Sample records for fast ion-driven bernstein

  1. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  2. A mechanism for beam-driven excitation of ion cyclotron harmonic waves in the Tokamak Fusion Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dendy, R.O.; McClements, K.G.; Lashmore-Davies, C.N.

    1994-10-01

    A mechanism is proposed for the excitation of waves at harmonics of the injected ion cyclotron frequencies in neutral beam-heated discharges in the Tokamak Fusion Test Reactor (TFTR) [[ital Proceedings] [ital of] [ital the] 17[ital th] [ital European] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Heating] (European Physical Society, Petit-Lancy, Switzerland, 1990), p. 1540]. Such waves are observed to originate from the outer midplane edge of the plasma. It is shown that ion cyclotron harmonic waves can be destabilized by a low concentration of sub-Alfvenic deuterium or tritium beam ions, provided these ions havemore » a narrow distribution of speeds parallel to the magnetic field. Such a distribution is likely to occur in the edge plasma, close to the point of beam injection. The predicted instability gives rise to wave emission at propagation angles lying almost perpendicular to the field. In contrast to the magnetoacoustic cyclotron instability proposed as an excitation mechanism for fusion-product-driven ion cyclotron emission in the Joint European Torus (JET) [Phys. Plasmas [bold 1], 1918 (1994)], the instability proposed here does not involve resonant fast Alfven and ion Bernstein waves, and can be driven by sub-Alfvenic energetic ions. It is concluded that the observed emission from TFTR can be driven by beam ions.« less

  3. Theory of ion Bernstein wave induced shear suppression of turbulence

    NASA Astrophysics Data System (ADS)

    Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.

    1994-06-01

    The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.

  4. Scalings of Alfvén-cyclotron and ion Bernstein instabilities on temperature anisotropy of a ring-like velocity distribution in the inner magnetosphere

    DOE PAGES

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2016-03-18

    Here, a ring-like proton velocity distribution with ∂f p(v ⊥)/∂v ⊥>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernsteinmore » instabilities. In this study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T ⊥/T || for a general ring-like proton distribution with a fixed ring speed of 2v A, where v A is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T ⊥/T ||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as inline image. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very anisotropic.« less

  5. Proton velocity ring-driven instabilities and their dependence on the ring speed: Linear theory

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2017-08-01

    Linear dispersion theory is used to study the Alfvén-cyclotron, mirror and ion Bernstein instabilities driven by a tenuous (1%) warm proton ring velocity distribution with a ring speed, vr, varying between 2vA and 10vA, where vA is the Alfvén speed. Relatively cool background protons and electrons are assumed. The modeled ring velocity distributions are unstable to both the Alfvén-cyclotron and ion Bernstein instabilities whose maximum growth rates are roughly a linear function of the ring speed. The mirror mode, which has real frequency ωr=0, becomes the fastest growing mode for sufficiently large vr/vA. The mirror and Bernstein instabilities have maximum growth at propagation oblique to the background magnetic field and become more field-aligned with an increasing ring speed. Considering its largest growth rate, the mirror mode, in addition to the Alfvén-cyclotron mode, can cause pitch angle diffusion of the ring protons when the ring speed becomes sufficiently large. Moreover, because the parallel phase speed, v∥ph, becomes sufficiently small relative to vr, the low-frequency Bernstein waves can also aid the pitch angle scattering of the ring protons for large vr. Potential implications of including these two instabilities at oblique propagation on heliospheric pickup ion dynamics are discussed.

  6. Atypical Particle Heating at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn B., III

    2010-01-01

    We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  7. Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.

    2010-01-01

    We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  8. Averaged variational principle for autoresonant Bernstein-Greene-Kruskal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khain, P.; Friedland, L.

    2010-10-15

    Whitham's averaged variational principle is applied in studying dynamics of formation of autoresonant (continuously phase-locked) Bernstein-Greene-Kruskal (BGK) modes in a plasma driven by a chirped frequency ponderomotive wave. A flat-top electron velocity distribution is used as a model allowing a variational formulation within the water bag theory. The corresponding Lagrangian, averaged over the fast phase variable yields evolution equations for the slow field variables, allows uniform description of all stages of excitation of driven-chirped BGK modes, and predicts modulational stability of these nonlinear phase-space structures. Numerical solutions of the system of slow variational equations are in good agreement with Vlasov-Poissonmore » simulations.« less

  9. Ion Bernstein instability dependence on the proton-to-electron mass ratio: Linear dispersion theory

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun

    2016-07-01

    Fast magnetosonic waves, which have as their source ion Bernstein instabilities driven by tenuous ring-like proton velocity distributions, are frequently observed in the inner magnetosphere. One major difficulty in the simulation of these waves is that they are excited in a wide frequency range with discrete harmonic nature and require time-consuming computations. To overcome this difficulty, recent simulation studies assumed a reduced proton-to-electron mass ratio, mp/me, and a reduced light-to-Alfvén speed ratio, c/vA, to reduce the number of unstable modes and, therefore, computational costs. Although these studies argued that the physics of wave-particle interactions would essentially remain the same, detailed investigation of the effect of this reduced system on the excited waves has not been done. In this study, we investigate how the complex frequency, ω = ωr+iγ, of the ion Bernstein modes varies with mp/me for a sufficiently large c/vA (such that ωpe2/Ωe2≡(me/mp)(c/vA)2≫1) using linear dispersion theory assuming two different types of energetic proton velocity distributions, namely, ring and shell. The results show that low- and high-frequency harmonic modes respond differently to the change of mp/me. For the low harmonic modes (i.e., ωr˜Ωp), both ωr/Ωp and γ/Ωp are roughly independent of mp/me, where Ωp is the proton cyclotron frequency. For the high harmonic modes (i.e., Ωp≪ωr≲ωlh, where ωlh is the lower hybrid frequency), γ/ωlh (at fixed ωr/ωlh) stays independent of mp/me when the parallel wave number, k∥, is sufficiently large and becomes inversely proportional to (mp/me)1/4 when k∥ goes to zero. On the other hand, the frequency range of the unstable modes normalized to ωlh remains independent of mp/me, regardless of k∥.

  10. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T{sub i} {approx} 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less

  11. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki.

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T[sub i] [approx] 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less

  12. Electrostatic odd symmetric eigenmode in inhomogeneous Bernstein-Greene-Kruskal equilibrium

    NASA Astrophysics Data System (ADS)

    Woo, M.-H.; Dokgo, K.; Yoon, Peter H.; Lee, D.-Y.; Choi, Cheong R.

    2018-04-01

    A self-consistent electrostatic odd-symmetric eigenmode (OEM) is analytically found in a solitary type Bernstein-Greene-Kruskal (BGK) equilibrium. The frequency of the OEM is order of the electron bounce frequency and it is spatially odd-symmetric with the scale comparable to that of the solitary BGK equilibrium structure. Such an OEM is consistent with the recent observation from particle-in-cell simulation of the solitary wave [Dokgo et al., Phys. Plasmas 23, 092107 (2016)]. The mode can be driven unstable by trapped electrons within the hole structure of the solitary wave. Such a low frequency, pure electron mode, which may possibly interact resonantly with the ion acoustic mode, provides a possible damping mechanism of the BGK equilibrium.

  13. Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc

    2011-01-01

    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.

  14. Potential Role of the Mirror and Ion Bernstein Instabilities on the Pickup Ion Dynamics in the Outer Heliosheath: Linear Theory and Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Min, K.; Liu, K.; Gary, S. P.

    2017-12-01

    The main challenge of the secondary ENA mechanism, a theory put forth to explain the IBEX ENA ribbon, is maintaining the stability of the pickup ion velocity distribution before the pickup ions in the outer heliosheath go through two consecutive charge exchanges. The Alfvén/ion-cyclotron instability, which has its maximum growth at propagation parallel to Bo, the background magnetic field, is believed to be the main agent leading to rapid isotropization of the pickup ions. However, recent studies found that this instability can be suppressed when parallel temperatures of the background plasma and the pickup ion ring distribution are comparable, allowing the pickup ion distribution to remain stable for a long period. This paper demonstrates that a pickup ion ring distribution can also drive the mirror and ion Bernstein instabilities which lead to growing modes at propagation oblique to Bo. For idealized proton-electron plasmas where relatively cool background electron and proton populations are represented by isotropic Maxwellian distributions and tenuous (1%) pickup protons are represented by a Maxwellian-ring distribution (assuming a 90˚ pickup angle), linear Vlasov theory predicts unstable mirror and ion Bernstein modes with growth rates comparable to or exceeding that of the Alfvén-cyclotron instability. According to quasilinear theory, interactions with these obliquely-propagating modes can lead to substantial pitch angle scattering of the ring protons. Two-dimensional hybrid (kinetic ions and massless fluid electrons) simulations are carried out to examine the nonlinear consequences of the mirror and Bernstein instabilities. The preliminary simulation results are presented. The study suggests a scenario that the oblique mirror and ion Bernstein modes can be an active agent of the pickup ion isotropization when the condition is such that the Alfvén-cyclotron instability is suppressed.

  15. Contributions of Mirror and Ion Bernstein Instabilities to the Scattering of Pickup Ions in the Outer Heliosheath

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun

    2018-01-01

    Maintaining the stability of pickup ions in the outer heliosheath is a critical element for the secondary energetic neutral atom (ENA) mechanism, a theory put forth to explain the nearly annular band of ENA emission observed by the Interstellar Boundary EXplorer. A recent study showed that a pickup ion ring can remain stable to the Alfvén/ion cyclotron (AC) instability at propagation parallel to the background magnetic field when the parallel thermal spread of the ring is comparable to that of a background population. This study investigates the potential role that the mirror or ion Bernstein (IB) instabilities can play in the stability of pickup ions when conditions are such that the AC instability is suppressed. Linear Vlasov theory predicts relatively fast mirror and IB instability growth even though AC instability growth is suppressed. For a few such cases, two-dimensional hybrid and macroscopic quasi-linear simulations are carried out to examine how the unstable mirror and IB modes evolve and affect the pickup ion ring beyond the linear theory picture. For the parameters used, the mirror mode dominates initially and leads to a rapid parallel heating of the pickup ions in excess of the parallel temperature of the background protons. The heated pickup ions subsequently trigger onset of the AC mode, which grows sufficiently large to be the dominant pitch angle scattering agent after the mirror mode has decayed away. The present results indicate that the pickup ion stability needed may not be guaranteed once the mirror and IB instabilities are taken into account.

  16. Transport implementation of the Bernstein-Vazirani algorithm with ion qubits

    NASA Astrophysics Data System (ADS)

    Fallek, S. D.; Herold, C. D.; McMahon, B. J.; Maller, K. M.; Brown, K. R.; Amini, J. M.

    2016-08-01

    Using trapped ion quantum bits in a scalable microfabricated surface trap, we perform the Bernstein-Vazirani algorithm. Our architecture takes advantage of the ion transport capabilities of such a trap. The algorithm is demonstrated using two- and three-ion chains. For three ions, an improvement is achieved compared to a classical system using the same number of oracle queries. For two ions and one query, we correctly determine an unknown bit string with probability 97.6(8)%. For three ions, we succeed with probability 80.9(3)%.

  17. Fast ion beta limit measurements by collimated neutron detection in MST plasmas

    NASA Astrophysics Data System (ADS)

    Capecchi, William; Anderson, Jay; Bonofiglo, Phillip; Kim, Jungha; Sears, Stephanie

    2015-11-01

    Fast ion orbits in the reversed field pinch (RFP) are well ordered and classically confined despite magnetic field stochasticity generated by multiple tearing modes. Classical TRANSP modeling of a 1MW tangentially injected hydrogen neutral beam in MST deuterium plasmas predicts a core-localized fast ion density that can be up to 25% of the electron density and a fast ion beta of many times the local thermal beta. However, neutral particle analysis of an NBI-driven mode (presumably driven by a fast ion pressure gradient) shows mode-induced transport of core-localized fast ions and a saturated fast ion density. The TRANSP modeling is presumed valid until the onset of the beam-driven mode and gives an initial estimate of the volume-averaged fast ion beta of 1-2% (local core value up to 10%). A collimated neutron detector for fusion product profile measurements will be used to determine the spatial distribution of fast ions, allowing for a first measurement of the critical fast-ion pressure gradient required for mode destabilization. Testing/calibration data and initial fast-ion profiles will be presented. Characterization of both the local and global fast ion beta will be done for deuterium beam injection into deuterium plasmas for comparison to TRANSP predictions. Work supported by US DOE.

  18. Kinetic scale structure of low-frequency waves and fluctuations

    NASA Astrophysics Data System (ADS)

    Lopez Herrera, R. A.; Figueroa-Vinas, A.; Araneda, J. A.; Yoon, P. H.

    2017-12-01

    The dissipation of solar wind turbulence at kinetic scales is believed to be important for heating the corona and accelerating the wind. Linear Vlasov kinetic theory is a useful tool in identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, ion-acoustic (or kinetic slow mode), and their possible roles in the dissipation. However, kinetic mode structure near the vicinity of ion cyclotron modes is not clearly understood. The present poster aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. The theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion Bernstein versus quasi modes. The spontaneous emission theory and simulation also confirm the findings of Vlasov theory in that the kinetic Alfvén wave can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave-particle interactions.

  19. Electron and ion Bernstein waves in Saturnian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Bashir, M. F.; Waheed, A.; Ilie, R.; Naeem, I.; Maqsood, U.; Yoon, P. H.

    2017-12-01

    The study of Bernstein mode is presented in order to interpret the observed micro-structures (MIS) and banded emission (BEM) in the Saturnian magnetosphere. The general dispersion relation of Bernstein wave is derived using the Lerche-NewBerger sum rule for the kappa distribution function and further analyzed the both electron Bernstein (EB) and ion Bernstein (IB) waves. The observational data of particle measurements is obtained from the electron spectrometer (ELS) and the ion mass spectrometer (IMS), which are part of the Cassini Plasma Spectrometer (CAPS) instrument suite on board the Cassini spacecraft. For additional electron data, the measurements of Low Energy Magnetospheric Measurements System of the Magnetospheric Imaging Instrument (LEMMS /MIMI) are also utilized. The effect of kappa spectral index, density ratio (nohe/noce for EB and nohe/noi for IB) and the temperature ratio (The/Tce for EB and The/T(h,c)i for IB) on the dispersion properties are discussed employing the exact numerical analysis to explain the appearing of additional maxima/minima (points where the perpendicular group velocity vanishes, i.e., ∂w/∂k = 0) above/below the lower (for IB) and upper hybrid (EB) bands in the observation and their relation to the MIS and BED. The results of these waves may also be compared with the simulation results of Space Weather Modeling Framework (SWMF) .

  20. Evaluation of laser-driven ion energies for fusion fast-ignition research

    NASA Astrophysics Data System (ADS)

    Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.

    2017-10-01

    We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.

  1. Kinetic Scale Structure of Low-frequency Waves and Fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, Rodrigo A.; Yoon, Peter H.; Viñas, Adolfo F.

    The dissipation of solar wind turbulence at kinetic scales is believed to be important for the heating of the corona and for accelerating the wind. The linear Vlasov kinetic theory is a useful tool for identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, and ion-acoustic (or kinetic slow), and their possible roles in the dissipation. However, the kinetic mode structure in the vicinity of ion-cyclotron modes is not clearly understood. The present paper aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. Themore » theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion-Bernstein modes versus quasi-modes. The spontaneous emission theory and simulation also confirm the findings of the Vlasov theory in that the kinetic Alfvén waves can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high-beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave–particle interactions.« less

  2. Ion Bernstein instability as a possible source for oxygen ion cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Denton, Richard E.; Liu, Kaijun; Gary, S. Peter; Spence, Harlan E.

    2017-05-01

    This paper demonstrates that an ion Bernstein instability can be a possible source for recently reported electromagnetic waves with frequencies at or near the singly ionized oxygen ion cyclotron frequency, ΩO+, and its harmonics. The particle measurements during strong wave activity revealed a relatively high concentration of oxygen ions (˜15%) whose phase space density exhibits a local peak at energy ˜20 keV. Given that the electron plasma-to-cyclotron frequency ratio is ωpe/Ωe≳1, this energy corresponds to the particle speed v/vA≳0.3, where vA is the oxygen Alfvén speed. Using the observational key plasma parameters, a simplified ion velocity distribution is constructed, where the local peak in the oxygen ion velocity distribution is represented by an isotropic shell distribution. Kinetic linear dispersion theory then predicts unstable Bernstein modes at or near the harmonics of ΩO+ and at propagation quasi-perpendicular to the background magnetic field, B0. If the cold ions are mostly protons, these unstable modes are characterized by a low compressibility (|δB∥|2/|δB|2≲0.01), a small phase speed (vph˜0.2vA), a relatively small ratio of the electric field energy to the magnetic field energy (between 10-4 and 10-3), and the Poynting vector directed almost parallel to B0. These linear properties are overall in good agreement with the properties of the observed waves. We demonstrate that superposition of the predicted unstable Bernstein modes at quasi-perpendicular propagation can produce the observed polarization properties, including the minimum variance direction on average almost parallel to B0.

  3. Fast and Exact Continuous Collision Detection with Bernstein Sign Classification

    PubMed Central

    Tang, Min; Tong, Ruofeng; Wang, Zhendong; Manocha, Dinesh

    2014-01-01

    We present fast algorithms to perform accurate CCD queries between triangulated models. Our formulation uses properties of the Bernstein basis and Bézier curves and reduces the problem to evaluating signs of polynomials. We present a geometrically exact CCD algorithm based on the exact geometric computation paradigm to perform reliable Boolean collision queries. Our algorithm is more than an order of magnitude faster than prior exact algorithms. We evaluate its performance for cloth and FEM simulations on CPUs and GPUs, and highlight the benefits. PMID:25568589

  4. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.; MST Team

    2011-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with minimal external magnetization, (2) toroidal confinement physics, and (3) basic plasma physics is summarized. New tools and diagnostics are accessing physics barely studied in the RFP. Several diagnostic advances are important for ITER/burning plasma. A 1 MW neutral beam injector operates routinely for fast ion, heating, and transport investigations. Energetic ions are also created spontaneously by tearing mode reconnection, reminiscent of astrophysical plasmas. Classical confinement of impurity ions is measured in reduced-tearing plasmas. Fast ion slowing-down is also classical. Alfven-eigenmode-like activity occurs with NBI, but apparently not TAE. Stellarator-like helical structure appears in the core of high current plasmas, with improved confinement characteristics. FIR interferometry, Thomson scattering, and HIBP diagnostics are beginning to explore microturbulence scales, an opportunity to exploit the RFP's high beta and strong magnetic shear parameter space. A programmable power supply for the toroidal field flexibly explores scenarios from advanced inductive profile control to low current tokamak operation. A 1 MW 5.5 GHz source for electron Bernstein wave injection is nearly complete to investigate heating and current drive in over-dense plasmas. Supported by DOE and NSF.

  5. Faraday-cup-type lost fast ion detector on Heliotron J.

    PubMed

    Yamamoto, S; Ogawa, K; Isobe, M; Darrow, D S; Kobayashi, S; Nagasaki, K; Okada, H; Minami, T; Kado, S; Ohshima, S; Weir, G M; Nakamura, Y; Konoshima, S; Kemmochi, N; Ohtani, Y; Mizuuchi, T

    2016-11-01

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90 ∘ -140 ∘ , especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  6. Nonlocal theory of beam-driven electron Bernstein waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, V.K.; Tripathi, V.K.

    A nonlocal theory of electron Bernstein waves driven unstable by an axial beam (V = V/sub b/z-italic-circumflex) of finite width has been developed. Assuming a parabolic density profile for the background plasma, an equation describing the mode structure of the wave is obtained in the slab geometry. The eigenfunctions are found to be Hermite polynomials. Expressions for the growth rates of the instabilities caused by Cerenkov and slow cyclotron interactions are derived. The results of the theory are applied to explain some of the experimental observations of Jain and Christiansen (Phys. Lett. A 82, 127 (1981)).

  7. Low frequency electromagnetic fluctuations in Kappa magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Sunjung; Lazar, M.; Schlickeiser, R.; López, R. A.; Yoon, P. H.

    2018-07-01

    The present paper provides a theoretical approach for the evaluation of the low frequency spontaneously emitted electromagnetic (EM) fluctuations in Kappa magnetized plasmas, which include the kinetic Alfvén, fast magnetosonic/whistler, kinetic slow mode, ion Bernstein cyclotron modes, and higher-order modes. The model predictions are consistent with particle-in-cell simulations. Effects of suprathermal particles on low frequency fluctuations are studied by varying the power index, either for ions (κ i) or for electrons (κ e). Computations for an arbitrary wave vector orientation and wave polarization provide the intensity of spontaneous emissions to be enhanced in the presence of suprathermal populations. These results strongly suggest that spontaneous fluctuations may significantly contribute to the EM fluctuations observed in space plasmas, where suprathermal Kappa distributed particles are ubiquitous.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, S., E-mail: yamamoto.satoshi.6n@kyoto-u.ac.jp; Kobayashi, S.; Nagasaki, K.

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7–42.5 keV (proton) and pitch angle of 90{sup ∘}–140{sup ∘}, especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  9. Modeling of fast neutral-beam-generated ions and rotation effects on RWM stability in DIII-D plasmas

    DOE PAGES

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...

