited thin films, epitaxial layers, and isotopic heterostructures. A variety of techniques including ion scattering/channeling, cross-sectional transmission electron microscopy, scanning electron microscopy, and Auger spectroscopy has been used for analysis. The fabrication of isotopic heterostructures of 74Ge and 30Si will be discussed, as well as the fabrication of metal and semiconductor overlayers on Si and Ge. The use of IBD for low-temperature epitaxy of 30Si on Si and 76Ge on Ge will be presented. The use of self-ion sputter cleaning and in situ reactive ion cleaning as methods for preparing single-crystal substrates for epitaxial deposition will be discussed. Examples of IBD formation of oxides and suicides on Si at low temperatures will also be presented.

  11. Measurements of Escaping Fast Ions at the DIII-D Vessel Wall

    NASA Astrophysics Data System (ADS)

    Pickering, L. D.; Heidbrink, W. W.; Zhu, Y.

    2006-10-01

    The loss of fast ions is detected by two pairs of thin foil Faraday collectors [1] that are installed just behind the graphite first wall in a vacuum port. Collimating apertures select fast ions that have energies >10 keV and that travel either with or against the plasma current. The strong correlation of beam-ion loss detector (BILD) signals with neutral beam modulation shows that, under appropriate conditions, prompt losses from nearly every beam source are detected. Orbit calculations indicate that the correlation occurs when injected neutrals are deposited at a location that “connects” with an orbit observed by the detector; as expected, these correlations depend strongly on plasma current. In addition to these classical effects, enhanced signals sometimes occur during ion cyclotron heating (presumably due to parametric decay instabilities) and during Alfvén activity (due to transport by the instabilities). 6pt[1] F.E. Cecil, et al., Rev. Sci. Instrum. 74, 1747 (2003).

  12. MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE

    DOEpatents

    Ellis, R.E.

    1962-02-27

    A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)

  13. Radioactive Ion Beam Purification by Selective Adsorption

    NASA Astrophysics Data System (ADS)

    Jost, C.; Carter, H. K.; Griffith, B. O.; Reed, C. A.; Kratz, K.-L.; Stora, T.; Stracener, D. W.

    2008-10-01

    Isobaric contaminations in ISOL beams are a recurrent problem in nuclear physics experiments. Surface effects in the transfer line between target and ion source can be employed to achieve additional selectivity. Since interactions of the atoms' outer electrons with the surface determine adsorption behavior it can change drastically within an isobaric chain, introducing a chemical selectivity. Quartz transfer lines are currently applied at ISOLDE to reduce alkali contaminations [1]. We will conduct an on-line study of the adsorption behavior of fission products on a range of materials stable at high temperatures. Therefore a special target--ion source unit with a variable-temperature transfer line and interchangeable liner has been constructed in collaboration with the ISOLDE technical group. Results of first tests using new adsorption materials at the on-line separator test facility at Holifield Radioactive Ion Beam Facility, ORNL, will be presented. [1] Bouquerel et al., Europ. Phys. J. -- Spec. Top. 150, 277 (2006)

  14. Physics of gas breakdown for ion beam transport in gas

    SciTech Connect

    Olson, C.L.; Poukey, J.W.; Hinshelwood, D.D.; Rose, D.V.; Hubbard, R.F.; Lampe, M.; Neri, J.M.; Ottinger, P.F.; Slinker, S.P.; Stephanakis, S.J.; Young, F.C.; Welch, D.R.

    1993-06-01

    Detailed analysis, experiments, and computer simulations are producing a new understanding of gas breakdown during intense ion beam transport in neutral gas. Charge neutralization of beam micro clumps is shown to limit the net clump potentials to a non-zero value {phi}{sub min}, which can lead to divergence growth and axial energy spreading. At pressures {approx_gt} 1 Torr, plasma shielding should substantially reduce this effect. Current neutralization has been studied in experiments on the GAMBLE II accelerator. The importance of fast electrons (knockons and runaways) has been established in IPROP simulations, which are in agreement with the experiments. For light ion fusion parameters with pressures {approx_gt} 1 Torr, very small net current fractions ({much_lt} 1%) appear feasible, permitting ballistic transport in gas. Self-pinched transport requires higher net current fractions ({ge} 2%) and preliminary IPROP code results indicate that this appears achievable for small-radius intense beams in lower pressure gases ({approx_lt}Torr). Several self-pinched transport concepts look promising. The importance of these results for both light ion fusion and heavy ion fusion is discussed.

  15. Beam expander telescope design utilizing fast spherical primaries.

    PubMed

    Southwell, W H

    1979-04-15

    An exact geometrical ray analysis has been used to derive the profiles for telescope secondaries that perfectly recollimate beams incident on fast concave spherical mirrors. Both Cassegrainian and Gregorian configurations are possible. The high magnification designs tend to redistribute the energy profile and may be used, for example, to make Gaussian beams more uniform.

  16. Numerical Simulation of Ion Rings and Ion Beam Propagation.

    NASA Astrophysics Data System (ADS)

    Mankofsky, Alan

    This thesis presents the development of numerical simulation techniques for studying the physics of ion beams and rings in a background plasma as applicable to certain problems in magnetic and inertial confinement fusion. Two codes have been developed for these purposes: RINGA and CIDER. The 2 and 1/2-dimensional (r,z,v(,r),v(,(theta)),v(,z); (PAR-DIFF)/(PAR-DIFF)(theta) = 0) particle code RINGA follows the trajectories of ions in their self-consistent magnetic field. The code assumes strict charge neutrality and admits currents only in the azimuthal direction, i.e., (PHI) = J(,r) = J(,z) = 0. The injection and resistive trapping of ion rings has been studied with RINGA. The number of particles trapped as a fraction of the total number injected N is found to be strongly dependent upon (1) N (in the range 2.85 x 10('16) - 3.99 x 10('17)) and (2) mirror ratios in the system (1.05 -1.14), and more weakly dependent upon (3) wall resistance per unit length (0.72 (OMEGA)/cm - 1.80 (OMEGA)/cm) and (4) beam divergence (0(DEGREES)-6(DEGREES)). Fractions of trapped particles in excess of 0.9 have been observed. Modifications to RINGA to include finite pressure of confined plasma and beam ion-electron slowing down collisions are discussed. Finite plasma pressure leads to a diamagnetic current which increases the field reversal factor in ion ring equilibria, while causing the closed flux surfaces to expand outward. The ideal magnetohydrodynamic stability of the plasma is analyzed in the high toroidal mode number limit, where the beam ions are noninteracting. The existence of stable high-(beta) equilibria is demonstrated. One such equilibrium, stable to both ideal interchange and ballooning modes, has <(beta)> (TBOND) 8(pi) / (DBLTURN) 55%. In the CIDER hybrid code, ions are represented by particles and electrons by an inertialess thermal fluid which obeys a generalized Ohm's law. Fields are solved in the quasineutral Darwin approximation. Several collisional and atomic

  17. High sensitivity charge amplifier for ion beam uniformity monitor

    DOEpatents

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  18. Silicon ion irradiation effects on the magnetic properties of ion beam synthesized CoPt phase

    SciTech Connect

    Balaji, S.; Amirthapandian, S.; Panigrahi, B. K.; Mangamma, G.; Kalavathi, S.; Gupta, Ajay; Nair, K. G. M.

    2012-06-05

    Ion beam mixing of Pt/Co bilayers using self ion (Pt{sup +}) beam results in formation of CoPt phase. Upon ion beam annealing the ion mixed samples using 4 MeV Si{sup +} ions at 300 deg. C, diffusion of Co towards the Pt/Co interface is observed. The Si{sup +} ion beam rotates the magnetization of the CoPt phase from in plane to out of plane of the film.

  19. Ion energy distribution near a plasma meniscus with beam extraction for multi element focused ion beams

    SciTech Connect

    Mathew, Jose V.; Paul, Samit; Bhattacharjee, Sudeep

    2010-05-15

    An earlier study of the axial ion energy distribution in the extraction region (plasma meniscus) of a compact microwave plasma ion source showed that the axial ion energy spread near the meniscus is small ({approx}5 eV) and comparable to that of a liquid metal ion source, making it a promising candidate for focused ion beam (FIB) applications [J. V. Mathew and S. Bhattacharjee, J. Appl. Phys. 105, 96101 (2009)]. In the present work we have investigated the radial ion energy distribution (IED) under the influence of beam extraction. Initially a single Einzel lens system has been used for beam extraction with potentials up to -6 kV for obtaining parallel beams. In situ measurements of IED with extraction voltages upto -5 kV indicates that beam extraction has a weak influence on the energy spread ({+-}0.5 eV) which is of significance from the point of view of FIB applications. It is found that by reducing the geometrical acceptance angle at the ion energy analyzer probe, close to unidirectional distribution can be obtained with a spread that is smaller by at least 1 eV.

  20. Development of a beam ion velocity detector for the heavy ion beam probe

    NASA Astrophysics Data System (ADS)

    Fimognari, P. J.; Crowley, T. P.; Demers, D. R.

    2016-11-01

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  1. Development of a beam ion velocity detector for the heavy ion beam probe

    SciTech Connect

    Fimognari, P. J. Crowley, T. P.; Demers, D. R.

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  2. EDITORIAL: Negative ion based neutral beam injection

    NASA Astrophysics Data System (ADS)

    Hemsworth, R. S.

    2006-06-01

    It is widely recognized that neutral beam injection (NBI), i.e. the injection of high energy, high power, beams of H or D atoms, is a flexible and reliable system that has been the main heating system on a large variety of fusion devices, and NBI has been chosen as one of the three heating schemes of the International Tokomak Reactor (ITER). To date, all the NBI systems but two have been based on the neutralization (in a simple gas target) of positive hydrogen or deuterium ions accelerated to <100 keV/nucleon. Above that energy the neutralization of positive ions falls to unacceptably low values, and higher energy neutral beams have to be created by the neutralization of accelerated negative ions (in a simple gas target), as this remains high (approx60%) up to >1 MeV/nucleon. Unfortunately H- and D- are difficult to create, and the very characteristic that makes them attractive, the ease with which the electron is detached from the ion, means that it is difficult to create high concentrations or fluxes of them, and it is difficult to avoid substantial, collisional, losses in the extraction and acceleration processes. However, there has been impressive progress in negative ion sources and accelerators over the past decade, as demonstrated by the two pioneering, operational, multi-megawatt, negative ion based, NBI systems at LHD (180 keV, H0) and JT-60U (500 keV, D0), both in Japan. Nevertheless, the system proposed for ITER represents a substantial technological challenge as an increase is required in beam energy, to 1 MeV, D0, accelerated ion (D-) current, to 40 A, accelerated current density, 200 A m-2 of D-, and pulse length, to 1 h. At the Fourth IAEA Technical Meeting on Negative Ion Based Neutral Beam Injectors, hosted by the Consorzio RFX, Padova, Italy, 9-11 May 2005, the status of the R&D aimed at the realization of the injectors for ITER was presented. Because of the importance of this development to the success of the ITER project, participants at that

  3. Fast damping in mismatched high intensity beam transportation

    NASA Astrophysics Data System (ADS)

    Variale, V.

    2001-08-01

    A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571-1582 (1999) and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999), p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  4. Channeling technique to make nanoscale ion beams

    NASA Astrophysics Data System (ADS)

    Biryukov, V. M.; Bellucci, S.; Guidi, V.

    2005-04-01

    Particle channeling in a bent crystal lattice has led to an efficient instrument for beam steering at accelerators [Biryukov et al., Crystal Channeling and its Application at High Energy Accelerators, Springer, Berlin, 1997], demonstrated from MeV to TeV energies. In particular, crystal focusing of high-energy protons to micron size has been demonstrated at IHEP with the results well in match with Lindhard (critical angle) prediction. Channeling in crystal microstructures has been proposed as a unique source of a microbeam of high-energy particles [Bellucci et al., Phys. Rev. ST Accel. Beams 6 (2003) 033502]. Channeling in nanostructures (single-wall and multi-wall nanotubes) offers the opportunities to produce ion beams on nanoscale. Particles channeled in a nanotube (with typical diameter of about 1 nm) are trapped in two dimensions and can be steered (deflected, focused) with the efficiency similar to that of crystal channeling or better. This technique has been a subject of computer simulations, with experimental efforts under way in several high-energy labs, including IHEP. We present the theoretical outlook for making channeling-based nanoscale ion beams and report the experience with crystal-focused microscale proton beams.

  5. Stencil mask technology for ion beam lithography

    NASA Astrophysics Data System (ADS)

    Ehrmann, Albrecht; Huber, Sabine; Kaesmaier, Rainer; Oelmann, Andreas B.; Struck, Thomas; Springer, Reinhard; Butschke, Joerg; Letzkus, Florian; Kragler, Karl; Loeschner, Hans; Rangelow, Ivo W.

    1998-12-01

    Ion beam lithography is one of the most promising future lithography technologies. A helium or hydrogen ion beam illuminates a stencil membrane mask and projects the image with 4X reduction to the wafer. The development of stencil masks is considered to be critical for the success of the new technology. Since 1997, within the European Ion Projection Lithography MEDEA (Microelectronic Devices for European Applications) project silicon stencil masks based on a wafer- flow process are developed. They are produced in a conventional wafer line. Six inch SOI (silicon-on-insulator) wafers are patterned with an e-beam wafer writing tool, then trenches are etched by plasma etching. Afterwards, the membrane is etched by wet etch using the SOI-oxide layer as an etch stop. The last step is to add a coating layer, which is sputtered onto the membrane. It protects the mask against ion irradiation damage. For metrology and inspection, methods used for conventional chromium masks as well as new techniques are investigated. Results from placement measurements on the Leica LMS IPRO tool will be presented. Finally, methods for CD measurement, defect inspection, repair and in-situ-cleaning in the stepper will be discussed, including experimental information of first tests.

  6. Ion beam emittance from an ECRIS

    SciTech Connect

    Spädtke, P. Lang, R.; Mäder, J.; Maimone, F.; Schlei, B. R.; Tinschert, K.; Biri, S.; Rácz, R.

    2016-02-15

    Simulation of ion beam extraction from an Electron Cyclotron Resonance Ion Source (ECRIS) is a fully 3 dimensional problem, even if the extraction geometry has cylindrical symmetry. Because of the strong magnetic flux density, not only the electrons are magnetized but also the Larmor radius of ions is much smaller than the geometrical dimension of the plasma chamber (Ø 64 × 179 mm). If we assume that the influence of collisions is small on the path of particles, we can do particle tracking through the plasma if the initial coordinates of particles are known. We generated starting coordinates of plasma ions by simulation of the plasma electrons, accelerated stochastically by the 14.5 GHz radio frequency power fed to the plasma. With that we were able to investigate the influence of different electron energies on the extracted beam. Using these assumptions, we can reproduce the experimental results obtained 10 years ago, where we monitored the beam profile with the help of viewing targets. Additionally, methods have been developed to investigate arbitrary 2D cuts of the 6D phase space. To this date, we are able to discuss full 4D information. Currently, we extend our analysis tool towards 5D and 6D, respectively.

  7. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  8. NSUF Ion Beam Investment Options Workshop Report

    SciTech Connect

    Heidrich, Brenden John

    2016-03-01

    The workshop that generated this data was convened to develop a set of recommendations (a priority list) for possible funding in the area of US domestic ion beam irradiation capabilities for nuclear energy-focused RD&D. The results of this workshop were intended for use by the Department of Energy - Office of Nuclear Energy (DOE-NE) for consideration of support for these facilities. The workshop considered, as part of the initial potential future support discussions, input submitted through the Office of Nuclear Energy Request for Information (RFI) (DE-SOL-0008318, April 13, 2015), but welcomed discussion (and presentation) of other options, whether specific or general in scope. Input from users, including DOE-NE program interests and needs for ion irradiation RD&D were also included. Participants were selected from various sources: RFI respondents, NEUP/NEET infrastructure applicants, universities with known expertise in nuclear engineering and materials science and other developed sources. During the three days from March 22-24, 2016, the workshop was held at the Idaho National Laboratory Meeting Center in the Energy Innovation Laboratory at 775 University Drive, Idaho Falls, ID 83401. Thirty-one members of the ion beam community attended the workshop, including 15 ion beam facilities, six representatives of Office of Nuclear Energy R&D programs, an industry representative from EPRI and the chairs of the NSUF User’s Organization and the NSUF Scientific Review Board. Another four ion beam users were in attendance acting as advisors to the process, but did not participate in the options assessment. Three members of the sponsoring agency, the Office of Science and Technology Innovation (NE-4) also attended the workshop.

