Science.gov

Sample records for fast ion diffusion

  1. On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes

    SciTech Connect

    N.N. Gorelenkov, N.J. Fisch and E. Fredrickson

    2010-03-09

    An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode converted ion Bernstein wave experiments on Tokamak Fusion Test Reactor (TFTR) the only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived freuency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecure that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a tokamak reactor.

  2. FAST TRACK COMMUNICATION: Neodymium ion diffusion during sintering of Nd : YAG transparent ceramics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Joel P.; Kuntz, Joshua D.; Soules, Thomas F.

    2009-03-01

    Using an electron microprobe, we measured and characterized the Nd3+ ion diffusion across a boundary between Nd doped and undoped ceramic yttrium aluminium garnet (YAG) for different temperature ramps and hold times and temperatures. The results show significant Nd ion diffusion on the order of micrometres to tens of micrometres depending on the time and temperature of sintering. The data fit well a model including bulk diffusion, grain boundary diffusion and grain growth. Grain boundary diffusion dominates and grain growth limits grain boundary diffusion by reducing the total cross-sectional area of grain boundaries.

  3. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Sommer, Lars Wilko; Kiesel, Peter; Ganguli, Anurag; Lochbaum, Alexander; Saha, Bhaskar; Schwartz, Julian; Bae, Chang-Jun; Alamgir, Mohamed; Raghavan, Ajay

    2015-11-01

    Cell monitoring for safe capacity utilization while maximizing pack life and performance is a key requirement for effective battery management and encouraging their adoption for clean-energy technologies. A key cell failure mode is the build-up of residual electrode strain over time, which affects both cell performance and life. Our team has been exploring the use of fiber optic (FO) sensors as a new alternative for cell state monitoring. In this present study, various charge-cycling experiments were performed on Lithium-ion pouch cells with a particular class of FO sensors, fiber Bragg gratings (FBGs), that were externally attached to the cells. An overshooting of the volume change at high SOC that recovers during rest can be observed. This phenomenon originates from the interplay between a fast and a slow Li ion diffusion process, which leads to non-homogeneous intercalation of Li ions. This paper focuses on the strain relaxation processes that occur after switching from charge to no-load phases. The correlation of the excess volume and subsequent relaxation to SOC as well as temperature is discussed. The implications of being able to monitor this phenomenon to control battery utilization for long life are also discussed.

  4. Model for collisional fast ion diffusion into Tokamak Fusion Test Reactor loss cone

    SciTech Connect

    Chang, C.S. |; Zweben, S.J.; Schivell, J.; Budny, R.; Scott, S.

    1994-08-01

    An analytic model is developed to estimate the classical pitch angle scattering loss of energetic fusion product ions into prompt loss orbits in a tokamak geometry. The result is applied to alpha particles produced by deutrium-tritium fusion reactions in a plasma condition relevant to Tokamak Fusion Test Reactor (TFTR). A poloidal angular distribution of collisional fast ion loss at the first wall is obtained and the numerical result from the TRANSP code is discussed. The present model includes the effect that the prompt loss boundary moves away from the slowing-down path due to reduction in banana thickness, which enables us to understand, for the first time. the dependence of the collisional loss rate on Z{sub eff}.

  5. Modeling of pickup ion distributions in the Halley cometosheath: Empirical limits on rates of ionization, diffusion, loss and creation of fast neutral atoms

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Neugebauer, M.; Goldstein, B. E.

    1994-01-01

    The shape of the velocity distribution of water group ions observed by the Giotto ion mass spectrometer on its approach to comet Halley is modeled to derive empirical values for the rates of ionization, energy diffusion, and loss in the midcometosheath. The model includes the effect of rapid pitch angle scattering into a bispherical shell distribution as well as the effect of the magnetization of the plasma on the charge exchange loss rate. It is found that the average rate of ionization of cometary neutrals in this region of the cometosheath appears to be of the order of a factor 3 faster than the `standard' rates approx. 1 x 10(exp -6)/s that are generally assumed to model the observations in most regions of the comet environment. For the region of the coma studied in the present work (approx. 1 - 2 x 10(exp 5) km from the nucleus), the inferred energy diffusion coefficient is D(sub 0) approx. equals 0.0002 to 0.0005 sq km/cu s, which is generally lower than values used in other models. The empirically obtained loss rate appears to be about an order of magnitude greater than can be explained by charge exchange with the `standard' cross section of approx. 2 x 10(exp -15)sq cm. However such cross sections are not well known and for water group ion/water group neutral interactions, rates as high as 8 x 10(exp -15) sq cm have previously been suggested in the literature. Assuming the entire loss rate is due to charge exchange yields a rate of creation of fast neutral atoms of the order of approx. 10(exp -4)/s or higher, depending on the level of velocity diffusion. The fast neutrals may, in turn, be partly responsible for the higher-than-expected ionization rate.

  6. The fast diffusion of Au IN Pb

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Ko, C.; Brotzen, F. R.

    1990-01-01

    A treatment of the phenomenon of fast diffusion in lead is presented. The model used is based upon the fast diffusion of free solute interstitials. The very large negative enhancement coefficients found in the Pb-(Au, Ag) systems is explained by the formation of first and second order clusters of vacancies and substitutional solute atoms.

  7. Modeling of Pickup Ion Distributions in the Halley Cometo-Sheath: Empirical Rates of Ionization, Diffusion, Loss and Creation of Fast Neutral Atoms

    NASA Technical Reports Server (NTRS)

    Huddleston, D.; Neugebauer, M.; Goldstein, B.

    1994-01-01

    The shape of the velocity distribution of water-group ions observed by the Giotto ion mass spectrometer on its approach to comet Halley is modeled to derive empirical values for the rates on ionization, energy diffusion, and loss in the mid-cometosheath.

  8. Fast Ion Transport in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Bonofiglo, P. J.; Anderson, J. K.; Capecchi, W.; Kim, J.; Sears, S. H.; Egedal, J.

    2016-10-01

    The reversed field pinch (RFP) provides a unique environment to study fast ion confinement and transport. The magnetic topology of the RFP establishes guiding center drifts along flux surfaces, resulting in naturally well-confined fast ions. Past experiments reveal reduced confinement and a redistribution of fast ions with beam-driven instabilities or transition to a 3D equilibrium state. A fast ion transport model characterized by a temporally and spatially dependent diffusion profile describes the fast ion evolution. The diffusion coefficient varies as the square of the measured mode amplitude, and the width is inferred from comparison with correlated density fluctuations. In studying multiple interacting modes, the model reproduces the dynamic NPA-measured 20 % drop in core fast ion concentration. In the case of long-lived frequency chirping modes, there is a consistent time evolution of the fast ion distribution and measured mode frequency on a spatially varying Alfven continuum. Additional studies probe the dynamics of energetic particle modes (EPMs) during the growth of the core-localized kink mode and the rapid loss of fast ion confinement as a transition to a 3D equilibrium occurs. This research is supported by US DOE.

  9. Cytoplasmic hydrogen ion diffusion coefficient.

    PubMed Central

    al-Baldawi, N F; Abercrombie, R F

    1992-01-01

    The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134

  10. Fast permutation preconditioning for fractional diffusion equations.

    PubMed

    Wang, Sheng-Feng; Huang, Ting-Zhu; Gu, Xian-Ming; Luo, Wei-Hua

    2016-01-01

    In this paper, an implicit finite difference scheme with the shifted Grünwald formula, which is unconditionally stable, is used to discretize the fractional diffusion equations with constant diffusion coefficients. The coefficient matrix possesses the Toeplitz structure and the fast Toeplitz matrix-vector product can be utilized to reduce the computational complexity from [Formula: see text] to [Formula: see text], where N is the number of grid points. Two preconditioned iterative methods, named bi-conjugate gradient method for Toeplitz matrix and bi-conjugate residual method for Toeplitz matrix, are proposed to solve the relevant discretized systems. Finally, numerical experiments are reported to show the effectiveness of our preconditioners.

  11. Fast ion JET diagnostics: confinement and losses

    SciTech Connect

    Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; Syme, D. B.; Cecconello, M.; Darrow, D.; Hill, K.; Goloborod'ko, V.; Yavorskij, V.; Johnson, T.; Murari, A.; Reich, M.; Gorini, G.; Zoita, V.

    2008-03-12

    A study of magnetically confined fast ions in tokamaks plays an important role in burning plasma research. To reach ignition and steady burning of a reactor plasma an adequate confinement of energetic ions produced by NBI heating, accelerated with ICRF and born in fusion reactions is essential to provide efficient heating of the bulk plasma. Thus, investigation of the fast ion behaviour is an immediate task for present-day large machines, such as JET, in order to understand the main mechanisms of slowing down, redistribution and losses, and to develop optimal plasma scenarios. Today's JET has an enhanced suite of fast ion diagnostics both of confined and lost ions that enable to significantly contribute to this important area of research. Fast ion populations of p, d, t, {sup 3}He and {sup 4}He, made with ICRF, NBI, and fusion reactions have been investigated in experiments on JET with sophisticated diagnostics in conventional and shear-reversed plasmas, exploring a wide range of effects. This paper will introduce to the JET fast-ion diagnostic techniques and will give an overview of recent observations. A synergy of the unique diagnostic set was utilised in JET, and studies of the response of fast ions to MHD modes (e.g. tornado modes, sawtooth crashes), fast {sup 3}He-ions behaviour in shear-reversed plasmas are impressive examples of that. Some results on fast ion losses in JET experiments with various levels of the toroidal field ripple will be demonstrated.

  12. Search for selective ion diffusion through membranes

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The diffusion rates of several ions through some membranes developed as battery separators were measured. The ions investigated were Li(+), Rb(+), Cl(-), and So4. The members were crosslinked polyvinyl alcohol, crosslinked polyacrylic acid, a copolymer of the two, crosslinked calcium polyacrylate, cellulose, and several microporous polyphenylene oxide based films. No true specificity for diffusion of any of these ions was found for any of the membranes. But the calcium polyacrylate membrane was found to exhibit ion exchange with the diffusing ions giving rise to the leaching of the calcium ion and low reproducibility. These findings contrast earlier work where the calcium polyacrylate membrane did show specificity to the diffusion of the copper ion. In general, Fick's law appeared to be obeyed. Except for the microporous membranes, the coefficients for ion diffusion through the membranes were comparable with their values in water. For the microporous membranes, the values found for the coefficients were much less, due to the tortuosity of the micropores.

  13. A study on the TAE-induced fast-ion loss process in LHD

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Isobe, M.; Toi, K.; Shimizu, A.; Spong, D. A.; Osakabe, M.; Yamamoto, S.; the LHD Experiment Group

    2013-05-01

    Characteristics of fast-ion losses induced by toroidal-Alfvén eigenmodes (TAEs) are investigated over wide parameter ranges of Large Helical Device (LHD) plasmas to reveal the fast-ion loss process. To study fast-ion losses, a scintillator-based lost-fast ion probe is used, and an increment of fast-ion loss flux due to TAEs from the neoclassical orbit loss level (ΔΓfast ion) is measured. The dependence of ΔΓfast ion on the TAE magnetic fluctuation amplitude (bθTAE) changes from a linear to a quadratic and finally a third power with an increase in the magnetic axis shift. It is found that the dependence of fast-ion loss flux on TAE magnetic fluctuation amplitudes changes at a certain fluctuation level in a fixed configuration. Experimental results show that in the small bθTAE regime, ΔΓfast ion is proportional to bθTAE, whereas ΔΓfast ion increases with the square of bθTAE in the larger bθTAE regime. A simulation by orbit-following codes that incorporate magnetic fluctuations with frequency chirping-down due to TAEs suggests the change in the fast-ion loss process from a convective (ΔΓfast ion ∝ bθTAE) to a diffusive (\\Delta \\Gamma_{fast\\ ion} \\propto b_{\\theta TAE}^{2} ) character as bθTAE increases.

  14. Fast self-diffusion of ions in CH 3 NH 3 PbI 3 : the interstiticaly mechanism versus vacancy-assisted mechanism

    SciTech Connect

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2016-01-01

    The stability of organic-inorganic halide perovskites is a major challenge for their applications and has been extensively studied. Among the possible underlying reasons, ion self-diffusion has been inferred to play important roles. While theoretical studies congruously support that iodine is more mobile, experimental studies only observe the direct diffusion of the MA ion and possible diffusion of iodine. The discrepancy may result from the incomplete understanding of ion diffusion mechanisms. With the help of first-principles calculations, we studied ion diffusion in CH3NH3PbI3 (MAPbI3) through not only the vacancy-assisted mechanisms presumed in previous theoretical studies, but also the neglected interstiticaly mechanisms. We found that compared to the diffusion through the vacancy-assisted mechanism, MA ion diffusion through the interstiticaly mechanism has a much smaller barrier which could explain experimental observations. For iodine diffusion, both mechanisms can yield relatively small barriers. Depending on the growth conditions, defect densities of vacancies and interstitials can vary and so do the diffusion species as well as diffusion mechanisms. Our work thus supports that both MA and iodine ion diffusion could contribute to the performance instability of MAPbI3. While being congruous with experimental results, our work fills the research gap by providing a full understanding of ion diffusion in halide perovskites.

  15. Li + ion diffusion in nanoscale alumina coatings

    NASA Astrophysics Data System (ADS)

    Johannes, Michelle; Bernstein, Noam

    Nanoscale coatings of alumina are used to stabilize surfaces for a variety of technologies. Diffusion of ions through these coatings is of primary importance: in some cases, diffusion is unwanted (e.g. corrosion) and in others (e.g. electrode materials), it is necessary. In this work DFT and AIMD calculations are used to investigate Li+ ion diffusion through a nano-layer of alumina, examining the phase (alpha, gamma, and amorphous), ion concentration, and electron count dependence. We look at the role of the surface itself in promoting diffusion. One of our main findings is that as the number of ions or charge increases, the diffusivity rises. We show how our data can explain electrochemical data from coated LiCoO2 cathodes and may point toward better and more efficient coatings for stabilizing electrodes.

  16. Fast ion dynamics measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Bindslev, Henrik

    2001-10-01

    we find that fast ions with parallel energies above thermal exhibit no sensitivity to sawteeth. Near the inversion radius on the low field side, by contrast, we see no fast ion sensitivity to sawteeth, even for ions with small parallel energy and perpendicular energy below the threshold found on the high field side. Also measured are the temporal evolutions at switch-on and -off of the fast ion sources (ICRH and NBI), providing new experimental information on slowing down - confinement - and quasilinear diffusion times. The observed slowing down times of fast ions on passing orbits agree well with classical slowing down due to electron drag. There are indications that the core ICRH fast ions appear earlier in perpendicular velocity space than in parallel space, consistent with the need to pitch angle scatter to spread into parallel velocity space. The probing radiation for the CTS in TEXTOR is provided by a gyrotron (110 GHz, 200 ms, 100 kW). At the probe frequency, the fundamental and 2nd harmonic electron cyclotron resonances are respectively on the high and low field sides of the plasma, resulting in a plasma emission temperature of typically 50 eV. This permits an integration time of 2 ms, giving 100 time slices, 4 ms apart, and typically 20 nodes resolved in the velocity distribution with an uncertainty of 10 is presently 10 cm (minor radius 46 cm). Parallel with further developments of the fast ion CTS at TEXTOR, a new system is being developed for ASDEX upgrade. The new results have also provided the impetus for a proposal to build a fast ion CTS for JET using a probing frequency below the electron cyclotron emission spectrum, which is the millimetre wave CTS option for ITER. References [1] http://www.risoe.dk/euratom/cts; [2] H. Bindslev et al., Phys. Rev. Lett. 83, 3206 (1999); [3] References posted at http://www.risoe.dk/euratom/cts; [4] Ya. I. Kolesnichenko et al, Phys. Rev. Lett. 84, 2152 (2000);

  17. Rotation driven by fast ions in tokamaks

    SciTech Connect

    Thyagaraja, A.; Schwander, F.; McClements, K. G.

    2007-11-15

    Collective fast ion effects on flows in tokamaks are investigated analytically and numerically. A general analysis of noncollisional electrodynamic momentum transfer from fast ions to bulk plasma is presented, with polarization effects and dissipation in the bulk plasma taken into account. The analysis is illustrated using idealized simulations of fast ion orbits and radial electric fields in the Mega-Ampere Spherical Tokamak (MAST) [A. Sykes, R. J. Akers, L. C. Appel et al., Nucl. Fusion 41, 1423 (2001)], the Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)], and ITER [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)]. In the MAST simulation, prompt losses of beam ions injected counter to the plasma current drive up a radial electric field that saturates at a level such that beam ions subsequently injected are confined electrostatically. Although the actual radial electric fields in counterinjected MAST discharges are lower than this, the scenario explored in the simulation would be approached in MAST plasmas with sufficiently low collisionality. The JET simulation, although unrealistic, shows that a similar process could be driven by losses of fusion {alpha}-particles from a burning plasma. Test-particle simulations of {alpha}-particles in ITER suggest that performance-limiting instabilities such as neoclassical tearing modes and resistive wall modes could be affected significantly by flows associated with radial fast particle currents.

  18. Rotation driven by fast ions in tokamaks

    NASA Astrophysics Data System (ADS)

    Thyagaraja, A.; Schwander, F.; McClements, K. G.

    2007-11-01

    Collective fast ion effects on flows in tokamaks are investigated analytically and numerically. A general analysis of noncollisional electrodynamic momentum transfer from fast ions to bulk plasma is presented, with polarization effects and dissipation in the bulk plasma taken into account. The analysis is illustrated using idealized simulations of fast ion orbits and radial electric fields in the Mega-Ampère Spherical Tokamak (MAST) [A. Sykes, R. J. Akers, L. C. Appel et al., Nucl. Fusion 41, 1423 (2001)], the Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)], and ITER [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)]. In the MAST simulation, prompt losses of beam ions injected counter to the plasma current drive up a radial electric field that saturates at a level such that beam ions subsequently injected are confined electrostatically. Although the actual radial electric fields in counterinjected MAST discharges are lower than this, the scenario explored in the simulation would be approached in MAST plasmas with sufficiently low collisionality. The JET simulation, although unrealistic, shows that a similar process could be driven by losses of fusion α-particles from a burning plasma. Test-particle simulations of α-particles in ITER suggest that performance-limiting instabilities such as neoclassical tearing modes and resistive wall modes could be affected significantly by flows associated with radial fast particle currents.

  19. Fast Ion Beam Microscopy of Whole Cells

    NASA Astrophysics Data System (ADS)

    Watt, Frank; Chen, Xiao; Chen, Ce-Belle; Udalagama, Chammika Nb; Ren, Minqin; Pastorin, G.; Bettiol, Andrew

    2013-08-01

    The way in which biological cells function is of prime importance, and the determination of such knowledge is highly dependent on probes that can extract information from within the cell. Probing deep inside the cell at high resolutions however is not easy: optical microscopy is limited by fundamental diffraction limits, electron microscopy is not able to maintain spatial resolutions inside a whole cell without slicing the cell into thin sections, and many other new and novel high resolution techniques such as atomic force microscopy (AFM) and near field scanning optical microscopy (NSOM) are essentially surface probes. In this paper we show that microscopy using fast ions has the potential to extract information from inside whole cells in a unique way. This novel fast ion probe utilises the unique characteristic of MeV ion beams, which is the ability to pass through a whole cell while maintaining high spatial resolutions. This paper first addresses the fundamental difference between several types of charged particle probes, more specifically focused beams of electrons and fast ions, as they penetrate organic material. Simulations show that whereas electrons scatter as they penetrate the sample, ions travel in a straight path and therefore maintain spatial resolutions. Also described is a preliminary experiment in which a whole cell is scanned using a low energy (45 keV) helium ion microscope, and the results compared to images obtained using a focused beam of fast (1.2 MeV) helium ions. The results demonstrate the complementarity between imaging using low energy ions, which essentially produce a high resolution image of the cell surface, and high energy ions, which produce an image of the cell interior. The characteristics of the fast ion probe appear to be ideally suited for imaging gold nanoparticles in whole cells. Using scanning transmission ion microscopy (STIM) to image the cell interior, forward scattering transmission ion microscopy (FSTIM) to improve the

  20. Fast Quantum Rabi Model with Trapped Ions

    PubMed Central

    Moya-Cessa, Héctor M.

    2016-01-01

    We show how to produce a fast quantum Rabi model with trapped ions. Its importance resides not only in the acceleration of the phenomena that may be achieved with these systems, from quantum gates to the generation of nonclassical states of the vibrational motion of the ion, but also in reducing unwanted effects such as the decay of coherences that may appear in such systems. PMID:27941846

  1. Fast Quantum Rabi Model with Trapped Ions.

    PubMed

    Moya-Cessa, Héctor M

    2016-12-12

    We show how to produce a fast quantum Rabi model with trapped ions. Its importance resides not only in the acceleration of the phenomena that may be achieved with these systems, from quantum gates to the generation of nonclassical states of the vibrational motion of the ion, but also in reducing unwanted effects such as the decay of coherences that may appear in such systems.

  2. Physics with fast molecular-ion beams

    SciTech Connect

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  3. Features of Fast Ion Instability of Partly Compensated Ion Beams

    NASA Astrophysics Data System (ADS)

    Dudnikov, Vadim

    2000-10-01

    Compensation of a space charge of particle beams by ions have some significant features very different of the electrons compensation. Heavier ions have longer lifetime in the beam and it is possible to reach overcompensation with transformation of repulse forces to the focusing. This feature help to the long distance beam transportation inside a small apertures. But, an ability of heavy ions to keep coherent motion can be a reason of strong coherent instabilities of particle beams with a space charge compensation by ions. A strong coherent focusing of ions in space charge potential of the beam during accumulation can create very high local density of compensating ions with a very picked distribution (Christmas tree distribution). "Fast ion instability" have been observed recently in some storage rings.Very fast development of transverse instability have been observed during a first production of high intense negative ion beam from surface-plasma sources. This instability was observed as oscillation of the local current density of negative ion beam with low fluctuation of beam intensity.

  4. Spectroscopy of ions using fast beams and ion traps

    SciTech Connect

    Pinnington, E H; Trabert, E

    2004-10-01

    A knowledge of the spectra of ionized atoms is of importance in many fields. They can be studied in a wide variety of light sources. In recent years techniques coming under the broad heatings of fast beams and ion traps have been used extensively for such investigations. This article considers the advantages that various techniques have for particular applications.

  5. Controlling chloride ions diffusion in concrete.

    PubMed

    Zeng, Lunwu; Song, Runxia

    2013-11-28

    The corrosion of steel in concrete is mainly due to the chemical reaction between the chloride ions and iron ions. Indeed, this is a serious threaten for reinforced concrete structure, especially for the reinforced concrete structure in the sea. So it is urgent and important to protect concrete against chloride ions corrosion. In this work, we report multilayer concrete can cloak chloride ions. We formulated five kinds of concrete A, B, C, D and E, which are made of different proportion of cement, sand and glue, and fabricated six-layer (ABACAD) cylinder diffusion cloak and background media E. The simulation results show that the six-layer mass diffusion cloak can protect concrete against chloride ions penetration, while the experiment results show that the concentration gradients are parallel and equal outside the outer circle in the diffusion flux lines, the iso-concentration lines are parallel outside the outer circle, and the concentration gradients in the inner circle are smaller than those outside the outer circle.

  6. Redistribution of fast ions during sawtooth reconnection

    NASA Astrophysics Data System (ADS)

    Jaulmes, F.; Westerhof, E.; de Blank, H. J.

    2014-10-01

    In a tokamak-based fusion power plant, possible scenarios may include regulated sawtooth oscillations to remove thermalized helium from the core of the plasma. During a sawtooth crash, the helium ash and other impurities trapped in the core are driven by the instability to an outer region. However, in a fusion plasma, high energy ions will represent a significant population. We thus study the behaviour of these energetic particles during a sawtooth. This paper presents the modelling of the redistribution of fast ions during a sawtooth reconnection event in a tokamak plasma. Along the lines of the model for the evolution of the flux surfaces during a sawtooth collapse described in Ya.I. Kolesnichenko and Yu.V. Yakovenko 1996 Nucl. Fusion 36 159, we have built a time-dependent electromagnetic model of a sawtooth reconnection. The trajectories of the ions are described by a complete gyro-orbit integration. The fast particles were evolved from specific initial parameters (given energy and uniform spread in pitch) or distributed initially according to a slowing-down distribution created by fusion reactions. Our modelling is used to understand the main equilibrium parameters driving the motions during the collapse and to determine the evolution of the distribution function of energetic ions when different geometries of reconnection are considered.

  7. Fast parareal iterations for fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Wu, Shu-Lin; Zhou, Tao

    2017-01-01

    Numerical methods for fractional PDEs is a hot topic recently. This work is concerned with the parareal algorithm for system of ODEs u‧ (t) + Au (t) = f that arising from semi-discretizations of time-dependent fractional diffusion equations with nonsymmetric Riemann-Liouville fractional derivatives. The spatial semi-discretization of this kind of fractional derivatives often results in a coefficient matrix A with spectrum σ (A)

  8. Importance of diffuse metal ion binding to RNA.

    PubMed

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding.

  9. The mobility and diffusion of ions in gases

    NASA Technical Reports Server (NTRS)

    Mcdaniel, E. W.; Mason, E. A.

    1973-01-01

    Experimental and theoretical aspects of the mobility and diffusion of ions in gases are studied in detail. Some of the subjects discussed include ion-ion interaction, boundary condition and ion and electron behavior. Also discussed in separate chapters are the problems of the diffusion coefficients and the afterglow techniques. Finally, a special chapter studies the kinetic theory of diffusion and mobility, stressing the low-, medium- and high-field theory.

  10. Fast ion beam-plasma interaction system.

    PubMed

    Breun, R A; Ferron, J R

    1979-07-01

    A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).

  11. Development of ultra-fast 2D ion Doppler tomography using image intensified CMOS fast camera

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Kuwahata, Akihiro; Yamanaka, Haruki; Inomoto, Michiaki; Ono, Yasushi; TS-group Team

    2015-11-01

    The world fastest novel time-resolved 2D ion Doppler tomography diagnostics has been developed using fast camera with high-speed gated image intensifier (frame rate: 200kfps. phosphor decay time: ~ 1 μ s). Time evolution of line-integrated spectra are diffracted from a f=1m, F/8.3 and g=2400L/mm Czerny-Turner polychromator, whose output is intensified and recorded to a high-speed camera with spectral resolution of ~0.005nm/pixel. The system can accommodate up to 36 (9 ×4) spatial points recorded at 5 μs time resolution, tomographic reconstruction is applied for the line-integrated spectra, time-resolved (5 μs/frame) local 2D ion temperature measurement has been achieved without any assumption of shot repeatability. Ion heating during intermittent reconnection event which tends to happen during high guide field merging tokamak was measured around diffusion region in UTST. The measured 2D profile shows ion heating inside the acceleration channel of reconnection outflow jet, stagnation point and downstream region where reconnected field forms thick closed flux surface as in MAST. Achieved maximum ion temperature increases as a function of Brec2 and shows good fit with MAST experiment, demonstrating promising CS-less startup scenario for spherical tokamak. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.

  12. Hardy-Littlewood-Sobolev inequalities via fast diffusion flows

    PubMed Central

    Carlen, Eric A.; Carrillo, José A.; Loss, Michael

    2010-01-01

    We give a simple proof of the λ = d - 2 cases of the sharp Hardy-Littlewood-Sobolev inequality for d≥3, and the sharp Logarithmic Hardy-Littlewood-Sobolev inequality for d = 2 via a monotone flow governed by the fast diffusion equation. PMID:21041663

  13. Measurements and modelling of fast-ion redistribution due to resonant MHD instabilities in MAST

    NASA Astrophysics Data System (ADS)

    Jones, O. M.; Cecconello, M.; McClements, K. G.; Klimek, I.; Akers, R. J.; Boeglin, W. U.; Keeling, D. L.; Meakins, A. J.; Perez, R. V.; Sharapov, S. E.; Turnyanskiy, M.; the MAST Team

    2015-12-01

    The results of a comprehensive investigation into the effects of toroidicity-induced Alfvén eigenmodes (TAE) and energetic particle modes on the NBI-generated fast-ion population in MAST plasmas are reported. Fast-ion redistribution due to frequency-chirping TAE in the range 50 kHz-100 kHz and frequency-chirping energetic particle modes known as fishbones in the range 20 kHz-50 kHz, is observed. TAE and fishbones are also observed to cause losses of fast ions from the plasma. The spatial and temporal evolution of the fast-ion distribution is determined using a fission chamber, a radially-scanning collimated neutron flux monitor, a fast-ion deuterium alpha spectrometer and a charged fusion product detector. Modelling using the global transport analysis code Transp, with ad hoc anomalous diffusion and fishbone loss models introduced, reproduces the coarsest features of the affected fast-ion distribution in the presence of energetic particle-driven modes. The spectrally and spatially resolved measurements show, however, that these models do not fully capture the effects of chirping modes on the fast-ion distribution.

  14. An ion diffusion model in semi-permeable clay materials.

    PubMed

    Liu, Chongxuan

    2007-08-01

    Clay materials typically contain negative surface charges that induce electrostatic fields (or diffuse double layers) in electrolytes. During ion diffusion in a porous medium of clay materials, ions dynamically interact with the electrostatic fields associated with individual clay grains by depressing or expanding the electrostatic double layers, which subsequently affects ionic fluxes. Current theory of ion transport in porous media, however, cannot explicitly account for the dynamic interactions. Here we proposed a model by coupling electrodynamics and nonequilibrium thermodynamics (EDNT) to describe ion diffusion in clay materials as a complex function of factors including clay surface charge density, tortuosity, porosity, chemicoosmotic coefficient, and ion self-diffusivity. The model was validated by comparing the calculated and measured apparent ion diffusion coefficients in clay materials as a function of ionic strength. At transitional states, ion diffusive fluxes are dynamically related to the electrostatic fields, which shrink or expand as ion diffusion occurs. At steady states, the electrostatic fields are time-invariant and ion diffusive fluxes conform to flux and concentration gradient relationships; and apparent diffusivity can be approximated by the ion diffusivity in bulk electrolytes corrected by a tortuosity factor and macroscopic concentration discontinuities at the interfaces between clay materials and bulk solutions.

  15. Fast formation cycling for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    An, Seong Jin; Li, Jianlin; Du, Zhijia; Daniel, Claus; Wood, David L.

    2017-02-01

    The formation process for lithium ion batteries typically takes several days or more, and it is necessary for providing a stable solid electrolyte interphase on the anode (at low potentials vs. Li/Li+) for preventing irreversible consumption of electrolyte and lithium ions. An analogous layer known as the cathode electrolyte interphase layer forms at the cathode at high potentials vs. Li/Li+. However, several days, or even up to a week, of these processes result in either lower LIB production rates or a prohibitively large size of charging-discharging equipment and space (i.e. excessive capital cost). In this study, a fast and effective electrolyte interphase formation protocol is proposed and compared with an Oak Ridge National Laboratory baseline protocol. Graphite, NMC 532, and 1.2 M LiPF6 in ethylene carbonate: diethyl carbonate were used as anodes, cathodes, and electrolytes, respectively. Results from electrochemical impedance spectroscopy show the new protocol reduced surface film (electrolyte interphase) resistances, and 1300 aging cycles show an improvement in capacity retention.

  16. Observations of Ag diffusion in ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Hunter, Jerry L.; Giordani, Andrew J.; Allen, Todd R.

    2015-06-01

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500-1625 °C, were investigated by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  17. Observations of Ag diffusion in ion implanted SiC

    SciTech Connect

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  18. Transfer ionization in collisions with a fast highly charged ion.

    PubMed

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions.

  19. Building 1D resonance broadened quasilinear (RBQ) code for fast ions Alfvénic relaxations

    NASA Astrophysics Data System (ADS)

    Gorelenkov, Nikolai; Duarte, Vinicius; Berk, Herbert

    2016-10-01

    The performance of the burning plasma is limited by the confinement of superalfvenic fusion products, e.g. alpha particles, which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using a resonance line broadened diffusion coefficient. The interaction of fast ions and AEs is captured for cases where there are either isolated or overlapping modes. A new code RBQ1D is being built which constructs diffusion coefficients based on realistic eigenfunctions that are determined by the ideal MHD code NOVA. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The evolution of fast ion constants of motion is governed by the QL diffusion equations which are adapted to find the ion distribution function.

  20. Measuring Fast Ion Losses in a Reversed Field Pinch Plasma

    NASA Astrophysics Data System (ADS)

    Bonofiglo, P. J.; Anderson, J. K.; Almagri, A. F.; Kim, J.; Clark, J.; Capecchi, W.; Sears, S. H.

    2015-11-01

    The reversed field pinch (RFP) provides a unique environment to study fast ion confinement and transport. The RFP's weak toroidal field, strong magnetic shear, and ability to enter a 3D state provide a wide range of dynamics to study fast ions. Core-localized, 25 keV fast ions are sourced into MST by a tangentially injected hydrogen/deuterium neutral beam. Neutral particle analysis and measured fusion neutron flux indicate enhanced fast ion transport in the plasma core. Past experiments point to a dynamic loss of fast ions associated with the RFP's transition to a 3D state and with beam-driven, bursting magnetic modes. Consequently, fast ion transport and losses in the RFP have garnered recent attention. Valuable information on fast-ion loss, such as energy and pitch distributions, are sought to provide a better understanding of the transport mechanisms at hand. We have constructed and implemented two fast ion loss detectors (FILDs) for use on MST. The FILDs have two, independent, design concepts: collecting particles as a function of v⊥ or with pitch greater than 0.8. In this work, we present our preliminary findings and results from our FILDs on MST. This research is supported by US DOE.

  1. Fast ion generation and runaway through magnetic reconnection events in MST

    NASA Astrophysics Data System (ADS)

    Kim, Jungha; Anderson, Jay; Capecchi, William; Bonofiglo, Phillip; Sears, Stephanie

    2016-10-01

    Fokker-Planck and full orbit modeling are used to investigate how global reconnection events in MST plasmas generate an anisotropic fast ion distribution. A multi-step process is hypothesized. First, thermal ions are heated by a perpendicular heating mechanism, possibly a stochastic process that relies on turbulent diffusion and strong radial electric fields, or ion cyclotron damping in the tearing-driven turbulent cascade. Second, a small fraction of the heated ions have sufficient speed to develop substantial guiding center drifts that are relatively immune to stochastic magnetic transport. In the RFP, these fast ion drift orbits are favorable to confinement. Finally, these fast ions are accelerated by a parallel inductive electric field (up to 80 V/m) associated with the abruptly changing magnetic equilibrium. This strong impulsive field does not include any magnetic-fluctuation-based contribution as experienced by thermal particles or electrons, which do not run away like fast ions. CQL3D, a Fokker-Planck solver, and RIO, a full orbit tracing code, are used to model this multi-step process that is responsible for anisotropy in fast ion distribution in MST. Work supported by US DOE. Supported by US DOE.

  2. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes.

    PubMed

    Pean, Clarisse; Daffos, Barbara; Rotenberg, Benjamin; Levitz, Pierre; Haefele, Matthieu; Taberna, Pierre-Louis; Simon, Patrice; Salanne, Mathieu

    2015-10-07

    Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption.

  3. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes

    PubMed Central

    2015-01-01

    Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption. PMID:26369420

  4. Scaling of Kinetic Instability Induced Fast Ion Losses in NSTX

    SciTech Connect

    E.D. Fredrickson; D. Darrow; S. Medley; J. Menard; H. Park; L. Roquemore; D. Stutman; K. Tritz; S. Kubota; K.C. Lee

    2005-06-24

    During neutral beam injection (NBI) in the National Spherical Torus Experiment (NSTX), a wide variety of fast ion driven instabilities is excited by the large ratio of fast ion velocity to Alfven velocity, together with the relatively high fast ion beta, beta(sub)f. The fast ion instabilities have frequencies ranging from a few kilohertz to the ion cyclotron frequency. The modes can be divided roughly into three categories, starting with Energetic Particle Modes (EPM) in the lowest frequency range (0 to 120 kHz), the Toroidal Alfven Eigenmodes (TAE) in the intermediate frequency range (50 to 200 kHz) and the Compressional and Global Alfven Eigenmodes (CAE and GAE, respectively) from approximately equal to 300 kHz up to the ion cyclotron frequency. Each of these categories of modes exhibits a wide range of behavior, including quasi-continuous oscillation, bursting, chirping and, except for the lower frequency range, turbulence.

  5. Quantification of the impact of large and small-scale instabilities on the fast-ion confinement in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Weiland, M.; Mlynek, A.; Reich, M.; Bock, A.; Dunne, M.; Dux, R.; Fable, E.; Fischer, R.; Garcia-Munoz, M.; Hobirk, J.; Hopf, C.; Nielsen, S.; Odstrcil, T.; Rapson, C.; Rittich, D.; Ryter, F.; Salewski, M.; Schneider, P. A.; Tardini, G.; Willensdorfer, M.

    2015-01-01

    The confinement fast ions, generated by neutral beam injection (NBI), has been investigated at the ASDEX Upgrade tokamak. In plasmas that exhibit strong sawtooth crashes, a significant sawtooth-induced internal redistribution of mainly passing fast ions is observed, which is in very good agreement with the theoretical predictions based on the Kadomtsev model. Between the sawtooth crashes, the fishbone modes are excited which, however, do not cause measurable changes in the global fast-ion population. During experiments with on- and off-axis NBI and without strong magnetohydrodynamic (MHD) modes, the fast-ion measurements agree very well with the neo-classical predictions. This shows that the MHD-induced (large-scale), as well as a possible turbulence-induced (small-scale) fast-ion transport is negligible under these conditions. However, in discharges performed to study the off-axis NBI current drive efficiency with up to 10 MW of heating power, the fast-ion measurements agree best with the theoretical predictions that assume a weak level anomalous fast-ion transport. This is also in agreement with measurements of the internal inductance, a Motional Stark Effect diagnostic and a novel polarimetry diagnostic: the fast-ion driven current profile is clearly modified when changing the NBI injection geometry and the measurements agree best with the predictions that assume weak anomalous fast-ion diffusion.

  6. Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids.

    PubMed

    Wang, Yichun; Bahng, Joong Hwan; Che, Quantong; Han, Jishu; Kotov, Nicholas A

    2015-08-25

    Understanding transport of carbon nanotubes (CNTs) and other nanocarriers within tissues is essential for biomedical imaging and drug delivery using these carriers. Compared to traditional cell cultures in animal studies, three-dimensional tissue replicas approach the complexity of the actual organs and enable high temporal and spatial resolution of the carrier permeation. We investigated diffusional transport of CNTs in highly uniform spheroids of hepatocellular carcinoma and found that apparent diffusion coefficients of CNTs in these tissue replicas are anomalously high and comparable to diffusion rates of similarly charged molecules with molecular weights 10000× lower. Moreover, diffusivity of CNTs in tissues is enhanced after functionalization with transforming growth factor β1. This unexpected trend contradicts predictions of the Stokes-Einstein equation and previously obtained empirical dependences of diffusivity on molecular mass for permeants in gas, liquid, solid or gel. It is attributed to the planar diffusion (gliding) of CNTs along cellular membranes reducing effective dimensionality of diffusional space. These findings indicate that nanotubes and potentially similar nanostructures are capable of fast and deep permeation into the tissue, which is often difficult to realize with anticancer agents.

  7. Initial measurements of fast ion loss in KSTAR

    SciTech Connect

    Kim, Junghee; Yoon, S. W.; Kim, W. C.; Kim, Jun Young; Garcia-Munoz, M.; Isobe, M.

    2012-10-15

    A fast ion loss detector (FILD) has been installed and tested in Korea Superconducting Tokamak Advanced Research (KSTAR). KSTAR FILD measures the energy and the pitch-angle of the escaping ions with the striking positions on the scintillator plane. Measurements of the fast ion loss have been performed for the neutral beam heated plasmas. Initial experimental results indicate the prompt losses from neutral beam are dominant and the effects of the resonant magnetic perturbation on the fast ion loss are investigated. In addition, further design change of the detector-head in order to avoid excessive heat load and to detect the fusion products or the fast ions having order of MeV of energy is also discussed.

  8. Scintillator-based fast ion loss measurements in the EAST

    NASA Astrophysics Data System (ADS)

    Chang, J. F.; Isobe, M.; Ogawa, K.; Huang, J.; Wu, C. R.; Xu, Z.; Jin, Z.; Lin, S. Y.; Hu, L. Q.

    2016-11-01

    A new scintillator-based fast ion loss detector (FILD) has been installed on Experimental Advanced Superconducting Tokamak (EAST) to investigate the fast ion loss behavior in high performance plasma with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). A two dimensional 40 mm × 40 mm scintillator-coated (ZnS:Ag) stainless plate is mounted in the front of the detector, capturing the escaping fast ions. Photons from the scintillator plate are imaged with a Phantom V2010 CCD camera. The lost fast ions can be measured with the pitch angle from 60° to 120° and the gyroradius from 10 mm to 180 mm. This paper will describe the details of FILD diagnostic on EAST and describe preliminary measurements during NBI and ICRH heating.

  9. Radial diffusion of low-energy plasma ions in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.

    1990-10-01

    Radial diffusion of low-energy plasma ions in Saturn's magnetosphere is investigated using a comprehensive set of equations for radial diffusion that incorporate distributed sources and sinks of ions. The results of calculations indicate that the radial-diffusion transport of low-energy O(+) ions with a source in the neutral H2O cloud of the satellites Dione and Tethys can account for Voyager observations of thermal heavy ions in Saturn's magnetosphere. The source rate was calculated to be about 10 to the 26th O(+) ions/sec, in good agreement with the sputtering calculations of Johnson et al. (1989). It is estimated that, due to fast radial diffusion, the residence time of O(+) ions in the Dione-Tethys torus is about 30 days, sufficiently short to account for the plasma density observed there. The densities of hot H(+) and N(+) resulting from the ionization and pickup of Titan's neutral clouds in the outer magnetosphere can also be accounted for within the framework of diffusive ion transport.

  10. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  11. Simulation analysis for ion assisted fast ignition using structured targets

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-05-01

    As the heating efficiency by fast electrons in the fast ignition scheme is estimated to be very low due to their large divergence angle and high energy. To mitigate this problem, low-density plastic foam, which can generate not only proton (H+) but also carbon (C6+) beams, can be introduced to currently used cone-guided targets and additional core heating by ions is expected. According to 2D PIC simulations, it is found that the ion beams also diverge by the static electric field and concave surface deformation. Thus structured targets are suggested to optimize ion beam characteristics, and their improvement and core heating enhancement by ion beams are confirmed.

  12. FAST Mapping of Diffuse HI Gas in the Local Universe

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Pisano, D. J.; Ai, M.; Jiao, Q.

    2016-02-01

    We propose to use the Five hundred meter Aperture Spherical radio Telescope (FAST) to map the diffuse intergalactic HI gas in the local universe at column densities of NHI=1018 cm-2 and below. The major science goal is to study gas accretion during galaxy evolution, and trace cosmic web features in the local universe. We disuss the technical feasibilty of such a deep survey, and have conducted test observations with the Arecibo 305 m telescope. Our preliminary results shows that, with about a few thousand hours of observing time, FAST will be able to map several hundred square degree regions at 1 σ of NHI=2×1017 cm-2 level out to a distance of 5-10 Mpc, and with a volume 1000 larger than that of the Local Group.

  13. Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography

    PubMed Central

    Jbabdi, S.; Bellec, P.; Toro, R.; Daunizeau, J.; Pélégrini-Issac, M.; Benali, H.

    2008-01-01

    Using geodesics for inferring white matter fibre tracts from diffusion-weighted MR data is an attractive method for at least two reasons: (i) the method optimises a global criterion, and hence is less sensitive to local perturbations such as noise or partial volume effects, and (ii) the method is fast, allowing to infer on a large number of connexions in a reasonable computational time. Here, we propose an improved fast marching algorithm to infer on geodesic paths. Specifically, this procedure is designed to achieve accurate front propagation in an anisotropic elliptic medium, such as DTI data. We evaluate the numerical performance of this approach on simulated datasets, as well as its robustness to local perturbation induced by fiber crossing. On real data, we demonstrate the feasibility of extracting geodesics to connect an extended set of brain regions. PMID:18299703

  14. Integrated simulations for ion beam assisted fast ignition

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-03-01

    Although the energy conversion efficiency from the heating laser to fast electrons is high, the coupling efficiency from fast electrons to the core is estimated to be very low due to large divergence angle of fast electrons in fast ignition experiments at ILE, Osaka University. To mitigate this problem, a plastic thin film or low-density foam, which can generate not only proton (H+) but also carbon (C6+) beams, is combined with currently used cone-guided targets and additional core heating by ions is expected. According to integrated simulations, it is found that these ion beams can enhance the core heating by 20∼60% and it shows a possibility of ion beam assisted fast ignition.

  15. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  16. Magnetic diffusion and ion nonlinear dynamics in magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, S.; Shinohara, I.; Nagai, T.; Wada, T.

    2013-12-01

    Magnetic reconnection is a fundamental process in many plasma systems, ranging from laboratory and solar-terrestrial environments to extreme astrophysical settings. The reconnection process is controlled by magnetic dissipation physics in a small-scale region near the reconnection point (X-line), and therefore the structure of the reconnection site is of strong interest. According to the standard picture of collisionless reconnection, the X-line is surrounded by a compact electron diffusion region and by an outer ion diffusion region. While the electron region has been extensively studied, much less is known about the ion region. In this work, we examine key aspects of the ion region in magnetic reconnection. First, we evaluate the ''diffusion'' of magnetic field lines, going back to the topology theorems. Unlike in the MHD, the idealness, the frozen-in, magnetic diffusion, and the energy dissiation can be all different in a kinetic plasma. We will apply these concepts to the reconnection site in two-dimensional particle-in-cell (PIC) simulations. Importantly, in the outer part of the ion region, even though the ion ideal condition is violated, the magnetic fields are frozen to plasma fluids. This raises a serious question to the widespread definition of the ion diffusion region, based on the ion nonidealness. We further examine the ion velocity distribution function in the same region. The distribution function contains multiple populations such as global Speiser ions, local Speiser ions, and trapped ions. The particle motion of the local Speiser ions in an appropriately rotated frame explains the plasma nonidealness. The trapped ions are the first demonstration of the regular orbits in Chen & Palmadesso (1986), in self-consistent PIC simulations. They would be observational signatures in the ion current layer near reconnection sites.

  17. A fast solver for systems of reaction-diffusion equations.

    SciTech Connect

    Garbey, M.; Kaper, H. G.; Romanyukha, N.

    2001-04-20

    In this paper we present a fast algorithm for the numerical solution of systems of reaction-diffusion equations, {partial_derivative}{sub t} u + a {center_dot} {del}u = {Delta}u + f(x,t,u), and x element of {Omega} contained in R{sup 3}, t > 0. Here, u is a vector-valued function, u triple bond u(x,t) element of R{sup m} is large, and the corresponding system of ODEs, {partial_derivative}{sub t}u = F(x,t,u), is stiff. Typical examples arise in air pollution studies, where a is the given wind field and the nonlinear function F models the atmospheric chemistry. The time integration of Eq. (1) is best handled by the method of characteristics. The problem is thus reduced to designing for the reaction-diffusion part a fast solver that has good stability properties for the given time step and does not require the computation of the full Jacobi matrix. An operator-splitting technique, even a high-order one, combining a fast nonlinear ODE solver with an efficient solver for the diffusion operator is less effective when the reaction term is stiff. In fact, the classical Strang splitting method may underperform a first-order source splitting method. The algorithm we propose in this paper uses an a posteriori filtering technique to stabilize the computation of the diffusion term. The algorithm parallelizes well, because the solution of the large system of ODEs is done pointwise; however, the integration of the chemistry may lead to load-balancing problems. The Tchebycheff acceleration technique proposed in offers an alternative that complements the approach presented here. To facilitate the presentation, we limit the discussion to domains {Omega} that either admit a regular discretization grid or decompose into subdomains that admit regular discretization grids. We describe the algorithm for one-dimensional domains in Section 2 and for multidimensional domains in Section 3. Section 4 briefly outlines future work.

  18. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  19. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  20. A fast schema for parameter estimation in diffusion kurtosis imaging

    PubMed Central

    Yan, Xu; Zhou, Minxiong; Ying, Lingfang; Liu, Wei; Yang, Guang; Wu, Dongmei; Zhou, Yongdi; Peterson, Bradley S.; Xu, Dongrong

    2014-01-01

    Diffusion kurtosis imaging (DKI) is a new model in magnetic resonance imaging (MRI) characterizing restricted diffusion of water molecules in living tissues. We propose a method for fast estimation of the DKI parameters. These parameters –apparent diffusion coefficient (ADC) and apparent kurtosis coefficient (AKC) – are evaluated using an alternative iteration schema (AIS). This schema first roughly estimates a pair of ADC and AKC values from a subset of the DKI data acquired at 3 b-values. It then iteratively and alternately updates the ADC and AKC until they are converged. This approach employs the technique of linear least square fitting to minimize estimation error in each iteration. In addition to the common physical and biological constrains that set the upper and lower boundaries of the ADC and AKC values, we use a smoothing procedure to ensure that estimation is robust. Quantitative comparisons between our AIS methods and the conventional methods of unconstrained nonlinear least square (UNLS) using both synthetic and real data showed that our unconstrained AIS method can significantly accelerate the estimation procedure without compromising its accuracy, with the computational time for a DKI dataset successfully reduced to only one or two minutes. Moreover, the incorporation of the smoothing procedure using one of our AIS methods can significantly enhance the contrast of AKC maps and greatly improve the visibility of details in fine structures. PMID:25016957

  1. Venus ionosphere: photochemical and thermal diffusion control of ion composition.

    PubMed

    Bauer, S J; Donahue, T M; Hartle, R E; Taylor, H A

    1979-07-06

    The major photochemical sources and sinks for ten of the ions measured by the ion mass spectrometer on the Pioneer Venus bus and orbiter spacecraft that are consistent with the neutral gas composition measured on the same spacecraft have been identified. The neutral gas temperature (Tn) as a function of solar zenith angle (chi) derived from measured ion distributions in photochemical equilibrium is given by Tn (K) = 323 cos(1/5)chi. Above 200 kilometers, the altitude behavior of ions is generally controlled by plasma diffusion, with important modifications for minor ions due to thermal diffusion resulting from the observed gradients of plasma temperatures. The dayside equilibrium distributions of ions are sometimes perturbed by plasma convection, while lateral transport of ions from the dayside seems to be a major source of the nightside ionosphere.

  2. Ion beam analysis of diffusion in heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Clough, A. S.; Jenneson, P. M.

    1998-04-01

    Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair.

  3. Ion beam microtexturing and enhanced surface diffusion

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1982-01-01

    Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.

  4. Ion diffusion at the bonding interface of undoped YAG/Yb:YAG composite ceramics

    NASA Astrophysics Data System (ADS)

    Fujioka, Kana; Sugiyama, Akira; Fujimoto, Yasushi; Kawanaka, Junji; Miyanaga, Noriaki

    2015-08-01

    Cation diffusion across a boundary between ytterbium (Yb)-doped and undoped yttrium aluminum garnet (YAG) ceramics was examined by electron microprobe analysis (EPMA). Polished Yb:YAG and undoped YAG ceramics were bonded by surface treatment with argon fast atom beam, and then heat-treated at 1400 or 1600 °C for 50 h or at 1400 °C for 10 h under vacuum. We obtained EPMA mapping images of the bonded samples that clearly showed the bulk and grain-boundary diffusion of Y and Yb ions. The number density profiles showed that the total diffusion distances of Yb and Y ions were almost equal and approximately 2 and 15 μm at 1400 and 1600 °C, respectively, and the dependence of diffusion distance on heating time was weak. The diffusion curves were well modeled by Harrison type B kinetics including bulk and grain-boundary diffusion. In addition, it was found that Si ions added to the samples as a sintering aid might be segregated at the grain boundary by heat treatment, and diffused only along grain boundaries.

  5. Observations of Ag diffusion in ion implanted SiC

    DOE PAGES

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; ...

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less

  6. Fast Bayesian inference of optical trap stiffness and particle diffusion

    PubMed Central

    Bera, Sudipta; Paul, Shuvojit; Singh, Rajesh; Ghosh, Dipanjan; Kundu, Avijit; Banerjee, Ayan; Adhikari, R.

    2017-01-01

    Bayesian inference provides a principled way of estimating the parameters of a stochastic process that is observed discretely in time. The overdamped Brownian motion of a particle confined in an optical trap is generally modelled by the Ornstein-Uhlenbeck process and can be observed directly in experiment. Here we present Bayesian methods for inferring the parameters of this process, the trap stiffness and the particle diffusion coefficient, that use exact likelihoods and sufficient statistics to arrive at simple expressions for the maximum a posteriori estimates. This obviates the need for Monte Carlo sampling and yields methods that are both fast and accurate. We apply these to experimental data and demonstrate their advantage over commonly used non-Bayesian fitting methods. PMID:28139705

  7. Fast Bayesian inference of optical trap stiffness and particle diffusion

    NASA Astrophysics Data System (ADS)

    Bera, Sudipta; Paul, Shuvojit; Singh, Rajesh; Ghosh, Dipanjan; Kundu, Avijit; Banerjee, Ayan; Adhikari, R.

    2017-01-01

    Bayesian inference provides a principled way of estimating the parameters of a stochastic process that is observed discretely in time. The overdamped Brownian motion of a particle confined in an optical trap is generally modelled by the Ornstein-Uhlenbeck process and can be observed directly in experiment. Here we present Bayesian methods for inferring the parameters of this process, the trap stiffness and the particle diffusion coefficient, that use exact likelihoods and sufficient statistics to arrive at simple expressions for the maximum a posteriori estimates. This obviates the need for Monte Carlo sampling and yields methods that are both fast and accurate. We apply these to experimental data and demonstrate their advantage over commonly used non-Bayesian fitting methods.

  8. Fast-ion Dα spectrum diagnostic in the EAST

    NASA Astrophysics Data System (ADS)

    Hou, Y. M.; Wu, C. R.; Huang, J.; Heidbrink, W. W.; von Hellermann, M. G.; Xu, Z.; Jin, Z.; Chang, J. F.; Zhu, Y. B.; Gao, W.; Chen, Y. J.; Lyu, B.; Hu, R. J.; Zhang, P. F.; Zhang, L.; Gao, W.; Wu, Z. W.; Yu, Y.; Ye, M. Y.

    2016-11-01

    In toroidal magnetic fusion devices, fast-ion D-alpha diagnostic (FIDA) is a powerful method to study the fast-ion feature. The fast-ion characteristics can be inferred from the Doppler shifted spectrum of Dα light according to charge exchange recombination process between fast ions and probe beam. Since conceptual design presented in the last HTPD conference, significant progress has been made to apply FIDA systems on the Experimental Advanced Superconducting Tokamak (EAST). Both co-current and counter-current neutral beam injectors are available, and each can deliver 2-4 MW beam power with 50-80 keV beam energy. Presently, two sets of high throughput spectrometer systems have been installed on EAST, allowing to capture passing and trapped fast-ion characteristics simultaneously, using Kaiser HoloSpec transmission grating spectrometer and Bunkoukeiki FLP-200 volume phase holographic spectrometer coupled with Princeton Instruments ProEM 1024B eXcelon and Andor DU-888 iXon3 1024 CCD camera, respectively. This paper will present the details of the hardware descriptions and experimental spectrum.

  9. The NSTX fast-ion D-alpha diagnostic

    SciTech Connect

    Podesta, M.; Heidbrink, W. W.; Bell, R. E.; Feder, R.

    2008-10-15

    A new diagnostic, aimed at energy-resolved measurements of the spatial and temporal dynamics of fast ions in NSTX plasmas, is described. It is based on active charge-exchange recombination spectroscopy. The fast-ion signal is inferred from light emitted in the wavelength range of the D{sub {alpha}} line by fast ions recombining with an injected neutral beam. Two complementary systems are operational. The first system, based on a spectrometer coupled to a charge coupled device detector, has 16 channels with space, time, and energy resolution of 5 cm, 10 ms, and 10 keV, respectively. The second system monitors the energy-integrated fast-ion signal on time scales of {approx}20 {mu}s at three different radii. Signals are measured by a multianode photomultiplier tube. For both systems, each channel includes two paired views, intercepting and missing the neutral beam for a direct subtraction of the background signal not associated with fast ions. Examples of signals from the 2008 NSTX run are presented.

  10. Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Gorelenkova, M.; Green, D. L.; RF SciDAC Team

    2016-10-01

    Fast wave (FW) heating in the ion cyclotron range of frequency (ICRF) has been successfully used to sustain and control the fusion plasma performance, and it will likely play an important role in the ITER experiment. As demonstrated in the NSTX and DIII-D experiments the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection. In fact, it has been recently found in NSTX that FWs can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes and global Alfvén eigenmodes and fishbones. This paper examines such interactions in NSTX/NSTX-U plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Particular attention is given to the evolution of the fast ions distribution function w/ and w/o RF. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code. Work supported by US DOE Contract DE-AC02-09CH11466.