    2015-10-15

    Here, validation results for the MARS-K code for DIII-D equilibria, predict that the absence of fast Neutral Beam (NB) generated ions leads to a plasma response ~40–60% higher than in NB-sustained H-mode plasmas when the no-wall β N limit is reached. In a β N scan, the MARS-K model with thermal and fast-ions, reproduces the experimental measurements above the no-wall limit, except at the highest β N where the phase of the plasma response is overestimated. The dependencies extrapolate unfavorably to machines such as ITER with smaller fast ion fractions since elevated responses in the absence of fast ions indicatemore » the potential onset of a resistive wall mode (RWM). The model was also tested for the effects of rotation at high β N, and recovers the measured response even when fast-ions are neglected, reversing the effect found in lower β N cases, but consistent with the higher β N results above the no-wall limit. The agreement in the response amplitude and phase for the rotation scan is not as good, and additional work will be needed to reproduce the experimental trends. In the case of current-driven instabilities, the magnetohydrodynamic spectroscopy system used to measure the plasma response reacts differently from that for pressure driven instabilities: the response amplitude remains low up to ~93% of the current limit, showing an abrupt increase only in the last ~5% of the current ramp. This makes it much less effective as a diagnostic for the approach to an ideal limit. However, the mode structure of the current driven RWM extends radially inwards, consistent with that in the pressure driven case for plasmas with q edge~2. This suggests that previously developed RWM feedback techniques together with the additional optimizations that enabled q edge~2 operation, can be applied to control of both current-driven and pressure-driven modes at high β N.« less

  10. Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas

    NASA Astrophysics Data System (ADS)

    Girardo, Jean-Baptiste; Sharapov, Sergei; Boom, Jurrian; Dumont, Rémi; Eriksson, Jacob; Fitzgerald, Michael; Garbet, Xavier; Hawkes, Nick; Kiptily, Vasily; Lupelli, Ivan; Mantsinen, Mervi; Sarazin, Yanick; Schneider, Mireille

    2016-01-01

    Sawtooth stabilisation by fast ions is investigated in deuterium (D) and D-helium 3 (He3) plasmas of JET heated by deuterium Neutral Beam Injection combined in synergy with Ion Cyclotron Resonance Heating (ICRH) applied on-axis at 3rd beam cyclotron harmonic. A very significant increase in the sawtooth period is observed, caused by the ICRH-acceleration of the beam ions born at 100 keV to the MeV energy range. Four representative sawteeth from four different discharges are compared with Porcelli's model. In two discharges, the sawtooth crash appears to be triggered by core-localized Toroidal Alfvén Eigenmodes inside the q = 1 surface (also called "tornado" modes) which expel the fast ions from within the q = 1 surface, over time scales comparable with the sawtooth period. Two other discharges did not exhibit fast ion-driven instabilities in the plasma core, and no degradation of fast ion confinement was found in both modelling and direct measurements of fast ion profile with the neutron camera. The developed sawtooth scenario without fast ion-driven instabilities in the plasma core is of high interest for the burning plasmas. Possible causes of the sawtooth crashes on JET are discussed.

  11. Electrostatic waves driven by electron beam in lunar wake plasma

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2018-05-01

    A linear analysis of electrostatic waves propagating parallel to the ambient field in a four component homogeneous, collisionless, magnetised plasma comprising fluid protons, fluid He++, electron beam, and suprathermal electrons following kappa distribution is presented. In the absence of electron beam streaming, numerical analysis of the dispersion relation shows six modes: two electron acoustic modes (modes 1 and 6), two fast ion acoustic modes (modes 2 and 5), and two slow ion acoustic modes (modes 3 and 4). The modes 1, 2 and 3 and modes 4, 5, and 6 have positive and negative phase speeds, respectively. With an increase in electron beam speed, the mode 6 gets affected the most and the phase speed turns positive from negative. The mode 6 thus starts to merge with modes 2 and 3 and generates the electron beam driven fast and slow ion acoustic waves unstable with a finite growth. The electron beam driven slow ion-acoustic waves occur at lower wavenumbers, whereas fast ion-acoustic waves occur at a large value of wavenumbers. The effect of various other parameters has also been studied. We have applied this analysis to the electrostatic waves observed in lunar wake during the first flyby of the ARTEMIS mission. The analysis shows that the low (high) frequency waves observed in the lunar wake could be the electron beam driven slow (fast) ion-acoustic modes.

  12. High Power HF Excitation of Low Frequency Stimulated Electrostatic Waves in the Ionospheric Plasma over HAARP

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul; Selcher, Craig A.

    High Power electromagnetic (EM) waves transmitted from the HAARP facility in Alaska can excite low frequency electrostatic waves by several processes including (1) direct magnetized stimulated Brillouin scatter (MSBS) and (2) parametric decay of high frequency electrostatic waves into electron and ion Bernstein waves. Either an ion acoustic (IA) wave with a frequency less than the ion cyclotron frequency (fCI) or an electrostatic ion cyclotron (EIC) wave just above fCI can be produced by MSBS. The coupled equations describing the MSBS instabil-ity show that the production of both IA and EIC waves is strongly influenced by the wave propagation direction relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions (SEE) using the HAARP transmitter in Alaska have confirmed the theoretical predictions that only IA waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The electron temperature in the heated plasma is obtained from the IA spectrum offsets from the pump frequency. The ion composition can be determined from the measured EIC frequency. Near the second harmonic of the electron cyclotron frequency, the EM pump wave is converted into an electron Bernstein (EB) wave that decays into another EB wave and an ion Bernstein (IB) wave. Strong cyclotron resonance with the EB wave leads to acceleration of the electrons. Ground based SEE observations are related to the theory of low-frequency electrostatic wave generation.

  13. Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardo, Jean-Baptiste; CEA, IRFM, F-13108 Saint-Paul-lez-Durance; Sharapov, Sergei

    Sawtooth stabilisation by fast ions is investigated in deuterium (D) and D-helium 3 (He3) plasmas of JET heated by deuterium Neutral Beam Injection combined in synergy with Ion Cyclotron Resonance Heating (ICRH) applied on-axis at 3rd beam cyclotron harmonic. A very significant increase in the sawtooth period is observed, caused by the ICRH-acceleration of the beam ions born at 100 keV to the MeV energy range. Four representative sawteeth from four different discharges are compared with Porcelli's model. In two discharges, the sawtooth crash appears to be triggered by core-localized Toroidal Alfvén Eigenmodes inside the q = 1 surface (also called “tornado” modes)more » which expel the fast ions from within the q = 1 surface, over time scales comparable with the sawtooth period. Two other discharges did not exhibit fast ion-driven instabilities in the plasma core, and no degradation of fast ion confinement was found in both modelling and direct measurements of fast ion profile with the neutron camera. The developed sawtooth scenario without fast ion-driven instabilities in the plasma core is of high interest for the burning plasmas. Possible causes of the sawtooth crashes on JET are discussed.« less

  14. Comprehensive approach to fast ion measurements in the beam-driven FRC

    NASA Astrophysics Data System (ADS)

    Magee, Richard; Smirnov, Artem; Onofri, Marco; Dettrick, Sean; Korepanov, Sergey; Knapp, Kurt; the TAE Team

    2015-11-01

    The C-2U experiment combines tangential neutral beam injection, edge biasing, and advanced recycling control to explore the sustainment of field-reversed configuration (FRC) plasmas. To study fast ion confinement in such advanced, beam-driven FRCs, a synergetic technique was developed that relies on the measurements of the DD fusion reaction products and the hybrid code Q2D, which treats the plasma as a fluid and the fast ions kinetically. Data from calibrated neutron and proton detectors are used in a complementary fashion to constrain the simulations: neutron detectors measure the volume integrated fusion rate to constrain the total number of fast ions, while proton detectors with multiple lines of sight through the plasma constrain the axial profile of fast ions. One application of this technique is the diagnosis of fast ion energy transfer and pitch angle scattering. A parametric numerical study was conducted, in which additional ad hoc loss and scattering terms of varying strengths were introduced in the code and constrained with measurement. Initial results indicate that the energy transfer is predominantly classical, while, in some cases, non-classical pitch angle scattering can be observed.

  15. The privileged spectrum of cnoidal ion holes and its extension by imperfect ion trapping

    NASA Astrophysics Data System (ADS)

    Schamel, Hans; Das, Nilakshi; Borah, Prathana

    2018-01-01

    The fundamental properties of nonlinear ion hole modes propagating in current-driven collisionless plasmas are derived. Making use of Schamel's alternative method their spatial structure ϕ (x) and phase velocities u0 are analyzed and found to depend crucially on the used trapped ion distribution fit. A regular fit represents a continuous spectrum, which is called privileged or perfect since it yields a definite u0 and appears most realistic. A singular fit, on the other hand, involving jumps and moderate slope singularities at the separatrix, does reveal further classes of hole equilibria at the cost, however, of a well-defined u0. This explains why Bernstein, Greene, Kruskal (BGK)-solutions of the Vlasov-Poisson system, exhibiting a strong slope singularity of their derived trapped particle distribution, can principally not provide definite u0 s. The nonlinear dispersion relation (or u0) of privileged ion holes, on the other hand, is equivalent with that of cnoidal electron holes, i.e. in addition to the ordinary ion acoustic branch there exists a correspondence to the "Langmuir" branch and to the multiple "slow electron acoustic" branches, reflecting different trapping scenarios.

  16. Generation of noninductive current by electron-Bernstein waves on the COMPASS-D Tokamak.

    PubMed

    Shevchenko, V; Baranov, Y; O'Brien, M; Saveliev, A

    2002-12-23

    Electron-Bernstein waves (EBW) were excited in the plasma by mode converted extraordinary (X) waves launched from the high field side of the COMPASS-D tokamak at different toroidal angles. It has been found experimentally that X-mode injection perpendicular to the magnetic field provides maximum heating efficiency. Noninductive currents of up to 100 kA were found to be driven by the EBW mode with countercurrent drive. These results are consistent with ray tracing and quasilinear Fokker-Planck simulations.

  17. Mode conversion in three ion species ICRF heating scenario

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Edlund, E.; Ennever, P.; Porkolab, M.; Wright, J.; Wukitch, S.

    2016-10-01

    Three-ion species ICRF heating has been studied on Alcator C-Mod and on JET. It has been shown to heat the plasma and generate energetic particles. In a typical three-ion scenario, the plasma consists of 60-70% D, 30-40% H and a trace level (1% or less) of 3He. This species mixture creates two hybrid resonances (D-3He and 3He-H) in the plasma, in the vicinity of the 3He IC resonance (on both sides). The fast wave can undergo mode conversion (MC) to ion Bernstein waves and ion cyclotron waves at the two hybrid resonances. A phase contrast imaging (PCI) system has been used to measure the RF waves in the three-ion heating experiment. The experimentally measured MC locations and the separating distance between the two MC regions help to determine the concentration of the three species. The PCI signal amplitudes for the RF waves are found to be sensitive to RF and plasma parameters, including PRF, Te, ne and also the species mix concentration. The parameter dependences found in the experiment will be compared with ICRF code simulations. Supported by USDoE Awards DE-FC02-99ER54512 and DE-FG02-94-ER54235.

  18. Electron Bernstein waves in spherical torus plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saveliev, A. N.

    2006-11-30

    Propagation and absorption of the electron Bernstein waves (EBWs) in spherical tokamaks (STs) have been intensively discussed in recent years because the EBWs coupled with an externally launched electromagnetic beam seem to be the only opportunity for microwave plasma heating and current drive in the electron cyclotron (EC) frequency range in the STs. The whole problem of the electron Bernstein heating and current drive (EBWHCD) in spherical plasmas is naturally divided into three major parts: coupling of incident electromagnetic waves (EMWs) to the EBWs near the upper hybrid resonance (UHR) surface, propagation and absorption of the EBWs in the plasmamore » interior and generation of noninductive current driven by the EBWs. The present paper is a brief survey of the most important theoretical and numerical results on the issue of EBWs.« less

  19. Quasilinear analysis of ion Bernstein and lower hybrid waves synergy

    NASA Astrophysics Data System (ADS)

    Paoletti, F.; Cardinali, A.; Shoucri, M.; Shkarofsky, A.; Bernabei, S.; Ono, M.

    1996-02-01

    A quasilinear analysis of the absorption of Ion Bernstein Wave (IBW) by the electron population of the plasma is performed. It uses an analytical calculation of the amplitude of the electric field along the trajectory to obtain the quasilinear diffusion coefficient. A numerical integration of the Fokker-Planck equation is performed together with the dynamical evolution of the IBW and Lower Hybrid Wave (LHW) ray trajectories. The damping of IBW is calculated on the distorted distribution function generated by the previous application of Lower Hybrid Current Drive (LHCD) which has bridged the n∥-gap. This calculation is particularly relevant because of the IBW/LHW experiments on the Princeton Beta Experiment-Modified (PBX-M).

  20. Effects of MHD instabilities on neutral beam current drive

    NASA Astrophysics Data System (ADS)

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-05-01

    Neutral beam injection (NBI) is one of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility. However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CD efficiency are investigated. A new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ∼50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.

  1. Effects of MHD instabilities on neutral beam current drive

    DOE PAGES

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; ...

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CDmore » efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.« less

  2. Kinetic theory and Vlasov simulation of nonlinear ion-acoustic waves in multi-ion species plasmas.

    PubMed

    Chapman, T; Berger, R L; Brunner, S; Williams, E A

    2013-05-10

    The theory of damping and nonlinear frequency shifts from particles resonant with ion-acoustic waves (IAWs) is presented for multi-ion species plasma and compared to driven wave Vlasov simulations. Two distinct IAW modes may be supported in multi-ion species plasmas, broadly classified as fast and slow by their phase velocity relative to the constituent ion thermal velocities. In current fusion-relevant long pulse experiments, the ion to electron temperature ratio, T(i)/T(e), is expected to reach a level such that the least damped and thus more readily driven mode is the slow mode, with both linear and nonlinear properties that are shown to differ significantly from the fast mode. The lighter ion species of the slow mode is found to make no significant contribution to the IAW frequency shift despite typically being the dominant contributor to the Landau damping.

  3. Measurements and modelling of fast-ion redistribution due to resonant MHD instabilities in MAST

    NASA Astrophysics Data System (ADS)

    Jones, O. M.; Cecconello, M.; McClements, K. G.; Klimek, I.; Akers, R. J.; Boeglin, W. U.; Keeling, D. L.; Meakins, A. J.; Perez, R. V.; Sharapov, S. E.; Turnyanskiy, M.; the MAST Team

    2015-12-01

    The results of a comprehensive investigation into the effects of toroidicity-induced Alfvén eigenmodes (TAE) and energetic particle modes on the NBI-generated fast-ion population in MAST plasmas are reported. Fast-ion redistribution due to frequency-chirping TAE in the range 50 kHz-100 kHz and frequency-chirping energetic particle modes known as fishbones in the range 20 kHz-50 kHz, is observed. TAE and fishbones are also observed to cause losses of fast ions from the plasma. The spatial and temporal evolution of the fast-ion distribution is determined using a fission chamber, a radially-scanning collimated neutron flux monitor, a fast-ion deuterium alpha spectrometer and a charged fusion product detector. Modelling using the global transport analysis code Transp, with ad hoc anomalous diffusion and fishbone loss models introduced, reproduces the coarsest features of the affected fast-ion distribution in the presence of energetic particle-driven modes. The spectrally and spatially resolved measurements show, however, that these models do not fully capture the effects of chirping modes on the fast-ion distribution.

  4. Direct Heating of a Laser-Imploded Core by Ultraintense Laser-Driven Ions

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Mori, Y.; Komeda, O.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Takagi, M.; Watari, T.; Kawashima, T.; Kan, H.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Motohiro, T.; Hioki, T.; Kakeno, M.; Miura, E.; Arikawa, Y.; Nagai, T.; Abe, Y.; Ozaki, S.; Noda, A.

    2015-05-01

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D (d ,n )He 3 -reacted neutrons (DD beam-fusion neutrons) with the yield of 5 ×108 n /4 π sr . Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6 ×107 n /4 π sr , raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g /cm3 in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g /cm3 ); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

  5. Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation

    NASA Astrophysics Data System (ADS)

    Romanelli, M.; Zocco, A.; Crisanti, F.; Contributors, JET-EFDA

    2010-04-01

    Understanding and modelling turbulent transport in thermonuclear fusion plasmas are crucial for designing and optimizing the operational scenarios of future fusion reactors. In this context, plasmas exhibiting state transitions, such as the formation of an internal transport barrier (ITB), are particularly interesting since they can shed light on transport physics and offer the opportunity to test different turbulence suppression models. In this paper, we focus on the modelling of ITB formation in the Joint European Torus (JET) [1] hybrid-scenario plasmas, where, due to the monotonic safety factor profile, magnetic shear stabilization cannot be invoked to explain the transition. The turbulence suppression mechanism investigated here relies on the increase in the plasma pressure gradient in the presence of a minority of energetic ions. Microstability analysis of the ion temperature gradient driven modes (ITG) in the presence of a fast-hydrogen minority shows that energetic ions accelerated by the ion cyclotron resonance heating (ICRH) system (hydrogen, nH,fast/nD,thermal up to 10%, TH,fast/TD,thermal up to 30) can increase the pressure gradient enough to stabilize the ITG modes driven by the gradient of the thermal ions (deuterium). Numerical analysis shows that, by increasing the temperature of the energetic ions, electrostatic ITG modes are gradually replaced by nearly electrostatic modes with tearing parity at progressively longer wavelengths. The growth rate of the microtearing modes is found to be lower than that of the ITG modes and comparable to the local E × B-velocity shearing rate. The above mechanism is proposed as a possible trigger for the formation of ITBs in this type of discharges.

  6. Direct heating of a laser-imploded core by ultraintense laser-driven ions.

    PubMed

    Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A

    2015-05-15

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

  7. Effect of Trapped Ions on Shielding of a Charged Spherical Object in a Plasma

    NASA Astrophysics Data System (ADS)

    Lampe, Martin; Ganguli, Gurudas; Joyce, Glenn; Gavrishchaka, Valeriy

    2001-04-01

    The problem of electrostatic shielding around a small spherical collector immersed in plasma, and the related problem of electron and ion flow to the collector, date to the origins of plasma physics. Beginning with Langmuir[1], all calculations have neglected collisions, on the grounds that the mean free path is long compared to shielding length scales, i.e. the Debye length. However, investigators beginning with Bernstein and Rabinowitz[2] have known that negative-energy trapped ions, created by occasional collisions, might be important. We present an analytic calculation of the density of trapped and untrapped ions, self-consistent with a calculation of the potential. We show that under typical conditions for dust grains immersed in a discharge plasma, trapped ions dominate the shielding cloud in steady state, even in the limit of very long mean free path. As a result the shielded potential is quite different from the Debye form or the results of orbital motion limited theory. Collisions also modify the ion current to the grain, but to a lesser extent. [1]H. Mott-Smith and I. Langmuir, Phys. Rev. 28, 27 (1926). [2]I. Bernstein and I. Rabinowitz, Phys. Fluids 2,112(1959).

  8. Observation of Bernstein Waves Excited by Newborn Interstellar Pickup Ions in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A.; Gary, S. Peter; Murphy, Neil; Gray, Perry C.; Burlaga, Leonard F.

    2012-01-01

    A recent examination of 1.9 s magnetic field data recorded by the Voyager 2 spacecraft in transit to Jupiter revealed several instances of strongly aliased spectra suggestive of unresolved high-frequency magnetic fluctuations at 4.4 AU. A closer examination of these intervals using the highest resolution data available revealed one clear instance of wave activity at spacecraft frame frequencies from 0.2 to 1 Hz. Using various analysis techniques, we have characterized these fluctuations as Bernstein mode waves excited by newborn interstellar pickup ions. We can find no other interpretation or source consistent with the observations, but this interpretation is not without questions. In this paper, we report a detailed analysis of the waves, including their frequency and polarization, that supports our interpretation.

  9. A water bag theory of autoresonant Bernstein-Greene-Kruskal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khain, P.; Friedland, L.

    2007-08-15

    The adiabatic water bag theory describing formation and passage through phase-space of driven, continuously phase-locked (autoresonant) coherent structures in plasmas [L. Friedland et al., Phys. Rev. Lett. 96, 225001 (2006)] and of the associated Bernstein-Greene-Kruskal (BGK) modes is developed. The phase-locking is achieved by using a chirped frequency ponderomotive drive, passing through kinetic Cerenkov-type resonances. The theory uses the adiabatic invariants (conserved actions of limiting trajectories) in the problem and, for a flat-top initial distribution of the electrons, reduces the calculation of the self-field of the driven BGK mode to solution of a few algebraic equations. The adiabatic multiwater bagmore » extension of the theory for applications to autoresonant BGK structures with more general initial distributions is suggested. The results of the theories are in very good agreement with numerical simulations.« less

  10. Stimulated Brillouin scatter and stimulated ion Bernstein scatter during electron gyroharmonic heating experiments

    NASA Astrophysics Data System (ADS)

    Fu, H.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Mahmoudian, A.; Briczinski, S. J.; McCarrick, M. J.

    2013-09-01

    Results of secondary radiation, Stimulated Electromagnetic Emission (SEE), produced during ionospheric modification experiments using ground-based high-power radio waves are reported. These results obtained at the High Frequency Active Auroral Research Program (HAARP) facility specifically considered the generation of Magnetized Stimulated Brillouin Scatter (MSBS) and Stimulated Ion Bernstein Scatter (SIBS) lines in the SEE spectrum when the transmitter frequency is near harmonics of the electron gyrofrequency. The heater antenna beam angle effect was investigated on MSBS in detail and shows a new spectral line postulated to be generated near the upper hybrid resonance region due to ion acoustic wave interaction. Frequency sweeping experiments near the electron gyroharmonics show for the first time the transition from MSBS to SIBS lines as the heater pump frequency approaches the gyroharmonic. Significantly far from the gyroharmonic, MSBS lines dominate, while close to the gyroharmonic, SIBS lines strengthen while MSBS lines weaken. New possibilities for diagnostic information are discussed in light of these new observations.

  11. Near midplane scintillator-based fast ion loss detector on DIII-D.

    PubMed

    Chen, X; Fisher, R K; Pace, D C; García-Muñoz, M; Chavez, J A; Heidbrink, W W; Van Zeeland, M A

    2012-10-01

    A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities (≤500 kHz). Combined with the first FILD at ∼45° below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010)], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius r(L) ∼ [1.5-8] cm and pitch angle α ∼ [35°-85°]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.