  9. Measurement and simulation of passive fast-ion D-alpha emission from the DIII-D tokamak

    DOE PAGES

    Bolte, Nathan G.; Heidbrink, William W.; Pace, David; ...

    2016-09-14

    Spectra of passive fast-ion D-alpha (FIDA) light from beam ions that charge exchange with background neutrals are measured and simulated. The fast ions come from three sources: ions that pass through the diagnostic sightlines on their first full orbit, an axisymmetric confined population, and ions that are expelled into the edge region by instabilities. A passive FIDA simulation (P-FIDASIM) is developed as a forward model for the spectra of the first-orbit fast ions and consists of an experimentally-validated beam deposition model, an ion orbit-following code, a collisional-radiative model, and a synthetic spectrometer. Model validation consists of the simulation of 86more » experimental spectra that are obtained using 6 different neutral beam fast-ion sources and 13 different lines of sight. Calibrated spectra are used to estimate the neutral density throughout the cross-section of the tokamak. The resulting 2D neutral density shows the expected increase toward each X-point with average neutral densities of 8 X 109 cm-3 at the plasma boundary and 1 X 1011 cm-3 near the wall. Here, fast ions that are on passing orbits are expelled by the sawtooth instability more readily than trapped ions. In a sample discharge, approximately 1% of the fast-ion population is ejected into the high neutral density region per sawtooth crash.« less

  10. Measurement and simulation of passive fast-ion D-alpha emission from the DIII-D tokamak

    SciTech Connect

    Bolte, Nathan G.; Heidbrink, William W.; Pace, David; Van Zeeland, Michael; Chen, Xi

    2016-09-14

    Spectra of passive fast-ion D-alpha (FIDA) light from beam ions that charge exchange with background neutrals are measured and simulated. The fast ions come from three sources: ions that pass through the diagnostic sightlines on their first full orbit, an axisymmetric confined population, and ions that are expelled into the edge region by instabilities. A passive FIDA simulation (P-FIDASIM) is developed as a forward model for the spectra of the first-orbit fast ions and consists of an experimentally-validated beam deposition model, an ion orbit-following code, a collisional-radiative model, and a synthetic spectrometer. Model validation consists of the simulation of 86 experimental spectra that are obtained using 6 different neutral beam fast-ion sources and 13 different lines of sight. Calibrated spectra are used to estimate the neutral density throughout the cross-section of the tokamak. The resulting 2D neutral density shows the expected increase toward each X-point with average neutral densities of 8 X 109 cm-3 at the plasma boundary and 1 X 1011 cm-3 near the wall. Here, fast ions that are on passing orbits are expelled by the sawtooth instability more readily than trapped ions. In a sample discharge, approximately 1% of the fast-ion population is ejected into the high neutral density region per sawtooth crash.

  11. Measurement and simulation of passive fast-ion D-alpha emission from the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Bolte, Nathan G.; Heidbrink, William W.; Pace, David; Van Zeeland, Michael; Chen, Xi

    2016-11-01

    Spectra of passive fast-ion D-alpha (FIDA) light from beam ions that charge exchange with background neutrals are measured and simulated. The fast ions come from three sources: ions that pass through the diagnostic sightlines on their first full orbit, an axisymmetric confined population, and ions that are expelled into the edge region by instabilities. A passive FIDA simulation (P-FIDASIM) is developed as a forward model for the spectra of the first-orbit fast ions and consists of an experimentally-validated beam deposition model, an ion orbit-following code, a collisional-radiative model, and a synthetic spectrometer. Model validation consists of the simulation of 86 experimental spectra that are obtained using 6 different neutral beam fast-ion sources and 13 different lines of sight. Calibrated spectra are used to estimate the neutral density throughout the cross-section of the tokamak. The resulting 2D neutral density shows the expected increase toward each X-point with average neutral densities of 8× {{10}9}~\\text{c}{{\\text{m}}-3} at the plasma boundary and 1× {{10}11}~\\text{c}{{\\text{m}}-3} near the wall. Fast ions that are on passing orbits are expelled by the sawtooth instability more readily than trapped ions. In a sample discharge, approximately 1% of the fast-ion population is ejected into the high neutral density region per sawtooth crash.

  12. Ion source studies for particle beam accelerators

    SciTech Connect

    Bieg, K.W.; Burns, E.J.T.; Olsen, J.N.; Dorrell, L.R.

    1985-05-01

    High power particle beam accelerators are being developed for use in inertial confinement fusion applications. These pulsed power accelerators require sources of low atomic number ions (e.g., protons, deuterons, carbon, or lithium). The sources must be of high purity for efficient accelerator operation and proper target coupling, must have a rapid ''turn-on,'' and must be compatible with ion diode configurations under development. A particular type of source presently being investigated is the flashover ion source which generates ions by means of the vacuum flashover of an insulating anode material when the high voltage pulse arrives at the diode. We have developed an applied-magnetic-field, extraction ion diode for the 0.03 TW Nereus accelerator specifically to investigate these sources. Extracted ion species are measured by means of a Thomson-parabola ion analyzer, dB/dt current monitors, and Faraday cups. Experiments have been performed to investigate the surface flashover mechanism and the effects of various dielectric source materials, anode preparation methods (including rf glow discharge cleaning), and vacuum conditions on ion species and diode operation.

  13. Benchmark of MEGA Code on Fast Ion Pressure Profile in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Seki, Ryosuke; Todo, Yasushi; Suzuki, Yasuhiro; Osakabe, Masaki

    2016-10-01

    As the first step for the analyses of energetic particle driven instabilities in the Large Helical Device (LHD) including the collisions of fast ions and the neutral beam injection, MEGA code is benchmarked on the classical fast ion pressure profile using the temperature and density profiles measured in the LHD experiments. In this benchmark, the MHD equilibrium is calculated with HINT code, and the beam deposition profile is calculated with HFREYA code. Since the equilibrium is not axisymmetric in LHD, the accuracy of orbit tracing is important for fast ion analyses. In the slowing down process of the MEGA code, the guiding center equation is numerically solved using the 4th order Runge-Kutta method and the linear interpolation. MEGA code is benchmarked against the results of MORH code, in which the 6th order Runge-Kutta and the 4th order spline interpolation are used. In LHD, the position of the loss boundary of fast ion is important because there are many ``re-entering fast ions'' which re-enter in plasma after they have once passed out of plasma. The effects of the position of the loss boundary on the fast ion pressure profile will be discussed, and a preliminary result of Alfven eigenmodes will be presented.

  14. Fast-ion transport by Alfvén eigenmodes above a critical gradient threshold

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.; Collins, C. S.; Podestà, M.; Kramer, G. J.; Pace, D. C.; Petty, C. C.; Stagner, L.; Van Zeeland, M. A.; White, R. B.; Zhu, Y. B.

    2017-05-01

    Experiments on the DIII-D tokamak have identified how multiple simultaneous Alfvén eigenmodes (AEs) lead to overlapping wave-particle resonances and stochastic fast-ion transport in fusion grade plasmas [C. S. Collins et al., Phys. Rev. Lett. 116, 095001 (2016)]. The behavior results in a sudden increase in fast-ion transport at a threshold that is well above the linear stability threshold for Alfvén instability. A novel beam modulation technique [W. W. Heidbrink et al., Nucl. Fusion 56, 112011 (2016)], in conjunction with an array of fast-ion diagnostics, probes the transport by measuring the fast-ion flux in different phase-space volumes. Well above the threshold, simulations that utilize the measured mode amplitudes and structures predict a hollow fast-ion profile that resembles the profile measured by fast-ion Dα spectroscopy; the modelling also successfully reproduces the temporal response of neutral-particle signals to beam modulation. The use of different modulated sources probes the details of phase-space transport by populating different regions in phase space and by altering the amplitude of the AEs. Both effects modulate the phase-space flows.

  15. Transfer Casting From Ion-Beam-Textured Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Sovey, J. S.

    1986-01-01

    Textured surfaces created on metals, ceramics, and polymers. Electron-bombardment ion thrustor used as neutralized-ion-beam source. Beam of directed, energetic ions alter surface chemistry and/or morphology of many materials. By adjusting ion energy and ion-beam current density impinging upon target, precise surface modifications obtained without risk of targetmaterial melting or bulk decomposition. Technique developed to generate precise, controllable, surface microstructures on metals, ceramics, and polymers.

  16. Transfer Casting From Ion-Beam-Textured Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Sovey, J. S.

    1986-01-01

    Textured surfaces created on metals, ceramics, and polymers. Electron-bombardment ion thrustor used as neutralized-ion-beam source. Beam of directed, energetic ions alter surface chemistry and/or morphology of many materials. By adjusting ion energy and ion-beam current density impinging upon target, precise surface modifications obtained without risk of targetmaterial melting or bulk decomposition. Technique developed to generate precise, controllable, surface microstructures on metals, ceramics, and polymers.

  17. Ion beam modification of aromatic polymers

    NASA Astrophysics Data System (ADS)

    Shukushima, Satoshi; Nishikawa, Shinya; Matsumoto, Yasuyo; Hibino, Yutaka

    1993-06-01

    We studied the optical, mechanical and thermal properties of aromatic polymer films which had been irradiated with 1 MeV H +, H 2+ and He + ions. The examined aromatic polymers were polyetherether ketone (PEEK), polyetherimide (PEI), polycther sulfon (PES), polysulfon (PSF), and polyphenylene sulfide (PPS). The optical densities at 300 nm of PES greatly increased after the irradiation. The optical densities at 400 nm of all the examined polymer linearly increased with the irradiation dose. Elongations of all the polymers at room temperature were reduced after irradiation. The PEEK film which had been irradiated with 1 MeV H + was not deformed above the melting point. This demonstrates that cross-linking occurs in PEEK films by ion beam irradiation. As for the effects, depending on the mass of the irradiated ions, it was found that the ions with a high mass induced larger effects on the arematic polymers for the same absorption energy.

  18. New fast beam profile monitor for electron-positron colliders

    SciTech Connect

    Bogomyagkov, A. V.; Gurko, V. F.; Zhuravlev, A. N.; Zubarev, P. V.; Kiselev, V. A.; Meshkov, O. I.; Muchnoi, N. Yu.; Selivanov, A. N.; Smaluk, V. V.; Khilchenko, A. D.

    2007-04-15

    A new fast beam profile monitor has been developed at the Budker Institute of Nuclear Physics. This monitor is based on the Hamamatsu multianode photomultiplier with 16 anode strips and provides turn-by-turn measurement of the transverse beam profile. The device is equipped with an internal memory, which has enough capacity to store 131 072 samples of the beam profile. The dynamic range of the beam profile monitor allows us to study turn-by-turn beam dynamics within the bunch charge range from 1 pC up to 10 nC. Using this instrument, we have investigated at the VEPP-4M electron-positron collider a number of beam dynamics effects which cannot be observed by other beam diagnostics tools.

  19. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET

    2016-11-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.

  20. Slowing down of an ion beam in a background plasma

    NASA Astrophysics Data System (ADS)

    Newsham, D.; Ross, T. J.; Rynn, N.

    1996-07-01

    The slowing down of a barium ion beam into two different plasma backgrounds was measured using laser-induced fluorescence. The measurements were performed in a Q machine (Ti=Te=0.2 eV, 6×1010≤nback≤1.2×1010 cm-3), where a barium ion beam, with energy 0-40 eV, was injected, parallel to the confining magnetic field, into both a cesium and a lithium plasma. In order to treat the ion beam as a class of test particles, the ion beam density was maintained at approximately two orders of magnitude below the density of the background plasma. Measured changes in the velocity profile of the ion beam agrees well with the predictions of the Fokker-Planck for both nearly equal mass beam and background ions as well as for a background ion with approximately 1/20th the mass of the beam ion.

  1. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  2. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  3. Decaborane beam from ITEP Bernas ion source

    SciTech Connect

    Kulevoy, T.V.; Petrenko, S.V.; Kuibeda, R.P.; Batalin, V.A.; Pershin, V.I.; Koslov, A.V.; Stasevich, Yu.B.; Hershcovitch, A.; Johnson, B.M.; Oks, E.M.; Gushenets, V.I.; Poole, H.J.; Storozhenko, P.A.; Gurkova, E.L.; Alexeyenko, O.V.

    2006-03-15

    A joint research and development program is under way to develop steady-state intense ion sources for the two energy extremes of MeV and hundreds of eV. The difficulties of extraction and transportation of low-energy boron beams are investigated using a decaborane compound [I. Yamada, W. L. Brown, J. A. Northby, and M. Sosnowski, Nucl. Instrum. Methods Phys. Res. B 79, 223 (1993)]. Presented here are the results from ITEP experiments using the Bernas ion source with an indirectly heated LaB{sub 6} cathode.

  4. Fast-ion transport and NBI current drive in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, Benedikt; Weiland, Markus; Mlynek, Alexander; Dunne, Mike; Dux, Ralph; Fischer, Rainer; Hobirk, Joerg; Hopf, Christian; Reich, Matthias; Rittich, David; Ryter, Francois; Schneider, Philip; Tardini, Giovanni; Garcia-Munoz, Manuel; ASDEX Upgrade Team

    2014-10-01

    Good confinement of fast ions is essential in fusion devices because these suprathermal particles are responsible for plasma heating, current drive and can, if poorly confined, damage surrounding walls. The degradation of the fast-ion confinement caused by large and small scale instabilities must consequently be investigated. In the ASDEX Upgrade tokamak, fast ions are generated by neutral beam injection (NBI) and their slowing down distribution can be studied using FIDA spectroscopy, neutral particle analyzers and neutron detectors. Neo-classical fast-ion transport is observed by these measurements in MHD-quiescent discharges with relatively weak heating power (less than 5 MW). The presence of sawtooth instabilities, in contrast, yields a strong internal fast-ion redistribution that can be modelled very well when assuming full reconnection of the helical magnetic field. The fast-ion current drive efficiency has been studied in discharges with up to 10 MW of heating power in which on-axis and off-axis NBI were exchanged. The radial shape of the fast-ion population, generated by the different NBIs, changes as predicted and a corresponding modification of the current profile is measured.

  5. Recombination characteristics of therapeutic ion beams on ion chamber dosimetry

    NASA Astrophysics Data System (ADS)

    Matsufuji, Naruhiro; Matsuyama, Tetsuharu; Sato, Shinji; Kohno, Toshiyuki

    2016-09-01

    In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40-160 MeV, carbon at 21-400 MeV/n, and iron at 23.5-500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.

  6. Defocusing of an ion beam propagating in background plasma due to two-stream instability

    SciTech Connect

    Tokluoglu, Erinc; Kaganovich, Igor D.

    2015-04-15

    The current and charge neutralization of charged particle beams by background plasma enable ballistic beam propagation and have a wide range of applications in inertial fusion and high energy density physics. However, the beam-plasma interaction can result in the development of collective instabilities that may have deleterious effects on ballistic propagation of an ion beam. In the case of fast, light-ion beams, non-linear fields created by instabilities can lead to significant defocusing of the beam. We study an ion beam pulse propagating in a background plasma, which is subjected to two-stream instability between the beam ions and plasma electrons, using PIC code LSP. The defocusing effects of the instability on the beam can be much more pronounced in small radius beams. We show through simulations that a beamlet produced from an ion beam passed through an aperture can be used as a diagnostic tool to identify the presence of the two-stream instability and quantify its defocusing effects. The effect can be observed on the Neutralized Drift Compression Experiment-II facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma.