  11. Fast ion behavior during neutral beam injection in ATF

    SciTech Connect

    Wade, M.R.; Thomas, C.E.; Colchin, R.J.; Rome, J.A.; England, A.C.; Fowler, R.H.; Aceto, S.C.

    1993-09-01

    In stellarators, single-particle confinement properties can be more complex than in their tokamak counterparts. Fast-ion behavior in tokamaks has been well characterized through an abundance of measurements on various devices and in general has been shown to be consistent with classical slowing-down theory, although anomalous ion behavior has been observed during intense beam injection in ISX-B, during fishbone instabilities in PDX, and in experiments on TFR. In contrast, fast ion behavior in stellarators is not as wel established experimentally with the primary experiments to date focusing o near-perpendicular or perpendicular neutral beam injection (NBI) on the Wendelstein 7-A stellarator (91 and Heliotron-E. This paper addresses fast-ion confinement properties in a large-aspect-ratio, moderate-shear stellarator, the Advanced Toroidal Facility, during tangential NBI. The primary data used in this study are the experimentally measured energy spectra of charge-exchange neutrals escaping from the plasma, using a two-dimensional scanning neutral particle analyzer. This diagnostic method is well established, having been used on several devices since the early 1970`s. Various aspects of fast-ion behavior are investigated by comparing these data with computed theoretical spectra based on energeticion distributions derived from the fastion Fokker-Planck equation. Ion orbits are studied by computer orbit following, by the computation of J* surfaces, and by Monte Carlo calculations.

  12. Mode conversion of fast Alfvén waves at the ion-ion hybrid resonance

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Bers, A.; Schultz, S. D.; Fuchs, V.

    1996-05-01

    Substantial radio-frequency power in the ion-cyclotron range of frequencies can be effectively coupled to a tokamak plasma from poloidal current strap antennas at the plasma edge. If there exists an ion-ion hybrid resonance inside the plasma, then some of the power from the antenna, delivered into the plasma by fast Alfvén waves, can be mode converted to ion-Bernstein waves. In tokamak confinement fields the mode-converted ion-Bernstein waves can damp effectively and locally on electrons [A. K. Ram and A. Bers, Phys. Fluids B 3, 1059 (1991)]. The usual mode-conversion analysis that studies the propagation of fast Alfvén waves in the immediate vicinity of the ion-ion hybrid resonance is extended to include the propagation and reflection of the fast Alfvén waves on the high magnetic-field side of the ion-ion hybrid resonance. It is shown that there exist plasma conditions for which the entire fast Alfvén wave power incident on the ion-ion hybrid resonance can be converted to ion-Bernstein waves. In this extended analysis of the mode conversion process, the fast Alfvén waves can be envisioned as being coupled to an internal plasma resonator. This resonator extends from the low magnetic-field cutoff near the ion-ion hybrid resonance to the high magnetic-field cutoff. The condition for 100% mode conversion corresponds to a critical coupling of the fast Alfvén waves to this internal resonator. As an example, the appropriate plasma conditions for 100% mode conversion are determined for the Tokamak Fusion Test Reactor (TFTR) [R. Majeski et al., Proceedings of the 11th Topical Conference on RF Power in Plasmas, Palm Springs (American Institute of Physics, New York, 1995), Vol. 355, p. 63] experimental parameters.

  13. Self-consistent pitch angle diffusion of newborn ions

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Ziebell, L. F.; Wu, C. S.

    1991-04-01

    A self-consistent analysis of pitch angle diffusion of newborn ions by low-frequency hydromagnetic waves predominantly propagating in one direction has been carried out. It is found that in the wave frame defined in velocity space the time evolution of an ion distribution can be described as undergoing purely pitch angle diffusion. The role of the resonant versus nonresonant diffusion is discussed in detail, and it is shown that a time-asymptotic distribution of a particular form develops. It is analytically and numerically shown that the self-consistent diffusion process leads to a time-asymptotic partial shell distributions. The relevance of this finding to observations that the ion distributions in the far upstream of cometary bow shocks have a partial shell structure rather than a complete shell is pointed out.

  14. Diffusion mechanism and the thermal stability of fluorine ions in GaN after ion implantation

    SciTech Connect

    Wang, M. J.; Yuan, L.; Chen, K. J.; Xu, F. J.; Shen, B.

    2009-04-15

    The diffusion mechanisms of fluorine ions in GaN are investigated by means of time-of-flight secondary ion mass spectrometry. Instead of incorporating fluorine ions close to the sample surface by fluorine plasma treatment, fluorine ion implantation with an energy of 180 keV is utilized to implant fluorine ions deep into the GaN bulk, preventing the surface effects from affecting the data analysis. It is found that the diffusion of fluorine ions in GaN is a dynamic process featuring an initial out-diffusion followed by in- diffusion and the final stabilization. A vacancy-assisted diffusion model is proposed to account for the experimental observations, which is also consistent with results on molecular dynamic simulation. Fluorine ions tend to occupy Ga vacancies induced by ion implantation and diffuse to vacancy rich regions. The number of continuous vacancy chains can be significantly reduced by a dynamic thermal annealing process. As a result, strong local confinement and stabilization of fluorine ions can be obtained in GaN crystal, suggesting excellent thermal stability of fluorine ions for device applications.

  15. Stress enhanced diffusion of krypton ions in polycrystalline titanium

    SciTech Connect

    Nsengiyumva, S.; Raji, A. T.; Rivière, J. P.; Britton, D. T.; Härting, M.

    2014-07-14

    An experimental investigation on the mutual influence of pre-existing residual stress and point defect following ion implantation is presented. The study has been carried out using polycrystalline titanium samples energetically implanted with krypton ions at different fluences. Ion beam analysis was used to determine the concentration profile of the injected krypton ions, while synchrotron X-ray diffraction has been used for stress determination. Ion beam analysis and synchrotron X-ray diffraction stress profile measurements of the implanted titanium samples show a clear evidence of stress-enhanced diffusion of krypton ions in titanium. It is further observed that for the titanium samples implanted at low fluence, ion implantation modifies the pre-existing residual stress through the introduction of point and open volume defects. The stress fields resulting from the ion implantation act to drift the krypton inclusions towards the surface of titanium.

  16. Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori

    SciTech Connect

    Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko

    2001-01-18

    Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) the stochastic diffusion does not have a considerable influence on the confinement of energetic ions.

  17. Development of a Fast Ion Energy Analyzer

    NASA Astrophysics Data System (ADS)

    Young, W. C.; Bellan, P. M.

    2003-10-01

    In an effort to measure the ion energy spectra of short duration plasmas, two different analyzers are being compared for usability on short time scales. A traditional energy analyzer, the retarding field energy analyzer (RFEA), is being compared to a design using an electric field to deflect ions onto multiple collectors. The use of multiple collectors allows for simultaneous measurement of several energies overcoming the major limitation of the RFEA is measuring only a single energy per plasma shot. The tradeoff is that the energy resolution of the new design is limited by the number of collectors. These methods are being tested on both a single energy electron gun and also on a spheromak with a plasma duration of 20-30 μs and ion temperature of 20 eV. Both designs have been demonstrated to work under simplified conditions using an electron gun. Currently the RFEA is being tested on the spheromak and efforts are being made to increase the resolution and lower the noise of the new analyzer.

  18. Fast-ion studies in the National Spherical Torus Experiment: Transport by instabilities and acceleration by high harmonic fast waves

    NASA Astrophysics Data System (ADS)

    Liu, Deyong

    2009-12-01

    An extensive set of fast-ion diagnostics, including neutron detectors, a E∣∣B type neutral particle analyzer (NPA) and the newly built four-chord solid state neutral particle analyzer array (SSNPA) and a 16-channel Fast-ion D-alpha (FIDA) diagnostic, provides a good test-bed to study fast ion physics in the National Spherical Torus Experiment (NSTX). During combined neutral beam injection (NBI) and High-Harmonic Fast-Wave (HHFW) heating, the acceleration of fast ions is evident in all fast ion diagnostics. The neutron rate is about three times larger during the HHFW heating. A fast-ion tail above the beam injection is observed in the NPA, SSNPA and FIDA diagnostics. It is also shown that the accelerated fast ions observed by the NPA and SSNPA diagnostics mainly come from passive charge exchange reactions at the edge due to the NPA/SSNPA localization in phase space. The spatial profile of accelerated fast ions that is measured by the FIDA diagnostic is much broader than in conventional tokamaks because of the multiple resonance layers and large orbits in NSTX. The fast-ion distribution function calculated by the CQL3D Fokker-Planck code differs from the measured spatial profile, presumably because the current version of CQL3D uses a zero-banana-width model. In addition, the effects of bursting instabilities on the fast ion distribution in neutral beam heated plasmas are examined. Fishbone events generally have a minor effect on the fast ion distribution and no clear correlation is observed in the NPA and SSNPA diagnostics. However, sawteeth or the combinations of fishbones and CAEs always cause neutron rate drops up to 25% and bursts at outer chords of the SSNPA, which indicate fast ion loss. It is also observed that high energy fast ions respond earlier than low energy fast ions.

  19. Linear induction accelerator requirements for ion fast ignition

    SciTech Connect

    Logan, G.

    1998-01-26

    Fast ignition (fast heating of DT cores afief compression) reduces driver energy (by 10 X or more) by reducing the implosion velocity and energy for a given fuel compression ratio. For any type of driver that can deliver the ignition energy fast enough, fast ignition increases the target gain compared to targets using fast implosions for central ignition, as long as the energy to heat the core after compression is comparable to or less than the slow compression energy, and as long as the coupling efficiency of the fast ignitor beam to heat the core is comparable to the overall efficiency of compressing the core (in terms of beam energy-to-DT-efficiency). Ion driven fast ignition, compared to laser-driven fast ignition, has the advantage of direct (dE/dx) deposition of beam energy to the DT, eliminating inefficiencies for conversion into hot electrons, and direct ion heating also has a more favorable deposition profile with the Bragg-peak near the end of an ion range chosen to be deep inside a compressed DT core. While Petawatt laser experiments at LLNL have demonstrated adequate light-to-hot-electron conversion efficiency, it is not yet known if light and hot electrons can channel deeply enough to heat a small portion of a IOOOxLD compressed DT core to ignition. On the other hand, lasers with chirped-pulse amplification giving thousand-fold pulse compressions have been demonstrated to produce the short pulses, small focal spots and Petawatt peak powers approaching those required for fast ignition, whereas ion accelerators that can produce sufficient beam quality for similar compression ratios and focal spot sizes of ion bunches have not yet been demonstrated, where an imposed coherent velocity tilt plays the analogous role for beam compression as does frequency chirp with lasers. Accordingly, it is the driver technology, not the target coupling physics, that poses the main challenge to ion-driven fast ignition. As the mainline HIF program is concentrating on

  20. Faraday-cup-type lost fast ion detector on Heliotron J.

    PubMed

    Yamamoto, S; Ogawa, K; Isobe, M; Darrow, D S; Kobayashi, S; Nagasaki, K; Okada, H; Minami, T; Kado, S; Ohshima, S; Weir, G M; Nakamura, Y; Konoshima, S; Kemmochi, N; Ohtani, Y; Mizuuchi, T

    2016-11-01

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90(∘)-140(∘), especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  1. Polarization Studies in Fast-Ion Beam Spectroscopy

    SciTech Connect

    Trabert, E

    2001-12-20

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams.

  2. Ion-beam-induced topography and surface diffusion

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Rossnagel, S. M.

    1982-01-01

    It is pointed out that the development of surface topography along with enhanced surface and bulk diffusion processes accompanying ion bombardment have generated growing interest among users of ion beams and plasmas for thin film or material processing. Interest in these processes stems both from attempts to generate topographic changes for specific studies or applications and from the need to suppress or control undesirable changes. The present investigation provides a summary of the current status of impurity-induced texturing, with emphasis on recent developments. Particular attention is given to the texturing accompanying deposition of an impurity material onto a solid surface while simultaneously etching the surface with an ion beam. A description of experimental considerations is provided, and a thermal-diffusion model is discussed along with the development of sputter cones, and aspects of impact-enhanced surface diffusion.

  3. Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure

    DOE PAGES

    Sachan, Ritesh; Cooper, Valentino R.; Liu, Bin; ...

    2016-12-19

    Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd2Ti2O7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environment and its effectmore » on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiOx polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd2Ti2O7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.« less

  4. Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure

    SciTech Connect

    Sachan, Ritesh; Cooper, Valentino R.; Liu, Bin; Aidhy, Dilpuneet S.; Voas, Brian K.; Lang, Maik; Ou, Xin; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.

    2016-12-19

    Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd2Ti2O7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environment and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiOx polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd2Ti2O7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.

  5. Summary: Electron-cloud effects and fast-ion instability

    SciTech Connect

    Furman, Miguel A.

    2000-03-22

    This is my summary of the talks on the electron-cloud effect and the fast-ion instability that were presented at the 8th ICFA Beam Dynamics Mini-Work shop on Two-Stream Instabilities in Particle Accelerators and Storage Rings,Santa Fe, NM, February 16--18, 2000.

  6. Self-diffusion of sodium ions in compacted sodium montmorillonite

    SciTech Connect

    Kozaki, Tamotsu; Fujishima, Atsushi; Sato, Seichi; Ohashi, Hiroshi

    1998-01-01

    Diffusion of sodium ions through compacted sodium montmorillonite in a water-saturated state was studied to obtain fundamental information for performance assessments of geological disposal of high-level radioactive waste. Basal spacings obtained from X-ray diffraction measurements indicated a decrease in the interlamellar spacing with increasing dry density of the montmorillonite; the three-water-layer hydrate was observed at low dry density, and the two-water-layer hydrate was observed at high dry density, whereas both were observed at dry densities between 1.4 and 1.5 Mg/m{sup 3}. Activation energies from 14.1 to 24.7 kJ/mol were obtained from the temperature dependence of the self-diffusion coefficients of sodium ions. Activation energies lower than that for the diffusion of sodium ions in free water were found for montmorillonite specimens with dry densities of {le} 1.2 Mg/m{sup 3}, while higher activation energies were observed at dry densities {ge} 1.4 Mg/m{sup 3}. The pore water diffusion model, the general model used for migration of nuclides, is based on geometric parameters; however, findings cannot be explained by only the changes in the geometric parameters. Possible explanations for the dry density dependence of the activation energy are changes in the temperature dependence of the distribution coefficients of sodium ions on the montmorillonite, changes in the diffusion process with an increase in dry density, or both.

  7. Ion distributions in coronal holes and fast solar wind

    SciTech Connect

    Maneva, Y. G.; Marsch, E.; Araneda, J. A.

    2010-03-25

    We perform 1 D hybrid simulations to investigate the nonlinear kinetic behavior of the tenuous collisionless magnetized plasma in coronal holes and fast solar wind. Initially isotropic ion distributions are reshaped via wave-particle interactions with resonant daughter waves that are born by parametrically unstable large-amplitude Alfven-cyclotron waves. Decay processes lead to the formation of both acoustic and electromagnetic micro-turbulence, which further influence the motion of the ions via Landau damping and pitch-angle scattering. This leads to a depletion of the pump and destroys the fluid coherence of the medium. Parametric instabilities act to randomize the ion distributions, causing anisotropic heating and resulting in differential streaming and formation of ion beams. Due to their low mass densities and charge-to-mass ratios heavy ions are preferentially heated and obtain higher anisotropies than protons.

  8. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  9. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  10. Wave Driven Fast Ion Loss in the National Spherical Torus Experiment

    SciTech Connect

    E.D. Fredrickson; C.Z. Cheng; D. Darrow; G. Fu; N.N. Gorelenkov; G. Kramer; S.S. Medley; J. Menard; L. Roquemore; D. Stutman; R.B. White

    2003-01-28

    Spherical tokamaks, with their relatively low toroidal field, extend fast-ion-driven instability physics to parameter ranges not normally accessed in conventional tokamaks. The low field means that both the fast-ion Larmor radius normalized to the plasma minor radius and the ratio of the fast-ion velocity to the Alfven speed are relatively large. The large Larmor radius of the ions enhances their interaction with instability modes, influencing the structure of the unstable mode spectrum. The relatively large fast-ion velocity allows for a larger population of fast ions to be in resonance with the mode, increasing the drive. It is therefore an important goal of the present proof-of-principle spherical tokamaks to evaluate the role of fast-ion-driven instabilities in fast-ion confinement. This paper presents the first observations of fast-ion losses resulting from toroidal Alfven eigenmodes and a new, fishbone-like, energetic particle mode.

  11. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfven Eigenmodes in the Large Helical Device

    SciTech Connect

    Ogawa, K.; Isobe, M.; Watanabe, F.; Spong, Donald A; Shimizu, A.; Osakabe, M.; Ohdachi, S.; Sakakibara, S.

    2012-01-01

    Beam-ion losses induced by fast-ion-driven toroidal Alfven eigenmodes (TAE) were measured with a scintillator-based lost fast-ion probe (SLIP) in the large helical device (LHD). The SLIP gave simultaneously the energy E and the pitch angle chi = arccos(v(parallel to)/v) distribution of the lost fast ions. The loss fluxes were investigated for three typical magnetic configurations of R{sub ax{_}vac} = 3.60 m, 3.75 m, and 3.90 m, where R{sub ax{_}vac} is the magnetic axis position of the vacuum field. Dominant losses induced by TAEs in these three configurations were observed in the E/chi regions of 50 similar to 190 keV/40 degrees, 40 similar to 170 keV/25 degrees, and 30 similar to 190 keV/30 degrees, respectively. Lost-ion fluxes induced by TAEs depend clearly on the amplitude of TAE magnetic fluctuations, R{sub ax{_}vac} and the toroidal field strength B{sub t}. The increment of the loss fluxes has the dependence of (b{sub TAE}/B{sub t}){sup s}. The power s increases from s = 1 to 3 with the increase of the magnetic axis position in finite beta plasmas.

  12. Coincidence ion imaging with a fast frame camera

    SciTech Connect

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen

    2014-12-15

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.

  13. Design and development of a fast ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1983-01-01

    Two Fast Ion Mass Spectrometers (FIMS A and FIMS B) were developed. The design, development, construction, calibration, integration, and flight of these instruments, along with early results from the data analysis efforts are summarized. A medium energy ion mass spectrometer that covers mass velocity space with significantly higher time resolution, improved mass resolution, (particularly for heavier ions), and wider energy range than existing instruments had achieved was completed. The initial design consisted of a dual channel cylindrical electrostatic analyzer followed by a dual channel cylindrical velocity filter. The gain versus count rate characteristics of the high current channel electron multipliers (CEM's), which were chosen for ion detection, revealed a systematic behavior that can be used as a criterion for selection of CEM's for long counting lifetimes.

  14. Cationization of organometallo carbonyl compounds by fast ion bombardment

    NASA Astrophysics Data System (ADS)

    Siuzdak, Gary; Wendeborn, Sebastian V.; Nicolaou, K. C.

    1992-01-01

    Organodicobalt, organochromium, and organomolybdenum carbonyl complexes have been studied using fast ion bombardment mass spectrometry. It has been found that the addition of cesium iodide to the liquid matrix, m-NBA, can significantly enhance the ability to observed the precursor ions of these organometallics through charge localization. In most cases the [M + Cs]+ ions were more abundant than the radical cations M-, the protonated molecules [M + H]+, or the sodium cationized molecules [M + Na]+ which were either unobservable or less intense than those treated with the cesium iodide salt solution. The decomposition of the compounds took place primarily through the successive loss of carbonyls from the radical cation with some carbonyl loss observed through the protonated and cationized species. The FAB matrix ions produced when cesium iodide was added to m-NBA also allowed for internal calibration.

  15. Shutterless ion mobility spectrometer with fast pulsed electron source

    NASA Astrophysics Data System (ADS)

    Bunert, E.; Heptner, A.; Reinecke, T.; Kirk, A. T.; Zimmermann, S.

    2017-02-01

    Ion mobility spectrometers (IMS) are devices for fast and very sensitive trace gas analysis. The measuring principle is based on an initial ionization process of the target analyte. Most IMS employ radioactive electron sources, such as 63Ni or 3H. These radioactive materials have the disadvantage of legal restrictions and the electron emission has a predetermined intensity and cannot be controlled or disabled. In this work, we replaced the 3H source of our IMS with 100 mm drift tube length with our nonradioactive electron source, which generates comparable spectra to the 3H source. An advantage of our emission current controlled nonradioactive electron source is that it can operate in a fast pulsed mode with high electron intensities. By optimizing the geometric parameters and developing fast control electronics, we can achieve very short electron emission pulses for ionization with high intensities and an adjustable pulse width of down to a few nanoseconds. This results in small ion packets at simultaneously high ion densities, which are subsequently separated in the drift tube. Normally, the required small ion packet is generated by a complex ion shutter mechanism. By omitting the additional reaction chamber, the ion packet can be generated directly at the beginning of the drift tube by our pulsed nonradioactive electron source with only slight reduction in resolving power. Thus, the complex and costly shutter mechanism and its electronics can also be omitted, which leads to a simple low-cost IMS-system with a pulsed nonradioactive electron source and a resolving power of 90.

  16. Modeling the effects of fast shocks on solar winds ions

    NASA Technical Reports Server (NTRS)

    Zhao, Xuepu; Ogilvie, K. W.; Whang, Y. C.

    1991-01-01

    Observations show that, when alpha particles and other minor ions in the solar wind plasma encounter fast shocks, they are heated more than protons and their bulk motion is decelerated less than protons. These effects have been studied using a three-fluid model, and the model predictions have been compared with observations. The comparison indicates that, for supercritical fast shocks, the three-fluid model can explain cross-shock minor ion heating which is significantly greater than that of protons. When the ratio of specific heats for minor ions, gamma (alpha), equals 2, both the lesser cross-shock deceleration and the greater heating of minor ions than of protons can be predicted by the model; thus, the minor ion heating through the shock transition region is consistent with the involvement of two degrees of freedom. Because the analysis is formulated in the de Heffmann-Teller frame of reference, the method is not valid for perpendicular shocks or when the angle is large. These results agree with the few extant observations and might be confirmed by further observations at the earth's bow shock.

  17. Confinement and dynamics of neutral beam injected fast ions in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Liu, D.; Almagri, F.; Anderson, J. K.; den Hartog, D. J.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Fiksel, G.; Deichuli, P.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Stupishin, N.; Andre, R.; McCune, D.

    2010-11-01

    The new 1MW neutral beam injector (97% H, 3% D) on MST provides a good test-bed for study of fast ions in the RFP. Analysis of the D-D fusion neutron flux decay at beam turn-off reveals that the confinement time of the fast ions is at least 10 ms, ten-fold larger than the thermal conferment times for particles and energy in standard stochastic plasmas. Also, the fast ion confinement increases with magnetic field strength. Dependence of fast ion confinement on plasma parameters, beam energy, and injection direction will be characterized and compared with TRANSP simulations. In addition, an advanced neutral particle analyzer and a prototype of fast ion charge exchange spectroscopy are under construction to measure neutralized fast ions and induced Doppler-shifted Hα light, respectively, thereby resolving fast ion density and energy distribution. Initial measurements of fast-ion dynamics during magnetic reconnection events will be presented.

  18. Multiple-electron processes in fast ion-atom collisions

    SciTech Connect

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs.

  19. Conceptual design of the ITER fast-ion loss detector.

    PubMed

    Garcia-Munoz, M; Kocan, M; Ayllon-Guerola, J; Bertalot, L; Bonnet, Y; Casal, N; Galdon, J; Garcia Lopez, J; Giacomin, T; Gonzalez-Martin, J; Gunn, J P; Jimenez-Ramos, M C; Kiptily, V; Pinches, S D; Rodriguez-Ramos, M; Reichle, R; Rivero-Rodriguez, J F; Sanchis-Sanchez, L; Snicker, A; Vayakis, G; Veshchev, E; Vorpahl, Ch; Walsh, M; Walton, R

    2016-11-01

    A conceptual design of a reciprocating fast-ion loss detector for ITER has been developed and is presented here. Fast-ion orbit simulations in a 3D magnetic equilibrium and up-to-date first wall have been carried out to revise the measurement requirements for the lost alpha monitor in ITER. In agreement with recent observations, the simulations presented here suggest that a pitch-angle resolution of ∼5° might be necessary to identify the loss mechanisms. Synthetic measurements including realistic lost alpha-particle as well as neutron and gamma fluxes predict scintillator signal-to-noise levels measurable with standard light acquisition systems with the detector aperture at ∼11 cm outside of the diagnostic first wall. At measurement position, heat load on detector head is comparable to that in present devices.

  20. Proton, Electron and Ion Temperatures in Fast Shocks

    SciTech Connect

    Raymond, John C.; Korreck, Kelly E.

    2005-08-01

    The Coulomb equilibration time scale among various particle species behind a fast collisionless shock can be much larger than the dynamical time scale in a supernova remnant or CME. Ultraviolet and optical emission line profiles can be used to measure proton, electron and ion temperatures. Particles are fairly close to thermal equilibrium behind a relatively slow (350 km/s) shock, but very far from equilibrium in faster (2000-3000 km/s) shocks.

  1. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Van Eester, D.; Dumont, R.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-01

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (˜ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  2. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    SciTech Connect

    Kazakov, Ye. O. Van Eester, D.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-10

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (∼ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  3. Electrical studies on silver based fast ion conducting glassy materials

    SciTech Connect

    Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.

    2014-04-24

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  4. Ion Diffusion Within Water Films in Unsaturated Porous Media.

    PubMed

    Tokunaga, Tetsu K; Finsterle, Stefan; Kim, Yongman; Wan, Jiamin; Lanzirotti, Antonio; Newville, Matthew

    2017-04-05

    Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb(+) and Br(-) in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, De, as low as ∼9 × 10(-15) m(2) s(-1) at θ = 1.0 × 10(-4) m(3) m(-3), where the film thickness = 0.9 nm. Given that the diffusion coefficients (Do) of Rb(+) and Br(-) in bulk water (30 °C) are both ∼2.4 × 10(-9) m(2) s(-1), we found the impedance factor f = De/(θDo) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in De relative to Do as desaturation progressed down to nanoscale films.

  5. Validation of fast diffusion kurtosis MRI for imaging acute ischemia in a rodent model of stroke

    PubMed Central

    Sun, Phillip Zhe; Wang, Yu; Mandeville, Emiri; Chan, Suk-Tak; Lo, Eng H; Ji, Xunming

    2014-01-01

    Diffusion-weighted imaging (DWI) captures ischemic tissue that is likely to infarct, and has become one of the most widely used acute stroke imaging techniques. Diffusion kurtosis imaging (DKI) has lately been postulated as a complementary MRI method to stratify the heterogeneously damaged DWI lesion. However, the conventional DKI acquisition time is relatively long, limiting its use in the acute stroke setting. Recently, Hansen et al. proposed a fast kurtosis mapping method and demonstrated it in fixed brains and control subjects. The fast DKI approach provides mean diffusion and kurtosis measurements under substantially reduced scan time, making it amenable to acute stroke imaging. Because it is not practical to obtain and compare different means of DKI to test whether the fast DKI method can reliably detect diffusion and kurtosis lesions in acute stroke patients, our study investigated its diagnostic value using an animal model of acute stroke, a critical step before fast DKI acquisition can be routinely applied in the acute stroke setting. We found significant correlation, per voxel, between the diffusion and kurtosis coefficients measured using the fast and conventional DKI protocols. In acute stroke rats, both DKI methods yielded diffusion and kurtosis lesions that were in good agreement. Importantly, substantial kurtosis/diffusion lesion mismatch was observed using the conventional (26±13%, P<0.01) and fast DKI methods (23±8%, P<0.01). In addition, regression analysis showed that the kurtosis/diffusion lesion mismatch obtained using conventional and fast DKI methods were substantially correlated (R2=0.57, P=0.02). Our results confirmed that the recently proposed fast DKI method is capable of capturing heterogeneous diffusion and kurtosis lesions in acute ischemic stroke, and thus is suitable for translational applications in the acute stroke clinical setting. PMID:25208309

  6. Validation of fast diffusion kurtosis MRI for imaging acute ischemia in a rodent model of stroke.

    PubMed

    Sun, Phillip Zhe; Wang, Yu; Mandeville, Emiri; Chan, Suk-Tak; Lo, Eng H; Ji, Xunming

    2014-11-01

    Diffusion-weighted imaging (DWI) captures ischemic tissue that is likely to infarct, and has become one of the most widely used acute stroke imaging techniques. Diffusion kurtosis imaging (DKI) has lately been postulated as a complementary MRI method to stratify the heterogeneously damaged DWI lesion. However, the conventional DKI acquisition time is relatively long, limiting its use in the acute stroke setting. Recently, a fast kurtosis mapping method has been demonstrated in fixed brains and control subjects. The fast DKI approach provides mean diffusion and kurtosis measurements under substantially reduced scan time, making it amenable to acute stroke imaging. Because it is not practical to obtain and compare different means of DKI to test whether the fast DKI method can reliably detect diffusion and kurtosis lesions in acute stroke patients, our study investigated its diagnostic value using an animal model of acute stroke, a critical step before fast DKI acquisition can be routinely applied in the acute stroke setting. We found significant correlation, per voxel, between the diffusion and kurtosis coefficients measured using the fast and conventional DKI protocols. In acute stroke rats, the two DKI methods yielded diffusion and kurtosis lesions that were in good agreement. Importantly, substantial kurtosis-diffusion lesion mismatch was observed using the conventional (26 ± 13%, P < 0.01) and fast DKI methods (23 ± 8%, P < 0.01). In addition, regression analysis showed that the kurtosis-diffusion lesion mismatches obtained using conventional and fast DKI methods were substantially correlated (R(2) = 0.57, P = 0.02). Our results confirmed that the recently proposed fast DKI method is capable of capturing heterogeneous diffusion and kurtosis lesions in acute ischemic stroke, and thus is suitable for translational applications in the acute stroke clinical setting.

  7. Fast ion transport induced by saturated infernal mode

    SciTech Connect

    Marchenko, V. S.

    2014-05-15

    Tokamak discharges with extended weak-shear central core are known to suffer from infernal modes when the core safety factor approaches the mode ratio. These modes can cause an outward convection of the well-passing energetic ions deposited in the core by fusion reactions and/or neutral beam injection. Convection mechanism consists in collisional slowing down of energetic ions trapped in the Doppler-precession resonance with a finite-amplitude infernal mode. Convection velocity can reach a few m/s in modern spherical tori. Possible relation of this transport with the enhanced fast ion losses in the presence of “long lived modes” in the MAST tokamak [I. T. Chapman et al., Nucl. Fusion 50, 045007 (2010)] is discussed.

  8. Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS2.

    PubMed

    Samad, Abdus; Shafique, Aamir; Shin, Young-Han

    2017-04-28

    A comparative study of the monovalent (Li, Na, and K) and multivalent (Be, Mg, Ca, and Al) metal ion adsorption and diffusion on an electronically semi-metallic two-dimensional nanosheet of 1T structured TiS2 is presented here to contribute to the search for abundant, cheap, and nontoxic ingredients for efficient rechargeable metal ion batteries. The total formation energy of the metal ion adsorption and the Bader charge analysis show that the divalent Mg and Ca ions can have a charge storage density double that of the monovalent Li, Na, and K ions, while the Be and Al ions form metallic clusters even at a low adsorption density because of their high bulk energies. The adsorption of Mg ions shows the lowest averaged open circuit voltage (0.13 V). The activation energy barriers for the diffusion of metal ions on the surface of the monolayer successively decrease from Li to K and Be to Ca. Mg and Ca, being divalent, are capable of storing a higher power density than Li while K and Na have a higher rate capability than the Li ions. Therefore, rechargeable Li ion batteries can be totally or partially replaceable by Mg ion batteries, where high power density and high cell voltage are required, while the abundant, cheap, and fast Na ions can be used for green grid applications.

  9. Association and Diffusion of Li(+) in Carboxymethylcellulose Solutions for Environmentally Friendly Li-ion Batteries.

    PubMed

    Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido

    2016-07-21

    Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment.

  10. Donnan dialysis with ion-exchange membranes. 3: Diffusion coefficients using ions of different valence

    SciTech Connect

    Miyoshi, Hirofumi

    1999-01-01

    Donnan dialysis with ion-exchange membranes was studied under various kinds of experimental conditions using ions of different valences. The diffusion coefficients (D{sub d}) of various kinds of ions in the ion-exchange membrane were obtained by curve fitting an equation derived from the mass balance to three kinds of Donnan dialytic experiments. It was found that the value of D{sub d}/D{sub s} using D{sub d} of monovalent ions in Donnan dialysis with a set of monovalent feed ions and bivalent driving ions was 1/175, where D{sub s} represents a diffusion coefficient in solution. D{sub s} was calculated from the Nernst-Einstein equation substituted by the ionic conductance of ions at infinite dilution in water. Using D{sub d} of bivalent ions in Donnan dialysis with the same set led to a D{sub d}/D{sub s} value of 1/438. Moreover, using D{sub d} in Donnan dialysis with the same set, the value of D{sub d}/D{sub e} was kept constant at 0.4 (D{sub e} expresses the diffusion coefficient in the membrane when the valences of the feed and driving ions are equal). On the other hand, both D{sub d}/D{sub s} and D{sub d}/D{sub e} using D{sub d} in Donnan dialysis with a set of bivalent feed ions and monovalent driving ions were not constant.

  11. Temperature Activated Diffusion of Radicals through Ion Implanted Polymers.

    PubMed

    Wakelin, Edgar A; Davies, Michael J; Bilek, Marcela M M; McKenzie, David R

    2015-12-02

    Plasma immersion ion implantation (PIII) is a promising technique for immobilizing biomolecules on the surface of polymers. Radicals generated in a subsurface layer by PIII treatment diffuse throughout the substrate, forming covalent bonds to molecules when they reach the surface. Understanding and controlling the diffusion of radicals through this layer will enable efficient optimization of this technique. We develop a model based on site to site diffusion according to Fick's second law with temperature activation according to the Arrhenius relation. Using our model, the Arrhenius exponential prefactor (for barrierless diffusion), D0, and activation energy, EA, for a radical to diffuse from one position to another are found to be 3.11 × 10(-17) m(2) s(-1) and 0.31 eV, respectively. The model fits experimental data with a high degree of accuracy and allows for accurate prediction of radical diffusion to the surface. The model makes useful predictions for the lifetime over which the surface is sufficiently active to covalently immobilize biomolecules and it can be used to determine radical fluence during biomolecule incubation for a range of storage and incubation temperatures so facilitating selection of the most appropriate parameters.

  12. FDM study of ion exchange diffusion equation in glass

    NASA Astrophysics Data System (ADS)

    Zhou, Zigang; Yang, Yongjia; Wang, Qiang; Sun, Guangchun

    2009-05-01

    Ion-exchange technique in glass was developed to fabricate gradient refractive index optical devices. In this paper, the Finite Difference Method(FDM), which is used for the solution of ion-diffusion equation, is reported. This method transforms continual diffusion equation to separate difference equation. It unitizes the matrix of MATLAB program to solve the iteration process. The collation results under square boundary condition show that it gets a more accurate numerical solution. Compared to experiment data, the relative error is less than 0.2%. Furthermore, it has simply operation and kinds of output solutions. This method can provide better results for border-proliferation of the hexagonal and the channel devices too.

  13. Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Rosenberg, A. L.; Menard, J. E.; Wilson, J. R.; Medley, S. S.; Andre, R.; Phillips, C. K.; Darrow, D. S.; LeBlanc, B. P.; Redi, M. H.; Fisch, N. J.; NSTX Team, Harvey, R. W.; Mau, T. K.; Jaeger, E. F.; Ryan, P. M.; Swain, D. W.; Sabbagh, S. A.; Egedal, J.

    2004-05-01

    Ion absorption of the high harmonic fast wave in a spherical torus [Y.-K. M. Peng et al., Nucl. Fusion 26, 769 (1986)] is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] shots has revealed that under some conditions when neutral beam and rf power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the rf-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is a rf interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering are presented, along with results from the TRANSP [R. J. Hawryluk, Physics of Plasmas Close to Thermonuclear Conditions 1, 19 (1981); J. P. H. E. Ongena et al., Fusion Technol. 33, 181 (1998)] transport analysis code, ray-tracing codes HPRT [J. Menard et al., Phys. Plasmas 6, 2002 (1999)], and CURRAY [T. K. Mau et al., RF Power in Plasmas: 13th Topical Conference (1999), p. 148], full-wave code AORSA [E. F. Jaeger et al., RF Power in Plasmas: 14th Topical Conference, 2001, p. 369], quasilinear code CQL3D [R. W. Harvey et al., in Proceedings of the IAEA TCM on Advances in Simulation and Modeling of Thermonuclear Plasmas, 1992], and ion loss codes EIGOL [D. S. Darrow et al., in Proceedings of the 6th IAEA TCM on

  14. Effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stresses in cylindrical Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Guo, Zhansheng

    2014-03-01

    The effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stress in a cylindrical Li-ion battery are studied. It is found that hydrostatic pressure or elastic modulus variation in the active layer have little effect on the distribution of Li ions for a higher diffusivity coefficient, but both can facilitate Li ion diffusion for a lower diffusivity coefficient. The elastic modulus variation has a significant effect on the distribution of stress and hydrostatic pressure can reduce the surface stress for the lower diffusivity coefficient. A higher charging rate causes a more transient response in the stress history, but a linear charging history is observed for slow charging rates. A higher charging rate would not inflict extra damage on the electrode for the higher diffusivity coefficient and the stress history becomes highly transient and charging rate dependent for the lower diffusivity coefficient. The effect of fabricated pressure can be neglected.

  15. The Electron and ion Plasma Experiment for Fast

    NASA Astrophysics Data System (ADS)

    Carlson, C. W.; McFadden, J. P.; Turin, P.; Curtis, D. W.; Magoncelli, A.

    2001-08-01

    The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a

  16. A Numerical Model for Coupling of Neutron Diffusion and Thermomechanics in Fast Burst Reactors

    SciTech Connect

    Samet Y. Kadioglu; Dana A. Knoll; Cassiano De Oliveira

    2008-11-01

    We develop a numerical model for coupling of neutron diffusion adn termomechanics in order to stimulate transient behavior of a fast burst reactor. The problem involves solving a set of non-linear different equations which approximate neutron diffusion, temperature change, and material behavior. With this equation set we will model the transition from a supercritical to subcritical state and possible mechanical vibration.

  17. Competing descriptions of diffusion profiles with two features: Surface space-charge layer versus fast grain-boundary diffusion

    NASA Astrophysics Data System (ADS)

    Schraknepper, H.; De Souza, R. A.

    2016-02-01

    Two different physical processes, (i) fast grain-boundary diffusion (FGBD) of oxygen and (ii) hindered oxygen diffusion in a surface space-charge layer, yield oxygen isotope diffusion profiles in a similar form. Two features are observed, with the short, sharp profile close to the surface being followed by a longer, shallower profile. In this study, we develop a procedure for deciding which of the two descriptions applies to experimentally measured profiles. Specifically, we solve Fick's second law, using finite-element simulations, to obtain oxygen isotope diffusion profiles for the two cases. Each set of profiles is then analysed in terms of the competing description. In this manner, we derive falsifiable conditions that allow physical processes to be assigned unambiguously to the two features of such isotope profiles. Applying these conditions to experimental profiles for SrTiO3 single crystals published in the literature, we find that FGBD is an invalid model for describing the diffusion processes.

  18. Profiles of fast ions that are accelerated by high harmonic fast waves in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Liu, D.; Heidbrink, W. W.; Podestà, M.; Bell, R. E.; Fredrickson, E. D.; Medley, S. S.; Harvey, R. W.; Ruskov, E.

    2010-02-01

    Combined neutral beam injection and high-harmonic fast-wave (HHFW) heating accelerate deuterium fast ions in the National Spherical Torus Experiment (NSTX). With 1.1 MW of HHFW power, the neutron emission rate is about three times larger than in the comparison discharge without HHFW heating. Acceleration of fast ions above the beam injection energy is evident on an E||B type neutral particle analyzer (NPA), a 4-chord solid state neutral particle analyzer (SSNPA) array and a 16-channel fast-ion D-alpha (FIDA) diagnostic. The accelerated fast ions observed by the NPA and SSNPA diagnostics mainly come from passive charge exchange reactions at the edge due to the NPA/SSNPA localization in phase space. The spatial profile of accelerated fast ions that is measured by the FIDA diagnostic is much broader than in conventional tokamaks because of the multiple resonance layers and large orbits in NSTX. The fast-ion distribution function calculated by the CQL3D Fokker-Planck code differs from the measured spatial profile, presumably because the current version of CQL3D uses a zero-banana-width model. In addition, compressional Alfven eigenmode activity is stronger during the HHFW heating and it may affect the fast-ion spatial profile.

  19. Collisionally induced stochastic dynamics of fast ions in solids

    SciTech Connect

    Burgdoerfer, J.

    1989-01-01

    Recent developments in the theory of excited state formation in collisions of fast highly charged ions with solids are reviewed. We discuss a classical transport theory employing Monte-Carlo sampling of solutions of a microscopic Langevin equation. Dynamical screening by the dielectric medium as well as multiple collisions are incorporated through the drift and stochastic forces in the Langevin equation. The close relationship between the extrinsically stochastic dynamics described by the Langevin and the intrinsic stochasticity in chaotic nonlinear dynamical systems is stressed. Comparison with experimental data and possible modification by quantum corrections are discussed. 49 refs., 11 figs.

  20. Elastic wave from fast heavy ion irradiation on solids

    NASA Astrophysics Data System (ADS)

    Kambara, T.; Kageyama, K.; Kanai, Y.; Kojima, T. M.; Nanai, Y.; Yoneda, A.; Yamazaki, Y.

    2002-06-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al 2O 3), fused silica (SiO 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the wave source was estimated. The result was compared with ion ranges calculated for these materials by TRIM code.

  1. Thermodynamics and Cation Diffusion in the Oxygen Ion Conductor Lsgm

    NASA Astrophysics Data System (ADS)

    Martin, M.; Schulz, O.

    Perovskite type oxides based on LaGaO3 are of large technical interest because of their high oxygen-ion conductivity. Lanthanum gallate doped with Sr on A- and Mg on B-sites, La1-xSrxGa1-yMgyO3-(x+y)/2 (LSGM), reaches higher oxygen-ion conductivities than yttria-doped zirconia (YSZ). Thus LSGM represents a promising alternative for YSZ as electrolyte in solid oxide fuel cells (SOFC). Cells using thin LSGM-layers as electrolyte are expected to operate at intermediate temperatures around 700°C for more than 30000 hours without severe degradation. A potential long term degradation effect of LSGM is kinetic demixing of the electrolyte, caused by different cation diffusion coefficients. In this paper we report on experimental studies concerning the phase diagram of LSGM and the diffusion of cations. Cation self-diffusion of 139La, 84Sr and 25Mg and cation impurity diffusion of 144Nd, 89Y and 56Fe in polycrystalline LSGM samples was investigated by secondary ion mass spectrometry (SIMS) for temperatures between 900°C and 1400°C. It was found that diffusion occurs by means of bulk and grain boundaries. The bulk diffusion coefficients are similar for all cations with activation energies which are strongly dependent on temperature. At high temperatures, the activation energies are about 5 eV, while at low temperatures values of about 2 eV are found. These results are explained by a frozen in defect structure at low temperatures. This means that the observed activation energy at low temperatures represents only the migration energy of the different cations while the observed activation energy at high temperatures is the sum of the defect formation energy and the migration energy. The migration energies for all cations are nearly identical, although 139La, 84Sr and 144Nd are occupying A-sites while 25Mg and 56Fe are occupying B-sites in the perovskite-structure. To explain these experimental findings we propose a defect cluster containing cation vacancies in both the A

  2. Fast ion profile stiffness due to the resonance overlap of multiple Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Todo, Y.; Van Zeeland, M. A.; Heidbrink, W. W.

    2016-11-01

    Fast ion pressure profiles flattened by multiple Alfvén eigenmodes (AEs) are investigated for various neutral beam deposition powers in a multi-phase simulation, which is a combination of classical simulation and hybrid simulation for energetic particles interacting with a magnetohydrodynamic fluid. Monotonic degradation of fast ion confinement and fast ion profile stiffness is found with increasing beam deposition power. The confinement degradation and profile stiffness are caused by a sudden increase in fast ion transport flux brought about by AEs for fast ion pressure gradients above a critical value. The critical pressure gradient and the corresponding beam deposition power depend on the radial location. The fast ion pressure gradient stays moderately above the critical value, and the profiles of the fast ion pressure and fast ion transport flux spread radially outward from the inner region, where the beam is injected. It is found that the square root of the MHD fluctuation energy is proportional to the beam deposition power. Analysis of the time evolutions of the fast ion energy flux profiles reveals that intermittent avalanches take place with contributions from the multiple eigenmodes. Surface of section plots demonstrate that the resonance overlap of multiple eigenmodes accounts for the sudden increase in fast ion transport with increasing beam power. The critical gradient and critical beam power for the profile stiffness are substantially higher than the marginal stability threshold.

  3. Modeling Fast Ion Transport in TAE Avalanches in NSTX

    SciTech Connect

    Fredrickson, E D; Bell, R E; Darrow, D; Gorelenkov, N N; Kramer, G; Kubota, S; Levinton, F M; Liu, D; Medley, S S; Podesta, M; Tritz, K

    2009-08-17

    Experiments on the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557 ] have found strong bursts of Toroidal Alfven Eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA [C. Z. Cheng, Phys. Reports 211, 1-51 (1992)] and ORBIT [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE were modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE were then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate. While these results represent our best attempts to find agreement, we believe that further refinements in both the simulation of the TAE structure and in the modeling of the fast ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.

  4. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Pipon, Y.; Bérerd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrézic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-04-01

    The radiation enhanced diffusion of chlorine in UO2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36Cl, present as an impurity in UO2, 37Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 × 10-14 cm2 s-1, reflect the high mobility of chlorine in UO2 during irradiation with fission products.

  5. A fast feedback controlled magnetic drive for the ASDEX Upgrade fast-ion loss detectors.

    PubMed

    Ayllon-Guerola, J; Gonzalez-Martin, J; Garcia-Munoz, M; Rivero-Rodriguez, J; Herrmann, A; Vorbrugg, S; Leitenstern, P; Zoletnik, S; Galdon, J; Garcia Lopez, J; Rodriguez-Ramos, M; Sanchis-Sanchez, L; Dominguez, A D; Kocan, M; Gunn, J P; Garcia-Vallejo, D; Dominguez, J

    2016-11-01

    A magnetically driven fast-ion loss detector system for the ASDEX Upgrade tokamak has been designed and will be presented here. The device is feedback controlled to adapt the detector head position to the heat load and physics requirements. Dynamic simulations have been performed taking into account effects such as friction, coil self-induction, and eddy currents. A real time positioning control algorithm to maximize the detector operational window has been developed. This algorithm considers dynamical behavior and mechanical resistance as well as measured and predicted thermal loads. The mechanical design and real time predictive algorithm presented here may be used for other reciprocating systems.

  6. A fast feedback controlled magnetic drive for the ASDEX Upgrade fast-ion loss detectors

    NASA Astrophysics Data System (ADS)

    Ayllon-Guerola, J.; Gonzalez-Martin, J.; Garcia-Munoz, M.; Rivero-Rodriguez, J.; Herrmann, A.; Vorbrugg, S.; Leitenstern, P.; Zoletnik, S.; Galdon, J.; Garcia Lopez, J.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Dominguez, A. D.; Kocan, M.; Gunn, J. P.; Garcia-Vallejo, D.; Dominguez, J.

    2016-11-01

    A magnetically driven fast-ion loss detector system for the ASDEX Upgrade tokamak has been designed and will be presented here. The device is feedback controlled to adapt the detector head position to the heat load and physics requirements. Dynamic simulations have been performed taking into account effects such as friction, coil self-induction, and eddy currents. A real time positioning control algorithm to maximize the detector operational window has been developed. This algorithm considers dynamical behavior and mechanical resistance as well as measured and predicted thermal loads. The mechanical design and real time predictive algorithm presented here may be used for other reciprocating systems.

  7. Comparison of measurements and simulations of fast ion profiles during high harmonic fast wave heating in NSTX

    NASA Astrophysics Data System (ADS)

    Liu, D.; Heidbrink, W. W.; Podesta, M.; Medley, S. S.; Harvey, R. W.; Choi, M.; Green, D.

    2009-11-01

    Combined neutral beam injection (NBI) and high harmonic fast wave (HHFW) heating at cyclotron harmonics accelerate deuterium fast ions in the National Spherical Torus Experiment (NSTX). Acceleration of fast ions above the beam injection energy is evident in the data from neutron, E||B type Neutral Particle Analyzer (NPA), Solid State Neutral Particle Analyzer (SSNPA) array and Fast-Ion D-Alpha (FIDA) diagnostics. The fast-ion spatial profiles measured by the FIDA diagnostic show that the acceleration is at four harmonics (7-10) simultaneously and it is much broader than in DIII-D. This is because of the multiple resonance layers and large orbits in NSTX. The measured spatial profile of accelerated fast ions is farther from the magnetic axis and broader than predicted by the CQL3D Fokker-Planck code, for which we conjecture that finite Larmor radius and banana-width can have significant effects on the fast ions in NSTX. To test this hypothesis, simulations with ORBIT-RF code coupled with full wave code AORSA are in progress.

  8. Ion-induced gamma-ray detection of fast ions escaping from fusion plasmas

    SciTech Connect

    Nishiura, M. Mushiake, T.; Doi, K.; Wada, M.; Taniike, A.; Matsuki, T.; Shimazoe, K.; Yoshino, M.; Nagasaka, T.; Tanaka, T.; Kisaki, M.; Fujimoto, Y.; Fujioka, K.; Yamaoka, H.; Matsumoto, Y.

    2014-11-15

    A 12 × 12 pixel detector has been developed and used in a laboratory experiment for lost fast-ion diagnostics. With gamma rays in the MeV range originating from nuclear reactions {sup 9}Be(α, nγ){sup 12}C, {sup 9}Be(d, nγ){sup 12}C, and {sup 12}C(d, pγ){sup 13}C, a high purity germanium (HPGe) detector measured a fine-energy-resolved spectrum of gamma rays. The HPGe detector enables the survey of background-gamma rays and Doppler-shifted photo peak shapes. In the experiments, the pixel detector produces a gamma-ray image reconstructed from the energy spectrum obtained from total photon counts of irradiation passing through the detector's lead collimator. From gamma-ray image, diagnostics are able to produce an analysis of the fast ion loss onto the first wall in principle.

  9. Anomalous flattening of the fast-ion profile during Alfvén-Eigenmode activity.

    PubMed

    Heidbrink, W W; Gorelenkov, N N; Luo, Y; Van Zeeland, M A; White, R B; Austin, M E; Burrell, K H; Kramer, G J; Makowski, M A; McKee, G R; Nazikian, R

    2007-12-14

    Neutral-beam injection into plasmas with negative central shear produces a rich spectrum of toroidicity-induced and reversed-shear Alfvén eigenmodes in the DIII-D tokamak. The first application of fast-ion D_{alpha} (FIDA) spectroscopy to Alfvén-eigenmode physics shows that the central fast-ion profile is anomalously flat in the inner half of the discharge. Neutron and equilibrium measurements corroborate the FIDA data. The current density driven by fast ions is also strongly modified. Calculations based on the measured mode amplitudes do not explain the observed fast-ion transport.

  10. Developments of fast emittance monitors for ion sources at RCNP

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K.

    2016-02-15

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  11. Developments of fast emittance monitors for ion sources at RCNP

    NASA Astrophysics Data System (ADS)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K.

    2016-02-01

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  12. Harnack inequality and strong Feller property for stochastic fast-diffusion equations

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wang, Feng-Yu

    2008-06-01

    As a continuation to [F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations, Ann. Probab. 35 (2007) 1333-1350], where the Harnack inequality and the strong Feller property are studied for a class of stochastic generalized porous media equations, this paper presents analogous results for stochastic fast-diffusion equations. Since the fast-diffusion equation possesses weaker dissipativity than the porous medium one does, some technical difficulties appear in the study. As a compensation to the weaker dissipativity condition, a Sobolev-Nash inequality is assumed for the underlying self-adjoint operator in applications. Some concrete examples are constructed to illustrate the main results.

  13. Assessing cognitive processes with diffusion model analyses: a tutorial based on fast-dm-30

    PubMed Central

    Voss, Andreas; Voss, Jochen; Lerche, Veronika

    2015-01-01

    Diffusion models can be used to infer cognitive processes involved in fast binary decision tasks. The model assumes that information is accumulated continuously until one of two thresholds is hit. In the analysis, response time distributions from numerous trials of the decision task are used to estimate a set of parameters mapping distinct cognitive processes. In recent years, diffusion model analyses have become more and more popular in different fields of psychology. This increased popularity is based on the recent development of several software solutions for the parameter estimation. Although these programs make the application of the model relatively easy, there is a shortage of knowledge about different steps of a state-of-the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modeling, and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software (Voss and Voss, 2007) for diffusion model data analysis. The most important improvement of the fast-dm version is the possibility to choose between different optimization criteria (i.e., Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov), which differ in applicability for different data sets. PMID:25870575

  14. Fast electron current density profile and diffusion studies during LHCD in PBX-M

    SciTech Connect

    Jones, S.E.; Kesner, J.; Luckhardt, S.; Paoletti, F.; von Goeler, S.; Bernabei, S.; Kaita, R.; Rimini, F.

    1993-08-01

    Successful current profile control experiments using lower hybrid current drive (LCHD) clearly require knowledge of (1) the location of the driven fast electrons and (2) the ability to maintain that location from spreading due to radial diffusion. These issues can be addressed by examining the data from the hard x-ray camera on PBX-M, a unique diagnostic producing two-dimensional, time resolved tangential images of fast electron bremsstrahlung. Using modeling, these line-of-sight images are inverted to extract a radial fast electron current density profile. We note that ``hollow`` profiles have been observed, indicative of off-axis current drive. These profiles can then be used to calculate an upper bound for an effective fast electron diffusion constant: assuming an extremely radially narrow lower hybrid absorption profile and a transport model based on Rax and Moreau, a model fast electron current density profile is calculated and compared to the experimentally derived profile. The model diffusion constant is adjusted until a good match is found. Applied to steady-state quiescent modes on PBX-M, we obtain an upper limit for an effective diffusion constant of about D*=1.1 m{sup 2}/sec.

  15. Ion Trapping with Fast-Response Ion-Selective Microelectrodes Enhances Detection of Extracellular Ion Channel Gradients

    PubMed Central

    Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.

    2009-01-01

    Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875

  16. Energy loss straggling in collisions of fast finite-size ions with atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2013-03-01

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron "coat" of an ion noticeably improves the agreement with experimental data.

  17. Energy loss straggling in collisions of fast finite-size ions with atoms

    SciTech Connect

    Makarov, D. N. Matveev, V. I.

    2013-03-15

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron 'coat' of an ion noticeably improves the agreement with experimental data.

  18. A Model for Fast Ion Emission from Metal Deuterides

    NASA Astrophysics Data System (ADS)

    Hagelstein, Peter

    2000-03-01

    There have been numerous claims during the past ten years of the observation of a variety of anomalies in metal deuterides. One such anomaly involves the emission of fast (MeV) alpha from PdD as reported by G. Chambers and colleagues at NRL in the early 1990s. A related effect is the emission of a variety of low mass fast ions from TiD reported by groups led by G. Chambers and by F. E. Cecil (Colorado School of Mines) et al(F. E. Cecil, H. Liu, D. Beddingfield and C. S. Galovich, in Anomalous Nuclear Effects in Deuterium/Solid Systems, AIP Conf. Proc.) 228, p. 383 (1990).. We have recently examined a theoretical model for this effect. We propose a second order off-resonant reaction in which fusion reactions are coupled to optical phonons, and then the optical phonon excitation is dipole-coupled to nuclear ionization. Such a model gives reaction products and energies which appear to be in agreement with experiment.

  19. Numerical calculation of ionization in fast ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Horbatsch, Marko; Chassid, Michal

    1996-05-01

    Numerical solutions of the time-dependent Schrödinger equation in a 1D model and in a realistic 3D setting^1,2 are analyzed to calculate excitation probabilities and differential electron emission probabilities for collisions of fast bare projectiles with hydrogen atoms. The results are tested for the expected scaling behaviour with projectile charge and collision energy. The ionization probabilities are calculated by first projecting out the bound-state contributions from the time-evolved wavefunction and then performing a discrete Fourier transform. Comparison is provided with recent experiments for helium targets using cold target recoil ion momentum spectroscopy^3. For fast (v=12 au) and highly charged projectiles (Z_p=24) bound-state excitations are dominantly produced at much larger impact parameters than b >= 3 au for which the ionization channel receives its largest contribution. ^1 M. Horbatsch, Phys. Rev. A 44, R5346 (1991) ^2 M. Chassid and M. Horbatsch, J. Phys. B 28,L621 (1995) ^3 R. Moshammer, J. Ullrich, et. al. Phys. Rev. Lett. 73, 3371 (1994).