  12. Recent breakthroughs on C-2U: Norman’s legacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binderbauer, M. W.; Tajima, T.; Tuszewski, M.

    Conventional field-reversed configurations (FRC) face notable stability and confinement concerns, which can be ameliorated by introducing and maintaining a significant fast ion population in the system. This is the conjecture first introduced by Norman Rostoker multiple decades ago and adopted as the central design tenet in Tri Alpha Energy’s advanced beam driven FRC concept. In fact, studying the physics of such neutral beam (NB) driven FRCs over the past decade, considerable improvements were made in confinement and stability. Next to NB injection, the addition of axially streaming plasma guns, magnetic end plugs, as well as advanced surface conditioning lead tomore » dramatic reductions in turbulence driven losses and greatly improved stability. In turn, fast ion confinement improved significantly and allowed for the build-up of a dominant fast particle population. This recently led to the breakthrough of sustaining an advanced beam driven FRC, thereby demonstrating successful maintenance of trapped magnetic flux, plasma dimensions and total pressure inventory for times much longer than all characteristic system time scales and only limited by hardware and electric supply constraints.« less

  13. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, G.; Di Giugno, R.; Miracoli, R.

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electronsmore » will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.« less

  14. Electrostatic wave heating and possible formation of self-generated high electric fields in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Celona, L.; Gammino, S.; Miracoli, R.; Castro, G.; Gambino, N.; Ciavola, G.

    2011-10-01

    A plasma reactor operates at the Laboratori Nazionali del Sud of INFN, Catania, and it has been used as a test-bench for the investigation of innovative mechanisms of plasma ignition based on electrostatic waves (ES-W), obtained via the inner plasma EM-to-ES wave conversion. Evidences of Bernstein wave (BW) generation will be shown. The Langmuir probe measurements have revealed a strong increase of the ion saturation current, where the BW are generated or absorbed, this being a signature of possible high energy ion flows. The results are interpreted through the Bernstein wave heating theory, which predicts the formation of high speed rotating layers of the plasma (a dense plasma ring is in fact observed). High intensity inner plasma self-generated electric fields (on the order of several tens of kV/cm) come out by our calculations.

  15. Fine structure of microwave spike bursts and associated cross-field energy transport

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Dulk, G. A.; Pritchett, P. L.

    1988-01-01

    The characteristics of the maser emission from a driven system where energetic electrons continue to flow through the source region is investigated using electronic particle simulations. It is shown that, under appropriate conditions, the maser can efficiently radiate a significant portion of the energy of the fast electrons in a very short time. The radiation is emitted in pulses even though the flow of electrons through the system is at a constant rate. The mission of these pulses is proposed as the source of the fine structure. Under other conditions the dominant maser emission changes from fundamental x-mode to either fundamental z-mode or to electrostatic upper hybrid or Bernstein modes. The bulk of the emission from the maser instability cannot propagate across field lines in this regime, and hence strong local plasma heating is expected, with little energy transport across the magnetic field lines.

  16. Simulations of toroidal Alfvén eigenmode excited by fast ions on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Pei, Youbin; Xiang, Nong; Shen, Wei; Hu, Youjun; Todo, Y.; Zhou, Deng; Huang, Juan

    2018-05-01

    Kinetic-MagnetoHydroDynamic (MHD) hybrid simulations are carried out to study fast ion driven toroidal Alfvén eigenmodes (TAEs) on the Experimental Advanced Superconducting Tokamak (EAST). The first part of this article presents the linear benchmark between two kinetic-MHD codes, namely MEGA and M3D-K, based on a realistic EAST equilibrium. Parameter scans show that the frequency and the growth rate of the TAE given by the two codes agree with each other. The second part of this article discusses the resonance interaction between the TAE and fast ions simulated by the MEGA code. The results show that the TAE exchanges energy with the co-current passing particles with the parallel velocity |v∥ | ≈VA 0/3 or |v∥ | ≈VA 0/5 , where VA 0 is the Alfvén speed on the magnetic axis. The TAE destabilized by the counter-current passing ions is also analyzed and found to have a much smaller growth rate than the co-current ions driven TAE. One of the reasons for this is found to be that the overlapping region of the TAE spatial location and the counter-current ion orbits is narrow, and thus the wave-particle energy exchange is not efficient.

  17. Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Gorelenkova, M.; Green, D. L.; RF SciDAC Team

    2016-10-01

    Fast wave (FW) heating in the ion cyclotron range of frequency (ICRF) has been successfully used to sustain and control the fusion plasma performance, and it will likely play an important role in the ITER experiment. As demonstrated in the NSTX and DIII-D experiments the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection. In fact, it has been recently found in NSTX that FWs can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes and global Alfvén eigenmodes and fishbones. This paper examines such interactions in NSTX/NSTX-U plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Particular attention is given to the evolution of the fast ions distribution function w/ and w/o RF. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code. Work supported by US DOE Contract DE-AC02-09CH11466.

  18. Alfven Eigenmode Control in DIII-D

    NASA Astrophysics Data System (ADS)

    Hu, W.; Olofsson, E.; Welander, A.; van Zeeland, M.; Collins, C.; Heidbrink, W.

    2017-10-01

    Alfven eigenmodes (AE) driven by fast ions from neutral beam and ion cyclotron heating are common in present day tokamak plasmas and are expected to be destabilized by alpha particles in future burning plasma experiments. Because these waves have been shown to cause loss and redistribution of fast ions which can impact plasma performance and potentially device integrity, developing control techniques for AEs is of paramount importance. In the DIII-D plasma control system, spectral analysis of real-time ECE data is used as a monitor of AE amplitude, frequency, and location. These values are then used for feedback control of the neutral beam power to control Alfven waves and reduce fast ion loss. This work describes tests of AE control experiments in the current ramp up phase, during which multiple Alfven eigenmodes are typically unstable and fast ion confinement is degraded significantly. Comparisons of neutron emission and confined fast ion profiles with and without active AE control will be made. Work supported by the U.S. Dept. of Energy under Award Number DE-FC02-04ER54698.

  19. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takezaki, Taichi, E-mail: ttakezaki@stn.nagaokaut.ac.jp; Takahashi, Kazumasa; Sasaki, Toru, E-mail: sasakit@vos.nagaokaut.ac.jp

    2016-06-15

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell methodmore » have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.« less

  20. Impurity behavior during ion-Bernstein wave heating in PBX-M

    NASA Astrophysics Data System (ADS)

    Isler, R. C.; Post-Zwicker, A. P.; Paul, S. F.; Tighe, W.; Ono, M.; Leblanc, B. P.; Bell, R.; Kugel, H. W.; Kaita, R.

    1994-07-01

    Ion-Bernstein-wave heating (IBWH) has been tested in several tokamaks. In some cases the results have been quite positive, producing temperature increases and also improving both energy and particle confinement times, whereas in others, no distinctive changes were observed. Most recently, IBWH has been utilized in the Princeton Beta Experiment-Modified (PBX-M) where the long-range goal is the achievement of operation in the second stable region by current and pressure profile control. Investigations have been performed in this machine using IBWH as the sole source of auxiliary power or using IBWH in conjunction with neutral-beam injection (NBI) or with lower-hybrid current drive (LHCD). Impurity studies seem particularly important for IBWH since not only have influxes often been observed to increase, but the global impurity confinement time has also been shown to lengthen as the confinement of the working gas improved. The authors present here a set of characteristic experimental results regarding the impurity behavior in PBX-M; in general, these are consonant with previous observations in other tokamaks.

  1. Direct heating of a laser-imploded core using ultraintense laser LFEX

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Mori, Y.; Ishii, K.; Hanayama, R.; Nishimura, Y.; Okihara, S.; Nakayama, S.; Sekine, T.; Takagi, M.; Watari, T.; Satoh, N.; Kawashima, T.; Komeda, O.; Hioki, T.; Motohiro, T.; Azuma, H.; Sunahara, A.; Sentoku, Y.; Arikawa, Y.; Abe, Y.; Miura, E.; Ozaki, T.

    2017-07-01

    A CD shell was preimploded by two counter-propagating green beams from the GEKKO laser system GXII (based at the Institute of Laser Engineering, Osaka University), forming a dense core. The core was predominantly heated by energetic ions driven by the laser for fast-ignition-fusion experiment, an extremely energetic ultrashort pulse laser, that is illuminated perpendicularly to the GXII axis. Consequently, we observed the D(d, n)3 He-reacted neutrons (DD beam-fusion neutrons) at a yield of 5× {{10}8} n/4π sr. The beam-fusion neutrons verified that the ions directly collided with the core plasma. Whereas the hot electrons heated the whole core volume, the energetic ions deposited their energies locally in the core. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with a yield of 6× {{10}7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. The shell-implosion dynamics (including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions) can be explained by the one-dimensional hydrocode STAR 1D. Meanwhile, the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions were well-predicted by the two-dimensional collisional particle-in-cell code. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high-gain fusion.

  2. Research Assessment as a Pedagogical Device: Bernstein, Professional Identity and Education in New Zealand

    ERIC Educational Resources Information Center

    Middleton, Sue

    2008-01-01

    Recent restructuring of research funding for New Zealand's higher education institutions is "outputs-driven." Under the Performance Based Research Fund, units of assessment of research quality are individuals, every degree teacher receiving a confidential score of A, B or C (if deemed "research active") or "R"…

  3. Energetic ion excited long-lasting ``sword'' modes in tokamak plasmas with low magnetic shear

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang; Zhang, Ruibin; Deng, Wei; Liu, Yi

    2013-10-01

    An m/ n = 1 mode driven by trapped fast ions with a sword-shape envelope of long-lasting (for hundreds of milliseconds) magnetic perturbation signals, other than conventional fishbones, is studied in this paper. The mode is usually observed in low shear plasmas. Frequency and growth rate of the mode and its harmonics are calculated and in good agreements with observations. The radial mode structure is also obtained and compared with that of fishbones. It is found that due to fast ion driven the mode differs from magnetohydrodynamic long lived modes (LLMs) observed in MAST and NSTX. On the other hand, due to the feature of weak magnetic shear, the mode is also significantly different from fishbones. The nonlinear evolution of the mode and its comparison with fishbones are further investigated to analyze the effect of the mode on energetic particle transport and confinement.

  4. Science, School Science, and School: Looking at Science Learning in Classrooms from the Perspective of Basil Bernstein's Theory of the Structure of Pedagogic Discourse

    NASA Astrophysics Data System (ADS)

    Campbell, Ralph Ian

    This analytic paper asks one question: How does Basil Bernstein's concept of the structure of pedagogic discourse (SPD) contribute to our understanding of the role of teacher-student interactions in science learning in the classroom? Applying Bernstein's theory of the SPD to an analysis of current research in science education explores the structure of Bernstein's theory as a tool for understanding the challenges and questions related to current concerns about classroom science learning. This analysis applies Bernstein's theory of the SPD as a heuristic through a secondary reading of selected research from the past fifteen years and prompts further consideration of Bernstein's ideas. This leads to a reevaluation of the categories of regulative discourse (RD) and instructional discourse (ID) as structures that frame learning environments and the dynamics of student-teacher interactions, which determine learning outcomes. The SPD becomes a simple but flexible heuristic, offering a useful deconstruction of teaching and learning dynamics in three different classroom environments. Understanding the framing interactions of RD and ID provides perspectives on the balance of agency and expectation, suggesting some causal explanations for the student learning outcomes described by the authors. On one hand, forms of open inquiry and student-driven instruction may lack the structure to ensure the appropriation of desired forms of scientific thinking. On the other hand, well-designed pathways towards the understanding of fundamental concepts in science may lack the forms of more open-ended inquiry that develop transferable understanding. Important ideas emerge about the complex dynamics of learning communities, the materials of learning, and the dynamic role of the teacher as facilitator and expert. Simultaneously, the SPD as a flexible heuristic proves ambiguous, prompting a reevaluation of Bernstein's organization of RD and ID. The hierarchical structure of pedagogic discourse becomes a problematic distinction. Regulative discourse is often more instructional and instructional discourse more instrumental in shaping roles and relationships within the learning community. This analysis suggests an agenda for future classroom research and the education of teachers, capitalizing on the SPD as heuristic and reevaluating the ways that social dynamics and structures for domain-specific learning interact in the realization of classroom learning.

  5. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    NASA Astrophysics Data System (ADS)

    Ali Asgarian, M.; Abbasi, M.

    2018-04-01

    Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  6. Ring/Shell Ion Distributions at Geosynchronous Orbit

    NASA Astrophysics Data System (ADS)

    Thomsen, M. F.; Denton, M. H.; Gary, S. P.; Liu, Kaijun; Min, Kyungguk

    2017-12-01

    One year's worth of plasma observations from geosynchronous orbit is examined for ion distributions that may simultaneously be subject to the ion Bernstein (IB) instability (generating fast magnetosonic waves) and the Alfvén cyclotron (AC) instability (generating electromagnetic ion cyclotron waves). Confirming past analyses, distributions with robust ∂fp(v⊥)/∂v⊥ > 0 near v|| = 0, which we denote as "ring/shell" distributions, are commonly found primarily on the dayside of the magnetosphere. A new approach to high-fidelity representation of the observed ring/shell distribution functions in a form readily suited to both analytical moment calculation and linear dispersion analysis is presented, which allows statistical analysis of the ring/shell properties. The ring/shell temperature anisotropy is found to have a clear upper limit that depends on the parallel beta of the ring/shell (β||r) in a manner that is diagnostic of the operation of the AC instability. This upper limit is only reached in the postnoon events, which are primarily produced by the energy- and pitch angle-dependent magnetic drifts of substorm-injected ions. Further, it is primarily the leading edge of such injections, where the distribution is strongly ring-like, that the AC instability appears to be operating. By contrast, the ratio of the ring energy to the Alfvén energy remains well within the range of 0.25-4.0 suitable for IB instability throughout essentially all of the events, except those that occur in denser cold plasma of the outer plasmasphere.

  7. First fast-ion D-alpha (FIDA) measurements and simulations on C-2U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolte, N. G., E-mail: nbolte@TriAlphaEnergy.com; Gupta, D.; Onofri, M.

    2016-11-15

    The first measurements of fast-ion D-alpha (FIDA) radiation have been acquired on C-2U, Tri Alpha Energy’s advanced, beam-driven field-reversed configuration (FRC). These measurements are also forward modeled by FIDASIM. This is the first measurement and simulation of FIDA carried out on an FRC topology. FIDA measurements are made of Doppler-shifted Balmer-alpha light from neutralized fast ions using a bandpass filter and photomultiplier tube. One adjustable line-of-sight measured signals at eight locations and eight times during the FRC lifetime over 26 discharges. Filtered signals include only the highest energy ions (>6 keV) and share some salient features with the FIDASIM result.more » Highly Doppler-shifted beam radiation is also measured with a high-speed camera and is spatially well-correlated with FIDASIM.« less

  8. Transport modeling of convection dominated helicon discharges in Proto-MPEX with the B2.5-Eirene code

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Rapp, J.; Canik, J.; Lore, J. D.

    2017-11-01

    Data-constrained interpretative analyses of plasma transport in convection dominated helicon discharges in the Proto-MPEX linear device, and predictive calculations with additional Electron Cyclotron Heating/Electron Bernstein Wave (ECH/EBW) heating, are reported. The B2.5-Eirene code, in which the multi-fluid plasma code B2.5 is coupled to the kinetic Monte Carlo neutrals code Eirene, is used to fit double Langmuir probe measurements and fast camera data in front of a stainless-steel target. The absorbed helicon and ECH power (11 kW) and spatially constant anomalous transport coefficients that are deduced from fitting of the probe and optical data are additionally used for predictive simulations of complete axial distributions of the densities, temperatures, plasma flow velocities, particle and energy fluxes, and possible effects of alternate fueling and pumping scenarios. The somewhat hollow electron density and temperature radial profiles from the probe data suggest that Trivelpiece-Gould wave absorption is the dominant helicon electron heating source in the discharges analyzed here. There is no external ion heating, but the corresponding calculated ion temperature radial profile is not hollow. Rather it reflects ion heating by the electron-ion equilibration terms in the energy balance equations and ion radial transport resulting from the hollow density profile. With the absorbed power and the transport model deduced from fitting the sheath limited discharge data, calculated conduction limited higher recycling conditions were produced by reducing the pumping and increasing the gas fueling rate, resulting in an approximate doubling of the target ion flux and reduction of the target heat flux.

  9. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  10. On the Role of Ionospheric Ions in Sawtooth Events

    NASA Astrophysics Data System (ADS)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Frey, H. U.

    2018-01-01

    Simulations have suggested that feedback of heavy ions originating in the ionosphere is an important mechanism for driving sawtooth injections. However, this feedback may only be necessary for events driven by coronal mass ejections (CMEs), whereas in events driven by streaming interaction regions (SIRs), solar wind variability may suffice to drive these injections. Here we present case studies of two sawtooth events for which in situ data are available in both the magnetotail (Cluster) and the nightside auroral region (FAST), as well as global auroral images (IMAGE). One event, on 1 October 2001, was driven by a CME; the other, on 24 October 2002, was driven by an SIR. The available data do not support the hypothesis that heavy ion feedback is necessary to drive either event. This result is consistent with simulations of the SIR-driven event but disagrees with simulation results for a different CME-driven event. We also find that in an overwhelming majority of the sawtooth injections for which Cluster tail data are available, the O+ observed in the tail comes from the cusp rather than the nightside auroral region, which further casts doubt on the hypothesis that ionospheric heavy ion feedback is the cause of sawtooth injections.

  11. Two Contemporary Problems in Magnetized Plasmas: the ion-ion hybrid resonator and MHD stability in a snowflake divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, William Anthony

    2014-01-01

    The rst part of the dissertation investigates the e ects of multiple-ions on the propagation of shear Alfv en waves. It is shown that the presence of a second ion-species allows for the formation of an ion-ion hybrid resonator in the presence of a magnetic well. A fullwave description is shown to explain the measured eigenfrequencies and spatial form of the resonator modes identi ed in experiments in the Large Plasma Device (LAPD) at UCLA. However, it is determined that neither electron collisions or radial convection of the mode due to coupling to either the compressional or ion-Bernstein wave canmore » explain the observed dissipation.« less

  12. Results from E ∥B Neutral Particle Analyzer and Calibration Ion Beam System on C-2U

    NASA Astrophysics Data System (ADS)

    Clary, Ryan; Roquemore, A.; Kolmogorov, A.; Ivanov, A.; Korepanov, S.; Magee, R.; Medley, S.; Smirnov, A.; Tiunov, M.; TAE Team

    2015-11-01

    C-2U is a a high-confinement, advanced beam driven FRC which aims to sustain the configuration for > 5 ms, in excess of typical MHD and fast particle instability times, as well as fast particle slowing down times. Fast particle dynamics are critical to C-2U performance and several diagnostics have been deployed to characterize the fast particle population, including neutron and proton detectors, an electrostatic neutral particle analyzer, and neutral particle bolometers. To increase our understanding of fast particle behavior and supplement existing diagnostics an E ∥B NPA was acquired from PPPL which simultaneously measures H0 and D0 flux between 2 and 22 keV with high energy resolution. In addition, a small, high purity, ion beam system has been constructed and tested to calibrate absolutely fast particle detectors. Here we report results of measurements from the E ∥B analyzer on C-2U and inferred fast particle behavior, as well as the status of the calibration ion beam system.

  13. Mitigation of Alfvén activity in a tokamak by externally applied static 3D fields.

    PubMed

    Bortolon, A; Heidbrink, W W; Kramer, G J; Park, J-K; Fredrickson, E D; Lore, J D; Podestà, M

    2013-06-28

    The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfvén modes that are driven unstable by energetic ions. In response to perturbations with an amplitude of δB/B∼0.01 at the plasma boundary, the mode amplitude is reduced, the bursting frequency is increased, and the frequency chirp is smaller. For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode. Calculations of the perturbed distribution function indicate that the 3D perturbation affects the orbits of fast ions that resonate with the bursting modes. The experimental evidence represents an important demonstration of the possibility of controlling fast-ion instabilities through "phase-space engineering" of the fast-ion distribution function, by means of externally applied perturbation fields.

  14. High-harmonic fast magnetosonic wave coupling, propagation, and heating in a spherical torus plasma

    NASA Astrophysics Data System (ADS)

    Menard, J.; Majeski, R.; Kaita, R.; Ono, M.; Munsat, T.; Stutman, D.; Finkenthal, M.

    1999-05-01

    A novel rotatable two-strap antenna has been installed in the current drive experiment upgrade (CDX-U) [T. Jones, Ph.D. thesis, Princeton University (1995)] in order to investigate high-harmonic fast wave coupling, propagation, and electron heating as a function of strap angle and strap phasing in a spherical torus plasma. Radio-frequency-driven sheath effects are found to fit antenna loading trends at very low power and become negligible above a few kilowatts. At sufficiently high power, the measured coupling efficiency as a function of strap angle is found to agree favorably with cold plasma wave theory. Far-forward microwave scattering from wave-induced density fluctuations in the plasma core tracks the predicted fast wave loading as the antenna is rotated. Signs of electron heating during rf power injection have been observed in CDX-U with central Thomson scattering, impurity ion spectroscopy, and Langmuir probes. While these initial results appear promising, damping of the fast wave on thermal ions at high ion-cyclotron-harmonic number may compete with electron damping at sufficiently high ion β—possibly resulting in a significantly reduced current drive efficiency and production of a fast ion population. Preliminary results from ray-tracing calculations which include these ion damping effects are presented.