  7. Energetic-Particle-Driven Instabilities and Their Effect on Fast Ions in a Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J.; Anderson, J. K.; Almagri, A. F.; Chapman, B. E.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2012-10-01

    During 1 MW tangential neutral-beam injection (NBI) into the MST reversed field pinch, multiple, bursty instabilities (n=5, 4 and -1) are detected by various fluctuation diagnostics. The spatial structure of associated density fluctuations peaks near the core where fast ions reside. Significant bicoherence among them is measured, indicating nonlinear three-wave coupling. These instabilities are also observed by a laser-based Faraday-rotation diagnostic, containing critical information on the internal magnetic field fluctuations. A tangential-view high-energy neutral particle analyzer (NPA) is used to study the fast-ion population. The measured NPA signal decreases by 15% following NBI-driven instabilities, indicating fluctuation-induced fast-ion transport. The NBI also reduces the amplitude of the innermost-resonant tearing mode by up to 65%. This mode-suppression is lessened following the NBI-driven bursts, consistent with fast ion loss/redistribution weakening the suppression effect.

  8. Dispensing targets for ion beam particle generators

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1974-01-01

    A target for dispensing high energy protons or neutrons or ionized atoms or ionized molecules is provided which comprises a container for the target gas, which is at atmospheric or higher pressure. The container material can release the target gas in the spot where the container is heated above a predetermined temperature by the impact of an ion beam where protons or neutrons are desired, or by electrons where ionized atoms or molecules are desired. On the outside of the container, except for the region where the beam is to impact, there is deposited a layer of a metal which is imperious to gaseous diffusion. A further protective coating of a material is placed over the layer of metal, except at the region of the ion impact area in order to adsorb any unreacted gas in the vacuum in which the target is placed, to thereby prevent reduction of the high vacuum, as well as contamination of the interior of the vacuum chamber.

  9. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  10. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  11. Simulation of ion beam injection and extraction in an EBIS.

    PubMed

    Zhao, L; Kim, J S

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  12. Simulation of ion beam injection and extraction in an EBIS

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  13. Simulation of ion beam injection and extraction in an EBIS

    SciTech Connect

    Zhao, L. Kim, J. S.

    2016-02-15

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  14. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    PubMed

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  15. Calibration techniques for fast-ion D{sub {alpha}} diagnostics

    SciTech Connect

    Heidbrink, W. W.; Bortolon, A.; Muscatello, C. M.; Ruskov, E.; Grierson, B. A.; Podesta, M.

    2012-10-15

    Fast-ion D{sub {alpha}} measurements are an application of visible charge-exchange recombination (CER) spectroscopy that provide information about the energetic ion population. Like other CER diagnostics, the standard intensity calibration is obtained with an integrating sphere during a vacuum vessel opening. An alternative approach is to create plasmas where the fast-ion population is known, then calculate the expected signals with a synthetic diagnostic code. The two methods sometimes agree well but are discrepant in other cases. Different background subtraction techniques and simultaneous measurements of visible bremsstrahlung and of beam emission provide useful checks on the calibrations and calculations.

  16. Two-stream instability assessment of fast ignition driven by quasi-monoenergetic ions

    NASA Astrophysics Data System (ADS)

    Khoshbinfar, Soheil

    2017-01-01

    During the past decade, the generation of energetic ion beams by high-intensity laser-plasma interactions has attracted much interest due to their many applications in high energy density physics and fast ignition. The interaction of the energetic beam with the pre-compressed DT plasma may be accompanied by micro-instabilities along normal and parallel to the beam direction. In application of ions heavier than hydrogen isotopes in fast ignition, we expect that the number of required ions reduces considerably. Here, we present a one-dimensional relativistic beam-plasma instability formulation to investigate the stabilization mode of a flow aligned two-stream instability spectrum where both cold-fluid and kinetic linear theory results are reported. In the latter, the saddle point expansion of the relativistic drift-Maxwellian distribution was applied. The stabilization mode was then extracted by using the Nyquist method. We have also restricted our stability analyses to quasi-monoenergetic ion beams of type Li3+, C6+, Al13+, and V23+ with optimal energies of 140 MeV, 450 MeV, 2.2 GeV, and 5.5 GeV, respectively, proposed by numerical simulations in fast ignition [Honrubia et al. Laser Part. Beams 32, 419 (2014)]. The stable mode is attained by two free system parameters, i.e., beam/plasma density ratio, α, and background plasma temperature, Tp. In the case of low Zb ions, by different degree levels, both parameters push the system to complete stability. However, in the case of high Zb ions, complete stabilization is achieved just through few orders of magnitude lower α. It has also been shown that in complete stabilization of the system, the α parameter scales as an inverse square of ions' atomic number, ∝Zb-2.

  17. Ion beam analysis of sialon ceramics

    NASA Astrophysics Data System (ADS)

    Vickridge, I. C.; Brown, I. W. M.; Ekström, T. C.; Trompetter, W. J.

    1996-09-01

    Sialons, or silicon-aluminium-oxy-nitrides, are a family of materials that have exceptional high temperature mechanical and tribological properties, but which are susceptible to oxidation. Ion beam analysis is an ideal tool to study the composition of the altered surface layer of sialons after oxidation. In particular simultaneous detection of gamma rays, charged particles, and X-rays induced by 1.4 MeV deuterons allows an almost complete picture of the composition to be obtained.

  18. Radioactive Ion Beams at INFN Laboratories

    SciTech Connect

    Calabretta, L.; Celona, L.; Chines, F.; Cosentino, L.; Cuttone, G.; Finocchiaro, P.; Maggiore, M.; Pappalardo, A.; Piazza, L.; Re, M.; Rifuggiato, D.; Rovelli, A.; Pappalardo, A.; Andrighetto, A.; Prete, G.; Biasetto, L.; Manzolaro, M.; Sarchiapone, L.; Galata, A.; Lombardi, A.

    2010-04-30

    The LNS and the LNL are the two laboratories of INFN devoted to the research on nuclear physics. Since the 1995 the LNS are involved in the design and construction of the Radioactive Ion Beam facilities called EXCYT. In the early of 2000 the LNL starts a project for second generation RIB facilities called SPES. In the 2004 at the LNS we start also the production of RIB by in flight fragmentation. Here the status and perspective of these three projects are presented.

  19. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  20. The fast neutron component in treatment irradiations with 12C beam.

    PubMed

    Gunzert-Marx, Konstanze; Schardt, Dieter; Simon, Reinhard S

    2004-12-01

    Using 12C beams of 200 AMeV kinetic energy the production of secondary fragments from nuclear reactions in a thick water absorber (12.78 cm) was investigated. Fast neutrons and energetic charged particles (p-, d-, t-, a-particles) emitted in the forward hemisphere were identified by a BaF2/plastic-scintillation detector telescope. Neutron energy spectra were recorded at various angles using time-of-flight techniques. The neutron emission is forward peaked and the energy spectrum shows a broad maximum about half the energy per nucleon of the primary 12C ions. The total yield of fast neutrons emitted into the forward hemisphere integrated over the energy range of 25 to 500 MeV was found to be 0.43 +/- 0.1 per primary ion. The dose contribution of fast neutrons in patient treatments with carbon ions is estimated to be less than 1% of the total treatment dose.

  1. Fast IMRT with narrow high energy scanned photon beams.

    PubMed

    Andreassen, Björn; Strååt, Sara Janek; Holmberg, Rickard; Näfstadius, Peder; Brahme, Anders

    2011-08-01

    Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with GEANT4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm2 field, the authors used a spot matrix of 100 equal intensity beam spots resulting in a

  2. The Electron and ion Plasma Experiment for Fast

    NASA Astrophysics Data System (ADS)

    Carlson, C. W.; McFadden, J. P.; Turin, P.; Curtis, D. W.; Magoncelli, A.

    2001-08-01

    The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a

  3. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pincha)

    NASA Astrophysics Data System (ADS)

    Lin, L.; Anderson, J. K.; Brower, D. L.; Capecchi, W.; Ding, W. X.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Liu, D.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.

    2014-05-01

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n =5 to n =6 while retaining the same poloidal mode number m =1. The transition occurs when the m =1, n =5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (qfi) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  4. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    SciTech Connect

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-05-15

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q{sub fi}) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  5. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  6. Study on space charge compensation in negative hydrogen ion beam

    SciTech Connect

    Zhang, A. L.; Chen, J. E.; Peng, S. X. Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  7. The effect of the fast-ion profile on Alfvén eigenmode stability

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.; Van Zeeland, M. A.; Austin, M. E.; Bass, E. M.; Ghantous, K.; Gorelenkov, N. N.; Grierson, B. A.; Spong, D. A.; Tobias, B. J.

    2013-09-01

    Different combinations of on-axis and off-axis neutral beams are injected into DIII-D plasmas that are unstable to reversed shear Alfvén eigenmodes (RSAE) and toroidal Alfvén eigenmodes (TAE). The variations alter the classically expected fast-ion gradient ∇βf in the plasma interior. Off-axis injection reduces the amplitude of RSAE activity an order of magnitude. Core TAEs are also strongly stabilized. In contrast, at larger minor radius, the fast-ion gradient is similar for on- and off-axis injection and switching the angle of injection has a weaker effect on the stability of TAEs. The average mode amplitude correlates strongly with the classically expected profile but the measured profile relaxes to similar values independent of the fraction of off-axis beams. The observations agree qualitatively with a ‘critical-gradient’ model of fast-ion transport.

  8. Development of the Holifield Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Tatum, B. A.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Dowling, D. T.; Haynes, D. L.; Juras, R. C.; Meigs, M. J.; Mills, G. D.; Mosko, S. W.; Mueller, P. E.; Olsen, D. K.; Shapira, D.; Sinclair, J. W.; Carter, H. K.; Welton, R. F.; Williams, C. E.; Bailey, J. D.; Stracener, D. W.

    1997-05-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility's radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. The HRIBF was formally dedicated on December 12, 1996, and approved for high intensity operation as a National User Facility, the first of its kind in North America. This paper describes facility development to date.

  9. Development of the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Tatum, B.A.

    1997-08-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility`s radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. This paper details facility development to date.

  10. Observations of neutral beam and ICRF tail ion losses due to Alfven modes in TFTR

    SciTech Connect

    Darrow, D.S.; Zweben, S.J.; Chang, Z.

    1996-04-01

    Fast ion losses resulting from MHD modes at the Alfven frequency, such as the TAE, have been observed in TFTR. The modes have been driven both by neutral beam ions, at low B{sub T}, and by H-minority ICRF tail ions at higher B{sub T}. The measurements indicate that the loss rate varies linearly with the mode amplitude, and that the fast ion losses during the mode activity can be significant, e.g. up to 10% of the input power is lost in the worst case.

  11. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    SciTech Connect

    Miley, George H.

    2012-10-24

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition

  12. Fast formation cycling for lithium ion batteries

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Du, Zhijia; ...

    2017-01-09

    The formation process for lithium ion batteries typically takes several days or more, and it is necessary for providing a stable solid electrolyte interphase on the anode (at low potentials vs. Li/Li+) for preventing irreversible consumption of electrolyte and lithium ions. An analogous layer known as the cathode electrolyte interphase layer forms at the cathode at high potentials vs. Li/Li+. However, several days, or even up to a week, of these processes result in either lower LIB production rates or a prohibitively large size of charging-discharging equipment and space (i.e. excessive capital cost). In this study, a fast and effectivemore » electrolyte interphase formation protocol is proposed and compared with an Oak Ridge National Laboratory baseline protocol. Graphite, NMC 532, and 1.2 M LiPF6 in ethylene carbonate: diethyl carbonate were used as anodes, cathodes, and electrolytes, respectively. Finally, results from electrochemical impedance spectroscopy show the new protocol reduced surface film (electrolyte interphase) resistances, and 1300 aging cycles show an improvement in capacity retention.« less

  13. Fast formation cycling for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    An, Seong Jin; Li, Jianlin; Du, Zhijia; Daniel, Claus; Wood, David L.

    2017-02-01

    The formation process for lithium ion batteries typically takes several days or more, and it is necessary for providing a stable solid electrolyte interphase on the anode (at low potentials vs. Li/Li+) for preventing irreversible consumption of electrolyte and lithium ions. An analogous layer known as the cathode electrolyte interphase layer forms at the cathode at high potentials vs. Li/Li+. However, several days, or even up to a week, of these processes result in either lower LIB production rates or a prohibitively large size of charging-discharging equipment and space (i.e. excessive capital cost). In this study, a fast and effective electrolyte interphase formation protocol is proposed and compared with an Oak Ridge National Laboratory baseline protocol. Graphite, NMC 532, and 1.2 M LiPF6 in ethylene carbonate: diethyl carbonate were used as anodes, cathodes, and electrolytes, respectively. Results from electrochemical impedance spectroscopy show the new protocol reduced surface film (electrolyte interphase) resistances, and 1300 aging cycles show an improvement in capacity retention.

  14. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  15. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Kurz, C.; Mairani, A.; Parodi, K.

    2012-08-01

    Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of 16O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight

  16. Quantitative low-energy ion beam characterization by beam profiling and imaging via scintillation screens

    NASA Astrophysics Data System (ADS)

    Germer, S.; Pietag, F.; Polak, J.; Arnold, T.

    2016-11-01

    This study presents the imaging and characterization of low-current ion beams in the neutralized state monitored via single crystal YAG:Ce (Y3Al5O12) scintillators. To validate the presented beam diagnostic tool, Faraday cup measurements and test etchings were performed. Argon ions with a typical energy of 1.0 keV were emitted from an inductively coupled radio-frequency (13.56 MHz) ion beam source with total currents of some mA. Different beam properties, such as, lateral ion current density, beam divergence angle, and current density in pulsed ion beams have been studied to obtain information about the spatial beam profile and the material removal rate distribution. We observed excellent imaging properties with the scintillation screen and achieved a detailed characterization of the neutralized ion beam. A strong correlation between the scintillator light output, the ion current density, and the material removal rate could be observed.

  17. Whole-Cell Imaging at Nanometer Resolutions Using Fast and Slow Focused Helium Ions

    PubMed Central

    Chen, Xiao; Udalagama, Chammika N.B.; Chen, Ce-Belle; Bettiol, Andrew A.; Pickard, Daniel S.; Venkatesan, T.; Watt, Frank

    2011-01-01

    Observations of the interior structure of cells and subcellular organelles are important steps in unraveling organelle functions. Microscopy using helium ions can play a major role in both surface and subcellular imaging because it can provide subnanometer resolutions at the cell surface for slow helium ions, and fast helium ions can penetrate cells without a significant loss of resolution. Slow (e.g., 10–50 keV) helium ion beams can now be focused to subnanometer dimensions (∼0.25 nm), and keV helium ion microscopy can be used to image the surfaces of cells at high resolutions. Because of the ease of neutralizing the sample charge using a flood electron beam, surface charging effects are minimal and therefore cell surfaces can be imaged without the need for a conducting metallic coating. Fast (MeV) helium ions maintain a straight path as they pass through a cell. Along the ion trajectory, the helium ion undergoes multiple electron collisions, and for each collision a small amount of energy is lost to the scattered electron. By measuring the total energy loss of each MeV helium ion as it passes through the cell, we can construct an energy-loss image that is representative of the mass distribution of the cell. This work paves the way to use ions for whole-cell investigations at nanometer resolutions through structural, elemental (via nuclear elastic backscattering), and fluorescence (via ion induced fluorescence) imaging. PMID:21961606

  18. Persistent ion beam induced conductivity in zinc oxide nanowires

    SciTech Connect

    Johannes, Andreas; Niepelt, Raphael; Gnauck, Martin; Ronning, Carsten

    2011-12-19

    We report persistently increased conduction in ZnO nanowires irradiated by ion beam with various ion energies and species. This effect is shown to be related to the already known persistent photo conduction in ZnO and dubbed persistent ion beam induced conduction. Both effects show similar excitation efficiency, decay rates, and chemical sensitivity. Persistent ion beam induced conduction will potentially allow countable (i.e., single dopant) implantation in ZnO nanostructures and other materials showing persistent photo conduction.