  20. Li + ion diffusion in Li 4Ti 5O 12 thin film electrode prepared by PVP sol-gel method

    NASA Astrophysics Data System (ADS)

    Rho, Young Ho; Kanamura, Kiyoshi

    2004-06-01

    Li 4Ti 5O 12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li 4Ti 5O 12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s -1, indicating that Li 4Ti 5O 12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li + ion was estimated to be 6.8×10 -11 cm 2 s -1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li + ions become more mobile at 1.55 V vs. Li/Li +, corresponding to a two-phase region, and the chemical diffusion coefficients of Li + ion ranged from 10 -10 to 10 -12 cm 2 s -1 at various potentials. The chemical diffusion coefficients of Li + ion in Li 4Ti 5O 12 were also estimated from PITT. They were in a range of 10 -11-10 -12 cm 2 s -1.

  1. First-principles appraisal of solute ultra-fast diffusion in hcp Zr and Ti

    NASA Astrophysics Data System (ADS)

    Pasianot, R. C.; Pérez, R. A.

    2013-03-01

    We revisit the ultra-fast diffusion characteristics of Fe, Co, Ni, and Cu solutes, in the hcp hosts Ti and Zr, by using Density Functional Theory. The energetics of several point defect configurations, deemed relevant for solute diffusion, is evaluated. The results support the long standing beliefs that the diffusing species is interstitial in nature, and that some kind of complexing is involved at low temperatures. Though quantitative agreement with experiment is difficult to assess, we show that a rather simple dissociative model is able to rationalize the observed trends, in particular, why the Arrhenius graphs are straight for Ti whereas, generally, they are curved downwards for Zr.

  2. Quantitative evaluation of wall heat loads by lost fast ions in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Morimoto, Junki; Suzuki, Yasuhiro; Seki, Ryosuke

    2016-10-01

    In fusion plasmas, fast ions are produced by neutral beam injections (NBI), ion cyclotron heating (ICH) and fusion reactions. Some of fast ions are lost from fusion plasmas because of some kinds of drift and instability. These lost fast ions may cause damages on plasma facing components such as divertors and diagnostic instruments in fusion reactors. Therefore, wall heat loads by lost fast ions in the Large Helical Device (LHD) is under investigation. For this purpose, we have been developing the Monte-Carlo code for the quantitative evaluation of wall heat loads based on following the guiding center orbits of fast ions. Using this code, we investigate wall heat loads and hitting points of lost fast ions produced by NBI in LHD. Magnetic field configurations, which depend on beta values, affect orbits of fast ions and wall heat loads. Therefore, the wall heat loads by fast ions in equilibrium magnetic fields including finite beta effect and magnetic islands are quantitatively evaluated. The differences of wall heat loads and particle deposition patterns for cases of the vacuum field and various beta equilibrium fields will be presented at the meeting.

  3. A fast collocation method for a variable-coefficient nonlocal diffusion model

    NASA Astrophysics Data System (ADS)

    Wang, Che; Wang, Hong

    2017-02-01

    We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog ⁡ N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.

  4. Fast diffusion of silver in TiO2 nanotube arrays.

    PubMed

    Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui; Liang, Wei; Yang, Fuqian

    2016-01-01

    Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10(-18) m(2)/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag.

  5. Fast diffusion of silver in TiO2 nanotube arrays

    PubMed Central

    Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui

    2016-01-01

    Summary Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630

  6. A fast finite volume method for conservative space-fractional diffusion equations in convex domains

    NASA Astrophysics Data System (ADS)

    Jia, Jinhong; Wang, Hong

    2016-04-01

    We develop a fast finite volume method for variable-coefficient, conservative space-fractional diffusion equations in convex domains via a volume-penalization approach. The method has an optimal storage and an almost linear computational complexity. The method retains second-order accuracy without requiring a Richardson extrapolation. Numerical results are presented to show the utility of the method.

  7. Experimental results on time-resolved reflectance diffuse optical tomography with fast-gated SPADs

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Planat-Chrétien, Anne; Hervé, Lionel; Koenig, Anne; Dinten, Jean-Marc

    2013-06-01

    We present experimental results of time-resolved reflectance diffuse optical tomography performed with fast-gated single-photon avalanche diodes (SPADs) and show an increased imaged depth range for a given acquisition time compared to the non gated mode.

  8. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Galdon-Quiroga, J.; Garcia-Munoz, M.; Geiger, B.; Jacobsen, A. S.; Jaulmes, F.; Korsholm, S. B.; Lazanyi, N.; Leipold, F.; Ryter, F.; Salewski, M.; Schubert, M.; Stober, J.; Wagner, D.; the ASDEX Upgrade Team; the EUROFusion MST1 Team

    2016-11-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices. Here we present the first collective Thomson scattering (CTS) measurements of sawtooth-induced redistribution of fast ions at ASDEX Upgrade. These also represent the first localized fast-ion measurements on the high-field side of this device. The results indicate fast-ion losses in the phase-space measurement volume of about 50% across sawtooth crashes, in good agreement with values predicted with the Kadomtsev sawtooth model implemented in TRANSP and with the sawtooth model in the EBdyna_go code. In contrast to the case of sawteeth, we observe no fast-ion redistribution in the presence of fishbone modes. We highlight how CTS measurements can discriminate between different sawtooth models, in particular when aided by multi-diagnostic velocity-space tomography, and briefly discuss our results in light of existing measurements from other fast-ion diagnostics.

  9. Experimental investigation of the fast-ion transport in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Geiger, Benedikt; Dux, Ralph; Ryter, Francois; Tardini, Giovanni; Garcia-Munoz, Manuel; ASDEX Upgrade Team

    2013-10-01

    The radial transport of fast-ions is an active field of investigation in fusion devices. In particular, in the presence of MHD instabilities, fast-ions can be redistributed and even ejected from the plasma. This reduces the plasma heating and current drive efficiencies and must consequently be investigated and avoided in view of future fusion devices. In ASDEX Upgrade, sawtooth crashes in NBI heated plasmas have been observed to induce a very strong radial redistribution of the fast-ion population, as measured by fast-ion D-alpha (FIDA) spectroscopy. Modelling done with TRANSP assuming the Kadomstev sawtooth model very well reproduces the experimental measurements. In contrast to the strong anomalous fast-ion transport due to sawtooth crashes, the transport of the fast ions is found to be neo-classical in the absence of significant MHD activity. This is shown by the measurement of the redistributed fast-ions in the time interval following the crashes and by dedicated experiments with off-axis NBI deposition. All the measurements in MHD quiescent plasmas are well reproduced by the neo-classical fast-ion distribution functions from the TRANSP code.

  10. Nd3+ ion diffusion during sintering of Nd:YAG transparent ceramics

    SciTech Connect

    Hollingsworth, J P; Kuntz, J D; Soules, T F

    2008-10-24

    Using an electron microprobe, we measured and characterized the Nd{sup 3+} ion diffusion across a boundary between Nd doped and undoped ceramic yttrium aluminum garnet (YAG) for different temperature ramps and hold times and temperatures. The results show significant Nd ion diffusion on the order of micrometers to tens of micrometers depending on the time and temperature of sintering. The data fit well a model including bulk diffusion, grain boundary diffusion and grain growth. Grain boundary diffusion dominates and grain growth limits grain boundary diffusion by reducing the total cross sectional area of grain boundaries.

  11. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  12. Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-01-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  13. Calculation of the fast ion tail distribution for a spherically symmetric hot spot

    SciTech Connect

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-15

    The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.

  14. Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements

    NASA Astrophysics Data System (ADS)

    Reimer, René; Dinklage, Andreas; Wolf, Robert; Dunne, Mike; Geiger, Benedikt; Hobirk, Jörg; Reich, Matthias; ASDEX Upgrade Team; McCarthy, Patrick J.

    2017-04-01

    High precision measurements of fast ion effects on the magnetic equilibrium in the ASDEX Upgrade tokamak have been conducted in a high-power (10 MW) neutral-beam injection discharge. An improved analysis of the spectral motional Stark effect data based on forward-modeling, including the Zeeman effect, fine-structure and non-statistical sub-level distribution, revealed changes in the order of 1% in |B| . The results were found to be consistent with results from the equilibrium solver CLISTE. The measurements allowed us to derive the fast ion pressure fraction to be Δ {{p}\\text{FI}}/{{p}\\text{mhd}}≈ 10 % and variations of the fast ion pressure are consistent with calculations of the transport code TRANSP. The results advance the understanding of fast ion confinement and magneto-hydrodynamic stability in the presence of fast ions.

  15. Fokker-Planck model for collisional loss of fast ions in tokamaks

    NASA Astrophysics Data System (ADS)

    Yavorskij, V.; Goloborod'ko, V.; Schoepf, K.

    2016-11-01

    Modelling of the collisional loss of fast ions from tokamak plasmas is important from the point of view of the impact of fusion alphas and neutral beam injection ions on plasma facing components as well as for the development of diagnostics of fast ion losses [1-3]. This paper develops a Fokker-Planck (FP) method for the assessment of distributions of collisional loss of fast ions as depending on the coordinates of the first wall surface and on the velocities of lost ions. It is shown that the complete 4D drift FP approach for description of fast ions in axisymmetric tokamak plasmas can be reduced to a 2D FP problem for lost ions with a boundary condition delivered by the solution of a 3D boundary value problem for confined ions. Based on this newly developed FP approach the poloidal distribution of neoclassical loss, depending on pitch-angle and energy, of fast ions from tokamak plasma may be examined as well as the contribution of this loss to the signal detected by the scintillator probe may be evaluated. It is pointed out that the loss distributions obtained with the novel FP treatment may serve as an alternative approach with respect to Monte-Carlo models [4, 5] commonly used for simulating fast ion loss from toroidal plasmas.

  16. Polycyclic aromatic hydrocarbon ions and the diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1995-01-01

    Neutral naphthalene (C10H8), phenanthrene (C14H10), and pyrene (C16H10) absorb strongly in the ultraviolet and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these Polycyclic Aromatic Hydrocarbons (PAHs) absorb in the visible. C10H8(+) has 12 discrete absorption bands which fall between 6800 and 5000 A. The strongest band at 6741 A falls close to the weak 6742 A diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8(+) is responsible for some of the DIBs can be tested by searching for new DIBS at 6520, 6151, and 5965 A, other moderately strong naphthalene cation band positions. If C10H8(+) is indeed responsible for the 6742 A feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10(+) is dominated by a strong band at 4435 A in an Ar matrix and 4395 A in a Ne matrix, a position which falls very close to the strongest DIB, that at 4430 A. If C16H10(+), or a closely related pyrene-like ion is indeed responsible for the 4430 A feature, it accounts for 0.2% of the cosmic carbon. We also report an intense, very broad UV-to-visible continuum which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR.

  17. Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration.

    PubMed

    Chen, Yunjin; Pock, Thomas

    2016-08-01

    Image restoration is a long-standing problem in low-level computer vision with many interesting applications. We describe a flexible learning framework based on the concept of nonlinear reaction diffusion models for various image restoration problems. By embodying recent improvements in nonlinear diffusion models, we propose a dynamic nonlinear reaction diffusion model with time-dependent parameters (i.e., linear filters and influence functions). In contrast to previous nonlinear diffusion models, all the parameters, including the filters and the influence functions, are simultaneously learned from training data through a loss based approach. We call this approach TNRD - Trainable Nonlinear Reaction Diffusion. The TNRD approach is applicable for a variety of image restoration tasks by incorporating appropriate reaction force. We demonstrate its capabilities with three representative applications, Gaussian image denoising, single image super resolution and JPEG deblocking. Experiments show that our trained nonlinear diffusion models largely benefit from the training of the parameters and finally lead to the best reported performance on common test datasets for the tested applications. Our trained models preserve the structural simplicity of diffusion models and take only a small number of diffusion steps, thus are highly efficient. Moreover, they are also well-suited for parallel computation on GPUs, which makes the inference procedure extremely fast.

  18. Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries.

    PubMed

    Wong, Lee Loong; Chen, Haomin; Adams, Stefan

    2017-03-15

    The obvious cost advantage as well as attractive electrochemical properties, including excellent cycling stability and the potential of high rate performance, make sodium-ion batteries prime candidates in the race to technically and commercially enable large-scale electrochemical energy storage. In this work, we apply our bond valence site energy modelling method to further the understanding of rate capabilities of a wide range of potential insertion-type sodium-ion battery cathode materials. We demonstrate how a stretched exponential function permits us to systematically quantify the rate performance, which in turn reveals guidelines for the design of novel sodium-ion battery chemistries suitable for high power, grid-scale applications. Starting from a diffusion relaxation model, we establish a semi-quantitative prediction of the rate-performance of half-cells from the structure of the cathode material that factors in dimensionality of Na(+) ion migration pathways, the height of the migration barriers and the crystallite size of the active material. With the help of selected examples, we also illustrate the respective roles of unoccupied low energy sites within the pathway and temperature towards the overall rate capability of insertion-type cathode materials.

  19. First Fast-Ion D-alpha (FIDA) Measurements and Simulations on C-2U

    NASA Astrophysics Data System (ADS)

    Bolte, Nathan; Gupta, Deepak; Stagner, Luke; Onofri, Marco; Dettrick, Sean; Granstedt, Erik; TAE Team

    2016-10-01

    In Tri Alpha Energy's C-2U experiment, advanced beam-driven field-reversed configuration (FRC) plasmas were sustained via tangential neutral beam injection1. The dominant fast ion population made a dramatic impact on the overall plasma performance. A fast-ion D-alpha (FIDA)2 diagnostic, which is based on the Doppler-shifted Balmer-alpha light from neutralized fast ions, was recently added to the C-2U fast-ion diagnostics suite. The first ever FIDA measurements on an FRC topology have been carried out. Bandpass-filtered FIDA measurements (>6 keV ions) were made with a photomultiplier tube and are forward modeled by FIDASIM. Line-integrated signals were taken at eight radial locations and eight times during the FRC lifetime. While the measurements share some salient features with the simulation, they are 4.5x larger, suggesting a higher fast-ion content than the Monte Carlo distribution. Highly Doppler-shifted beam radiation is also measured with a high-speed camera and is spatially well-correlated with FIDASIM. Having shown the feasibility of FIDA on C-2U, we will further explore the use of FIDA on the upgraded C-2W machine to estimate fast-ion densities and to infer the local fast-ion distribution function. Tri Alpha Energy, Inc.

  20. Experimental Evidence for Fast Lithium Diffusion and Isotope Fractionation in Water-bearing Rhyolitic Melts at Magmatic Conditions

    NASA Astrophysics Data System (ADS)

    Cichy, S. B.; Till, C. B.; Roggensack, K.; Hervig, R. L.; Clarke, A. B.

    2015-12-01

    The aim of this work is to extend the existing database of experimentally-determined lithium diffusion coefficients to more natural cases of water-bearing melts at the pressure-temperature range of the upper crust. In particular, we are investigating Li intra-melt and melt-vapor diffusion and Li isotope fractionation, which have the potential to record short-lived magmatic processes (seconds to hours) in the shallow crust, especially during decompression-induced magma degassing. Hydrated intra-melt Li diffusion-couple experiments on Los Posos rhyolite glass [1] were performed in a piston cylinder at 300 MPa and 1050 °C. The polished interfaces between the diffusion couples were marked by addition of Pt powder for post-run detection. Secondary ion mass spectrometry analyses indicate that lithium diffuses extremely fast in the presence of water. Re-equilibration of a hydrated ~2.5 mm long diffusion-couple experiment was observed during the heating period from room temperature to the final temperature of 1050 °C at a rate of ~32 °C/min. Fractionation of ~40‰ δ7Li was also detected in this zero-time experiment. The 0.5h and 3h runs show progressively higher degrees of re-equilibration, while the isotope fractionation becomes imperceptible. Li contamination was observed in some experiments when flakes filed off Pt tubing were used to mark the diffusion couple boundary, while the use of high purity Pt powder produced better results and allowed easier detection of the diffusion-couple boundary. The preliminary lithium isotope fractionation results (δ7Li vs. distance) support findings from [2] that 6Li diffuses substantially faster than 7Li. Further experimental sets are in progress, including lower run temperatures (e.g. 900 °C), faster heating procedure (~100 °C/min), shorter run durations and the extension to mafic systems. [1] Stanton (1990) Ph.D. thesis, Arizona State Univ., [2] Richter et al. (2003) GCA 67, 3905-3923.

  1. Fast ion confinement and stability in a neutral beam injected reversed field pincha)

    NASA Astrophysics Data System (ADS)

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A.; Lin, L.; Liu, D.; Fiksel, G.; Sakakita, H.; Spong, D. A.; Titus, J.

    2013-05-01

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3-5% D2) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ˜50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  2. Fast ion confinement and stability in a neutral beam injected reversed field pinch

    SciTech Connect

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A.; Lin, L.; Liu, D.; and others

    2013-05-15

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3–5% D{sub 2}) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ∼50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  3. Fast diffusion of magnetic field in turbulence and origin of cosmic magnetism

    NASA Astrophysics Data System (ADS)

    Cho, Jungyeon

    2013-02-01

    Turbulence is believed to play important roles in the origin of cosmic magnetism. While it is well known that turbulence can efficiently amplify a uniform or spatially homogeneous seed magnetic field, it is not clear whether or not we can draw a similar conclusion for a localized seed magnetic field. The main uncertainty is the rate of magnetic field diffusion on scales larger than the outer scale of turbulence. To measure the diffusion rate of magnetic field on those large scales, we perform a numerical simulation in which the outer scale of turbulence is much smaller than the size of the system. We numerically compare diffusion of a localized seed magnetic field and a localized passive scalar. We find that diffusion of the magnetic field can be much faster than that of the passive scalar and that turbulence can efficiently amplify the localized seed magnetic field. Based on the simulation result, we construct a model for fast diffusion of magnetic field. Our model suggests that a localized seed magnetic field can fill the whole system in ˜Lsys/L times the large-eddy turnover time and that growth of the magnetic field stops in ˜max⁡(15,Lsys/L) times the large-eddy turnover time, where Lsys is the size of the system and L is the driving scale. Our finding implies that, regardless of the shape of the seed field, fast magnetization is possible in turbulent systems, such as large-scale structure of the Universe or galaxies.

  4. Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition

    NASA Astrophysics Data System (ADS)

    Sunahara, Atsushi; Johzaki, Tomoyui; Nagatomo, Hideo; Sakata, Shouhei; Matsuo, Kazuki; Lee, Seungho; Fujioka, Shinsuke; Shiraga, Hiroyuki; Azechi, Hiroshi; Firex-Project Team

    2016-10-01

    We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. In this ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core, and understanding diffusion of the magnetic field is one of the key issues for increasing the coupling efficiency from the heating laser to the imploded core plasma. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. Also, we estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target. We also show that the target is heated by the eddy current. Because of the temperature dependence of the conductivity, the magnetic fields diffuse into the material with varying conductivity. Consequently, the magnetic fields into the cone-in-shell target depend on the temporal profile of the magnetic fields as well as the electrical and thermal properties of the material.

  5. Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition

    NASA Astrophysics Data System (ADS)

    Sunahara, Atsushi; Johzaki, Tomoyui; Nagatomo, Hideo; Sakata, Shouhei; Matsuo, Kazuki; Lee, Seungho; Fujioka, Shinsuke; Shiraga, Hiroyuki; Azechi, Hiroshi; Firex-Project Team

    2016-10-01

    We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. In this ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core, and understanding diffusion of the magnetic field is one of the key issues for increasing the coupling efficiency from the heating laser to the imploded core. In order to study the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. Also, we estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. We present our results of diffusion of magnetic fields. We also show that the target is heated by the eddy current. Because of the density and temperature dependence of the conductivity, the magnetic fields diffuse into the material with varying conductivity. Consequently, the magnetic fields into the cone-in-shell target depend on the temporal profile of the magnetic fields as well as the electrical and thermal properties of the material.

  6. Fast-ion transport and NBI current drive in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, Benedikt; Weiland, Markus; Mlynek, Alexander; Dunne, Mike; Dux, Ralph; Fischer, Rainer; Hobirk, Joerg; Hopf, Christian; Reich, Matthias; Rittich, David; Ryter, Francois; Schneider, Philip; Tardini, Giovanni; Garcia-Munoz, Manuel; ASDEX Upgrade Team

    2014-10-01

    Good confinement of fast ions is essential in fusion devices because these suprathermal particles are responsible for plasma heating, current drive and can, if poorly confined, damage surrounding walls. The degradation of the fast-ion confinement caused by large and small scale instabilities must consequently be investigated. In the ASDEX Upgrade tokamak, fast ions are generated by neutral beam injection (NBI) and their slowing down distribution can be studied using FIDA spectroscopy, neutral particle analyzers and neutron detectors. Neo-classical fast-ion transport is observed by these measurements in MHD-quiescent discharges with relatively weak heating power (less than 5 MW). The presence of sawtooth instabilities, in contrast, yields a strong internal fast-ion redistribution that can be modelled very well when assuming full reconnection of the helical magnetic field. The fast-ion current drive efficiency has been studied in discharges with up to 10 MW of heating power in which on-axis and off-axis NBI were exchanged. The radial shape of the fast-ion population, generated by the different NBIs, changes as predicted and a corresponding modification of the current profile is measured.

  7. Fast-ion Energy Loss During TAE Avalanches in the National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, E D; Darrow, D S; Gorelenkov, N N; Kramer, G J; Kubota, S; Podesta, M; White, R B; Bortolon, A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M

    2012-07-11

    Strong TAE avalanches on NSTX, the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557] are typically correlated with drops in the neutron rate in the range of 5% - 15%. In previous studies of avalanches in L-mode plasmas, these neutron drops were found to be consistent with modeled losses of fast ions. Here we expand the study to TAE avalanches in NSTX H-mode plasmas with improved analysis techniques. At the measured TAE mode amplitudes, simulations with the ORBIT code predict that fast ion losses are negligible. However, the simulations predict that the TAE scatter the fast ions in energy, resulting in a small (≈ 6%) drop in fast ion β. The net decrease in energy of the fast ions is sufficient to account for the bulk of the drop in neutron rate, even in the absence of fast ion losses. This loss of energy from the fast ion population is comparable to the estimated energy lost by damping from the Alfven wave during the burst. The previously studied TAE avalanches in L-mode are re-evaluated using an improved calculation of the potential fluctuations in the ORBIT code.

  8. Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions

    NASA Astrophysics Data System (ADS)

    Jia, Jinhong; Wang, Hong

    2015-07-01

    Numerical methods for space-fractional diffusion equations often generate dense or even full stiffness matrices. Traditionally, these methods were solved via Gaussian type direct solvers, which requires O (N3) of computational work per time step and O (N2) of memory to store where N is the number of spatial grid points in the discretization. In this paper we develop a preconditioned fast Krylov subspace iterative method for the efficient and faithful solution of finite difference methods (both steady-state and time-dependent) space-fractional diffusion equations with fractional derivative boundary conditions in one space dimension. The method requires O (N) of memory and O (Nlog ⁡ N) of operations per iteration. Due to the application of effective preconditioners, significantly reduced numbers of iterations were achieved that further reduces the computational cost of the fast method. Numerical results are presented to show the utility of the method.

  9. Strong Pitch-Angle Diffusion of Ring Current Ions in Geomagnetic Storm-Associated Conditions

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Spann, J. F.

    2005-01-01

    Do electromagnetic ion cyclotron (EMIC) waves cause strong pitch-angle diffusion of RC ions? This question is the primary motivation of this paper and has been affirmatively answered from the theoretical point of view. The materials that are presented in the Results section show clear evidence that strong pitch-angle diffusion takes place in the inner magnetosphere indicating an important role for the wave-particle interaction mechanism in the formation of RC ions and EMIC waves.

  10. Investigating the performance of an ion luminescence probe as a multichannel fast-ion energy spectrometer using pulse height analysis

    SciTech Connect

    Zurro, B.; Baciero, A.; Jimenez-Rey, D.; Rodriguez-Barquero, L.; Crespo, M. T.

    2012-10-15

    We investigate the capability of a fast-ion luminescent probe to operate as a pulse height ion energy analyzer. An existing high sensitivity system has been reconfigured as a single channel ion detector with an amplifier to give a bandwidth comparable to the phosphor response time. A digital pulse processing method has been developed to determine pulse heights from the detector signal so as to obtain time-resolved information on the ion energy distribution of the plasma ions lost to the wall of the TJ-II stellarator. Finally, the potential of this approach for magnetic confined fusion plasmas is evaluated by studying representative TJ-II discharges.

  11. Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves

    SciTech Connect

    F.W. Perkins; R.B. White; P. Bonoli

    2000-06-13

    Control of rotation in tokamak plasmas provides a method for suppressing fine-scale turbulent transport by velocity shear and for stabilizing large-scale magnetohydrodynamic instabilities via a close-fitting conducting shell. The experimental discovery of rotation in a plasma heated by the fast-wave minority ion cyclotron process is important both as a potential control method for a fusion reactor and as a fundamental issue, because rotation arises even though this heating process introduces negligible angular momentum. This paper proposes and evaluates a mechanism which resolves this apparent conflict. First, it is assumed that angular momentum transport in a tokamak is governed by a diffusion equation with a no-slip boundary condition at the plasma surface and with a torque-density source that is a function of radius. When the torque density source consists of two separated regions of positive and negative torque density, a non-zero central rotation velocity results, even when the total angular momentum input vanishes. Secondly, the authors show that localized ion-cyclotron heating can generate regions of positive and negative torque density and consequently central plasma rotation.

  12. Interaction of Tearing Modes and Fast Ions in the MST RFP

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Anderson, J. K.; Eilerman, S.; Falk, J.; Koliner, J. J.; Nornberg, M. D.; Waksman, J.; Lin, L.; Liu, D.; Tsidulko, Y.

    2013-10-01

    Energetic ions sourced by a 1 MW, 25 keV, tangential neutral-beam injector (NBI) are well confined in RFP discharges in MST. In beam blip experiments, classical slowing and charge exchange loss can often account for the measured neutron flux decay. While these experiments give a sense of the global fast ion confinement, there are many important details that are lost in such an analysis. To gain insight into the effects of tearing modes on the fast ion distribution, a full orbit particle tracing code (RIO) has been used. RIO is capable of taking as input the 3D time varying electric and magnetic field output from the nonlinear resistive MHD code DEBS. While the tearing modes present in MST do not appear to cause significant direct loss of the highest energy ions due to drift orbit averaging, the ions do begin to interact with the tearing modes as they slow down, leading to a flattening of the ion density profile and an enhancement in the fast ion loss rate. While RIO allows the study of the effect of tearing modes on the fast ions we have also observed, in a separate set of long pulse NBI experiments, that the fast ions affect the tearing modes. Specifically, the core-most tearing mode amplitude is suppressed during NBI with the degree of suppression tracking directly with neutral particle analyzer measurements of the core localized circulating fast ions. The interaction of fast ions with the tearing modes in both beam blip and long pulse experiments will be presented. This work supported by the US DOE and NSF.

  13. Parametric Dependence Of Fast-ion Transport Events On The National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, Erik; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B.; Bortolon, A.

    2014-03-31

    Neutral-beam heated tokamak plasmas commonly have more than one third of the plasma kinetic energy in the non-thermal energetic beam ion population. This population of fast ions heats the plasma, provides some of the current drive, and can affect the stability (positively or negatively) of magnetohydrodynamic instabilities. This population of energetic ions is not in thermodynamic equilibrium, thus there is free-energy available to drive instabilities, which may lead to redistribution of the fast ion population. Understanding under what conditions beam-driven instabilities arise, and the extent of the resulting perturbation to the fast ion population, is important for predicting and eventually demonstrating non-inductive current ramp-up and sustainment in NSTX-U, as well as the performance of future fusion plasma experiments such as ITER. This paper presents an empirical approach towards characterizing the stability boundaries for some common energetic-ion-driven instabilities seen on NSTX.

  14. An initial measurement of a fast neutral spectrum for ion cyclotron range of frequency heated plasma using two-channel compact neutral particle analyzers in KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Wang, S. J.; Park, M.; Kim, S. K.

    2013-11-01

    The accurate measurement of fast neutral particles from high energy ion tails is very important since it is a measure of ion cyclotron range of frequency (ICRF) or neutral beam (NB) ion heating. In KSTAR, fast neutral measurements have been carried out using a compact neutral particle analyzer based on the silicon photo diode since 2010. As a result, the fast neutral spectrum was observed consistent with the ion temperature, diamagnetic energy, and neutron flux in 2011. However, there was fast neutral count beyond the injected neutral beam energy in NB-only heating. Since it is difficult to expect the count unless the temperature is high enough to diffuse the fast ions beyond the beam energy it was required to identify what it is. During the 2012 campaign, the two-channel diode detectors with and without a particle stopper were used to distinguish fast neutral counts and other counts by a hard X-ray or neutrons. As a result, it was confirmed that the high energy component beyond the beam energy originated from a hard X-ray or neutrons. Finally, it was observed that faster neutrals are generated by ICRF heating and enhanced by electron cyclotron heating compared to NB-only heating.

  15. An initial measurement of a fast neutral spectrum for ion cyclotron range of frequency heated plasma using two-channel compact neutral particle analyzers in KSTAR

    SciTech Connect

    Kim, S. H.; Park, M.; Kim, S. K.; Wang, S. J.

    2013-11-15

    The accurate measurement of fast neutral particles from high energy ion tails is very important since it is a measure of ion cyclotron range of frequency (ICRF) or neutral beam (NB) ion heating. In KSTAR, fast neutral measurements have been carried out using a compact neutral particle analyzer based on the silicon photo diode since 2010. As a result, the fast neutral spectrum was observed consistent with the ion temperature, diamagnetic energy, and neutron flux in 2011. However, there was fast neutral count beyond the injected neutral beam energy in NB-only heating. Since it is difficult to expect the count unless the temperature is high enough to diffuse the fast ions beyond the beam energy it was required to identify what it is. During the 2012 campaign, the two-channel diode detectors with and without a particle stopper were used to distinguish fast neutral counts and other counts by a hard X-ray or neutrons. As a result, it was confirmed that the high energy component beyond the beam energy originated from a hard X-ray or neutrons. Finally, it was observed that faster neutrals are generated by ICRF heating and enhanced by electron cyclotron heating compared to NB-only heating.

  16. Three-scale structure of diffusion region in the presence of cold ions

    NASA Astrophysics Data System (ADS)

    Divin, A.; Khotyaintsev, Yu. V.; Vaivads, A.; André, M.; Toledo-Redondo, S.; Markidis, S.; Lapenta, G.

    2016-12-01

    Kinetic simulations and spacecraft observations typically display the two-scale structure of collisionless diffusion region (DR), with electron and ion demagnetization scales governing the spatial extent of the DR. Recent in situ observations of the nightside magnetosphere, as well as investigation of magnetic reconnection events at the Earth's magnetopause, discovered the presence of a population of cold (tens of eV) ions of ionospheric origin. We present two-dimensional particle-in-cell simulations of collisionless magnetic reconnection in multicomponent plasma with ions consisting of hot and cold populations. We show that a new cold ion diffusion region scale is introduced in between that of hot ions and electrons. Demagnetization scale of cold ion population is several times (˜4-8) larger than the initial cold ion gyroradius. Cold ions are accelerated and thermalized during magnetic reconnection and form ion beams moving with velocities close to the Alfvén velocity.

  17. Secondary Ion Mass Spectrometry for Mg Tracer Diffusion: Issues and Solutions

    SciTech Connect

    Tuggle, Jay; Giordani, Andrew; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Coffey, Kevin; Sohn, Yong Ho; HunterJr., Jerry

    2014-01-01

    A Secondary Ion Mass Spectrometry (SIMS) method has been developed to measure stable Mg isotope tracer diffusion. This SIMS method was then used to calculate Mg self- diffusivities and the data was verified against historical data measured using radio tracers. The SIMS method has been validated as a reliable alternative to the radio-tracer technique for the measurement of Mg self-diffusion coefficients and can be used as a routine method for determining diffusion coefficients.

  18. Relaxation of charge in monolayer graphene: Fast nonlinear diffusion versus Coulomb effects

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Eugene B.; Straley, Joseph P.

    2017-01-01

    Pristine monolayer graphene exhibits very poor screening because the density of states vanishes at the Dirac point. As a result, charge relaxation is controlled by the effects of zero-point motion (rather than by the Coulomb interaction) over a wide range of parameters. Combined with the fact that graphene possesses finite intrinsic conductivity, this leads to a regime of relaxation described by a nonlinear diffusion equation with a diffusion coefficient that diverges at zero charge density. Some consequences of this fast diffusion are self-similar superdiffusive regimes of relaxation, the development of a charge depleted region at the interface between electron- and hole-rich regions, and finite extinction times for periodic charge profiles.

  19. An electrodynamics-based model for ion diffusion in microbial polysaccharides.

    PubMed

    Liu, Chongxuan; Zachara, John M; Felmy, Andrew; Gorby, Yuri

    2004-10-10

    An electrodynamics-based model was formulated for simulation of ion diffusion in microbial polysaccharides. The fixed charges and electrostatic double layers that may associate with microbial polysaccharides and their effects on ion diffusion were explicitly built into the model. The model extends a common multicomponent ion diffusion formulation that is based on irreversible thermodynamics under a zero ionic charge flux condition, which is only applicable to the regions without fixed charges and electrostatic double layers. An efficient numerical procedure was presented to solve the differential equations in the model. The model well described key features of experimental observations of ion diffusion in negatively charged microbial polysaccharides including accelerated diffusive transport of cations, exclusion of anions, and increased rate of cation transport with increasing negative charge density. The simulated diffusive fluxes of cations and anions were consistent with a cation exchange diffusion concept in negatively charged polysaccharides at the interface of plant roots and soils; and the developed model allows to mathematically study such diffusion phenomena. An illustrative example was also provided to simulate dynamic behavior of ionic current during ion diffusion within a charged bacterial cell wall polysaccharide and the effects of the ionic current on the compression or expansion of the bacterial electrostatic double layer at the interface of the cell wall and bulk solution.

  20. Ankyrin G restricts ion channel diffusion at the axonal initial segment before the establishment of the diffusion barrier

    PubMed Central

    Brachet, Anna; Leterrier, Christophe; Irondelle, Marie; Fache, Marie-Pierre; Racine, Victor; Sibarita, Jean-Baptiste; Choquet, Daniel; Dargent, Bénédicte

    2010-01-01

    In mammalian neurons, the precise accumulation of sodium channels at the axonal initial segment (AIS) ensures action potential initiation. This accumulation precedes the immobilization of membrane proteins and lipids by a diffusion barrier at the AIS. Using single-particle tracking, we measured the mobility of a chimeric ion channel bearing the ankyrin-binding motif of the Nav1.2 sodium channel. We found that ankyrin G (ankG) limits membrane diffusion of ion channels when coexpressed in neuroblastoma cells. Site-directed mutants with decreased affinity for ankG exhibit increased diffusion speeds. In immature hippocampal neurons, we demonstrated that ion channel immobilization by ankG is regulated by protein kinase CK2 and occurs as soon as ankG accumulates at the AIS of elongating axons. Once the diffusion barrier is formed, ankG is still required to stabilize ion channels. In conclusion, our findings indicate that specific binding to ankG constitutes the initial step for Nav channel immobilization at the AIS membrane and precedes the establishment of the diffusion barrier. PMID:20956383

  1. Energetic-Particle-Driven Instabilities and Their Effect on Fast Ions in a Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J.; Anderson, J. K.; Almagri, A. F.; Chapman, B. E.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2012-10-01

    During 1 MW tangential neutral-beam injection (NBI) into the MST reversed field pinch, multiple, bursty instabilities (n=5, 4 and -1) are detected by various fluctuation diagnostics. The spatial structure of associated density fluctuations peaks near the core where fast ions reside. Significant bicoherence among them is measured, indicating nonlinear three-wave coupling. These instabilities are also observed by a laser-based Faraday-rotation diagnostic, containing critical information on the internal magnetic field fluctuations. A tangential-view high-energy neutral particle analyzer (NPA) is used to study the fast-ion population. The measured NPA signal decreases by 15% following NBI-driven instabilities, indicating fluctuation-induced fast-ion transport. The NBI also reduces the amplitude of the innermost-resonant tearing mode by up to 65%. This mode-suppression is lessened following the NBI-driven bursts, consistent with fast ion loss/redistribution weakening the suppression effect.

  2. Wave Driven Fast Ion Loss in the National Spherical Torus Experiment

    SciTech Connect

    E.D. Fredrickson; C.Z. Cheng; D. Darrow; G. Fu; N.N. Gorelenkov; G. Kramer; S.S. Medley; J. Menard; L. Roquemore; D. Stutman; R.B. White

    2003-08-05

    The study of fast ion instabilities in conventional aspect ratio tokamaks is motivated in large part by their potential to negatively impact the ignition threshold in fusion reactors by causing fast ion losses. Spherical tokamak's (ST), with intrinsically low magnetic fields, are particularly susceptible to fast ion driven instabilities. The 3.5 MeV alpha's from the D-T [deuterium-tritium] fusion reaction in proposed ST reactors will have velocities much higher than the Alfven speed. The Larmor radius of the fusion alphas, normalized to the plasma size, will also be larger than for conventional aspect ratio tokamak reactors. The resulting longer wavelengths of the *AE instabilities will be more effective in driving fast ion loss. The change in magnetic topology also influences the mode structure, as in the case of the Compressional Alfven Eigenmodes (CAE) seen on NSTX.

  3. Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail

    SciTech Connect

    Daglis, I.A.; Axford, I.A.

    1996-03-01

    The authors look at the question of the ionosphere feeding ions into the magnetosphere/magnetotail, in response to magnetic storm activity, or coupling of the solar wind into the system. They are concerned with fast response, not the question of whether the ionosphere feeds ions in general. The dynamics which results in the inner magnetosphere in response to the input of cold ions from the ionosphere is of interest to the authors. They review recent and older data which has shed light on this question. They look at outflow data, and heating mechanisms for these cold ions, as well as the impact such ions may have on the dynamics of magnetic storms. They observe that fast feeding of ions out of the ionosphere may leave the inner magnetosphere heavily populated with heavy ions such as O{sup +}, which can have a definite impact on the dynamic development of the magnetosphere.

  4. Ion-plasma processes of the production of diffusion aluminide coatings

    NASA Astrophysics Data System (ADS)

    Muboyadzhyan, S. A.

    2010-03-01

    A novel ion-plasma process for ecologically safe formation of diffusion aluminide coatings on a substrate made of a superalloy, which has advantages as compared to the well-known thermodiffusion processes of their production, is described. The ion-plasma process is shown to provide the formation of diffusion aluminide coatings on the surface of a superalloy substrate according to various technologies. Owing to alloying with one or several elements from the series Y, Si, Cr, Hf, B, Co, etc., ion-plasma diffusion coatings have higher protective properties than analogous coatings produced by the traditional methods of powder, slip, and gas-circulating aluminizing.

  5. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    SciTech Connect

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-05-15

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q{sub fi}) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  6. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pincha)

    NASA Astrophysics Data System (ADS)

    Lin, L.; Anderson, J. K.; Brower, D. L.; Capecchi, W.; Ding, W. X.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Liu, D.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.

    2014-05-01

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n =5 to n =6 while retaining the same poloidal mode number m =1. The transition occurs when the m =1, n =5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (qfi) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  7. Measurement of energetic-particle-driven core magnetic fluctuations and induced fast-ion transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J. A.; Anderson, J. K.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2013-03-01

    Internal fluctuations arising from energetic-particle-driven instabilities, including both density and radial magnetic field, are measured in a reversed-field-pinch plasma. The fluctuations peak near the core where fast ions reside and shift outward along the major radius as the instability transits from the n = 5 to n = 4 mode. During this transition, strong nonlinear three-wave interaction among multiple modes accompanied by enhanced fast-ion transport is observed.

  8. Inclusion-localised crystal-plasticity, dynamic porosity, and fast-diffusion pathway generation in zircon

    NASA Astrophysics Data System (ADS)

    Timms, Nicholas E.; Reddy, Steven M.; Fitz Gerald, John D.; Green, Leonard; Muhling, Janet R.

    2012-02-01

    A population of oscillatory zoned, igneous zircon grains in a Javanese andesite contains fluid and mineral inclusions (up to 10 μm across) trapped during zircon growth. Orientation contrast imaging and orientation mapping by electron backscatter diffraction reveal that crystal-plastic deformation overprints growth zoning and has localized around 1-10 μm pores and inclusions. Cumulative crystallographic misorientation of up to 25° around pores and inclusions in zircon is predominantly accommodated by low-angle (<5°) orientation boundaries, with few free dislocations in subgrain interiors. Low-angle boundaries are curved, with multiple orientation segments at the sub-micrometer scale. Misorientation axes associated with the most common boundaries align with the zircon c-axis and are consistent with dislocation creep dominated by <100>(010) slip. A distinctly different population of sub-micron pores is present along subgrain boundaries and their triple junctions. These are interpreted to have formed as a geometric consequence of dislocation interaction during crystal-plasticity. Dislocation creep microstructures are spatially related to differences in cathodoluminescence spectra that indicate variations in the abundance of CL-active rare earth elements. The extent of the modification suggests deformation-related fast-pathway diffusion distances that are over five orders of magnitude greater than expected for volume diffusion. This enhanced diffusion is interpreted to represent a combination of fast-diffusion pathways associated with creep cavitation, dislocations and along low-angle boundaries. These new data indicate that ductile deformation localised around inclusions can provide fast pathways for geochemical exchange. These pathways may provide links to the zircon grain boundary, thus negating the widely held assumption that inclusions in fracture-free zircon are geochemically armoured once they are physically enclosed.

  9. Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy.

    PubMed

    Xu, Junzhong; Li, Hua; Li, Ke; Harkins, Kevin D; Jiang, Xiaoyu; Xie, Jingping; Kang, Hakmook; Dortch, Richard D; Anderson, Adam W; Does, Mark D; Gore, John C

    2016-04-01

    Mapping axon diameter is of interest for the potential diagnosis and monitoring of various neuronal pathologies. Advanced diffusion-weighted MRI methods have been developed to measure mean axon diameters non-invasively, but suffer major drawbacks that prevent their direct translation into clinical practice, such as complex non-linear data fitting and, more importantly, long scanning times that are usually not tolerable for most human subjects. In the current study, temporal diffusion spectroscopy using oscillating diffusion gradients was used to measure mean axon diameters with high sensitivity to small axons in the central nervous system. Axon diameters have been found to be correlated with a novel metric, DDR⊥ (the rate of dispersion of the perpendicular diffusion coefficient with gradient frequency), which is a model-free quantity that does not require complex data analyses and can be obtained from two diffusion coefficient measurements in clinically relevant times with conventional MRI machines. A comprehensive investigation including computer simulations and animal experiments ex vivo showed that measurements of DDR⊥ agree closely with histological data. In humans in vivo, DDR⊥ was also found to correlate well with reported mean axon diameters in human corpus callosum, and the total scan time was only about 8 min. In conclusion, DDR⊥ may have potential to serve as a fast, simple and model-free approach to map the mean axon diameter of white matter in clinics for assessing axon diameter changes.

  10. Benchmark of MEGA Code on Fast Ion Pressure Profile in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Seki, Ryosuke; Todo, Yasushi; Suzuki, Yasuhiro; Osakabe, Masaki

    2016-10-01

    As the first step for the analyses of energetic particle driven instabilities in the Large Helical Device (LHD) including the collisions of fast ions and the neutral beam injection, MEGA code is benchmarked on the classical fast ion pressure profile using the temperature and density profiles measured in the LHD experiments. In this benchmark, the MHD equilibrium is calculated with HINT code, and the beam deposition profile is calculated with HFREYA code. Since the equilibrium is not axisymmetric in LHD, the accuracy of orbit tracing is important for fast ion analyses. In the slowing down process of the MEGA code, the guiding center equation is numerically solved using the 4th order Runge-Kutta method and the linear interpolation. MEGA code is benchmarked against the results of MORH code, in which the 6th order Runge-Kutta and the 4th order spline interpolation are used. In LHD, the position of the loss boundary of fast ion is important because there are many ``re-entering fast ions'' which re-enter in plasma after they have once passed out of plasma. The effects of the position of the loss boundary on the fast ion pressure profile will be discussed, and a preliminary result of Alfven eigenmodes will be presented.

  11. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    SciTech Connect

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.

    2008-10-15

    The Doppler-shifted cyclotron resonance ({omega}-k{sub z}v{sub z}={omega}{sub f}) between fast ions and shear Alfven waves is experimentally investigated ({omega}, wave frequency; k{sub z}, axial wavenumber; v{sub z}, fast-ion axial speed; {omega}{sub f}, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li{sup +} source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude {delta} B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8{omega}{sub ci}. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  12. Combined energy and pitch angle diffusion of pickup ions at Comet Halley

    NASA Technical Reports Server (NTRS)

    Ye, Gang; Cravens, T. E.

    1991-01-01

    It is well known that cometary pickup ions, e.g., H2O(+), OH(+), O(+), CO(+), H(+), initially form a ring-beam distribution in the solar wind reference frame, which is highly unstable to the growth of MHD waves (such as ion-cyclotron waves). The low-frequency magnetic fluctuations (or waves), which were observed upstream of Comet Halley, cannot only pitch-angle-scatter the pickup ions so that the distribution becomes at least partially isotropized, but also stochastically accelerate the ions, resulting in the energetic ion populations observed in the vicinity of Comet Halley. Here, numerical solutions of the quasi-linear diffusion equation were used to investigate the cometary ion pickup process at Comet Halley. Both pitch angle and energy diffusion are taken into account. Many quasi-linear models of cometary pickup ions exist which involve one type of diffusion or the other but not both types at once. It is found that the pitch angle scattering occurs faster than the energy diffusion, as expected. Moreover, the results demonstrate that the distribution of accelerated energetic ions is more isotropic than that of ions which have just been picked up. In fact, the ion distribution function on the initial pickup shell is quite anisotropic, even close to the Comet-Halley bow shock.

  13. Computer simulations of the diffusion of Na+ and Cl- ions across POPC lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Salih, Rangeen; Matthai, C. C.

    2017-03-01

    We have carried out molecular dynamics simulations using NAMD to study the diffusivity of Na and Cl ions across a POPC lipid bilayer membrane. We show that an imbalance of positively and negatively charged ions on either side of the membrane leads to the diffusion of ions and water molecules. We considered the cases of both weak and very strong charge imbalance across the membrane. The diffusion coefficients of the ions have been determined from the mean square displacements of the particles as a function of time. We find that for strong electrochemical gradients, both the Na and Cl ions diffuse rapidly through pores in the membrane with diffusion coefficients up to ten times larger than in water. Rather surprisingly, we found that although the Na ions are the first to begin the permeation process due to the lower potential barrier that they experience compared to the Cl ions, the latter complete the permeation across the barrier more quickly due to their faster diffusion rates.

  14. Dominance of second Bessel peak in relativistic electromagnetic ion cyclotron instabilities driven by fusion-produced fast ions

    SciTech Connect

    Chen, K. R.; Chen, H. K.; Lee, S. H.

    2007-09-15

    Relativistic electromagnetic ion cyclotron instabilities driven by fusion-produced fast ions in magnetized plasmas can have two peaks in their growth rate spectrum. The wave numbers of these two peaks are close to the first and second peaks, respectively, of the Bessel function that is in the resonance driving term. The driving of the second Bessel and growth rate peak occurring at a higher wave number is weaker than that of the first peak. Surprisingly, as in contrast to conventional wisdom, the second peak can dominate near the instability threshold. For the higher energy of fusion-produced fast ion such as 14.7 MeV, the slow ion temperature is required to be higher for overcoming the threshold to drive a cubic instability, which is determined by an Alfvenic condition. This cubic instability is due to the coupling of the first-order slow ion resonance and second-order fast ion resonance. This finite temperature effect is on the slow ion resonance and increases with wave number and thus the threshold is first satisfied near the second peak. Therefore, the second peak appears earlier in the instability spectrum and dominates near the threshold. The cubic instability has a much larger frequency mismatch than a coupled quadratic instability; a larger frequency mismatch indicates more fast ion energy to loss before the nonlinear saturation of the instability. When the slow ion temperature or density is about twice that of the threshold, the second peak has transited from the cubic to the coupled quadratic instability while the first peak remains as the cubic instability, in contrast to the previous 3.02 MeV proton case.

  15. Effects of ion dynamics on kinetic structures of the diffusion region during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Chen, L. J.; Shuster, J. R.; Bessho, N.; Li, G.; Torbert, R. B.; Daughton, W. S.

    2014-12-01

    Based on results from Particle-in-cell (PIC) simulations, we report how ion dynamics influencethe Hall electric field and electron velocity distributions in the diffusion region of magnetic reconnection.The Hall electric field is due to charge imbalance in the diffusion region. At early times, within a few ion cyclotron oscillations from the peak reconnection,electron orbit dynamics dominate, and the Hall electric field layer assumes the width of the electron current layer.As the pre-existing current sheet ions are accelerated and jetted away, inflowing ions form an ion phase space hole structure.The ion hole structure is self-consistently supported by the Hall electric field. The ion meandering orbit width increasesover the course of about 10 ion cyclotron oscillations from several to approximately 40 electron skin depths (two ion skin depths,where the skin depth is based on the initial current sheet density), and theHall electric field layer widens in the same manner to become much broader than the electron diffusion region.The electron velocity distributions upstream of the electron diffusion region and within the regionof counter streaming ions become fragmented as the ion hole establishes itself.The fragmentation is carried into the electron diffusion region, and through the electron outflow jet, leading to a multitude of arcs in the electron distributions at the end of the jet. The broadening of the Hall electric field layer resolves a longstanding discrepancy concerning whether the narrowest width of the layer is of the electron [Chen et al., 2008] or ion [Mozer et al., 2002] scale. The fragmentation of the electron distributions may be due to an electron-ion instability, and is underinvestigation.

  16. Observation of Ion Cyclotron Heating in a Fast-flowing Plasma for an Advanced Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Ando, Akira; Hatanaka, Motoi; Shibata, Masaki; Tobari, Hiroyuki; Hattori, Kunihiko; Inutake, Masaaki

    2004-11-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) project in NASA, the combined system of the ion cyclotron heating and the magnetic nozzle is proposed to control a ratio of specific impulse to thrust at constant power. In order to establish the advanced plasma thruster, experiments of an ion heating and plasma acceleration by a magnetic nozzle are performed in a fast-flowing plasma in the HITOP device. A fast-flowing He plasma is produced by Magneto-Plasma-Dynamic Arcjet (MPDA) operated with an externally-applied magnetic field up to 1kG. RF waves with an ion cyclotron range of frequency (f=20-300kHz) is excited by a helically-wound antenna located downstream of the MPDA. Increases of an ion temperature and plasma stored energy measured by a diamagnetic coil clearly observed during the RF pulse. The heating efficiency is compared for various magnetic field configurations and strengths. There appears no indication of cyclotron resonance in a high density plasma where the ratio of ion cyclotron frequency to ion-ion collision one is below unity, because an ion-ion collisional effect is dominant. When the density becomes low and the ratio of ion cyclotron frequency to ion-ion collision one becomes high, features of ion cyclotron resonance are clearly appeared. The optimum magnetic field strength for the ion heating is slightly lower than that of the cyclotron resonance, which is caused by the Doppler effect due to the fast-flowing plasma. An ion energy distribution function is measured at a magnetic nozzle region by an electrostatic analyzer and increase of the parallel velocity is also observed.

  17. Temperature dependence of ion diffusion coefficients in NaCl electrolyte confined within graphene nanochannels.

    PubMed

    Kong, Jing; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Shuai, Xiaorui; Yan, Jianhua; Cen, Kefa

    2017-03-15

    The behavior of ion diffusion in nano-confined spaces and its temperature dependence provide important fundamental information about electric double-layer capacitors (EDLCs) employing nano-sized active materials. In this work, the ion diffusion coefficients of NaCl electrolyte confined within neutral and charged graphene nanochannels at different temperatures are investigated using molecular dynamics simulations. The results show that ions confined in neutral nanochannels diffuse faster (along the graphene surfaces) than those in bulk solution, which could be attributed to the relatively smaller concentration in confined spaces and the solvophobic nature of graphene surfaces. In charged nanochannels where the electrostatic interactions between counter-ions and charged channel surfaces govern the motion of ions, the diffusion coefficients are found to be lower than those in the neutral counterparts. The increase of temperature will lead to enhanced vibrant thermal motion of ions. Due to the significant role of ion-surface interactions, ion diffusion coefficients in nano-confined spaces are more stable, that is, insensitive to the temperature variation, than those in bulk solution. The electrical conductivity is further estimated using the Nernst-Einstein equation. The findings of the current work could provide basic data and information for research studies on the thermal effects of graphene-based EDLCs.

  18. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  19. Parasitic excitation of ion Bernstein waves from a Faraday shielded fast wave loop antenna

    SciTech Connect

    Skiff, F.; Ono, M.; Colestock, P.; Wong, K.L.

    1984-12-01

    Parasitic excitation of ion Bernstein waves is observed from a Faraday shielded fast wave loop antenna in the ion cyclotron frequency range. Local analysis of the Vlasov-Maxwell equations demonstrates the role of plasma density gradient in the coupling process. The effects of plasma density and of parallel wave number on the excitation process are investigated.

  20. Laser fluorescence spectroscopy on fast ion beams at the Marburg separator

    NASA Astrophysics Data System (ADS)

    Wagner, H.; Dörschel, K.; Höhle, C.; Hühnermann, H.; Meier, Th.

    Optical hyperfine structure and isotope shift measurements have been performed on Xe +, Ba + and La +-ions using an electromagnetic mass separator for the preselection of the isotopes by fast ion beam laser spectroscopy. The different measuring techniques used are described and their precision and sensitivity are discussed.

  1. The influence of fast ions on the magnetohydrodynamic stability of negative shear profiles

    SciTech Connect

    Helander, P.; Gimblett, C.G.; Hastie, R.J.; McClements, K.G.

    1997-06-01

    The influence of energetic ions on the stability of ideal double kink modes in a tokamak plasma with negative magnetic shear is investigated. It is found that the fast ions play a similar role as for the ordinary m=n=1 internal kink. In particular, phenomena analogous to sawtooth stabilization and fishbone excitation are possible.

  2. Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study.

    PubMed

    Yang, Jianjun; Tse, John S

    2011-11-17

    The mechanisms for thermal (self) diffusion of Li ions in fully lithiated LiFePO(4) have been investigated with spin polarized ab initio molecular dynamics calculations. The effect of electron correlation is taken into account with the GGA+U formalism. It was found that Li ion diffusion is not a continuous process but through a series of jumps from one site to another. A dominant process is the hopping between neighboring Li sites around the PO(4) groups, which results in a zigzag pathway along the crystallographic b-axis. This observation is in agreement with a recent neutron diffraction experiment. A second process involves the collaborative movements of the Fe ions leading to the formation of antisite defects and promotes Li diffusion across the Li ion channels. The finding of the second mechanism demonstrates the benefit of ab initio molecular dynamics simulation in sampling diffusion pathways that may not be anticipated.

  3. Effect of diffusion potential, osmosis and ion-exchange on transdermal drug delivery: theory and experiments.

    PubMed

    Hirvonen, J; Murtomäki, L; Kontturi, K

    1998-12-04

    Equations expressing the effect of the diffusion potential on the trace ion transfer across a porous charged membrane have been derived. These equations have been tested with experiments with human cadaver skin. The transfer of sotalol and salicylate was measured varying the salt (NaCl) concentration in the donor and receiver compartments. It appears that osmotic pressure and ion-exchange make a significant contribution to the flux enhancement by the diffusion potential.

  4. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    SciTech Connect

    Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.

    2014-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  5. Development towards a fast ion loss detector for the reversed field pinch.

    PubMed

    Bonofiglo, P J; Anderson, J K; Almagri, A F; Kim, J; Clark, J; Capecchi, W; Sears, S H; Egedal, J

    2016-11-01

    A fast ion loss detector has been constructed and implemented on the Madison Symmetric Torus (MST) to investigate energetic ion losses and transport due to energetic particle and MHD instabilities. The detector discriminates particle orbits solely on pitch and consists of two thin-foil, particle collecting plates that are symmetric with respect to the device aperture. One plate collects fast ion signal, while the second aids in the minimization of background and noise effects. Initial measurements are reported along with suggestions for the next design phase of the detector.

  6. Calibration techniques for fast-ion D{sub {alpha}} diagnostics

    SciTech Connect

    Heidbrink, W. W.; Bortolon, A.; Muscatello, C. M.; Ruskov, E.; Grierson, B. A.; Podesta, M.

    2012-10-15

    Fast-ion D{sub {alpha}} measurements are an application of visible charge-exchange recombination (CER) spectroscopy that provide information about the energetic ion population. Like other CER diagnostics, the standard intensity calibration is obtained with an integrating sphere during a vacuum vessel opening. An alternative approach is to create plasmas where the fast-ion population is known, then calculate the expected signals with a synthetic diagnostic code. The two methods sometimes agree well but are discrepant in other cases. Different background subtraction techniques and simultaneous measurements of visible bremsstrahlung and of beam emission provide useful checks on the calibrations and calculations.