  15. Comparison of Dispersion Model of Magneto-Acoustic Cyclotron Instability with Experimental Observation of 3He Ion Cyclotron Emission on JT-60U

    NASA Astrophysics Data System (ADS)

    Sumida, Shuhei; Shinohara, Kouji; Ikezoe, Ryuya; Ichimura, Makoto; Sakamoto, Mizuki; Hirata, Mafumi; Ide, Shunsuke

    2017-12-01

    The Magneto-acoustic Cyclotron Instability (MCI) is a possible emission mechanism for Ion Cyclotron Emissions (ICEs). A dispersion model of the MCI driven by a drifting-ring-type ion velocity distribution has been proposed. In this study, the model was compared with the experimental observations of 3He ICEs [ICEs(3He)] on JT-60U. For this purpose, at first, velocity distributions of deuterium-deuterium fusion produced fast 3He ions at the time of an appearance of the ICE(3He) were evaluated by using a fast ion orbit following code under a realistic condition. The calculated distribution at the edge of the plasma on the midplane on the low field side is shown to have an inverted population and strong anisotropy. This distribution can be reasonably approximated by the drifting-ring-type distribution. Next, dispersions of the MCIs driven by the drifting-ring-type distribution were compared with those of observed ICEs(3He). The comparison shows that toroidal wavenumbers and frequencies of the calculated MCIs agree with those of the observed ICEs(3He).

  16. Laser acceleration of quasi-monoenergetic MeV ion beams.

    PubMed

    Hegelich, B M; Albright, B J; Cobble, J; Flippo, K; Letzring, S; Paffett, M; Ruhl, H; Schreiber, J; Schulze, R K; Fernández, J C

    2006-01-26

    Acceleration of particles by intense laser-plasma interactions represents a rapidly evolving field of interest, as highlighted by the recent demonstration of laser-driven relativistic beams of monoenergetic electrons. Ultrahigh-intensity lasers can produce accelerating fields of 10 TV m(-1) (1 TV = 10(12) V), surpassing those in conventional accelerators by six orders of magnitude. Laser-driven ions with energies of several MeV per nucleon have also been produced. Such ion beams exhibit unprecedented characteristics--short pulse lengths, high currents and low transverse emittance--but their exponential energy spectra have almost 100% energy spread. This large energy spread, which is a consequence of the experimental conditions used to date, remains the biggest impediment to the wider use of this technology. Here we report the production of quasi-monoenergetic laser-driven C5+ ions with a vastly reduced energy spread of 17%. The ions have a mean energy of 3 MeV per nucleon (full-width at half-maximum approximately 0.5 MeV per nucleon) and a longitudinal emittance of less than 2 x 10(-6) eV s for pulse durations shorter than 1 ps. Such laser-driven, high-current, quasi-monoenergetic ion sources may enable significant advances in the development of compact MeV ion accelerators, new diagnostics, medical physics, inertial confinement fusion and fast ignition.

  17. Expansion of Non-Quasi-Neutral Limited Plasmas Driven by Two-Temperature Electron Clouds

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Honrubia, Javier

    2017-10-01

    Fast heating of an isolated solid mass, under irradiation of ultra-intense ultra-short laser pulse, to averaged temperatures of order of keV is theoretically studied. Achievable maximum ion temperatures are determined as a consequence of the interplay of the electron-to-ion energy deposition and nonrelativistic plasma expansion, where fast ion emission plays an important role in the energy balance. To describe the plasma expansion, we develop a self-similar solution, in which the plasma is composed of three fluids, i.e., ions and two-temperature electrons. Under the condition of isothermal electron expansion in cylindrical geometry, such a fluid system, self-consistently incorporated with the Poisson equation, is fully solved. The charge separation and resultant accelerated ion population due to the induced electrostatic field are quantitatively presented. The analytical model is compared with two-dimensional hydrodynamic simulations to provide practical working windows for the target and laser parameters for the fast heating.

  18. Pulsed dynamical decoupling for fast and robust two-qubit gates on trapped ions

    NASA Astrophysics Data System (ADS)

    Arrazola, I.; Casanova, J.; Pedernales, J. S.; Wang, Z.-Y.; Solano, E.; Plenio, M. B.

    2018-05-01

    We propose a pulsed dynamical decoupling protocol as the generator of tunable, fast, and robust quantum phase gates between two microwave-driven trapped-ion hyperfine qubits. The protocol consists of sequences of π pulses acting on ions that are oriented along an externally applied magnetic-field gradient. In contrast to existing approaches, in our design the two vibrational modes of the ion chain cooperate under the influence of the external microwave driving to achieve significantly increased gate speeds. Our scheme is robust against the dominant noise sources, which are errors on the magnetic-field and microwave pulse intensities, as well as motional heating, predicting two-qubit gates with fidelities above 99.9% in tens of microseconds.

  19. Basil Bernstein: Agency, Structure and Linguistic Conception of Class

    ERIC Educational Resources Information Center

    Best, Shaun

    2007-01-01

    The paper outlines an interpretation of Bernstein's contribution to the sociology of education that stands in contrast to the common interpretations of Bernstein's work. It is commonly assumed that Bernstein constructed a simplistic "deficit model" of educational failure, or alternatively, that Bernstein was a structuralist who did not give any…

  20. Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

    DOE PAGES

    Chrystal, Colin; Burrell, Keith H.; Grierson, Brian A.; ...

    2014-07-09

    Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of themore » $$\\vec{E}$$ × $$\\vec{B}$$ shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Finally, predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain.« less

  1. The LTX- β Research Program

    NASA Astrophysics Data System (ADS)

    Majeski, R.; Bell, R. E.; Boyle, D. P.; Hughes, P. E.; Kaita, R.; Kozub, T.; Merino, E.; Zhang, X.; Biewer, T. M.; Canik, J. M.; Elliott, D. B.; Reinke, M. L.; Bialek, J.; Hansen, C.; Jarboe, T.; Kubota, S.; Rhodes, T.; Dorf, M. A.; Rognlien, T.; Scotti, F.; Soukhanovskii, V. A.; Koel, B. E.; Donovan, D.; Maan, A.

    2017-10-01

    LTX- β, the upgrade to the Lithium Tokamak Experiment, approximately doubles the toroidal field (to 3.4 kG) and plasma current (to 150 - 175 kA) of LTX. Neutral beam injection at 20 kV, 30 A will be added in February 2018, with systems provided by Tri-Alpha Energy. A 9.3 GHz, 100 kW, short-pulse (5-10 msec) source will be available in summer 2018 for electron Bernstein wave heating. New lithium evaporation sources will allow between-shots recoating of the walls. Upgrades to the diagnostic set are intended to strengthen the research program in the critical areas of equilibrium, core transport, scrape-off layer physics, and plasma-material interactions. The LTX- β research program will combine the capability for gradient-free temperature profiles, to stabilize ion and electron temperature gradient-driven modes, with approaches to stabilization of ∇n-driven modes, such as the trapped electron mode (TEM). Candidate stabilization mechanisms for the TEM include sheared flow stabilization, which can be tested on LTX- β. The goal will be to minimize anomalous transport in a low aspect ratio tokamak, which would lead to a very compact, tokamak-based fusion core. This work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  2. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    PubMed Central

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-01-01

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼1012 V m−1) and magnetic (∼104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science. PMID:26657147

  3. Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Ivanov, A.; Sanin, A.

    2016-02-15

    Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the drivermore » and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms.« less

  4. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    DOE PAGES

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; ...

    2015-12-11

    Here, table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~10 12 V m –1) and magnetic (~10 4 T)more » fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.« less

  5. Relativistic electromagnetic ion cyclotron instabilities

    NASA Astrophysics Data System (ADS)

    Chen, K. R.; Huang, R. D.; Wang, J. C.; Chen, Y. Y.

    2005-03-01

    The relativistic instabilities of electromagnetic ion cyclotron waves driven by MeV ions are analytically and numerically studied. As caused by wave magnetic field and in sharp contrast to the electrostatic case, interesting characteristics such as Alfvénic behavior and instability transition are discovered and illuminated in detail. The instabilities are reactive and are raised from the coupling of slow ions’ first-order resonance and fast ions’ second-order resonance, that is an essential extra mechanism due to relativistic effect. Because of the wave magnetic field, the nonresonant plasma dielectric is usually negative and large, that affects the instability conditions and scaling laws. A negative harmonic cyclotron frequency mismatch between the fast and slow ions is required for driving a cubic (and a coupled quadratic) instability; the cubic (square) root scaling of the peak growth rate makes the relativistic effect more important than classical mechanism, especially for low fast ion density and Lorentz factor being close to unity. For the cubic instability, there is a threshold (ceiling) on the slow ion temperature and density (the external magnetic field and the fast ion energy); the Alfvén velocity is required to be low. This Alfvénic behavior is interesting in physics and important for its applications. The case of fast protons in thermal deuterons is numerically studied and compared with the analytical results. When the slow ion temperature or density (the external magnetic field or the fast ion energy) is increased (reduced) to about twice (half) the threshold (ceiling), the same growth rate peak transits from the cubic instability to the coupled quadratic instability and a different cubic instability branch appears. The instability transition is an interesting new phenomenon for instability.

  6. Policy-as-Discourse and Schools in the Role of Health Promotion: The Application of Bernstein's Transmission Context in Policy Analysis

    ERIC Educational Resources Information Center

    Leow, Anthony Chee Siong

    2011-01-01

    As one of the most important sites in and through which state agendas are articulated and disseminated, schools and teachers play critical roles in the implementation of state-driven policies and initiatives targeted at children and young people. This is especially pertinent in the current educational landscape where schools and teachers are…

  7. Runaway of energetic test ions in a toroidal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eilerman, S., E-mail: eilerman@wisc.edu; Anderson, J. K.; Sarff, J. S.

    2015-02-15

    Ion runaway in the presence of a large-scale, reconnection-driven electric field has been conclusively measured in the Madison Symmetric Torus reversed-field pinch (RFP). Measurements of the acceleration of a beam of fast ions agree well with test particle and Fokker-Planck modeling of the runaway process. However, the runaway mechanism does not explain all measured ion heating in the RFP, particularly previous measurements of strong perpendicular heating. It is likely that multiple energization mechanisms occur simultaneously and with differing significance for magnetically coupled thermal ions and magnetically decoupled tail and beam ions.

  8. Bayesian-Driven First-Principles Calculations for Accelerating Exploration of Fast Ion Conductors for Rechargeable Battery Application.

    PubMed

    Jalem, Randy; Kanamori, Kenta; Takeuchi, Ichiro; Nakayama, Masanobu; Yamasaki, Hisatsugu; Saito, Toshiya

    2018-04-11

    Safe and robust batteries are urgently requested today for power sources of electric vehicles. Thus, a growing interest has been noted for fabricating those with solid electrolytes. Materials search by density functional theory (DFT) methods offers great promise for finding new solid electrolytes but the evaluation is known to be computationally expensive, particularly on ion migration property. In this work, we proposed a Bayesian-optimization-driven DFT-based approach to efficiently screen for compounds with low ion migration energies ([Formula: see text]. We demonstrated this on 318 tavorite-type Li- and Na-containing compounds. We found that the scheme only requires ~30% of the total DFT-[Formula: see text] evaluations on the average to recover the optimal compound ~90% of the time. Its recovery performance for desired compounds in the tavorite search space is ~2× more than random search (i.e., for [Formula: see text] < 0.3 eV). Our approach offers a promising way for addressing computational bottlenecks in large-scale material screening for fast ionic conductors.

  9. Active core profile and transport modification by application of ion Bernstein wave power in the Princeton Beta Experiment-Modification

    NASA Astrophysics Data System (ADS)

    LeBlanc, B.; Batha, S.; Bell, R.; Bernabei, S.; Blush, L.; de la Luna, E.; Doerner, R.; Dunlap, J.; England, A.; Garcia, I.; Ignat, D.; Isler, R.; Jones, S.; Kaita, R.; Kaye, S.; Kugel, H.; Levinton, F.; Luckhardt, S.; Mutoh, T.; Okabayashi, M.; Ono, M.; Paoletti, F.; Paul, S.; Petravich, G.; Post-Zwicker, A.; Sauthoff, N.; Schmitz, L.; Sesnic, S.; Takahashi, H.; Talvard, M.; Tighe, W.; Tynan, G.; von Goeler, S.; Woskov, P.; Zolfaghari, A.

    1995-03-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) [Phys. Fluids B 2, 1271 (1990)] tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH-assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large ∇ne, ∇Te, ∇νφ, and ∇Ti, delimiting the confinement zone. This regime is reminiscent of the H(high) mode, but with a confinement zone moved inward. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhances NBI core deposition and increases nuclear reactivity. An increase in central Ti results from χi reduction (compared to the H mode) and better beam penetration. Bootstrap current fractions of up to 0.32-0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma.

  10. A Critical Fast Ion Beta in the Madison Symmetric Torus Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Capecchi, William J.

    The first fast-ion profile measurements have been made in a reversed-field pinch (RFP) plasma. A large population of fast-ions are deposited in the core of the Madison Symmetric Torus (MST) through use of a 1 MW neutral beam injector (NBI) giving rise to a variety of beam-driven instabilities. One such mode, the energetic-particle mode (EPM) has been shown to reduce fast-ion content in MST, evident through drops in signal levels of the advanced neutral particle analyzer (ANPA). EPMs in MST appear as bursts of magnetic fluctuations at a lab frequency of ˜100 kHz reaching peak amplitude and decaying away within 100 microseconds. A burst ensemble of the neutron data does not reveal a drop in neutron emission across a burst, implying the population of fast-ions transported by a burst constitute a small fraction of the total. The burst may also pitch-angle scatter out of the ANPA phase space or be transported to mid-radius where charge-exchange with the background neutrals or fast-ion orbit stochasticity may reduce fast-ion confinement. Data gathered from the expanded neutron diagnostic suite including a new collimated neutron detector (CiNDe) was used to reconstruct the fast-ion profile in MST and measure critical fast-ion beta quantities. Measurements were made in plasma conditions with varying magnetic field strength in order to investigate the interplay between the energetic particle (EP) drive and Alfven continuum damping. The measured values of the core fast-ion beta (7.5% (1.2%) in 300 (500) kA plasmas) are reduced from classical predictions (TRANSP predicts up to 10% core value) due to EPM activity. The frequency, magnitude, and rate of occurrence of the bursts depends on the tearing mode amplitude, Alfven continuum damping rate, fast-ion profile shape, and resonant orbit dynamics. Marginal stability was reached in both moderate- (300 kA) and high- (500 kA) current discharges, marked by sustained EPM activity and a saturated global neutron signal during NBI. The difference in profile shape is interpreted to be related to the core-most resonant tearing mode amplitude, as a larger core magnetic island moves the location of steepest fast-ion gradient further out in radius, resulting in lower confinement of the fast-ions. The reconstructed profile is more strongly peaked at lower current, consistent with a lower measured core-most tearing mode amplitude. A larger dataset at lower current gives enough temporal resolution to investigate the evolution of the fast-ion profile. The suppression of the core-most tearing mode amplitude during NBI results in a rapid and dynamically evolving fast-ion profile at the beginning of the NBI discharge and results in an initially broader profile early evolving into a more strongly peaked profile later in the NBI discharge.

  11. On the Relevance of Bernstein for German-Speaking Switzerland

    ERIC Educational Resources Information Center

    Bolander, Brook

    2009-01-01

    This article assesses the relevance of Basil Bernstein for German-speaking Switzerland. It argues that Bernstein is potentially relevant for German-speaking Switzerland in light of contemporary studies which highlight a connection between social background and differential school achievement. After contextualising Bernstein's theoretical outlook…

  12. 77 FR 75200 - AllianceBernstein Active ETFs, Inc., et al.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... SECURITIES AND EXCHANGE COMMISSION [Investment Company Act Release No. 30305; 812-13797] AllianceBernstein Active ETFs, Inc., et al.; Notice of Application December 13, 2012. AGENCY: Securities and...Bernstein Active ETFs, Inc. (``Corporation''), AllianceBernstein L.P. (``Adviser''), and ALPS Distributors...

  13. High-frequency Plasma Waves Associated with Magnetic Reconnection in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Activities of high-frequency plasma waves associated with magnetic reconnection in the solar wind observed by Time Domain Sampler (TDS) experiments on STEREO/WAVES are preliminarily analyzed. The TDS instrument can provide burst mode electric fields data with as long as 16384 sample points at 250 kHz sampling rate. In all 1120 suspected reconnection events, it is found that the most commonly occurred waves are neither ion acoustic waves, electrostatic solitary waves, nor Langmuir/upper hybrid waves, but Bernstein-like waves with harmonics of the electron cyclotron frequency. In addition, to each type of waves, Langmuir/upper hybrid waves reveal the largest occurrence rate in the reconnection region than in the ambient solar wind. These results indicate that Bernstein-like waves and Langmuir/upper hybrid waves might play important roles in the reconnection associated particle heating processes and they might also influence the dissipation of magnetic reconnection.

  14. Dynamics and control of fast ion crystal splitting in segmented Paul traps (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2014-07-09

    operations, in addition to laser - or microwave-driven logic gates. Essential shuttling operations are splitting and merging of linear ion crystals. It is...from stray charges, laser induced charging of the trap [19], trap geometry imperfections or residual ponderomotive forces along the trap axis. The...transfer expressed as the mean phonon number Δ ω¯ = n E / f . We distinguish several regimes of laser –ion interaction: (i) if the vibrational

  15. Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks

    DOE PAGES

    Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; ...

    2017-12-12

    Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less

  16. Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks

    NASA Astrophysics Data System (ADS)

    Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.; Pace, D. C.; Podestà, M.; Van Zeeland, M. A.

    2017-12-01

    Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. The proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterion predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. The proposed criterion constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.

  17. Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.

    Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less

  18. Global Confinement, Sawtooth Mixing, and Stochastic Diffusion Ripple Loss of Fast ICRF-driven H+ Minority Ions in TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, M.P.; Bell, R.; Budny, R.V.

    1998-07-01

    This paper presents studies of ICRF-driven H+ minority ions in TFTR (Tokamak Fusion Test Reator) deuterium plasmas using primarily passive Ho flux detection in the energy range of 0.2-1.0 MeV with some corroborating active (lithium pellet charge exchange) measurements. It is shown that in the passive mode the main donors for the neutralization of H+ ions in this energy range are C5+ ions. The measured effective H+ tail temperatures range from 0.15 MeV at an ICRF power of 2 MW to 0.35 MeV at 6 MW. Analysis of the ICRF-driven H+ ion energy balance has been performed on the basismore » of the dependence of effective H+ temperatures on the plasma parameters. The analysis showed that H+ confinement times are comparable with their slowing-down times and tended to decrease with increasing ICRF power. Radial redistribution of ICRF-driven H+ ions was detected when giant sawtooth crashes occurred during the ICRF heating. The redistribution affected ions with energy below 0.7-0.8 MeV. The sawtooth crashes displace H+ ions outward along the plasma major radius into the stochastic ripple diffusion domain were those ions are lost in about 10 milliseconds. These observations are consistent with the model of the redistribution of energetic particles developed previously to explain the results of deuterium-tritium alpha-particle redistribution due to sawteeth observed in TFTR. The experimental data are also consistent with ORBIT code simulations of H+ stochastic ripple diffusion losses.« less

  19. Music on the Move: Methodological Applications of Bernstein's Concepts in a Secondary School Music Context

    ERIC Educational Resources Information Center

    McPhail, Graham J.

    2016-01-01

    In 2002 Parlo Singh outlined Bernstein's theory of the pedagogic device, elaborating the potential in Bernstein's complex theoretical framework for empirical research. In particular, Singh suggests that Bernstein's concepts provide the means of making explicit the macro and micro structuring of knowledge into pedagogic communication. More…

  20. A high performance field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions,more » highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.« less

  1. Simulation of mode converted ion Bernstein wave - beam deuteron interactions on TFTR

    NASA Astrophysics Data System (ADS)

    Herrmann, Mark; Fisch, Nathaniel

    1998-11-01

    Experiments on TFTR have documented strong interactions between mode converted ion Bernstein waves (MCIBW) and beam deuterons(D. S. Darrow et al.), Nucl. Fusion 36, 509 (1996).^,(N. J. Fisch et al.), IAEA, Vol. 1, p. 271 (1996). This is of particular interest in the study of α channelling, since the most promising scenarios(M. C. Herrmann and N. J. Fisch, Phys. Rev. Lett. 79), 1495 (1997). rely on a suitable combination of MCIBW and Alfvén eigenmodes to achieve the cooling of the α particles. Collisional effects, realistic wave fields, and a detailed model of the wave-particle interaction have been added to the Monte Carlo simulations which are used to simulate α channelling in order to model TFTR experiments(M. C. Herrmann, Ph.D. thesis, Princeton University, 1998.). The results are found to be in qualitative agreement with the data. In addition, the simulation is used, in conjunction with the data, to demonstrate the existence of the k_\\|-flip of the MCIBW, and to infer a diffusion coefficient for the beam deuterons interacting with the wave. This diffusion coefficient significantly exceeds what would be expected on the basis of quasilinear theory with the fields specified by 1 D ray tracing of the MCIBW.

  2. Bernstein modes in a non-neutral plasma column

    NASA Astrophysics Data System (ADS)

    Walsh, Daniel; Dubin, Daniel H. E.

    2018-05-01

    This paper presents theory and numerical calculations of electrostatic Bernstein modes in an inhomogeneous cylindrical plasma column. These modes rely on finite Larmor radius effects to propagate radially across the column until they are reflected when their frequency matches the upper hybrid frequency. This reflection sets up an internal normal mode on the column and also mode-couples to the electrostatic surface cyclotron wave (which allows the normal mode to be excited and observed using external electrodes). Numerical results predicting the mode spectra, using a novel linear Vlasov code on a cylindrical grid, are presented and compared to an analytical Wentzel Kramers Brillouin (WKB) theory. A previous version of the theory [D. H. E. Dubin, Phys. Plasmas 20(4), 042120 (2013)] expanded the plasma response in powers of 1/B, approximating the local upper hybrid frequency, and consequently, its frequency predictions are spuriously shifted with respect to the numerical results presented here. A new version of the WKB theory avoids this approximation using the exact cold fluid plasma response and does a better job of reproducing the numerical frequency spectrum. The effect of multiple ion species on the mode spectrum is also considered, to make contact with experiments that observe cyclotron modes in a multi-species pure ion plasma [M. Affolter et al., Phys. Plasmas 22(5), 055701 (2015)].