  19. Persistent ion beam induced conductivity in zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Johannes, Andreas; Niepelt, Raphael; Gnauck, Martin; Ronning, Carsten

    2011-12-01

    We report persistently increased conduction in ZnO nanowires irradiated by ion beam with various ion energies and species. This effect is shown to be related to the already known persistent photo conduction in ZnO and dubbed persistent ion beam induced conduction. Both effects show similar excitation efficiency, decay rates, and chemical sensitivity. Persistent ion beam induced conduction will potentially allow countable (i.e., single dopant) implantation in ZnO nanostructures and other materials showing persistent photo conduction.

  20. Electron beam diagnostic for space charge measurement of an ion beam

    SciTech Connect

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2004-09-25

    A non-perturbing electron beam diagnostic system for measuring the charge distribution of an ion beam is developed for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the Neutralized Transport Experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  1. Scintillator-based diagnostic for fast ion loss measurements on DIII-D

    SciTech Connect

    Fisher, R. K.; Van Zeeland, M. A.; Pace, D. C.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Garcia-Munoz, M.

    2010-10-15

    A new scintillator-based fast ion loss detector has been installed on DIII-D with the time response (>100 kHz) needed to study energetic ion losses induced by Alfven eigenmodes and other MHD instabilities. Based on the design used on ASDEX Upgrade, the diagnostic measures the pitch angle and gyroradius of ion losses based on the position of the ions striking the two-dimensional scintillator. For fast time response measurements, a beam splitter and fiberoptics couple a portion of the scintillator light to a photomultiplier. Reverse orbit following techniques trace the lost ions to their possible origin within the plasma. Initial DIII-D results showing prompt losses and energetic ion loss due to MHD instabilities are discussed.

  2. nGEM fast neutron detectors for beam diagnostics

    NASA Astrophysics Data System (ADS)

    Croci, G.; Claps, G.; Cavenago, M.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Pietropaolo, A.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2013-08-01

    Fast neutron detectors with a sub-millimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. A nGEM detector has been developed for the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a triple GEM gaseous detector equipped with polypropylene and polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a nGEM detector at the ISIS spallation source on the VESUVIO beam line. Beam profiles (σx=14.35 mm, σy=15.75 mm), nGEM counting efficiency (around 10-4 for 3 MeVbeam with different type of materials were successfully measured. The x beam profile was compared to the one measured by a single crystal diamond detector. Finally, the efficiency of the detector was simulated exploiting the GEANT4 tool.

  3. Transfer ionization in collisions with a fast highly charged ion.

    PubMed

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions.

  4. Development of a pepper pot emittance probe and its application for ECR ion beam studies.

    SciTech Connect

    Kondrashev, S.; Barcikowski, A.; Mustapha, B.; Ostroumov, P.N.; Vinogradov, N.; Northern Illinois Univ.

    2009-07-21

    A pepper pot-scintillator screen system has been developed and used to measure the emittance of DC ion beams extracted from a high-intensity permanent magnet ECR ion source. The system includes a fast beam shutter with a minimum dwell time of 18 ms to reduce the degradation of the CsI(Tl) scintillator by DC ion beam irradiation and a CCD camera with a variable shutter speed in the range of 1 {micro}s-65 s. On-line emittance measurements are performed by an application code developed on a LabVIEW platform. The sensitivity of the device is sufficient to measure the emittance of DC ion beams with current densities down to about 100 nA/cm{sup 2}. The emittance of all ion species extracted from the ECR ion source and post-accelerated to an energy of 75-90 keV/charge have been measured downstream of the LEBT. As the mass-to-charge ratio of ion species increases, the normalized RMS emittances in both transverse phase planes decrease from 0.5-1.0 {pi} mm mrad for light ions to 0.05-0.09 {pi} mm mrad for highly charged {sup 209}Bi ions. The dependence of the emittance on ion's mass-to-charge ratio follows very well the dependence expected from beam rotation induced by decreasing ECR axial magnetic field. The measured emittance values cannot be explained by only ion beam rotation for all ion species and the contribution to emittance of ion temperature in plasma, non-linear electric fields and non-linear space charge is comparable or even higher than the contribution of ion beam rotation.

  5. Ion Beam Collimation For Improved Resolution In Associated Particle Imaging

    NASA Astrophysics Data System (ADS)

    Sy, Amy; Ji, Qing

    2011-06-01

    Beam spot size on target for a Penning ion source has been measured under different source operating pressures as a function of the extraction channel length and beam energy. A beam halo/core structure was observed for ion extraction at low extraction voltages, and was greatly reduced at higher beam energy. Collimation through use of longer extraction channels results in reduced ion current on target; the resultant reduction in neutron yield for an API system driven by such an ion source can be compensated for by use of even higher beam energies.

  6. Improved Hanle effect measurement technique for fast ions.

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Gardiner, R. B.; Church, D. A.

    1973-01-01

    An improved averaging technique for use with foil-excited fast ions is applied to a Hanle-effect measurement of the mean life of some fast ions. With improved data analysis, the employed technique is expected to be more precise, as well as experimentally simpler than previously used techniques.

  7. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    SciTech Connect

    Van Zeeland, Michael A.; Ferraro, Nathaniel M.; Grierson, Brian A.; Heidbrink, William W.; Kramer, Gerrit J.; Lasnier, Charles J.; Pace, David C.; Allen, Steve L.; Chen, Xi; Evans, Todd E.; García-Muñoz, Manuel; Hanson, Jeremy M.; Lanctot, Matthew J.; Lao, Lang L.; Meyer, William H.; Moyer, Richard A.; Nazikian, Raffi; Orlov, Dmitriy M.; Paz-Soldan, Carlos; Wingen, Andreas

    2015-06-26

    In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotating $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $\\rho >0.7$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion ${{\\text{D}}_{\\alpha}}$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile was allowed

  8. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    DOE PAGES

    Van Zeeland, Michael A.; Ferraro, Nathaniel M.; Grierson, Brian A.; ...

    2015-06-26

    In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotatingmore » $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $$\\rho >0.7$$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion $${{\\text{D}}_{\\alpha}}$$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile

  9. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    NASA Astrophysics Data System (ADS)

    van Compernolle, Bart; Tripathi, Shreekrishna Kp; Gekelman, Walter; Pribyl, Patrick; Colestock, Patrick

    2012-10-01

    The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ˜10^12 cm-3, B0 = 1000 G - 1800 G, fpe/fce˜1 - 5, Te= 0.25 eV, vtevA). The ion beam is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfv'en velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfv'en wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various plasma parameters, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles.

  10. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport

    NASA Astrophysics Data System (ADS)

    Collins, C. S.; Heidbrink, W. W.; Austin, M. E.; Kramer, G. J.; Pace, D. C.; Petty, C. C.; Stagner, L.; Van Zeeland, M. A.; White, R. B.; Zhu, Y. B.

    2016-03-01

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion D α spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.

  11. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.

    PubMed

    Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B

    2016-03-04

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.

  12. Computer dosimetry for flattened and wedged fast-neutron beams.

    PubMed

    Hogstrom, K R; Smith, A R; Almond, P R; Otte, V A; Smathers, J B

    1976-01-01

    Beam flattening by the use of polyethylene filters has been developed for the 50-MeV d in equilibrium Be fast-neutron therapy beam at the Texas A&M Variable-Energy Cyclotron (TAMVEC) as a result of the need for a more uniform dose distribution at depth within the patient. A computer algorithm has been developed that allows the use of a modified decrement line method to calculate dose distributions; standards decrement line methods do not apply because of off-axis peaking. The dose distributions for measured flattened beams are transformed into distributions that are physically equivalent to an unflattened distribution. In the transformed space, standard decrement line theory yields a distribution for any field size which, by applying the inverse transformation, generates the flattened dose distribution, including the off-axis peaking. A semiempirical model has been constructed that allows the calculation of dose distributions for wedged beams from open-beam data.

  13. The Neutralization of Ion-Rocket Beams

    NASA Technical Reports Server (NTRS)

    Kaufman, Harold R.

    1961-01-01

    The experimental ion-beam behavior obtained without neutralizers is compared with both simple collision theory and plasma-wave theory. This comparison indicates that plasma waves play an important part in beam behavior, although the present state of plasma-wave theory does not permit more than a qualitative comparison. The theories of immersed-emitter and electron-trap neutralizer operation are discussed; and, to the extent permitted by experimental data, the theory is compared with experimental results. Experimental data are lacking completely at the present time for operation in space. The results that might be expected in space and the means of simulating such operation in Earth-bound facilities, however, are discussed.

  14. A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams.

    PubMed

    Fialkov, Alexander B; Moragn, Mati; Amirav, Aviv

    2011-12-30

    A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of

  15. Intense ion beam optimization and characterization with thermal imaging

    SciTech Connect

    Davis, H.A.; Bartsch, R.R.; Rej, D.J.; Waganaar, W.J.

    1994-08-01

    The authors have developed thermal imaging of beam targets to optimize and characterize intense ion beams. The technique, which measures the beam energy-density distribution on each machine firing, has been used to rapidly develop and characterize two very different beams--a 400 kV beam used to study materials processing, and an 80 kV beam use for magnetic fusion diagnostics.

  16. Plasma and ion beam processing at Los Alamos

    SciTech Connect

    Rej, D.J.; Davis, H.A.; Henins, I.

    1994-07-01

    Efforts are underway at Los Alamos National Laboratory to utilize plasma and intense ion beam science and technology of the processing of advanced materials. A major theme involves surface modification of materials, e.g., etching, deposition, alloying, and implantation. In this paper, we concentrate on two programs, plasma source ion implantation and high-intensity pulsed ion beam deposition.

  17. Development of a focused ion beam micromachining system

    SciTech Connect

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  18. Edge envelope equation for a ballistically focused neutralized ion beam

    SciTech Connect

    Lemons, D.S.; Thode, L.E.

    1980-11-01

    An envelope equation for a cold ion beam with overall charge and current neutralization provided by a coflowing electron gas obeying an adiabatic equation of state is derived. The derivation assumes the beam evolves self-similarly with the ion at the edge of a uniform density ion profile. Numerical and approximate analytical solutions are calculated.

  19. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  20. Beams of fast neutral atoms and molecules in low-pressure gas-discharge plasma

    SciTech Connect

    Metel, A. S.

    2012-03-15

    Fast neutral atom and molecule beams have been studied, the beams being produced in a vacuum chamber at nitrogen, argon, or helium pressure of 0.1-10 Pa due to charge-exchange collisions of ions accelerated in the sheath between the glow discharge plasma and a negative grid immersed therein. From a flat grid, two broad beams of molecules with continuous distribution of their energy from zero up to e(U + U{sub c}) (where U is voltage between the grid and the vacuum chamber and U{sub c} is cathode fall of the discharge) are propagating in opposite directions. The beam propagating from the concave surface of a 0.2-m-diameter grid is focused within a 10-mm-diameter spot on the target surface. When a 0.2-m-diameter 0.2-m-high cylindrical grid covered by end disks and composed of parallel 1.5-mm-diameter knitting needles spaced by 4.5 mm is immersed in the plasma, the accelerated ions pass through the gaps between the needles, turn inside the grid into fast atoms or molecules, and escape from the grid through the gaps on its opposite side. The Doppler shift of spectral lines allows for measuring the fast atom energy, which corresponds to the potential difference between the plasma inside the chamber and the plasma produced as a result of charge-exchange collisions inside the cylindrical grid.

  1. Making radioactive ion beams - Detecting reaction products

    NASA Astrophysics Data System (ADS)

    Raabe, Riccardo

    2016-10-01

    We present a didactical overview of the methods for the production of radioactive ion beams (RIBs), discussing the main characteristics and associated advantages and drawbacks of the in-flight separation and isotope separation on-line methods. We include a short overview of present and planned facilities, focusing on Europe. In the second part of the paper a brief introduction on the detection of radiation is given, followed by a discussion of the specific problems related to radiation detection in measurements involving RIBs. A few illustrative examples of detection setups are presented.

  2. CRADA Final Report CRADA No. LB05-001820"Ion Beam Drift Compression Technology for NDCX"

    SciTech Connect

    First point Scientific, Inc.; E.O. Lawrence Berkeley National Laboratory; Waldron, William L.

    2009-10-05

    Summary of the specific research and project accomplishments: Through this collaboration, LBNL and FPSI determined the specific energy manipulations that apply to the Neutralized Drift Compression Experiment (NDCX) ion beam and developed the preliminary design of a Fast Induction Energy Corrector (FIEC). This effort was successfully completed, firmly establishing the technical feasibility of the proposed approach for regulating the longitudinal energy distribution of the NDCX ion beam. This is a critical step in achieving the NDCX goal of axial compression of the beam by a factor of 100 during neutralized drift.

  3. Low-frequency electromagnetic waves driven by gyrotropic gyrating ion beams

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Patel, V. L.

    1986-01-01

    The origin of left- and right-hand-polarized low-frequency waves in space plasmas is analyzed. It has been shown that a gyrotropic gyrating ion beam, a ring in velocity space, can excite electromagnetic modes in the plasma near the beam gyrofrequency. It excites left-hand-polarized shear Alfven waves and their harmonics via the coupling of Alfven modes with the beam modes. It can also excite right-hand-polarized fast-mode magnetosonic waves and their harmonics as well. The excitation is possible for beam ions heavier than the plasma ions. The growth rate varies as one-third power of the beam density and decreases with the angle of wave propagation with respect to the ambient magnetic field. The nonlocality has a stabilizing effect on the instability. The predicted values of the wave frequencies compare reasonably well with those observed in satellite data.

  4. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Lin, Liang

    2013-10-01

    Multiple bursty energetic-particle (EP) modes with fishbone-like structures are observed during 1 MW tangential neutral-beam injection into MST reversed field pinch (RFP) plasmas. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to large fast ion beta and stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of these instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport and interaction with global tearing modes. Internal magnetic field fluctuations associated with the EP modes are directly observed for the first time by Faraday-effect polarimetry (frequency ~ 90 kHz and amplitude ~ 2 G). Simultaneously measured density fluctuations exhibit a dynamically evolving and asymmetric spatial structure that peaks near the core where fast ions reside and shifts outward as the instability evolves. Furthermore, the EP mode frequencies appear at ~k∥VA , consistent with continuum modes destabilized by strong drive. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growing phase arising from the beam fueling followed by a rapid drop (~ 15 %) when the EP modes peak, indicating the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced (× 2) with the onset of multiple nonlinearly-interacting EP modes. The fast ions also impact global tearing modes, reducing their amplitudes by up to 65%. This mode reduction is lessened following the EP-bursts, further evidence for fast ion redistribution that weakens the suppression mechanism. Possible tearing mode suppression mechanisms will be discussed. Work supported by US DoE.

  5. Ion beam surface treatment: A new technique for thermally modifying surfaces using intense, pulsed ion beams

    SciTech Connect

    Stinnett, R.W.; Buchheit, R.G.; Neau, E.L.