  7. Slow and fast diffusion in a lead sulphate gravity separation process

    NASA Astrophysics Data System (ADS)

    Cregan, Vincent; Lee, William T.

    2017-02-01

    A model for the growth of lead sulphate particles in a gravity separation system from the crystal glassware industry is presented. The lead sulphate particles are an undesirable byproduct, and thus the model is used to ascertain the optimal system temperature configuration such that particle extraction is maximised. The model describes the evolution of a single, spherical particle due to the mass flux of lead particles from a surrounding acid solution. We divide the concentration field into two separate regions. Specifically, a relatively small boundary layer region around the particle is characterised by fast diffusion, and is thus considered quasi-static. In contrast, diffusion in the far-field is slower, and hence assumed to be time-dependent. The final system consisting of two nonlinear, coupled ordinary differential equations for the particle radius and lead concentration, is integrated numerically.

  8. Open photoacoustic cell for thermal diffusivity measurements of a fast hardening cement used in dental restoring

    NASA Astrophysics Data System (ADS)

    Astrath, F. B. G.; Astrath, N. G. C.; Baesso, M. L.; Bento, A. C.; Moraes, J. C. S.; Santos, A. D.

    2012-01-01

    Thermal diffusivity and conductivity of dental cements have been studied using open photoacoustic cell (OPC). The samples consisted of fast hardening cement named CER, developed to be a root-end filling material. Thermal characterization was performed in samples with different gel/powder ratio and particle sizes and the results were compared to the ones from commercial cements. Complementary measurements of specific heat and mass density were also performed. The results showed that the thermal diffusivity of CER tends to increase smoothly with gel volume and rapidly against particle size. This behavior was linked to the pores size and their distribution in the samples. The OPC method was shown to be a valuable way in deriving thermal properties of porous material.

  9. Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics

    SciTech Connect

    Strehl, Robert; Ilie, Silvana

    2015-12-21

    In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.

  10. A Critical Fast Ion Beta in the Madison Symmetric Torus Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Capecchi, William J.

    The first fast-ion profile measurements have been made in a reversed-field pinch (RFP) plasma. A large population of fast-ions are deposited in the core of the Madison Symmetric Torus (MST) through use of a 1 MW neutral beam injector (NBI) giving rise to a variety of beam-driven instabilities. One such mode, the energetic-particle mode (EPM) has been shown to reduce fast-ion content in MST, evident through drops in signal levels of the advanced neutral particle analyzer (ANPA). EPMs in MST appear as bursts of magnetic fluctuations at a lab frequency of ˜100 kHz reaching peak amplitude and decaying away within 100 microseconds. A burst ensemble of the neutron data does not reveal a drop in neutron emission across a burst, implying the population of fast-ions transported by a burst constitute a small fraction of the total. The burst may also pitch-angle scatter out of the ANPA phase space or be transported to mid-radius where charge-exchange with the background neutrals or fast-ion orbit stochasticity may reduce fast-ion confinement. Data gathered from the expanded neutron diagnostic suite including a new collimated neutron detector (CiNDe) was used to reconstruct the fast-ion profile in MST and measure critical fast-ion beta quantities. Measurements were made in plasma conditions with varying magnetic field strength in order to investigate the interplay between the energetic particle (EP) drive and Alfven continuum damping. The measured values of the core fast-ion beta (7.5% (1.2%) in 300 (500) kA plasmas) are reduced from classical predictions (TRANSP predicts up to 10% core value) due to EPM activity. The frequency, magnitude, and rate of occurrence of the bursts depends on the tearing mode amplitude, Alfven continuum damping rate, fast-ion profile shape, and resonant orbit dynamics. Marginal stability was reached in both moderate- (300 kA) and high- (500 kA) current discharges, marked by sustained EPM activity and a saturated global neutron signal during NBI

  11. Global anomalous transport of ICRH- and NBI-heated fast ions

    NASA Astrophysics Data System (ADS)

    Wilkie, G. J.; Pusztai, I.; Abel, I.; Dorland, W.; Fülöp, T.

    2017-04-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Our results indicate that heated minorities are more strongly affected by microturbulence than injected fast ions. The physical interpretation of this difference provides a possible explanation for the observed synergy when neutral beam injection (NBI) heating is combined with ion cyclotron resonance heating (ICRH). Furthermore, we move beyond the trace approximation to develop a model which allows one to easily account for the reduction of anomalous transport due to the presence of fast ions in electrostatic turbulence.

  12. Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes.

    PubMed

    Di Rienzo, Carmine; Gratton, Enrico; Beltram, Fabio; Cardarelli, Francesco

    2013-07-23

    Spatial distribution and dynamics of plasma-membrane proteins are thought to be modulated by lipid composition and by the underlying cytoskeleton, which forms transient barriers to diffusion. So far this idea was probed by single-particle tracking of membrane components in which gold particles or antibodies were used to individually monitor the molecules of interest. Unfortunately, the relatively large particles needed for single-particle tracking can in principle alter the very dynamics under study. Here, we use a method that makes it possible to investigate plasma-membrane proteins by means of small molecular labels, specifically single GFP constructs. First, fast imaging of the region of interest on the membrane is performed. For each time delay in the resulting stack of images the average spatial correlation function is calculated. We show that by fitting the series of correlation functions, the actual protein "diffusion law" can be obtained directly from imaging, in the form of a mean-square displacement vs. time-delay plot, with no need for interpretative models. This approach is tested with several simulated 2D diffusion conditions and in live Chinese hamster ovary cells with a GFP-tagged transmembrane transferrin receptor, a well-known benchmark of membrane-skeleton-dependent transiently confined diffusion. This approach does not require extraction of the individual trajectories and can be used also with dim and dense molecules. We argue that it represents a powerful tool for the determination of kinetic and thermodynamic parameters over very wide spatial and temporal scales.

  13. Matrix models for size-structured populations: unrealistic fast growth or simply diffusion?

    PubMed

    Picard, Nicolas; Liang, Jingjing

    2014-01-01

    Matrix population models are widely used to study population dynamics but have been criticized because their outputs are sensitive to the dimension of the matrix (or, equivalently, to the class width). This sensitivity is concerning for the population growth rate (λ) because this is an intrinsic characteristic of the population that should not depend on the model specification. It has been suggested that the sensitivity of λ to matrix dimension was linked to the existence of fast pathways (i.e. the fraction of individuals that systematically move up a class), whose proportion increases when class width increases. We showed that for matrix population models with growth transition only from class i to class i + 1, λ was independent of the class width when the mortality and the recruitment rates were constant, irrespective of the growth rate. We also showed that if there were indeed fast pathways, there were also in about the same proportion slow pathways (i.e. the fraction of individuals that systematically remained in the same class), and that they jointly act as a diffusion process (where diffusion here is the movement in size of an individual whose size increments are random according to a normal distribution with mean zero). For 53 tree species from a tropical rain forest in the Central African Republic, the diffusion resulting from common matrix dimensions was much stronger than would be realistic. Yet, the sensitivity of λ to matrix dimension for a class width in the range 1-10 cm was small, much smaller than the sampling uncertainty on the value of λ. Moreover, λ could either increase or decrease when class width increased depending on the species. Overall, even if the class width should be kept small enough to limit diffusion, it had little impact on the estimate of λ for tree species.

  14. Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with varying size.

    PubMed

    Coron, Camille

    2016-01-01

    We are interested in the long-time behavior of a diploid population with sexual reproduction and randomly varying population size, characterized by its genotype composition at one bi-allelic locus. The population is modeled by a 3-dimensional birth-and-death process with competition, weak cooperation and Mendelian reproduction. This stochastic process is indexed by a scaling parameter K that goes to infinity, following a large population assumption. When the individual birth and natural death rates are of order K, the sequence of stochastic processes indexed by K converges toward a new slow-fast dynamics with variable population size. We indeed prove the convergence toward 0 of a fast variable giving the deviation of the population from quasi Hardy-Weinberg equilibrium, while the sequence of slow variables giving the respective numbers of occurrences of each allele converges toward a 2-dimensional diffusion process that reaches (0,0) almost surely in finite time. The population size and the proportion of a given allele converge toward a Wright-Fisher diffusion with stochastically varying population size and diploid selection. We insist on differences between haploid and diploid populations due to population size stochastic variability. Using a non trivial change of variables, we study the absorption of this diffusion and its long time behavior conditioned on non-extinction. In particular we prove that this diffusion starting from any non-trivial state and conditioned on not hitting (0,0) admits a unique quasi-stationary distribution. We give numerical approximations of this quasi-stationary behavior in three biologically relevant cases: neutrality, overdominance, and separate niches.

  15. Fast-Ion Losses due to High-Frequency MHD Perturbations in the ASDEX Upgrade Tokamak

    SciTech Connect

    Garcia-Munoz, M.; Fahrbach, H.-U.; Guenter, S.; Igochine, V.; Maraschek, M.; Zohm, H.; Mantsinen, M. J.; Martin, P.; Piovesan, P.; Sassenberg, K.

    2008-02-08

    Time-resolved energy and pitch angle measurements of fast-ion losses correlated in frequency and phase with high-frequency magnetohydrodynamic perturbations have been obtained for the first time in a magnetic fusion device and are presented here. A detailed analysis of fast-ion losses due to toroidal Alfven eigenmodes has revealed the existence of a new core-localized magnetohydrodynamic perturbation, the sierpes mode. The sierpes mode is a non-Alfvenic instability which dominates the losses of fast ions in ion cyclotron resonance heated discharges, and it is named for its footprint in the spectrograms ('sierpes' means 'snake' in Spanish). The sierpes mode has been reconstructed by means of highly resolved multichord soft-x-ray measurements.

  16. Negative Ion Drift Velocity and Longitudinal Diffusion in Mixtures of Carbon Disulfide and Methane

    NASA Technical Reports Server (NTRS)

    Dion, Michael P.; Son, S.; Hunter, S. D.; deNolfo, G. A.

    2011-01-01

    Negative ion drift velocity and longitudinal diffusion has been measured for gas mixtures of carbon disulfide (CS2) and methane (CH4)' Measurements were made as a function of total pressure, CS2 partial pressure and electric field. Constant mobility and thermal-limit longitudinal diffusion is observed for all gas mixtures tested. Gas gain for some of the mixtures is also included.

  17. An Electrodynamics-Based Model for Ion Diffusion in Microbial Polysaccharides

    SciTech Connect

    Liu, Chongxuan; Zachara, John M.; Felmy, Andrew R.; Gorby, Yuri A.

    2004-08-03

    An electrodynamics-based model was formulated for simulation of ion diffusion in microbial polysaccharides with fixed charges and electrostatic double layers. The model extends a common multicomponent ion diffusion model that is based on irreversible thermodynamics under a zero ionic charge flux condition, which is only applicable to the regions without fixed charges and electrostatic double layers. An efficient numerical procedure was presented to solve the differential equations in the model. The model well described key features of experimental observations of ion diffusion in negatively charged microbial polysaccharides including accelerated diffusive transport of cations, exclusion of anions, and increased rate of cation transport with increasing negative charge density. The simulated diffusive fluxes of cations and anions were consistent with a classic exchange diffusion concept in negatively charged polysaccharides at the interface of plant roots and soils; and the developed model allows to mathematically study such diffusion phenomena. Numerical simulations also showed that ion diffusive transport within a bacterial cell wall polysaccharide may induce an ionic current that compresses or expands the bacterial electrostatic double layer at the interface of the cell wall and bulk solution.

  18. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Lin, Liang

    2013-10-01

    Multiple bursty energetic-particle (EP) modes with fishbone-like structures are observed during 1 MW tangential neutral-beam injection into MST reversed field pinch (RFP) plasmas. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to large fast ion beta and stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of these instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport and interaction with global tearing modes. Internal magnetic field fluctuations associated with the EP modes are directly observed for the first time by Faraday-effect polarimetry (frequency ~ 90 kHz and amplitude ~ 2 G). Simultaneously measured density fluctuations exhibit a dynamically evolving and asymmetric spatial structure that peaks near the core where fast ions reside and shifts outward as the instability evolves. Furthermore, the EP mode frequencies appear at ~k∥VA , consistent with continuum modes destabilized by strong drive. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growing phase arising from the beam fueling followed by a rapid drop (~ 15 %) when the EP modes peak, indicating the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced (× 2) with the onset of multiple nonlinearly-interacting EP modes. The fast ions also impact global tearing modes, reducing their amplitudes by up to 65%. This mode reduction is lessened following the EP-bursts, further evidence for fast ion redistribution that weakens the suppression mechanism. Possible tearing mode suppression mechanisms will be discussed. Work supported by US DoE.

  19. Whole-cell imaging at nanometer resolutions using fast and slow focused helium ions.

    PubMed

    Chen, Xiao; Udalagama, Chammika N B; Chen, Ce-Belle; Bettiol, Andrew A; Pickard, Daniel S; Venkatesan, T; Watt, Frank

    2011-10-05

    Observations of the interior structure of cells and subcellular organelles are important steps in unraveling organelle functions. Microscopy using helium ions can play a major role in both surface and subcellular imaging because it can provide subnanometer resolutions at the cell surface for slow helium ions, and fast helium ions can penetrate cells without a significant loss of resolution. Slow (e.g., 10-50 keV) helium ion beams can now be focused to subnanometer dimensions (∼0.25 nm), and keV helium ion microscopy can be used to image the surfaces of cells at high resolutions. Because of the ease of neutralizing the sample charge using a flood electron beam, surface charging effects are minimal and therefore cell surfaces can be imaged without the need for a conducting metallic coating. Fast (MeV) helium ions maintain a straight path as they pass through a cell. Along the ion trajectory, the helium ion undergoes multiple electron collisions, and for each collision a small amount of energy is lost to the scattered electron. By measuring the total energy loss of each MeV helium ion as it passes through the cell, we can construct an energy-loss image that is representative of the mass distribution of the cell. This work paves the way to use ions for whole-cell investigations at nanometer resolutions through structural, elemental (via nuclear elastic backscattering), and fluorescence (via ion induced fluorescence) imaging.

  20. Phase space effects on fast ion distribution function modeling in tokamaks

    SciTech Connect

    Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.

    2016-04-14

    Here, integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities,ad-hocmodels can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions. The kick model implemented in the tokamaktransport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phase-space resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities.

  1. Phase space effects on fast ion distribution function modeling in tokamaks

    DOE PAGES

    Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.; ...

    2016-04-14

    Here, integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities,ad-hocmodels can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions. Themore » kick model implemented in the tokamaktransport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phase-space resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities.« less

  2. Nonlinear phenomenon in nanostructures creation by fast cluster ions

    NASA Astrophysics Data System (ADS)

    Moslem, W. M.; El-Said, A. S.; Sabry, R.; Shalouf, A.; El-Labany, S. K.; Bahlouli, H.

    2017-01-01

    The development of accelerators technology offers a new window for the creation of surface nanostructures in an efficient and accurate way. The use of 30 MeV C60 cluster ions enables the creation of nano-hillocks of size larger than the ones produced by GeV monoatomic ions. The physical mechanism underlying the realization of such nanostructures is elucidated using a plasma expansion approach. Numerical analysis showed that increasing the ionic temperature (number density) ratios would lead to decrease (increase) the nano-hillocks height.

  3. Nonlinear stabilization of tokamak microturbulence by fast ions.

    PubMed

    Citrin, J; Jenko, F; Mantica, P; Told, D; Bourdelle, C; Garcia, J; Haverkort, J W; Hogeweij, G M D; Johnson, T; Pueschel, M J

    2013-10-11

    Nonlinear electromagnetic stabilization by suprathermal pressure gradients found in specific regimes is shown to be a key factor in reducing tokamak microturbulence, augmenting significantly the thermal pressure electromagnetic stabilization. Based on nonlinear gyrokinetic simulations investigating a set of ion heat transport experiments on the JET tokamak, described by Mantica et al. [Phys. Rev. Lett. 107, 135004 (2011)], this result explains the experimentally observed ion heat flux and stiffness reduction. These findings are expected to improve the extrapolation of advanced tokamak scenarios to reactor relevant regimes.

  4. Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics.

    PubMed

    Mora, Alberto Dalla; Martinenghi, Edoardo; Contini, Davide; Tosi, Alberto; Boso, Gianluca; Durduran, Turgut; Arridge, Simon; Martelli, Fabrizio; Farina, Andrea; Torricelli, Alessandro; Pifferi, Antonio

    2015-06-01

    We present a proof of concept prototype of a time-domain diffuse optics probe exploiting a fast Silicon PhotoMultiplier (SiPM), featuring a timing resolution better than 80 ps, a fast tail with just 90 ps decay time-constant and a wide active area of 1 mm2. The detector is hosted into the probe and used in direct contact with the sample under investigation, thus providing high harvesting efficiency by exploiting the whole SiPM numerical aperture and also reducing complexity by avoiding the use of cumbersome fiber bundles. Our tests also demonstrate high accuracy and linearity in retrieving the optical properties and suitable contrast and depth sensitivity for detecting localized inhomogeneities. In addition to a strong improvement in both instrumentation cost and size with respect to legacy solutions, the setup performances are comparable to those of state-of-the-art time-domain instrumentation, thus opening a new way to compact, low-cost and high-performance time-resolved devices for diffuse optical imaging and spectroscopy.

  5. Multi-view fast-ion D-alpha spectroscopy diagnostic at ASDEX Upgrade

    SciTech Connect

    Geiger, B.; Dux, R.; McDermott, R. M.; Potzel, S.; Reich, M.; Ryter, F.; Weiland, M.; Wünderlich, D.; Garcia-Munoz, M.; Collaboration: ASDEX Upgrade Team

    2013-11-15

    A novel fast-ion D-alpha (FIDA) diagnostic that is based on charge exchange spectroscopy has been installed at ASDEX Upgrade. The diagnostic uses a newly developed high-photon-throughput spectrometer together with a low-noise EM-CCD camera that allow measurements with 2 ms exposure time. Absolute intensities are obtained by calibrating the system with an integrating sphere and the wavelength dependence is determined to high accuracy using a neon lamp. Additional perturbative contributions to the spectra, such as D{sub 2}-molecular lines, the Stark broadened edge D-alpha emission, and passive FIDA radiation have been identified and can be subtracted or avoided experimentally. The FIDA radiation from fast deuterium ions after charge exchange reactions can therefore be analyzed continuously without superimposed line emissions at large Doppler shifts. Radial information on the fast ions is obtained from radially distributed lines of sight. The investigation of the fast-ion velocity distribution is possible due to three different viewing geometries. The independent viewing geometries access distinct parts of the fast-ion velocity space and make tomographic reconstructions possible.

  6. Comprehensive approach to fast ion measurements in the beam-driven FRC

    NASA Astrophysics Data System (ADS)

    Magee, Richard; Smirnov, Artem; Onofri, Marco; Dettrick, Sean; Korepanov, Sergey; Knapp, Kurt; the TAE Team

    2015-11-01

    The C-2U experiment combines tangential neutral beam injection, edge biasing, and advanced recycling control to explore the sustainment of field-reversed configuration (FRC) plasmas. To study fast ion confinement in such advanced, beam-driven FRCs, a synergetic technique was developed that relies on the measurements of the DD fusion reaction products and the hybrid code Q2D, which treats the plasma as a fluid and the fast ions kinetically. Data from calibrated neutron and proton detectors are used in a complementary fashion to constrain the simulations: neutron detectors measure the volume integrated fusion rate to constrain the total number of fast ions, while proton detectors with multiple lines of sight through the plasma constrain the axial profile of fast ions. One application of this technique is the diagnosis of fast ion energy transfer and pitch angle scattering. A parametric numerical study was conducted, in which additional ad hoc loss and scattering terms of varying strengths were introduced in the code and constrained with measurement. Initial results indicate that the energy transfer is predominantly classical, while, in some cases, non-classical pitch angle scattering can be observed.

  7. Na and Li ion diffusion in modified ASTM C 1260 test by Magnetic Resonance Imaging (MRI)

    SciTech Connect

    Feng, X. Balcom, B.J.; Thomas, M.D.A.; Bremner, T.W.

    2008-12-15

    In the current study, MRI was applied to investigate lithium and sodium ion diffusion in cement paste and mortars containing inert sand and borosilicate glass. Paste and mortars were treated by complying with ASTM C 1260. Lithium and sodium distribution profiles were collected at different ages after different treatments. Results revealed that sodium ions had a greater diffusion rate than lithium ions, suggesting that Na reaches the aggregate particle surface before Li. Results also showed that Na and Li ions had a competitive diffusion process in mortars; soaking in a solution with higher [Li] favored Li diffusion but hindered Na diffusion. In mortars containing glass, a substantial amount of Li was consumed by the formation of ASR products. When [Li] in soaking solution was reduced to 0.37 N, a distinctive Na distribution profile was observed, indicating the free-state Na ions were continuously transformed to solid reaction products by ASR. Hence, in the modified ASTM C 1260 test, [Li] in the storage solution should be controlled at 0.74 N, in order to completely prevent the consumption of Na ions and thus stop ASR.

  8. Development of a radio-frequency ion beam source for fast-ion studies on the large plasma device.

    PubMed

    Tripathi, S K P; Pribyl, P; Gekelman, W

    2011-09-01

    A helium ion beam source (23 kV/2.0 A) has been constructed for studying fast-ion physics in the cylindrical magnetized plasma of the large plasma device (LAPD). An inductive RF source produces a 10(19) m(-3) density plasma in a ceramic dome. A multi-aperture, rectangular (8 cm × 8 cm) three-grid system extracts the ion beam from the RF plasma. The ion beam is injected at a variety of pitch angles with Alfvénic speeds in the LAPD. The beam current is intense enough to excite magnetic perturbations in the ambient plasma. Measurements of the ion beam profile were made to achieve an optimum beam performance and a reliable source operation was demonstrated on the LAPD.

  9. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.

    1987-01-01

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.

  10. From Fast Fluorescence Imaging to Molecular Diffusion Law on Live Cell Membranes in a Commercial Microscope

    PubMed Central

    Di Rienzo, Carmine; Gratton, Enrico; Beltram, Fabio; Cardarelli, Francesco

    2014-01-01

    It has become increasingly evident that the spatial distribution and the motion of membrane components like lipids and proteins are key factors in the regulation of many cellular functions. However, due to the fast dynamics and the tiny structures involved, a very high spatio-temporal resolution is required to catch the real behavior of molecules. Here we present the experimental protocol for studying the dynamics of fluorescently-labeled plasma-membrane proteins and lipids in live cells with high spatiotemporal resolution. Notably, this approach doesn’t need to track each molecule, but it calculates population behavior using all molecules in a given region of the membrane. The starting point is a fast imaging of a given region on the membrane. Afterwards, a complete spatio-temporal autocorrelation function is calculated correlating acquired images at increasing time delays, for example each 2, 3, n repetitions. It is possible to demonstrate that the width of the peak of the spatial autocorrelation function increases at increasing time delay as a function of particle movement due to diffusion. Therefore, fitting of the series of autocorrelation functions enables to extract the actual protein mean square displacement from imaging (iMSD), here presented in the form of apparent diffusivity vs average displacement. This yields a quantitative view of the average dynamics of single molecules with nanometer accuracy. By using a GFP-tagged variant of the Transferrin Receptor (TfR) and an ATTO488 labeled 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (PPE) it is possible to observe the spatiotemporal regulation of protein and lipid diffusion on µm-sized membrane regions in the micro-to-milli-second time range. PMID:25350683

  11. Shot-to-shot reproducibility in the emission of fast highly charged metal ions from a laser ion source.

    PubMed

    Krása, J; Velyhan, A; Margarone, D; Krouský, E; Krouský, L; Jungwirth, K; Rohlena, K; Ullschmied, J; Parys, P; Ryć, L; Wołowski, J

    2012-02-01

    The generation of fast highly charged metal ions with the use of the sub-nanosecond Prague Asterix Laser System, operated at a fundamental wavelength of 1315 nm, is reported. Particular attention is paid to shot-to-shot reproducibility in the ion emission. Au and Pd targets were exposed to intensities up to 5 × 10(16) W∕cm(2). Above the laser intensity threshold of ∼3 × 10(14) W∕cm(2) the plasma is generated in a form of irregular bursts. The maximum energy of protons constituting the leading edge of the fastest burst reaches a value up to 1 MeV. The fast ions in the following bursts have energy gradually decreasing with the increasing burst number, namely, from a value of about 0.5 MeV∕charge regardless of the atomic number and mass of the ionized species.

  12. Collective fast ion instability-induced losses in National Spherical Tokamak Experiment

    SciTech Connect

    Fredrickson, E.D.; Bell, R.E.; Darrow, D.S.; Fu, G.Y.; Gorelenkov, N.N.; LeBlanc, B.P.; Medley, S.S.; Menard, J.E.; Park, H.; Roquemore, A.L.; Heidbrink, W.W.; Sabbagh, S.A.; Stutman, D.; Tritz, K.; Crocker, N.A.; Kubota, S.; Peebles, W.; Lee, K.C.; Levinton, F.M.

    2006-05-15

    A wide variety of fast ion driven instabilities are excited during neutral beam injection (NBI) in the National Spherical Torus Experiment (NSTX) [Nucl. Fusion 40, 557 (2000)] due to the large ratio of fast ion velocity to Alfven velocity, V{sub fast}/V{sub Alfven}, and high fast ion beta. The ratio V{sub fast}/V{sub Alfven} in ITER [Nucl. Fusion 39, 2137 (1999)] and NSTX is comparable. The modes can be divided into three categories: chirping energetic particle modes (EPM) in the frequency range 0 to 120 kHz, the toroidal Alfven eigenmodes (TAE) with a frequency range of 50 kHz to 200 kHz, and the compressional and global Alfven eigenmodes (CAE and GAE, respectively) between 300 kHz and the ion cyclotron frequency. Fast ion driven modes are of particular interest because of their potential to cause substantial fast ion losses. In all regimes of NBI heated operation we see transient neutron rate drops, correlated with bursts of TAE or fishbone-like EPMs. The fast ion loss events are predominantly correlated with the EPMs, although losses are also seen with bursts of multiple, large amplitude TAE. The latter is of particular significance for ITER; the transport of fast ions from the expected resonance overlap in phase space of a 'sea' of large amplitude TAE is the kind of physics expected in ITER. The internal structure and amplitude of the TAE and EPMs has been measured with quadrature reflectometry and soft x-ray cameras. The TAE bursts have internal amplitudes of n-tilde/n=1% and toroidal mode numbers 21 and can have a toroidal mode number n>1. The range of the frequency chirp can be quite large and the resonance can be through a fishbone-like precessional drift resonance, or through a bounce resonance.

  13. Fast Local Trust Region Technique for Diffusion Tensor Registration using Exact Reorientation and Regularization

    PubMed Central

    Li, Junning; Shi, Yonggang; Tran, Giang; Dinov, Ivo; Wang, Danny JJ; Toga, Arthur

    2014-01-01

    Diffusion tensor imaging is widely used in brain connectivity research. As more and more studies recruit large numbers of subjects, it is important to design registration methods which are not only theoretically rigorous, but also computationally efficient. However, the requirement of reorienting diffusion tensors complicates and considerably slows down registration procedures, due to the correlated impacts of registration forces at adjacent voxel locations. Based on the diffeomorphic Demons algorithm [1], we propose a fast local trust region algorithm for handling inseparable registration forces for quadratic energy functions. The method guarantees that, at any time and at any voxel location, the velocity is always within its local trust region. This local regularization allows efficient calculation of the transformation update with numeric integration instead of completely solving a large linear system at every iteration. It is able to incorporate exact reorientation and regularization into the velocity optimization, and preserve the linear complexity of the diffeomorphic Demons algorithm. In an experiment with 84 diffusion tensor images involving both pair-wise and group-wise registrations, the proposed algorithm achieves better registration in comparison with other methods solving large linear systems [2]. At the same time, this algorithm reduces the computation time and memory demand tenfold. PMID:23880040

  14. A fast SPAD-based small animal imager for early-photon diffuse optical tomography.

    PubMed

    Mu, Ying; Niedre, Mark

    2014-01-01

    Photon scatter is the dominant light transport process in biological tissue and is well understood to degrade imaging performance in near-infrared diffuse optical tomography. Measurement of photons arriving at early times following a short laser pulse is considered to be an effective method to improve this limitation, i.e. by systematically selecting photons that have experienced fewer scattering events. Previously, we tested the performance of single photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media and showed that it outperformed photo-multiplier tube (PMT) systems in similar configurations, principally due to its faster temporal response. In this paper, we extended this work and developed a fast SPAD-based time-resolved diffuse optical tomography system. As a first validation of the instrument, we scanned an optical phantom with multiple absorbing inclusions and measured full time-resolved data at 3240 scan points per axial slice. We performed image reconstruction with very early-arriving photon data and showed significant improvements compared to time-integrated data. Extension of this work to mice in vivo and measurement of time-resolved fluorescence data is the subject of ongoing research.

  15. Fast local trust region technique for diffusion tensor registration using exact reorientation and regularization.

    PubMed

    Li, Junning; Shi, Yonggang; Tran, Giang; Dinov, Ivo; Wang, Danny J J; Toga, Arthur

    2014-05-01

    Diffusion tensor imaging is widely used in brain connectivity research. As more and more studies recruit large numbers of subjects, it is important to design registration methods which are not only theoretically rigorous, but also computationally efficient. However, the requirement of reorienting diffusion tensors complicates and considerably slows down registration procedures, due to the correlated impacts of registration forces at adjacent voxel locations. Based on the diffeomorphic Demons algorithm (Vercauteren , 2009), we propose a fast local trust region algorithm for handling inseparable registration forces for quadratic energy functions. The method guarantees that, at any time and at any voxel location, the velocity is always within its local trust region. This local regularization allows efficient calculation of the transformation update with numeric integration instead of completely solving a large linear system at every iteration. It is able to incorporate exact reorientation and regularization into the velocity optimization, and preserve the linear complexity of the diffeomorphic Demons algorithm. In an experiment with 84 diffusion tensor images involving both pair-wise and group-wise registrations, the proposed algorithm achieves better registration in comparison with other methods solving large linear systems (Yeo , 2009). At the same time, this algorithm reduces the computation time and memory demand tenfold.

  16. Fast Pyrolysis of Wood for Biofuels: Spatiotemporally Resolved Diffuse Reflectance In situ Spectroscopy of Particles.

    PubMed

    Paulsen, Alex D; Hough, Blake R; Williams, C Luke; Teixeira, Andrew R; Schwartz, Daniel T; Pfaendtner, Jim; Dauenhauer, Paul J

    2014-02-20

    Fast pyrolysis of woody biomass is a promising process capable of producing renewable transportation fuels to replace gasoline, diesel, and chemicals currently derived from nonrenewable sources. However, biomass pyrolysis is not yet economically viable and requires significant optimization before it can contribute to the existing oil-based transportation system. One method of optimization uses detailed kinetic models for predicting the products of biomass fast pyrolysis, which serve as the basis for the design of pyrolysis reactors capable of producing the highest value products. The goal of this work is to improve upon current pyrolysis models, usually derived from experiments with low heating rates and temperatures, by developing models that account for both transport and pyrolysis decomposition kinetics at high heating rates and high temperatures (>400 °C). A new experimental technique is proposed herein: spatiotemporally resolved diffuse reflectance in situ spectroscopy of particles (STR-DRiSP), which is capable of measuring biomass composition during fast pyrolysis with high spatial (10 μm) and temporal (1 ms) resolution. Compositional data were compared with a comprehensive 2D single-particle model, which incorporated a multistep, semiglobal reaction mechanism, prescribed particle shrinkage, and thermophysical properties that varied with temperature, composition, and orientation. The STR-DRiSP technique can be used to determine the transport-limited kinetic parameters of biomass decomposition for a wide variety of biomass feedstocks.

  17. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery.

    PubMed

    Das, Suman; Dutta, Dipak; Araujo, Rafael B; Chakraborty, Sudip; Ahuja, Rajeev; Bhattacharyya, Aninda J

    2016-08-10

    Comprehensive understanding of the charge transport mechanism in the intrinsic structure of an electrode material is essential in accounting for its electrochemical performance. We present here systematic experimental and theoretical investigations of Li(+)-ion diffusion in a novel layered material, viz. lithium titanium niobate. Lithium titanium niobate (exact composition Li0.55K0.45TiNbO5·1.06H2O) is obtained from sol-gel synthesized potassium titanium niobate (KTiNbO5) by an ion-exchange method. The Li(+)-ions are inserted and de-inserted preferentially into the galleries between the octahedral layers formed by edge and corner sharing TiO6 and NbO6 octahedral units and the effective chemical diffusion coefficient, is estimated to be 3.8 × 10(-11) cm(2) s(-1) using the galvanostatic intermittent titration technique (GITT). Calculations based on density functional theory (DFT) strongly confirm the anisotropic Li(+)-ion diffusion in the interlayer galleries and that Li(+)-ions predominantly diffuse along the crystallographic b-direction. The preferential Li(+)-ion diffusion along the b-direction is assisted by line-defects, which are observed to be higher in concentration along the b-direction compared to the a- and c-directions, as revealed by high resolution electron microscopy. The Li-Ti niobate can be cycled to low voltages (≈0.2 V) and show stable and satisfactory battery performance over 100 cycles. Due to the possibility of cycling to low voltages, cyclic voltammetry and X-ray photoelectron spectroscopy convincingly reveal the reversibility of Ti(3+) ↔ Ti(2+) along with Ti(4+) ↔ Ti(3+) and Nb(5+) ↔ Nb(4+).

  18. Ambipolarity and transport with resonant ion diffusion in EBT

    SciTech Connect

    Jaeger, E.F.; Hedrick, C.L.; Hastings, D.E.; Tolliver, J.S.

    1983-10-01

    Using recently derived analytic expressions for resonant and nonresonant neoclassical transport coefficients in EBT, we calculate the ambipolar potential required to maintain quasi-charge neutrality in the presence of a high-energy ion tail produced by nonclassical heating. The electric field obeys a differential rather than an algebraic equation. Solution of this equation gives a potential proportional to the local magnetic field strength and thus a rigid rotation of low-energy ions near the magnetic axis. Radial-transport calculations using this potential give improved agreement with experimental data for neutral density and particle lifetime. However, high-energy ion orbits in the calculated potential exhibit banana widths larger than assumed in the resonant transport theory. The required density of high-energy ions is therefore larger than would be expected if realistic banana widths could be included.

  19. The effect of the fast-ion profile on Alfvén eigenmode stability

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.; Van Zeeland, M. A.; Austin, M. E.; Bass, E. M.; Ghantous, K.; Gorelenkov, N. N.; Grierson, B. A.; Spong, D. A.; Tobias, B. J.

    2013-09-01

    Different combinations of on-axis and off-axis neutral beams are injected into DIII-D plasmas that are unstable to reversed shear Alfvén eigenmodes (RSAE) and toroidal Alfvén eigenmodes (TAE). The variations alter the classically expected fast-ion gradient ∇βf in the plasma interior. Off-axis injection reduces the amplitude of RSAE activity an order of magnitude. Core TAEs are also strongly stabilized. In contrast, at larger minor radius, the fast-ion gradient is similar for on- and off-axis injection and switching the angle of injection has a weaker effect on the stability of TAEs. The average mode amplitude correlates strongly with the classically expected profile but the measured profile relaxes to similar values independent of the fraction of off-axis beams. The observations agree qualitatively with a ‘critical-gradient’ model of fast-ion transport.

  20. A tangentially viewing fast ion D-alpha diagnostic for NSTX

    SciTech Connect

    Bortolon, A.; Heidbrink, W. W.; Podesta, M.

    2010-10-15

    A second fast ion D-alpha (FIDA) installation is planned at NSTX to complement the present perpendicular viewing FIDA diagnostics. Following the present diagnostic scheme, the new diagnostic will consist of two instruments: a spectroscopic diagnostic that measures fast ion spectra and profiles at 16 radial points with 5-10 ms resolution and a system that uses a band pass filter and photomultiplier to measure changes in FIDA light with 50 kHz sampling rate. The new pair of FIDA instruments will view the heating beams tangentially. The viewing geometry minimizes spectral contamination by beam emission or edge sources of background emission. The improved velocity-space resolution will provide detailed information about neutral-beam current drive and about fast ion acceleration and transport by injected radio frequency waves and plasma instabilities.

  1. Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP

    SciTech Connect

    Podesta,, Mario; Gorelenkova, Marina; White, Roscoe

    2014-02-28

    Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.

  2. Stability properties and fast ion confinement of hybrid tokamak plasma configurations

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Brunetti, D.; Pfefferle, D.; Faustin, J. M. P.; Cooper, W. A.; Kleiner, A.; Lanthaler, S.; Patten, H. W.; Raghunathan, M.

    2015-11-01

    In hybrid scenarios with flat q just above unity, extremely fast growing tearing modes are born from toroidal sidebands of the near resonant ideal internal kink mode. New scalings of the growth rate with the magnetic Reynolds number arise from two fluid effects and sheared toroidal flow. Non-linear saturated 1/1 dominant modes obtained from initial value stability calculation agree with the amplitude of the 1/1 component of a 3D VMEC equilibrium calculation. Viable and realistic equilibrium representation of such internal kink modes allow fast ion studies to be accurately established. Calculations of MAST neutral beam ion distributions using the VENUS-LEVIS code show very good agreement of observed impaired core fast ion confinement when long lived modes occur. The 3D ICRH code SCENIC also enables the establishment of minority RF distributions in hybrid plasmas susceptible to saturated near resonant internal kink modes.

  3. Fast Ion Stopping Power in Dense, Ionized Plasmas.

    DTIC Science & Technology

    1981-04-17

    Mosher, ERDA Summer Study of Heavy Ions for Inertial Fusion, LBL -5543, p. 39 (1976). 4. R. K. Nesbet and J. F. Ziegler, Appl. Phys. Lett. 31, 810 (1977). 5...Attn: J. Pearlman VcDonnell Douglas Corp. 1 Copy ,I2 Bolsa Avenue MDC1B 40L770 Hun’ington Beach, California )20-L7 Fac Clear T CNWDI Attn: S. Schneider

  4. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures

    NASA Astrophysics Data System (ADS)

    Sata, N.; Eberman, K.; Eberl, K.; Maier, J.

    2000-12-01

    Ion conduction is of prime importance for solid-state reactions in ionic systems, and for devices such as high-temperature batteries and fuel cells, chemical filters and sensors. Ionic conductivity in solid electrolytes can be improved by dissolving appropriate impurities into the structure or by introducing interfaces that cause the redistribution of ions in the space-charge regions. Heterojunctions in two-phase systems should be particularly efficient at improving ionic conduction, and a qualitatively different conductivity behaviour is expected when interface spacing is comparable to or smaller than the width of the space-charge regions in comparatively large crystals. Here we report the preparation, by molecular-beam epitaxy, of defined heterolayered films composed of CaF2 and BaF2 that exhibit ionic conductivity (parallel to the interfaces) increasing proportionally with interface density-for interfacial spacing greater than 50 nanometres. The results are in excellent agreement with semi-infinite space-charge calculations, assuming a redistribution of fluoride ions at the interfaces. If the spacing is reduced further, the boundary zones overlap and the predicted mesoscopic size effect is observed. At this point, the single layers lose their individuality and an artificial ionically conducting material with anomalous transport properties is generated. Our results should lead to fundamental insight into ionic contact processes and to tailored ionic conductors of potential relevance for medium-temperature applications.

  5. Investigation of fast-ion instabilities and tearing-mode reduction during neutral beam injection in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-10-01

    Neutral beam injection into the MST-RFP is observed to drive instabilities that induce fast-ion transport and quench the fast-ion density below classical predictions. These instabilities are detected for both super- and sub-Alfvénic fast ions, indicating that free energy arises from the real space gradient. As plasma current and fast-ion species are changed, the mode number of the dominant instability varies to maintain the wave-particle resonance condition. The dominant instability also exhibits a dependence on fast-ion velocity (v). As v increases, the mode frequency linearly increases and the spatial asymmetry of associated density fluctuations becomes more pronounced. These features link the observed instabilities to continuum modes destabilized by strong drive. In addition to driving instabilities, fast ions are observed to affect intrinsic tearing modes. For certain plasma scenarios, fast ions reduce the core-resonant tearing mode amplitude by 60% while enhancing the kinetic dynamo arising from coherent interactions between density and radial magnetic fluctuations. This implies the potential importance of kinetic dynamo in the tearing mode suppression. Tearing modes can also impact fast-ion redistribution as suggested by edge-resonant tearing mode triggering of a chirping fast-ion mode. Work supported by US DOE.

  6. Use of Fast Ion D-Alpha diagnostics for understanding ICRF effects

    SciTech Connect

    Podesta, M.; Heidbrink, W. W.; Liu, D.; Luo, Y.; Ruskov, E.; Bell, R. E.; Fredrickson, E. D.; Hosea, J. C.; Medley, S. S.; Burrell, K. H.; Choi, M.; Pinsker, R. I.; Harvey, R. W.

    2009-11-26

    Combined neutral beam injection and fast wave heating at cyclotron harmonics accelerate deuterium fast ions in the National Spherical Torus Experiment (NSTX) and in the DIII-D tokamak. Acceleration above the injected energy is evident in fast-ion D-alpha (FIDA) and volume-average neutron data. The FIDA diagnostic measures spatial profiles of the accelerated fast ions. In DIII-D, the acceleration is at a 4th or 5th cyclotron harmonic; the maximum enhancement in the high-energy FIDA signal is 8-10 cm beyond the resonance layer. In NSTX, acceleration is observed at five harmonics (7-11) simultaneously; overall, the profile of accelerated fast ions is much broader than in DIII-D. The energy distribution predicted by the CQL3D Fokker-Planck code agrees fairly well with measurements in DIII-D. However, the predicted profiles differ from experiment, presumably because the current version of CQL3D uses a zero-banana-width model.

  7. Use of Fast Ion D-Alpha diagnostics for understanding ICRF effects

    NASA Astrophysics Data System (ADS)

    Podestà, M.; Heidbrink, W. W.; Liu, D.; Luo, Y.; Ruskov, E.; Bell, R. E.; Fredrickson, E. D.; Hosea, J. C.; Medley, S. S.; Burrell, K. H.; Choi, M.; Pinsker, R. I.; Harvey, R. W.

    2009-11-01

    Combined neutral beam injection and fast wave heating at cyclotron harmonics accelerate deuterium fast ions in the National Spherical Torus Experiment (NSTX) and in the DIII-D tokamak. Acceleration above the injected energy is evident in fast-ion D-alpha (FIDA) and volume-average neutron data. The FIDA diagnostic measures spatial profiles of the accelerated fast ions. In DIII-D, the acceleration is at a 4th or 5th cyclotron harmonic; the maximum enhancement in the high-energy FIDA signal is 8-10 cm beyond the resonance layer. In NSTX, acceleration is observed at five harmonics (7-11) simultaneously; overall, the profile of accelerated fast ions is much broader than in DIII-D. The energy distribution predicted by the CQL3D Fokker-Planck code agrees fairly well with measurements in DIII-D. However, the predicted profiles differ from experiment, presumably because the current version of CQL3D uses a zero-banana-width model.

  8. Fast discharge process of layered cobalt oxides due to high Na+ diffusion

    PubMed Central

    Shibata, Takayuki; Fukuzumi, Yuya; Kobayashi, Wataru; Moritomo, Yutaka

    2015-01-01

    Sodium ion secondary battery (SIB) is a low-cost and ubiquitous secondary battery for next-generation large-scale energy storage. The diffusion process of large Na+ (ionic radius is 1.12 Å), however, is considered to be slower than that of small Li+ (0.76 Å). This would be a serious disadvantage of SIB as compared with the Lithium ion secondary battery (LIB). By means of the electrochemical impedance spectroscopy (EIS), we determined the diffusion constant (D) of Na+ in thin films of O3- and P2-type NaCoO2 with layered structures. We found that the D values (~ 0.5–1.5 × 10−10 cm2/s) of Na+ are higher than those (< 1 × 10−11 cm2/s) of Li+ in layered LiCoO2. Especially, the D values of O3-NaCoO2 are even higher than those of P2-NaCoO2, probably because O3-NaCoO2 shows successive structural phase transitions from the O3, O’3, P’3, to P3 phases with Na+ deintercalation. We further found that the activation energy (ED ~ 0.4 eV) for the Na+ diffusion is significantly low in these layered cobalt oxides. We found a close relation between the relative capacity and the renormalized discharge rate ( = L2/DT, where L and T are the film thickness and discharge time, respectively). PMID:25758962

  9. Measurements of Escaping Fast Ions at the DIII-D Vessel Wall

    NASA Astrophysics Data System (ADS)

    Pickering, L. D.; Heidbrink, W. W.; Zhu, Y.

    2006-10-01

    The loss of fast ions is detected by two pairs of thin foil Faraday collectors [1] that are installed just behind the graphite first wall in a vacuum port. Collimating apertures select fast ions that have energies >10 keV and that travel either with or against the plasma current. The strong correlation of beam-ion loss detector (BILD) signals with neutral beam modulation shows that, under appropriate conditions, prompt losses from nearly every beam source are detected. Orbit calculations indicate that the correlation occurs when injected neutrals are deposited at a location that “connects” with an orbit observed by the detector; as expected, these correlations depend strongly on plasma current. In addition to these classical effects, enhanced signals sometimes occur during ion cyclotron heating (presumably due to parametric decay instabilities) and during Alfvén activity (due to transport by the instabilities). 6pt[1] F.E. Cecil, et al., Rev. Sci. Instrum. 74, 1747 (2003).

  10. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    DOE PAGES

    Van Zeeland, Michael A.; Ferraro, N. M.; Grierson, Brian A.; ...

    2015-06-26

    In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotatingmore » $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $$\\rho >0.7$$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion $${{\\text{D}}_{\\alpha}}$$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile

  11. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    SciTech Connect

    Van Zeeland, Michael A.; Ferraro, N. M.; Grierson, Brian A.; Heidbrink, W. W.; Kramer, G. J.; Lasnier, C. J.; Pace, David C.; Allen, Steve L.; Chen, X.; Evans, T. E.; García-Muñoz, M.; Hanson, J. M.; Lanctot, M. J.; Lao, L. L.; Meyer, W. H.; Moyer, R. A.; Nazikian, R.; Orlov, D. M.; Paz-Soldan, C.; Wingen, A.

    2015-06-26

    In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotating $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $\\rho >0.7$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion ${{\\text{D}}_{\\alpha}}$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile was allowed

  12. Structural Changes in Polymer Films by Fast Ion Implantation

    NASA Astrophysics Data System (ADS)

    Parada, M. A.; Minamisawa, R. A.; Muntele, C.; Muntele, I.; De Almeida, A.; Ila, D.

    2006-11-01

    In applications from food wrapping to solar sails, polymers films can be subjected to intense charged panicle bombardment and implantation. ETFE (ethylenetetrafluoroethylene) with high impact resistance is used for pumps, valves, tie wraps, and electrical components. PFA (tetrafluoroethylene-per-fluoromethoxyethylene) and FEP (tetrafluoroethylene-hexa-fluoropropylene) are sufficiently biocompatible to be used as transcutaneous implants since they resist damage from the ionizing space radiation, they can be used in aerospace engineering applications. PVDC (polyvinyllidene-chloride) is used for food packaging, and combined with others plastics, improves the oxygen barrier responsible for the food preservation. Fluoropolymers are also known for their radiation dosimetry applications, dependent on the type and energy of the radiation, as well as of the beam intensity. In this work ETFE, PFA, FEP and PVDC were irradiated with ions of keV and MeV energies at several fluences and were analyzed through techniques as RGA, OAP, FTIR, ATR and Raman spectrophotometry. CF3 is the main specie emitted from PFA and FEP when irradiated with MeV protons. H and HF are released from ETFE due to the broken C-F and C-H bonds when the polymer is irradiated with keV Nitrogen ions and protons. At high fluence, especially for keV Si and N, damage due to carbonization is observed with the formation of hydroperoxide and polymer dehydroflorination. The main broken bonds in PVDC are C-O and C-Cl, with the release of Cl and the formation of double carbon bonds. The ion fluence that causes damage, which could compromise fluoropolymer film applications, has been determined.

  13. Positive and negative cluster ions from liquid ethanol by fast ion bombardment.

    PubMed

    Kaneda, M; Shimizu, M; Hayakawa, T; Iriki, Y; Tsuchida, H; Itoh, A

    2010-04-14

    Secondary ion mass spectra have been measured for the first time for a liquid ethanol target bombarded by 2.0 MeV He(+) ions. Positive and negative ion spectra exhibit evidently a series of cluster ions of the forms [(EtOH)(n)H](+) and [(EtOH)(n)-H](-), respectively, in addition to light fragment ions from intact parent molecules. It was found that these cluster ions are produced only from liquid phase ethanol. Both positive and negative secondary ion spectra show similar cluster size distributions with almost the same decay slope. We also present for the first time the cluster ion distribution emitted from the liquid at different liquid temperatures.

  14. Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation.

    PubMed

    Linaro, Daniele; Storace, Marco; Giugliano, Michele

    2011-03-01

    Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here.

  15. Fast numerical solution for fractional diffusion equations by exponential quadrature rule

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Sun, Hai-Wei; Pang, Hong-Kui

    2015-10-01

    After spatial discretization to the fractional diffusion equation by the shifted Grünwald formula, it leads to a system of ordinary differential equations, where the resulting coefficient matrix possesses the Toeplitz-like structure. An exponential quadrature rule is employed to solve such a system of ordinary differential equations. The convergence by the proposed method is theoretically studied. In practical computation, the product of a Toeplitz-like matrix exponential and a vector is calculated by the shift-invert Arnoldi method. Meanwhile, the coefficient matrix satisfies a condition that guarantees the fast approximation by the shift-invert Arnoldi method. Numerical results are given to demonstrate the efficiency of the proposed method.

  16. Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes

    PubMed Central

    Puszka, Agathe; Di Sieno, Laura; Mora, Alberto Dalla; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc

    2013-01-01

    We present the first experimental results of reflectance Diffuse Optical Tomography (DOT) performed with a fast-gated single-photon avalanche diode (SPAD) coupled to a time-correlated single-photon counting system. The Mellin-Laplace transform was employed to process time-resolved data. We compare the performances of the SPAD operated in the gated mode vs. the non-gated mode for the detection and localization of an absorbing inclusion deeply embedded in a turbid medium for 5 and 15 mm interfiber distances. We demonstrate that, for a given acquisition time, the gated mode enables the detection and better localization of deeper absorbing inclusions than the non-gated mode. These results obtained on phantoms demonstrate the efficacy of time-resolved DOT at small interfiber distances. By achieving depth sensitivity with limited acquisition times, the gated mode increases the relevance of reflectance DOT at small interfiber distance for clinical applications. PMID:24009998

  17. Development of sustained release fast-disintegrating tablets using various polymer-coated ion-exchange resin complexes.

    PubMed

    Jeong, Seong Hoon; Park, Kinam

    2008-04-02

    Complex formation between drugs and ion-exchange resins was investigated and the effects of coating by various aqueous polymeric dispersions on the complexes were evaluated for developing new sustained-release fast-disintegrating tablets (FDTs). Complexes of ion-exchange resin and dextromethorphan, a model drug, were prepared using different particle sizes of the resins. Aqueous colloidal dispersions of ethylcellulose (EC) and poly(vinyl acetate) (Kollicoat SR30D) were used for fluid-bed coating. Based on drug loading, release profiles, and scanning electron microscopy (SEM) images, the coated particles were granulated with suitable tablet excipients and then compressed into the tablets. Drug release profiles and SEM pictures were compared before and after the manufacturing processes. As the particle size of resins increased, the drug loading and release rate decreased due to the reduced effective diffusion coefficient and surface area. Higher coating level decreased the release rate further. In contrast to EC, Kollicoat SR30D coated particles could be compressed into tablets without any rupture or cracks on the coating since the mechanical properties of the polymer was more resistant to the manufacturing processes. This resulted in no significant changes in release rates. SEM showed the mechanical strength of the polymers affected the morphological change after compression. When the drug release profiles were applied into Boyd model and Higuchi equation, the linear relationship was observed, indicating that the diffusion within the resin matrix is the rate-controlling step.

  18. 3D Ion and Electron Distribution Function Measurements from the Fast Plasma Investigation on the Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Giles, B. L.; Pollock, C. J.; Avanov, L. A.; Barrie, A. C.; Burch, J. L.; Chandler, M. O.; Clark, G. B.; Coffey, V. N.; Dickson, C.; Dorelli, J.; Ergun, R. E.; Fuselier, S. A.; Gershman, D. J.; Gliese, U.; Holland, M. P.; Jacques, A. D.; Kreisler, S.; Lavraud, B.; MacDonald, E.; Mauk, B.; Moore, T. E.; Mukai, T.; Nakamura, R.; Paterson, W. R.; Rager, A. C.; Saito, Y.; Salo, C.; Sauvaud, J. A.; Torbert, R. B.; Vinas, A. F.; Yokota, S.

    2015-12-01

    The primary focus of the Magnetospheric Multiscale (MMS) mission, launched in March 2015, is magnetic reconnection and associated processes. Understanding hinges critically on the kinetic physics that allows reconnection to take place. The Fast Plasma Investigation (FPI) provides electron and ion distribution functions at 4.5s cadence and, for select periods of time, at cadences of 30ms for electrons and 150ms for ions. These select time periods are chosen after in situ acquisition based on inspection of the low resolution data. Thus the FPI provides, independent of spacecraft spin rate, the time resolution needed to resolve the small, fast-moving reconnection diffusion regions. The first mission phase focuses on the dayside magnetopause and this presentation is intended to demonstrate the capabilities of FPI to resolve the important spatial scales relevant to the reconnection process. Magnetopause and other boundary crossings will be examined and the phase-space trajectories identified at the tetrahedral satellite locations through analysis of the 3D distribution functions.

  19. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.

    PubMed

    Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B

    2016-03-04

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.

  20. Effect of carbon ion irradiation on Ag diffusion in SiC

    NASA Astrophysics Data System (ADS)

    Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; Deng, Jie; Giordani, Andrew J.; Hunter, Jerry L.; Morgan, Dane; Szlufarska, Izabela; Sridharan, Kumar

    2016-04-01

    Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C-SiC, as well as Ag and single crystalline 4H-SiC samples before and after irradiation with C2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). Diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.

  1. Effect of carbon ion irradiation on Ag diffusion in SiC

    DOE PAGES

    Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; ...

    2015-11-14

    Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with C2+more » ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less

  2. Effect of carbon ion irradiation on Ag diffusion in SiC

    SciTech Connect

    Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; Deng, Jie; Giordani, Andrew J.; Hunter, Jerry L.; Morgan, Dane; Szlufarska, Izabela; Sridharan, Kumar

    2015-11-14

    Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with C2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.

  3. Diffusion and possible freezing phases of Li-ions in LiFePO4

    NASA Astrophysics Data System (ADS)

    Yiu, Yuen; Toft-Petersen, Rasmus; Ehlers, Georg; Vaknin, David

    Elastic and inelastic neutron scattering studies of LiFePO4 single crystal reveal new Li-ion diffusion properties relevant to its function as Li-battery materials. In the past decade there has been broad interest in LiFePO4 and its related compounds, largely due to the applications of these materials as cathodes in Li- batteries. This is owing to these materials' high charge-discharge ability and conductivity, both of which are by virtue of the Li-ions' high mobility. In this talk, we present our findings on the temperature and directional dependence of Li-ions' diffusion in LiFePO4. LiFePO4 adopts the olivine structure at room temperature (Space group: Pnma), which contains channels along principal crystalline directions that allow Li-ion motion. Elastic neutron scattering reveals lowering of symmetry from the Pnma structure below room temperature, which can be interpreted as the freezing of Li-ions, and can be subsequently linked to the reported decrease in Li-ion conductivity. Inelastic neutron scattering, in the 35K to 720K temperature range, shows temperature dependence, as well as anisotropy (i.e. along 0K0 versus 00L) of Li-ion diffusion. Ames Laboratory is supported by U.S. DOE, BES, DMSE, under Contract #DE-AC02-07CH11358. Spallation Neutron Source of Oak Ridge National Laboratory is sponsored by U.S. DOE, BES, SUFD.

  4. Film model approximation for particle-diffusion-controlled binary ion exchange

    SciTech Connect

    Carta, G.; Cincotti, A.; Cao, G.

    1999-01-01

    A new rate expression for particle-diffusion-controlled ion exchange, based on an equivalent pseudosteady-state film resistance model, is developed. The rate expression approximates the electric field effects on intraparticle diffusion in spherical ion-exchangers. With regard to the prediction of batch exchange and column breakthrough curves for both irreversible and reversible processes, the model captures the essential traits of the coupled diffusion phenomenon described by the Nernst-Planck equation with results of accuracy comparable to that obtained when using the linear driving force approximation for systems with constant diffusivity. Numerical results for the exchange of two counterions of equal valence are presented as application examples for different mobility ratios and selectivity coefficients.