  3. The very real dangers of executive coaching.

    PubMed

    Berglas, Steven

    2002-06-01

    A personal coach to help your most promising executives reach their potential--sounds good, doesn't it? But, according to Steven Berglas, executive coaches can make a bad situation worse. Because of their backgrounds and biases, they ignore psychological problems they don't understand. Companies need to consider psychotherapeutic intervention when the symptoms plaguing an executive are stubborn or severe. Executives with issues that require more than coaching come in many shapes and sizes. Consider Rob Bernstein, an executive vice president of sales at an automotive parts distributor. According to the CEO, Bernstein had just the right touch with clients but caused personnel problems inside the company. The last straw came when Bernstein publicly humiliated a mail clerk who had interrupted a meeting to ask someone to sign for a package. At that point, the CEO assigned Tom Davis to coach Bernstein. Davis, a former corporate lawyer, worked with Bernstein for four years. But Davis only exacerbated the problem by teaching Bernstein techniques for "handling" employees--methods that were condescending at best. While Bernstein appeared to be improving, he was in fact getting worse. Bernstein's real problems went undetected, and when his boss left the company, he was picked as the successor. Soon enough, Bernstein was again in trouble, suspected of embezzlement. This time, the CEO didn't call Davis; instead, he turned to the author, a trained psychotherapist, for help. Berglas soon realized that Bernstein had a serious narcissistic personality disorder and executive coaching could not help him. As that tale and others in the article teach us, executives to be coached should at the very least first receive a psychological evaluation. And company leaders should beware that executive coaches given free rein can end up wreaking personnel havoc.

  4. Design Challenges of a Rapid Cycling Synchrotron for Carbon/Proton Therapy

    NASA Astrophysics Data System (ADS)

    Cook, Nathan

    2012-03-01

    The growing interest in radiation therapy with protons and light ions has driven demand for new methods of ion acceleration and the delivery of ion beams. One exciting new platform for ion beam acceleration and delivery is the rapid cycling synchrotron. Operating at 15Hz, rapid cycling achieves faster treatment times by making beam extraction possible at any energy during the cycle. Moreover, risk to the patient is reduced by requiring fewer particles in the beam line at a given time, thus eliminating the need for passive filtering and reducing the consequences of a malfunction. Lastly, the ability to switch between carbon ion and proton beam therapy provides the machine with an unmatched flexibility. However, these features do stipulate challenges in accelerator design. Maintaining a compact lattice requires careful tuning of lattice functions, tight focusing combined function magnets, and fast injection and extraction systems. Providing the necessary acceleration over a short cycle time also necessitates a five-fold frequency swing for carbon ions, further burdening the design requirements of ferrite-driven radiofrequency cavities. We will consider these challenges as well as some solutions selected for our current design.

  5. Laser-driven atomic-probe-beam diagnostics

    NASA Astrophysics Data System (ADS)

    Knyazev, B. A.; Greenly, J. B.; Hammer, D. A.

    2000-12-01

    A new laser-driven atomic-probe-beam diagnostic (LAD) is proposed for local, time-resolved measurements of electric field and ion dynamics in the accelerating gap of intense ion beam diodes. LAD adds new features to previous Stark-shift diagnostics which have been progressively developed in several laboratories, from passive observation of Stark effect on ion species or fast (charge-exchanged) neutrals present naturally in diodes, to active Stark atomic spectroscopy (ASAS) in which selected probe atoms were injected into the gap and excited to suitable states by resonant laser radiation. The LAD scheme is a further enhancement of ASAS in which the probe atoms are also used as a local (laser-ionized) ion source at an instant of time. Analysis of the ion energy and angular distribution after leaving the gap enables measurement, at the chosen ionization location in the gap, of both electrostatic potential and the development of ion divergence. Calculations show that all of these quantities can be measured with sub-mm and ns resolution. Using lithium or sodium probe atoms, fields from 0.1 to 10 MV/cm can be measured.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian, L. K.; Wei, H. Y.; Russell, C. T.

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probablymore » due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.« less

  7. Energetic particles in spherical tokamak plasmas

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Fredrickson, E. D.

    2017-05-01

    Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together with higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion-ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion behaviour, supplementing the information provided by neutron detectors. In MAST electrons were accelerated to highly suprathermal energies as a result of edge localised modes, while in both MAST and NSTX ions were accelerated due to internal reconnection events. Ion acceleration has also been observed during merging-compression start-up in MAST.

  8. Orbit-based analysis of nonlinear energetic ion dynamics in tokamaks. II. Mechanisms for rapid chirping and convective amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierwage, Andreas; Shinohara, Kouji

    2016-04-15

    The nonlinear interactions between shear Alfvén modes and tangentially injected beam ions in the 150–400 keV range are studied numerically in realistic geometry for a JT-60U tokamak scenario. In Paper I, which was reported in the companion paper, the recently developed orbit-based resonance analysis method was used to track the resonant frequency of fast ions during their nonlinear evolution subject to large magnetic and electric drifts. Here, that method is applied to map the wave-particle power transfer from the canonical guiding center phase space into the frequency-radius plane, where it can be directly compared with the evolution of the fluctuation spectramore » of fast-ion-driven modes. Using this technique, we study the nonlinear dynamics of strongly driven shear Alfvén modes with low toroidal mode numbers n = 1 and n = 3. In the n = 3 case, both chirping and convective amplification can be attributed to the mode following the resonant frequency of the radially displaced particles, i.e., the usual one-dimensional phase locking process. In the n = 1 case, a new chirping mechanism is found, which involves multiple dimensions, namely, wave-particle trapping in the radial direction and phase mixing across velocity coordinates.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClements, K. G.; Fredrickson, E. D.

    Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together withmore » higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion–ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion behaviour, supplementing the information provided by neutron detectors. In MAST electrons were accelerated to highly suprathermal energies as a result of edge localised modes, while in both MAST and NSTX ions were accelerated due to internal reconnection events. Lastly, ion acceleration has also been observed during merging-compression start-up in MAST.« less

  10. Fusion product losses due to fishbone instabilities in deuterium JET plasmas

    NASA Astrophysics Data System (ADS)

    Kiptily, V. G.; Fitzgerald, M.; Goloborodko, V.; Sharapov, S. E.; Challis, C. D.; Frigione, D.; Graves, J.; Mantsinen, M. J.; Beaumont, P.; Garcia-Munoz, M.; Perez von Thun, C.; Rodriguez, J. F. R.; Darrow, D.; Keeling, D.; King, D.; McClements, K. G.; Solano, E. R.; Schmuck, S.; Sips, G.; Szepesi, G.; Contributors, JET

    2018-01-01

    During development of a high-performance hybrid scenario for future deuterium-tritium experiments on the Joint European Torus, an increased level of fast ion losses in the MeV energy range was observed during the instability of high-frequency n  =  1 fishbones. The fishbones are excited during deuterium neutral beam injection combined with ion cyclotron heating. The frequency range of the fishbones, 10-25 kHz, indicates that they are driven by a resonant interaction with the NBI-produced deuterium beam ions in the energy range  ⩽120 keV. The fast particle losses in a much higher energy range are measured with a fast ion loss detector, and the data show an expulsion of deuterium plasma fusion products, 1 MeV tritons and 3 MeV protons, during the fishbone bursts. An MHD mode analysis with the MISHKA code combined with the nonlinear wave-particle interaction code HAGIS shows that the loss of toroidal symmetry caused by the n  =  1 fishbones affects strongly the confinement of non-resonant high energy fusion-born tritons and protons by perturbing their orbits and expelling them. This modelling is in a good agreement with the experimental data.

  11. Redistribution of fast ions during sawtooth reconnection

    NASA Astrophysics Data System (ADS)

    Jaulmes, F.; Westerhof, E.; de Blank, H. J.

    2014-10-01

    In a tokamak-based fusion power plant, possible scenarios may include regulated sawtooth oscillations to remove thermalized helium from the core of the plasma. During a sawtooth crash, the helium ash and other impurities trapped in the core are driven by the instability to an outer region. However, in a fusion plasma, high energy ions will represent a significant population. We thus study the behaviour of these energetic particles during a sawtooth. This paper presents the modelling of the redistribution of fast ions during a sawtooth reconnection event in a tokamak plasma. Along the lines of the model for the evolution of the flux surfaces during a sawtooth collapse described in Ya.I. Kolesnichenko and Yu.V. Yakovenko 1996 Nucl. Fusion 36 159, we have built a time-dependent electromagnetic model of a sawtooth reconnection. The trajectories of the ions are described by a complete gyro-orbit integration. The fast particles were evolved from specific initial parameters (given energy and uniform spread in pitch) or distributed initially according to a slowing-down distribution created by fusion reactions. Our modelling is used to understand the main equilibrium parameters driving the motions during the collapse and to determine the evolution of the distribution function of energetic ions when different geometries of reconnection are considered.

  12. ORNL diagnostic and modeling development for LAPD ICRF experiments

    NASA Astrophysics Data System (ADS)

    Isler, R. C.; Caughman, J. B. O.; Lau, C.; Martin, E. H.; Perkins, R. J.; Compernolle, B. Van; Vincena, S.; Tripathi, S. K. P.; Gekelman, W.

    2017-10-01

    PPPL, UCLA, and ORNL scientists have recently collaborated on a three week ICRF campaign at the upgraded LAPD device to study near field-plasma interactions associated with a single strap antenna driven at 2.38 MHz with 100 kW of RF power. This poster highlights ORNL involvement through implementation of the following diagnostics: an optical emission probe to measure neutral density, a retarding field energy analyzer to measure fast ions, phase locked imaging to measure line integrated RF-driven optical emission fluctuations, and an RF compensated triple Langmuir probe to measure density and temperature. To interpret the results of the experimental campaign a 3D cold plasma finite element model with realistic antenna and vacuum vessel geometry was developed in COMSOL. A summary of these results will be discussed. Highlights include a proof of principle localized and spatially resolved measurement of the neutral density, a strong increase in RF-driven optical emission fluctuations directly in front of the RF antenna strap, a shift in fast ion energies near the plasma edge, and qualitative agreement between the COMSOL cold plasma model with the various diagnostics. Funded by the DOE OFES (DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-07ER54918) and the Univ. of California (12-LR-237124).

  13. Recent Observations and Modeling of Narrowband Stimulated Electromagnetic Emissions SEEs at HAARP and EISCAT

    NASA Astrophysics Data System (ADS)

    Scales, W.; Mahmoudian, A.; Fu, H.; Bordikar, M. R.; Samimi, A.; Bernhardt, P. A.; Briczinski, S. J., Jr.; Kosch, M. J.; Senior, A.; Isham, B.

    2014-12-01

    There has been significant interest in so-called narrowband Stimulated Electromagnetic Emission SEE over the past several years due to recent discoveries at the High Frequency Active Auroral Research Program HAARP facility near Gakone, Alaska. Narrowband SEE (NSEE) has been defined as spectral features in the SEE spectrum typically within 1 kHz of the transmitter (or pump) frequency. SEE is due to nonlinear processes leading to re-radiation at frequencies other than the pump wave frequency during heating the ionospheric plasma with high power HF radio waves. Although NSEE exhibits a richly complex structure, it has now been shown after a substantial number of observations at HAARP, that NSEE can be grouped into two basic classes. The first are those spectral features, associated with Stimulated Brillouin Scatter SBS, which typically occur when the pump frequency is not close to electron gyro-harmonic frequencies. Typically, these spectral features are within roughly 50 Hz of the pump wave frequency where it is to be noted that the O+ ion gyro-frequency is roughly 50 Hz. The second class of spectral features corresponds to the case when the pump wave frequency is typically within roughly 10 kHz of electron gyro-harmonic frequencies. In this case, spectral features ordered by harmonics of ion gyro-frequencies are typically observed, and termed Stimulated Ion Bernstein Scatter SIBS. This presentation will first provide an overview of the recent NSEE experimental observations at HAARP. Both Stimulated Brillouin Scatter SBS and Stimulated Ion Bernstein Scatter SIBS observations will be discussed as well as their relationship to each other. Possible theoretical formulation in terms of parametric decay instabilities and computational modeling will be provided. Possible applications of NSEE will be pointed out including triggering diagnostics for artificial ionization layer formation, proton precipitation event diagnostics, electron temperature measurements in the heated volume and detection of heavy ion species. Finally potential for observing such SEE at the European Incoherent Scatter EISCAT facility will be discussed.

  14. Basil Bernstein and Emile Durkheim: Two Theories of Change in Educational Systems

    ERIC Educational Resources Information Center

    Cherkaoui, Mohamed

    1977-01-01

    Attempts to draw out parallels and differences between Emile Durkheim's and Basil Bernstein's theories of educational systems and highlights Bernstein's reformulation of certain features of Durkheim's thought. Focuses on the role of the school, curriculum change, and social conflict. (Author/RK)

  15. Bernstein's "Codes" and the Linguistics of "Deficit"

    ERIC Educational Resources Information Center

    Jones, Peter E.

    2013-01-01

    This paper examines the key linguistic arguments underpinning Basil Bernstein's theory of "elaborated" and "restricted" "codes". Building on a review of selected highlights from the collective critical response to Bernstein, the paper attempts to clarify the relationship of the theory to "deficit" views…

  16. Benchmark of multi-phase method for the computation of fast ion distributions in a tokamak plasma in the presence of low-amplitude resonant MHD activity

    NASA Astrophysics Data System (ADS)

    Bierwage, A.; Todo, Y.

    2017-11-01

    The transport of fast ions in a beam-driven JT-60U tokamak plasma subject to resonant magnetohydrodynamic (MHD) mode activity is simulated using the so-called multi-phase method, where 4 ms intervals of classical Monte-Carlo simulations (without MHD) are interlaced with 1 ms intervals of hybrid simulations (with MHD). The multi-phase simulation results are compared to results obtained with continuous hybrid simulations, which were recently validated against experimental data (Bierwage et al., 2017). It is shown that the multi-phase method, in spite of causing significant overshoots in the MHD fluctuation amplitudes, accurately reproduces the frequencies and positions of the dominant resonant modes, as well as the spatial profile and velocity distribution of the fast ions, while consuming only a fraction of the computation time required by the continuous hybrid simulation. The present paper is limited to low-amplitude fluctuations consisting of a few long-wavelength modes that interact only weakly with each other. The success of this benchmark study paves the way for applying the multi-phase method to the simulation of Abrupt Large-amplitude Events (ALE), which were seen in the same JT-60U experiments but at larger time intervals. Possible implications for the construction of reduced models for fast ion transport are discussed.

  17. Verification of nonlinear particle simulation of radio frequency waves in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Kuley, Animesh; Bao, Jian; Lin, Zhihong

    2015-11-01

    Nonlinear global particle simulation model has been developed in GTC to study the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic. Boris push scheme for the ion motion has been implemented in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron, ion Bernstein and lower hybrid waves. The nonlinear GTC simulation of the lower hybrid wave shows that the amplitude of the electrostatic potential is oscillatory due to the trapping of resonant electrons by the electric field of the lower hybrid wave. The nonresonant parametric decay is observed an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating with a heating rate proportional to the pump wave intensity. This work is supported by PPPL subcontract number S013849-F and US Department of Energy (DOE) SciDAC GSEP Program.

  18. Temperature, ordering, and equilibrium with time-dependent confining forces

    PubMed Central

    Schiffer, J. P.; Drewsen, M.; Hangst, J. S.; Hornekær, L.

    2000-01-01

    The concepts of temperature and equilibrium are not well defined in systems of particles with time-varying external forces. An example is a radio frequency ion trap, with the ions laser cooled into an ordered solid, characteristic of sub-mK temperatures, whereas the kinetic energies associated with the fast coherent motion in the trap are up to 7 orders of magnitude higher. Simulations with 1,000 ions reach equilibrium between the degrees of freedom when only aperiodic displacements (secular motion) are considered. The coupling of the periodic driven motion associated with the confinement to the nonperiodic random motion of the ions is very small at low temperatures and increases quadratically with temperature. PMID:10995471

  19. High yield neutron generators using the DD reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber,more » increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.« less

  20. High yield neutron generators using the DD reaction

    NASA Astrophysics Data System (ADS)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  1. 76 FR 75922 - AllianceBernstein Cap Fund, Inc., et al.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... SECURITIES AND EXCHANGE COMMISSION [Investment Company Act Release No. 29876; File No. 812-13939] AllianceBernstein Cap Fund, Inc., et al.; Notice of Application November 29, 2011. AGENCY: Securities and... 12d1-2 under the Act to invest in certain financial instruments. APPLICANTS: AllianceBernstein Cap Fund...

  2. Re-Reading and Rehabilitating Basil Bernstein

    ERIC Educational Resources Information Center

    Bolander, Brook; Watts, Richard J.

    2009-01-01

    This article constitutes a re-reading of and an attempt to rehabilitate Basil Bernstein, both of which are important in light of the interpretation of Bernstein as a proponent of the verbal deficit view, and the general discrediting of his work on social class differences in the British educational system, as related to what he later called…

  3. Two Contemporary Problems in Magnetized Plasmas: The ion-ion hybrid resonator and MHD stability in a snowflake divertor

    NASA Astrophysics Data System (ADS)

    Farmer, William Anthony

    The first part of the dissertation investigates the effects of multiple-ions on the propagation of shear Alfven waves. It is shown that the presence of a second ion-species allows for the formation of an ion-ion hybrid resonator in the presence of a magnetic well. A full-wave description is shown to explain the measured eigenfrequencies and spatial form of the resonator modes identified in experiments in the Large Plasma Device (LAPD) at UCLA. However, it is determined that neither electron collisions or radial convection of the mode due to coupling to either the compressional or ion-Bernstein wave can explain the observed dissipation. Ray tracing studies for shear Alfven waves are performed in various magnetic geometries of contemporary interest. In a tokamak, it is found that the hybrid resonator can exist in the cold-plasma regime, but that ion-temperature effects combined with curvature effects cause the wave reflection point to shift towards the cyclotron frequency of the heavier ion. A one-dimensional WKB model is applied to a tokamak geometry for conditions corresponding to a burning fusion plasma to characterize the resonator. Instability due to fusion-born alpha particles is assessed. An approximate form of the global eigenmode is considered. It is identified that magnetic field shear combined with large ion temperature can cause coupling to an ion-Bernstein wave, which can limit the instability. Finally, the radiation pattern of shear Alfven waves generated by a burst of charged particles in the presence of two-ion species is considered. The spectral content and spatial patterns of the radiated waves are determined. The second part of the dissertation considers the MHD stability of the plasma near a divertor in a tokamak. Two types of modes are considered: a ballooning mode and an axisymmetric, quasi-flute mode. Instability thresholds are derived for both modes and numerically evaluated for parameters relevant to recent experiments. This is done to determine whether these modes could be responsible for convection of the plasma in the vicinity of the poloidal null point. It is determined that MHD instability about a standard equilibrium is unlikely to explain the experimental results observed on the tokamak, TCV [Reimerdes et al., Plasma Phys. Contr. Fusion 55, 124027 (2013)]. From these results, it is concluded that the most likely explanation for the discrepancy is that the underlying equilibrium assumed in the calculation does not contain all the complexities present in the experiments.

  4. Survey of Coherent Approximately 1 Hz Waves in Mercury's Inner Magnetosphere from MESSENGER Observations

    NASA Technical Reports Server (NTRS)

    Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Schriver, David; Solomon, Sean C.

    2012-01-01

    We summarize observations by the MESSENGER spacecraft of highly coherent waves at frequencies between 0.4 and 5 Hz in Mercury's inner magnetosphere. This survey covers the time period from 24 March to 25 September 2011, or 2.1 Mercury years. These waves typically exhibit banded harmonic structure that drifts in frequency as the spacecraft traverses the magnetic equator. The waves are seen at all magnetic local times, but their observed rate of occurrence is much less on the dayside, at least in part the result of MESSENGER's orbit. On the nightside, on average, wave power is maximum near the equator and decreases with increasing magnetic latitude, consistent with an equatorial source. When the spacecraft traverses the plasma sheet during its equatorial crossings, wave power is a factor of 2 larger than for equatorial crossings that do not cross the plasma sheet. The waves are highly transverse at large magnetic latitudes but are more compressional near the equator. However, at the equator the transverse component of these waves increases relative to the compressional component as the degree of polarization decreases. Also, there is a substantial minority of events that are transverse at all magnetic latitudes, including the equator. A few of these latter events could be interpreted as ion cyclotron waves. In general, the waves tend to be strongly linear and characterized by values of the ellipticity less than 0.3 and wave-normal angles peaked near 90 deg. Their maxima in wave power at the equator coupled with their narrow-band character suggests that these waves might be generated locally in loss cone plasma characterized by high values of the ratio beta of plasma pressure to magnetic pressure. Presumably both electromagnetic ion cyclotron waves and electromagnetic ion Bernstein waves can be generated by ion loss cone distributions. If proton beta decreases with increasing magnetic latitude along a field line, then electromagnetic ion Bernstein waves are predicted to transition from compressional to transverse, a pattern consistent with our observations. We hypothesize that these local instabilities can lead to enhanced ion precipitation and directly feed field-line resonances.

  5. a Vacuum Ultraviolet Study of the Alcator C Tokamak Plasma Using a High Resolution, One-Dimensional Photon Counting Detector.

    NASA Astrophysics Data System (ADS)

    Benjamin, Russell D.