    1995-08-01

    The emerging capability to produce high average power (10--300 kW) pulsed ion beams at 0.2{minus}2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This new technique uses high energy, pulsed ({le}500 ns) ion beams to directly deposit energy in the top 1--20 micrometers of the surface of any material. The depth of treatment is controllable by varying the ion energy and species. Deposition of the energy in a thin surface layer allows melft of the layer with relatively small energies (1--10J/cm2) and allows rapid cooling of the melted layer by thermal conduction into the underlying substrate. Typical cooling rates of this process (109 K/sec) are sufficient to cause amorphous layer formation and the production of non-equilibrium microstructures (nanocrystalline and metastable phases). Results from initial experiments confirm surface hardening, amorphous layer and nanocrystalline grain size formation, corrosion resistance in stainless steel and aluminum, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning and oxide layer removal as well as surface ablation and redeposition. These results follow other encouraging results obtained previously in Russia using single pulse ion beam systems. Potential commercialization of this surface treatment capability is made possible by the combination of two new technologies, a new repetitive high energy pulsed power capability (0.2{minus}2MV, 25--50 kA, 60 ns, 120 Hz) developed at SNL, and a new repetitive ion beam system developed at Cornell University.

  6. Ion beam irradiated optical channel waveguides

    NASA Astrophysics Data System (ADS)

    Bányász, I.; Rajta, I.; Nagy, G. U. L.; Zolnai, Z.; Havranek, V.; Pelli, S.; Veres, M.; Himics, L.; Berneschi, S.; Nunzi-Conti, G.; Righini, G. C.

    2014-03-01

    Nowadays, in the modern optical communications systems, channel waveguides represent the core of many active and passive integrated devices, such as amplifiers, lasers, couplers and splitters. Different materials and fabrication processes were investigated in order to achieve the aforementioned optoelectronic circuits with low costs and high performance and reproducibility. Nevertheless, the 2D guiding structures fabrication continues to be a challenging task in some of optical materials due to their susceptibility to mechanical and/or chemical damages which can occur during the different steps of the fabrication process. Here we report on channel waveguides demonstration in erbium doped Tungsten - Tellurite (Er3+:TeO2-WO3) glasses and BGO crystals by means of a masked ion beam and/or direct writing processes performed at different energy MeV and ions species. The evidence of the waveguides formation was investigated by microscopy techniques and micro Raman spectroscopy.

  7. Effect of plasma rotation on sawtooth stabilization by beam ions

    SciTech Connect

    N. N. Gorelenkov; M. F. F. Nave; R. Budny; C. Z. Cheng; G. Y. Fu; J. Hastie; J. Manickam; W. Park

    2000-06-23

    The sawtooth period in JET ELM-free H-Mode plasmas is increasing with Neutral Beam Injection (NBI) power. For injected power PNBI 12MW no large sawtooth crash is observed during the ELM-free period. However, as the edge stability is improved and external kink modes and ELMs are delayed, a possible sawtooth crash at a high plasma beta becomes a concern. In JET DT experiments, delaying sawteeth was found to be crucial in the quest for high fusion power. Fast particles are known to provide stabilizing effect on sawteeth, however, sawtooth stabilization by NBI ions is not clearly understood, since NBI ions are usually not ''fast'' enough to stabilize the m/n = 1/1 internal kink mode which is believed to cause the crash. In order to understand the observed sawteeth stabilization in tokamak experiments with NBI heating, the internal kink m/n = 1/1 mode stability of JET plasmas was modeled using the NOVA-K code, which is also benchmarked with the nonperturbative version of NOVA and the M3D code. Comparison of m/n = 1/1 mode stabilization by NBI ions in JET and TFTR and application of the nonlinear stabilization criteria is given.

  8. Calorimetric detection of neutral-atom content of ion beam

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1974-01-01

    Energy deposition technique deduces neutral-beam flux or dose from measured values of incremental resistance increases in platinum wire passed through beam. Steady-state heat balance analysis led to equivalent neutral-beam current. Method was used to detect neutral-atom content of 60-keV argon ion beam.

  9. Positive and negative ion beam merging system for neutral beam production

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani

    2005-12-13

    The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.

  10. Uniform H(-) ion beam extraction in a large negative ion source with a tent-shaped magnetic filter.

    PubMed

    Tobari, H; Hanada, M; Kashiwagi, M; Taniguchi, M; Umeda, N; Watanabe, K; Inoue, T; Sakamoto, K; Takado, N

    2008-02-01

    Based on previous studies on the spatial uniformity of the negative ion beam, the external magnetic filter was replaced to a novel tent-shaped magnetic filter in the JAEA 10 A negative ion source. The line-cusp field configuration on the source chamber was also changed to form a symmetric magnetic field like many of positive ion sources aiming at high proton yield. This magnetic field configuration allows fast electrons emitted from filament cathodes to rotate azimuthally inside the source chamber. The source configuration thus prevents localization of fast electrons due to their B x grad B drift in the filter field. As a result, the H(-) ion beam profile extracted from a wide region of 340 x 170 mm(2) showed reduction of standard deviation from 16% in the original to 7.9% with the tent filter. The negative ion source with the tent filter satisfied the requirement of the beam uniformity for a large negative ion source in the ITER neutral beam injection.

  11. Quantification of the impact of large and small-scale instabilities on the fast-ion confinement in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Weiland, M.; Mlynek, A.; Reich, M.; Bock, A.; Dunne, M.; Dux, R.; Fable, E.; Fischer, R.; Garcia-Munoz, M.; Hobirk, J.; Hopf, C.; Nielsen, S.; Odstrcil, T.; Rapson, C.; Rittich, D.; Ryter, F.; Salewski, M.; Schneider, P. A.; Tardini, G.; Willensdorfer, M.

    2015-01-01

    The confinement fast ions, generated by neutral beam injection (NBI), has been investigated at the ASDEX Upgrade tokamak. In plasmas that exhibit strong sawtooth crashes, a significant sawtooth-induced internal redistribution of mainly passing fast ions is observed, which is in very good agreement with the theoretical predictions based on the Kadomtsev model. Between the sawtooth crashes, the fishbone modes are excited which, however, do not cause measurable changes in the global fast-ion population. During experiments with on- and off-axis NBI and without strong magnetohydrodynamic (MHD) modes, the fast-ion measurements agree very well with the neo-classical predictions. This shows that the MHD-induced (large-scale), as well as a possible turbulence-induced (small-scale) fast-ion transport is negligible under these conditions. However, in discharges performed to study the off-axis NBI current drive efficiency with up to 10 MW of heating power, the fast-ion measurements agree best with the theoretical predictions that assume a weak level anomalous fast-ion transport. This is also in agreement with measurements of the internal inductance, a Motional Stark Effect diagnostic and a novel polarimetry diagnostic: the fast-ion driven current profile is clearly modified when changing the NBI injection geometry and the measurements agree best with the predictions that assume weak anomalous fast-ion diffusion.

  12. High-brightness Cs focused ion beam from a cold-atomic-beam ion source

    NASA Astrophysics Data System (ADS)

    Steele, A. V.; Schwarzkopf, A.; McClelland, J. J.; Knuffman, B.

    2017-06-01

    We present measurements of focal spot size and brightness in a focused ion beam system utilizing a laser-cooled atomic beam source of Cs ions. Spot sizes as small as (2.1 ± 0.2) nm (one standard deviation) and reduced brightness values as high as (2.4 ± 0.1) × 107 A m-2 Sr-1 eV-1 are observed with a 10 keV beam. This measured brightness is over 24 times higher than the highest brightness observed in a Ga liquid metal ion source. The behavior of brightness as a function of beam current and the dependence of effective source temperature on ionization energy are examined. The performance is seen to be consistent with earlier predictions. Demonstration of this source with very high brightness, producing a heavy ionic species such as Cs+, promises to allow significant improvements in resolution and throughput for such applications as next-generation circuit edit and nanoscale secondary ion mass spectrometry.

  13. Three-Wave Interactions between Fast-Ion Modes in the National Spherical Torus Experiment

    SciTech Connect

    Crocker, N. A.; Peebles, W. A.; Kubota, S.; Fredrickson, E. D.; Kaye, S. M.; LeBlanc, B. P.; Menard, J. E.

    2006-07-28

    Simultaneous bursts of energetic particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) activity that correlate with significant fast-ion loss are observed in beam heated plasmas. Three-wave interactions between these modes are conclusively identified, indicating fixed phase relationships. This nonlinear coupling concentrates the energy of the TAEs into a toroidally localized perturbation frozen in the frame of a rigid, toroidally rotating structure formed by the EPMs. This redistribution of energy is significant because it will modify the effect of the TAEs on fast-ion loss.

  14. Directed fast electron beams in ultraintense picosecond laser irradiated solid targets

    SciTech Connect

    Ge, X. L.; Lin, X. X.; Yuan, X. H. E-mail: ytli@iphy.ac.cn; Sheng, Z. M.; Carroll, D. C.; Neely, D.; Gray, R. J.; Tresca, O.; McKenna, P.; Yu, T. P.; Chen, M.; Liu, F.; Zhuo, H. B.; Zielbauer, B.; and others

    2015-08-31

    We report on fast electron transport and emission patterns from solid targets irradiated by s-polarized, relativistically intense, picosecond laser pulses. A beam of multi-MeV electrons is found to be transported along the target surface in the laser polarization direction. The spatial-intensity and energy distributions of this beam are compared with the beam produced along the laser propagation axis. It is shown that even for peak laser intensities an order of magnitude higher than the relativistic threshold, laser polarization still plays an important role in electron energy transport. Results from 3D particle-in-cell simulations confirm the findings. The characterization of directional beam emission is important for applications requiring efficient energy transfer, including secondary photon and ion source development.

  15. Formation of fast neutral beams and their using for selective etching

    NASA Astrophysics Data System (ADS)

    Maishev, Yu. P.; Shevchuk, S. L.; Kudrya, V. P.

    2014-12-01

    Design and main characteristics of high performance fast neutral beam sources based on the ion sources with a cold cathode and a closed drift of electrons in crossed electrical and magnetic fields are described. The output beam is of practically 100% neutrality and has a low level of divergence (<5º) which provides long distance transportation of neutral beams. Etching results for Si, SiO2, W, NbN, TiN, and TiC with using the working gases Ar, CF4, C3F8, and SF6 are given. Preliminary results for the build-in charge decreasing effect for the Si/SiO2 interface under a neutral beam treatment are presented.

  16. Fast beam studies of free radical photodissociation

    SciTech Connect

    Cyr, Douglas Robert

    1993-11-01

    The photodissociation of free radicals is studied in order to characterize the spectroscopy and dissociation dynamics of the dissociative electronic states in these species. To accomplish this, a novel method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with a highly complementary form of photofragment translational spectroscopy. The optical spectroscopy of transitions to dissociative states is determined by monitoring the total photofragment yield as a function of dissociation photon energy. Branching ratios to various product channels, internal energy distributions of the fragments, bond dissociation energies, and the translational energy-dependent photofragment recoil angular distributions are then determined at selected excitation energies. A detailed picture of the dissociation dynamics can then be formulated, allowing insight concerning the interactions of potential energy surfaces involved in the dissociation. After an introduction to the concepts and techniques mentioned above, the experimental apparatus used in these experiments is described in detail. The basis and methods used in the treatment of data, especially in the dissociation dynamics experiments, are then put forward.

  17. Methods and apparatus for altering material using ion beams

    DOEpatents

    Bloomquist, Douglas D.; Buchheit, Rudy; Greenly, John B.; McIntyre, Dale C.; Neau, Eugene L.; Stinnett, Regan W.

    1996-01-01

    A method and apparatus for treating material surfaces using a repetitively pulsed ion beam. In particular, a method of treating magnetic material surfaces in order to reduce surface defects, and produce amorphous fine grained magnetic material with properties that can be tailored by adjusting treatment parameters of a pulsed ion beam. In addition to a method of surface treating materials for wear and corrosion resistance using pulsed particle ion beams.

  18. Progress toward a microsecond duration, repetitively pulsed, intense- ion beam

    SciTech Connect

    Davis, H.A.; Olson, J.C.; Reass, W.A.; Coates, D.M.; Hunt, J.W.; Schleinitz, H.M.; Lovberg, R.H.; Greenly, J.B.

    1996-07-01

    A number of intense ion beams applications are emerging requiring repetitive high-average-power beams. These applications include ablative deposition of thin films, rapid melt and resolidification for surface property enhancement, advanced diagnostic neutral beams for the next generation of Tokamaks, and intense pulsed-neutron sources. We are developing a 200-250 keV, 15 kA, 1 {mu}s duration, 1-30 Hz intense ion beam accelerator to address these applications.

  19. Materials processing with intense pulsed ion beams

    SciTech Connect

    Rej, D.J.; Davis, H.A.; Olson, J.C.

    1996-12-31

    We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 {mu}m) and high-energy density (1-50 J/cm{sup 2}) of these short-pulsed ({le} 1 {mu}s) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10{sup 10} K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology.

  20. Ion beam probing of electrostatic fields

    NASA Technical Reports Server (NTRS)

    Persson, H.

    1979-01-01

    The determination of a cylindrically symmetric, time-independent electrostatic potential V in a magnetic field B with the same symmetry by measurements of the deflection of a primary beam of ions is analyzed and substantiated by examples. Special attention is given to the requirements on canonical angular momentum and total energy set by an arbitrary, nonmonotone V, to scaling laws obtained by normalization, and to the analogy with ionospheric sounding. The inversion procedure with the Abel analysis of an equivalent problem with a one-dimensional fictitious potential is used in a numerical experiment with application to the NASA Lewis Modified Penning Discharge. The determination of V from a study of secondary beams of ions with increased charge produced by hot plasma electrons is also analyzed, both from a general point of view and with application to the NASA Lewis SUMMA experiment. Simple formulas and geometrical constructions are given for the minimum energy necessary to reach the axis, the whole plasma, and any point in the magnetic field. The common, simplifying assumption that V is a small perturbation is critically and constructively analyzed; an iteration scheme for successively correcting the orbits and points of ionization for the electrostatic potential is suggested.

  1. First fast-ion D-alpha (FIDA) measurements and simulations on C-2U

    SciTech Connect

    Bolte, N. G. Gupta, D.; Onofri, M.; Dettrick, S.; Granstedt, E. M.; Petrov, P.; Stagner, L.

    2016-11-15

    The first measurements of fast-ion D-alpha (FIDA) radiation have been acquired on C-2U, Tri Alpha Energy’s advanced, beam-driven field-reversed configuration (FRC). These measurements are also forward modeled by FIDASIM. This is the first measurement and simulation of FIDA carried out on an FRC topology. FIDA measurements are made of Doppler-shifted Balmer-alpha light from neutralized fast ions using a bandpass filter and photomultiplier tube. One adjustable line-of-sight measured signals at eight locations and eight times during the FRC lifetime over 26 discharges. Filtered signals include only the highest energy ions (>6 keV) and share some salient features with the FIDASIM result. Highly Doppler-shifted beam radiation is also measured with a high-speed camera and is spatially well-correlated with FIDASIM.

  2. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    NASA Astrophysics Data System (ADS)

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  3. A new luminescence beam profile monitor for intense proton and heavy ion beams

    SciTech Connect

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  4. Ion Beam Sweeping using High Temperature Super Conducting Magnet

    SciTech Connect

    Sakai, Shigeki; Fujita, Hideki; King, Tom; Briggs, Neil; Miles, Matt; McCrohon, Mick; Gibson, Simon

    2011-01-07

    Advanced implantation systems used for semiconductor fabrication need to transport low energy ion beams. In this respect it is an advantage to employ a short beam line. Strong magnetic field in a compact footprint can enable shorter beam lines. In this work we report the use of a superconducting magnet to generate the strong magnetic field. We have developed a prototype superconducting AC magnet operating at frequencies of 80-156 Hz to sweep ion beams. We have studied the performance of ion beam sweeping using the AC superconducting magnet.

  5. Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Budny, R.; Nazikian, R.; Heidbrink, W. W.; Kurki-Suonio, T.; Salmi, A.; Schaffer, M. J.; van Zeeland, M. A.; Shinohara, K.; Snipes, J. A.; Spong, D.