  5. First-principles study of Li ion diffusion in LiFePO4

    NASA Astrophysics Data System (ADS)

    Ouyang, Chuying; Shi, Siqi; Wang, Zhaoxiang; Huang, Xuejie; Chen, Liquan

    2004-03-01

    The diffusion mechanism of Li ions in the olivine LiFePO4 is investigated from first-principles calculations. The energy barriers for possible spatial hopping pathways are calculated with the adiabatic trajectory method. The calculations show that the energy barriers running along the c axis are about 0.6, 1.2, and 1.5 eV for LiFePO4, FePO4, and Li0.5FePO4, respectively. However, the other migration pathways have much higher energy barriers resulting in very low probability of Li-ion migration. This means that the diffusion in LiFePO4 is one dimensional. The one-dimensional diffusion behavior has also been shown with full ab initio molecular dynamics simulation, through which the diffusion behavior is directly observed.

  6. Clustering Analysis of Fast-ion Driven Instabilities

    NASA Astrophysics Data System (ADS)

    Gresl, J.; Heidbrink, W. W.; Haskey, S.; Blackwell, B. D.

    2016-10-01

    Beam ions often drive Alfvén eigenmodes and other instabilities unstable in DIII-D. Many of these modes have been unambigously identified but some frequently occurring features have been neglected. In this work, datamining analysis techniques that successfully analyzed magnetics data from the H-1NF heliac are applied to arrays of magnetic and electron cyclotron emission (ECE) data from DIII-D. The techniques group instabilities with similar magnetic or ECE features into clusters. Once the clusters are found, a database of plasma parameters will facilitate mode identification. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-FG03-94ER54271, DE-AC02-09CH11466.

  7. Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Bi, Renzhe; Ho, Jun Hui; Thong, Patricia S. P.; Soo, Khee-Chee; Lee, Kijoon

    2012-09-01

    Diffuse correlation spectroscopy (DCS) is an emerging noninvasive technique that probes the deep tissue blood flow, by using the time-averaged intensity autocorrelation function of the fluctuating diffuse reflectance signal. We present a fast Fourier transform (FFT)-based software autocorrelator that utilizes the graphical programming language LabVIEW (National Instruments) to complete data acquisition, recording, and processing tasks. The validation and evaluation experiments were conducted on an in-house flow phantom, human forearm, and photodynamic therapy (PDT) on mouse tumors under the acquisition rate of ˜400 kHz. The software autocorrelator in general has certain advantages, such as flexibility in raw photon count data preprocessing and low cost. In addition to that, our FFT-based software autocorrelator offers smoother starting and ending plateaus when compared to a hardware correlator, which could directly benefit the fitting results without too much sacrifice in speed. We show that the blood flow index (BFI) obtained by using a software autocorrelator exhibits better linear behavior in a phantom control experiment when compared to a hardware one. The results indicate that an FFT-based software autocorrelator can be an alternative solution to the conventional hardware ones in DCS systems with considerable benefits.

  8. Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications

    NASA Astrophysics Data System (ADS)

    Du, Qiang; Yang, Jiang

    2017-03-01

    This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simple ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge-Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge-Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen-Cahn equations, nonlocal Cahn-Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.

  9. Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner

    PubMed Central

    Mu, Ying; Niedre, Mark

    2015-01-01

    Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT. PMID:26417526

  10. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  11. Fast ion chromatography-ICP-QQQ for arsenic speciation

    PubMed Central

    Jackson, Brian

    2015-01-01

    Two methods for the fast separation of arsenic species are presented. The general approach is to modify existing methodology utilizing carbonate eluents for a small particle size, short column length Hamilton PRPX100 column which is interfaced with the Agilent 8800 ICP-QQQ using oxygen as reaction gas and detection of AsO at m/z 91. Using H2O2 in the extractant to oxidize As(III) to As(V) it is possible to separate arsenobetaine from DMA, MMA and As(V) in 1.5 minutes. Such a method may be useful where a measure of total inorganic As is sufficient, for example for regulatory compliance in food or beverage testing. It is possible to separate six As species. i.e the four above and arsenocholine and As(III) in 4.5 minutes using a gradient separation. Such a method could be useful analysis of urinary arsenic species. Coupling with high sensitivity of ICP-QQQ yields equivalent or better detection limits than conventional methods with run times up to 5 times faster, which is a significant benefit for sample throughput and method development. PMID:26366032

  12. Specific Ions Modulate Diffusion Dynamics of Hydration Water on Lipid Membrane Surfaces

    PubMed Central

    2015-01-01

    Effects of specific ions on the local translational diffusion of water near large hydrophilic lipid vesicle surfaces were measured by Overhauser dynamic nuclear polarization (ODNP). ODNP relies on an unpaired electron spin-containing probe located at molecular or surface sites to report on the dynamics of water protons within ∼10 Å from the spin probe, which give rise to spectral densities for electron–proton cross-relaxation processes in the 10 GHz regime. This pushes nuclear magnetic resonance relaxometry to more than an order of magnitude higher frequencies than conventionally feasible, permitting the measurement of water moving with picosecond to subnanosecond correlation times. Diffusion of water within ∼10 Å of, i.e., up to ∼3 water layers around the spin probes located on hydrophilic lipid vesicle surfaces is ∼5 times retarded compared to the bulk water translational diffusion. This directly reflects on the activation barrier for surface water diffusion, i.e., how tightly water is bound to the hydrophilic surface and surrounding waters. We find this value to be modulated by the presence of specific ions in solution, with its order following the known Hofmeister series. While a molecular description of how ions affect the hydration structure at the hydrophilic surface remains to be answered, the finding that Hofmeister ions directly modulate the surface water diffusivity implies that the strength of the hydrogen bond network of surface hydration water is directly modulated on hydrophilic surfaces. PMID:24456096

  13. Suppressing Alfven eigenmodes by q-profile engineering to improve fast-ion confinement

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Tobias, B. J.; Nazikian, R.; Holcomb, C.; Collins, C.; van Zeeland, M. A.; Heidbrink, W. W.; Zhu, Y.

    2016-10-01

    High levels of Alfven eigenmode (AE) activity often limit the plasma performance of steady-state target plasmas. Experiments were performed on DIII-D to suppress harmful AEs by q profile engineering. Current ramp rates of 0.6 MA/s are typically used in L-mode discharges to create qmin near r/a = 0.3 where the fast-ion pressure gradient is strong, leading to strong AEs and enhanced fast-ion transport. In a new experiment a current ramp-rate of 7 MA/s was used together with ECCD at mid-radius. This resulted in a qmin radius larger than 0.5 which is outside the fast-ion pressure gradient region. This resulted in a complete suppression of TAEs in the core and a highly reduced RSAE activity near qmin giving rise to classical fast-ion transport as deduced from neutron measurements. Although qmin was not sustained at large radii, these experiments show that AEs can be suppressed by q profile engineering. For sustaining qmin at large radii a stronger off-axis current drive source is planned with neutral beam upgrades in 2017. DOE Grants DE-AC02-09CH11466 and DE-FC02-04ER54698.

  14. Numerical studies of fast ion slowing down rates in cool magnetized plasma using LSP

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Kolmes, Elijah; Cohen, Samuel A.; Rognlien, Tom; Cohen, Bruce; Meier, Eric; Welch, Dale R.

    2016-10-01

    In MFE devices, rapid transport of fusion products from the core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. The first-orbit trajectories of most fusion products from small field-reversed configuration (FRC) devices will traverse the SOL, allowing those particles to deposit their energy in the SOL and be exhausted along the open field lines. Thus, the fast ion slowing-down time should affect the energy balance of an FRC reactor and its neutron emissions. However, the dynamics of fast ion energy loss processes under the conditions expected in the FRC SOL (with ρe <λDe) are analytically complex, and not yet fully understood. We use LSP, a 3D electromagnetic PIC code, to examine the effects of SOL density and background B-field on the slowing-down time of fast ions in a cool plasma. As we use explicit algorithms, these simulations must spatially resolve both ρe and λDe, as well as temporally resolve both Ωe and ωpe, increasing computation time. Scaling studies of the fast ion charge (Z) and background plasma density are in good agreement with unmagnetized slowing down theory. Notably, Z-scaling represents a viable way to dramatically reduce the required CPU time for each simulation. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  15. Preface: Photon and fast Ion induced Processes in Atoms, MOlecules and Nanostructures (PIPAMON)

    NASA Astrophysics Data System (ADS)

    Kövér, László

    2016-02-01

    This Special Issue contains selected papers of contributions presented in the International Workshop on Photon and fast Ion induced Processes in Atoms, MOlecules and Nanostructures (PIPAMON), held between March 24 and 26, 2015 in Debrecen, Hungary. The venue, the Aquaticum Thermal and Wellness Hotel provided a pleasant ;all-under-one-roof; environment for the event.

  16. Measurement of CO2 diffusivity in synthetic and saline aquifer solutions at reservoir conditions: the role of ion interactions

    NASA Astrophysics Data System (ADS)

    Jafari Raad, Seyed Mostafa; Azin, Reza; Osfouri, Shahriar

    2015-11-01

    Storage and disposal of CO2 as the main component of greenhouse gases in saline aquifers require careful measurement of diffusivity for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of CO2 in highly concentrated saline aquifers at reservoir conditions. In this study, diffusivity of CO2 was measured into different solutions, including saline aquifer taken from oil field, distilled water and synthetic solutions prepared from four most common ions, Mg2+, Ca2+, K+, Na+. The roles of salvation effect and hydration phenomenon were studied on diffusivity of dissolved CO2. Synthetic solutions were prepared at concentration ranges of 83-200 g/l. Experimental measurements were reported at temperature and pressure ranges of 30-40 °C and 5,880-6,265 kPa, respectively. Results show that both type and concentration of ion affect CO2 diffusivity. Diffusion coefficient was found dependent on effective radius of hydrated ions. Also, CO2 diffusivity increase by increasing strength of bonds between ion and neighbor water molecules. Also, presence of ions in water solution creates hydration competition between solution metal ions and aqua ions from diffusive gas. The Mg2+ cation, which has strongest hydration competition among other ions, has an increasing effect on gas diffusivity into saline aquifer. However, increasing ion concentration in solution decreases diffusivity of CO2 due to growth in fraction of contact ion pairs. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions and conceptual information about effect of each common saline formation ion on gas diffusivity.

  17. Molecular dynamics study on ion diffusion in LiFePO4 olivine materials.

    PubMed

    Zhang, Peixin; Wu, Yanpeng; Zhang, Dongyun; Xu, Qiming; Liu, Jianhong; Ren, Xiangzhong; Luo, Zhongkuan; Wang, Mingliang; Hong, Weiliang

    2008-06-19

    Molecular dynamics (MD) simulations have been employed to investigate the ionic diffusion and the structure of LiFePO 4 cathode material. The results correspond well with the published experimental observations. The simulation results indicated that the diffusion of lithium ions was thermally activated and more significant than those of other ions. Compared with other cathode materials, the shifts of ions were less significant in LiFePO 4. This suggested that LiFePO 4 was more thermally stable. The snapshots of the positions of lithium atoms over a range of the steps provided a microscopic picture and the picture showed the lithium ions migrated through one-dimension channels.

  18. Measurement and simulation of passive fast-ion D-alpha emission from the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Bolte, Nathan G.; Heidbrink, William W.; Pace, David; Van Zeeland, Michael; Chen, Xi

    2016-11-01

    Spectra of passive fast-ion D-alpha (FIDA) light from beam ions that charge exchange with background neutrals are measured and simulated. The fast ions come from three sources: ions that pass through the diagnostic sightlines on their first full orbit, an axisymmetric confined population, and ions that are expelled into the edge region by instabilities. A passive FIDA simulation (P-FIDASIM) is developed as a forward model for the spectra of the first-orbit fast ions and consists of an experimentally-validated beam deposition model, an ion orbit-following code, a collisional-radiative model, and a synthetic spectrometer. Model validation consists of the simulation of 86 experimental spectra that are obtained using 6 different neutral beam fast-ion sources and 13 different lines of sight. Calibrated spectra are used to estimate the neutral density throughout the cross-section of the tokamak. The resulting 2D neutral density shows the expected increase toward each X-point with average neutral densities of 8× {{10}9}~\\text{c}{{\\text{m}}-3} at the plasma boundary and 1× {{10}11}~\\text{c}{{\\text{m}}-3} near the wall. Fast ions that are on passing orbits are expelled by the sawtooth instability more readily than trapped ions. In a sample discharge, approximately 1% of the fast-ion population is ejected into the high neutral density region per sawtooth crash.

  19. Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate.

    PubMed

    Xiao, Bo; Li, Yan-Chun; Yu, Xue-Fang; Cheng, Jian-Bo

    2016-12-28

    Recently, a new two-dimensional (2D) carbon allotrope named penta-graphene was theoretically proposed ( Zhang , S. ; et al. Proc. Natl. Acad. Sci. U.S.A. 2015 , 112 , 2372 ) and has been predicted to be the promising candidate for broad applications due to its intriguing properties. In this work, by using first-principles simulation, we have further extended the potential application of penta-graphene as the anode material for a Li/Na-ion battery. Our results show that the theoretical capacity of Li/Na ions on penta-graphene reaches up to 1489 mAh·g(-1), which is much higher than that of most of the previously reported 2D anode materials. Meanwhile, the calculated low open-circuit voltages (from 0.24 to 0.60 V), in combination with the low diffusion barriers (≤0.33 eV) and the high electronic conductivity during the whole Li/Na ions intercalation processes, further show the advantages of penta-graphene as the anode material. Particularly, molecular dynamics simulation (300 K) reveals that Li ion could freely diffuse on the surface of penta-graphene, and thus the ultrafast Li ion diffusivity is expected. Superior performance of penta-graphene is further confirmed by comparing with the other 2D anode materials. The light weight and unique atomic arrangement (with isotropic furrow paths on the surface) of penta-graphene are found to be mainly responsible for the high Li/Na ions storage capacity and fast diffusivity. In this regard, except penta-graphene, many other recently proposed 2D metal-free materials with pentagonal Cairo-tiled structures may be the potential candidates as the Li/Na-ion battery anodes.

  20. Non-thermal effects of electrons on stopbands of fast ion-acoustic solitons

    NASA Astrophysics Data System (ADS)

    Maharaj, S. K.; Bharuthram, R.

    2017-02-01

    The occurrence of a stopband which is a forbidden range in soliton speeds was recently reported to occur for fast ion-acoustic solitons in a model with cold ions, warm adiabatic ions, and Boltzmann electrons (Nsengiyumva et al., Phys. Plasmas 21, 102301 (2014)). The stopband occurs as a direct consequence of the existence of two solutions for the soliton speed which coincides with the warm ion density limit and is restricted to a certain range of cold to warm ion density ratios. In this study, we investigate the effects of the presence of non-thermal electrons on stopbands through adopting a Cairns and kappa distribution for the electrons. Our results reveal that increasing non-thermal electron effects based on a Cairns (kappa) distribution has the effect of reducing (increasing) the width of the stopband. The stopband obtained for two-temperature Boltzmann electrons increases in width for increasing cool electron density and hot to cool electron temperature.

  1. Fast ignition of an inertial fusion target with a solid noncryogenic fuel by an ion beam

    SciTech Connect

    Gus’kov, S. Yu.; Zmitrenko, N. V.; Il’in, D. V.; Sherman, V. E.

    2015-09-15

    The burning efficiency of a preliminarily compressed inertial confinement fusion (ICF) target with a solid noncryogenic fuel (deuterium-tritium beryllium hydride) upon fast central ignition by a fast ion beam is studied. The main aim of the study was to determine the extent to which the spatial temperature distribution formed under the heating of an ICF target by ion beams with different particle energy spectra affects the thermonuclear gain. The study is based on a complex numerical modeling including computer simulations of (i) the heating of a compressed target with a spatially nonuniform density and temperature distributions by a fast ion beam and (ii) the burning of the target with the initial spatial density distribution formed at the instant of maximum compression of the target and the initial spatial temperature distribution formed as a result of heating of the compressed target by the ion beam. The threshold energy of the igniting ion beam and the dependence of the thermonuclear gain on the energy deposited in the target are determined.

  2. Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Budny, R.; Nazikian, R.; Heidbrink, W. W.; Kurki-Suonio, T.; Salmi, A.; Schaffer, M. J.; van Zeeland, M. A.; Shinohara, K.; Snipes, J. A.; Spong, D.

    2010-11-01

    The fast beam-ion confinement in the presence of a scaled mock-up of two Test Blanket Modules (TBM) for ITER was studied in DIII-D. The TBM on DIII-D has four vertically arranged protective carbon tiles with thermocouples placed at the back of each tile. Temperature increases of up to 200^oC were measured for the two tiles closest to the midplane when the TBM fields were present. These measurements agree qualitatively with results from the full orbit-following beam-ion code, SPIRAL, that predict beam-ion losses to be localized on the central two carbon tiles when the TBM fields present. Within the experimental uncertainties no significant change in the fast-ion population was found in the core of these plasmas which is consistent with SPIRAL analysis. These experiments indicate that the TBM fields do not affect the fast-ion confinement in a harmful way which is good news for ITER.

  3. Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak

    SciTech Connect

    Van Zeeland, M; Heidbrink, W; Nazikian, R; Austin, M; Berk, H; Gorelenkov, N; Holcomb, C; Kramer, G; Lohr, J; Luo, Y; Makowski, M; McKee, G; Petty, C; Prater, R; Solomon, W; White, R

    2008-10-14

    Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including Toroidicity and Ellipticity induced Alfven Eigenmodes (TAE/EAE, respectively) and Reversed Shear Alfven Eigenmodes (RSAE) as well as their spatial coupling. These modes are typically studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. During this same time period Fast-Ion D{sub {alpha}} (FIDA) spectroscopy shows that the central fast ion profile is flattened, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. To simulate the observed neutral beam ion redistribution, NOVA calculations of the 3D eigenmode structures are matched with experimental measurements and used in combination with the ORBIT guiding center following code. For fixed frequency eigenmodes, it is found that ORBIT calculations cannot explain the observed beam ion transport with experimentally measured mode amplitudes. Possible explanations are considered including recent simulation results incorporating eigenmodes with time dependent frequencies.

  4. Turbulent mix or ion diffusion? Hypothesis testing in ICF capsule implosions

    NASA Astrophysics Data System (ADS)

    Hoffman, N. M.; Zimmerman, G. B.; Vander Wiel, S. A.; Herrmann, H. W.; Kim, Y. H.

    2016-10-01

    Turbulent mixing at a contact surface combines materials that are initially separated across the contact. While the mixing layer may contain the initially separate materials (each assumed to be composed of a number of distinct ion species) in a range of concentrations, from zero to 100%, the concentration of individual ion species within each material, relative to one another, is not altered by turbulent mixing alone. Ion diffusion likewise causes mixing at a contact, but does alter the relative concentration of ion species within each material, since the relative diffusivity of ions, in a fixed background plasma, varies as A 1 / 2/Z2. Recent hydrodynamically equivalent capsule implosions allow a test of the influence of these processes on observed capsule behavior. We use numerical simulations and hypothesis-testing methods to show quantitatively that turbulent mixing with ion diffusion is a better explanation of observed behavior than turbulent mixing alone (subject to the assumptions inherent in the computational models of these processes.) Research supported by US DOE under contract DE-AC52-06NA25396.

  5. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    SciTech Connect

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  6. Fast diffusion kurtosis imaging (DKI) with Inherent COrrelation-based Normalization (ICON) enhances automatic segmentation of heterogeneous diffusion MRI lesion in acute stroke.

    PubMed

    Zhou, Iris Yuwen; Guo, Yingkun; Igarashi, Takahiro; Wang, Yu; Mandeville, Emiri; Chan, Suk-Tak; Wen, Lingyi; Vangel, Mark; Lo, Eng H; Ji, Xunming; Sun, Phillip Zhe

    2016-12-01

    Diffusion kurtosis imaging (DKI) has been shown to augment diffusion-weighted imaging (DWI) for the definition of irreversible ischemic injury. However, the complexity of cerebral structure/composition makes the kurtosis map heterogeneous, limiting the specificity of kurtosis hyperintensity to acute ischemia. We propose an Inherent COrrelation-based Normalization (ICON) analysis to suppress the intrinsic kurtosis heterogeneity for improved characterization of heterogeneous ischemic tissue injury. Fast DKI and relaxation measurements were performed on normal (n = 10) and stroke rats following middle cerebral artery occlusion (MCAO) (n = 20). We evaluated the correlations between mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) derived from the fast DKI sequence and relaxation rates R1 and R2 , and found a highly significant correlation between MK and R1 (p < 0.001). We showed that ICON analysis suppressed the intrinsic kurtosis heterogeneity in normal cerebral tissue, enabling automated tissue segmentation in an animal stroke model. We found significantly different kurtosis and diffusivity lesion volumes: 147 ± 59 and 180 ± 66 mm(3) , respectively (p = 0.003, paired t-test). The ratio of kurtosis to diffusivity lesion volume was 84% ± 19% (p < 0.001, one-sample t-test). We found that relaxation-normalized MK (RNMK), but not MD, values were significantly different between kurtosis and diffusivity lesions (p < 0.001, analysis of variance). Our study showed that fast DKI with ICON analysis provides a promising means of demarcation of heterogeneous DWI stroke lesions.

  7. Computation of the hindrance factor for the diffusion for nanoconfined ions: molecular dynamics simulations versus continuum-based models

    NASA Astrophysics Data System (ADS)

    Zhu, Haochen; Ghoufi, Aziz; Szymczyk, Anthony; Balannec, Béatrice; Morineau, Denis

    2012-06-01

    We report the self-diffusion coefficients and hindrance factor for the diffusion of ions into cylindrical hydrophilic silica nanopores (hydrated silica) determined from molecular dynamics (MD) simulations. We make a comparison with the hindered diffusion coefficients used in continuum-based models of nanofiltration (NF). Hindrance factors for diffusion estimated from the macroscopic hydrodynamic theory were found to be in fair quantitative agreement with MD simulations for a protonated pore, but they strongly overestimate diffusion inside a deprotonated pore.

  8. Validation of fast-ion D-alpha spectrum measurements during EAST neutral-beam heated plasmas

    NASA Astrophysics Data System (ADS)

    Huang, J.; Heidbrink, W. W.; von Hellermann, M. G.; Stagner, L.; Wu, C. R.; Hou, Y. M.; Chang, J. F.; Ding, S. Y.; Chen, Y. J.; Zhu, Y. B.; Jin, Z.; Xu, Z.; Gao, W.; Wang, J. F.; Lyu, B.; Zang, Q.; Zhong, G. Q.; Hu, L.; Wan, B.

    2016-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been installed on EAST. Fast ion features can be inferred from the Doppler shifted spectrum of Balmer-alpha light from energetic hydrogenic atoms. This paper will focus on the validation of FIDA measurements performed using MHD-quiescent discharges in 2015 campaign. Two codes have been applied to calculate the Dα spectrum: one is a Monte Carlo code, Fortran 90 version FIDASIM, and the other is an analytical code, Simulation of Spectra (SOS). The predicted SOS fast-ion spectrum agrees well with the measurement; however, the level of fast-ion part from FIDASIM is lower. The discrepancy is possibly due to the difference between FIDASIM and SOS velocity distribution function. The details will be presented in the paper to primarily address comparisons of predicted and observed spectrum shapes/amplitudes.

  9. Statistical analysis of diffuse ion events upstream of the Earth's bow shock

    NASA Technical Reports Server (NTRS)

    Trattner, K. J.; Mobius, E.; Scholer, M.; Klecker, B.; Hilchenbach, M.; Luehr, H.

    1994-01-01

    A statistical study of diffuse energetic ion events and their related waves upstream of the Earth's bow shock was performed using data from the Active Magnetospheric Particle Tracer Explorers/Ion Release Module (AMPTE/IRM) satellite over two 5-month periods in 1984 and 1985. The data set was used to test the assumption in the self-consistent model of the upstream wave and particle populations by Lee (1982) that the particle acceleration through hydromagnetic waves and the wave generation are directly coupled. The comparison between the observed wave power and the wave power predicted on the observed energetic particle energy density and solar wind parameters results in a high correlation coefficient of about 0.89. The intensity of diffuse ions falls off approximately exponentially with the distance upstream from the bow shock parallel to the magnetic field with e-folding distances which vary from approximately 3.3 R(sub E) to approximately 11.7 R(sub E) over the energy range from 10 keV/e to 67.3 keV/e for both protons and alpha particles. After normalizing the upstream particle densities to zero bow shock distance by using these exponential variations, a good correlation (0.7) of the density of the diffuse ions with the solar wind density was found. This supports the suggestion that the solar wind is the source of the diffuse ions. Furthermore, the spectral slope of the diffuse ions correlates well with the solar wind velocity component in the direction of the interplanetary magnetic field (0.68 and 0.66 for protons and alpha particles) which concurs with the notion that the solar wind plays an important role in the acceleration of the upstream particles.

  10. Two-stream instability assessment of fast ignition driven by quasi-monoenergetic ions

    NASA Astrophysics Data System (ADS)

    Khoshbinfar, Soheil

    2017-01-01

    During the past decade, the generation of energetic ion beams by high-intensity laser-plasma interactions has attracted much interest due to their many applications in high energy density physics and fast ignition. The interaction of the energetic beam with the pre-compressed DT plasma may be accompanied by micro-instabilities along normal and parallel to the beam direction. In application of ions heavier than hydrogen isotopes in fast ignition, we expect that the number of required ions reduces considerably. Here, we present a one-dimensional relativistic beam-plasma instability formulation to investigate the stabilization mode of a flow aligned two-stream instability spectrum where both cold-fluid and kinetic linear theory results are reported. In the latter, the saddle point expansion of the relativistic drift-Maxwellian distribution was applied. The stabilization mode was then extracted by using the Nyquist method. We have also restricted our stability analyses to quasi-monoenergetic ion beams of type Li3+, C6+, Al13+, and V23+ with optimal energies of 140 MeV, 450 MeV, 2.2 GeV, and 5.5 GeV, respectively, proposed by numerical simulations in fast ignition [Honrubia et al. Laser Part. Beams 32, 419 (2014)]. The stable mode is attained by two free system parameters, i.e., beam/plasma density ratio, α, and background plasma temperature, Tp. In the case of low Zb ions, by different degree levels, both parameters push the system to complete stability. However, in the case of high Zb ions, complete stabilization is achieved just through few orders of magnitude lower α. It has also been shown that in complete stabilization of the system, the α parameter scales as an inverse square of ions' atomic number, ∝Zb-2.

  11. Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX

    SciTech Connect

    T.M. Biewer; R.E. Bell; S.J. Diem; C.K. Phillips; J.R. Wilson; P.M. Ryan

    2004-12-01

    A new spectroscopic diagnostic on the National Spherical Torus Experiment (NSTX) measures the velocity distribution of ions in the plasma edge simultaneously along both poloidal and toroidal views. An anisotropic ion temperature is measured during high-power high harmonic fast wave (HHFW) radio-frequency (rf) heating in helium plasmas, with the poloidal ion temperature roughly twice the toroidal ion temperature. Moreover, the measured spectral distribution suggests that two populations of ions are present and have temperatures of typically 500 eV and 50 eV with rotation velocities of -50 km/s and -10 km/s, respectively (predominantly perpendicular to the local magnetic field). This bi-modal distribution is observed in both the toroidal and poloidal views (for both He{sup +} and C{sup 2+} ions), and is well correlated with the period of rf power application to the plasma. The temperature of the hot component is observed to increase with the applied rf power, which was scanned between 0 and 4.3 MW . The 30 MHz HHFW launched by the NSTX antenna is expected and observed to heat core electrons, but plasma ions do not resonate with the launched wave, which is typically at >10th harmonic of the ion cyclotron frequency in the region of observation. A likely ion heating mechanism is parametric decay of the launched HHFW into an Ion Bernstein Wave (IBW). The presence of the IBW in NSTX plasmas during HHFW application has been directly confirmed with probe measurements. IBW heating occurs in the perpendicular ion distribution, consistent with the toroidal and poloidal observations. Calculations of IBW propagation indicate that multiple waves could be created in the parametric decay process, and that most of the IBW power would be absorbed in the outer 10 to 20 cm of the plasma, predominantly on fully stripped ions. These predictions are in qualitative agreement with the observations, and must be accounted for when calculating the energy budget of the plasma.

  12. Investigation of Inter-Ion Species Diffusion in Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans W.; Kim, Yongho; Hoffman, Nelson M.; Schmitt, Mark J.; Kagan, Grigory; Batha, Steven H.; Garbett, Warren J.; Horsfield, Colin J.; Rubery, Michael S.; Gales, Steven

    2014-10-01

    Anomalous fusion yield degradation has been observed for gas fill mixtures in inertial confinement fusion (ICF) implosions. These mixtures have included D/3He [Rygg et al., Phys Plasmas 13, 052702 (2006)], D/T/3He [Herrmann et al., Phys Plasmas 16, 056312 (2009)], D/Ar [Lindl et al., Phys Plasmas 11, 339 (2004)] and even D/T [Casey et al., PRL 108, 075005 (2012)]. Fuel ion segregation has been suggested as a possible cause [Amendt et al., PRL 18, 056308 (2011); Kagan et al., Phys Lett. A 10.1016 (2014)]. Segregation may be caused by inter-ion species diffusion driven by gradients in plasma pressure, temperature and electric field, either across a relatively narrow shock boundary or across the entire interior of the compressed capsule. It is expected that lower Z &/or A ions will diffuse outward while higher Z &/or A diffuse inward. In the case of D/T/3He, the 3He diffuses inward to the hotter core, reducing the DT reactivity. A D/T/H mixture should result in H diffusing outward, leaving the hotter core D & T rich and hence enhance reactivity over the simulated expectation. Past results will be reviewed and plans for a hydro-equivalent comparison D/T/3He and D/T/H will be presented. Research conducted under the auspices of the U.S. Department of Energy under Contract DE-AC52-06NA25396.

  13. Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC

    SciTech Connect

    Bayu Aji, L. B.; Wallace, J. B.; Shao, L.; Kucheyev, S. O.

    2016-04-14

    Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.

  14. Modification of Sawteeth Periods By Trapped Fast Ions in DIII-D

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Chu, M. S.; Lao, L. L.; Turnbull, A. D.

    2006-10-01

    The main auxiliary heating methods for ITER are neutral beam and ion cyclotron wave heating. Sawtooth physics is very important in optimizing the heating efficiency for ITER. This requires understanding of the interaction between fast ions and fast Alfvén wave (FW) on MHD stability. Experimentally, the DIII-D discharges have demonstrated strong acceleration of deuterium beam ions above the injected beam energy from measurements of enhanced neutron emissions during FW heating. Theory predicts that high pressure from fast ions in the center of plasma may act as a stabilizing kinetic effect on ideal internal kink mode. However, the DIII-D experimental results showed that sawteeth characteristics strongly depend on a combination of plasma and wave conditions. We apply a Monte-Carlo orbit code (ORBIT-RF) and ideal MHD code (GATO) to model existing DIII-D experiments and explore the triggering and stabilization mechanisms for sawteeth. The analytical model by Bussac and Porcelli will be compared with NOVA-K calculations.

  15. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  16. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    PubMed Central

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099

  17. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  18. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    DOE PAGES

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; ...

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less

  19. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    SciTech Connect

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  20. Simulations of ion acceleration at non-relativistic shocks. III. Particle diffusion

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-10-10

    We use large hybrid (kinetic-protons-fluid-electrons) simulations to investigate the transport of energetic particles in self-consistent electromagnetic configurations of collisionless shocks. In previous papers of this series, we showed that ion acceleration may be very efficient (up to 10%-20% in energy), and outlined how the streaming of energetic particles amplifies the upstream magnetic field. Here, we measure particle diffusion around shocks with different strengths, finding that the mean free path for pitch-angle scattering of energetic ions is comparable with their gyroradii calculated in the self-generated turbulence. For moderately strong shocks, magnetic field amplification proceeds in the quasi-linear regime, and particles diffuse according to the self-generated diffusion coefficient, i.e., the scattering rate depends only on the amount of energy in modes with wavelengths comparable with the particle gyroradius. For very strong shocks, instead, the magnetic field is amplified up to non-linear levels, with most of the energy in modes with wavelengths comparable to the gyroradii of highest-energy ions, and energetic particles experience Bohm-like diffusion in the amplified field. We also show how enhanced diffusion facilitates the return of energetic particles to the shock, thereby determining the maximum energy that can be achieved in a given time via diffusive shock acceleration. The parameterization of the diffusion coefficient that we derive can be used to introduce self-consistent microphysics into large-scale models of cosmic ray acceleration in astrophysical sources, such as supernova remnants and clusters of galaxies.

  1. Enabling High Fidelity Measurements of Energy and Pitch Angle for Escaping Energetic Ions with a Fast Ion Loss Detector

    NASA Astrophysics Data System (ADS)

    Chaban, R.; Pace, D. C.; Marcy, G. R.; Taussig, D.

    2016-10-01

    Energetic ion losses must be minimized in burning plasmas to maintain fusion power, and existing tokamaks provide access to energetic ion parameter regimes that are relevant to burning machines. A new Fast Ion Loss Detector (FILD) probe on the DIII-D tokamak has been optimized to resolve beam ion losses across a range of 30 - 90 keV in energy and 40° to 80° in pitch angle, thereby providing valuable measurements during many different experiments. The FILD is a magnetic spectrometer; once inserted into the tokamak, the magnetic field allows energetic ions to pass through a collimating aperture and strike a scintillator plate that is imaged by a wide view camera and narrow view photomultiplier tubes (PMTs). The design involves calculating scintillator strike patterns while varying probe geometry. Calculated scintillator patterns are then used to design an optical system that allows adjustment of the focus regions for the 1 MS/s resolved PMTs. A synthetic diagnostic will be used to determine the energy and pitch angle resolution that can be attained in DIII-D experiments. Work supported in part by US DOE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  2. Characterization of ferric ions diffusion in Fricke gel dosimeters by using inverse problem techniques

    NASA Astrophysics Data System (ADS)

    Vedelago, J.; Quiroga, A.; Valente, M.

    2014-10-01

    Diffusion of ferric ions in ferrous sulfate (Fricke) gels represents one of the main drawbacks of some radiation detectors, such as Fricke gel dosimeters. In practice, this disadvantage can be overcome by prompt dosimeter analysis, and constraining strongly the time between irradiation and analysis, implementing special dedicated protocols aimed at minimizing signal blurring due to diffusion effects. This work presents a novel analytic modeling and numerical calculation approach of diffusion coefficients in Fricke gel radiation sensitive materials. Samples are optically analyzed by means of visible light transmission measurements by capturing images with a charge-coupled device camera provided with a monochromatic filter corresponding to the XO-infused Fricke solution absorbance peak. Dose distributions in Fricke gels are suitably delivered by assessing specific initial conditions further studied by periodical sample image acquisitions. Diffusion coefficient calculations were performed using a set of computational algorithms based on inverse problem formulation. Although 1D approaches to the diffusion equation might provide estimations of the diffusion coefficient, it should be calculated in the 2D framework due to the intrinsic bi-dimensional characteristics of Fricke gel layers here considered as radiation dosimeters. Thus a suitable 2D diffusion model capable of determining diffusion coefficients was developed by fitting the obtained algorithm numerical solutions with the corresponding experimental data. Comparisons were performed by introducing an appropriate functional in order to analyze both experimental and numerical values. Solutions to the second-order diffusion equation are calculated in the framework of a dedicated method that incorporates finite element method. Moreover, optimized solutions can be attained by gradient-type minimization algorithms. Knowledge about diffusion coefficient for a Fricke gel radiation detector is helpful in accounting for

  3. High Harmonic Fast Wave Damping on an Ion Beam: NSTX and DIII-D Regimes Compared

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Choi, C. C.; Petty, C. C.; Porkolab, M.; Wilson, J. R.; Murakami, M.; Harvey, R. W.

    2004-11-01

    Both NSTX and DIII-D use the combination of fast Alfven waves (FW) and neutral beam injection (NBI) for central electron heating and current drive. Damping of the fast wave on the beam ions at moderate to high harmonics (4th--20th) of the beam ion cyclotron frequency represents a loss process. In DIII-D current drive experiments at low density in which 4th and 8th harmonics were compared, damping at the 8th harmonic damping was much weaker than at the 4th [1]. However, recent simulations have predicted that in higher density and higher beam power regimes (of interest to the Advanced Tokamak program) the beam ion absorption will transition to the unmagnetized ion regime, where the damping is significant and essentially independent of harmonic number. In the present work, the transition from magnetized to unmagnetized ion regimes for the NSTX and DIII-D HHFW experiments is studied theoretically, with a combination of simple semi-analytic models and numerical models. \\vspace0.25 em [1] C.C. Petty, et al., Plasma Phys. and Contr. Fusion 43, 1747 (2001).

  4. Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers

    NASA Astrophysics Data System (ADS)

    Kaptay, G.; Janczak-Rusch, J.; Jeurgens, L. P. H.

    2016-08-01

    Successful brazing using Cu-based nanostructured brazing fillers at temperatures much below the bulk melting temperature of Cu was recently demonstrated (Lehmert et al. in, Mater Trans 56:1015-1018, 2015). The Cu-based nano-fillers are composed of alternating nanolayers of Cu and a permeable, non-wetted AlN barrier. In this study, a thermodynamic model is derived to estimate the melting point depression (MPD) in such Cu/AlN nano-multilayers (NMLs) as function of the Cu nanolayer thickness. Depending on the melting route, the model predicts a MPD range of 238-609 K for Cu10nm/AlN10nm NMLs, which suggests a heterogeneous pre-melting temperature range of 750-1147 K (476-874 °C), which is consistent with experimental observations. As suggested by basic kinetic considerations, the observed Cu outflow to the NML surface at the temperatures of 723-1023 K (450-750 °C) can also be partially rationalized by fast solid-state diffusion of Cu along internal interfaces, especially for the higher temperatures.

  5. Fast optimization method based on the diffuser dot density for uniformity of the backlight module.

    PubMed

    Huang, Bing-Le; Guo, Tai-Liang

    2016-02-20

    A fast optimization method based on the diffuser dot density (DDD) for uniformity of the backlight module (BLM) is proposed in the paper. First, the relationship between the efficiency of the light emerging and the DDD is analyzed, and then a simulation model that is employed to acquire a serial of simulating data is constructed. Second, a mathematic method to profit the relationship is adopted, and a polynomial relationship is derived. Finally, an algorithm to adjust the DDD and optimize the uniformity of the BLM based on the DDD is constructed. The simulation results prove that only by three times optimization, the uniformity of the BLM can reach 85.6%, and the experimental result indicates that the algorithm proposed in the paper can improve the uniformity rapidly. The final experimental result is that the uniformity of the third optimization reaches 77.4%, which satisfies the target 75% in the phase of designing the BLM. Compared to the conventional optimization method, the method can speed up the procedure and lower the expense of developing the BLM in fabricating the liquid-crystal display.

  6. Ion diffusion may introduce spurious current sources in Current-Source Density (CSD) analysis.

    PubMed

    Halnes, Geir; Mäki-Marttunen, Tuomo; Pettersen, Klas H; Andreassen, Ole A; Einevoll, Gaute T

    2017-03-15

    Current-source density (CSD) analysis is a well-established method for analyzing recorded ocal field potentials (LFPs), that is, the low-frequency part of extracellular potentials. Standard CSD theory is based on the assumption that all extracellular currents are purely ohmic, and thus neglects the possible impact from ionic diffusion on recorded potentials. However, it has previously been shown that in physiological conditions with large ion-concentration gradients, diffusive currents can evoke slow shifts in extracellular potentials. Using computer simulations, we here show that diffusion-evoked potential shifts can introduce errors in standard CSD analysis, and can lead to prediction of spurious current sources. Further, we show that the diffusion-evoked prediction errors can be removed by using an improved CSD estimator which accounts for concentration-dependent effects.

  7. Demonstration of effective control of fast-ion-stabilized sawteeth by electron-cyclotron current drive.

    PubMed

    Lennholm, M; Eriksson, L-G; Turco, F; Bouquey, F; Darbos, C; Dumont, R; Giruzzi, G; Jung, M; Lambert, R; Magne, R; Molina, D; Moreau, P; Rimini, F; Segui, J-L; Song, S; Traisnel, E

    2009-03-20

    In a tokamak plasma, sawtooth oscillations in the central temperature, caused by a magnetohydrodynamic instability, can be partially stabilized by fast ions. The resulting less frequent sawtooth crashes can trigger unwanted magnetohydrodynamic activity. This Letter reports on experiments showing that modest electron-cyclotron current drive power, with the deposition positioned by feedback control of the injection angle, can reliably shorten the sawtooth period in the presence of ions with energies >or=0.5 MeV. Certain surprising elements of the results are evaluated qualitatively in terms of existing theory.

  8. Modeling ion exchange in glass with concentration-dependent diffusion coefficients and mobilities

    NASA Astrophysics Data System (ADS)

    Lupascu, Alexandru I.; Kevorkian, Antoine P.; Boudet, Thierry; Saint-Andre, Francoise; Persegol, Dominique; Levy, Michel

    1996-06-01

    Multimode buried waveguides made in silicate glass by field-assisted ion exchange present very asymmetric profiles. We show how this phenomenon originates in the large dependence of the kinetics on the local ion concentrations. For this purpose, we derive an interdiffusion equation that includes the effects of concentration-dependent diffusion coefficients and mobilities. We show how to deduce this dependence from measurements on ion- diffused samples. The maximum concentration of the incoming ions is computed from surface equilibrium conditions and is used in the interdiffusion equation as a limiting parameter for coefficient variations. To control the model accuracy for surface as well as buried waveguides, we measure ion profiles with three independent methods: M-lines, scanning electron microscopy, and near-field refractometry. When applied to Ag+-Na+ exchange in silicate glass, the model yields theoretical estimations in good agreement with experiments. This approach underlines the fundamentally nonlinear process that takes place during ion exchange and is also valuable to properly model singlemode waveguide fabrication.

  9. Studies of the fast ion energy spectra in TJ-II

    SciTech Connect

    Bustos, A.; Fontdecaba, J. M.; Arevalo, J.; Castejon, F.; Velasco, J. L.; Tereshchenko, M.

    2013-02-15

    The dynamics of the neutral beam injection fast ions in the TJ-II stellarator is studied in this paper from both the theoretical and experimental points of view. The code Integrator of Stochastic Differential Equations for Plasmas (ISDEP) is used to estimate the fast ion distribution function in 3D:1D in real space and 2D in velocity space, considering the 3D structure of TJ-II, the electrostatic potential, non turbulent collisional transport, and charge exchange losses. The results of ISDEP are compared with the experimental data from the compact neutral particle analyzer, which measures the outgoing neutral flux spectra in the energy range E Element-Of (1-45) keV.

  10. Electrochemical methods for the determination of the diffusion coefficient of ionophores and ionophore-ion complexes in plasticized PVC membranes.

    PubMed

    Bodor, Sándor; Zook, Justin M; Lindner, Erno; Tóth, Klára; Gyurcsányi, Róbert E

    2008-05-01

    The diffusion coefficients of active components in ion-selective membranes have a decisive influence on the life-time and detection limit of the respective ion-selective electrodes, as well as influencing the rate of polarization and relaxation processes of electrically perturbed ion sensors. Therefore, the rational design of mass transport controlled ion-selective electrodes with sub-nanomolar detection limits requires reliable data on the diffusion coefficients. We have implemented electrochemical methods for the quantitative assessment of both the diffusion coefficients of free ionophores and ion-ionophore complexes. The diffusion coefficients of the pH-sensitive chromoionophore ETH 5294 and the calcium-selective ionophore ETH 5234 were determined in plasticized PVC membranes with different PVC to plasticizer ratios. The diffusion coefficient of the free chromoionophore determined by a chronoamperometric method was validated with optical methods for a variety of membrane compositions. The calcium-selective ionophore ETH 5234 was used as a model compound to assess the diffusion coefficient of the ion-ionophore complex calculated from the time required for the complexes to cross a freshly prepared membrane during potentiometric ion-breakthrough experiments. The difference between the diffusion coefficients of the free ionophore ETH 5234 and the ion-ionophore complex was found to be significant and correlated well with the geometry of the respective species.

  11. Interstitial and interlayer ion diffusion geometry extraction in graphitic nanosphere battery materials

    SciTech Connect

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; Wang, Bei; Bremer, Peer -Timo; Papka, Michael E.; Curtiss, Larry A.; Pascucci, Valerio

    2016-01-31

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Lastly, our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.

  12. Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials.

    PubMed

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; Wang, Bei; Bremer, Peer-Timo; Papka, Michael E; Curtiss, Larry A; Pascucci, Valerio

    2016-01-01

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.

  13. Interstitial and interlayer ion diffusion geometry extraction in graphitic nanosphere battery materials

    DOE PAGES

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; ...

    2016-01-31

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermallymore » annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Lastly, our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.« less

  14. Radon (222Rn) in ground water of fractured rocks: a diffusion/ion exchange model.

    PubMed

    Wood, Warren W; Kraemer, Thomas F; Shapiro, Allen

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion-exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42 degrees 56'N, 71 degrees 43'W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.

  15. Radon (222Rn) in ground water of fractured rocks: A diffusion/ion exchange model

    USGS Publications Warehouse

    Wood, W.W.; Kraemer, T.F.; Shapiro, A.

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion- exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42??56???N, 71??43???W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.

  16. A Comparative Study of Ion Diffusion from Calcium Hydroxide with Various Herbal Pastes through Dentin

    PubMed Central

    Dhirawani, Rajesh B; Marya, Jayant; Dhirawani, Vrinda; Kumar, Vijayendra

    2017-01-01

    Aim The aim of this study was to evaluate the diffusion ability of ions through dentinal tubules of different nonalcoholic calcium hydroxide-containing herbal pastes and compare it with the calcium hydroxide paste prepared with saline. Materials and methods A total of 36 single-rooted premolar teeth were used in this study. The tooth crowns were removed and the root canals were prepared. Depending on the vehicle to be used for preparing calcium hydroxide pastes, six groups were made: Group I: Ca(OH)2 saline paste (control group), group II: Ca(OH)2 papaya latex paste, group III: Ca(OH)2 coconut water paste, group IV: Ca(OH)2 Ashwagandha (Withania somnifera) paste, group V: Ca(OH)2 Tulsi (Ocimum tenuiflorum) paste, and group VI: Ca(OH)2 garlic (Allium sativum) paste. After biomechanical preparation, calcium hydroxide herbal paste dressings were applied and sealed with resin-based cement. The teeth were placed in containers with deionized water, and the pH of the water was measured at regular intervals over 3, 24, 72, and 168 hours. Results We observed that all herbal pastes allowed the diffusion of ions, but pastes prepared with Ashwagandha and papaya latex showed more ion diffusion after 168 hours and marked increase in pH, depicting better support for calcium hydroxide action. Conclusion We conclude that Ashwagandha and papaya latex allow better diffusion of calcium hydroxide through den-tinal tubules, thus enhancing its action, and advise its use as a vehicle for placing intracanal medicament. How to cite this article Dausage P, Dhirawani RB, Marya J, Dhirawani V, Kumar V. A Comparative Study of Ion Diffusion from Calcium Hydroxide with Various Herbal Pastes through Dentin. Int J Clin Pediatr Dent 2017;10(1):41-44. PMID:28377654

  17. Quasi-linear pitch angle and energy diffusion of pickup ions near Comet Halley

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Johnstone, A. D.; Coates, A. J.; Neubauer, F. M.

    1991-01-01

    The process of ion pickup in the environment of Halley's comet is studied in order to see if velocity diffusion driven by the observed level of turbulence can explain the observed development of the implanted ion distribution. The theoretical description used is based on a quasi-linear approach and considers the implantation and transport of cometary ions along solar wind flow lines. To make such a study requires some way of extrapolating the measurements on the Giotto trajectory into the upstream region; models for mass loading and turbulence are used. A simplified kinetic equation describing the source, convection, and quasi-linear velocity diffusion of the heavy cometary ions is solved numerically along flow lines parallel to the sun-comet line. Full two-dimensional (pitch angle and velocity) distributions are obtained at positions along the Giotto trajectory, which are compared with measurements. This study finds that quasi-linear theory, with the empirical model for the observed turbulence level, produces the right order of pitch angle diffusion.

  18. High-definition velocity-space tomography of fast-ion dynamics

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Geiger, B.; Jacobsen, A. S.; Hansen, P. C.; Heidbrink, W. W.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Nocente, M.; Odstrčil, T.; Rasmussen, J.; Stagner, L.; Stejner, M.; Weiland, M.; the ASDEX Upgrade Team

    2016-10-01

    Velocity-space tomography of the fast-ion distribution function in a fusion plasma is usually a photon-starved tomography method due to limited optical access and signal-to-noise ratio of fast-ion D α (FIDA) spectroscopy as well as the strive for high-resolution images. In high-definition tomography, prior information makes up for this lack of data. We restrict the target velocity space through the measured absence of FIDA light, impose phase-space densities to be non-negative, and encode the known geometry of neutral beam injection (NBI) sources. We further use a numerical simulation as prior information to reconstruct where in velocity space the measurements and the simulation disagree. This alternative approach is demonstrated for four-view as well as for two-view FIDA measurements. The high-definition tomography tools allow us to study fast ions in sawtoothing plasmas and the formation of NBI peaks at full, half and one-third energy by time-resolved tomographic movies.

  19. Fast and slow activation of voltage-dependent ion channels in radish vacuoles.

    PubMed Central

    Gambale, F; Cantu, A M; Carpaneto, A; Keller, B U

    1993-01-01

    The molecular processes associated with voltage-dependent opening and closing (gating) of ion channels were investigated using a new preparation from plant cells, i.e., voltage and calcium-activated ion channels in radish root vacuoles. These channels display a main single channel conductance of approximately 90 pS and are characterized by long activation times lasting several hundreds of milliseconds. Here, we demonstrate that these channels have a second kinetically distinct activation mode which is characterized by even longer activation times. Different membrane potential protocols allowed to switch between the fast and the slow mode in a controlled and reversible manner. At transmembrane potentials of -100 mV, the ratio between the fast and slow activation time constant was around 1:5. Correspondingly, activation times lasting several seconds were observed in the slow mode. The molecular process controlling fast and slow activation may represent an effective modulator of voltage-dependent gating of ion channels in other plant and animal systems. PMID:7507716

  20. Dependence of ion drift velocity and diffusion coefficient in parent gas on its temperature

    NASA Astrophysics Data System (ADS)

    Maiorov, Sergey; Golyatina, Rusudan

    2016-09-01

    The results of Monte Carlo calculations of the ion drift characteristics are presented: ions of noble gases and Ti, Fe, Co, Cs, Rb, W and mercury ions in case of constant and uniform electric field are considered. The dependences of the ion mobility on the field strength and gas temperature are analyzed. The parameters of the drift velocity approximation by the Frost formula for gas temperatures of 4.2, 77, 300, 1000, and 2000 K are presented. A universal drift velocity approximation depending on the reduced electric field strength and gas temperature is obtained. In the case of strong electric fields or low gas temperatures, the deviation of the ion distribution function from the Maxwellian one (including the shifted Maxwellian one) can be very significant. The average energies of chaotic motion of ions along and across the electric field can also differ significantly. It is analyzed the kinetic characteristics of ion drift in own gas: ion diffusion coefficient along the field and across the field; thermal spread of velocities (temperature) along the field and across the field. The unexpected and nontrivial fact takes place: collision with backscattering represent only 10-50% of the total number of collisions. This calculation can be used when analyzing experiments with dusty plasma under cryogenic discharge, ultracold plasma. The work was supported by the Russian Science Foundation (grant RNF 14-19-01492).

  1. Fishbones in Joint European Torus plasmas with high ion-cyclotron-resonance-heated fast ions energy content

    SciTech Connect

    Nabais, F.; Borba, D.; Mantsinen, M.; Nave, M.F.F.; Sharapov, S.E.; Joint

    2005-10-01

    In Joint European Torus (JET) [P. J. Lomas, Plasma Phys. Controled Fusion 31, 1481 (1989)], discharges with ion cyclotron resonance heating only, low-density plasmas and high fast ions energy contents provided a scenario where fishbones behavior has been observed to be related with sawtooth activity: Crashes of monster sawteeth abruptly changed the type of observed fishbones from low-frequency fishbones [B. Coppi and F. Porcelli, Phys. Rev. Lett. 57, 2272 (1986)] to high-frequency fishbones [L. Chen, R. White, and M. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984)]. During periods between crashes, the type of observed fishbones gradually changed in the opposite way. Two new fishbones regimes have been observed in intermediate stages: Fishbones bursts covering both high and low frequencies and low amplitude bursts of both types occurring simultaneously. Both sawtooth and fishbones behavior have been explained using a variational formalism.

  2. Effect of ion irradiation on the interdiffusion growth of aluminide phases in Ti Al diffusion couple

    NASA Astrophysics Data System (ADS)

    Romankov, S. E.; Mamaeva, A.; Vdovichenko, E.; Ermakov, E.

    2005-08-01

    During annealing on the Ti surface coated by the Al film, different aluminide phases were formed as the result of reactions between Ti and Al. Preliminary irradiation of the Al film with the thickness of 7 μm by Ti + ions had a strong effect on the interdiffusion growth of aluminide phases on the Ti substrate. Preliminary ion irradiation resulted in the development of more homogeneous and fine-grain microstructure during subsequent annealing. During ion irradiation of the two-phase (TiAl + Ti 3Al) overlayer the decomposition of the TiAl compound and the formation of Ti 3Al happened. In the processing of subsequent annealing, diffusion cementation of the overlayer occurred faster on the surface of the irradiated samples. After irradiation by different ions (Ti + and Al +), and during subsequent annealing the kinetics of structural formation developed in a different way.

  3. Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Liao, J. B.; Lu, M. Z.; Chu, Y. Q.; Wang, J. L.

    2015-05-01

    An amphoteric ion-exchange membrane (AIEM) from fluoro-methyl sulfonated poly(arylene ether ketone) bearing content-controlled benzimidazole moiety, was firstly fabricated for vanadium redox flow battery (VRB). The AIEM and its covalently cross-linked membrane (AIEM-c) behave the highly suppressed vanadium-ion crossover and their tested VO2+ permeability are about 638 and 1117 times lower than that of Nafion117, respectively. This is further typically verified by the lower VO2+ concentration inside AIEM that is less than half of that inside Nafion117 detected by energy dispersive X-ray spectrometry, in addition of the nearly 3 times longer battery self-discharge time. The ultra-low vanadium ion diffusion could be ascribed to the narrower ion transporting channel originated from the acid-base interactions and the rebelling effect between the positively-charged benzimidazole structure and VO2+ ions. It is found that, VRB assembled with AIEM exhibits the equal or higher Coulombic efficiency (99.0% vs. 96.4%), voltage efficiency (90.7% vs. 90.7%) and energy efficiency (89.8% vs. 87.4%) than that with Nafion117 and keeps continuous 220 charge-discharge cycles for over 25 days, confirming that the AIEM of this type is a potentially suitable separator for VRB application.

  4. Fast heavy-ion radiation damage of glycine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Nomura, Shinji; Tsuchida, Hidetsugu; Furuya, Ryosuke; Majima, Takuya; Itoh, Akio

    2016-12-01

    Fast heavy-ion radiolysis of biomolecules in aqueous solution is investigated for an atomistic understanding of radiation damage to normal cells during heavy-particle beam therapy. The smallest amino acid glycine was used as a model biomaterial. Microjets of aqueous glycine solutions under vacuum were irradiated with 4.0-MeV carbon ions corresponding to energies in the Bragg peak region. To understand the effects of the water environment on molecular damage, the yield of glycine dissociation was measured by secondary ion mass spectroscopy. The yield was significantly reduced relative to gas-phase glycine targets. This implies that the numerous water molecules surrounding a single glycine molecule act as a buffer that suppresses dissociation. This is an environmental effect similar to that observed for other biomolecular cluster targets.

  5. Collective electric field effects on the confinement of fast ions in tokamaks

    SciTech Connect

    McClements, K.G.; Thyagaraja, A.

    2006-04-15

    The injection of neutral particle beams counter to the plasma current direction in the Mega-Ampere Spherical Tokamak (MAST) [A. Sykes, R. J. Akers, L. C. Appel et al., Nucl. Fusion, 41, 1423 (2001)] leads to substantial losses of energetic beam ions and also rapid toroidal rotation. The electrodynamic consequences of energetic ion loss on tokamak plasmas are explored in light of results from the MAST counterinjection experiments and test particle calculations of the current density due to escaping ions. Previous authors have noted that there are two possible consequences of such a current: either a compensating bulk plasma return current is set up, or the plasma behaves as an insulator, with the energetic ion current balanced by a displacement current rather than a conduction current. Radial electric fields and hence toroidal flows occur in both cases, but higher fields are predicted in the insulating case. Such fields are important because they can confine both fast ions and bulk plasma (via the suppression of turbulent transport). The return current scenario, which appears to be operative during counterinjection in MAST, is shown to be applicable if there is a sufficiently high level of momentum transport in the bulk ions; electrons cannot carry the return current, although they contribute to an ambipolar particle flux on the plasma confinement time scale. The insulating scenario may be applicable to high confinement regimes in burning tokamak plasmas.