    A photon counting detector based on an image intensified photodiode array was developed to meet the needs of one particular area of spectroscopic study, the determination of the kinetic temperature of impurity species. The image intensifier incorporates 3 high strip current ( ~300 muA) microchannel plates in a 'Z' configuration to achieve the gain required for the detection of single photon events. The design, construction, and laboratory testing of this system to determine its suitability for fusion plasma diagnostics is described, in particular, the ability to measure emission line profiles in order to determine the kinetic temperature of the emitting species. The photon counting detector, mounted on the exit plane of a 1m Ebert-Fastie spectrometer, was used to make spectroscopic measurements of the local ion temperature in Alcator C plasmas using impurity emission lines. Alcator experiments on one particular method of RF heating in a tokamak plasma, the launching of Ion Bernstein waves (IBW), are discussed. The O V kinetic temperature increases during IBW injection as the pre-RF plasma density is raised (on a shot-to-shot basis) above the region in which significant increases in the central ion temperature are observed. In addition, ion temperature profiles were measured during Ion Bernstein wave experiments by combining this point derived from the fit to the emission line of O VII with neutral particle analyzer data. The incorporation of the O VII temperature point in the determination of the pre-RF ion temperature profile results in a significant reduction (~0.4 cm) in the characteristic width of this profile. The high resolution and geometric stability of the photon counting detector made possible the measurement of small wavelength shifts (Deltalambda ~ 0.01 A) and, therefore, the determination of small bulk plasma motions (in this case, poloidal rotation of the plasma) through the Doppler shift of impurity emission lines. The Zeeman effect makes a significant contribution to the measured line profile in high field tokamaks, even in the ultraviolet. Modelling of the Zeeman effect is discussed and applied to the impurity species observed in Alcator C plasmas. (Abstract shortened with permission of author.).

  6. Thermonuclear instabilities and plasma edge transport in tokamaks

    NASA Astrophysics Data System (ADS)

    Fulop, Tunde Maria

    High-energy ions generated by fusion reactions in a burning fusion plasma may give rise to different types of wave instabilities. The present thesis investigates two types of such instabilities which recently have been observed in fusion experiments: the Toroidal Alfvén Eigenmode (TAE) instability and the magnetoacoustic cyclotron instability (MCI) which is predicted to give rise to ion cyclotron emission (ICE). The TAE instability may degrade the confinement of fusion-produced high energy alpha particles and adversely affect the possibilities of reaching ignition. The present work derives it generalized expression for the linear growth rate of the instability, by including the effects of finite orbit width and finite Larmor radius of energetic particles, as well as the effects of mode localization and the possible mode excitation by both passing and trapped energetic ions. ICE does not threaten the plasma performance, but it might be useful as a fast ion diagnostic. The ICE originates from the MCI involving fast magnetoacoustic waves driven unstable by toroidicity-affected cyclotron resonance with fast ions. In the present thesis a detailed numerical and analytical investigation of this instability is presented, that explains most of the experimental ICE features observed in JET and TFTR. Moreover, the radial and poloidal localization of the fast magnetoacoustic eigenmodes is investigated, including the effects of toroidicity, ellipticity, the presence of a subpopulation of high energy ions and various profiles of the bulk ion density. In a fusion reactor, the transport of the particles near the edge have a strong influence on the global confinement of the plasma. In the edge region, where neutral atoms and impurity ions are abundant and the temperature and density gradients are large, the assumptions of the standard neoclassical theory break down. In this thesis, we explore the effect of neutral particles on the ion flow shear in the edge region. Furthermore, the neoclassical transport theory in an impure, toroidally rotating plasma is extended to allow for steeper pressure and temperature gradients than are usually considered.

  7. The Effect of High Pressure on Phase Relationships and Some Properties of Ti and Its alloys.

    DTIC Science & Technology

    1981-05-01

    8217. forma--t ion. That- lna\\ p), G id-2 On, n t --: y of 1 tI \\ it t’ -I n( the ? e al fovs after var tcu-s heat treoo’ Ii ’s jn 4 new, : ieLt I u-1J * ri...H. Bernstein, Computer Calculations of Phase Diagrams, Academic Press, N.Y. and.London, 1970. 23, L. Kaufman, Acta Met. 7, 575 (1959). 24, A. Gysler

  8. Distributed Database Control and Allocation. Volume 2. Performance Analysis of Concurrency Control Algorithms.

    DTIC Science & Technology

    1983-10-01

    Concurrency Control Algorithms Computer Corporation of America Wente K. Lin, Philip A. Bernstein, Nathan Goodman and Jerry Nolte APPROVED FOR PUBLIC ...84 03 IZ 004 ’KV This report has been reviewed by the RADC Public Affairs Office (PA) an is releasable to the National Technical Information Service...NTIS). At NTIS it will be releasable to the general public , including foreign na~ions. RADC-TR-83-226, Vol II (of three) has been reviewed and is

  9. A collimated neutron detector for RFP plasmas in MST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capecchi, W. J., E-mail: capecchi@wisc.edu; Anderson, J. K.; Bonofiglo, P. J.

    The neutron emissivity profile in the Madison Symmetric Torus is being reconstructed through the use of a collimated neutron detector. A scintillator-photomultiplier tube (PMT) system is employed to detect the fusion neutrons with the plasma viewing volume defined by a 55 cm deep, 5 cm diameter aperture. Effective detection of neutrons from the viewing volume is achieved through neutron moderation using 1300 lbs of high density polyethylene shielding, which modeling predicts attenuates the penetrating flux by a factor of 10{sup 4} or more. A broad spectrum of gamma radiation is also present due to the unconfined fusion proton bombardment ofmore » the thick aluminum vacuum vessel. A 15 cm cylindrical liquid scintillator of 3.8 cm diameter is used to further increase directional sensitivity. A fast (5 ns rise time) preamplifier and digitization at 500 MHz prevent pulse pile-up even at high count rates (∼10{sup 4}/s). The entire neutron camera system is situated on an adjustable inclining base which provides the differing plasma viewing volumes necessary for reconstruction of the neutron emissivity profile. This profile, directly related to the fast-ion population, allows for an investigation of the critical fast-ion pressure gradient required to destabilize a neutral beam driven Alfvénic mode which has been shown to transport fast ions.« less

  10. Basil Bernstein's Theory of the Pedagogic Device and Formal Music Schooling: Putting the Theory into Practice

    ERIC Educational Resources Information Center

    Wright, Ruth; Froehlich, Hildegard

    2012-01-01

    This article describes Basil Bernstein's theory of the pedagogic device as applied to school music instruction. Showing that educational practices are not personal choices alone, but the result of socio-political mandates, the article traces how education functions as a vehicle for social reproduction. Bernstein called this process the…

  11. Higher order Larmor radius corrections to guiding-centre equations and application to fast ion equilibrium distributions

    NASA Astrophysics Data System (ADS)

    Lanthaler, S.; Pfefferlé, D.; Graves, J. P.; Cooper, W. A.

    2017-04-01

    An improved set of guiding-centre equations, expanded to one order higher in Larmor radius than usually written for guiding-centre codes, are derived for curvilinear flux coordinates and implemented into the orbit following code VENUS-LEVIS. Aside from greatly improving the correspondence between guiding-centre and full particle trajectories, the most important effect of the additional Larmor radius corrections is to modify the definition of the guiding-centre’s parallel velocity via the so-called Baños drift. The correct treatment of the guiding-centre push-forward with the Baños term leads to an anisotropic shift in the phase-space distribution of guiding-centres, consistent with the well-known magnetization term. The consequence of these higher order terms are quantified in three cases where energetic ions are usually followed with standard guiding-centre equations: (1) neutral beam injection in a MAST-like low aspect-ratio spherical equilibrium where the fast ion driven current is significantly larger with respect to previous calculations, (2) fast ion losses due to resonant magnetic perturbations where a lower lost fraction and a better confinement is confirmed, (3) alpha particles in the ripple field of the European DEMO where the effect is found to be marginal.

  12. Energetic particles in spherical tokamak plasmas

    DOE PAGES

    McClements, K. G.; Fredrickson, E. D.

    2017-03-21

    Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together withmore » higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion–ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion behaviour, supplementing the information provided by neutron detectors. In MAST electrons were accelerated to highly suprathermal energies as a result of edge localised modes, while in both MAST and NSTX ions were accelerated due to internal reconnection events. Lastly, ion acceleration has also been observed during merging-compression start-up in MAST.« less

  13. MHD and resonant instabilities in JT-60SA during current ramp-up with off-axis N-NB injection

    NASA Astrophysics Data System (ADS)

    Bierwage, A.; Toma, M.; Shinohara, K.

    2017-12-01

    The excitation of magnetohydrodynamic (MHD) and resonant instabilities and their effect on the plasma profiles during the current ramp-up phase of a beam-driven JT-60SA tokamak plasma is studied using the MHD-PIC hybrid code MEGA. In the simple scenario considered, the plasma is only driven by one negative-ion-based neutral beam, depositing 500 keV deuterons at 5 MW power off-axis at about mid-radius. The beam injection starts half-way in the ramp-up phase. Within 1 s, the beam-driven plasma current and fast ion pressure produce a configuration that is strongly unstable to rapidly growing MHD and resonant modes. Using MEGA, modes with low toroidal mode numbers in the range n = 1-4 are examined in detail and shown to cause substantial changes in the plasma profiles. The necessity to develop reduced models and incorporate the effects of such instabilities in integrated codes used to simulate the evolution of entire plasma discharges is discussed.

  14. Energetic ion losses caused by magnetohydrodynamic activity resonant and non-resonant with energetic ions in Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ogawa, Kunihiro; Isobe, Mitsutaka; Toi, Kazuo; Shimizu, Akihiro; Spong, Donald A.; Osakabe, Masaki; Yamamoto, Satoshi; the LHD Experiment Group

    2014-09-01

    Experiments to reveal energetic ion dynamics associated with magnetohydrodynamic activity are ongoing in the Large Helical Device (LHD). Interactions between beam-driven toroidal Alfvén eigenmodes (TAEs) and energetic ions have been investigated. Energetic ion losses induced by beam-driven burst TAEs have been observed using a scintillator-based lost fast-ion probe (SLIP) in neutral beam-heated high β plasmas. The loss flux of co-going beam ions increases as the TAE amplitude increases. In addition to this, the expulsion of beam ions associated with edge-localized modes (ELMs) has been also recognized in LHD. The SLIP has indicated that beam ions having co-going and barely co-going orbits are affected by ELMs. The relation between ELM amplitude and ELM-induced loss has a dispersed structure. To understand the energetic ion loss process, a numerical simulation based on an orbit-following model, DELTA5D, that incorporates magnetic fluctuations is performed. The calculation result shows that energetic ions confined in the interior region are lost due to TAE instability, with a diffusive process characterizing their loss. For the ELM, energetic ions existing near the confinement/loss boundary are lost through a convective process. We found that the ELM-induced loss flux measured by SLIP changes with the ELM phase. This relation between the ELM amplitude and measured ELM-induced loss results in a more dispersed loss structure.

  15. Bernstein and the Explanation of Social Disparities in Education: A Realist Critique of the Socio-Linguistic Thesis

    ERIC Educational Resources Information Center

    Nash, Roy

    2006-01-01

    Can an explanation of the origins of social disparities in educational achievement be assisted by a critical examination of Bernstein's sociology? This central question is approached by a consideration of the status of Bernstein's socio-linguistic thesis. The focus is on the nature of the explanations provided. The paper asks: What is the…

  16. Phenomenology of beam driven modes in the field reversed configuration

    NASA Astrophysics Data System (ADS)

    Magee, Richard; Bolte, Nathan; Clary, Ryan; Necas, Ales; Korepanov, Sergey; Smirnov, Artem; Thompson, Matthew; Tajima, Toshiki; THE TAE Team

    2016-10-01

    The C-2U experiment offers a unique plasma environment combining a high beta field reversed configuration (FRC) embedded in a low beta magnetic mirror with high power neutral beam injection. The beams are injected tangentially into a modest magnetic field so that the orbits of the resulting fast ions encircle the entire plasma. These large orbit particles sustain and stabilize the plasma and suppress turbulence. Measurements of magnetic fluctuations at the edge of the plasma reveal the presence of three coherent beam driven modes: a low frequency, chirping mode, a mode near the ion cyclotron frequency, and a high frequency compressional Alfven mode. Remarkably, none of these modes are observed to have a deleterious effect on global plasma confinement. In fact, the cyclotron mode has the beneficial effect of dramatically enhancing the DD fusion reaction rate by drawing a trail from the plasma ion energy distribution on a sub-collisional timescale. In this presentation, we experimentally characterize the beam driven modes in the C-2U FRC with data from multiple diagnostics including magnetics, spectroscopy, neutral particle analyzers and fusion product diagnostics. Results are compared to a particle-in-cell simulation in a simplified geometry.

  17. Overview of C-2U FRC Experimental Program and Plans for C-2W

    NASA Astrophysics Data System (ADS)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Smirnov, A.; Thompson, M. C.; Yang, X.; Cappello, M.; Ivanov, A. A.; TAE Team

    2016-10-01

    Tri Alpha Energy's experimental program has been focused on a demonstration of reliable field-reversed configuration (FRC) formation and sustainment, driven by fast ions via high-power neutral-beam (NB) injection. The world's largest compact-toroid experimental devices, C-2 and C-2U, have successfully produced a well-stabilized, sustainable FRC plasma state with NB injection (input power, PNB 10 + MW; 15 keV hydrogen) and end-on coaxial plasma guns. Remarkable improvements in confinement and stability of FRC plasmas have led to further improved fast-ion build up; thereby, an advanced beam-driven FRC state has been produced and sustained for up to 5 + ms (longer than all characteristic system time scales), only limited by hardware and electric supply constraints such as NB and plasma-gun power supplies. To further improve the FRC performance the C-2U device is being replaced by C-2W featuring higher injected NB power, longer pulse duration as well as enhanced edge-biasing systems and substantially upgraded divertors. Main C-2U experimental results and key features of C-2W will be presented. Tri Alpha Energy, Inc.

  18. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, George H.

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of themore » available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.« less

  19. Progress toward a unified kJ-machine CANDY

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yoneyoshi; Mori, Yoshitaka; Komeda, Osamu; Hanayama, Ryohei; Ishii, Katsuhiro; Okihara, Shinichiro; Fujita, Kazuhisa; Nakayama, Suisei; Sekine, Takashi; Sato, Nakahiro; Kurita, Takashi; Kawashima, Toshiyuki; Watari, Takeshi; Kan, Hirofumi; Nakamura, Naoki; Kondo, Takuya; Fujine, Manabu; Azuma, Hirozumi; Motohiro, Tomoyoshi; Hioki, Tatsumi; Kakeno, Mitsutaka; Nishimura, Yasuhiko; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke; Arikawa, Yasunobu; Nagai, Takahiro; Abe, Yuki; Ozaki, Satoshi; Noda, Akira

    2016-03-01

    To construct a unified experimental machine CANDY using a kJ DPSSL driver in the fast-ignition scheme, the Laser for Fast Ignition Experiment (LFEX) at Osaka is used, showing that the laser-driven ions heat the preimploded core of a deuterated polystyrene (CD) shell target from 0.8 keV to 2 keV, resulting in 5 x 108 DD neutrons best ever obtained in the scheme. 4-J/10-Hz DPSSL laser HAMA is for the first time applied to the CD shell implosion- core heating experiments in the fast ignition scheme to yield neutrons and also to a continuous target injection, which yields neutrons of 3 x 105 n/4πsr n/shot.

  20. Effect of Trapped Ions on Shielding and Floating Potential of a Dust Grain in a Plasma

    NASA Astrophysics Data System (ADS)

    Lampe, Martin; Ganguli, Gurudas; Joyce, Glenn; Gavrishchaka, Valeriy

    2001-10-01

    The problem of electrostatic shielding around a small spherical collector immersed in plasma, and the related problem of electron and ion flow to the collector, date to the origins of plasma physics. Beginning with Mott-Smith and Langmuir (1926), calculations have typically neglected collisions, on the grounds that the mean free path is long compared to shielding length scales, i.e. the Debye length. However, investigators beginning with Bernstein and Rabinowitz (1959) have known that negative-energy trapped ions, created by occasional collisions, might be important. We present an analytic calculation of the density of trapped and untrapped ions, self-consistent with the potential. Under typical conditions for dust grains immersed in a discharge plasma, trapped ions dominate the shielding cloud in steady state, even in the limit of very long mean free path. As a result the shielded potential is different from the results of orbital motion limited theory. Collisions also greatly increase the ion current to the collector, thereby decreasing the floating potential and the grain charge by a factor as large as two to three.

  1. Re-Examining Bernstein: From Peer-Group Ways of Speaking to "Schriftsprache"--A Study of Turkish-German "Hauptschule" Students in Mannheim

    ERIC Educational Resources Information Center

    Keim, Inken

    2009-01-01

    This paper begins by looking at responses to Bernstein in Germany in the 1970s that criticized his notions of class difference in sociolinguistic codes. As part of a re-examination of Bernstein's ideas, the paper goes on to look at the current communicative situation in German education where urban schools have many second-generation immigrant…

  2. Nonlinear Electron and Ion Density Modulations Driven by Interfering High-Intensity Laser Pulses

    NASA Astrophysics Data System (ADS)

    Chen, S.; Zhang, P.; Saleh, N.; Sheng, Z. M.; Widjaja, C.; Umstadter, D.

    2002-11-01

    The optical spectrum from interaction of two crossed ultra short laser beams (400 fs) with underdense plasma is measured at various angles. Enhancement and broadening of the spectrum in the forward direction of one of the beams shows evidence of energy transfer between the two laser beams(G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. E 60, 2218 (1999).), which is confirmed by a 2-D PIC simulation. The spectrum and scattered power indicate that a large amplitude electron density modulation is driven, which is attributed to the ponderomotive force of the interference, in agreement with simple analysis and simulation(δn/n_0>10). Stokes and anti-Stokes satellites reveals that the energy transfer is accompanied by a large amplitude nonlinear ion acoustic wave created by the laser interference in the strongly driven limit. The wavelength shift indicates that the ion acoustic wave's speed is 2.3×10^6m/s, corresponding to the electron temperature 119 keV, which is attributed to stochastic heating, also found in the simulation. Besides being of interest in basic plasma physics, this research is also relevant to fast igniter fusion or ion acceleration experiments, in which a laser pulse may potentially beat with a reflected weaker pulse, with intensities comparable to those used in the experiment(Y. Sentoku, et al., Appl. Phys. B 74, 207-215 (2002).).

  3. Surface dynamics of voltage-gated ion channels.

    PubMed

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-07-03

    Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks.

  4. Surface dynamics of voltage-gated ion channels

    PubMed Central

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-01-01

    ABSTRACT Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks. PMID:26891382

  5. Formation, spin-up, and stability of field-reversed configurations

    DOE PAGES

    Omelchenko, Yuri A.

    2015-08-24

    Formation, spontaneous spin-up and stability of theta-pinch formed field-reversed configurations are studied self-consistently in three dimensions with a multiscale hybrid model that treats all plasma ions as full-orbit collisional macro-particles and the electrons as a massless quasineutral fluid. The end-to-end hybrid simulations for the first time reveal poloidal profiles of implosion-driven fast toroidal plasma rotation and demonstrate three well-known discharge regimes as a function of experimental parameters: the decaying stable configuration, the tilt unstable configuration and the nonlinear evolution of a fast growing tearing mode.

  6. Application of laser driven fast high density plasma blocks for ion implantation

    NASA Astrophysics Data System (ADS)

    Sari, Amir H.; Osman, F.; Doolan, K. R.; Ghoranneviss, M.; Hora, H.; Höpfl, R.; Benstetter, G.; Hantehzadeh, M. H.

    2005-10-01

    The measurement of very narrow high density plasma blocks of high ion energy from targets irradiated with ps-TW laser pulses based on a new skin depth interaction process is an ideal tool for application of ion implantation in materials, especially of silicon, GaAs, or conducting polymers, for micro-electronics as well as for low cost solar cells. A further application is for ion sources in accelerators with most specifications of many orders of magnitudes advances against classical ion sources. We report on near band gap generation of defects by implantation of ions as measured by optical absorption spectra. A further connection is given for studying the particle beam transforming of n-type semiconductors into p-type and vice versa as known from sub-threshold particle beams. The advantage consists in the use of avoiding aggressive or rare chemical materials when using the beam techniques for industrial applications.

  7. Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials

    PubMed Central

    Khan, Rahmat Ali; Tajadodi, Haleh; Johnston, Sarah Jane

    2014-01-01

    In this paper we propose the Bernstein polynomials to achieve the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. We use operational matrices of fractional integration and multiplication of Bernstein polynomials, which turns the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques. PMID:25485293

  8. On S.N. Bernstein's derivation of Mendel's Law and 'rediscovery' of the Hardy-Weinberg distribution.

    PubMed

    Stark, Alan; Seneta, Eugene

    2012-04-01

    Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type proportions) from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears that he had no direct influence on the subsequent development of population genetics. A basic assumption of Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian coefficients of heredity while maintaining the population distribution. How W. Johannsen's monograph influenced Bernstein is discussed.

  9. Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.; Vainio, R.; Palmroth, M.; Juusola, L.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Turc, L.; von Alfthan, S.

    2018-02-01

    We report ion acceleration by flux transfer events in the terrestrial magnetosheath in a global two-dimensional hybrid-Vlasov polar plane simulation of Earth's solar wind interaction. In the model we find that propagating flux transfer events created in magnetic reconnection at the dayside magnetopause drive fast-mode bow waves in the magnetosheath, which accelerate ions in the shocked solar wind flow. The acceleration at the bow waves is caused by a shock drift-like acceleration process under stationary solar wind and interplanetary magnetic field upstream conditions. Thus, the energization is not externally driven but results from plasma dynamics within the magnetosheath. Energetic proton populations reach the energy of 30 keV, and their velocity distributions resemble time-energy dispersive ion injections observed by the Cluster spacecraft in the magnetosheath.