    2010-11-01

    The fast beam-ion confinement in the presence of a scaled mock-up of two Test Blanket Modules (TBM) for ITER was studied in DIII-D. The TBM on DIII-D has four vertically arranged protective carbon tiles with thermocouples placed at the back of each tile. Temperature increases of up to 200^oC were measured for the two tiles closest to the midplane when the TBM fields were present. These measurements agree qualitatively with results from the full orbit-following beam-ion code, SPIRAL, that predict beam-ion losses to be localized on the central two carbon tiles when the TBM fields present. Within the experimental uncertainties no significant change in the fast-ion population was found in the core of these plasmas which is consistent with SPIRAL analysis. These experiments indicate that the TBM fields do not affect the fast-ion confinement in a harmful way which is good news for ITER.

  6. Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak

    SciTech Connect

    Van Zeeland, M; Heidbrink, W; Nazikian, R; Austin, M; Berk, H; Gorelenkov, N; Holcomb, C; Kramer, G; Lohr, J; Luo, Y; Makowski, M; McKee, G; Petty, C; Prater, R; Solomon, W; White, R

    2008-10-14

    Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including Toroidicity and Ellipticity induced Alfven Eigenmodes (TAE/EAE, respectively) and Reversed Shear Alfven Eigenmodes (RSAE) as well as their spatial coupling. These modes are typically studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. During this same time period Fast-Ion D{sub {alpha}} (FIDA) spectroscopy shows that the central fast ion profile is flattened, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. To simulate the observed neutral beam ion redistribution, NOVA calculations of the 3D eigenmode structures are matched with experimental measurements and used in combination with the ORBIT guiding center following code. For fixed frequency eigenmodes, it is found that ORBIT calculations cannot explain the observed beam ion transport with experimentally measured mode amplitudes. Possible explanations are considered including recent simulation results incorporating eigenmodes with time dependent frequencies.

  7. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    NASA Astrophysics Data System (ADS)

    van Compernolle, Bart; Tripathi, Shreekrishna; Gekelman, Walter; Pribyl, Patrick

    2013-10-01

    The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ~=1012cm-3 , B0 = 1000 G - 1800 G, fpe /fce ~= 1 - 5 , Te ~= 4eV , vte <ion beam is either a Helium beam or Hydrogen beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfvén velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfvén wave regime, and in a broad spectrum above fci in the lower hybrid frequency range. The wave generation was studied for various plasma parameters, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the 2D perpendicular mode structure will be shown. Progress on a theoretical framework of the wave generation by the ion beam will be presented along with comparisons to the measured wave properties. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.

  8. Spacecraft charging during ion beam emissions in sunlight

    NASA Technical Reports Server (NTRS)

    Lai, S. T.; Mcneil, W. J.; Aggson, T. L.

    1990-01-01

    During ion beam emissions from the SCATHA satellite, the potential of the negatively charged satellite body shows a sinusoidal oscillation frequency of once-per-spin of the satellite. The minimum occurs when the ion beam is sunward. The processes that may be responsible for the voltage modulation are considered. Neutralization of ion beam space charge by photoelectrons is examined. The photoelectrons are accelerated by the negative potential of the satellite. Effects of electron impact ionization, excitation of metastable states, and photoionization of xenon neutral atoms in the ion beam are studied in detail. Critical ionization velocity interaction is unlikely under the condition considered.

  9. The prospects of a subnanometer focused neon ion beam.

    PubMed

    Rahman, F H M; McVey, Shawn; Farkas, Louis; Notte, John A; Tan, Shida; Livengood, Richard H

    2012-01-01

    The success of the helium ion microscope has encouraged extensions of this technology to produce beams of other ion species. A review of the various candidate ion beams and their technical prospects suggest that a neon beam might be the most readily achieved. Such a neon beam would provide a sputtering yield that exceeds helium by an order of magnitude while still offering a theoretical probe size less than 1-nm. This article outlines the motivation for a neon gas field ion source, the expected performance through simulations, and provides an update of our experimental progress. © Wiley Periodicals, Inc.

  10. Performance and Controllability of Pulsed Ion Beam Ablation Propulsion

    SciTech Connect

    Yazawa, Masaru; Buttapeng, Chainarong; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    We propose novel propulsion driven by ablation plasma pressures produced by the irradiation of pulsed ion beams onto a propellant. The ion beam ablation propulsion demonstrates by a thin foil (50 {mu}mt), and the flyer velocity of 7.7 km/s at the ion beam energy density of 2 kJ/cm2 adopted by using the Time-of-flight method is observed numerically and experimentally. We estimate the performance of the ion beam ablation propulsion as specific impulse of 3600 s and impulse bit density of 1700 Ns/m2 obtained from the demonstration results. In the numerical analysis, a one-dimensional hydrodynamic model with ion beam energy depositions is used. The control of the ion beam kinetic energy is only improvement of the performance but also propellant consumption. The spacecraft driven by the ion beam ablation provides high performance efficiency with short-pulsed ion beam irradiation. The numerical results of the advanced model explained latent heat and real gas equation of state agreed well with experimental ones over a wide range of the incident ion beam energy density.

  11. Design of fast kickers for the ISABELLE beam abort system

    SciTech Connect

    Nawrocky, R.J.; Montemurro, P.A.; Baron, J.

    1981-01-01

    The ISA beam abort (extraction) system must be highly efficient, in the sense of producing minimum beam loss, and reliable to prevent serious damage to accelerator components by the circulating high-energy beams. Since the stored beams will be debunched, the low-loss requirement can be met only with ultra-thin extraction septa and/or fast-acting kickers. This paper examines the design of the ISA extraction kickers subject to a set of extraction channel constraints and a given maximum working voltage. Expressions are derived for determining system parameters for both a lumped parameter magnet and a delay-line magnet. Using these relationships, design parameters are worked out for several possible system configurations. The paper also describes the construction of a full-scale prototype module of the kicker and summarizes the preliminary test results obtained with the module.

  12. Performance of positive ion based high power ion source of EAST neutral beam injector

    SciTech Connect

    Hu, Chundong; Xie, Yahong Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin

    2016-02-15

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST.

  13. Ion beam energy deposition physics for ICF targets

    SciTech Connect

    Mehlhorn, T.A.

    1980-01-01

    The target interaction physics of light ion beams will be described. The phenomenon of range shortening with increasing material temperature will be corroborated, and the concomittant phenomenon of range relengthening due to ion-electron decoupling will be introduced.

  14. Observation and suppression of a new fast ion driven micro burst instability in a field-reversed configuration plasma

    NASA Astrophysics Data System (ADS)

    Deng, B. H.; Korepanov, S.; Belova, E.; Douglass, J.; Beall, M.; Binderbauer, M.; Clary, R.; Detrick, S.; Garate, E.; Gota, H.; Granstedt, E.; Magee, R.; Necas, A.; Putvinski, S.; Roche, T.; Smirnov, A.; Tajima, T.; Thompson, M.; Tuszewski, M.; van Drie, A.; TAE Team

    2016-10-01

    The C-2U experiment offers a unique plasma environment combining a high beta field reversed configuration (FRC) embedded in a low beta magnetic mirror with high power neutral beam injection. The beams are injected tangentially into a modest magnetic field so that the orbits of the resulting fast ions encircle the entire plasma. The dominant population of large orbit fast ions sustains and stabilizes the FRC, suppresses turbulence, and makes a dramatic beneficial impact on the overall plasma performance. Abundant interesting new physics phenomena are observed in this high performance FRC operation regime, including micro bursts, which are benign, periodic bursting small amplitude down chirping fluctuations seen by several diagnostics. Detailed analysis of the micro bursts measurement data, bulk plasma equilibrium profiles, and fast ion orbit characteristics show that the micro bursts might be driven by a small number of resonant fast ions, and can be suppressed when the number of resonant particles is reduced.

  15. Microdosimetry in ion-beam therapy

    NASA Astrophysics Data System (ADS)

    Magrin, Giulio; Mayer, Ramona

    2015-05-01

    The information of the dose is not sufficiently describing the biological effects of ions on tissue since it does not express the radiation quality, i.e. the heterogeneity of the processes due to the slowing-down and the fragmentation of the particles when crossing a target. Depending on different circumstances, the radiation quality can be determined using measurements, calculations, or simulations. Microdosimeters are the primary tools used to provide the experimental information of the radiation quality and their role is becoming crucial for the recent clinical developments in particular with carbon ion therapy. Microdosimetry is strongly linked to the biological effectiveness of the radiation since it provides the physical parameters which explicitly distinguish the radiation for its capability of damaging cells. In the framework of ion-beam therapy microdosimetry can be used in the preparation of the treatment to complement radiobiological experiments and to analyze the modification of the radiation quality in phantoms. A more ambitious goal is to perform the measurements during the irradiation procedure to determine the non-targeted radiation and, more importantly, to monitor the modification of the radiation quality inside the patient. These procedures provide the feedback of the treatment directly beneficial for the single patient but also for the characterization of the biological effectiveness in general with advantages for all future treatment. Traditional and innovative tools are currently under study and an outlook of present experience and future development is presented here.

  16. Global anomalous transport of ICRH- and NBI-heated fast ions

    NASA Astrophysics Data System (ADS)

    Wilkie, G. J.; Pusztai, I.; Abel, I.; Dorland, W.; Fülöp, T.

    2017-04-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Our results indicate that heated minorities are more strongly affected by microturbulence than injected fast ions. The physical interpretation of this difference provides a possible explanation for the observed synergy when neutral beam injection (NBI) heating is combined with ion cyclotron resonance heating (ICRH). Furthermore, we move beyond the trace approximation to develop a model which allows one to easily account for the reduction of anomalous transport due to the presence of fast ions in electrostatic turbulence.

  17. Transport line for beam generated by ITEP Bernas ion source

    SciTech Connect

    Petrenko, S.V.; Kropachev, G.N.; Kuibeda, R.P.; Kulevoy, T.V.; Pershin, V.I.; Masunov, E.S.; Polozov, S.M.; Hershcovitch, A.; Johnson, B.M.; Poole, H.J.

    2006-03-15

    A joint research and development program is underway to investigate beam transport systems for intense steady-state ion sources for ion implanters. Two energy extremes of MeV and hundreds of eV are investigated using a modified Bernas ion source with an indirectly heated cathode. Results are presented for simulations of electrostatic systems performed to investigate the transportation of ion beams over a wide mass range: boron to decaborane.

  18. ITEP MEVVA ion beam for rhenium silicide production

    SciTech Connect

    Kulevoy, T.; Seleznev, D.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Yakushin, P.; Petrenko, S.; Gerasimenko, N.; Medetov, N.; Zaporozhan, O.

    2010-02-15

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  19. New method of beam bunching in free-ion lasers

    SciTech Connect

    Bessonov, E.G.

    1995-12-31

    An effective ion beam bunching method is suggested. This method is based on a selective interaction of line spectrum laser light (e.g. axial mode structure light) with non-fully stripped ion beam cooled in a storage rings, arranging the ion beam in layers in radial direction of an energy-longitudinal coordinate plane and following rotation of the beam at the right angle after switching on the RF cavity or undulator grouper/buncher. Laser cooling of the ion beam can be used at this position after switching off the resonator to decrease the energy spread caused by accelerating field of the resonator. A relativistic multilayer ion mirror will be produced this way. Both monochromatic laser beams and intermediate monochromaticity and bandwidth light sources of spontaneous incoherent radiation can be used for production of hard and high power electromagnetic radiation by reflection from this mirror. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions ({approximately}{lambda}{sup 2}) is much greater ({approximately} 10{divided_by}15 orders) then Thompson one ({approximately} r{sub e}{sup 2}). This position is valid even in the case of non-monochromatic laser light ({Delta}{omega}/{omega} {approximately} 10{sup -4}). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case. Storage rings with zero momentum compaction function will permit to keep bunching of the ion beam for a long time.

  20. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  1. Nonintrusive position measurement of magnetically scanned ion beams

    NASA Astrophysics Data System (ADS)

    Szajnowski, W. J.

    1989-02-01

    In ion implantation systems using a hybrid magnetic-mechanical scanning, the scan along the implant disc radius is realized by magnetic scanning of an ion beam at an average frequency of 0.1 Hz. To achieve a uniform implant, a relationship has to be known between the scanning magnetic field and the resulting ion beam position. A measuring system has been developed to estimate the lateral position of an ion beam without interfering physically with the beam. The beam position is inferred from two random signals induced by the beam on two sensing electrodes, obtained by splitting a bias ring of the implanter's Faraday system. The beam-induced signals are processed digitally and the position estimate, represented by a 9-bit number, is updated at 1.5 ms (or 12 ms) intervals. Preliminary tests have demonstrated that the technique presented can be exploited for adaptive shaping of a current waveform driving the scan magnet.

  2. Electron impact, hyperthermal surface ionization and fast GC-MS in supersonic molecular beams

    SciTech Connect

    Amirav, A.; Dagan, S.

    1995-03-01

    Supersonic Molecular Beams (SMB) are characterized by undirectional motion with controlled hyperthermal kinetic energy (0.1-30 eV), intramolecular vibrational super-cooling, mass focusing as in an ideal high load jet separator, very high flow rate (on the gas chromatography flow rate scale) up to 240 ml/min and sample inlet at atmospheric pressure. These features make SMB an ideal sample introduction method, enable a unique fast GC inlet and result in important implications to molecular ionization processes including electron impact (EI) and hyperthermal. surface ionization (HSI). The authors` research is aimed at exploring and exposing the benefits of SMB for analytical organic mass spectrometry. The experimental apparatus is shown and is described. A 50 cm long megabore capillary column connects the atmospheric pressure open inlet to a supersonic nozzle, and serves as an ultra fast GC short column. The authors demonstrate ultrafast GC-MS achieved with this 50 cm transfer line capillary. One of the main features of this unique GC is the carrier gas relatively high flow rate of up to 240 ml/min which is possible due to the flow rates involved with the supersonic beam interface. This ultrafast GC is extensively described. Alternatively, a conventional GC with a short (4 meter) column serves as a fast GC inlet with intermediate GC resolution and unlimited choice of column length, ID and flow rate. Electron impact ionization in supersonic molecular beams is achieved using a Brink type open ion source operated with {approximately} 10-20 mA emission current. A background ion filtration method is applied, based on differences in the ion energy emerging from the hyperthermal molecular kinetic energy in the seeded SMB. Background ion filtration is achieved in the authors` VG-SXP-600 quadrupole through biasing of its exit lens and the cancellation of its internal ion energy ramping with mass.

  3. Selection of RIB targets using ion implantation at the Holifield Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Alton, G. D.; Dellwo, J.

    1996-02-01

    Among several major challenges posed by generating and accelerating adequate intensities of RIBs, selection of the most appropriate target material is perhaps the most difficult because of the requisite fast and selective thermal release of minute amounts of the short-lived product atoms from the ISOL target in the presence of bulk amounts of target material. Experimental studies are under way at the Oak Ridge National Laboratory (ORNL) which are designed to measure the time evolution of implanted elements diffused from refractory target materials which are candidates for forming radioactive ion beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF). The diffusion coefficients are derived by comparing experimental data with numerical solutions to a one-dimensional form of Fick's second equation for ion implanted distributions. In this report, we describe the experimental arrangement, experimental procedures, and provide time release data and diffusion coefficients for releasing ion implanted 37Cl from Zr 5Si 3 and 75As, 79Br, and 78Se from Zr 5Ge 3 and estimates of the diffusion coefficients for 35Cl, 63Cu, 65Cu, 69Ga, and 71Ga diffused from BN; 35Cl, 63Cu, 65Cu, 69Ga, 75As, and 78Se diffused from C; 35Cl, 68Cu, 69Ga, 75As, and 78Se diffused from Ta.