  6. Collective electric field effects on the confinement of fast ions in tokamaks

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Thyagaraja, A.

    2006-04-01

    The injection of neutral particle beams counter to the plasma current direction in the Mega-Ampère Spherical Tokamak (MAST) [A. Sykes, R. J. Akers, L. C. Appel et al., Nucl. Fusion, 41, 1423 (2001)] leads to substantial losses of energetic beam ions and also rapid toroidal rotation. The electrodynamic consequences of energetic ion loss on tokamak plasmas are explored in light of results from the MAST counterinjection experiments and test particle calculations of the current density due to escaping ions. Previous authors have noted that there are two possible consequences of such a current: either a compensating bulk plasma return current is set up, or the plasma behaves as an insulator, with the energetic ion current balanced by a displacement current rather than a conduction current. Radial electric fields and hence toroidal flows occur in both cases, but higher fields are predicted in the insulating case. Such fields are important because they can confine both fast ions and bulk plasma (via the suppression of turbulent transport). The return current scenario, which appears to be operative during counterinjection in MAST, is shown to be applicable if there is a sufficiently high level of momentum transport in the bulk ions; electrons cannot carry the return current, although they contribute to an ambipolar particle flux on the plasma confinement time scale. The insulating scenario may be applicable to high confinement regimes in burning tokamak plasmas.

  7. Experience With Carbon Ion Radiotherapy for WHO Grade 2 Diffuse Astrocytomas

    SciTech Connect

    Hasegawa, Azusa; Mizoe, Jun-Etsu; Tsujii, Hirohiko; Kamada, Tadashi; Jingu, Keiichi; Iwadate, Yasuo; Nakazato, Youichi; Matsutani, Masao; Takakura, Kintomo

    2012-05-01

    Purpose: To assess outcomes of carbon ion radiotherapy for diffuse astrocytomas in adults. Methods and Materials: Between October 1994 and February 2002, 14 patients with diffuse astrocytoma, identified as eligible for carbon ion radiotherapy, were enrolled in a phase I/II clinical trial. Carbon ion radiotherapy was administered in 24 fractions over 6 weeks. The normal tissue morbidity was monitored carefully, and the carbon ion dose was escalated from 50.4 Gy equivalent (GyE) to 55.2 GyE. Patients were divided into two groups according to their carbon ion doses: a low-dose group in which 2 patients were irradiated with 46.2 GyE and 7 patients were irradiated with 50.4 GyE, and a high-dose group in which 5 patients were irradiated with 55.2 GyE. Results: Toxicities were within acceptable limits, and none of the patients developed Grade 3 or higher acute or late reactions. The median progression-free survival (PFS) time was 18 months for the low-dose group and 91 months for the high-dose group (p = 0.0030). The median overall survival (OS) time was 28 months for the low-dose group and not reached for the high-dose group (p = 0.0208). Conclusion: High-dose group patients showed significant improvement in PFS and OS rates compared to those in the low-dose group, and both dose groups showed acceptable toxicity.

  8. Fast-moving diffuse auroral patches: A new aspect of daytime Pc3 auroral pulsations

    NASA Astrophysics Data System (ADS)

    Motoba, Tetsuo; Ebihara, Yusuke; Kadokura, Akira; Engebretson, Mark J.; Lessard, Marc R.; Weatherwax, Allan T.; Gerrard, Andrew J.

    2017-02-01

    Auroral pulsations are a convenient diagnostic of wave-particle interactions in the magnetosphere. A case study of a daytime Pc3 (22-100 mHz) auroral pulsation event, measured with a 2 Hz sampling all-sky camera at South Pole Station (74.4°S magnetic latitude) on 17 May 2012, is presented. The daytime Pc3 auroral pulsations were most active in a closed field line region where the aurora was dominated by diffuse green-line emissions and within ±2 h of magnetic local noon. Usually, but not always, the corresponding periodic variations were recorded with a colocated search coil magnetometer. Of particular interest is the two-dimensional auroral signature, indicating that the temporal luminosity variations at a given point were due to repeated formation and horizontal motion of faint, nonpulsating auroral patches with scale sizes of 100 km. The individual patches propagated equatorward with speeds of 15 km s-1 up to 20-25 km s-1 one after another along the magnetic meridian through local magnetic zenith. These properties differ considerably from typical pulsating aurorae, being periodic on-off luminosity variations in a particular auroral patch and drifting in accordance with the convection electric field in the magnetosphere. We speculate that such repetitive patterns of the fast-moving auroral patches, being another aspect of the daytime Pc3 auroral pulsations, may be a visible manifestation of compressional Pc3 waves which propagate earthward and cause modulation of precipitating keV electron fluxes in the dayside outer magnetosphere.

  9. Optical Imaging of Phase Transition and Li-Ion Diffusion Kinetics of Single LiCoO2 Nanoparticles During Electrochemical Cycling.

    PubMed

    Jiang, Dan; Jiang, Yingyan; Li, Zhimin; Liu, Tao; Wo, Xiang; Fang, Yimin; Tao, Nongjian; Wang, Wei; Chen, Hong-Yuan

    2017-01-11

    Understanding the phase transition and Li-ion diffusion kinetics of Li-ion storage nanomaterials holds promising keys to further improve the cycle life and charge rate of the Li-ion battery. Traditional electrochemical studies were often based on a bulk electrode consisting of billions of electroactive nanoparticles, which washed out the intrinsic heterogeneity among individuals. Here, we employ optical microscopy, termed surface plasmon resonance microscopy (SPRM), to image electrochemical current of single LiCoO2 nanoparticles down to 50 fA during electrochemical cycling, from which the phase transition and Li-ion diffusion kinetics can be quantitatively resolved in a single nanoparticle, in operando and high throughput manner. SPRM maps the refractive index (RI) of single LiCoO2 nanoparticles, which significantly decreases with the gradual extraction of Li-ions, enabling the optical read-out of single nanoparticle electrochemistry. Further scanning electron microscopy characterization of the same batch of nanoparticles led to a bottom-up strategy for studying the structure-activity relationship. As RI is an intrinsic property of any material, the present approach is anticipated to be applicable for versatile kinds of anode and cathode materials, and to facilitate the rational design and optimization toward durable and fast-charging electrode materials.

  10. Fractional Diffusion, Low Exponent Lévy Stable Laws, and 'Slow Motion' Denoising of Helium Ion Microscope Nanoscale Imagery.

    PubMed

    Carasso, Alfred S; Vladár, András E

    2012-01-01

    Helium ion microscopes (HIM) are capable of acquiring images with better than 1 nm resolution, and HIM images are particularly rich in morphological surface details. However, such images are generally quite noisy. A major challenge is to denoise these images while preserving delicate surface information. This paper presents a powerful slow motion denoising technique, based on solving linear fractional diffusion equations forward in time. The method is easily implemented computationally, using fast Fourier transform (FFT) algorithms. When applied to actual HIM images, the method is found to reproduce the essential surface morphology of the sample with high fidelity. In contrast, such highly sophisticated methodologies as Curvelet Transform denoising, and Total Variation denoising using split Bregman iterations, are found to eliminate vital fine scale information, along with the noise. Image Lipschitz exponents are a useful image metrology tool for quantifying the fine structure content in an image. In this paper, this tool is applied to rank order the above three distinct denoising approaches, in terms of their texture preserving properties. In several denoising experiments on actual HIM images, it was found that fractional diffusion smoothing performed noticeably better than split Bregman TV, which in turn, performed slightly better than Curvelet denoising.

  11. Diffusion coefficients of energetic water group ions near Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Tan, L. C.; Mason, G. M.; Richardson, I. G.; Ipavich, F. M.

    1993-03-01

    Data from the ultralow-energy charge analyzer and energetic particle anisotropy spectrometer sensors, acquired when the ICE spacecraft flew past Comet Giacobini-Zinner on September 11, 1985, are combined, and a single, self-consistent analysis technique is applied to derive a single-particle spectrum from about 200 to 1600 km/s. This information, together with the deduced bulk flow speed of the ions, is used to calculate a parallel diffusion coefficient in the transition region downstream of the bow wave (2.3 +/- 0.5) x 10 exp 17 sq cm/s; the corresponding scattering mean free path is (6 +/- 1) x 10 exp 4 km. The parallel diffusion coefficient is found to depend on the collision frequency of water group ions with Alfven waves, which are assumed to be propagating parallel (antiparallel) to the magnetic field.

  12. Effect of exposure environment on surface decomposition of SiC-silver ion implantation diffusion couples

    DOE PAGES

    Gerczak, Tyler J.; Zheng, Guiqui; Field, Kevin G.; ...

    2014-10-05

    SiC is a promising material for nuclear applications and is a critical component in the construction of tristructural isotropic (TRISO) fuel. A primary issue with TRISO fuel operation is the observed release of 110m Ag from intact fuel particles. The release of Ag has prompted research efforts to directly measure the transport mechanism of Ag in bulk SiC. Recent research efforts have focused primarily on Ag ion implantation designs. The effect of the thermal exposure system on the ion implantation surface has been investigated. Results indicate the utilization of a mated sample geometry and the establishment of a static thermalmore » exposure environment is critical to maintaining an intact surface for diffusion analysis. In conclusion, the nature of the implantation surface and its potential role in Ag diffusion analysis are discussed.« less

  13. Effect of exposure environment on surface decomposition of SiC-silver ion implantation diffusion couples

    SciTech Connect

    Gerczak, Tyler J.; Zheng, Guiqui; Field, Kevin G.; Allen, Todd R.

    2014-10-05

    SiC is a promising material for nuclear applications and is a critical component in the construction of tristructural isotropic (TRISO) fuel. A primary issue with TRISO fuel operation is the observed release of 110m Ag from intact fuel particles. The release of Ag has prompted research efforts to directly measure the transport mechanism of Ag in bulk SiC. Recent research efforts have focused primarily on Ag ion implantation designs. The effect of the thermal exposure system on the ion implantation surface has been investigated. Results indicate the utilization of a mated sample geometry and the establishment of a static thermal exposure environment is critical to maintaining an intact surface for diffusion analysis. In conclusion, the nature of the implantation surface and its potential role in Ag diffusion analysis are discussed.

  14. Effects of size and concentration on diffusion-induced stress in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Zengsheng; Gao, Xiang; Wang, Yan; Lu, Chunsheng

    2016-07-01

    Capacity fade of lithium-ion batteries induced by chemo-mechanical degradation during charge-discharge cycles is the bottleneck in design of high-performance batteries, especially high-capacity electrode materials. Stress generated due to diffusion-mechanical coupling in lithium-ion intercalation and deintercalation is accompanied by swelling, shrinking, and even micro-cracking. In this paper, we propose a theoretical model for a cylindrical nanowire electrode by combining the bond-order-length-strength and diffusion theories. It is shown that size and concentration have a significant influence on the stress fields in radial, hoop, and axial directions. This can explain why a smaller electrode with a huge volume change survives in the lithiation/delithiation process.

  15. Lithium ion diffusion in Li β-alumina single crystals measured by pulsed field gradient NMR spectroscopy

    SciTech Connect

    Chowdhury, Mohammed Tareque Takekawa, Reiji; Iwai, Yoshiki; Kuwata, Naoaki; Kawamura, Junichi

    2014-03-28

    The lithium ion diffusion coefficient of a 93% Li β-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10{sup −11} m{sup 2}/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 × 10{sup −13} m{sup 2}/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the β-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297–333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li β-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li β-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li β–alumina system.

  16. Observation and suppression of a new fast ion driven micro burst instability in a field-reversed configuration plasma

    NASA Astrophysics Data System (ADS)

    Deng, B. H.; Korepanov, S.; Belova, E.; Douglass, J.; Beall, M.; Binderbauer, M.; Clary, R.; Detrick, S.; Garate, E.; Gota, H.; Granstedt, E.; Magee, R.; Necas, A.; Putvinski, S.; Roche, T.; Smirnov, A.; Tajima, T.; Thompson, M.; Tuszewski, M.; van Drie, A.; TAE Team

    2016-10-01

    The C-2U experiment offers a unique plasma environment combining a high beta field reversed configuration (FRC) embedded in a low beta magnetic mirror with high power neutral beam injection. The beams are injected tangentially into a modest magnetic field so that the orbits of the resulting fast ions encircle the entire plasma. The dominant population of large orbit fast ions sustains and stabilizes the FRC, suppresses turbulence, and makes a dramatic beneficial impact on the overall plasma performance. Abundant interesting new physics phenomena are observed in this high performance FRC operation regime, including micro bursts, which are benign, periodic bursting small amplitude down chirping fluctuations seen by several diagnostics. Detailed analysis of the micro bursts measurement data, bulk plasma equilibrium profiles, and fast ion orbit characteristics show that the micro bursts might be driven by a small number of resonant fast ions, and can be suppressed when the number of resonant particles is reduced.

  17. Experimental studies on fast-ion transport by Alfven wave avalanches on the National Spherical Torus Experiment

    SciTech Connect

    Podesta, M.; Heidbrink, W. W.; Liu, D.; Ruskov, E.; Bell, R. E.; Darrow, D. S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Medley, S. S.; Roquemore, A. L.; Crocker, N. A.; Kubota, S.; Yuh, H.

    2009-05-15

    Fast-ion transport induced by Alfven eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono et al., Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory.

  18. Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam

    SciTech Connect

    Mills, Andrew A.; Siller, Brian M.; Porambo, Michael W.; Perera, Manori; Kreckel, Holger; McCall, Benjamin J.

    2011-12-14

    Direct spectroscopy of a fast molecular ion beam offers many advantages over competing techniques, including the generality of the approach to any molecular ion, the complete elimination of spectral confusion due to neutral molecules, and the mass identification of individual spectral lines. The major challenge is the intrinsic weakness of absorption or dispersion signals resulting from the relatively low number density of ions in the beam. Direct spectroscopy of an ion beam was pioneered by Saykally and co-workers in the late 1980s, but has not been attempted since that time. Here, we present the design and construction of an ion beam spectrometer with several improvements over the Saykally design. The ion beam and its characterization have been improved by adopting recent advances in electrostatic optics, along with a time-of-flight mass spectrometer that can be used simultaneously with optical spectroscopy. As a proof of concept, a noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) setup with a noise equivalent absorption of {approx}2 x 10{sup -11} cm{sup -1} Hz{sup -1/2} has been used to observe several transitions of the Meinel 1-0 band of N{sub 2}{sup +} with linewidths of {approx}120 MHz. An optical frequency comb has been used for absolute frequency calibration of transition frequencies to within {approx}8 MHz. This work represents the first direct spectroscopy of an electronic transition in an ion beam, and also represents a major step toward the development of routine infrared spectroscopy of rotationally cooled molecular ions.

  19. Ion diffusion coefficients model and molar conductivities of ionic salts in aprotic solvents.

    PubMed

    Garrido, Leoncio; Mejía, Alberto; García, Nuria; Tiemblo, Pilar; Guzmán, Julio

    2015-02-19

    In the study of the electric properties of electrolytes, the determination of the diffusion coefficients of the species that intervene in the charge transport process is of great importance, particularly that of the free ions (D(+) and D(-)), the only species that contribute to the conductivity. In this work we propose a model that allows, with reasonable assumptions, determination of D(+) and D(-), and the degree of dissociation of the salt, α, at different concentrations, using the diffusion coefficients experimentally obtained with NMR. Also, it is shown that the NMR data suffice to estimate the conductivity of the electrolytes. The model was checked by means of experimental results of conductivity and NMR diffusion coefficients obtained with solutions of lithium triflate in ethylene and propylene carbonates, as well as with other results taken from the literature.

  20. First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers.

    PubMed

    Haruyama, Jun; Sodeyama, Keitaro; Han, Liyuan; Tateyama, Yoshitaka

    2015-08-19

    Hysteresis in current-voltage curves has been an important issue for conversion efficiency evaluation and development of perovskite solar cells (PSCs). In this study, we explored the ion diffusion effects in tetragonal CH3NH3PbI3 (MAPbI3) and trigonal (NH2)2CHPbI3 (FAPbI3) by first-principles calculations. The calculated activation energies of the anionic and cationic vacancy migrations clearly show that I(-) anions in both MAPbI3 and FAPbI3 can easily diffuse with low barriers of ca. 0.45 eV, comparable to that observed in ion-conducting materials. More interestingly, typical MA(+) cations and larger FA(+) cations both have rather low barriers as well, indicating that the cation molecules can migrate in the perovskite sensitizers when a bias voltage is applied. These results can explain the ion displacement scenario recently proposed by experiments. With the dilute diffusion theory, we discuss that smaller vacancy concentrations (higher crystallinity) and replacement of MA(+) with larger cation molecules will be essential for suppressing hysteresis as well as preventing aging behavior of PSC photosensitizers.

  1. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses

    SciTech Connect

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-08-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observed that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.

  2. A Description of the Full Particle Orbit Following SPIRAL Code for Simulating Fast-ion Experiments in Tokamaks

    SciTech Connect

    Kramer, G.J.; Budny, R.V.; Bortolon, A.; Fredrickson, E.D.; Fu, G.Y.; Heidbrink, W.W.; Nazikian, R.; Valeo, E.; Van Zeeland, M.A.

    2012-07-27

    The numerical methods used in the full particle-orbit following SPIRAL code are described and a number of physics studies performed with the code are presented to illustrate its capabilities. The SPIRAL code is a test-particle code and is a powerful numerical tool to interpret and plan fast-ion experiments in Tokamaks. Gyro-orbit effects are important for fast ions in low-field machines such as NSTX and to a lesser extent in DIII-D. A number of physics studies are interlaced between the description of the code to illustrate its capabilities. Results on heat loads generated by a localized error-field on the DIII-D wall are compared to measurements. The enhanced Triton losses caused by the same localized error-field are calculated and compared to measured neutron signals. MHD activity such as tearing modes and Toroidicity-induced Alfven Eigenmodes (TAEs) have a profound effect on the fast-ion content of Tokamak plasmas and SPIRAL can calculate the effects of MHD activity on the confined and lost fast-ion population as illustrated for a burst of TAE activity in NSTX. The interaction between Ion Cyclotron Range of Frequency (ICRF) heating and fast ions depends solely on the gyro-motion of the fast ions and is captured exactly in the SPIRAL code. A calculation of ICRF absorption on beam ions in ITER is presented. The effects of high harmonic fast wave heating on the beam-ion slowing-down distribution in NSTX is also studied.

  3. Data for evaluation of fast kurtosis strategies, b-value optimization and exploration of diffusion MRI contrast

    NASA Astrophysics Data System (ADS)

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-08-01

    Here we describe and provide diffusion magnetic resonance imaging (dMRI) data that was acquired in neural tissue and a physical phantom. Data acquired in biological tissue includes: fixed rat brain (acquired at 9.4 T) and spinal cord (acquired at 16.4 T) and in normal human brain (acquired at 3 T). This data was recently used for evaluation of diffusion kurtosis imaging (DKI) contrasts and for comparison to diffusion tensor imaging (DTI) parameter contrast. The data has also been used to optimize b-values for ex vivo and in vivo fast kurtosis imaging. The remaining data was obtained in a physical phantom with three orthogonal fiber orientations (fresh asparagus stems) for exploration of the kurtosis fractional anisotropy. However, the data may have broader interest and, collectively, may form the basis for image contrast exploration and simulations based on a wide range of dMRI analysis strategies.

  4. Data for evaluation of fast kurtosis strategies, b-value optimization and exploration of diffusion MRI contrast

    PubMed Central

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-01-01

    Here we describe and provide diffusion magnetic resonance imaging (dMRI) data that was acquired in neural tissue and a physical phantom. Data acquired in biological tissue includes: fixed rat brain (acquired at 9.4 T) and spinal cord (acquired at 16.4 T) and in normal human brain (acquired at 3 T). This data was recently used for evaluation of diffusion kurtosis imaging (DKI) contrasts and for comparison to diffusion tensor imaging (DTI) parameter contrast. The data has also been used to optimize b-values for ex vivo and in vivo fast kurtosis imaging. The remaining data was obtained in a physical phantom with three orthogonal fiber orientations (fresh asparagus stems) for exploration of the kurtosis fractional anisotropy. However, the data may have broader interest and, collectively, may form the basis for image contrast exploration and simulations based on a wide range of dMRI analysis strategies. PMID:27576023

  5. Simulation of fast-ion-driven Alfvén eigenmodes on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, Youjun; Todo, Y.; Pei, Youbin; Li, Guoqiang; Qian, Jinping; Xiang, Nong; Zhou, Deng; Ren, Qilong; Huang, Juan; Xu, Liqing

    2016-02-01

    Kinetic-MHD hybrid simulations are carried out to investigate possible fast-ion-driven modes on the Experimental Advanced Superconducting Tokamak. Three typical kinds of fast-ion-driven modes, namely, toroidicity-induced Alfvén eigenmodes, reversed shear Alfvén eigenmodes, and energetic-particle continuum modes, are observed simultaneously in the simulations. The simulation results are compared with the results of an ideal MHD eigenvalue code, which shows agreement with respect to the mode frequency, dominant poloidal mode numbers, and radial location. However, the modes in the hybrid simulations take a twisted structure on the poloidal plane, which is different from the results of the ideal MHD eigenvalue code. The twist is due to the radial phase variation of the eigenfunction, which may be attributed to the non-perturbative kinetic effects of the fast ions. By varying the stored energy of fast ions to change the fast ion drive in the simulations, it is demonstrated that the twist (i.e., the radial phase variation) is positively correlated with the fast ion drive.

  6. Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface.

    PubMed

    Feng, Zhuoluo A; El Gabaly, Farid; Ye, Xiaofei; Shen, Zhi-Xun; Chueh, William C

    2014-07-09

    Electrochemical incorporation reactions are ubiquitous in energy storage and conversion devices based on mixed ionic and electronic conductors, such as lithium-ion batteries, solid-oxide fuel cells and water-splitting membranes. The two-way traffic of ions and electrons across the electrochemical interface, coupled with the bulk transport of mass and charge, has been challenging to understand. Here we report an investigation of the oxygen-ion incorporation pathway in CeO2-δ (ceria), one of the most recognized oxygen-deficient compounds, during hydrogen oxidation and water splitting. We probe the response of surface oxygen vacancies, electrons and adsorbates to the electrochemical polarization at the ceria-gas interface. We show that surface oxygen-ion transfer, mediated by oxygen vacancies, is fast. Furthermore, we infer that the electron transfer between cerium cations and hydroxyl ions is the rate-determining step. Our in operando observations reveal the precise roles of surface oxygen vacancy and electron defects in determining the rate of surface incorporation reactions.

  7. Effect of exchangeable cations on apparent diffusion of Ca 2+ ions in Na- and Ca-montmorillonite mixtures

    NASA Astrophysics Data System (ADS)

    Kozaki, T.; Sawaguchi, T.; Fujishima, A.; Sato, S.

    Compacted Na-bentonite, of which the major mineral is montmorillonite, is a candidate buffer material for the geological disposal of high-level radioactive waste. A potential alteration of the bentonite in a repository is the partial replacement of the exchangeable cations of Na + with Ca 2+. The Ca 2+ cations could be released from cementitious materials and diffuse into the buffer material in the repository. In this study, to evaluate the alteration that could reduce the performance of the bentonite buffer, the apparent diffusion coefficients of HTO and Ca 2+ ions were determined from non-steady, one-dimensional diffusion experiments using Na- and Ca-montmorillonite mixtures with different ionic equivalent fractions of Ca 2+ ions. The apparent diffusion coefficient of HTO at a dry density of 1.0 Mg m -3 slightly increased with an increase in the ionic equivalent fraction of Ca 2+ ions. However, the apparent diffusion coefficient of Ca 2+ and the activation energy for diffusion at the same dry density were independent of the ionic equivalent fraction of Ca 2+ ions. These findings suggest that unlike HTO, which can be postulated to diffuse mainly in pore water, Ca 2+ ion diffusion could occur predominantly in interlayer spaces, of which the basal spacing was determined to be constant by the XRD technique.

  8. Diffusion of a Highly-Charged Supramolecular Assembly: Direct Observation of Ion-Association in Water

    SciTech Connect

    University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth; Pluth, Michael D.; Tiedemann, Bryan E.F.; van Halbeek, Herman; Nunlist, Rudi; Raymond, Kenneth N.

    2007-10-22

    Understanding the solution behavior of supramolecular assemblies is essential for a full understanding of the formation and chemistry of synthetic host-guest systems. While the interaction between host and guest molecules is generally the focus of mechanistic studies of host-guest complexes, the interaction of the host-guest complex with other species in solution remains largely unknown, although in principle accessible by diffusion studies. Several NMR techniques are available to monitor diffusion and have recently been reviewed. Pulsed gradient spin-echo (PGSE) NMR methods have attracted increasing interest, since they allow diffusion coefficients to be measured with high accuracy; they have been successfully used with observation of {sup 7}Li and {sup 31}P nuclei as well as with {sup 1}H NMR. We report here the direct measurement of diffusion coefficients to observe ion-association interactions by counter cations with a highly-charged supramolecular assembly. Raymond and coworkers have described the design and chemistry of a class of metal-ligand supramolecular assemblies over the past decade. The [Ga{sub 4}L{sub 6}]{sup 12-} (L = 1,5-bis(2,3-dihydroxybenzamido)naphthalene) (1) (Figure 1) assembly has garnered the most attention, with the exploration of the dynamics and mechanism of guest exchange as well as the ability of 1 to achieve either stoichiometric or catalytic reactions inside its interior cavity. Recent studies have revealed the importance of counter cations in solution on the chemistry of 1. During the mechanistic study of the C-H bond activation of aldehydes by [Cp*Ir(PMe{sub 3})(olefin){sup +} {contained_in} 1]{sup 11-} a stepwise guest dissociation mechanism with an ion-paired intermediate was proposed. Similarly, in the mechanism for the hydrolysis of iminium cations generated from the 3-aza Cope rearrangement of enammonium cations in 1, the presence of an exterior ion association was part of the kinetic model. To further substantiate the

  9. Fast-ion effects during test blanket module simulation experiments in DIII-D

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Budny, B. V.; Ellis, R.; Gorelenkova, M.; Heidbrink, W. W.; Kurki-Suonio, T.; Nazikian, R.; Salmi, A.; Schaffer, M. J.; Shinohara, K.; Snipes, J. A.; Spong, D. A.; Koskela, T.; Van Zeeland, M. A.

    2011-10-01

    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mock-up of two test blanket modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot, predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot, which is predicted to be different among the various codes.

  10. Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents.

    PubMed

    Zimmermann, Stefan; Barth, Sebastian; Baether, Wolfgang K M; Ringer, Joachim

    2008-09-01

    Ion mobility spectrometry (IMS) is a well-known method for detecting hazardous compounds in air. Typical applications are the detection of chemical warfare agents, highly toxic industrial compounds, explosives, and drugs of abuse. Detection limits in the low part per billion range, fast response times, and simple instrumentation make this technique more and more popular. In particular, there is an increasing demand for miniaturized low-cost IMS for hand-held devices and air monitoring of public areas by sensor networks. In this paper, we present a miniaturized aspiration condenser type ion mobility spectrometer for fast detection of chemical warfare agents. The device is easy to manufacture and allows single substance identification down to low part per billion-level concentrations within seconds. The improved separation power results from ion focusing by means of geometric constraints and fluid dynamics. A simple pattern recognition algorithm is used for the identification of trained substances in air. The device was tested at the German Armed Forces Scientific Institute for Protection Technologies-NBC-Protection. Different chemical warfare agents, such as sarin, tabun, soman, US-VX, sulfur mustard, nitrogen mustard, and lewisite were tested. The results are presented here.

  11. Diffusion, trapping, and isotope exchange of plasma implanted deuterium in ion beam damaged tungsten

    NASA Astrophysics Data System (ADS)

    Barton, Joseph Lincoln

    Tritium accumulation in nuclear fusion reactor materials is a major concern for practical and safe fusion energy. This work examines hydrogen isotope exchange as a tritium removal technique, analyzes the effects of neutron damage using high energy copper ion beams, and introduces a diffusion coefficient that is a function of the concentration of trapped atoms. Tungsten samples were irradiated with high energy (0.5 - 5 MeV) copper ions for controlled levels of damage - 10-3 to 10-1 displacements per atom (dpa) - at room temperature. Samples were then exposed to deuterium plasma at constant temperature (˜ 380 K) to a high fluence of 1024 ions/m2, where retention is at is maximized (i.e. saturated). By then subsequently exposing these samples to fractions of this fluence with hydrogen plasma, isotope exchange rates were observed. The resulting deuterium still trapped in the tungsten is then measured post mortem. Nuclear reaction analysis (NRA) gives the depth resolved deuterium retention profile with the 3He(D,p) 4He reaction, and thermal desorption spectroscopy (TDS) gives the total amount of deuterium trapped in the tungsten by heating a sample in vacuum up to 1200 K and measuring the evaporated gas molecules with a residual gas analyzer. Isotope exchange data show that hydrogen atoms can displace trapped deuterium atoms efficiently only up to the first few microns, but does not affect the atoms trapped at greater depths. In ion damaged tungsten, measurements showed a significant increase in retention in the damage region proportional to dpa 0.66, which results in a significant spike in total retention, and isotope exchange in damaged samples is still ineffective at depths greater than a few microns. Thus, isotope exchange is not an affective tritium removal technique; however, these experiments have shown that trapping in material defects greatly affects diffusion. These experiments lead to a simplified diffusion model with defect densities as the only free

  12. Invariant Fast Diffusion on the Surfaces of Ultrastable and Aged Molecular Glasses.

    PubMed

    Zhang, Yue; Fakhraai, Zahra

    2017-02-10

    Surface diffusion of molecular glasses is found to be orders of magnitude faster than bulk diffusion, with a stronger dependence on the molecular size and intermolecular interactions. In this study, we investigate the effect of variations in bulk dynamics on the surface diffusion of molecular glasses. Using the tobacco mosaic virus as a probe particle, we measure the surface diffusion on glasses of the same composition but with orders of magnitude of variations in bulk relaxation dynamics, produced by physical vapor deposition, physical aging, and liquid quenching. The bulk fictive temperatures of these glasses span over 35 K, indicating 13 to 20 orders of magnitude changes in bulk relaxation times. However, the surface diffusion coefficients on these glasses are measured to be identical at two temperatures below the bulk glass transition temperature T_{g}. These results suggest that surface diffusion has no dependence on the bulk relaxation dynamics when measured below T_{g}.

  13. Invariant Fast Diffusion on the Surfaces of Ultrastable and Aged Molecular Glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Fakhraai, Zahra

    2017-02-01

    Surface diffusion of molecular glasses is found to be orders of magnitude faster than bulk diffusion, with a stronger dependence on the molecular size and intermolecular interactions. In this study, we investigate the effect of variations in bulk dynamics on the surface diffusion of molecular glasses. Using the tobacco mosaic virus as a probe particle, we measure the surface diffusion on glasses of the same composition but with orders of magnitude of variations in bulk relaxation dynamics, produced by physical vapor deposition, physical aging, and liquid quenching. The bulk fictive temperatures of these glasses span over 35 K, indicating 13 to 20 orders of magnitude changes in bulk relaxation times. However, the surface diffusion coefficients on these glasses are measured to be identical at two temperatures below the bulk glass transition temperature Tg . These results suggest that surface diffusion has no dependence on the bulk relaxation dynamics when measured below Tg.

  14. Ion acceleration by petawatt class laser pulses and pellet compression in a fast ignition scenario

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Londrillo, P.; Liseykina, T. V.; Macchi, A.; Sgattoni, A.; Turchetti, G.

    2009-07-01

    Ion drivers based on standard acceleration techniques have faced up to now several difficulties. We consider here a conceptual alternative to more standard schemes, such as HIDIF (Heavy Ion Driven Inertial Fusion), which are still beyond the present state of the art of particle accelerators, even though the requirements on the total beam energy are lowered by fast ignition scenarios. The new generation of petawatt class lasers open new possibilities: acceleration of electrons or protons for the fast ignition and eventually light or heavy ions acceleration for compression. The pulses of chirped pulse amplification (CPA) lasers allow ions acceleration with very high efficiency at reachable intensities ( I˜1021 W/cm2), if circularly polarized light is used since we enter in the radiation pressure acceleration (RPA) regime. We analyze the possibility of accelerating carbon ion bunches by interaction of a circularly polarized pulses with an ultra-thin target. The advantage would be compactness and modularity, due to identical accelerating units. The laser efficiency required to have an acceptable net gain in the inertial fusion process is still far from the presently achievable values both for CPA short pulses and for long pulses used for direct illumination. Conversely the energy conversion efficiency from the laser pulse to the ion bunch is high and grows with the intensity. As a consequence the energy loss is not the major concern. For a preliminary investigation of the ions bunch production we have used the PIC code ALaDyn developed to analyze the results of the INFN-CNR PLASMONX experiment at Frascati National Laboratories (Rome, Italy) where the 0.3 PW laser FLAME will accelerate electrons and protons. We present the results of some 1D simulations and parametric scan concerning the acceleration of carbon ions that we suppose to be fully ionized. Circularly polarized laser pulses of 50 J and 50-100 fs duration, illuminating a 100 μm2 area of a 20 nm thick carbon

  15. Diffusion of water and sodium counter-ions in nanopores of a β-lactoglobulin crystal: a molecular dynamics study.

    PubMed

    Malek, Kourosh; Odijk, Theo; Coppens, Marc-Olivier

    2005-07-01

    The dynamics of water and sodium counter-ions (Na(+)) in a C222(1) orthorhombic β-lactoglobulin crystal is investigated by means of 5 ns molecular dynamics simulations. The effect of the fluctuation of the protein atoms on the motion of water and sodium ions is studied by comparing simulations in a rigid and in a flexible lattice. The electrostatic interactions of sodium ions with the positively charged LYS residues inside the crystal channels significantly influence the ionic motion. According to our results, water molecules close to the protein surface undergo an anomalous diffusive motion. On the other hand, the motion of water molecules further away from the protein surface is normal diffusive. Protein fluctuations affect the diffusion constant of water, which increases from 0.646 ± 0.108 to 0.887 ± 0.41 nm(2) ns(-1), when protein fluctuations are taken into account. The pore size (0.63-1.05 nm) and the water diffusivities are in good agreement with previous experimental results. The dynamics of sodium ions is disordered. LYS residues inside the pore are the main obstacles to the motion of sodium ions. However, the simulation time is still too short for providing a precise description of anomalous diffusion of sodium ions. The results are not only of interest for studying ion and water transport through biological nanopores, but may also elucidate water-protein and ion-protein interactions in protein crystals.

  16. Fast dose analysis of movement effects during treatments with scanned proton and carbon-ion beams

    NASA Astrophysics Data System (ADS)

    Vignati, A.; Varasteh Anvar, M.; Giordanengo, S.; Monaco, V.; Attili, A.; Donetti, M.; Marchetto, F.; Mas Milian, F.; Ciocca, M.; Russo, G.; Sacchi, R.; Cirio, R.

    2017-01-01

    Charged particle therapy delivered using scanned pencil beams shows the potential to produce better dose conformity than conventional radiotherapy, although the dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of engines to monitor the dose as it is being delivered is highly desirable, in order to enhance the development of adaptive treatment techniques in hadrontherapy. A tool for fast dose distributions analysis is presented, which integrates on GPU a Fast Forward Planning, a Fast Image Deformation algorithm, a fast computation of Gamma-Index and Dose-Volume Histogram. The tool is being interfaced with the Dose Delivery System and the Optical Tracking System of a synchrotron-based facility to investigate the feasibility to quantify, spill by spill, the effects of organ movements on dose distributions during treatment deliveries with protons and carbon-ions. The dose calculation and comparison times for a patient treated with protons on a 61.3 cm3 planning target volume, a CT matrix of 512x512x125 voxels, and a computation matrix of 170x170x125 voxels are within 1 s per spill. In terms of accuracy, the absolute dose differences compared with benchmarked Treatment Planning System results are negligible (<10-4 Gy).

  17. Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye O.; Van Eester, D.; Wauters, T.; Lerche, E.; Ongena, J.

    2015-02-01

    For the continuous operation of future tokamak-reactors like DEMO, non-inductively driven toroidal plasma current is needed. Bootstrap current, due to the pressure gradient, and current driven by auxiliary heating systems are currently considered as the two main options. This paper addresses the current drive (CD) potential of the ion cyclotron resonance frequency (ICRF) heating system in DEMO-like plasmas. Fast wave CD scenarios are evaluated for both the standard midplane launch and an alternative case of exciting the waves from the top of the machine. Optimal ICRF frequencies and parallel wave numbers are identified to maximize the CD efficiency. Limitations of the high frequency ICRF CD operation are discussed. A simplified analytical method to estimate the fast wave CD efficiency is presented, complemented with the discussion of its dependencies on plasma parameters. The calculated CD efficiency for the ICRF system is shown to be similar to those for the negative neutral beam injection and electron cyclotron resonance heating.

  18. Fast electrons from electron-ion collisions in strong laser fields

    NASA Astrophysics Data System (ADS)

    Kull, H.-J.; Tikhonchuk, V. T.

    2005-06-01

    Electron-ion collisions in the presence of a strong laser field lead to a distribution of fast electrons with maximum energy Emax=(k0+2v0)2/2(a.u.), where k0 is the impact and v0 the quiver velocity of the electron. The energy spectrum is calculated by two approaches: (1) The time-dependent Schrödinger equation is numerically solved for wave packet scattering from a one-dimensional softcore Coulomb potential. Multiphoton energy spectra are obtained demonstrating a separation of the energy spectrum into an exponential distribution for transmission and a plateau distribution for reflection. (2) The energy spectrum is analytically calculated in the framework of classical instantaneous Coulomb collisions with random impact parameters and random phases of the laser field. An exact solution for the energy spectrum is obtained from which the fraction of fast electrons in the plateau region can be estimated.

  19. A new equation in two dimensional fast magnetoacoustic shock waves in electron-positron-ion plasmas

    SciTech Connect

    Masood, W.; Jehan, Nusrat; Mirza, Arshad M.

    2010-03-15

    Nonlinear properties of the two dimensional fast magnetoacoustic waves are studied in a three-component plasma comprising of electrons, positrons, and ions. In this regard, Kadomtsev-Petviashvili-Burger (KPB) equation is derived using the small amplitude perturbation expansion method. Under the condition that the electron and positron inertia are ignored, Burger-Kadomtsev-Petviashvili (Burger-KP) for a fast magnetoacoustic wave is derived for the first time, to the best of author's knowledge. The solutions of both KPB and Burger-KP equations are obtained using the tangent hyperbolic method. The effects of positron concentration, kinematic viscosity, and plasma beta are explored both for the KPB and the Burger-KP shock waves and the differences between the two are highlighted. The present investigation may have relevance in the study of nonlinear electromagnetic shock waves both in laboratory and astrophysical plasmas.

  20. Surfactant-mediated dissolution of metformin hydrochloride tablets: wetting effects versus ion pairs diffusivity.

    PubMed

    Desai, Divyakant; Wong, Benjamin; Huang, Yande; Ye, Qingmei; Tang, Dan; Guo, Hang; Huang, Ming; Timmins, Peter

    2014-03-01

    The aqueous solubility of metformin (pKa: 2.8 and 11.5) in the pH range of 1.2-6.8 is 300 mg/mL. Thus, the dissolution of metformin hydrochloride tablets should be pH independent. However, 850 mg metformin hydrochloride tablets dissolved more slowly in pH 1.2 and 4.5 dissolution media than in pH 6.8 medium. It is hypothesized that the additional protonation of metformin at the acidic pH results in higher solvation and a larger hydrodynamic radius, leading to slower diffusion and dissolution. This hypothesis was supported by the observation that cationic metformin and anionic sodium lauryl sulfate (SLS), 0.1% (w/v), formed an insoluble salt (1:2 molar ratio) at pH 1.2 and 4.5, but not at pH 6.8. SLS at 0.01% (w/v) in all three media enhanced metformin dissolution. The slower metformin dissolution at pH 1.2 and 4.5 media with SLS can be attributed to the formation of metformin-lauryl sulfate (Met-LS) (1:2 and 1:1) ion pairs, which are more hydrophobic than Met-LS (1:1) ion pairs at pH 6.8. Slower metformin diffusivity in pH 4.5 with 0.05% (w/v) SLS was observed by diffusion-ordered spectroscopy nuclear magnetic resonance. Improved metformin wetting by SLS outweighed the lower diffusivity of metformin-LS ion pairs because similar enhancement in dissolution was noted with 0.5% (w/v) nonionic polysorbate 80.

  1. Diffusion of hydroxyl ions from calcium hydroxide and Aloe vera pastes.

    PubMed

    Batista, Victor Eduardo de Souza; Olian, Douglas Dáquila; Mori, Graziela Garrido

    2014-01-01

    This study evaluated the diffusion through the dentinal tubules of hydroxyl ions from different calcium hydroxide (CH) pastes containing Aloe vera. Sixty single-rooted bovine teeth were used. The tooth crowns were removed, the root canals were instrumented and the specimens were assigned to 4 groups (n=15) according to the intracanal medication: Group CH/S - CH powder and saline paste; Group CH/P - CH powder and propylene glycol paste; Group CH/A - calcium hydroxide powder and Aloe vera gel paste; Group CH/A/P - CH powder, Aloe vera powder and propylene glycol paste. After placement of the root canal dressings, the teeth were sealed coronally and apically with a two-step epoxy adhesive. The teeth were placed in identified flasks containing deionized water and stored in an oven with 100% humidity at 37 °C. After 3 h, 24 h, 72 h, 7 days, 15 days and 30 days, the deionized water in the flasks was collected and its pH was measured by a pH meter. The obtained data were subjected to statistical analysis at a significance level of 5%. The results demonstrated that all pastes provided diffusion of hydroxyl ions through the dentinal tubules. The combination of Aloe vera and CH (group CH/A) provided a constant release of calcium ions. Group CH/A/P showed the highest pH at 24 and 72 h. In conclusion, the experimental pastes containing Aloe vera were able to enable the diffusion of hydroxyl ions through the dentinal tubules.

  2. Fast calculations of the spectral diffuse-to-global ratios for approximating spectral irradiance at the street canyon level

    NASA Astrophysics Data System (ADS)

    Carrasco-Hernandez, Roberto; Smedley, Andrew R. D.; Webb, Ann R.

    2016-05-01

    Two radiative transfer models are presented that simplify calculations of street canyon spectral irradiances with minimum data input requirements, allowing better assessment of urban exposures than can be provided by standard unobstructed radiation measurements alone. Fast calculations improve the computational performance of radiation models, when numerous repetitions are required in time and location. The core of the models is the calculation of the spectral diffuse-to-global ratios (DGR) from an unobstructed global spectral measurement. The models are based on, and have been tested against, outcomes of the SMARTS2 algorithm (i.e. Simple Model of the Atmospheric Radiative Transfer of Sunshine). The modelled DGRs can then be used to partition global spectral irradiance values into their direct and diffuse components for different solar zenith angles. Finally, the effects of canyon obstructions can be evaluated independently on the direct and diffuse components, which are then recombined to give the total canyon irradiance. The first model allows ozone and aerosol inputs, while the second provides a further simplification, restricted to average ozone and aerosol contents but specifically designed for faster calculations. To assess the effect of obstructions and validate the calculations, a set of experiments with simulated obstructions (simulated canyons) were performed. The greatest source of uncertainty in the simplified calculations is in the treatment of diffuse radiation. The measurement-model agreement is therefore dependent on the region of the sky obscured and ranges from <5 % at all wavelengths to 20-40 % (wavelength dependent) when diffuse sky only is visible from the canyon.

  3. Precipitation of fast ion beams from the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Zelenyi, L. M.; Bosqued, J. M.; Kovrazhkin, R. A.

    1992-01-01

    This paper presents a model of precipitated fluxes from the PSBL and CPS. Simulation results and data from Aureol-3 spacecraft indicate the presence of velocity dispersed precipitated ion structures (VDIS) at the poleward edge of the auroral oval. These structures are associated with fast ion beams in the PSBL region of the earth's magnetotail, confirming previous experimental results. The simulations also reveal possible substructuring of the VDIS. The bulk of the PSBL population which is not precipitated is very effectively thermalized and quasi-isotropized after multiple interactions with the magnetotail current layer. After each reflection cycle some part of the distribution is precipitated and forms multiple 'echoes' of VDIS. The CPS distributions occurring as a result of scattering, convection, multiple reflections and Fermi acceleration appear isotropic in the simulation model. This paper portrays the important role of the VDIS auroral region medium for complicated and energetically significant processes occurring in different regions of the distant magnetotail.

  4. Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries.

    PubMed

    Wang, Chengliang; Xu, Yang; Fang, Yaoguo; Zhou, Min; Liang, Liying; Singh, Sukhdeep; Zhao, Huaping; Schober, Andreas; Lei, Yong

    2015-03-04

    Organic sodium-ion batteries (SIBs) are potential alternatives of current commercial inorganic lithium-ion batteries for portable electronics (especially wearable electronics) because of their low cost and flexibility, making them possible to meet the future flexible and large-scale requirements. However, only a few organic SIBs have been reported so far, and most of them either were tested in a very slow rate or suffered significant performance degradation when cycled under high rate. Here, we are focusing on the molecular design for improving the battery performance and addressing the current challenge of fast-charge and -discharge. Through reasonable molecular design strategy, we demonstrate that the extension of the π-conjugated system is an efficient way to improve the high rate performance, leading to much enhanced capacity and cyclability with full recovery even after cycled under current density as high as 10 A g(-1).

  5. Absolute infrared vibrational band intensities of molecular ions determined by direct laser absorption spectroscopy in fast ion beams

    SciTech Connect

    Keim, E.R.; Polak, M.L.; Owrutsky, J.C.; Coe, J.V.; Saykally, R.J. )

    1990-09-01

    The technique of direct laser absorption spectroscopy in fast ion beams has been employed for the determination of absolute integrated band intensities ({ital S}{sup 0}{sub {ital v}}) for the {nu}{sub 3} fundamental bands of H{sub 3}O{sup +} and NH{sup +}{sub 4}. In addition, the absolute band intensities for the {nu}{sub 1} fundamental bands of HN{sup +}{sub 2} and HCO{sup +} have been remeasured. The values obtained in units of cm{sup {minus}2} atm{sup {minus}1} at STP are 1880(290) and 580(90) for the {nu}{sub 1} fundamentals of HN{sup +}{sub 2} and HCO{sup +}, respectively; and 4000(800) and 1220(190) for the {nu}{sub 3} fundamentals of H{sub 3}O{sup +} and NH{sup +}{sub 4}, respectively. Comparisons with {ital ab} {ital initio} results are presented.

  6. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics

    SciTech Connect

    Ong, Mitchell T.; Verners, Osvalds; Draeger, Erik W.; van Duin, Adri C. T.; Lordi, Vincenzo; Pask, John E.

    2014-12-19

    We report that lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF $\\bar{6}$ anion. Li+ prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li+ solvation. Corresponding analysis for the PF $\\bar{6}$ anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. In conclusion, these results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.

  7. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics

    DOE PAGES

    Ong, Mitchell T.; Verners, Osvalds; Draeger, Erik W.; ...

    2014-12-19

    We report that lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF more » $$\\bar{6}$$ anion. Li+ prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li+ solvation. Corresponding analysis for the PF $$\\bar{6}$$ anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. In conclusion, these results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.« less

  8. Effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induced stresses in spherical composition-gradient electrodes

    SciTech Connect

    Zhang, Kai; Li, Yong; Zheng, Bailin

    2015-09-14

    The composition-gradient electrode material is considered as one of the most promising materials for lithium-ion batteries because of its excellent electrochemical performance and thermal stability. In this work, the effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induce stress in the composition-gradient electrodes were studied. The coupling equations of elasticity and diffusion under both potentiostatic charging and galvanostatic charging were developed to obtain the distributions of both the Li-ions concentration and the stress. The results indicated that the effects of the concentration-dependent elastic modulus on the Li-ions diffusion and the diffusion-induce stresses are controlled by the lithiation induced stiffening factor in the composition-gradient electrodes: a low stiffening factor at the center and a high stiffening factor at the surface lead to a significant effect, whereas a high stiffening factor at the center and a low stiffening factor at the surface result in a minimal effect. The results in this work provide guidance for the selection of electrode materials.

  9. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  10. Electron removal from H0(n) in fast collisions with multiply charged ions

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Meyer, F. W.

    1982-09-01

    The cross sections for electron removal from highly excited (n=9-24) hydrogen atoms in fast collisions with multiply charged (q=1-5) N, O, and Ar ions were investigated in an ion-atom crossed-beams experiment. The ion-atom collisions occurred inside a deflector where a moderate electrostatic field of up to 1.8 kV/cm was applied. The range of collision velocity (vc) investigated is vc=1.0v1-2.0v1, where v1=2.2×108 cm/s is the Bohr velocity. The electron-removal cross section was found to be independent of ion species for a given q and vc, to increase as q2 for a given vc, and to decrease as v-2c for a given q. These q and vc dependences of the experimental cross section are in accord with classical Coulomb ionization theories. The experimental n dependence of the cross section differs significantly from the theoretically predicted dependence, but the difference can be accounted for if we assume the presence of the external electric field in the collision volume reduces the ionization energy.

  11. Xenon diffusion following ion implantation into feldspar - Dependence on implantation dose

    NASA Technical Reports Server (NTRS)

    Melcher, C. L.; Burnett, D. S.; Tombrello, T. A.

    1982-01-01

    The diffusion properties of xenon implanted into feldspar, a major mineral in meteorites and lunar samples, are investigated in light of the importance of xenon diffusion in the interpretation of early solar system chronologies and the retention time of solar-wind-implanted Xe. Known doses of Xe ions were implanted at an energy of 200 keV into single-crystal plagioclase targets, and depth profiles were measured by alpha particle backscattering before and after annealing for one hour at 900 or 1000 C. The fraction of Xe retained following annealing is found to be strongly dependent on implantation dose, being greatest at a dose of 3 x 10 to the 15th ions/sq cm and decreasing at higher and lower doses. Xe retention is also observed to be unaffected by two-step anneals, or by implantation with He or Ar. Three models of the dose-dependent diffusion properties are considered, including epitaxial crystal regrowth during annealing controlled by the extent of radiation damage, the creation of trapping sites by radiation damage, and the inhibition of recrystallization by Xe during annealing

  12. Ion Diffusion in Battery Materials Probed with βNMR and μSR

    NASA Astrophysics Data System (ADS)

    McKenzie, Iain; Cortie, David; Cottrell, Stephen; Harada, Masashi; Kiefl, Robert; Levy, Philip; Macfarlane, Andrew; McFadden, Ryan; Morris, Gerald; Ogata, Shin-Ichi; Pearson, Matthew; Sugiyama, Jun

    2016-09-01

    Radioactive beam magnetic resonance techniques, β-detected NMR (β-NMR) and muon spin rotation and relaxation (μSR), have been used to study the microscopic diffusion of lithium ions and muons (Mu+), which can be considered light protons, in poly(ethylene oxide) (PEO), a common polymer electrolyte in lithium ion batteries. β-NMR measurements were performed on thin films of PEO with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium trifluoroacetate (LiTFA) with monomer-to-salt ratios of 8.3. Hopping of 8Li+ above 250 K follows an Arrhenius law in all of the films. The diffusion parameters of 8Li+ in the salt-containing films are strongly correlated with the ionicity of the lithium salt rather than the glass transition temperature of the sample. The intrinsic hop rate increases exponentially with ionicity, while the activation energy for hopping increases approximately linearly going from 6 . 3 +/- 0 . 2 kJ/mol in PEO:LiTFA to 17 . 8 +/- 0 . 2 kJ/mol in PEO:LiTFSI. 8Li+ diffusion is fastest in pure PEO. Hopping of Mu+ is observed in pure PEO above the glass transition temperature with an activation barrier of 11 . 8 +/- 0 . 1 kJ/mol.

  13. Calculation of multicomponent ionic diffusion from zero to high concentration: II. Inclusion of associated ion species

    NASA Astrophysics Data System (ADS)

    Felmy, Andrew R.; Weare, John H.

    1991-01-01

    This paper presents a theoretical model of multicomponent ionic diffusion which is valid to high concentration for systems which show ion association. The development is completely general for species which do not react with the solvent. It is demonstrated that the Onsager phenomenological coefficients for associated ion species can be unambiguously determined only in solutions where the concentration of these species can be independently measured. In all other instances, only combinations of the Onsager coefficients for the bare ions and the ion pairs can be experimentally determined. The results of our formulations are contrasted with those of more simplified models for systems containing Na 2SO 4 and MgSO 4, as well as for multicomponent natural seawater. The differences between our model and simplified models are significant, especially at high concentration. Inconsistencies which may develop with the use of the simplified approaches are demonstrated. Our approach requires considerable data which are not available at temperatures other than 25°C. Therefore, other approaches which are based only on data at infinite dilution are of great interest. We show here that, if chemical potential derivatives are included in the infinite dilution model of Nernst and Hartley which uses only infinite dilution mobilities, the model can be extended to slightly concentrated solutions. This extended Nernst-Hartley model gives good agreement with all of the existing experimental mutual diffusion coefficient data at concentrations below about 0.2 M in the six component system Na-K-Ca-Mg-Cl-SO 4-H 2O. This may be the most reliable way to extend infinite dilution data into more concentrated regions. In the systems we have studied, the inclusion of ion-association species for weakly interacting species does not appear to provide significant improvement over our generalized Nernst-Hartley model.

  14. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.

    PubMed

    Wohlmuth, Dominik; Epp, Viktor; Wilkening, Martin

    2015-08-24

    The development of safe and long-lasting all-solid-state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic-scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long-range as well as short-range Li ion dynamics in the glass-ceramic Li7 P3 S11 . Li(+) diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li(+) diffusivity, which is reflected in a so-called diffusion-induced (6) Li NMR spin-lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×10(8) s(-1) , which corresponds to a Li(+) ion conductivity in the order of 10(-4) to 10(-3) S cm(-1) . Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7 P3 S11 . In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through-going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7 P3 S11 crystallites. As a result of this, long-range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long-range ionic conduction. If we are to succeed in solid-state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation

  15. Mitigation of MHD induced fast-ion redistribution in MAST and implications for MAST-Upgrade design

    NASA Astrophysics Data System (ADS)

    Keeling, D. L.; Barrett, T. R.; Cecconello, M.; Challis, C. D.; Hawkes, N.; Jones, O. M.; Klimek, I.; McClements, K. G.; Meakins, A.; Milnes, J.; Turnyanskiy, M.; the MAST Team

    2015-01-01

    The phenomenon of the redistribution of neutral beam fast ions due to magnetohydrodynamic (MHD) activity in plasma has been observed on many tokamaks and more recently has been a focus of research on MAST (Turnyanskiy et al 2013 Nucl. Fusion 53 053016). n = 1 fishbone modes are observed to cause a large decrease in the neutron emission rate indicating the existence of a significant perturbation of the fast-ion population in the plasma. Theoretical work on fishbone modes states that the fast-ion distribution itself acts as the source of free energy driving the modes that cause the redistribution. Therefore a series of experiments have been carried out on MAST to investigate a range of plasma densities at two neutral-beam power levels to determine the region within this parameter space in which fishbone activity and consequent fast-ion redistribution is suppressed. Analysis of these experiments shows complete suppression of fishbone activity at high densities with increasing activity and fast-ion redistribution at lower densities and higher neutral-beam power, accompanied by strong evidence that the redistribution effect primarily affects a specific region in the plasma core with a weaker effect over a wider region of the plasma. The results also indicate the existence of correlations between gradients in the modelled fast-ion distribution function, the amplitude and growth rate of the fishbone modes, and the magnitude of the redistribution effect. The same analysis has been carried out on models of MAST-Upgrade baseline plasma scenarios to determine whether significant fast-ion redistribution due to fishbone modes is likely to occur in that device. A simple change to the neutral-beam injector geometry is proposed which is shown to have a significant mitigating effect in terms of the fishbone mode drive and is therefore expected to allow effective plasma heating and current drive over a wider range of plasma conditions in MAST-Upgrade.

  16. Lithium ion adsorption and diffusion on black phosphorene nanotube: A first-principles study

    NASA Astrophysics Data System (ADS)

    Cao, Jin; Shi, Jing; Hu, Yinquan; Wu, Musheng; Ouyang, Chuying; Xu, Bo

    2017-01-01

    Li ion storage performance of the single-walled black phosphorene nanotube (PNT), which is considered as potential anode materials for high-performance Li-ion batteries (LIBs), is studied from first-principles calculations. The Li ion adsorption, diffusion and structural evolution of the one-dimensional armchair type PNT (aPNT) upon Li intercalation on the inside (in-PNT) and outside (out-PNT) surfaces were explored, comparing with that of the two-dimensional phosphorene (Psheet). A maximum Li storage capacity (at the intercalated state of Li22P44) is evaluated to be 432 mAh/g. It is also shown that the in-PNT system has higher adsorption energy and lower Li diffusion energy barrier compared with that of the Psheet and the out-PNT systems. The reason on why the better Li storage performance of the in-PNT is also studied from charge distribution and transfer analysis. These results suggest that PNT can be served as potential anode material for LIBs.