  10. A comprehensive study of electrostatic turbulence and transport in the laboratory basic plasma device TORPEX

    NASA Astrophysics Data System (ADS)

    Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.

    2012-04-01

    TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and we compare their time-averaged and statistical properties with experimental data. Finally, we discuss future developments including the possibility of closing the magnetic field lines and of performing magnetic reconnection experiments.

  11. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory.

    PubMed

    Schaeffer, D B; Fox, W; Haberberger, D; Fiksel, G; Bhattacharjee, A; Barnak, D H; Hu, S X; Germaschewski, K

    2017-07-14

    We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.

  12. First experimental demonstration of magnetic-field assisted fast heating of a dense plasma core

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Sawada, Hiroshi; Iwasa, Yuki; Law, King Fai Farley; Morita, Hitoki; Kojima, Sadaoki; Abe, Yuki; Yao, Akira; Hata, Masayasu; Johzaki, Tomoyuki; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Morace, Alessio; Arikawa, Yasunobu; Yogo, Akifumi; Nishimura, Hiroaki; Nakai, Mitsuo; Shiraga, Hiroyuki; Sentoku, Yasuhiko; Nagatomo, Hideo; Azechi, Hiroshi; Firex Project Team

    2016-10-01

    Fast heating of a dense plasma core by an energetic electron beam is being studied on GEKKO-LFEX laser facility. Here, we introduce a laser-driven kilo-tesla external magnetic field to guide the diverging electron beam to the dense plasma core. This involve placing a spherical target in the magnetic field, compressing it with the GEKKO-XII laser beams and then using the LFEX laser beams injected into the dense plasma to generate the electron beam which do the fast heating. Cu-Ka emission is used to visualize transport or heating processes of a dense plasma. X-ray spectrum from a highly ionized Cu ions indicates several keV of the temperature increment induced by the LFEX.

  13. Bernstein wave aided laser third harmonic generation in a plasma

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok

    2016-09-01

    The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.

  14. Towards a better comprehension of plasma formation and heating in high performances electron cyclotron resonance ion sources (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, D.; Gammino, S.; Celona, L.

    2012-02-15

    Further improvements of electron cyclotron resonance ion sources (ECRIS) output currents and average charge state require a deep understanding of electron and ion dynamics in the plasma. This paper will discuss the most recent advances about modeling of non-classical evidences like the sensitivity of electron energy distribution function to the magnetic field detuning, the influence of plasma turbulences on electron heating and ion confinement, the coupling between electron and ion dynamics. All these issues have in common the non-homogeneous distribution of the plasma inside the source: the abrupt density drop at the resonance layer regulates the heating regimes (from collectivemore » to turbulent), the beam formation mechanism and emittance. Possible means to boost the performances of future ECRIS will be proposed. In particular, the use of Bernstein waves, in preliminary experiments performed at Laboratori Nazionali del Sud (LNS) on MDIS (microwave discharge ion sources)-type sources, has permitted to sustain largely overdense plasmas enhancing the warm electron temperature, which will make possible in principle the construction of sources for high intensity multicharged ions beams with simplified magnetic structures.« less

  15. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each methodmore » are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.« less

  16. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC.

    PubMed

    Magee, R M; Clary, R; Korepanov, S; Jauregui, F; Allfrey, I; Garate, E; Valentine, T; Smirnov, A

    2016-11-01

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10 7 n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  17. Particle-in-cell Simulations of Waves in a Plasma Described by Kappa Velocity Distribution as Observed in the Saturńs Magnetosphere

    NASA Astrophysics Data System (ADS)

    Alves, M. V.; Barbosa, M. V. G.; Simoes, F. J. L., Jr.

    2016-12-01

    Observations have shown that several regions in space plasmas exhibit non-Maxwellian distributions with high energy superthermal tails. Kappa velocity distribution functions can describe many of these regions and have been used since the 60's. They suit well to represent superthermal tails in solar wind as well as to obtain plasma parameters of plasma within planetary magnetospheres. A set of initial velocities following kappa distribution functions is used in KEMPO1 particle simulation code to analyze the normal modes of wave propagation. Initial conditions are determined using observed characteristics for Saturńs magnetosphere. Two electron species with different temperatures and densities and ions as a third species are used. Each electron population is described by a different kappa index. Particular attention is given to perpendicular propagation, Bernstein modes, and parallel propagation, Langmuir and electron-acoustic modes. The dispersion relation for the Bernstein modes is strongly influenced by the shape of the velocity distribution and consequently by the value of kappa index. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.

  18. A Study of Single Pass Ion Effects at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, J.M.; Thomson, J.; /LBL, Berkeley

    2011-09-13

    We report the results of experiments on a 'fast beam-ion instability' at the Advanced Light Source (ALS). This ion instability, which can arise even when the ions are not trapped over multiple beam passages, will likely be important for many future accelerators. In our experiments, we filled the ALS storage ring with helium gas, raising the pressure approximately two orders of magnitude above the nominal pressure. With gaps in the bunch train large enough to avoid conventional (multi-turn) ion trapping, we observed a factor of 2-3 increase in the vertical beam size along with coherent beam oscillations which increased alongmore » the bunch train. Ion trapping has long been recognized as a potential limitation in electron storage rings. The ions, generated by beam-gas collisions, become trapped in the negative potential of the beam and accumulate over multiple beam passages. The trapped ions are then observed to cause a number of deleterious effects such as an increasing beam phase space, a broadening and shifting of the beam transverse oscillation frequencies (tunes), collective beam instabilities, and beam lifetime reductions. All of these effects are of concern for the next generation of accelerators, such as the B-factories or damping rings for future linear colliders, which will store high beam currents with closely spaced bunches and ultra-low beam emittances. One of the standard solutions used to prevent ion trapping is to include a gap in the bunch train which is long compared to the bunch spacing. In this case, the ions are first strongly-focused by the passing electron bunches and then over-focused in the gap. With a sufficiently large gap, the ions can be driven to large amplitudes where they form a diffuse halo and do not affect the beam. In this paper, we describe experiments that study a new regime of transient ion instabilities predicted to arise in future electron storage rings, and linacs with bunch trains. These future rings and linacs, which will be operated with higher beam currents, small transverse beam emittances, and long bunch trains, will use ion clearing gaps to prevent conventional ion trapping. But, while the ion clearing gap may suppress the conventional ion instabilities, it will not suppress a transient beam-ion instability where ions generated and trapped during the passage of a single train lead to a fast instability. While both conventional and transient ion instabilities have the same origin, namely ions produced by the beam, they have different manifestations and, more importantly, the new transient instability can arise even after the conventional ion instability is cured. This new instability is called the 'Fast Beam-Ion Instability' (FBII). In many future rings, the FBII is predicted to have very fast growth rates, much faster than the damping rates of existing and proposed transverse feedback systems, and thus is a potential limitation. To study the FBII, we performed experiments at the ALS, a 1.5 GeV electron storage ring. At the nominal ALS pressure of about 0.24 nTorr, the FBII is not evident. To study the instability, we intentionally added helium gas to the storage-ring vacuum system until the residual gas pressure was increased about 80 nTorr. This brought the predicted growth rate of the instability at least an order of magnitude above the growth rate of conventional multibunch instabilities driven by the RF cavities and above the damping rate of the transverse feedback system (TFB) in the ALS and, thereby, established conditions very similar to those in a future storage ring. We then filled the ring with a relatively short train of bunches, suppressing conventional ion instabilities. In the following, we will first briefly describe This paper describes the experiment and results in more detail.« less

  19. A non-linear 4-wave resonant model for non-perturbative fast ion interactions with Alfv'enic modes in burning plasmas

    NASA Astrophysics Data System (ADS)

    Zonca, Fulvio; Chen, Liu

    2007-11-01

    We adopt the 4-wave modulation interaction model, introduced by Chen et al [1] for analyzing modulational instabilities of the radial envelope of Ion Temperature Gradient driven modes in toroidal geometry, extending it to the modulations on the fast particle distribution function due to nonlinear Alfv'enic mode dynamics, as proposed in Ref. [2]. In the case where the wave-particle interactions are non-perturbative and strongly influence the mode evolution, as in the case of Energetic Particle Modes (EPM) [3], radial distortions (redistributions) of the fast ion source dominate the mode nonlinear dynamics. In this work, we show that the resonant particle motion is secular with a time-scale inversely proportional to the mode amplitude [4] and that the time evolution of the EPM radial envelope can be cast into the form of a nonlinear Schr"odinger equation a la Ginzburg-Landau [5]. [1] L. Chen et al, Phys. Plasmas 7 3129 (2000) [2] F. Zonca et al, Theory of Fusion Plasmas (Bologna: SIF) 17 (2000) [3] L. Chen, Phys. Plasmas 1, 1519 (1994).[4] F. Zonca et al, Nucl. Fusion 45 477 (2005) [5] F. Zonca et al, Plasma Phys. Contr. Fusion 48 B15 (2006)

  20. SEE Observations of Ionospheric Heating from HAARP Using Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.

    2013-12-01

    High power HF radio waves exciting the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, providing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. These production modes have been extensively studied at HAARP using traditional beam heating patterns and SEE detection. New results are present from HAARP experiments using an excitation mode that attempts to impart orbital angular momentum (OAM) into the heating region. This OAM mode is also referred to as a 'twisted beam.' Previous analysis of twisted beam heating shows that the SEE results obtained are nearly identical to the modes without OAM. Recent twisted beam heating experiments have produced SEE modes not previously characterized. These new modes are presented and discussed. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional 'solid spot' region. The ring heating pattern may be more conducive to the creation of artificial ionization clouds. The results of these runs include artificial ionization creation and evolution as pertaining to the twisted beam pattern.

  1. STEREO and Wind Observations of Intense Cyclotron Harmonic Waves at the Earth's Bow Shock and Inside the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Breneman, A. W.; Cattell, C.

    2013-01-01

    We present the first observations of electron cyclotron harmonic waves at the Earth's bow shock from STEREO and Wind burst waveform captures. These waves are observed at magnetic field gradients at a variety of shock geometries ranging from quasi-parallel to nearly perpendicular along with whistler mode waves, ion acoustic waves, and electrostatic solitary waves. Large amplitude cyclotron harmonic waveforms are also observed in the magnetosheath in association with magnetic field gradients convected past the bow shock. Amplitudes of the cyclotron harmonic waves range from a few tens to more than 500 millivolts/meter peak-peak. A comparison between the short (15 meters) and long (100 meters) Wind spin plane antennas shows a similar response at low harmonics and a stronger response on the short antenna at higher harmonics. This indicates that wavelengths are not significantly larger than 100 meters, consistent with the electron cyclotron radius. Waveforms are broadband and polarizations are distinctively comma-shaped with significant power both perpendicular and parallel to the magnetic field. Harmonics tend to be more prominent in the perpendicular directions. These observations indicate that the waves consist of a combination of perpendicular Bernstein waves and field-aligned waves without harmonics. A likely source is the electron cyclotron drift instability which is a coupling between Bernstein and ion acoustic waves. These waves are the most common type of high-frequency wave seen by STEREO during bow shock crossings and magnetosheath traversals and our observations suggest that they are an important component of the high-frequency turbulent spectrum in these regions.

  2. Above scaling short-pulse ion acceleration from flat foil and ``Pizza-top Cone'' targets at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk; Hegelich, B. Manuel; Cort Gautier, D.; Johnson, J. Randy; Kline, John L.; Shimada, Tsutomu; Fernández, Juan C.; Gaillard, Sandrine; Rassuchine, Jennifer; Le Galloudec, Nathalie; Cowan, Thomas E.; Malekos, Steve; Korgan, Grant

    2006-10-01

    Ion-driven Fast Ignition (IFI) has certain advantages over electron-driven FI due to a possible large reduction in the amount of energy required. Recent experiments at the Los Alamos National Laboratory's Trident facility have yielded ion energies and efficiencies many times in excess of recent published scaling laws, leading to even more potential advantages of IFI. Proton energies in excess of 35 MeV have been observed from targets produced by the University of Nevada, Reno - dubbed ``Pizza-top Cone'' targets - at intensities of only 1x10^19 W/cm^2 with 20 joules in 600 fs. Energies in excess of 24 MeV were observed from simple flat foil targets as well. The observed energies, above any published scaling laws, are attributed to target production, preparation, and shot to shot monitoring of many laser parameters, especially the laser ASE prepulse level and laser pulse duration. The laser parameters are monitored in real-time to keep the laser in optimal condition throughout the run providing high quality, reproducible shots.

  3. Fast imaging measurements and modeling of neutral and impurity density on C-2U

    NASA Astrophysics Data System (ADS)

    Granstedt, Erik; Deng, B.; Dettrick, S.; Gupta, D. K.; Osin, D.; Roche, T.; Zhai, K.; TAE Team

    2016-10-01

    The C-2U device employed neutral beam injection and end-biasing to sustain an advanced beam-driven Field-Reversed Configuration plasma for 5+ ms, beyond characteristic transport time-scales. Three high-speed, filtered cameras observed visible light emission from neutral hydrogen and impurities, as well as deuterium pellet ablation and compact-toroid injection which were used for auxiliary particle fueling. Careful vacuum practices and titanium gettering successfully reduced neutral recycling from the confinement vessel wall. As a result, a large fraction of the remaining neutrals originate from charge-exchange between the neutral beams and plasma ions. Measured H/D- α emission is used with DEGAS2 neutral particle modeling to reconstruct the strongly non-axissymmetric neutral distribution. This is then used in fast-ion modeling to more accurately estimate their charge-exchange loss rate. Oxygen emission due to electron-impact excitation and charge-exchange recombination has also been measured using fast imaging. Reconstructed emissivity of O4+ is localized on the outboard side of the core plasma near the estimated location of the separatrix inferred by external magnetic measurements. Tri Alpha Energy.

  4. Neutral Beam Driven Neoclassical Transport in NSTX

    NASA Astrophysics Data System (ADS)

    Houlberg, W. A.; Shaing, K. C.; Callen, J. D.

    2002-11-01

    We re-examine the particle and heat flows driven by neutral beam injection in tokamak plasmas. These appear as inward pinches for co-injection and outward for counter injection. We derive the parallel friction and heat friction forces exerted on the thermal species by the energetic beam ions by extending the early analysis of Callen, et al. [1], which are then used as external forces in the moments formulation of neoclassical transport in NCLASS [2]. NCLASS is based on the multiple species treatment of Hirshman and Sigmar [3]. Of particular interest is the ion energy flux driven by the heat friction term. It scales as the beam energy, while the particle and electron heat terms scale as the thermal plasma temperature. In NSTX the high beam energy to plasma temperature ratio may lead to a net negative ion heat flux with strong co-injection. Limtations to the theory, such as the large fast ion orbit size relative to the radius of the flux surface, are discussed. Comparisons are made with earlier works by Hinton and Kim [4] and Stacey [5], who evaluated only the beam-thermal friction. [1] J.D. Callen, et al, 5th IAEA, Tokyo (1974), Vol 1, 645 [2] W.A. Houlberg, K.C. Shaing, S.P. Hirshman, M.C. Zarnstorff, Phys. Plasmas 4 (1997) 3230 [3] S.P. Hirshman, D.J. Sigmar, Nucl. Fusion 21 (1981) 1079 [4] F.L. Hinton, Y.-B. Kim, Phys. Fluids B 5 (1993) 3012 [5] W.M. Stacey, Phys. Fluids B 5 (1993) 4505

  5. Voronovskaja's theorem revisited

    NASA Astrophysics Data System (ADS)

    Tachev, Gancho T.

    2008-07-01

    We represent a new quantitative variant of Voronovskaja's theorem for Bernstein operator. This estimate improves the recent quantitative versions of Voronovskaja's theorem for certain Bernstein-type operators, obtained by H. Gonska, P. Pitul and I. Rasa in 2006.

  6. Approximation by the iterates of Bernstein operator

    NASA Astrophysics Data System (ADS)

    Zapryanova, Teodora; Tachev, Gancho

    2012-11-01

    We study the degree of pointwise approximation of the iterated Bernstein operators to its limiting operator. We obtain a quantitative estimates related to the conjecture of Gonska and Raşa from 2006.

  7. Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target.

    PubMed

    Kim, Young-Kuk; Cho, Myung-Hoon; Song, Hyung Seon; Kang, Teyoun; Park, Hyung Ju; Jung, Moon Youn; Hur, Min Sup

    2015-10-01

    We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.

  8. Alternate operating scenarios for NDCX-II

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Cohen, R. H.; Lund, S. M.; Vay, J.-L.; Waldron, W. L.

    2014-01-01

    NDCX-II is a newly completed accelerator facility at LBNL, built to study ion-heated warm dense matter, as well as aspects of ion-driven targets and intense-beam dynamics for inertial-fusion energy. The baseline design calls for using 12 induction cells to accelerate 30-50 nC of Li+ ions to 1.2 MeV. During commissioning, though, we plan to extend the source lifetime by extracting less total charge. Over time, we expect that NDCX-II will be upgraded to substantially higher energies, necessitating the use of heavier ions to keep a suitable deposition range in targets. For operational flexibility, the option of using a helium plasma source is also being investigated. Each of these options requires development of an alternate acceleration schedule. The schedules here are worked out with a fast-running 1-D particle-in-cell code ASP.

  9. Demonstrated Efficient Quasi-Monoenergetic Carbon-Ion Beams Approaching Fast Ignition (FI) Requirements

    NASA Astrophysics Data System (ADS)

    Fernández, Juan C.; Palaniyappan, S.; Huang, C.; Gautier, D. C.; Santiago, M.

    2015-11-01

    Using massive computer simulations of relativistic laser-plasma interactions, we have identified a self-organizing scheme that exploits persisting self-generated plasma electric (~TV/m) and magnetic (~104 Tesla) fields to reduce the ion energy spread of intense laser-driven ion beams after the laser exits the plasma. Consistent with the scheme, we have demonstrated on the LANL Trident laser carbon-ion beams with narrow spectral peaks at 220 MeV, with high conversion efficiency (~ 5%). These parameters are within a factor of 2 of FI requirements. The remaining gap may be bridged by increasing the laser intensity by a factor of 4, according to our data. We also discuss how this beam may be focused, to address the remaining requirement for FI, besides the total laser energy. This work is sponsored by the LANL LDRD Program.

  10. Generalized neurofuzzy network modeling algorithms using Bézier-Bernstein polynomial functions and additive decomposition.

    PubMed

    Hong, X; Harris, C J

    2000-01-01

    This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

  11. Particle simulation of electromagnetic emissions from electrostatic instability driven by an electron ring beam on the density gradient

    NASA Astrophysics Data System (ADS)

    Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej

    2018-04-01

    This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.

  12. Dark Energy Survey Group

    Science.gov Websites

    Student Conference 2011-09 Kuehn TIPP 2011-06 Kuehn CESR 2011-02 Kuehn AAS 2011-01 Santa Fe Cosmology Workshop 2010-07 Bernstein JHU DES 2010-07 Kuehn Great Lakes Cosmology Workshop 2010-06 Bernstein DES SN

  13. Observation of Electron Bernstein Wave Heating in the RFP

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Goetz, John; Forest, Cary

    2017-10-01

    The first observation of RF heating in a reversed field pinch (RFP) using the electron Bernstein wave (EBW) has been demonstrated on MST. Efficient mode conversion of an outboard-launched X mode wave at 5.5 GHz leads to Doppler-shifted resonant absorption (ωrf = nωce-k||v||) for a broad range (n =1-7) of harmonics. The dynamics of EBW-heated electrons are measured using a spatial distribution of solid targets with diametrically opposed x-ray detectors. EBW heating produces a clear supra-thermal electron tail in MST. Radial deposition of the EBW is controlled with |B|and is measured using the HXR flux emitted from an insertable probe. In the thick-shelled MST RFP, the radial accessibility of EBW is limited to r/a >0.8 ( 10cm) by magnetic field error induced by the porthole necessary for the antenna. Experimental measurements show EBW propagation inward through a stochastic magnetic field. EBW-heated test electrons are used as a direct probe of edge (r/a >0.9) radial transport, showing a modest transition from `standard' to reduced-tearing RFP operation. Electron loss is too fast for collisional effects and implies a large non-collisional radial diffusivity. EBW heating has been demonstrated in reduced magnetic stochasticity plasmas with β = 15-20%. Work supported by USDOE.

  14. Integration of posture and movement: contributions of Sherrington, Hess, and Bernstein.

    PubMed

    Stuart, Douglas G

    2005-01-01

    Neural mechanisms that integrate posture with movement are widespread throughout the central nervous system (CNS), and they are recruited in patterns that are both task- and context-dependent. Scientists from several countries who were born in the 19th century provided essential groundwork for these modern-day concepts. Here, the focus is on three of this group with each selected for a somewhat different reason. Charles Sherrington (1857-1952) had innumerable contributions that were certainly needed in the subsequent study of posture and movement: inhibition as an active coordinative mechanism, the functional anatomy of spinal cord-muscle connectivity, and helping set the stage for modern work on the sensorimotor cortex and the corticospinal tract. Sadly, however, by not championing the work of his trainee and collaborator, Thomas Graham Brown (1882-1965), he delayed progress on two key motor control mechanisms: central programming and pattern generation. Walter Hess (1881-1973), a self-taught experimentalist, is now best known for his work on CNS coordination of autonomic (visceral) and emotional behavior. His contributions to posture and movement, however, were also far-reaching: the coordination of eye movements and integration of goal-directed and "framework" (anticipatory set) motor behavior. Nikolai Bernstein (1896-1966), the quintessence of an interdisciplinary, self-taught movement neuroscientist, made far-reaching contributions that were barely recognized by Western workers prior to the 1960s. Today, he is widely praised for showing that the CNS's hierarchy of control mechanisms for posture and movement is organized hand-in-hand with distributed and parallel processing, with all three subject to evolutionary pressures. He also made important observations, like those of several previous workers, on the goal focus of voluntary movements. The contributions of Sherrington, Hess, and Bernstein are enduring. They prompt thought on the philosophical axioms that appear to have driven their research, and the continual need for emphasis on interdisciplinary, comparative, and transnational approaches to advance movement neuroscience.