  4. A fast vector array adaptive beam forming method

    NASA Astrophysics Data System (ADS)

    Li, Zhizhong; Chen, Zhe; Li, Haitao; Xu, Zhongliang

    2017-06-01

    Based on model features of the vector sensor array signals, the paper transforms the time delay of broadband signals in time domain into the phase shift of different sub-bands in frequency domain to realize accurate time delay, and uses Hilbert Transform to construct analytic signals to form a fast vector array adaptive beam forming algorithm flow. The verification result with experimental data shows that this algorithm has much better target resolution capability than conventional beam forming algorithm. With the increase of 4-6dB in target detection capability, it has bright application prospect.

  5. Ion-beam machining of millimeter scale optics.

    PubMed

    Shanbhag, P M; Feinberg, M R; Sandri, G; Horenstein, M N; Bifano, T G

    2000-02-01

    An ion-beam microcontouring process is developed and implemented for figuring millimeter scale optics. Ion figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target substrate to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional machining processes, are avoided. Ion-beam figuring is presented as an alternative for the final figuring of small (<1-mm) optical components. The depth of the material removed by an ion beam is a convolution between the ion-beam shape and an ion-beam dwell function, defined over a two-dimensional area of interest. Therefore determination of the beam dwell function from a desired material removal map and a known steady beam shape is a deconvolution process. A wavelet-based algorithm has been developed to model the deconvolution process in which the desired removal contours and ion-beam shapes are synthesized numerically as wavelet expansions. We then mathematically combined these expansions to compute the dwell function or the tool path for controlling the figuring process. Various models have been developed to test the stability of the algorithm and to understand the critical parameters of the figuring process. The figuring system primarily consists of a duo-plasmatron ion source that ionizes argon to generate a focused (approximately 200-microm FWHM) ion beam. This beam is rastered over the removal surface with a perpendicular set of electrostatic plates controlled by a computer guidance system. Experimental confirmation of ion figuring is demonstrated by machining a one-dimensional sinusoidal depth profile in a prepolished silicon substrate. This profile was figured to within a rms error of 25 nm in one iteration.

  6. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  7. Solar wind double ions beams and the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Hammond, C. M.; Feldman, W. C.; Phillips, J. L.; Goldstein, B. E.; Balogh, A.

    1995-01-01

    Double ion beams are often observed in the solar wind, but little work has been done in relating these beams to structures within the solar wind. Double ion beams are observed as beams of a given ion species and charge state occurring at two different energies. We use the three-dimensional ion plasma instrument on board the Ulysses spacecraft to look for evidence of such beams associated with the heliospheric current sheet. In a subset chosen independently of plasma parameters consisting of 8 of cover 47 crossings of the current sheet made during the inecliptic phase of the Ulysses mission we find that these double ion beams are always present on either side of the current sheet. The double beams are present in both the proton and helium species. The secondary beam typically has a higher helium abundance, which suggests that these beams are formed in the helium-rich corona rather than in interplanetary space. The double beams are not present in the interior of the current sheet. Neither collisions nor effects of plasma beta can account for the disappearance of the double beams inside the current sheet in all eight cases. We postulate that these beams are formed by reconnection occurring near the Sun in the boundary region between the open field lines of the coronal holes and the closed field line region of the heliospheric current sheet. Such a scenario would be consistent with previous X ray measurements which suggect that reconnection is occurring in this region.

  8. Stability properties and fast ion confinement of hybrid tokamak plasma configurations

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Brunetti, D.; Pfefferle, D.; Faustin, J. M. P.; Cooper, W. A.; Kleiner, A.; Lanthaler, S.; Patten, H. W.; Raghunathan, M.

    2015-11-01

    In hybrid scenarios with flat q just above unity, extremely fast growing tearing modes are born from toroidal sidebands of the near resonant ideal internal kink mode. New scalings of the growth rate with the magnetic Reynolds number arise from two fluid effects and sheared toroidal flow. Non-linear saturated 1/1 dominant modes obtained from initial value stability calculation agree with the amplitude of the 1/1 component of a 3D VMEC equilibrium calculation. Viable and realistic equilibrium representation of such internal kink modes allow fast ion studies to be accurately established. Calculations of MAST neutral beam ion distributions using the VENUS-LEVIS code show very good agreement of observed impaired core fast ion confinement when long lived modes occur. The 3D ICRH code SCENIC also enables the establishment of minority RF distributions in hybrid plasmas susceptible to saturated near resonant internal kink modes.

  9. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    SciTech Connect

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  10. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator.

    PubMed

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  11. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  12. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    SciTech Connect

    Jang, Hyojae Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  13. Charge Breeding Techniques in an Electron Beam Ion Trap for High Precision Mass Spectrometry at TITAN

    NASA Astrophysics Data System (ADS)

    MacDonald, T. D.; Simon, M. C.; Bale, J. C.; Chowdhury, U.; Eibach, M.; Gallant, A. T.; Lennarz, A.; Simon, V. V.; Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Schultz, B. E.; Dilling, J.

    2012-10-01

    Penning trap mass spectrometry is the most accurate and precise method available for performing atomic mass measurements. TRIUMF's Ion Trap for Atomic and Nuclear science is currently the only facility to couple its Penning trap to a rare isotope facility and an electron beam ion trap (EBIT). The EBIT is a valuable tool for beam preparation: since the precision scales linearly with the charge state, it takes advantage of the precision gained by using highly charged ions. However, this precision gain is contingent on fast and efficient charge breeding. An optimization algorithm has been developed to identify the optimal conditions for running the EBIT. Taking only the mass number and half-life of the isotope of interest as inputs, the electron beam current density, charge breeding time, charge state, and electron beam energy are all specified to maximize this precision. An overview of the TITAN charge breeding program, and the results of charge breeding simulations will be presented.

  14. Ion Beam Sputtered Coatings of Bioglass

    NASA Technical Reports Server (NTRS)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  15. Characteristics of a direct metal ion beam deposition source

    NASA Astrophysics Data System (ADS)

    Kim, Daeil; Kim, Steven

    2002-07-01

    In this study, we examine the performance of a direct metal ion beam deposition (DMIBD) system which uses a Cs-mordenite pellet as the ion source. We describe design aspects of DMIBD and process parameters such as secondary ion yields, secondary ion energy distributions, secondary ion to atom arrival ratios and deposition rates for C, Al, Si, Ni, Cu, Ta, and W targets. During deposition, the secondary negative metal ion yield strongly depends on the primary Cs+ ion does and bombarding energy. Also, the deposition rate and ion to atom arrival ratios for various targets can be controlled by adjusting the primary Cs+ ion dose, Cs+ ion bombarding energy, and ion beam energy to fit the desired application. copyright 2002 American Vacuum Society.

  16. Electron trapping in high-current ion beam pipes

    SciTech Connect

    Herrmannsfeldt, W.B.

    2000-03-01

    The space charge voltage depression in a drifting heavy ion beam during the final stages of current pulse compression can be hundreds of kilovolts. For example, a 1kA beam of ions at beta = v/c = 0.4 would have a beam center-to-edge potential difference of 75kV. With suitable clearance from beam edge to the beam pipe, this amount is typically increased by a factor of 2 to 3 by the (1 + 2 ln(b/a)) term that accounts for the ratio of pipe radius to beam radius. Such high voltages, and resulting high electric fields at the pipe wall, will result in electrons being pulled into the beam pipe. These electrons which are emitted from the grounded beam pipe, will pass through the ion beam at high velocity and then turn around without (usually) striking the wall and continue to pass through the beam on repeated oscillations. It is possible to control the longitudinal motion of these trapped electrons by suitably varying the pipe size while considering the beam diameter. A segment of the beam pipe that has a larger diameter will result in a potential well that traps the electrons longitudinally. In a constant current scenario in a uniform pipe, the electrons will drift in the direction of the beam. However, the head and especially the tail of the ion beam will have a dramatic effect on the electrons, causing them to be pulled into the ion beam. These complex processes will continue until the ion beam passes through an optical element such as a beam transport magnet that will effectively block the motion of the electron clouds following the ions. In this paper, the authors will show examples of how electrons can be trapped and controlled by varying the conditions determining their emission and confinement. Ray tracing simulations using the EGN2[1] computer code will be used to model the electron trajectories in the presence of a high current heavy ion beam. The self magnetic field of the ion beam, while not sufficient to affect the ions themselves significantly, has a strong

  17. Effects of a dielectric material in an ion source on the ion beam current density and ion beam energy

    SciTech Connect

    Fujiwara, Y. Sakakita, H.; Nakamiya, A.; Hirano, Y.; Kiyama, S.

    2016-02-15

    To understand a strong focusing phenomenon that occurs in a low-energy hydrogen ion beam, the electron temperature, the electron density, and the space potential in an ion source with cusped magnetic fields are measured before and after the transition to the focusing state using an electrostatic probe. The experimental results show that no significant changes are observed before or after the transition. However, we found unique phenomena that are characterized by the position of the electrostatic probe in the ion source chamber. Specifically, the extracted ion beam current density and energy are obviously enhanced in the case where the electrostatic probe, which is covered by a dielectric material, is placed close to an acceleration electrode.

  18. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    DOE PAGES

    Friedman, Alex

    2013-10-19

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, which each have unique arrival times and may have unique kinetic energies. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: thatmore » the path lengths of the beams in a group must be equal, and that any delay of \\main-pulse" beams relative to \\foot-pulse" beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying \\di erential acceleration" to individual beams or sets of beam at strategic stages of the transport lines. That is, by accelerating some beams \\sooner" and others \\later," it is possible to simplify the beam line con guration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use di erential acceleration to e ect the simultaneous arrival on target of a set of beams ( e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model con gurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.« less

  19. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    SciTech Connect

    Friedman, Alex

    2013-10-19

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, which each have unique arrival times and may have unique kinetic energies. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of \\main-pulse" beams relative to \\foot-pulse" beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying \\di erential acceleration" to individual beams or sets of beam at strategic stages of the transport lines. That is, by accelerating some beams \\sooner" and others \\later," it is possible to simplify the beam line con guration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use di erential acceleration to e ect the simultaneous arrival on target of a set of beams ( e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model con gurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.

  20. A Critical Fast Ion Beta in the Madison Symmetric Torus Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Capecchi, William J.

    The first fast-ion profile measurements have been made in a reversed-field pinch (RFP) plasma. A large population of fast-ions are deposited in the core of the Madison Symmetric Torus (MST) through use of a 1 MW neutral beam injector (NBI) giving rise to a variety of beam-driven instabilities. One such mode, the energetic-particle mode (EPM) has been shown to reduce fast-ion content in MST, evident through drops in signal levels of the advanced neutral particle analyzer (ANPA). EPMs in MST appear as bursts of magnetic fluctuations at a lab frequency of ˜100 kHz reaching peak amplitude and decaying away within 100 microseconds. A burst ensemble of the neutron data does not reveal a drop in neutron emission across a burst, implying the population of fast-ions transported by a burst constitute a small fraction of the total. The burst may also pitch-angle scatter out of the ANPA phase space or be transported to mid-radius where charge-exchange with the background neutrals or fast-ion orbit stochasticity may reduce fast-ion confinement. Data gathered from the expanded neutron diagnostic suite including a new collimated neutron detector (CiNDe) was used to reconstruct the fast-ion profile in MST and measure critical fast-ion beta quantities. Measurements were made in plasma conditions with varying magnetic field strength in order to investigate the interplay between the energetic particle (EP) drive and Alfven continuum damping. The measured values of the core fast-ion beta (7.5% (1.2%) in 300 (500) kA plasmas) are reduced from classical predictions (TRANSP predicts up to 10% core value) due to EPM activity. The frequency, magnitude, and rate of occurrence of the bursts depends on the tearing mode amplitude, Alfven continuum damping rate, fast-ion profile shape, and resonant orbit dynamics. Marginal stability was reached in both moderate- (300 kA) and high- (500 kA) current discharges, marked by sustained EPM activity and a saturated global neutron signal during NBI

  1. Laser ion acceleration toward future ion beam cancer therapy - Numerical simulation study -

    PubMed Central

    Kawata, Shigeo; Izumiyama, Takeshi; Nagashima, Toshihiro; Takano, Masahiro; Barada, Daisuke; Kong, Qing; Gu, Yan Jun; Wang, Ping Xiao; Ma, Yan Yun; Wang, Wei Min

    2013-01-01

    Background: Ion beam has been used in cancer treatment, and has a unique preferable feature to deposit its main energy inside a human body so that cancer cell could be killed by the ion beam. However, conventional ion accelerator tends to be huge in its size and its cost. In this paper a future intense-laser ion accelerator is proposed to make the ion accelerator compact. Subjects and methods: An intense femtosecond pulsed laser was employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching and the ion particle energy control. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. Results: When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near-critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. Conclusions: The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. PMID:24155555

  2. An electron cyclotron resonance ion source based low energy ion beam platform

    SciTech Connect

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-02-15

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  3. Modification of Sawteeth Periods By Trapped Fast Ions in DIII-D

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Chu, M. S.; Lao, L. L.; Turnbull, A. D.

    2006-10-01

    The main auxiliary heating methods for ITER are neutral beam and ion cyclotron wave heating. Sawtooth physics is very important in optimizing the heating efficiency for ITER. This requires understanding of the interaction between fast ions and fast Alfvén wave (FW) on MHD stability. Experimentally, the DIII-D discharges have demonstrated strong acceleration of deuterium beam ions above the injected beam energy from measurements of enhanced neutron emissions during FW heating. Theory predicts that high pressure from fast ions in the center of plasma may act as a stabilizing kinetic effect on ideal internal kink mode. However, the DIII-D experimental results showed that sawteeth characteristics strongly depend on a combination of plasma and wave conditions. We apply a Monte-Carlo orbit code (ORBIT-RF) and ideal MHD code (GATO) to model existing DIII-D experiments and explore the triggering and stabilization mechanisms for sawteeth. The analytical model by Bussac and Porcelli will be compared with NOVA-K calculations.

  4. Analysis of Beam-Beam Kink Instability in a Linac-Ring Electron-Ion Collider

    SciTech Connect

    V. Lebedev; J. Bisognano; R. Li; B. Yunn

    2001-06-01

    A linac-ring collision scheme was considered in recent proposals of electron-gold colliders (eRHIC) and polarized-electron light-ion colliders (EPIC). The advantages of using an energy-recovered linac for the electron beam is that it avoids the limitation of beam-beam tune shift inherent in a storage ring, pertains good beam quality and easy manipulation of polarization. However, the interaction of the ion beam in the storage ring with the electron beam from the linac acts analogously to a transverse impedance, and can induce unstable behavior of the ion beam similar to the strong head-tail instability. In this paper, this beam-beam kink instability with head-tail effect is analyzed using the linearized Vlasov equation, and the threshold of transverse mode coupling instability is obtained.

  5. BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC

    SciTech Connect

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; Wang, Shaoheng

    2016-05-01

    An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mA - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.

  6. High power, fast, microwave components based on beam generated plasmas

    NASA Astrophysics Data System (ADS)

    Manheimer, W. M.; Fernsler, R. F.; Gitlin, M. S.

    1998-10-01

    It is shown that the agile mirror plasma, under development as a device to simply and cheaply give electronic steering to microwave beams, also has application as a fast, electronically controlled, high power reflector, or phase shifter. In a radar system, this can lead to such applications as pulse to pulse polarization agility and electronic control of antenna gain, as well as to innovative approaches to high power millimeter wave circulators. The basic theory of the enhanced glow plasma is also developed.

  7. Characteristics of Reflected Ion Beam in Young HFAs

    NASA Astrophysics Data System (ADS)

    Vaisberg, O. L.; Shuvalov, S.; Shestakov, A.; Golubeva, Y.; Dandouras, I. S.; Penou, E.; Reme, H.; Sauvaud, J. A.