  17. Improving beam spectral and spatial quality by double-foil target in laser ion acceleration for ion-driven fast ignition

    SciTech Connect

    Huang, Chengkun; Albright, Brian J

    2010-07-16

    Mid-Z ion driven fast ignition inertial fusion requires ion beams of 100s of MeV energy and < 10% energy spread. An overdense run-scale foil target driven by a high intensity laser pulse can produce an ion beam that has attractive properties for this application. The Break Out Afterburner (BOA) is one laser-ion acceleration mechanism proposed to generate such beams, however the late stages of the BOA tend to produce too large of an energy spread. The spectral and spatial qualities of the beam quickly evolve as the ion beam and co-moving electrons continue to interact with the laser. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the co-moving electrons and improve the ion beam energy spread. Particle-In-Cell simulations reveal the dynamics of the ion beam under control. Optimal conditions for improving the spectral and spatial spread of the ion beam is explored for current laser and target parameters, leading to generation of ion beams of energy 100s of MeV and 6% energy spread, a vital step for realizing ion-driven fast ignition.

  18. Measurement and Simulation of Deuterium Balmer-Alpha Emission from First-Orbit Fast Ions and the Application to Neutral Density and General Fast-Ion Loss Detection in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Bolte, Nathan Glynn

    Spectra of the Balmer-alpha radiation of first-orbit fast ions after charge exchange with edge neutrals have been measured in the DIII-D tokamak. Several collimated optics systems view the edge region---while avoiding any active beams---and carry light to a spectrometer tuned to the region of the 656.1 nm deuterium-alpha line. Viewing geometry and the high energy of the lost ions produce Doppler shifts, which effectively separate the fast-ion contributions from the bright, cold edge light. Modulation of the fast-ion source allows for time-evolving background subtraction. A model has been developed for the spectra of these first-orbit fast ions. The passive fast-ion D-alpha simulation (P-FIDAsim) is a forward model consisting of an experimentally- validated beam model, an ion orbit-following code, a collisional-radiative model, and a synthetic spectrometer. Eighty-six experimental spectra were obtained using 6 different neutral beam fast-ion sources and 13 different viewing chords. Parameters such as plasma current, toroidal field, electron density, plasma cross-sectional shape, and number of x-points were varied. Uncalibrated experimental spectra have an overall Spearman rank correlation coefficient with the shape of simulated spectra of 0.58 with subsets of cases rising to a correlation of 0.80. A single set of calibrated spectra (shot 152817) was measured and is used to estimate the neutral density throughout the cross-section of the tokamak. This is done by inverting the simulated spectra in order to find the best neutral density (in a least squares sense) required to best match the experimental spectra. The resulting 2D neutral density shows the expected increase toward each x-point. The average neutral density is found to be 3.3 x 105cm -3 a the magnetic axis, 2.3 x 108cm -3 in the core, 8.1 x 109 cm-3 at the plasma boundary, and 1.1 x 10 11cm-3 near the wall. A technique is developed which--after us first-orbit light to calibrate the system--can quantify

  19. Fusion product studies via fast ion D-D and D-3He fusion on JET

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Hellsten, T.; Kiptily, V. G.; Craciunescu, T.; Eriksson, J.; Fitzgerald, M.; Girardo, J.-B.; Goloborod'ko, V.; Hellesen, C.; Hjalmarsson, A.; Johnson, T.; Kazakov, Y.; Koskela, T.; Mantsinen, M.; Monakhov, I.; Nabais, F.; Nocente, M.; Perez von Thun, C.; Rimini, F.; Santala, M.; Schneider, M.; Tardocchi, M.; Tsalas, M.; Yavorskij, V.; Zoita, V.; Contributors, JET

    2016-11-01

    Dedicated fast ion D-D and D-3He fusion experiments were performed on JET with carbon wall (2008) and ITER-like wall (2014) for testing the upgraded neutron and energetic ion diagnostics of fusion products. Energy spectrum of D-D neutrons was the focus of the studies in pure deuterium plasmas. A significant broadening of the energy spectrum of neutrons born in D-D fast fusion was observed, and dependence of the maximum D and D-D neutron energies on plasma density was established. Diagnostics of charged products of aneutronic D-3He fusion reactions, 3.7 MeV alpha-particles similar to those in D-T fusion, and 14.6 MeV protons, were the focus of the studies in D-3He plasmas. Measurements of 16.4 MeV gamma-rays born in the weak secondary branch of D(3He, γ)5Li reaction were used for assessing D-3He fusion power. For achieving high yield of D-D and D-3He reactions at relatively low levels of input heating power, an acceleration of D beam up to the MeV energy range was used employing 3rd harmonic (f=3{{f}CD} ) ICRH technique. These results were compared to the techniques of D beam injection into D-3He mixture, and 3He-minority ICRH in D plasmas.

  20. Modeling fast-ion transport during toroidal Alfven eigenmode avalanches in National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, E. D.; Bell, R. E.; Darrow, D. S.; Gorelenkov, N. N.; Kramer, G. J.; Medley, S. S.; White, R. B.; Crocker, N. A.; Kubota, S.; Levinton, F. M.; Yuh, H.; Liu, D.; Podesta, M.; Tritz, K.

    2009-12-15

    Experiments on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] found strong bursts of toroidal Alfven eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA[C. Z. Cheng, Phys. Rep. 211, 1 (1992)] and ORBIT[R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE was modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE was then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate, however, further refinements in both the simulation of the TAE structure and in the modeling of the fast-ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.

  1. Fast O(sup +) ion flow observed around Venus at low altitudes

    NASA Technical Reports Server (NTRS)

    Kasprzak, W. T.; Niemann, H. B.

    1988-01-01

    The Pioneer Venus Orbiter Neutral Mass Spectrometer (ONMS) has observed fast O(+) ions with an energy exceeding 40 eV in the spacecraft reference frame. The orbit of the spacecraft is nearly polar with periapsis near the equator. The ONMS is mounted at an angle to the spin axis which, in turn, is perpendicular to the ecliptic plane. From the spin modulated data the direction of the ion flow in that plane can be determined. Data from the first 11 diurnal cycles (orbits 1 to 2475) are vector averaged in order to display the general flow pattern. Plots of the averaged data are presented. On the dayside and near the terminators, where fast O(+) is observed near the ionopause, the directions are more or less parallel to the planet's surface with evidence of an asymmetry about the Sun-Venus line. On the nightside below 2000 km and near the equator there is a preferred dawn to dusk direction while at higher altitudes (lower solar zenith angles and higher latitudes) the flow direction is more antisunward. The averaged flux for this time period is 8x10 to the 5th/sq cm/s with a maximum of 5x10 to the 8th.

  2. Anomalous fast ion losses at high β on the tokamak fusion test reactor

    SciTech Connect

    Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R.

    2015-03-15

    This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of β-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the β-limit in high field plasmas were not found at low field, even for β's 50% higher than the empirical β-limit of β{sub n} ≈ 2 at high field. Comparisons of experimentally measured β's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest β, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.

  3. Collisions of fast multicharged ions in gas targets: Charge transfer and ionization

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.

    1981-05-01

    Measurements of cross sections for charge transfer and ionization of H2 and rare-gas targets were made with fast, highly stripped projectiles in charge states as high as 59+. An empirical scaling rule for electron-capture cross section in H2 valid at energies above 275 keV/amu was found. Similar scaling might exist for other target gases. Cross sections are generally in good agreement with theory. A scaling rule was found for electron loss from H in collisions with a fast highly stripped projectile, based on Olson's classical-trajectory Monte-Carlo calculations, and confirmed by measurements in an H2 target. A similar scaling rule was for net ionization of rare-gas targets, based on Olson's CTMC calculations and the independent-electron model. Measurements are essentially consistent with the scaled cross sections. Calculations and measurements of recoil-ion charge-state spectra show large cross sections for the production of highly charged slow recoil ions.

  4. Anomalous fast ion losses at high β on the tokamak fusion test reactor

    NASA Astrophysics Data System (ADS)

    Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R.

    2015-03-01

    This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of β-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the β-limit in high field plasmas were not found at low field, even for β's 50% higher than the empirical β-limit of βn ≈ 2 at high field. Comparisons of experimentally measured β's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest β, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.

  5. Structure, hydrolysis, and diffusion of aqueous vanadium ions from Car-Parrinello molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen; Klyukin, Konstantin; Alexandrov, Vitaly

    2016-09-01

    A molecular level understanding of the properties of electroactive vanadium species in aqueous solution is crucial for enhancing the performance of vanadium redox flow batteries. Here, we employ Car-Parrinello molecular dynamics simulations based on density functional theory to investigate the hydration structures, first hydrolysis reaction, and diffusion of aqueous V2+, V3+, VO2+, and VO 2+ ions at 300 K. The results indicate that the first hydration shell of both V2+ and V3+ contains six water molecules, while VO2+ is coordinated to five and VO 2+ to three water ligands. The first acidity constants (pKa) estimated using metadynamics simulations are 2.47, 3.06, and 5.38 for aqueous V3+, VO 2+ , and VO2+, respectively, while V2+ is predicted to be a fairly weak acid in aqueous solution with a pKa value of 6.22. We also show that the presence of chloride ions in the first coordination sphere of the aqueous VO 2+ ion has a significant impact on water hydrolysis leading to a much higher pKa value of 4.8. This should result in a lower propensity of aqueous VO 2+ for oxide precipitation reaction in agreement with experimental observations for chloride-based electrolyte solutions. The computed diffusion coefficients of vanadium species in water at room temperature are found to increase as V 3 + < VO 2 + < V O 2 + < V 2 + and thus correlate with the simulated hydrolysis constants, namely, the higher the pKa value, the greater the diffusion coefficient.

  6. Where should MMS look for the electron and ion diffusion regions?

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Goldman, M. V.; Newman, D. L.; Olshevsky, V.

    2015-12-01

    Our message is that if we think of reconnection with the usual cartoon, the MMS mission should follow the advice of Indiana Jones: X never marks the spot. Based on 3D fully kinetic simulations started with a well defined x-line, we observe that reconnection transitions towards a more chaotic regime. Two fronts develop downstream of the x-line where the outflow meets the pre-existing plasma. In the fronts an instability develops caused by the local gradients of the density. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability with the formation of "fingers" of plasma and embedded magnetic fields. These fingers interact and produce secondary reconnection sites. We present several different diagnostics that prove the existence of these secondary reconnection sites. Each site is surrounded by its own electron diffusion region.At the fronts the ions are generally not magnetized and considerable ion slippage is present. The discovery we present is that electrons are also slipping, forming localized diffusion regions near secondary reconnection sites [1].The consequence of this discovery is twofold. First, the instability in the fronts has strong energetic implications. We observe that the energy transfer locally is very strong, an order of magnitude stronger than in the "X" line. However, this energy transfer is of both signs as it is natural for a wavy rippling with regions of magnetic to kinetic and regions of kinetic to magnetic energy conversion.Second, and most important for this session, is that MMS should not limit the search for electron diffusion regions to the location marked with X in all reconnection cartoons. Our simulations predict more numerous and perhaps more easily measurable electron diffusion regions in the fronts. [1] Lapenta, G et al., Nature Physics 11, 690-695 (2015)

  7. Development of ultra fast liquid chromatographic method for simultaneous determination of nitrendipine and carvone in skin diffusate samples.

    PubMed

    Gannu, Ramesh; Yamsani, Vamshi Vishnu; Yamsani, Shravan Kumar; Palem, Chinna Reddy; Voruganti, Swathi; Yamsani, Madhusudan Rao

    2009-12-05

    A simple and sensitive reverse phase ultra fast liquid chromatographic (UFLC) method for simultaneous determination of nitrendipine and carvone in skin diffusate samples and microemulsions was developed and validated. The separation was achieved using a gradient mobile phase, on an Onyx column. The eluents were monitored by photodiode array detection. The linearity ranges of proposed method were 0.125-50 microg mL(-1) and 0.125-30 microg mL(-1) for nitrendipine and carvone respectively. The intra-day and inter-day coefficient of variation and percent error values of the assay method were less than 10%. The method was found to be precise, accurate, and specific during the study. The method was successfully applied for simultaneous estimation of nitrendipine and carvone in ex vivo skin diffusate samples and microemulsions.

  8. A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation

    NASA Astrophysics Data System (ADS)

    Lin, Xue-lei; Lu, Xin; Ng, Micheal K.; Sun, Hai-Wei

    2016-10-01

    A fast accurate approximation method with multigrid solver is proposed to solve a two-dimensional fractional sub-diffusion equation. Using the finite difference discretization of fractional time derivative, a block lower triangular Toeplitz matrix is obtained where each main diagonal block contains a two-dimensional matrix for the Laplacian operator. Our idea is to make use of the block ɛ-circulant approximation via fast Fourier transforms, so that the resulting task is to solve a block diagonal system, where each diagonal block matrix is the sum of a complex scalar times the identity matrix and a Laplacian matrix. We show that the accuracy of the approximation scheme is of O (ɛ). Because of the special diagonal block structure, we employ the multigrid method to solve the resulting linear systems. The convergence of the multigrid method is studied. Numerical examples are presented to illustrate the accuracy of the proposed approximation scheme and the efficiency of the proposed solver.

  9. Variations of High-Energy Ions during Fast Plasma Flows and Dipolarization in the Plasma Sheet: Comparison Among Different Ion Species

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Nose, M.; Miyashita, Y.; Lui, A.

    2014-12-01

    We investigate the responses of different ion species (H+, He+, He++, and O+) to fast plasma flows and local dipolarization in the plasma sheet in terms of energy density. We use energetic (9-210 keV) ion composition measurements made by the Geotail satellite at r = 10~31 RE. The results are summarized as follows: (1) whereas the O+-to-H+ ratio decreases with earthward flow velocity, it increases with tailward flow velocity with Vx dependence steeper for perpendicular flows than for parallel flows; (2) for fast earthward flows, the energy density of each ion species increases without any clear preference for heavy ions; (3) for fast tailward flows the ion energy density increases initially, then it decreases to below pre-flow levels except for O+; (4) the O+-to-H+ ratio does not increase through local dipolarization irrespective of dipolarization amplitude, background BZ, X distance, and VX; (5) in general, the H+ and He++ ions behave similarly. Result (1) can be attributed to radial transport along with the earthward increase of the background O+-to-H+ ratio. Results (2) and (4) indicate that ion energization associated with local dipolarization is not mass-dependent possibly because in the energy range of our interest the ions are not magnetized irrespective of species. In the tailward outflow region of reconnection, where the plasma sheet becomes thinner, the H+ ions escape along the field line more easily than the O+ ions, which possibly explains result (3). Result (5) suggests that the solar wind is the primary source of the high-energy H+ ions.

  10. A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics.

    PubMed

    Mabey, P; Richardson, S; White, T G; Fletcher, L B; Glenzer, S H; Hartley, N J; Vorberger, J; Gericke, D O; Gregori, G

    2017-01-30

    The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas.

  11. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    NASA Astrophysics Data System (ADS)

    Rolly, Gaboriaud; Fabien, Paumier; Bertrand, Lacroix

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y2O3, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe2+ at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin2ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  12. A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics

    DOE PAGES

    Mabey, Paul; Richardson, S.; White, T. G.; ...

    2017-01-30

    The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modesmore » and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Finally, our results have profound consequences in the interpretation of transport coefficients in dense plasmas.« less

  13. A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics

    PubMed Central

    Mabey, P.; Richardson, S.; White, T. G.; Fletcher, L. B.; Glenzer, S. H.; Hartley, N. J.; Vorberger, J.; Gericke, D. O.; Gregori, G.

    2017-01-01

    The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas. PMID:28134338

  14. Effect of silica sand on activation energy for diffusion of sodium ions in montmorillonite and silica sand mixture.

    PubMed

    Liu, Jinhong; Yamada, Hiromichi; Kozaki, Tamotsu; Sato, Seichi; Ohashi, Hiroshi

    2003-03-01

    The effect of silica sand on the diffusion of sodium ions in mixtures of montmorillonite and silica sand was studied by measuring the apparent diffusion coefficients, activation energies for diffusion, and the basal spacing of the mixed samples. These diffusion experiments suggest that the apparent diffusion coefficients of sodium ions in the mixed samples were almost the same as those of pure montmorillonite samples having the same partial dry densities of montmorillonite. The activation energy dependence for diffusion of sodium ions on the partial dry density was different between the mixed samples and the pure montmorillonite samples. The activation energy increased by adding silica sand at the partial dry density of 1.0 Mg m(-3), and decreased by adding silica sand at the partial dry densities higher than 1.2 Mg m(-3). A change in the XRD profile was observed after adding silica sand at the partial dry density of 1.6 Mg m(-3). Here, a three-water-layer hydrate state of montmorillonite was found in the mixed sample whereas only a two-water-layer hydrate state was observed in the pure montmorillonite sample. These experimental results suggest that silica sand changed the montmorillonite microstructure in the mixed samples, which then altered the sodium-ion diffusion process.

  15. Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media.

    PubMed

    Mu, Ying; Valim, Niksa; Niedre, Mark

    2013-06-15

    We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.

  16. Kinetic-MHD hybrid simulation of fishbone modes excited by fast ions on the experimental advanced superconducting tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Pei, Youbin; Xiang, Nong; Hu, Youjun; Todo, Y.; Li, Guoqiang; Shen, Wei; Xu, Liqing

    2017-03-01

    Kinetic-MagnetoHydroDynamic hybrid simulations are carried out to investigate fishbone modes excited by fast ions on the Experimental Advanced Superconducting Tokamak. The simulations use realistic equilibrium reconstructed from experiment data with the constraint of the q = 1 surface location (q is the safety factor). Anisotropic slowing down distribution is used to model the distribution of the fast ions from neutral beam injection. The resonance condition is used to identify the interaction between the fishbone mode and the fast ions, which shows that the fishbone mode is simultaneously in resonance with the bounce motion of the trapped particles and the transit motion of the passing particles. Both the passing and trapped particles are important in destabilizing the fishbone mode. The simulations show that the mode frequency chirps down as the mode reaches the nonlinear stage, during which there is a substantial flattening of the perpendicular pressure of fast ions, compared with that of the parallel pressure. For passing particles, the resonance remains within the q = 1 surface, while, for trapped particles, the resonant location moves out radially during the nonlinear evolution. In addition, parameter scanning is performed to examine the dependence of the linear frequency and growth rate of fishbones on the pressure and injection velocity of fast ions.

  17. Fast-ion deuterium alpha spectroscopic observations of the effects of fishbones in the Mega-Ampere Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Jones, O. M.; Michael, C. A.; McClements, K. G.; Conway, N. J.; Crowley, B.; Akers, R. J.; Lake, R. J.; Pinches, S. D.; the MAST Team

    2013-08-01

    Using the recently installed fast-ion deuterium alpha (FIDA) spectrometer, the effects of low-frequency (20-50 kHz) chirping energetic particle modes with toroidal mode number n ⩾ 1 on the neutral beam injection-driven fast-ion population in Mega-Ampere Spherical Tokamak (MAST) plasmas are considered. Results from the FIDA diagnostic are presented and discussed in the light of the present theoretical understanding of these modes, known as fishbones, in plasmas with reversed shear. Measurements of the fast-ion population reveal strong redistribution of fast ions in both real and velocity space as a result of the fishbones. Time-resolved measurements throughout the evolution of a fishbone show radial redistribution of fast ions with energies up to 95% of the primary beam injection energy. Correlations between changes in the FIDA signal and the peak time derivative of the magnetic field perturbation are observed in a limited range of operating scenarios. The transient reduction in signal caused by a fishbone may in some cases reach 50% of the signal intensity before mode onset.

  18. A rapid fast ion Fokker-Planck solver for integrated modelling of tokamaks

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Eriksson, L.-G.; Johnson, T.; Futtersack, R.; Artaud, J. F.; Dumont, R.; Wolle, B.; Contributors, ITM-TF

    2015-01-01

    The RISK (rapid ion solver for tokamaks) code for simulating the evolution of the distribution function of neutral beam injected ions (NBI) in tokamak plasmas is described. The code has been especially developed for use in integrated modelling frameworks. Within this context, a code needs to be modular, machine independent and fast. RISK fulfils all these conditions. The RISK code solves the bounce averaged Fokker-Planck equation for the species of the injected ions by expanding the distribution function in the eigenfunctions of the collisional pitch angle scattering operator. The velocity dependent coefficient functions are calculated with a finite element solver. Finite orbit width effects are handled by an ad hoc broadening algorithm of the NBI ionization source. In order to assess the validity of the approximations employed in RISK, a comparison with a full orbit following Monte Carlo code is presented. RISK is integrated into the CRONOS transport suite of codes (Artaud et al 2010 Nucl. Fusion 50 043001) and the European integrated modelling (EU-IM) framework (Falchetto et al 2014 Nucl. Fusion 54 043018). The RISK implementation in this platform is discussed and exemplified to show the strength of running simulation codes in a modular and machine independent environment for simulation of fusion plasmas.

  19. Alfvén eigenmode stability and fast ion loss in DIII-D and ITER reversed magnetic shear plasmas

    NASA Astrophysics Data System (ADS)

    Van Zeeland, M. A.; Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Spong, D. A.; Austin, M. E.; Fisher, R. K.; García Muñoz, M.; Gorelenkova, M.; Luhmann, N.; Murakami, M.; Nazikian, R.; Pace, D. C.; Park, J. M.; Tobias, B. J.; White, R. B.

    2012-09-01

    Neutral beam injection into reversed-magnetic shear DIII-D plasmas produces a variety of Alfvénic activity including toroidicity-induced Alfvén eigenmodes (TAEs) and reversed shear Alfvén eigenmodes (RSAEs). With measured equilibrium profiles as inputs, the ideal MHD code NOVA is used to calculate eigenmodes of these plasmas. The postprocessor code NOVA-K is then used to perturbatively calculate the actual stability of the modes, including finite orbit width and finite Larmor radius effects, and reasonable agreement with the spectrum of observed modes is found. Using experimentally measured mode amplitudes, fast ion orbit following simulations have been carried out in the presence of the NOVA calculated eigenmodes and are found to reproduce the dominant energy, pitch and temporal evolution of the losses measured using a large bandwidth scintillator diagnostic. The same analysis techniques applied to a DT 8 MA ITER steady-state plasma scenario with reversed-magnetic shear and both beam ion and alpha populations show Alfvén eigenmode instability. Both RSAEs and TAEs are found to be unstable with maximum growth rates occurring for toroidal mode number n = 6 and the majority of the drive coming from fast ions injected by the 1 MeV negative ion beams. AE instability due to beam ion drive is confirmed by the non-perturbative code TAEFL. Initial fast ion orbit following simulations using the unstable modes with a range of amplitudes (δB/B = 10-5-10-3) have been carried out and show negligible fast ion loss. The lack of fast ion loss is a result of loss boundaries being limited to large radii and significantly removed from the actual modes themselves.

  20. Structural, electronic, sodium diffusion and elastic properties of Na-P alloy anode for Na-ion batteries: Insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Lu, Huansheng; Xu, Bo; Shi, Jing; Wu, Musheng; Hu, Yinquan; Ouyang, Chuying

    2016-11-01

    Sodium-ion batteries (NIBs) as an alternative to lithium-ion batteries (LIBs) have recently received great attentions because of the relatively high abundance of sodium. Searching for suitable anode materials has always been a hot topic in the field of NIB study. Recent reports show that phosphorus-based materials are potential as the anode materials for NIBs. Using first-principles calculations, herein, we study the atomic and electronic structures, diffusion dynamics and intrinsic elastic properties of various Na-P alloy compounds (NaP5, Na3P11, NaP and Na3P) as the intermediate phases during Na extraction/insertion in phosphorus-based anode materials. It is found that all the crystalline phases of Na-P alloy phases considered in our study are semiconductors with band gaps larger than that of black phosphorus (BP). The calculations of Na diffusion dynamics indicate a relatively fast Na diffusion in these materials, which is important for good rate performance. In addition, the diffusion channels of sodium ions are one-dimensional in NaP5 phase and three-dimensional in other three phases (Na3P11, NaP and Na3P). Elastic constant calculations indicate that all four phases are mechanically stable. Among them, however, NaP5, Na3P11 and NaP alloy phases are ductile, while the fully sodiated phase Na3P is brittle. In order to improve the electrochemical performance of Na-P alloy anodes for NIBs, thus, promoting ductility of Na-P phase with high sodium concentration may be an effective way.

  1. Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering

    DOE PAGES

    Mamontov, Eugene

    2016-09-24

    In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less

  2. Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering

    SciTech Connect

    Mamontov, Eugene

    2016-09-24

    In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancy distance in the anion sublattice of the fluorite-related structure of bismuth oxide.

  3. Localized Fast-Ion Induced Heat Loads in Test Blanket Module Mockup Experiments on DIII-D

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Budny, R. V.; Ellis, R. A.; Nazikian, R.; McLean, A. G.; Brooks, N. H.; Schaffer, M. J.; van Zeeland, M. A.; Heidbrink, W. W.; Kurki-Suonio, T.; Koskela, T.; Shinohara, K.; Snipes, J. A.; Spong, D. A.

    2012-10-01

    Localized hot spots can be created in ITER on the Test Blanket Modules (TBMs) because the ferritic steel of the TBMs distorts the local magnetic field near the modules and alters fast ion confinement. Predicting the TBM heat load levels is important for assessing their effects on the ITER first wall. Experiments in DIII-D were carried out with a mock-up of the ITER TBM ferromagnetic error field to provide data for validation of fast-ion orbit following codes. The front surface temperature of the protective TBM tiles was imaged directly with a calibrated infrared camera and heat loads were extracted. The detailed spot sizes and measured heat loads are compared with results from heat load calculations performed with a suite of orbit following codes. The codes reproduce the hot spots well, thereby validating the codes and giving confidence in predictions for fast-ion heat loads in ITER.

  4. Diffusion in Coulomb crystals

    SciTech Connect

    Hughto, J.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2011-07-15

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions ''hop'' in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter {Gamma}=175 to Coulomb parameters up to {Gamma}=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  5. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  6. Ion transport through a charged cylindrical membrane pore contacting stagnant diffusion layers

    NASA Astrophysics Data System (ADS)

    Andersen, Mathias B.; Biesheuvel, P. M.; Bazant, Martin Z.; Mani, Ali

    2012-11-01

    Fundamental understanding of the ion transport in membrane systems by diffusion, electromigration and advection is important in widespread processes such as de-ionization by reverse osmosis and electrodialysis and electro-osmotic micropumps. Here we revisit the classical analysis of a single cylindrical pore, see e.g. Gross and Osterle [J Chem Phys 49, 228 (1968)]. We extend the analysis by including the well-established concept of contacting stagnant diffusion layers on either side of the pore; thus, the pore is not in direct equilibrium with the reservoirs. Inside the pore the ions are assumed to be in quasi-equilibrium in the radial direction with the surface charge on the pore wall and we obtain a 1D model by area-averaging. We demonstrate that in some extreme limits this model reduces to simpler models studied in the literature; see e.g. Yaroshchuk [J Membrane Sci 396, 43 (2012)]. Using our model we present predictions of important transport effects such as variation of transport numbers inside the membrane, onset of limiting current, and transient dynamics described by the method of characteristics.

  7. Influence of Water and Ion Diffusion on Generation and Progress of Bow-tie Tree

    NASA Astrophysics Data System (ADS)

    Kumazawa, Takao; Nakagawa, Wataru; Tsurumaru, Hidekazu

    Bow-tie tree(BTT) generated from contaminant, e.g., metal, carbon, amber(over cured resin) or void is a deterioration factor of XLPE cable. In particular, BTT in contact with inner or outer semi-conductive shield could significantly lower residual AC breakdown voltage of HV power cable. To evaluate influence of water and ion diffusion on generation and progress of BTT, we investigated relationship between water content of XLPE and the generation of BTT by various accelerated aging. The number of BTT in XLPE samples with accelerated aging under open condition, involving evaporation of water in which samples were immersed, was very large compared with closed condition. Furthermore, when samples were intermittently immersed in water, the number of BTT in samples was large compared with samples immersed continuously. In these experiments the generation of BTT seemed to have nothing to do with changes in water content before and after accelerated aging. Therefore, it was suggested that diffusion of ions rather than water in XLPE played an important role in the generation of BTT.

  8. Investigation of fast ion behavior using orbit following Monte-Carlo code in magnetic perturbed field in KSTAR

    NASA Astrophysics Data System (ADS)

    Shinohara, Kouji; Suzuki, Yasuhiro; Kim, Junghee; Kim, Jun Young; Jeon, Young Mu; Bierwage, Andreas; Rhee, Tongnyeol

    2016-11-01

    The fast ion dynamics and the associated heat load on the plasma facing components in the KSTAR tokamak were investigated with the orbit following Monte-Carlo (OFMC) code in several magnetic field configurations and realistic wall geometry. In particular, attention was paid to the effect of resonant magnetic perturbation (RMP) fields. Both the vacuum field approximation as well as the self-consistent field that includes the response of a stationary plasma were considered. In both cases, the magnetic perturbation (MP) is dominated by the toroidal mode number n  =  1, but otherwise its structure is strongly affected by the plasma response. The loss of fast ions increased significantly when the MP field was applied. Most loss particles hit the poloidal limiter structure around the outer mid-plane on the low field side, but the distribution of heat loads across the three limiters varied with the form of the MP. Short-timescale loss of supposedly well-confined co-passing fast ions was also observed. These losses started within a few poloidal transits after the fast ion was born deep inside the plasma on the high-field side of the magnetic axis. In the configuration studied, these losses are facilitated by the combination of two factors: (i) the large magnetic drift of fast ions across a wide range of magnetic surfaces due to a low plasma current, and (ii) resonant interactions between the fast ions and magnetic islands that were induced inside the plasma by the external RMP field. These effects are expected to play an important role in present-day tokamaks.

  9. Experimental Evaluation of Energy Transfer between Fast Ions and Alfven Eigenmodes

    NASA Astrophysics Data System (ADS)

    Nagaoka, Kenichi; Osakabe, Masaki; Isobe, Mitsutaka; Ogawa, Kunihiro; Suzuki, Yasuhiro; Kobayashi, Shinji; Yamamoto, Satoshi; Miyoshi, Yoshizumi; Katoh, Yuto; Fontdecaba, Josep Maria; Ascasibar, Enrique; LHD Team

    2016-10-01

    Recently, a new wave-particle analyzer was proposed to identify interaction between fast ions and Alfven eigenmodes [K. Nagaoka, 67th annual meeting of APS-DPP, savanna, 2015]. A data acquisition system for the wave-particle interaction analysis was developed for particle counting mode operation of neutral particle detectors. We recently applied the system to the Si-FNA detector signals in LHD and Heliotron J, and NPA signals in TJ-II. The first experimental results obtained in three devices are presented and the importance of the optimization of line of sight will be discussed. This research was supported by NIFS/NINS under the project of 'Promotion of International Network for Scientific Collaboration', NIFS Collaboration Research program (NIFS16KUHL068) and JSPS KAKENHI Grani-in-Aid for Young Scientists (A) 26709071.

  10. Energy losses from fast structured heavy ions in multiple collisions with molecules and nanoparticles

    SciTech Connect

    Matveev, V. I. Gusarevich, E. S.; Makarov, D. N.

    2009-11-15

    A nonperturbative method is developed to calculate the energy losses from fast, highly charged, heavy ions in collisions with complex molecules and nanoparticles. All possible processes of excitation and ionization of both projectile and target are taken into account. The contributions to energy losses due to multiple collisions are calculated, and the effect of target orientation with respect to the direction of projectile motion is examined. As examples, the energy losses in collisions with the XeF{sub 4} molecule and a C{sub 300} nanotube are determined. It is shown that the effect of multiple collisions leads to significant change in energy loss with target orientation, being insignificant for randomly oriented targets.

  11. An explanation for experimental observations of harmonic cyclotron emission induced by fast ions

    SciTech Connect

    Chen, K.R.; Horton, W.; Van Dam, J.W.

    1993-09-01

    An explanation, supported by numerical simulations and analytical theory, is given for the harmonic cyclotron emission induced by fast ions in tokamak plasmas - particular, for the emission observed at low harmonics in deuterium-deuterium md deuterium-tritium experiments in the Joint European Tokamak. We show that the first proton harmonic is one of the highest spectral peaks whereas the first alpha is weak. We also compare the relative spectral amplitudes of different harmonics. Our results axe consistent with the experimental observations. The simulations verify that the instabilities are caused by a weak relativistic mass effect. Simulation that a nonuniform magnetic field leads to no appreciable change in the growth and saturation amplitude of the waves.

  12. Toroidal momentum channeling of geodesic acoustic modes driven by fast ions

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Kasuya, N.; Itoh, K.; Kosuga, Y.; Lesur, M.; Hallatschek, K.; Itoh, S.-I.

    2017-03-01

    Toroidal momentum channeling by fast ion-driven geodesic acoustic mode (EGAM) is proposed based on a quasi-linear analysis. We focus on a branch due to the magnetic drift resonance. Without the magnetic drift resonance, the eigenfunction of the EGAM has up–down anti-symmetric property in the poloidal direction, and the toroidal momentum flux by the EGAM is zero. If the magnetic drift resonance is considered, the up–down anti-symmetry in the poloidal eigenfunction is violated, and, as a result, the toroidal momentum flux becomes finite. Comparing its magnitude to the other processes such as external momentum input, and the turbulent residual stress, the momentum flux induced by the EGAM is found to be significant in the total momentum balance. This suggests that EGAMs can be used as a control knob for the toroidal rotation.

  13. Fast Screening of Polycyclic Aromatic Hydrocarbons using Trapped Ion Mobility Spectrometry - Mass Spectrometry

    PubMed Central

    Castellanos, A.; Benigni, P.; Hernandez, D. R.; DeBord, J. D.; Ridgeway, M. E.; Park, M. A.

    2014-01-01

    In the present paper, we showed the advantages of trapped ion mobility spectrometry coupled too mass spectrometry (TIMS-MS) combined with theoretical calculations for fast identification (millisecond timescale) of polycyclic aromatic hydrocarbons (PAH) compounds from complex mixtures. Accurate PAH collision cross sections (CCS, in nitrogen as a bath gas) are reported for the most commonly encountered PAH compounds and the ability to separate PAH geometric isomers is shown for three isobaric pairs with mobility resolution exceeding 150 (3–5 times higher than conventional IMS devices). Theoretical candidate structures (optimized at the DFT/B3LYP level) are proposed for the most commonly encountered PAH compounds showing good agreement with the experimental CCS values (<5%). The potential of TIMS-MS for the separation and identification of PAH compounds from complex mixtures without the need of lengthy pre-separation steps is illustrated for the case of a complex soil mixture. PMID:25558291

  14. First principles study of the crystal, electronic structure, and diffusion mechanism of polaron-Na vacancy of Na3MnPO4CO3 for Na-ion battery applications

    NASA Astrophysics Data System (ADS)

    Debbichi, M.; Debbichi, L.; Dinh, Van An; Lebègue, S.

    2017-02-01

    Based on first principles calculations, we investigate the geometry, electronic structure, and diffusion mechanism of Na ions in Na3MnPO4CO3 using density functional theory with a Hubbard potential correction. Our results suggest that the structure of Na3MnPO4CO3 can be deintercalated with more than one Na ion, and that the removal of a Na ion can form a bound polaron. We find that our calculations of the intercalation voltages for the redox couples Mn2+ /Mn3+ and Mn3+ /Mn4+ agree very well with the experimental data. In addition, we demonstrate that Na in Na3MnPO4CO3 can diffuse in three directions with low activation energy barriers, allowing a fast charging rate.

  15. Survey of the high resolution frequency structure of the fast magnetosonic mode and proton energy diffusion associated with these waves

    NASA Astrophysics Data System (ADS)

    Boardsen, S. A.; Hospodarsky, G. B.; Kletzing, C.; Santolik, O.; Wygant, J. R.; MacDonald, E.; Pfaff, R. F., Jr.; Kurth, W. S.; Khazanov, G. V.

    2015-12-01

    The fast magnetosonic mode, also referred to as equatorial noise, occurs at frequencies mainly between the proton cyclotron frequency (fcp) and the lower hybrid frequency. The wave properties of this mode are characterized by a strong magnetic compressional component. These waves are observed around the magnetic equator in the Earth's inner magnetosphere. Case studies of the spectra of these waves have found the emissions to be composed of 1) harmonics, usually with spacing near the local fcp, 2) broad band hiss-like structure, or 3) a superposition of the two spectral types. No statistical studies of the frequency structure of these waves have been made. Using ~600,000 burst mode wave captures from the EMFISIS Wave Form Receiver and the EFW instrument on the Van Allen Probes spacecraft this mode will be identified in the high resolution frequency spectra and its frequency structure will be characterized. The variation of the frequency structure will be investigated as a function of normalized frequency, location, and geomagnetic conditions, and with spacecraft separation. The frequency structure will be compared with path integrated gain using proton ring distributions as the wave source. Recently the modulation of the fast magnetosonic mode has been reported, with modulation periods in the range of 30s to 240s. It has been proposed that frequency drift observed during each modulation is due to strong inward diffusion in energy of the proton ring distributions that generate these waves. As the inner edge of the ring distribution diffuses towards lower energies the band of unstable harmonics increases in frequency. If in the source region, for modulations with periods greater than say 100s, the inward energy diffusion should be observable in the HOPE proton data which has a cycle time of 24s.

  16. MO-G-BRF-07: Anomalously Fast Diffusion of Carbon Nanotubes Carriers in 3D Tissue Model

    SciTech Connect

    Wang, Y; Bahng, J; Kotov, N

    2014-06-15

    Purpose: We aim to investigate and understand diffusion process of carbon nanotubes (CNTs) and other nanoscale particles in tissue and organs. Methods: In this research, we utilized a 3D model tissue of hepatocellular carcinoma (HCC)cultured in inverted colloidal crystal (ICC) scaffolds to compare the diffusivity of CNTs with small molecules such as Rhodamine and FITC in vitro, and further investigated the transportation of CNTs with and without targeting ligand, TGFβ1. The real-time permeation profiles of CNTs in HCC tissue model with high temporal and spatial resolution was demonstrated by using standard confocal microscopy. Quantitative analysis of the diffusion process in 3D was carried out using luminescence intensity in a series of Z-stack images obtained for different time points of the diffusion process after initial addition of CNTs or small molecules to the cell culture and the image data was analyzed by software ImageJ and Mathematica. Results: CNTs display diffusion rate in model tissues substantially faster than small molecules of the similar charge such as FITC, and the diffusion rate of CNTs are significantly enhanced with targeting ligand, TGFβ1. Conclusion: In terms of the advantages of in-vitro model, we were able to have access to measuring the rate of CNT penetration at designed conditions with variable parameters. And the findings by using this model, changed our understanding about advantages of CNTs as nanoscale drug carriers and provides design principles for making new drug carriers for both treatment and diagnostics. Additionally the fast diffusion opens the discussion of the best possible drug carriers to reach deep parts of cancerous tissues, which is often a prerequisite for successful cancer treatment. This work was supported by the Center for Photonic and Multiscale Nanomaterials funded by National Science Foundation Materials Research Science and Engineering Center program DMR 1120923. The work was also partially supported by NSF

  17. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector

    SciTech Connect

    Pace, D. C. Fisher, R. K.; Van Zeeland, M. A.; Pipes, R.

    2014-11-15

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signature spanning across 50-140 keV. These calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.

  18. Fast electrons from electron-ion collisions in strong laser fields

    SciTech Connect

    Kull, H.-J.; Tikhonchuk, V.T.

    2005-06-15

    Electron-ion collisions in the presence of a strong laser field lead to a distribution of fast electrons with maximum energy E{sub max}=(k{sub 0}+2v{sub 0}){sup 2}/2(a.u.), where k{sub 0} is the impact and v{sub 0} the quiver velocity of the electron. The energy spectrum is calculated by two approaches: (1) The time-dependent Schroedinger equation is numerically solved for wave packet scattering from a one-dimensional softcore Coulomb potential. Multiphoton energy spectra are obtained demonstrating a separation of the energy spectrum into an exponential distribution for transmission and a plateau distribution for reflection. (2) The energy spectrum is analytically calculated in the framework of classical instantaneous Coulomb collisions with random impact parameters and random phases of the laser field. An exact solution for the energy spectrum is obtained from which the fraction of fast electrons in the plateau region can be estimated.

  19. Understanding ion cyclotron harmonic fast wave heating losses in the scrape off layer of tokamak plasmas

    SciTech Connect

    Bertelli, N; Jaeger, E F; Hosea, J C; Phillips, C K; Berry, L; Bonoli, P T; Gerhardt, S P; Green, D; LeBlanc, B; Perkins, R J; Ryan, P M; Taylor, G; Valeo, E J; Wilso, J R; Wright, J C

    2014-07-01

    Fast waves at harmonics of the ion cyclotron frequency, which have been used successfully on National Spherical Torus Experiment (NSTX), will also play an important role in ITER and are a promising candidate for the Fusion Nuclear Science Facility (FNSF) designs based on spherical torus (ST). Experimental studies of high harmonic fast waves (HHFW) heating on the NSTX have demonstrated that substantial HHFW power loss occurs along the open field lines in the scrape-off layer (SOL), but the mechanism behind the loss is not yet understood. The full wave RF code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain, is applied to specific NSTX discharges in order to predict the effects and possible causes of this power loss. In the studies discussed here, a collisional damping parameter has been implemented in AORSA as a proxy to represent the real, and most likely nonlinear, damping processes. A prediction for the NSTX Upgrade (NSTX-U) experiment, that will begin operation next year, is also presented, indicating a favorable condition for the experiment due to a wider evanescent region in edge density.*Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

  20. Modification of a metallic surface in a vacuum arc discharge plasma using thermally stimulated ion diffusion

    NASA Astrophysics Data System (ADS)

    Muboyadzhyan, S. A.

    2008-12-01

    A new process for modifying a metallic surface in a vacuum arc discharge plasma using thermally stimulated ion diffusion is considered. The effect of the bias voltage (negative substrate potential) on the processes that occur on the surface of a treated part is studied when the substrate material interacts with an accelerated metallic-ion flow. The phase and elemental compositions of the modified layer are studied for substrates made of nickel-based superalloys, austenitic and martensitic steels, and titanium-based alloys. The heat resistance, the salt corrosion resistance, and the corrosion cracking resistance of steels and titanium-based alloys are investigated after their modification in vacuum arc plasmas of pure metals (Ti, Zr, Al, Cr, Y) and related alloys. The surface modification caused by the thermally stimulated ion saturation of the surfaces of parts made from structural materials is shown to change the structural-phase states of their surfaces and, correspondingly, the properties of these materials in relation to the state of the surface.

  1. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.

    PubMed

    Liu, Quan; Ramanujam, Nirmala

    2007-04-01

    A scaling Monte Carlo method has been developed to calculate diffuse reflectance from multilayered media with a wide range of optical properties in the ultraviolet-visible wavelength range. This multilayered scaling method employs the photon trajectory information generated from a single baseline Monte Carlo simulation of a homogeneous medium to scale the exit distance and exit weight of photons for a new set of optical properties in the multilayered medium. The scaling method is particularly suited to simulating diffuse reflectance spectra or creating a Monte Carlo database to extract optical properties of layered media, both of which are demonstrated in this paper. Particularly, it was found that the root-mean-square error (RMSE) between scaled diffuse reflectance, for which the anisotropy factor and refractive index in the baseline simulation were, respectively, 0.9 and 1.338, and independently simulated diffuse reflectance was less than or equal to 5% for source-detector separations from 200 to 1500 microm when the anisotropy factor of the top layer in a two-layered epithelial tissue model was varied from 0.8 to 0.99; in contrast, the RMSE was always less than 5% for all separations (from 0 to 1500 microm) when the anisotropy factor of the bottom layer was varied from 0.7 to 0.99. When the refractive index of either layer in the two-layered tissue model was varied from 1.3 to 1.4, the RMSE was less than 10%. The scaling method can reduce computation time by more than 2 orders of magnitude compared with independent Monte Carlo simulations.

  2. q-solver equilibrium model with fast ion orbit width, velocity anisotropy and toroidal flow effects

    NASA Astrophysics Data System (ADS)

    Gorelenkov, Nikolai; Jardin, Steven

    2015-11-01

    We present a novel formulation for the plasma equilibrium problem using the q-solver framework together with the pressure coupling scheme for energetic particle (EP) contribution. The employed formulation accounts for the EP pressure anisotropy which is based on the moments of the velocity distribution function representation incorporating the finite orbit width (FOW) effects. The system of equations includes the toroidal plasma flow. These effects are important in applications for recently upgraded plasmas of NSTX-U and DIII-D where additional NBIs are installed. Strongly anisotropic beam ions accompanied by plasma rotation have to be addressed in various applications involving for example the stability of Alfvenic and internal kink modes. The anisotropy and rotational effects could be treated separately or together depending on applications. Fast ion anisotropic pressure tensor is computed using the set of basis functions. In particular we show that in the limit of zero orbit width any distribution function can satisfy the solvability requirements for Grad-Shafranov equation, which follows from the force balance along the magnetic field lines.

  3. Energy channeling from trapped to passing fast ions mediated by GAE/CAE activity in NSTX

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Belova, E.; Kramer, G.; Podesta, M.; Liu, D.

    2013-10-01

    In the National Spherical Torus Experiment, an increased charge exchange neutral flux localized at the neutral beam full injection energy is measured by the E||B Neutral Particle Analyzer. Termed the High-Energy Feature (HEF), it appears on the beam-injected energetic ion spectrum in discharges where NTM or kink modes (f < 10 kHz) are absent, TAE activity (f ~ 10-150 kHz) is weak and CAE/GAE activity (f ~ 400 - 1200 kHz) is robust. The HEF exhibits a growth time of t ~ 20-80 ms and develops a slowing down distribution that continues to evolve over periods > 100 ms. HEFs are observed only in H-mode discharges with NB power Pb >= 4 MW and in the pitch range v||/v ~ 0.7 - 0.9. The HEF appears to be caused by a CAE/GAE wave-particle interaction that modifies the fast ion distribution, fi(E,v||/v,r). This mechanism was studied using the SPIRAL code that evolves an initial TRANSP-calculated fi(E,v||/v,r) distribution in the presence of background plasma profiles under drive from wave-particle resonances with CAE/GAE Alfvén eigenmodes. Supported by U.S. Department of Energy under Contract No. DE-AC02-09CH11466.

  4. Effect of resonant magnetic perturbations on fast ion prompt loss in tokamaks

    NASA Astrophysics Data System (ADS)

    Mou, M. L.; Wang, Z. T.; Wu, N.; Chen, S. Y.; Tang, C. J.

    2017-04-01

    Fast ion prompt loss induced by resonant magnetic perturbations (RMPs) is simulated by solving Hamiltonian equations strictly in the guiding center coordinate system. Full orbit simulations show that the prompt loss rate can increase significantly in resonant regions when RMPs are added. Furthermore, the prompt loss rate is larger in the low-field side than in the high-field side in tokamak plasmas. Detailed analyses show that a number of trapped ions which lie near the center of the trapped region can be lost, because of the enhancement of radial orbit drifts induced by the resonance between RMPs and the unperturbed orbit. Meanwhile, orbit conversion from counter-passing orbit to trapped orbit occurs near the trapped-passing boundary in the low-field side, while it occurs near the co-counter boundary in the high-field side, both of which play an important role in prompt loss. Simulations also demonstrate a periodicity for orbit drifts, and the mechanism of drift periodicity results from the resonance between RMP and the equilibrium magnetic field.

  5. Simulation of a fast diffuse optical tomography system based on radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Motevalli, S. M.; Payani, A.

    2016-12-01

    Studies show that near-infrared (NIR) light (light with wavelength between 700nm and 1300nm) undergoes two interactions, absorption and scattering, when it penetrates a tissue. Since scattering is the predominant interaction, the calculation of light distribution in the tissue and the image reconstruction of absorption and scattering coefficients are very complicated. Some analytical and numerical methods, such as radiative transport equation and Monte Carlo method, have been used for the simulation of light penetration in tissue. Recently, some investigators in the world have tried to develop a diffuse optical tomography system. In these systems, NIR light penetrates the tissue and passes through the tissue. Then, light exiting the tissue is measured by NIR detectors placed around the tissue. These data are collected from all the detectors and transferred to the computational parts (including hardware and software), which make a cross-sectional image of the tissue after performing some computational processes. In this paper, the results of the simulation of an optical diffuse tomography system are presented. This simulation involves two stages: a) Simulation of the forward problem (or light penetration in the tissue), which is performed by solving the diffusion approximation equation in the stationary state using FEM. b) Simulation of the inverse problem (or image reconstruction), which is performed by the optimization algorithm called Broyden quasi-Newton. This method of image reconstruction is faster compared to the other Newton-based optimization algorithms, such as the Levenberg-Marquardt one.

  6. A Fast Algorithm for Denoising Magnitude Diffusion-Weighted Images with Rank and Edge Constraints

    PubMed Central

    Lam, Fan; Liu, Ding; Song, Zhuang; Schuff, Norbert; Liang, Zhi-Pei

    2015-01-01

    Purpose To accelerate denoising of magnitude diffusion-weighted images subject to joint rank and edge constraints. Methods We extend a previously proposed majorize-minimize (MM) method for statistical estimation that involves noncentral χ distributions and joint rank and edge constraints. A new algorithm is derived which decomposes the constrained noncentral χ denoising problem into a series of constrained Gaussian denoising problems each of which is then solved using an efficient alternating minimization scheme. Results The performance of the proposed algorithm has been evaluated using both simulated and experimental data. Results from simulations based on ex vivo data show that the new algorithm achieves about a factor of 10 speed up over the original Quasi-Newton based algorithm. This improvement in computational efficiency enabled denoising of large data sets containing many diffusion-encoding directions. The denoising performance of the new efficient algorithm is found to be comparable to or even better than that of the original slow algorithm. For an in vivo high-resolution Q-ball acquisition, comparison of fiber tracking results around hippocampus region before and after denoising will also be shown to demonstrate the denoising effects of the new algorithm. Conclusion The optimization problem associated with denoising noncentral χ distributed diffusion-weighted images subject to joint rank and edge constraints can be solved efficiently using an MM-based algorithm. PMID:25733066

  7. Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery

    PubMed Central

    Ma, Zhaohui; Wang, Yuesheng; Sun, Chunwen; Alonso, J. A.; Fernández-Díaz, M. T.; Chen, Liquan

    2014-01-01

    Sodium-ion batteries have attracted considerable interest as an alternative to lithium-ion batteries for electric storage applications because of the low cost and natural abundance of sodium resources. The materials with an open framework are highly desired for Na-ion insertion/extraction. Here we report on the first visualization of the sodium-ion diffusion path in Na3[Ti2P2O10F] through high-temperature neutron powder diffraction experiments. The evolution of the Na-ion displacements of Na3[Ti2P2O10F] was investigated with high-temperature neutron diffraction (HTND) from room temperature to 600°C; difference Fourier maps were utilized to estimate the Na nuclear-density distribution. Temperature-driven Na displacements indicates that sodium-ion diffusion paths are established within the ab plane. As an anode for sodium-ion batteries, Na3[Ti2P2O10F] exhibits a reversible capacity of ~100 mAh g−1 with lower intercalation voltage. It also shows good cycling stability and rate capability, making it promising applications in sodium-ion batteries. PMID:25427677

  8. Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery.

    PubMed

    Ma, Zhaohui; Wang, Yuesheng; Sun, Chunwen; Alonso, J A; Fernández-Díaz, M T; Chen, Liquan

    2014-11-27

    Sodium-ion batteries have attracted considerable interest as an alternative to lithium-ion batteries for electric storage applications because of the low cost and natural abundance of sodium resources. The materials with an open framework are highly desired for Na-ion insertion/extraction. Here we report on the first visualization of the sodium-ion diffusion path in Na3[Ti2P2O10F] through high-temperature neutron powder diffraction experiments. The evolution of the Na-ion displacements of Na3[Ti2P2O10F] was investigated with high-temperature neutron diffraction (HTND) from room temperature to 600°C; difference Fourier maps were utilized to estimate the Na nuclear-density distribution. Temperature-driven Na displacements indicates that sodium-ion diffusion paths are established within the ab plane. As an anode for sodium-ion batteries, Na3[Ti2P2O10F] exhibits a reversible capacity of ~100 mAh g(-1) with lower intercalation voltage. It also shows good cycling stability and rate capability, making it promising applications in sodium-ion batteries.

  9. The evolution of the ion diffusion region during collisionless magnetic reconnection in a force-free current sheet

    SciTech Connect

    Zhou, Fushun; Huang, Can Lu, Quanming; Wang, Shui; Xie, Jinlin

    2015-09-15

    Two-dimensional particle-in-cell simulation is performed to investigate magnetic reconnection in a force-free current sheet. The results show that the evolution of the ion diffusion region has two different phases. In the first phase, the electrons flow toward the X line along one pair of separatrices and away from the X line along the other pair of separatrices. Therefore, in the ion diffusion region, a distorted quadrupole structure of the out-of-plane magnetic field is formed, which is similar to that of a typical guide field reconnection in the Harris current sheet. In the second phase, the electrons move toward the X line along the separatrices and then flow away from the X line at the inner side of the separatrices. In the ion diffusion region, the out-of-plane magnetic field exhibits a characteristic quadrupole pattern with a good symmetry, which is similar to that of antiparallel reconnection in the Harris current sheet.

  10. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  11. Model of turnover kinetics in the lamellipodium: implications of slow- and fast- diffusing capping protein and Arp2/3 complex

    NASA Astrophysics Data System (ADS)

    McMillen, Laura M.; Vavylonis, Dimitrios

    2016-12-01

    Cell protrusion through polymerization of actin filaments at the leading edge of motile cells may be influenced by spatial gradients of diffuse actin and regulators. Here we study the distribution of two of the most important regulators, capping protein and Arp2/3 complex, which regulate actin polymerization in the lamellipodium through capping and nucleation of free barbed ends. We modeled their kinetics using data from prior single molecule microscopy experiments on XTC cells. These experiments have provided evidence for a broad distribution of diffusion coefficients of both capping protein and Arp2/3 complex. The slowly diffusing proteins appear as extended ‘clouds’ while proteins bound to the actin filament network appear as speckles that undergo retrograde flow. Speckle appearance and disappearance events correspond to assembly and dissociation from the actin filament network and speckle lifetimes correspond to the dissociation rate. The slowly diffusing capping protein could represent severed capped actin filament fragments or membrane-bound capping protein. Prior evidence suggests that slowly diffusing Apr2/3 complex associates with the membrane. We use the measured rates and estimates of diffusion coefficients of capping protein and Arp2/3 complex in a Monte Carlo simulation that includes particles in association with a filament network and diffuse in the cytoplasm. We consider two separate pools of diffuse proteins, representing fast and slowly diffusing species. We find a steady state with concentration gradients involving a balance of diffusive flow of fast and slow species with retrograde flow. We show that simulations of FRAP are consistent with prior experiments performed on different cell types. We provide estimates for the ratio of bound to diffuse complexes and calculate conditions where Arp2/3 complex recycling by diffusion may become limiting. We discuss the implications of slowly diffusing populations and suggest experiments to distinguish

  12. Development of a method to study positron diffusion in metals by the observation of positronium negative ions

    NASA Astrophysics Data System (ADS)

    Suzuki, Takuji; Terabe, Hiroki; Iida, Shimpei; Yamashita, Takashi; Nagashima, Yasuyuki

    2014-09-01

    We have developed a new method to study positron diffusion in metals. In this method, we observe positronium negative ions emitted from the sample surfaces after coating with alkali-metals to evaluate the yields of the positrons which return to the surfaces. γ-rays from the ions accelerated using an electric field are clearly distinguished from those emitted from pair-annihilation of positrons in the bulk or on the surface and self-annihilation of emitted positronium atoms. Reliable studies on positron diffusion in metals have been enabled by this method.

  13. Gyrokinetic study of the impact of the electron to ion heating ratio on the turbulent diffusion of highly charged impurities

    SciTech Connect

    Angioni, C.

    2015-10-15

    A gyrokinetic study based on numerical and analytical calculations is presented, which computes the dependence of the turbulent diffusion of highly charged impurities on the ratio of the electron to the ion heat flux of the plasma. Nonlinear simulations show that the size of the turbulent diffusion of heavy impurities can vary by one order of magnitude with fixed total heat flux and is an extremely sensitive function of the electron to ion heat flux ratio. Numerical linear calculations are found to reproduce the nonlinear results. Thereby, a quasi-linear analytical approach is used to explain the origin of this dependence.

  14. Model development of plasma implanted hydrogenic diffusion and trapping in ion beam damaged tungsten

    NASA Astrophysics Data System (ADS)

    Barton, J. L.; Wang, Y. Q.; Doerner, R. P.; Tynan, G. R.

    2016-10-01

    A Cu ion beam is used to induce controlled levels of damage (10-3, 10-2, and 10-1 dpa) in room temperature W samples. A single 5 MeV beam energy yielding a peaked damage profile 0.8 μm into the material, or three beam energies (0.5, 2, and 5 MeV) producing a relatively uniform damage profile from the near surface up to 0.8 μm were used. The W samples were then exposed to a D plasma ion fluence of 1024 ions m-2 at 380 K, and the resulting D retention was measured using the D(3He,p)4He reaction analysis (NRA) and thermal desorption spectroscopy (TDS). We observe that within experimental error there is no significant difference in retention whether the damage profile is peaked or uniform. The increase in retention is observed to increase proportional to \\text{dp}{{\\text{a}}0.66} estimated from the dpa peak calculated from the SRIM program. A simplified retention model is proposed that provides concentration profiles that can be directly compared to NRA data and total retention measurements. Taking the trapping energies due to three defect types calculated from density functional theory (DFT), the only free-parameters are three defect densities of in-grain monovacancies, dislocations, and grain boundary vacancies, and we assume these defects to be the dominant trapping locations. The model can fit D retention data in a pristine W sample within the experimental error of the measurements, and in subsequent modeling these intrinsic defect densities are then fixed. We model the retention profile after ion damage by adding the SRIM predicted vacancy profile to the intrinsic monovacancy defect density. Since the increase in retention, and therefore the increase in vacancy production, does not increase linearly with dpa, a correction factor is multiplied to the predicted vacancy profile to fit the data. A new diffusion coefficient is calculated with the model that is a function of the concentration of trapped atoms. This calculation may resolve discrepancies of various

  15. Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain

    PubMed Central

    Wu, Xue; Eggebrecht, Adam T.; Ferradal, Silvina L.; Culver, Joseph P.; Dehghani, Hamid

    2015-01-01

    Real-time imaging of human brain has become an important technique within neuroimaging. In this study, a fast and efficient sensitivity map generation based on Finite Element Models (FEM) is developed which utilises a reduced sensitivitys matrix taking advantage of sparsity and parallelisation processes. Time and memory efficiency of these processes are evaluated and compared with conventional method showing that for a range of mesh densities from 50000 to 320000 nodes, the required memory is reduced over tenfold and computational time fourfold allowing for near real-time image recovery. PMID:26601019

  16. ReaDDyMM: Fast Interacting Particle Reaction-Diffusion Simulations Using Graphical Processing Units

    PubMed Central

    Biedermann, Johann; Ullrich, Alexander; Schöneberg, Johannes; Noé, Frank

    2015-01-01

    ReaDDy is a modular particle simulation package combining off-lattice reaction kinetics with arbitrary particle interaction forces. Here we present a graphical processing unit implementation of ReaDDy that employs the fast multiplatform molecular dynamics package OpenMM. A speedup of up to two orders of magnitude is demonstrated, giving us access to timescales of multiple seconds on single graphical processing units. This opens up the possibility of simulating cellular signal transduction events while resolving all protein copies. PMID:25650912

  17. Method of experimental determination of the kinetic constants in fast polymerization reactions in nonisothermal diffusion conditions

    SciTech Connect

    Prochukhan, Yu.A.; Berlin, A.A.; Enikolopyan, N.S.

    1986-09-01

    A new method for the experimental determination of the kinetic constants k/sub p/ and k/sub t/ in fast polymerization reactions on the example of cationic (under the effect of AlCl/sub 3/, BF/sub 3/, and other catalysts) liquid phase polymerization of isobutylene in a flow was suggested. The study of the macrokinetic features of low-temperature polymerization of isobutylene revealed the specific conditions of the occurrence of the process (quasi-ideal displacement) which are characterized by the relative constancy and uniformity of the distribution of the concentrations of the reacting substances along the flow section.

  18. High-performance rechargeable batteries with nanoparticle active materials, photochemically regenerable active materials, and fast solid-state ion conductors

    DOEpatents

    Farmer, Joseph C.

    2017-04-04

    A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.

  19. Rapid determination of ions by combined solid-phase extraction--diffuse reflectance spectroscopy

    NASA Technical Reports Server (NTRS)

    Fritz, James S.; Arena, Matteo P.; Steiner, Steven A.; Porter, Marc D.

    2003-01-01

    We introduce colorimetric solid-phase extraction (C-SPE) for the rapid determination of selected ions. This new technique links the exhaustive concentration of an analyte by SPE onto a membrane disk surface for quantitative measurement with a hand-held diffuse reflectance spectrometer. The concentration/measurement procedure is complete in approximately 1 min and can be performed almost anywhere. This method has been used to monitor iodine and iodide in spacecraft water in the 0.1-5.0 ppm range and silver(I) in the range of 5.0-1000 microg/l. Applications to the trace analysis of copper(II), nickel(II), iron(III) and chromium(VI) are described. Studies on the mechanism of extraction showed that impregnation of the disk with a surfactant as well as a complexing reagent results in uptake of additional water, which markedly improves the extraction efficiency.

  20. Selection of charge methods for lithium ion batteries by considering diffusion induced stress and charge time

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Song, Yicheng; Zhang, Junqian

    2016-07-01

    This article demonstrates the design of charging strategies for lithium ion batteries with considering the balance between diffusion induced stress and total charge time for two- and three-stage charge methods. For the two-stage galvanostatic-potentiostatic charge method the low mechanical stress can be achieved without increasing total charge time by switching the galvanostatic to the potentiostatic at the time moment when the lithium concentration at the surface of particles reaches the limit cbarsurf = 0 . A three-stage method, which consists of an initial galvanostatic stage of high current, a galvanostatic stage of low current and a potentiostatic ending stage, is suggested. Employing the initial galvanostatic stage of high current is helpful not only in accelerating the charge process, but also in controlling the mechanical stress once the electrical current and time duration of the initial galvanostatic stage are properly designed.

  1. A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics

    DOE PAGES

    Mabey, P.; Richardson, S.; White, T. G.; ...

    2017-01-30

    We determined the state and evolution of planets, brown dwarfs and neutron star crusts by the properties of dense and compressed matter. Furthermore, due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ionmore » modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. These results have profound consequences in the interpretation of transport coefficients in dense plasmas.« less

  2. Deuterium Gas-Puff Z-pinch as a Source of Fast Ions Producing Intensive Pulse of Neutrons

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Turek, K.

    2015-11-01

    A deuterium gas-puff with outer plasma shell has been examined on GIT-12 generator (on the current level of 3 MA) since 2013. Such a configuration caused more stable implosion at final stage of z-pinch. The consequence of this was a production of intensive pulses of fast ions. During last 4 campaigns in 2013-2015, fast ions were examined by several in-chamber diagnostics such as: stack detector (ion energy), pinhole camera (location of ion source), multi-pinhole camera (asymmetry and anisotropy of ion emission), and ion beam detector (dynamics of ion pulses). A CR-39 track detectors and also GAFCHROMIC HD-V2 films from these diagnostics will be presented. On the basis of obtained results, the solid sample for increasing of neutron yield up to 1e13 could be placed below the cathode mesh. Except of neutron yield, other properties such as: neutron energies (up to 33 MeV), neutron emission time (about 20 ns), and emission anisotropy of neutrons were measured. Such a short and intensive neutron pulse provides various applications. This work was supported by the MSMT project LH13283.

  3. A survey of the cusp ion outflow's kinetic energy flux measured by Polar and FAST during conjunction events

    NASA Astrophysics Data System (ADS)

    Tian, S.; Wygant, J. R.; Cattell, C. A.; Scudder, J. D.; McFadden, J. P.; Mozer, F.; Russell, C. T.

    2014-12-01

    Polar and FAST conjunction events are selected from Polar cusp crossings in 1997. These conjunction events reveal a common pattern in which Polar observed significant ion kinetic energy flux in the upward direction at mid-altitudes (below 6 Re). Depending on the magnetic activity level, the maximum ion kinetic energy flux is on the order of 10-100 mW/m^2, when mapped to the ionosphere. It is an order of magnitude or more larger than the ion kinetic energy flux observed by FAST in conjunction at altitudes of <1 Re. Therefore, the ion outflows are significantly energized within the mid-latitude cusp. Also shown in the conjunction events is that the downward Poynting flux has enough wave energy to power the ion energization. The observed pattern suggests that the cusp at ionosphere altitudes is not a simple mapping of higher altitude particles. Instead, the mid-latitude cusp receives significant downward Poynting flux from higher altitude due to the solar wind/magnetosphere coupling. Within the mid-altitude cusp, the Poynting flux then supplies energy to power the ionosphere/magnetosphere coupling. Ion outflows are triggered and energized, forming a planetary wind that feeds the magnetosphere with ionospheric ions. During southward IMF, the wind convects anti-sunward and can affect the tail lobe, the nightside auroral region and the nightside plasma sheet.

  4. Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching.

    PubMed

    Trofymchuk, Kateryna; Prodi, Luca; Reisch, Andreas; Mély, Yves; Altenhöner, Kai; Mattay, Jochen; Klymchenko, Andrey S

    2015-06-18

    Photoswitching of bright fluorescent nanoparticles opens new possibilities for bioimaging with superior temporal and spatial resolution. However, efficient photoswitching of nanoparticles is hard to achieve using Förster resonance energy transfer (FRET) to a photochromic dye, because the particle size is usually larger than the Förster radius. Here, we propose to exploit the exciton diffusion within the FRET donor dyes to boost photoswitching efficiency in dye-doped polymer nanoparticles. To this end, we utilized bulky hydrophobic counterions that prevent self-quenching and favor communication of octadecyl rhodamine B dyes inside a polymer matrix of poly(D,L-lactide-co-glycolide). Among tested counterions, only perfluorinated tetraphenylborate that favors the exciton diffusion enables high photoswitching efficiency (on/off ratio ∼20). The switching improves with donor dye loading and requires only 0.1-0.3 wt % of a diphenylethene photochromic dye. Our nanoparticles were validated both in solution and at the single-particle level. The proposed concept paves the way to new efficient photoswitchable nanomaterials.

  5. Fast and accurate simulations of diffusion-weighted MRI signals for the evaluation of acquisition sequences

    NASA Astrophysics Data System (ADS)

    Rensonnet, Gaëtan; Jacobs, Damien; Macq, Benoît.; Taquet, Maxime

    2016-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) is a powerful tool to probe the diffusion of water through tissues. Through the application of magnetic gradients of appropriate direction, intensity and duration constituting the acquisition parameters, information can be retrieved about the underlying microstructural organization of the brain. In this context, an important and open question is to determine an optimal sequence of such acquisition parameters for a specific purpose. The use of simulated DW-MRI data for a given microstructural configuration provides a convenient and efficient way to address this problem. We first present a novel hybrid method for the synthetic simulation of DW-MRI signals that combines analytic expressions in simple geometries such as spheres and cylinders and Monte Carlo (MC) simulations elsewhere. Our hybrid method remains valid for any acquisition parameters and provides identical levels of accuracy with a computational time that is 90% shorter than that required by MC simulations for commonly-encountered microstructural configurations. We apply our novel simulation technique to estimate the radius of axons under various noise levels with different acquisition protocols commonly used in the literature. The results of our comparison suggest that protocols favoring a large number of gradient intensities such as a Cube and Sphere (CUSP) imaging provide more accurate radius estimation than conventional single-shell HARDI acquisitions for an identical acquisition time.

  6. Shear, dilation, and swap: Mixing in the limit of fast diffusion

    NASA Astrophysics Data System (ADS)

    Brassart, Laurence; Liu, Qihan; Suo, Zhigang

    2016-11-01

    Molecules of different species mix by local rearrangement and long-range migration. Under certain conditions, the molecules are partially jammed: they rearrange slowly, but migrate fast. Here we formulate a theory of mixing when the long-range migration of molecules is fast, and the local rearrangement of molecules sets the time needed for mixing. In this limit, the time needed for mixing is independent of the length scale of inhomogeneity. We identify three modes of local rearrangement: shear, dilation, and swap. All three modes break and form intermolecular bonds. We place the three modes on equal footing, as distinct, concurrent, nonequilibrium processes. Our theory thus removes the bias that assumes local chemical equilibrium but allows the nonequilibrium process of shear. We propose a kinetic model of four independent viscosity-like coefficients, and a thermodynamic model of ideal mixing of molecules of unequal sizes and nonzero volume of mixing. We illustrate the theory with several examples, including the development of growth stress, the homogenization of a bilayer, and the disappearance of an inclusion in a matrix.

  7. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Song, Weixin; Ji, Xiaobo; Wu, Zhengping; Yang, Yingchang; Zhou, Zhou; Li, Fangqian; Chen, Qiyuan; Banks, Craig E.

    2014-06-01

    NASICON-type Na3V2(PO4)2F3 is employed as a promising cathode for sodium-ion batteries in order to explore the ion-migration mechanism and diffusion capability. Two kinds of Na sites, namely Na(1) site and Na(2) site exist in the crystal structure per formula unit to accommodate a total of three sodium ions. The ion at Na(2) site with half occupation extracts first and inserts the last due to its high chemical potential, while the whole extraction/insertion of two ions between 1.6 and 4.6 V vs. Na+/Na can produce three plateaus in charge/discharge processes because of the reorganization of ions. The first discharge capacity of 111.6 mAh g-1 with retention of 97.6% after 50 cycles could be obtained by electrochemical testing at 0.091C. Electrochemical activation and/or structural reorganization of the system by cycling could improve the diffusion coefficient of sodium with a comparatively large magnitude of 10-12 cm2 s-1, though many influences on the resistance factors also can be attributed to the cycling process. Such work is of fundamental importance to the progression of sodium-based batteries to be fully realized and be implemented over existing Li-ion based batteries.

  8. Detection of nitro-based and peroxide-based explosives by fast polarity-switchable ion mobility spectrometer with ion focusing in vicinity of Faraday detector.

    PubMed

    Zhou, Qinghua; Peng, Liying; Jiang, Dandan; Wang, Xin; Wang, Haiyan; Li, Haiyang

    2015-05-29

    Ion mobility spectrometer (IMS) has been widely deployed for on-site detection of explosives. The common nitro-based explosives are usually detected by negative IMS while the emerging peroxide-based explosives are better detected by positive IMS. In this study, a fast polarity-switchable IMS was constructed to detect these two explosive species in a single measurement. As the large traditional Faraday detector would cause a trailing reactant ion peak (RIP), a Faraday detector with ion focusing in vicinity was developed by reducing the detector radius to 3.3 mm and increasing the voltage difference between aperture grid and its front guard ring to 591 V, which could remove trailing peaks from RIP without loss of signal intensity. This fast polarity-switchable IMS with ion focusing in vicinity of Faraday detector was employed to detect a mixture of 10 ng 2,4,6-trinitrotoluene (TNT) and 50 ng hexamethylene triperoxide diamine (HMTD) by polarity-switching, and the result suggested that [TNT-H](-) and [HMTD+H](+) could be detected in a single measurement. Furthermore, the removal of trailing peaks from RIP by the Faraday detector with ion focusing in vicinity also promised the accurate identification of KClO4, KNO3 and S in common inorganic explosives, whose product ion peaks were fairly adjacent to RIP.

  9. [Fast determination of contents of nutrients and stone powder in compound fertilizer using near infrared diffuse reflectance spectroscopy].

    PubMed

    Guo, Zheng; Yuan, Hong-Fu; Zhang, Xian; Song, Chun-Feng; Li, Xiao-Yu; Xie, Jin-Chun

    2011-06-01

    In the present paper, a new approach to fast determination of contents of nutrients, including total nitrogen content (N), P2O5 content (P) and K2O content (K), and of stone powder content in compound fertilizer composed of urea, ammonium dihydrogen phosphate, potassium chloride and stone powder was proposed using near infrared diffuse reflectance spectroscopy. PLS models of N, P and stone powder content were built with the SEP values of 0.8, 0.8 and 1.4 respectively. The information on which stone powder content model was built is the spectrum of crystal water existing in stone powder. K content was calculated using other ingredientcontents by normalization principle with a SEP value of 1.5. Although the SEP values are a little larger than the reproducibility errors of the GB/T methods which are conventional methods, the new method can be accepted by situ quality control in the production process of compound fertilizer.

  10. Symmetry of surface nanopatterns induced by ion-beam sputtering: Role of anisotropic surface diffusion

    NASA Astrophysics Data System (ADS)

    Renedo, Javier; Cuerno, Rodolfo; Castro, Mario; Muñoz-García, Javier

    2016-04-01

    Ion-beam sputtering (IBS) is a cost-effective technique able to produce ordered nanopatterns on the surfaces of different materials. To date, most theoretical studies of this process have focused on systems which become amorphous under irradiation, e.g., semiconductors at room temperature. Thus, in spite of the large amount of experimental work on metals, or more recently on semiconductors at high temperatures, such experimental contexts have received relatively little theoretical attention. These systems are characterized by transport mechanisms, e.g., surface diffusion, which are anisotropic as a reflection of the crystalline structure not being overruled by the irradiation. Here, we generalize a previous continuum theory of IBS at normal incidence, in order to account for anisotropic surface diffusion. We explore systematically our generalized model in order to understand the role of anisotropy in the space-ordering properties of the resulting patterns. In particular, we derive a height equation which predicts morphological transitions among hexagonal and rectangular patterns as a function of system parameters and employ an angular correlation function to assess these pattern symmetries. By suitably choosing experimental conditions, it is found that one might be able to experimentally control the type of order displayed by the patterns produced.

  11. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  12. Nonstoichiometric La(2 - x)GeO(5 - delta) monoclinic oxide as a new fast oxide ion conductor.

    PubMed

    Ishihara, T; Arikawa, H; Akbay, T; Nishiguchi, H; Takita, Y

    2001-01-17

    Oxide ion conductivity in La(2)GeO(5)-based oxide was investigated and it was found that La-deficient La(2)GeO(5) exhibits oxide ion conductivity over a wide range of oxygen partial pressure. The crystal structure of La(2)GeO(5) was estimated to be monoclinic with P2(1)/c space group. Conductivity increased with increasing the amount of La deficiency and the maximum value was attained at x = 0.39 in La(2 - x)GeO(5 - delta). The oxide ion transport number in La(2)GeO(5)-based oxide was estimated to be unity by the electromotive force measurement in H(2)-O(2) and N(2)-O(2) gas concentration cells. At a temperature higher than 1000 K, the oxide ion conductivity of La(1.61)GeO(5 - delta) was almost the same as that of La(0.9)Sr(0.1)Ga(0.8)Mg(0.2)O(3 - delta) or Ce(0.85)Gd(0.15)O(2 - delta), which are well-known fast oxide ion conductors. On the other hand, a change in the activation energy for oxide ion conductivity was observed at 973 K, and at intermediate temperature, the oxide ion conductivity of La(1.61)GeO(5 - delta) became much smaller than that of these well-known fast oxide ion conductors. The change in the activation energy of the oxide ion conductivity seems to be caused by a change in the local oxygen vacancy structure. However, doping a small amount of Sr for La in La(2)GeO(5) was effective to stabilize the high-temperature crystal structure to low temperature. Consequently, doping a small amount of Sr increases the oxide ion conductivity of La(2)GeO(5)-based oxide at low temperature.

  13. Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion

    SciTech Connect

    Chaudhari, Mangesh I.; Nair, Jijeesh R.; Pratt, Lawrence R.; Soto, Fernando A.; Balbuena, Perla B.; Rempe, Susan B.

    2016-10-21

    Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulation results are compared to ab initio molecular dynamics to assess nonpolarizable force field parameters for solvation structure of the carbonate solvents. Quasi-chemical theory (QCT) was adapted to take advantage of fourfold occupancy of the near-neighbor solvation structure observed in simulations and used to calculate solvation free energies. The computed free energy for transfer of Li+ to PC from water, based on electronic structure calculations with cluster-QCT, agrees with the experimental value. The simulation-based direct-QCT results with scaled partial charges agree with the electronic structure-based QCT values. The computed Li+/PF6- transference numbers of 0.35/0.65 (EC) and 0.31/0.69 (PC) agree well with NMR experimental values of 0.31/0.69 (EC) and 0.34/0.66 (PC) and similar values obtained here with impedance spectroscopy. These combined results demonstrate that solvent partial charges can be scaled in systems dominated by strong electrostatic interactions to achieve trends in ion solvation and transport properties that are comparable to ab initio and experimental results. Thus, the results support the use of scaled partial charges in simple, nonpolarizable force fields in future studies of these electrolyte solutions.

  14. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.

    2017-01-01

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from ‑20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.

  15. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    PubMed Central

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.

    2017-01-01

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from −20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies. PMID:28059109

  16. Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion

    DOE PAGES

    Chaudhari, Mangesh I.; Nair, Jijeesh R.; Pratt, Lawrence R.; ...

    2016-10-21

    Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulation results are compared to ab initio molecular dynamics to assess nonpolarizable force field parameters for solvation structure of the carbonate solvents. Quasi-chemical theory (QCT) was adapted to take advantage of fourfold occupancy of the near-neighbor solvation structure observed in simulations and used to calculate solvation free energies. The computed free energy for transfer of Li+ to PC from water, based on electronic structuremore » calculations with cluster-QCT, agrees with the experimental value. The simulation-based direct-QCT results with scaled partial charges agree with the electronic structure-based QCT values. The computed Li+/PF6- transference numbers of 0.35/0.65 (EC) and 0.31/0.69 (PC) agree well with NMR experimental values of 0.31/0.69 (EC) and 0.34/0.66 (PC) and similar values obtained here with impedance spectroscopy. These combined results demonstrate that solvent partial charges can be scaled in systems dominated by strong electrostatic interactions to achieve trends in ion solvation and transport properties that are comparable to ab initio and experimental results. Thus, the results support the use of scaled partial charges in simple, nonpolarizable force fields in future studies of these electrolyte solutions.« less

  17. Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation

    NASA Astrophysics Data System (ADS)

    Jamelot, Erell; Ciarlet, Patrick

    2013-05-01

    Studying numerically the steady state of a nuclear core reactor is expensive, in terms of memory storage and computational time. In order to address both requirements, one can use a domain decomposition method, implemented on a parallel computer. We present here such a method for the mixed neutron diffusion equations, discretized with Raviart-Thomas-Nédélec finite elements. This method is based on the Schwarz iterative algorithm with Robin interface conditions to handle communications. We analyse this method from the continuous point of view to the discrete point of view, and we give some numerical results in a realistic highly heterogeneous 3D configuration. Computations are carried out with the MINOS solver of the APOLLO3® neutronics code. APOLLO3 is a registered trademark in France.

  18. Ion-assisted precursor dissociation and surface diffusion: Enabling rapid, low-temperature growth of carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Denysenko, I.; Ostrikov, K.

    2007-06-01

    Growth kinetics of carbon nanofibers in a hydrocarbon plasma is studied. In addition to gas-phase and surface processes common to chemical vapor deposition, the model includes (unique to plasma-exposed catalyst surfaces) ion-induced dissociation of hydrocarbons, interaction of adsorbed species with incoming hydrogen atoms, and dissociation of hydrocarbon ions. It is shown that at low, nanodevice-friendly process temperatures the nanofibers grow via surface diffusion of carbon adatoms produced on the catalyst particle via ion-induced dissociation of a hydrocarbon precursor. These results explain a lower activation energy of nanofiber growth in a plasma and can be used for the synthesis of other nanoassemblies.

  19. Diffusion coefficients of the uranium(III) and (IV) ions in the LiCl-KCl-CsCl eutectic melt

    NASA Astrophysics Data System (ADS)

    Maltsev, D. S.; Volkovich, V. A.; Vasin, B. D.

    2016-08-01

    Diffusion coefficients of the uranium(III) and (IV) ions in the eutectic melt of the lithium, potassium, and cesium chlorides in the temperature range of 573-1073 K have been determined using two independent methods: cyclic voltammetry and chronopotentiometry.

  20. Applications of NMR diffusion methods with emphasis on ion pairing in inorganic chemistry: a mini-review.

    PubMed

    Pregosin, Paul S

    2017-05-01

    This mini-review provides a brief overview of the use of NMR diffusion methods in connection with estimating molecular weights in solution, recognizing hydrogen bonding and encapsulation processes and, primarily, identifying and estimating the varying degrees of ion pairing. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Donnan effect on chloride ion distribution as a determinant of body fluid composition that allows action potentials to spread via fast sodium channels.

    PubMed

    Kurbel, Sven

    2011-05-30

    Proteins in any solution with a pH value that differs from their isoelectric point exert both an electric Donnan effect (DE) and colloid osmotic pressure. While the former alters the distribution of ions, the latter forces water diffusion. In cells with highly Cl--permeable membranes, the resting potential is more dependent on the cytoplasmic pH value, which alters the Donnan effect of cell proteins, than on the current action of Na/K pumps. Any weak (positive or negative) electric disturbances of their resting potential are quickly corrected by chloride shifts.In many excitable cells, the spreading of action potentials is mediated through fast, voltage-gated sodium channels. Tissue cells share similar concentrations of cytoplasmic proteins and almost the same exposure to the interstitial fluid (IF) chloride concentration. The consequence is that similar intra- and extra-cellular chloride concentrations make these cells share the same Nernst value for Cl-.Further extrapolation indicates that cells with the same chloride Nernst value and high chloride permeability should have similar resting membrane potentials, more negative than -80 mV. Fast sodium channels require potassium levels >20 times higher inside the cell than around it, while the concentration of Cl- ions needs to be >20 times higher outside the cell.When osmotic forces, electroneutrality and other ions are all taken into account, the overall osmolarity needs to be near 280 to 300 mosm/L to reach the required resting potential in excitable cells. High plasma protein concentrations keep the IF chloride concentration stable, which is important in keeping the resting membrane potential similar in all chloride-permeable cells. Probable consequences of this concept for neuron excitability, erythrocyte membrane permeability and several features of circulation design are briefly discussed.

  2. Cyclotron resonances of ions with obliquely propagating waves in coronal holes and the fast solar wind

    NASA Astrophysics Data System (ADS)

    Hollweg, Joseph V.; Markovskii, S. A.

    2002-06-01

    There is a growing consensus that cyclotron resonances play important roles in heating protons and ions in coronal holes where the fast solar wind originates and throughout interplanetary space as well. Most work on cyclotron resonant interactions has concentrated on the special, but unrealistic, case of propagation along the ambient magnetic field, B0, because of the great simplification it gives. This paper offers a physical discussion of how the cyclotron resonances behave when the waves propagate obliquely to B0. We show how resonances at harmonics of the cyclotron frequency come about, and how the physics can be different depending on whether E⊥ is in or perpendicular to the plane containing k and B0 (k is wave vector, and E⊥ is the component of the wave electric field perpendicular to B0). If E⊥ is in the k-B0 plane, the resonances are analogous to the Landau resonance and arise because the particle tends to stay in phase with the wave during the part of its orbit when it is interacting most strongly with E⊥. If E⊥ is perpendicular to the k-B0 plane, then the resonances depend on the fact that the particle is at different positions during the parts of its orbit when it is interacting most strongly with E⊥. Our main results are our equations (10), (11), and (13) for the secular rate of energy gain (or loss) by a resonant particle and the unfamiliar result that ions can resonate with a purely right-hand circularly polarized wave if the propagation is oblique. We conclude with some speculations about the origin of highly obliquely propagating ion resonant waves in the corona and solar wind. We point out that there are a number of instabilities that may generate such waves locally in the corona and solar wind.

  3. Fast ion motion in the plasma part of a stellarator-mirror fission-fusion hybrid

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Nemov, V. V.; Ågren, O.; Kasilov, S. V.; Garkusha, I. E.

    2016-06-01

    Recent developments of a stellarator-mirror (SM) fission-fusion hybrid concept are reviewed. The hybrid consists of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, a stellarator-type system with an embedded magnetic mirror is used. The stellarator confines deuterium plasma with moderate temperature, 1-2 keV. In the magnetic mirror, a hot component of sloshing tritium ions is trapped. There, the fusion neutrons are generated. A candidate for a combined SM system is a DRACON magnetic trap. A basic idea behind an SM device is to maintain local neutron production in a mirror part, but at the same time eliminate the end losses by using a toroidal device. A possible drawback is that the stellarator part can introduce collision-free radial drift losses, which is the main topic for this study. For high energy ions of tritium with an energy of 70 keV, comparative computations of collisionless losses in the rectilinear part of a specific design of the DRACON type trap are carried out. Two versions of the trap are considered with different lengths of the rectilinear sections. Also the total number of current-carrying rings in the magnetic system is varied. The results predict that high energy ions from neutral beam injection can be satisfactorily confined in the mirror part during 0.1-1 s. The Uragan-2M experimental device is used to check key points of the SM concept. The magnetic configuration of a stellarator with an embedded magnetic mirror is arranged in this device by switching off one toroidal coil. The motion of particles magnetically trapped in the embedded mirror is analyzed numerically with use of motional invariants. It is found that without radial electric field particles quickly drift out of the SM, even if the particles initially are located on a nested magnetic surface. We will show that a weak radial electric field, which

  4. Plasmon-mediated electron emission from the coronene molecule under fast ion impact

    NASA Astrophysics Data System (ADS)

    Biswas, Shubhadeep; Tribedi, L. C.

    2015-12-01

    The existence of the collective electronic excitation in polycyclic aromatic hydrocarbon (PAH) molecules has been predicted before on the basis of the presence of a large delocalized π electron cloud around the carbon skeleton. Here, we present a manifestation of energy and angular distributions of electron emission upon deexcitation of the collective plasmon resonance in coronene, a PAH molecule, under fast ion impact. The angular distributions of these electrons show an unusually enhanced forward-backward angular asymmetry, in contrast to the observed uniform distributions for simpler atomic (Ne) or molecular (CH4) targets. A simple model of photoelectron angular distribution from an oscillating dipolar plasmon, calculated including the first retardation term in the transition matrix element, provides excellent agreement with the observed distribution. The ratio of forward-to-backward electron emission intensity clearly exhibits a broad peak which is in excellent agreement with the theoretical prediction of the plamson peak. This observation may provide some new inputs towards the astrophysical problem of UV photon absorption by PAHs in the interstellar medium, or in the search for materials suitable for UV plasmonics.

  5. A novel fast ion chromatographic method for the analysis of fluoride in Antarctic snow and ice.

    PubMed

    Severi, Mirko; Becagli, Silvia; Frosini, Daniele; Marconi, Miriam; Traversi, Rita; Udisti, Roberto

    2014-01-01

    Ice cores are widely used to reconstruct past changes of the climate system. For instance, the ice core record of numerous water-soluble and insoluble chemical species that are trapped in snow and ice offer the possibility to investigate past changes of various key compounds present in the atmosphere (i.e., aerosol, reactive gases). We developed a new method for the quantitative determination of fluoride in ice cores at sub-μg L(-1) levels by coupling a flow injection analysis technique with a fast ion chromatography separation based on the "heart cut" column switching technology. Sensitivity, linear range (up to 60 μg L(-1)), reproducibility, and detection limit (0.02 μg L(-1)) were evaluated for the new method. This method was successfully applied to the analysis of fluoride at trace levels in more than 450 recent snow samples collected during the 1998-1999 International Trans-Antarctica Scientific Expedition traverse in East Antarctica at sites located between 170 and 850 km from the coastline.

  6. Atom ejection from a fast-ion track: A molecular-dynamics study

    SciTech Connect

    Urbassek, H.M. ); Kafemann, H. ); Johnson, R.E. )

    1994-01-01

    As a model for atom ejection from fast-ion tracks, molecular-dynamics simulations of a cylindrical track of energized particles are performed. An idealized situation is studied where every atom in a cylindrical track of radius [ital R][sub 0] is energized with energy [ital E][sub 0]. The emission yield [ital Y]([ital E][sub 0],[ital R][sub 0]) shows the existence of two ejection regimes. If the particle energy [ital E][sub 0] is below the sublimation energy [ital U] of the material, a threshold regime is seen in which [ital Y] rises roughly like the third power of [ital E][sub 0]; for high-energy densities [ital E][sub 0][approx gt][ital U], the yield rises much more slowly, roughly linearly. In both cases, ejected particles mostly originate from the track, rather than from its surroundings, and from the first or the first few monolayers. The behavior found is interpreted here in terms of emission due to a pressure-driven jet (linear regime) or due to a pressure pulse (threshold regime). These both behave differently from the often-used thermal-spike sputtering model.

  7. Fast power law-like decay for a diffusive system with absorbing borders

    NASA Astrophysics Data System (ADS)

    Droz, Michel; Pȩkalski, Andrzej

    2017-03-01

    Using a simple, one dimensional, model of diffusing particles which are absorbed at the ends of the system, we compare two ways of updating in the Monte Carlo simulations. In the first one particles at each Monte Carlo step are chosen randomly, while in the second one we follow at each Monte Carlo Step a list of particles made at the beginning of simulations, in which there is no correlation between the position of a particle on the list and its spatial location. We show that although the final state is the same-the empty state, the two approaches follow quite different ways to the final state. In the first one the density of particles decreases exponentially with time, while in the second one it has a power-type character. An additional feature which is different in the two approaches is the direction of the average movements of the particles. In the first case they are moving away from the edges, towards the centre, while in the second case the average jumps are towards the edges. We have no good explanation for the observed differences and leave them as open questions.

  8. Fast linear solver for radiative transport equation with multiple right hand sides in diffuse optical tomography

    PubMed Central

    Jia, Jingfei

    2015-01-01

    It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta-Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5~3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners. PMID:26345531

  9. Fast linear solver for radiative transport equation with multiple right hand sides in diffuse optical tomography.

    PubMed

    Jia, Jingfei; Kim, Hyun K; Hielscher, Andreas H

    2015-12-01

    It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta-Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5~3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners.

  10. Fast detection of biomolecules in diffusion-limited regime using micromechanical pillars.

    PubMed

    Melli, Mauro; Scoles, Giacinto; Lazzarino, Marco

    2011-10-25

    We have developed a micromechanical sensor based on vertically oriented oscillating beams, in which contrary to what is normally done (for example with oscillating cantilevers) the sensitive area is located at the free end of the oscillator. In the micropillar geometry used here, analyte adsorption is confined only to the tip of the micropillar, thus reducing the volume from which the analyte molecules must diffuse to saturate the surface to a sphere of radius more than 2 orders of magnitude smaller than the corresponding linear distance valid for adsorption on a macroscopic surface. Hence the absorption rate is 3 orders of magnitude faster than on a typical 200 × 20 square micrometer cantilever. Pillar oscillations are detected by means of an optical lever method, but the geometry is suitable for multiplexing with compact integrated detection. We demonstrate our technology by investigating the formation of a single-strand DNA self-assembled monolayer (SAM) consisting of less than 10(6) DNA molecules and by measuring their hybridization efficiency. We show that the binding rate is 1000 times faster than on a "macroscopic" surface. We also show that the hybridization of a SAM of maximum density DNA is 40% or 4 times the value reported in the literature. These results suggest that the lower values previously reported in the literature can be attributed to incomplete saturation of the surface due to the slower adsorption rate on the "macroscopic" surfaces used.

  11. Analysis and evalaution in the production process and equipment area of the low-cost solar array project. [including modifying gaseous diffusion and using ion implantation

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.

  12. Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor

    PubMed Central

    Mai, Liqiang; Li, Han; Zhao, Yunlong; Xu, Lin; Xu, Xu; Luo, Yanzhu; Zhang, Zhengfei; Ke, Wang; Niu, Chaojiang; Zhang, Qingjie

    2013-01-01

    Layered intercalation compounds NaxMnO2 (x = 0.7 and 0.91) nanoflakes have been prepared directly through wet electrochemical process with Na+ ions intercalated into MnO2 interlayers spontaneously. The as-prepared NaxMnO2 nanoflake based supercapacitors exhibit faster ionic diffusion with enhanced redox peaks, tenfold-higher energy densities up to 110 Wh·kg−1 and higher capacitances over 1000 F·g−1 in aqueous sodium system compared with traditional MnO2 supercapacitors. Due to the free-standing electrode structure and suitable crystal structure, NaxMnO2 nanoflake electrodes also maintain outstanding electrochemical stability with capacitance retention up to 99.9% after 1000 cycles. Besides, pre-intercalation effect is further studied to explain this enhanced electrochemical performance. This study indicates that the suitable pre-intercalation is effective to improve the diffusion of electrolyte cations and other electrochemical performance for layered oxides, and suggests that the as-obtained nanoflakes are promising materials to achieve the hybridization of both high energy and power density for advanced supercapacitors.

  13. Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D

    DOE PAGES

    Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...

    2015-05-22

    The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing βN and the noninductive current drive. However, in scenarios with qmin>2 that target the typical range of q95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reducesmore » the absorbed neutral beam heating power and current drive and limits the achievable βN. Conversely similar plasmas except with qmin just above 1 have approximately classical fast-ion transport. Experiments that take qmin>3 plasmas to higher βP with q95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-qmin scenario, the high βP cases have shorter slowing-down time and lower ∇βfast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, βN, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q95, high-qmin plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less

  14. Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D

    SciTech Connect

    Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Solomon, W. M.; Gong, X.; Mueller, D.; Grierson, B.; Bass, E. M.; Collins, C.; Park, J. M.; Kim, K.; Luce, T. C.; Turco, F.; Pace, D. C.; Ren, Q.; Podesta, M.

    2015-05-22

    The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing βN and the noninductive current drive. However, in scenarios with qmin>2 that target the typical range of q95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable βN. Conversely similar plasmas except with qmin just above 1 have approximately classical fast-ion transport. Experiments that take qmin>3 plasmas to higher βP with q95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-qmin scenario, the high βP cases have shorter slowing-down time and lower ∇βfast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, βN, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q95, high-qmin plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.

  15. Timing considerations for preclinical MRgRT: effects of ion diffusion, SNR and imaging times on FXG gel calibration

    NASA Astrophysics Data System (ADS)

    Welch, M.; Foltz, W. D.; Jaffray, D. A.

    2015-01-01

    Sub-millimeter resolution images are required for gel dosimeters to be used in preclinical research, which is challenging for MR probed ferrous xylenol-orange (FXG) dosimeters due to ion diffusion and inadequate SNR. A preclinical 7 T MR, small animal irradiator and FXG dosimeters were used in all experiments. Ion diffusion was analyzed using high resolution (0.2 mm/pixel) T1 MR images collected every 5 minutes, post-irradiation, for an hour. Using Fick's second law, ion diffusion was approximated for the first hour post-irradiation. SNR, T1 map precision and calibration fit were determined for two MR protocols: (1) 10 minute acquisition, 0.35mm/pixel and 3mm slices, (2) 45 minute acquisition, 0. 25 mm/pixel and 2 mm slices. SNR and T1 map precision were calculated using a Monte Carlo simulation. Calibration curves were determined by plotting R1 relaxation rates versus depth dose data, and fitting a linear trend line. Ion diffusion was estimated as 0.003mm2 in the first hour post-irradiation. For protocols (1) and (2) respectively, Monte Carlo simulation predicted T1 precisions of 3% and 5% within individual voxels using experimental SNRs; the corresponding measured T1 precisions were 8% and 12%. The linear trend lines reported slopes of 27 ± 3 Gy*s (R2: 0.80 ± 0.04) and 27 ± 4 Gy*s (R2: 0.90 ± 0.04). Ion diffusion is negligible within the first hour post-irradiation, and an accurate and reproducible calibration can be achieved in a preclinical setting with sub-millimeter resolution.

  16. Fast recovery of free energy landscapes via diffusion-map-directed molecular dynamics.

    PubMed

    Preto, Jordane; Clementi, Cecilia

    2014-09-28

    The reaction pathways characterizing macromolecular systems of biological interest are associated with high free energy barriers. Resorting to the standard all-atom molecular dynamics (MD) to explore such critical regions may be inappropriate as the time needed to observe the relevant transitions can be remarkably long. In this paper, we present a new method called Extended Diffusion-Map-directed Molecular Dynamics (extended DM-d-MD) used to enhance the sampling of MD trajectories in such a way as to rapidly cover all important regions of the free energy landscape including deep metastable states and critical transition paths. Moreover, extended DM-d-MD was combined with a reweighting scheme enabling to save on-the-fly information about the Boltzmann distribution. Our algorithm was successfully applied to two systems, alanine dipeptide and alanine-12. Due to the enhanced sampling, the Boltzmann distribution is recovered much faster than in plain MD simulations. For alanine dipeptide, we report a speedup of one order of magnitude with respect to plain MD simulations. For alanine-12, our algorithm allows us to highlight all important unfolded basins in several days of computation when one single misfolded event is barely observable within the same amount of computational time by plain MD simulations. Our method is reaction coordinate free, shows little dependence on the a priori knowledge of the system, and can be implemented in such a way that the biased steps are not computationally expensive with respect to MD simulations thus making our approach well adapted for larger complex systems from which little information is known.

  17. Investigation of thermal diffusivity dependence on temperature in a group of optical single crystals doped with rare earth ions

    NASA Astrophysics Data System (ADS)

    Trefon-Radziejewska, D.; Bodzenta, J.

    2015-07-01

    The group of YAG, YVO4 and GdCOB single crystals was examined to determine the thermal diffusivity as a function of temperature in range from 30 °C to 300 °C. Further investigations concerned on analysis of the influence of dopants on these dependencies. The experimental setup based on thermal wave method with mirage detection was used. The samples represented different crystallographic systems such as cubic (YAG) tetragonal (YVO4) and monoclinic (GdCOB). The anisotropy of thermal conductivity of investigated samples was taken into account in the investigations. The crystals were doped with calcium ions, rare earth ions such as ytterbium, neodymium, and thulium, and also with transition metal vanadium. The results confirmed that influence of doping on the thermal diffusivity of investigated materials strongly depends on temperature. In general the thermal diffusivity decreases with increasing of sample temperature from 30 °C to 300 °C, however the drop in thermal diffusivity is the highest for pure single crystals. Doping is another factor reducing the heat transport in single crystals. Introduction of dopant ions into a crystal lattice leads to a significant decrease in the thermal diffusivity at lower temperatures in comparison with pure crystals. However, the influence of dopants becomes less pronounced with increasing temperature, and in case of weakly doped crystals it becomes negligible at higher temperatures. The interpretation of thermal diffusivity dependence on temperature for single crystals was based on the Debye model of lattice thermal conductivity of solids. The results allowed to conclude that the decrease of thermal diffusivity with temperature and increasing concentration of impurities is caused by shortening of the phonons mean free path due to phonon-phonon and phonon-point defect scatterings.

  18. Induction acceleration of heavy ions in the KEK digital accelerator: Demonstration of a fast-cycling induction synchrotron

    NASA Astrophysics Data System (ADS)

    Takayama, K.; Yoshimoto, T.; Barata, M.; Wah, Leo Kwee; Xingguang, Liu; Iwashita, T.; Harada, S.; Adachi, T.; Arai, T.; Arakawa, D.; Asao, H.; Kadokura, E.; Kawakubo, T.; Nakanishi, H.; Okada, Y.; Okamura, K.; Okazaki, K.; Takagi, A.; Takano, S.; Wake, M.

    2014-01-01

    A fast-cycling induction synchrotron was demonstrated. Ions with extremely low energies and mass-to-charge ratios (A /Q) in the range from 2 to 10 were injected, captured by barrier voltages, and accelerated to the end of the acceleration cycle of 50 ms by flat pulse voltages generated by pulse transformers referred to as induction cells. Induction acceleration in a wide dynamic frequency range of 56 kHz to 1 MHz was also demonstrated. This accelerator is expected as the next generation of a heavy ion driver for cancer therapy, where a large scale injector is not required. A wide variety of ions for ion energy implantation experiments needing novel materials will be delivered from this compact circular accelerator.

  19. Fast ion source and detector for investigating the interaction of turbulence with suprathermal ions in a low temperature toroidal plasma

    SciTech Connect

    Plyushchev, G.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Podesta, M.; Poli, F. M.; Boehmer, H.; Heidbrink, W. W.; Zhang, Y.

    2006-10-15

    A specific experimental apparatus consisting of an ion source and a detector for the investigation of the interaction between suprathermal ions and drift-wave turbulence is developed on the toroidal plasma experiment. Due to the low plasma temperature ({approx}5 eV), a spatially localized, small-size ion source ({approx}4 cm) mounted inside the vacuum vessel with relatively low ion energy ({approx}100 eV-1 keV) can be used. The source consists of an aluminosilicate Li-6 ion emitter (6 mm diameter, 10-30 {mu}A current) installed on a two-dimensional (2D) poloidally moving system. The location, energy, and current density profile of the ion beam will be measured using a 2D movable gridded energy analyzer.

  20. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    SciTech Connect

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-04-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots ({approx}100 {micro}m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with {rho}r {approx} 2 g/cm{sup 2} for a small demo/pilot plant producing {approx}40 MJ of fusion yield per target, and (2) a large target with {rho}r {approx} 10 g/cm{sup 2} producing {approx}1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q {approx} 26) ion sources for short ({approx}5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of {approx}10 MG fields to provide steep focusing angles close-in to the target

  1. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  2. Fast Ion Effects on Fishbones and n=1 Kinks in JET Simulated by a Non-perturbative NOVA-KN Code

    SciTech Connect

    N.N. Gorelenkov; C.Z. Cheng; V.G. Kiptily; M.J. Mantsinen; S.E. Sharapov; the JET-EFDA Contributors

    2004-10-28

    New global non-perturbative hybrid code, NOVA-KN, and simulations of resonant type modes in JET [Joint European Torus] plasmas driven by energetic H-minority ions are presented. The NOVA-KN code employs the ideal-MHD description for the background plasma and treats non-perturbatively the fast particle kinetic response, which includes the fast ion finite orbit width (FOW) effect. In particular, the n = 1 fishbone mode, which is in precession drift resonance with fast ions, is studied. The NOVA-KN code is applied to model an n = 1 (f = 50-80kHz) MHD activity observed recently in JET low density plasma discharges with high fast ion (H-minority) energy content generated during the ion cyclotron resonance heating (ICRH). This n = 1 MHD activity is interpreted as the instability of the n = 1 precession drift frequency fishbone modes.

  3. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid

  4. The Backward Electrostatic Ion-Cyclotron Wave, Fast Wave Current Drive, and Far-Infrared Laser Scattering

    NASA Astrophysics Data System (ADS)

    Goree, John Arlin

    1985-12-01

    The first observations of several radio frequency wave phenomena in a magnetized plasma are presented. The backward branch of the electrostatic ion-cyclotron wave, which was previously described in reports of theoretical but not experimental work, was observed. This hot magnetized plasma mode propagates for frequencies above each harmonic of the ion-cyclotron frequency. A phased antenna structure, inserted into a neon plasma, excited the wave. An experimental dispersion relation produced from probe measurements of the mode agrees with the dispersion relation predicted using linear theory. Fast wave current drive in a toroidal plasma was observed for the first time. A loop antenna launched the fast Alfven wave in the range of high ion-cyclotron harmonics, (omega)/(OMEGA) = O(10). Signals from magnetic loop probes, Langmuir probes, and FIR laser scattering revealed the identity of the mode. Using a single antenna to launch the wave into a plasma containing a unidirectional electron beam, the circulating current increased according to the rf power applied. This increase in current occurs when the plasma is sufficiently dense to support fast wave propagation. Fast wave current drive may be a desirable method of sustaining the toroidal current in a fusion reactor. A fast wave antenna also excites slow wave resonance cones, i.e., lower-hybrid waves, as shown here for the first time. This process occurs in the same frequency range of high ion-cyclotron harmonics as fast wave current drive, and may represent an undesirable loss mechanism. A far-infrared laser scattering diagnostic was developed for detecting coherent radio frequency waves. In this system, an unusual detection method employing two lock-in amplifiers reduced noise from rf pickup and broadband noise. A criterion is presented for its use. A new type of cathode for producing plasmas, used in the fast wave experiment, consists of a lanthanum-hexaboride emissive element heated by a graphite resistor. Inserted

  5. Electron emission in collisions of fast highly charged bare ions with helium atoms

    NASA Astrophysics Data System (ADS)

    Mondal, Abhoy; Mandal, Chittranjan; Purkait, Malay

    2016-01-01

    We have studied the electron emission from ground state helium atom in collision with fast bare heavy ions at intermediate and high incident energies. In the present study, we have applied the present three-body formalism of the three Coulomb wave (3C-3B) model and the previously adopted four-body formalism of the three Coulomb wave (3C-4B). To represent the active electron in the helium atom in the 3C-3B model, the initial bound state wavefunction is chosen to be hydrogenic with an effective nuclear charge. The wavefunction for the ejected electron in the exit channel has been approximated to be a Coulomb continuum wavefunction with same effective nuclear charge. Effectively the continuum-continuum correlation effect has been considered in the present investigation. Here we have calculated the energy and angular distribution of double differential cross sections (DDCS) at low and high energy electron emission from helium atom. The large forward-backward asymmetry is observed in the angular distribution which is explained in terms of the two-center effect (TCE). Our theoretical results are compared with available experimental results as well as other theoretical calculations based on the plain wave Born approximation (PWBA), continuum-distorted wave (CDW) approximation, continuum-distorted wave eikonal-initial state (CDW-EIS) approximation, and the corresponding values obtained from the 3C-4B model [S. Jana, R. Samanta, M. Purkait, Phys. Scr. 88, 055301 (2013)] respectively. It is observed that the four-body version of the present investigation produces results which are in better agreement with experimental observations for all cases.

  6. The response of a fast scintillator screen (YAP:Ce) to low energy ions (0-40 keV) and its use to detect fast-ion-loss in stellarator TJ-II.

    PubMed

    Martínez, M; Zurro, B; Baciero, A; Jiménez-Rey, D; Tribaldos, V; Malo, M; Crespo, M T; Muñoz, D

    2016-11-01

    A systematic study of scintillation materials was undertaken to improve the time resolution of the fast ion diagnostic currently installed at TJ-II stellarator. It was found that YAP:Ce (formula YAlO3:Ce, Yttrium Aluminum Perovskite doped with Cerium) ionoluminescence offers better sensitivity and time response compared to the standard detector material, SrGa2S4:Eu (TG-Green), currently used in TJ-II. A comparison between both materials was carried out by irradiating them with H(+) ions of up to 40 keV using a dedicated laboratory setup. It is found that for the low energy ions of interest at TJ-II, YAP:Ce offers 20 times higher sensitivity than TG-Green and much faster decay time, 27 ns versus 540 ns. It is expected that the use of YAP:Ce in combination with a faster data acquisition and an ion counting software as part of the TJ-II ion luminescent probe will provide 20 times faster data on ion loss.

  7. Slow-down of 13C spin diffusion in organic solids by fast MAS: a CODEX NMR Study.

    PubMed

    Reichert, D; Bonagamba, T J; Schmidt-Rohr, K

    2001-07-01

    One- and two-dimensional 13C exchange nuclear magnetic resonance experiments under magic-angle spinning (MAS) can provide detailed information on slow segmental reorientations and chemical exchange in organic solids, including polymers and proteins. However, observations of dynamics on the time scale of seconds or longer are hampered by the competing process of dipolar 13C spin exchange (spin diffusion). In this Communication, we show that fast MAS can significantly slow down the dipolar spin exchange effect for unprotonated carbon sites. The exchange is measured quantitatively using the centerband-only detection of exchange technique, which enables the detection of exchange at any spinning speed, even in the absence of changes of isotropic chemical shifts. For chemically equivalent unprotonated 13C sites, the dipolar spin exchange rate is found to decrease slightly less than proportionally with the sample-rotation frequency, between 8 and 28 kHz. In the same range, the dipolar spin exchange rate for a glassy polymer with an inhomogeneously broadened MAS line decreases by a factor of 10. For methylene groups, no or only a minor slow-down of the exchange rate is found.

  8. Diagnostics of Fast Axial Ions Produced in Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Klir, D.; Cikhardt, J.; Kubes, P.; Sila, O.; Kravarik, J.; Shishlov, A. V.; Labetsky, A. Yu.; Cherdizov, R. K.; Ratakhin, N. A.; Orcikova, H.; Turek, K.; Dudkin, N.; Padalko, V. N.; GIT-12 Team

    2016-10-01

    An unexpected advantage of some Z-pinch configurations is a possibility of an acceleration of ions to high energies. One of these configurations is a deuterium gas-puff with outer plasma shell, where hydrogen ions with energies up to 40 MeV has been observed during Z-pinch experiments on the GIT-12 generator since 2013. During the recent campaign in 2016, the source of high energetic ions and also parameters of ion pulses have been studied by various in-chamber diagnostics in 24 experimental shots on the current level below 3 MA. Principal aims were (i) to find a spatial distribution of ion sources, (ii) localization of ion sources on the z-axis and (iii) determine the ion energy spectra by an unfold technique. All of these has been done with the help of a new diagnostic setup consists of an ion pinhole camera, an ion 3-pinhole camera, a multi-pinhole camera and a detector of spatial ion beam profile. The ion diagnostics contained stacks with various absorbers, CR-39 track detectors, HD-V2 and EBT-3 radio-chromic films. One more aim, (iv) the study of a difference in production time of axial ion pulses with off-axis pulses, were accomplished by LiF samples and nTOF signals. This work was supported by the projects GACR 16-07036S, MSMT LD14089, CTU. SGS16/223/OHK3/3T/13, IAEA RC17088.

  9. ELECTROMAGNETIC PROTON/PROTON INSTABILITY AND ITS IMPLICATIONS FOR ION HEATING IN THE EXTENDED FAST SOLAR WIND

    SciTech Connect

    Gao, Xinliang; Lu, Quanming; Shan, Lican; Wang, Shui; Li, Xing

    2013-02-10

    Two-dimensional hybrid simulations are performed in this paper to investigate the proton/proton instability in low beta plasma. The obliquely propagating Alfven waves are found to be unstable to the proton/proton instability. At first, the Alfven waves have a nearly linear polarization, and both the ambient protons and minor ions O{sup 6+} can be resonantly heated. The heating is primarily in the direction perpendicular to the background magnetic field. With the evolution of the instability, the obliquely propagating Alfven waves gradually become left-hand polarized, and then cannot resonantly heat the ambient protons or minor ions O{sup 6+}. The effects of the plasma beta and temperature anisotropy of the ambient protons on the evolution of the instability are also studied in this paper. Finally, the implications of our simulation results for ion heating in the extended fast solar wind are discussed.

  10. A flexible luminescent probe to monitor fast ion losses at the edge of the TJ-II stellarator

    SciTech Connect

    Jimenez-Rey, D.; Zurro, B.; Guasp, J.; Liniers, M.; Baciero, A.; Fernandez, A.; Fontdecaba, J. M.; Garcia-Munoz, M.; Garcia, G.; Rodriguez-Barquero, L.

    2008-09-15

    A mobile luminescent probe has been developed to detect fast ion losses and suprathermal ions escaping from the plasma of the TJ-II stellarator device. The priorities for its design have been flexibility for probe positioning, ease of maintenance, and detector sensitivity. It employs a coherent fiber bundle to relay, to the outside of the vacuum chamber, ionoluminescence images produced by the ions that impinge, after entering the detector head through a pinhole aperture, onto a screen of luminescent material. Ionoluminescence light detection is accomplished by a charge-coupled device camera and by a photomultiplier, both of which are optically coupled to the in-vacuum fiber bundle head by means of a standard optical setup. A detailed description of the detector, and the first results obtained when operated close to the plasma edge, are reported.

  11. Fast ignition when heating the central part of an inertial confinement fusion target by an ion beam

    SciTech Connect

    Gus’kov, S. Yu.; Zmitrenko, N. V.; Il’in, D. V.; Sherman, V. E.

    2014-11-15

    We investigate the ignition and burning of a precompressed laser fusion target when it is rapidly heated by an ion beam with the formation of a temperature peak in the central part of the target. We present the results of our comprehensive numerical simulations of the problem that include the following components: (1) the target compression under the action of a profiled laser pulse, (2) the heating of the compressed target with spatially nonuniform density and temperature distributions by a beam of high-energy ions, and (3) the burning of the target with the initial spatial density distribution formed at the instant of maximum target compression and the initial spatial temperature distribution formed as a result of the compressed-target heating by an ion beam. The dependences of the threshold energies of the igniting ion beam and the thermonuclear gain on the width of the Gaussian beam ion energy spectrum have been established. The peculiarities of fast ignition by an ion beam related to the spatial distribution of parameters for the target precompressed by a laser pulse are discussed.

  12. Modeling of fast neutral-beam-generated ions and rotation effects on RWM stability in DIII-D plasmas

    DOE PAGES

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...

    2015-10-15

    Here, validation results for the MARS-K code for DIII-D equilibria, predict that the absence of fast Neutral Beam (NB) generated ions leads to a plasma response ~40–60% higher than in NB-sustained H-mode plasmas when the no-wall βN limit is reached. In a βN scan, the MARS-K model with