    2015-12-01

    We analyze reflected ion beams in the vicinity and within young Hot Flow Anomalies at the bow shock observed onboard the CLUSTER spacecraft. Four HFAs were selected based on the criterion that all four spacecraft observed them at the early stage when the current sheet is easily identified. Ion data were available from two spacecraft: C1 and C3. In order to calculate number densities and velocities of the solar wind beam and of the reflected beam we divided in two parts the velocity space in which measurements of the ion flux were performed: one velocity space domain in which only the solar wind beam was observed, the other velocity space domain corresponding to the remaining velocity space in which reflected beam(s) were detected. Ion parameters were calculated as moments of the ion distributions in which phase space density was assigned to respective CLUSTER (θ,φ,V) grid blocks.One of interesting features present in observed crossings of HFAs is that reflected ions tend to be observed within long time interval from the side of quasi-parallel shock. The flux of these ions is increasing and their average energy is decreasing towards the HFA itself. These cases correspond to larger ratio of the reflected beam density to the solar wind beam density. Deceleration of the flow within HFA itself is reversely proportional to the reflected beam density, which corresponds to momentum conservation of the flux within HFA.

  8. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1985-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter depoairion are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq. cm. resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x to to the -6/ohm. cm. for 300 angstrom film to 2.56 x 10 to the -1/ohm. cm. for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  9. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1986-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter deposition are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq cm resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x 10 to the -6th/ohm cm for 300 angstrom film to 2.56 x 10 to the -1/ohm cm for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  10. MEMS based ion beams for fusion

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Schaffer, Z. A.; Lal, A.

    2016-10-01

    Micro-Electro-Mechanical Systems (MEMS) fabrication provides an exciting opportunity to shrink existing accelerator concepts to smaller sizes and to reduce cost by orders of magnitude. We revisit the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and show how, with current technologies, the concept can be downsized from gap distances of several cm to distances in the sub-mm regime. The basic concept implements acceleration gaps using radio frequency (RF) fields and electrostatic quadrupoles (ESQ) on silicon wafers. First results from proof-of-concept experiments using printed circuit boards to realize the MEQALAC structures are presented. We show results from accelerating structures that were used in an array of nine (3x3) parallel beamlets with He ions at 15 keV. We will also present results from an ESQ focusing lattice using the same beamlet layout showing beam transport and matching. We also will discuss our progress in fabricating MEMS devices in silicon wafers for both the RF and ESQ structures and integration of necessary RF-circuits on-chip. The concept can be scaled up to thousands of beamlets providing high power beams at low cost and can be used to form and compress a plasma for the development of magnetized target fusion approaches. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC0205CH11231 (LBNL).

  11. Ion-Beam Analysis of Airborne Pollution

    NASA Astrophysics Data System (ADS)

    Harrington, Charles; Gleason, Colin; Schuff, Katie; Battaglia, Maria; Moore, Robert; Turley, Colin; Labrake, Scott; Vineyard, Michael

    2010-11-01

    An undergraduate laboratory research program in ion-beam analysis (IBA) of atmospheric aerosols is being developed to study pollution in the Capitol District and Adirondack Mountains of New York. The IBA techniques applied in this project include proton induced X-ray emission (PIXE), proton induced gamma-ray emission (PIGE), Rutherford backscattering (RBS), and proton elastic scattering analysis (PESA). These methods are well suited for studying air pollution because they are quick, non-destructive, require little to no sample preparation, and capable of investigating microscopic samples. While PIXE spectrometry is used to analyze most elements from silicon to uranium, the other techniques are being applied to measure some of the remaining elements and complement PIXE in the study of aerosols. The airborne particulate matter is collected using nine-stage cascade impactors that separate the particles according to size and the samples are bombarded with proton beams from the Union College 1.1-MV Pelletron Accelerator. The reaction products are measured with SDD X-ray, Ge gamma-ray, and Si surface barrier charged particle detectors. Here we report on the progress we have made on the PIGE, RBS, and PESA analysis of aerosol samples.

  12. Application of ECR ion source beams in atomic physics

    SciTech Connect

    Meyer, F.W.

    1987-01-01

    The availability of intense, high charge state ion beams from ECR ion sources has had significant impact not only on the upgrading of cyclotron and synchrotron facilities, but also on multicharged ion collision research, as evidenced by the increasing number of ECR source facilities used at least on a part time basis for atomic physics research. In this paper one such facility, located at the ORNL ECR source, and dedicated full time to the study of multicharged ion collisions, is described. Examples of applications of ECR ion source beams are given, based on multicharged ion collision physics studies performed at Oak Ridge over the last few years. 21 refs., 18 figs., 2 tabs.

  13. Origin of fast ion diffusion in super-ionic conductors

    PubMed Central

    He, Xingfeng; Zhu, Yizhou; Mo, Yifei

    2017-01-01

    Super-ionic conductor materials have great potential to enable novel technologies in energy storage and conversion. However, it is not yet understood why only a few materials can deliver exceptionally higher ionic conductivity than typical solids or how one can design fast ion conductors following simple principles. Using ab initio modelling, here we show that fast diffusion in super-ionic conductors does not occur through isolated ion hopping as is typical in solids, but instead proceeds through concerted migrations of multiple ions with low energy barriers. Furthermore, we elucidate that the low energy barriers of the concerted ionic diffusion are a result of unique mobile ion configurations and strong mobile ion interactions in super-ionic conductors. Our results provide a general framework and universal strategy to design solid materials with fast ionic diffusion. PMID:28635958

  14. Origin of fast ion diffusion in super-ionic conductors

    NASA Astrophysics Data System (ADS)

    He, Xingfeng; Zhu, Yizhou; Mo, Yifei

    2017-06-01

    Super-ionic conductor materials have great potential to enable novel technologies in energy storage and conversion. However, it is not yet understood why only a few materials can deliver exceptionally higher ionic conductivity than typical solids or how one can design fast ion conductors following simple principles. Using ab initio modelling, here we show that fast diffusion in super-ionic conductors does not occur through isolated ion hopping as is typical in solids, but instead proceeds through concerted migrations of multiple ions with low energy barriers. Furthermore, we elucidate that the low energy barriers of the concerted ionic diffusion are a result of unique mobile ion configurations and strong mobile ion interactions in super-ionic conductors. Our results provide a general framework and universal strategy to design solid materials with fast ionic diffusion.

  15. Plasma and ion barrier for electron beam spot stability

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas J. T.; Snell, Charles M.

    2000-03-01

    High-current electron beams of small spot size are used for high-resolution x-ray radiography of dense objects. Intense energy deposition in the bremsstrahlung target causes generation of ions which can propagate upstream and disrupt the electron beam. We have investigated the use of a thin beryllium foil placed 1-2 cm in front of the target, which serves as a barrier for the ions but is essentially transparent to the incoming electron beam. Analysis and computer simulations confirm that this confinement method will halt ion propagation and preserve the spot size stability of the electron beam.

  16. Production of multiply charged ion beams from solid substances with the mVINIS ion source

    SciTech Connect

    Draganic, I.; Dobrosavljevic, A.; Nedeljkovic, T.; Siljegovic, M.

    2006-03-15

    The mVINIS ion source has enabled us to obtain multiply charged ion beams from gases as well as from solid materials. The solid substance ion beams were produced by using two techniques: (a) the evaporation of metals by using the inlet system based on a minioven and (b) the metal-ions-from-volatile-compounds method (MIVOC) by using the modified gas inlet system. Great efforts were made in the production of high current stable ion beams of solids with relatively high melting points (over 1000 deg. C). The B{sup 3+} ion-beam current of over 300 {mu}A was one of the most intensive beams extracted until now. The obtained multiply charged ion-beam spectra of solid substances (B, Fe, and Zn) are presented as well as some of the corresponding experimental results achieved during the modification of polymers, carbon materials, and fullerenes.

  17. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  18. Focused ion beam lithography and anodization combined nanopore patterning.

    PubMed

    Lu, Kathy; Zhao, Jingzhong

    2010-10-01

    In this study, focused ion beam lithography and anodization are combined to create different nanopore patterns. Uniform-, alternating-, and gradient-sized shallow nanopore arrays are first made on high purity aluminum by focused ion beam lithography. These shallow pore arrays are then used as pore initiation sites during anodization by different electrolytes. Depending on the nature of the anodization electrolyte, the nanopore patterns by focused ion beam lithography play different roles in further pore development during anodization. The pore-to-pore distance by focused ion beam lithography should match with that by anodization for guided pore development to be effective. Ordered and heterogeneous nanopore arrays are obtained by the focused ion beam lithography and anodization combined approach.

  19. Variable-Energy Ion Beams For Modification Of Surfaces

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Hecht, Michael H.; Orient, Otto J.

    1989-01-01

    Beam of low-energy negative oxygen ions used to grow layer of silicon dioxide on silicon. Beam unique both in purity, contains no molecular oxygen or other charged species, and in low energy, which is insufficient to damage silicon by physically displacing atoms. Low-energy growth accomplished with help of ion-beam apparatus. Directs electrons into crosswise stream of gas, generating stream of negative ions. Pair of charged plates separates ions from accompanying electrons and diverts ion beam to target - silicon substrate. Diameter of beam at target 0.5 to 0.75 cm. Promises useful device to study oxidation of semiconductors and, in certain applications, to replace conventional oxidation processes.

  20. Historical milestones and future prospects of cluster ion beam technology

    NASA Astrophysics Data System (ADS)

    Yamada, Isao

    2014-08-01

    Development of technology for processing of surfaces by means of gas cluster ion beams began only about a quarter century ago even though fundamental research related to generation of gas clusters began much earlier. Industrial applications of cluster ion beams did not start to be explored until commercial equipment was first introduced to the ion beam community in around 2000. The technology is now evolving rapidly with industrial equipment being engineered for many diverse surface processing applications which are made possible by the unique characteristics of cluster-ion/solid-surface interactions. In this paper, important historical milestones in cluster ion beam development are described. Present activities related to a wide range of industrial applications in semiconductors, magnetic and optical devices, and bio-medical devices are reviewed. Several emerging new advances in cluster beam applications for the future are also discussed.

  1. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  2. Controlling fast-electron-beam divergence using two laser pulses.

    PubMed

    Scott, R H H; Beaucourt, C; Schlenvoigt, H-P; Markey, K; Lancaster, K L; Ridgers, C P; Brenner, C M; Pasley, J; Gray, R J; Musgrave, I O; Robinson, A P L; Li, K; Notley, M M; Davies, J R; Baton, S D; Santos, J J; Feugeas, J-L; Nicolaï, Ph; Malka, G; Tikhonchuk, V T; McKenna, P; Neely, D; Rose, S J; Norreys, P A

    2012-07-06

    This Letter describes the first experimental demonstration of the guiding of a relativistic electron beam in a solid target using two colinear, relativistically intense, picosecond laser pulses. The first pulse creates a magnetic field that guides the higher-current, fast-electron beam generated by the second pulse. The effects of intensity ratio, delay, total energy, and intrinsic prepulse are examined. Thermal and Kα imaging show reduced emission size, increased peak emission, and increased total emission at delays of 4-6 ps, an intensity ratio of 10∶1 (second:first) and a total energy of 186 J. In comparison to a single, high-contrast shot, the inferred fast-electron divergence is reduced by 2.7 times, while the fast-electron current density is increased by a factor of 1.8. The enhancements are reproduced with modeling and are shown to be due to the self-generation of magnetic fields. Such a scheme could be of considerable benefit to fast-ignition inertial fusion.

  3. Direct plasma injection scheme with various ion beams

    SciTech Connect

    Okamura, M.

    2010-09-15

    The laser ion source is one of the most powerful heavy ion sources. However, it is difficult to obtain good stability and to control its intense current. To overcome these difficulties, we proposed a new beam injection scheme called 'direct plasma injection scheme'. Following this it was established to provide various species with desired charge state as an intense accelerated beam. Carbon, aluminum and iron beams have been tested.

  4. A preliminary model of ion beam neutralization. [in thruster plasmas

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1979-01-01

    A theoretical model of neutralized thruster ion beam plasmas has been developed. The basic premise is that the beam forms an electrostatic trap for the neutralizing electrons. A Maxwellian spectrum of electron energies is maintained by collisions between trapped electrons and by collective randomization of velocities of electrons injected from the neutralizer into the surrounding plasma. The theory contains the observed barometric law relationship between electron density and electron temperatures and ion beam spreading in good agreement with measured results.

  5. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N.

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  6. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    PubMed Central

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures. PMID:26776569

  7. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures.

  8. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures.

    PubMed

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-18

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar(+)) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar(+)-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar(+)-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures.

  9. On the role of ion-based imaging methods in modern ion beam therapy

    NASA Astrophysics Data System (ADS)

    Magallanes, L.; Brons, S.; Marcelos, T.; Takechi, M.; Voss, B.; Jäkel, O.; Rinaldi, I.; Parodi, K.

    2014-11-01

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  10. On the role of ion-based imaging methods in modern ion beam therapy

    SciTech Connect

    Magallanes, L. Rinaldi, I.; Brons, S.; Marcelos, T. Parodi, K.; Takechi, M.; Voss, B.; Jäkel, O.

    2014-11-07

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  11. An ion source module for the Beijing Radioactive Ion-beam Facility

    NASA Astrophysics Data System (ADS)

    Cui, B.; Huang, Q.; Tang, B.; Ma, R.; Chen, L.; Ma, Y.

    2014-02-01

    An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li+ beam has been extracted. Details of the ion source module and its primary test results are described.

  12. Measurements of Beam Ion Loss from the Compact Helical System

    SciTech Connect

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  13. Laser Ion Source Operation at the TRIUMF Radioactive Ion Beam Facility

    SciTech Connect

    Lassen, J.; Bricault, P.; Dombsky, M.; Lavoie, J. P.; Gillner, M.; Hellbusch, F.; Teigelhoefer, A.; Voss, A.; Gottwald, T.; Wendt, K. D. A.

    2009-03-17

    The TRIUMF Resonant Ionization Laser Ion Source (RILIS) for radioactive ion beam production is presented, with target ion source, laser beam transport, laser system and operation. In this context aspects of titanium sapphire (TiSa) laser based RILIS and facility requirements are discussed and results from the first years of TRILIS RIB delivery are given.

  14. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  15. Negative ions as a source of low energy neutral beams

    SciTech Connect

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  16. Beam-Ion Instability in PEP-II

    SciTech Connect

    Heifets, S.; Kulikov, A.; Wang, Min-Huey; Wienands, U.; /SLAC

    2007-11-07

    The instability in the PEP-II electron ring has been observed while reducing the clearing gap in the bunch train. We study the ion effects in the ring summarizing existing theories of the beam-ion interaction, comparing them with observations, and estimating effect on luminosity in the saturation regime. Considering the gap instability we suggest that the instability is triggered by the beam-ion instability, and discuss other mechanisms pertinent to the instability.

  17. Ion Beam Transport Simulations for the 1.7 MV Tandem Accelerator at the Michigan Ion Beam Laboratory

    NASA Astrophysics Data System (ADS)

    Naab, F. U.; Toader, O. F.; Was, G. S.

    The Michigan Ion Beam Laboratory houses a 1.7 MV tandem accelerator. For many years this accelerator was configured to run with three ion sources: a TORoidal Volume Ion Source (TORVIS), a Duoplasmatron source and a Sputter source. In this article we describe an application we have created using the SIMION® code to simulate the trajectories of ion beams produced with these sources through the accelerator. The goal of this work is to have an analytical tool to understand the effect of each electromagnetic component on the ion trajectories. This effect is shown in detailed drawings. Each ion trajectory simulation starts at the aperture of the ion source and ends at the position of the target. Using these simulations, new accelerator operators or users quickly understand how the accelerator system works. Furthermore, these simulations allow analysis of modifications in the ion beam optics of the accelerator by adding, removing or replacing components or changing their relative positions.

  18. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    DOE PAGES

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; ...

    2015-12-11

    Here, table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m–1) and magnetic (~104 T) fields. These resultsmore » contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.« less

  19. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    SciTech Connect

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-12-11

    Here, table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m–1) and magnetic (~104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.

  20. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    PubMed Central

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-01-01

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼1012 V m−1) and magnetic (∼104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science. PMID:26657147