  15. Advanced tokamak research with integrated modeling in JT-60 Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, N.

    2010-05-15

    Researches on advanced tokamak (AT) have progressed with integrated modeling in JT-60 Upgrade [N. Oyama et al., Nucl. Fusion 49, 104007 (2009)]. Based on JT-60U experimental analyses and first principle simulations, new models were developed and integrated into core, rotation, edge/pedestal, and scrape-off-layer (SOL)/divertor codes. The integrated models clarified complex and autonomous features in AT. An integrated core model was implemented to take account of an anomalous radial transport of alpha particles caused by Alfven eigenmodes. It showed the reduction in the fusion gain by the anomalous radial transport and further escape of alpha particles. Integrated rotation model showed mechanismsmore » of rotation driven by the magnetic-field-ripple loss of fast ions and the charge separation due to fast-ion drift. An inward pinch model of high-Z impurity due to the atomic process was developed and indicated that the pinch velocity increases with the toroidal rotation. Integrated edge/pedestal model clarified causes of collisionality dependence of energy loss due to the edge localized mode and the enhancement of energy loss by steepening a core pressure gradient just inside the pedestal top. An ideal magnetohydrodynamics stability code was developed to take account of toroidal rotation and clarified a destabilizing effect of rotation on the pedestal. Integrated SOL/divertor model clarified a mechanism of X-point multifaceted asymmetric radiation from edge. A model of the SOL flow driven by core particle orbits which partially enter the SOL was developed by introducing the ion-orbit-induced flow to fluid equations.« less

  16. Laser-driven Ion Acceleration using Nanodiamonds

    NASA Astrophysics Data System (ADS)

    D'Hauthuille, Luc; Nguyen, Tam; Dollar, Franklin

    2016-10-01

    Interactions of high-intensity lasers with mass-limited nanoparticles enable the generation of extremely high electric fields. These fields accelerate ions, which has applications in nuclear medicine, high brightness radiography, as well as fast ignition for inertial confinement fusion. Previous studies have been performed with ensembles of nanoparticles, but this obscures the physics of the interaction due to the wide array of variables in the interaction. The work presented here looks instead at the interactions of a high intensity short pulse laser with an isolated nanodiamond. Specifically, we studied the effect of nanoparticle size and intensity of the laser on the interaction. A novel target scheme was developed to isolate the nanodiamond. Particle-in-cell simulations were performed using the EPOCH framework to show the sheath fields and resulting energetic ion beams.

  17. Waves generated in the plasma plume of helicon magnetic nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen

    2013-03-15

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of themore » plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.« less

  18. Numerical study on wave-induced beam ion prompt losses in DIII-D tokamak

    DOE PAGES

    Feng, Zhichen; Zhu, Jia; Fu, Guo -Yong; ...

    2017-08-30

    A numerical study is performed on the coherent beam ion prompt losses driven by Alfven eigenmodes (AEs) in DIII-D plasmas using realistic parameters and beam ion deposition profiles. The synthetic signal of a fast-ion loss detector (FILD) is calculated for a single AE mode. The first harmonic of the calculated FILD signal is linearly proportional to the AE amplitude with the same AE frequency in agreement with the experimental measurement. The calculated second harmonic is proportional to the square of the first harmonic for typical AE amplitudes. The coefficient of quadratic scaling is found to be sensitive to the AEmore » mode width. The second part of this work considers the AE drive due to coherent prompt loss. As a result, it is shown that the loss-induced mode drive is much smaller than the previous estimate and can be ignored for mode stability.« less

  19. A critique of Bernstein's beyond objectivism and relativism: science, hermeneutics, and praxis.

    PubMed

    Matusitz, Jonathan; Kramer, Eric

    2011-06-01

    This analysis comments on Bernstein's lack of clear understanding of subjectivity, based on his book, Beyond Objectivism and Relativism: Science, Hermeneutics, and Praxis. Bernstein limits his interpretation of subjectivity to thinkers such as Gadamer and Habermas. The authors analyze the ideas of classic scholars such as Edmund Husserl and Friedrich Nietzsche. Husserl put forward his notion of transcendental subjectivity and phenomenological ramifications of the relationship between subjectivity and objectivity. Nietzsche referred to subjectivity as "perspectivism," the inescapable fact that any and all consciousnesses exist in space and time. Consciousness is fundamentally constituted of cultural, linguistic, and historical dimensions.

  20. On Bernstein type inequalities and a weighted Chebyshev approximation problem on ellipses

    NASA Technical Reports Server (NTRS)

    Freund, Roland

    1989-01-01

    A classical inequality due to Bernstein which estimates the norm of polynomials on any given ellipse in terms of their norm on any smaller ellipse with the same foci is examined. For the uniform and a certain weighted uniform norm, and for the case that the two ellipses are not too close, sharp estimates of this type were derived and the corresponding extremal polynomials were determined. These Bernstein type inequalities are closely connected with certain constrained Chebyshev approximation problems on ellipses. Some new results were also presented for a weighted approximation problem of this type.

  1. Developmental Trajectories of Boys’ Driven Exercise and Fasting During the Middle School Years

    PubMed Central

    Davis, Heather A.; Guller, Leila; Smith, Gregory T.

    2016-01-01

    Boys appear to engage in eating disorder behavior, particularly nonpurging compensatory behaviors such as driven exercise and fasting, at higher rates than previously thought. Little is known about the development of these behaviors in adolescent boys. In a sample of 631 non-binge eating and non-purging boys studied once in 5th grade and 6 times over the 3 years of middle school (grades 6 through 8), we found that (a) for some youth, driven exercise and fasting were present from grade 6; (b) different boys progressed along different trajectories of engagement in driven exercise and fasting, with some boys engaging in no driven exercise or fasting (65.8% and 83.5%, respectively), some boys engaging in driven exercise and fasting throughout middle school (25.2% and 16.5%, respectively), and other boys discontinuing engagement in driven exercise (9%); (c) 5th grade depression, eating expectancies, and thinness expectancies predicted subsequent trajectory group membership; and (d) boys engaging in driven exercise and fasting in 8th grade remained distressed. Boys’ engagement in driven exercise and fasting behavior merits the attention of researchers and clinicians. PMID:26707543

  2. Developmental Trajectories of Boys' Driven Exercise and Fasting During the Middle School Years.

    PubMed

    Davis, Heather A; Guller, Leila; Smith, Gregory T

    2016-10-01

    Boys appear to engage in eating disorder behavior, particularly nonpurging compensatory behaviors such as driven exercise and fasting, at higher rates than previously thought. Little is known about the development of these behaviors in adolescent boys. In a sample of 631 non-binge eating and non-purging boys studied once in 5th grade and 6 times over the 3 years of middle school (grades 6 through 8), we found that (a) for some youth, driven exercise and fasting were present from grade 6; (b) different boys progressed along different trajectories of engagement in driven exercise and fasting, with some boys engaging in no driven exercise or fasting (65.8 % and 83.5 %, respectively), some boys engaging in driven exercise and fasting throughout middle school (25.2 % and 16.5 %, respectively), and other boys discontinuing engagement in driven exercise (9 %); (c) 5th grade depression, eating expectancies, and thinness expectancies predicted subsequent trajectory group membership; and (d) boys engaging in driven exercise and fasting in 8th grade remained distressed. Boys' engagement in driven exercise and fasting behavior merits the attention of researchers and clinicians.

  3. Modeling dynamic plasmas driven by ultraintense nano-focused x-ray laser pulses in solid iron targets

    NASA Astrophysics Data System (ADS)

    Royle, Ryan; Sentoku, Yasuhiko; Mancini, Roberto

    2017-10-01

    The hard x-ray free electron laser has proven to be a valuable tool for high energy density (HED) physics as it is able to produce well-characterized samples of HED matter at exactly solid density and homogeneous temperatures. However, if the x-ray pulses are focused to sub-micron spot sizes, where peak intensities can exceed 1020 W/cm2, the plasmas driven by sources of non-thermal photoelectrons and Auger electrons can be highly dynamic and so cannot be modeled by atomic kinetics or fluid codes. We apply the 2D/3D particle-in-cell code, PICLS-which has been extended with numerous physics models to enable the simulation of XFEL-driven plasmas-to the modeling of such dynamic plasmas driven by nano-focused XFEL pulses in solid iron targets. In the case of the smallest focal spot investigated of just 100 nm in diameter, keV plasmas induce strong radial E-fields that accelerate keV ions radially as well as sheath fields that accelerate surface ions to hundreds of keV. The heated spot, which is initially larger than the laser spot due to the kinetic nature of the fast Auger electrons, expands as ion and electron waves propagate radially, leaving a low density region along the laser axis. This research was supported by the US DOE-OFES under Grant No. DE-SC0008827, the DOE-NNSA under Grant No. DE-NA0002075, and the JSPS KAKENHI under Grant No. JP15K21767.

  4. Fast-ion D(alpha) measurements and simulations in DIII-D

    NASA Astrophysics Data System (ADS)

    Luo, Yadong

    The fast-ion Dalpha diagnostic measures the Doppler-shifted Dalpha light emitted by neutralized fast ions. For a favorable viewing geometry, the bright interferences from beam neutrals, halo neutrals, and edge neutrals span over a small wavelength range around the Dalpha rest wavelength and are blocked by a vertical bar at the exit focal plane of the spectrometer. Background subtraction and fitting techniques eliminate various contaminants in the spectrum. Fast-ion data are acquired with a time evolution of ˜1 ms, spatial resolution of ˜5 cm, and energy resolution of ˜10 keV. A weighted Monte Carlo simulation code models the fast-ion Dalpha spectra based on the fast-ion distribution function from other sources. In quiet plasmas, the spectral shape is in excellent agreement and absolute magnitude also has reasonable agreement. The fast-ion D alpha signal has the expected dependencies on plasma and neutral beam parameters. The neutral particle diagnostic and neutron diagnostic corroborate the fast-ion Dalpha measurements. The relative spatial profile is in agreement with the simulated profile based on the fast-ion distribution function from the TRANSP analysis code. During ion cyclotron heating, fast ions with high perpendicular energy are accelerated, while those with low perpendicular energy are barely affected. The spatial profile is compared with the simulated profiles based on the fast-ion distribution functions from the CQL Fokker-Planck code. In discharges with Alfven instabilities, both the spatial profile and spectral shape suggests that fast ions are redistributed. The flattened fast-ion Dalpha profile is in agreement with the fast-ion pressure profile.

  5. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    DOE PAGES

    Schaeffer, D. B.; Fox, W.; Haberberger, D.; ...

    2017-07-13

    Here, we present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M ms ≈ 12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magneticmore » barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.« less

  6. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, D. B.; Fox, W.; Haberberger, D.

    Here, we present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M ms ≈ 12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magneticmore » barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.« less

  7. A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1

    NASA Astrophysics Data System (ADS)

    Ku, S.; Chang, C. S.; Hager, R.; Churchill, R. M.; Tynan, G. R.; Cziegler, I.; Greenwald, M.; Hughes, J.; Parker, S. E.; Adams, M. F.; D'Azevedo, E.; Worley, P.

    2018-05-01

    A fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. The main suppression action is located in a thin radial layer around ψN≃0.96 -0.98 , where ψN is the normalized poloidal flux, with the time scale ˜0.1 ms.

  8. Robust Fixed-Structure Control

    DTIC Science & Technology

    1994-10-30

    Deterministic Foundation for Statistical Energy Analysis ," J. Sound Vibr., to appear. 1.96 D. S. Bernstein and S. P. Bhat, "Lyapunov Stability, Semistability...S. Bernstein, "Power Flow, Energy Balance, and Statistical Energy Analysis for Large Scale, Interconnected Systems," Proc. Amer. Contr. Conf., pp

  9. Laser Acceleration of Ions for Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki; Habs, Dietrich; Yan, Xueqing

    Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam transport and dump systems. Though ultimate realization of a laser-driven medical facility may take many years, the field is developing fast with many conceptual innovations and technical progress.

  10. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    PubMed

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  11. Prompt Ion Outflows and Artificial Ducts during High-Power HF Heating at HAARP: Effect of Suprathermal Electrons?

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.; Milikh, G. M.

    2014-12-01

    In situ observations from the DMSP and Demeter satellites established that high-power HF heating of the ionosphere F-region results in significant ion outflows associated with 10-30% density enhancements in the topside ionosphere magnetically-conjugate to the heated region. As follows from the SAMI2 two-fluid model calculations, their formation time should exceed 5-7 minutes. However, specially designed DMSP-HAARP experiments have shown that artificial ducts and ion outflows appear on the topside within 2 minutes. We describe the results of these observations and present a semi-quantitative explanation of the fast timescale due to suprathermal electrons accelerated by HF-induced plasma turbulence. There are two possible effects of suprathermal electrons: (1) the increase of the ambipolar electric field over the usual thermal ambipolar diffusion and (2) excitation of heat flux-driven plasma instability resulting in an anomalous electron-ion momentum exchange. Both effects result in faster upward ion flows.

  12. Pedagogic Governance: Theorising with/after Bernstein

    ERIC Educational Resources Information Center

    Singh, Parlo

    2017-01-01

    Researchers interested in new modes of social control and regulation through pedagogic means have increasingly drawn on Bernstein's theories of social control through pedagogic means and the emergence of a totally pedagogised society. This article explores this aspect of the Bernsteinian theoretical project by extrapolating and contrasting…

  13. Code Switching and Sexual Orientation: A Test of Bernstein's Sociolinguistic Theory

    ERIC Educational Resources Information Center

    Lumby, Malcolm E.

    1976-01-01

    Bernstein's theory was tested in the homosexual's "closed" community to determine code-switching ability and its relationship to jargon. Subjects told a story based on homoerotic photographs where knowledge of sexual orientation was varied. Results suggest that homosexual homophyly encouraged elaboration. (Author)

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omelchenko, Yuri A.

    Global interactions of energetic ions with magnetoplasmas and neutral gases lie at the core of many space and laboratory plasma phenomena ranging from solar wind entry into and transport within planetary magnetospheres and exospheres to fast-ion driven instabilities in fusion devices to astrophysics-in-lab experiments. The ability of computational models to properly account for physical effects that underlie such interactions, namely ion kinetic, ion cyclotron, Hall, collisional and ionization processes is important for the success and planning of experimental research in plasma physics. Understanding the physics of energetic ions, in particular their nonlinear resonance interactions with Alfvén waves, is central tomore » improving the heating performance of magnetically confined plasmas for future energy generation. Fluid models are not adequate for high-beta plasmas as they cannot fully capture ion kinetic and cyclotron physics (e.g., ion behavior in the presence of magnetic nulls, shock structures, plasma interpenetration, etc.). Recent results from global reconnection simulations show that even in a MHD-like regime there may be significant differences between kinetic and MHD simulations. Therefore, kinetic modeling becomes essential for meeting modern day challenges in plasma physics. The hybrid approximation is an intermediate approximation between the fluid and fully kinetic approximations. It eliminates light waves, removes the electron inertial temporal and spatial scales from the problem and enables full-orbit ion kinetics. As a result, hybrid codes have become effective tools for exploring ion-scale driven phenomena associated with ion beams, shocks, reconnection and turbulence that control the large-scale behavior of laboratory and space magnetoplasmas. A number of numerical issues, however, make three-dimensional (3D) large-scale hybrid simulations of inhomogeneous magnetized plasmas prohibitively expensive or even impossible. To resolve these difficulties we have developed a novel Event-driven Multiscale Asynchronous Parallel Simulation (EMAPS) technology that replaces time stepping with self-adaptive update events. Local calculations are carried out only on an “as needed basis”. EMAPS (i) guarantees accurate and stable processing of physical variables in time accurate simulations, and (ii) eliminates unnecessary computation. Applying EMAPS to the hybrid model has resulted in the development of a unique parallel code, dimension-independent (compile-time-configurable) HYPERS (Hybrid Parallel Event-Resolved Simulator) that scales to hundreds of thousands of parallel processors. HYPERS advances electromagnetic fields and particles asynchronously on time scales determined by local physical laws and mesh properties. To achieve high computational accuracy in complex device geometries, HYPERS employs high-fidelity Cartesian grids with masked conductive cells. The HYPERS model includes multiple ion species, energy and momentum conserving ion-ion collisions, and provides a number of approximations for plasma resistivity and vacuum regions. Both local and periodic boundary conditions are allowed. The HYPERS solver preserves zero divergence of magnetic field. The project has demonstrated HYPERS capabilities on a number of applications of interest to fusion and astrophysical plasma physics applications listed below. 1. Theta-pinch formation of FRCs The formation, spontaneous spin-up, and stability of theta-pinch formed field-reversed configurations have been studied self-consistently in 3D. The end-to-end hybrid simulations reveal poloidal profiles of implosion-driven fast toroidal plasma rotation and demonstrate three discharge regimes as a function of experimental parameters: the decaying stable configuration, the tilt unstable configuration, and the nonlinear evolution of a fast growing tearing mode. 2. FRC collisions with magnetic mirrors Interactions of fast plasma streams and objects with magnetic obstacles (dipoles, mirrors, etc) lie at the core of many space and laboratory plasma phenomena ranging from magnetoshells and solar wind interactions with planetary magnetospheres to compact fusion plasmas. HYPERS simulations are compared with data from the MSX experiment (LANL) that focuses on the physics of magnetized collisionless shocks through the acceleration and subsequent stagnation of FRC plasmoids against a strong magnetic mirrors and flux-conserving boundaries. 3. Exploding magnetoplasmas Results from hybrid simulations of two experiments at the LAPD and Nevada Terawatt Facility are discussed where short-pulse lasers are used to ablate solid targets to produce plasmas that expand across external magnetic fields. The first simulation recreates flutelike density striations observed at the leading edge of a carbon plasma and predicts an early destruction of the magnetic cavity in agreement with experimental evidence. In the second simulation a polyethylene target is ablated into a mixture of protons and carbon ions. A mechanism is demonstrated that allows protons to penetrate the magnetic field in the form of a collimated flow. The results are compared to experimental data and single-fluid MHD simulations. The EMAPS framework has the potential for wide application in many other engineering and scientific fields, such as climate models, biological systems, electronic devices, seismic events, oil reservation simulators that all involve advancing solutions of partial differential equations in time where the rate of activity can be adapted widely over the spatial domain depending on locally space/time phenomena (“events”).« less

  15. Optical study of active ion transport in lipid vesicles containing reconstituted Na,K-ATPase.

    PubMed

    Apell, H J; Marcus, M M; Anner, B M; Oetliker, H; Läuger, P

    1985-01-01

    A fluorescence method is described for the measurement of ATP-driven ion fluxes in lipid vesicles containing purified Na,K-ATPase. The membrane voltage of enzyme containing vesicles was measured by using a voltage-sensitive indocyanine dye. By addition of valinomycin the vesicle membrane is made selectively permeable to K+ so that the membrane voltage approaches the Nernst potential for K+. With constant external K+ concentration, the time course of internal K+ concentration can be continuously measured as change of the fluorescence signal after activation of the pump. The optical method has a higher time resolution than tracer-flux experiments and allows an accurate determination of initial flux rates. From the temperature dependence of active K+ transport its activation energy was determined to be 115 kJ/mol. ATP-stimulated electrogenic pumping can be measured as fast fluorescence change when the membrane conductance is low (i.e., at low or zero valinomycin concentration). In accordance with expectation, the amplitude of the fast signal change increases with decreasing passive ion permeability of the vesicle membrane. The resolution of the charge movement is so high that a few pump turnovers can be easily detected.

  16. Calculation of the non-inductive current profile in high-performance NSTX plasmas

    NASA Astrophysics Data System (ADS)

    Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.

    2011-03-01

    The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.

  17. Phase space effects on fast ion transport modeling in tokamaks

    NASA Astrophysics Data System (ADS)

    Podesta, Mario

    2015-11-01

    Simulations of burning plasmas require a consistent treatment of energetic particles (EP), possibly including the effects of instabilities. Reduced EP transport models are emerging as an effective tool to account for those effects in long time-scale simulations. Available models essentially differ for the main transport drive, which is associated to gradients in real or phase space. It is crucial to assess to what extent those different assumptions affect computed quantities such as EP profile, Neutral Beam (NB) driven current and energy/momentum transfer to the thermal populations. These issues are investigated through a kick model, which includes modifications of the EP distribution by instabilities in real and velocity space. TRANSP simulations including the kick model are applied to NB-heated NSTX discharges featuring unstable toroidal Alfvén eigenmodes (TAEs). Results show that TAEs mainly affect fast ions with large parallel velocity, i.e. the most effective for NB current drive. Other portions of the EP distribution are nearly unperturbed. Core NB driven current decreases by 10-30%, with even larger relative changes toward the plasma edge. When TAEs evolve in so-called avalanches, the model reproduces measured drops of ~ 10% in the neutron rate. Consistently with previous results, the drop is caused by both EP energy loss and EP redistribution. These results are compared to those from a simple diffusive model and a ``critical gradient'' model, which postulates radial EP gradient as the only transport drive. The importance of EP velocity space modifications is discussed in terms of accuracy of the predictions, with emphasis on Neutral Beam driven current. Work supported by U.S. DOE Contract DE-AC02-09CH11466.

  18. Unveiling the South African Official Primary Mathematics Teacher Pedagogic Identity

    ERIC Educational Resources Information Center

    Pausigere, Peter; Graven, Mellony

    2013-01-01

    This article is theoretically informed by Bernstein's (2000) notion of pedagogic identity, supplemented by Tyler's (1999) elaboration of Bernstein's theory into an analytical framework that describes four possible identity positions relating to classification and framing properties. The article analyses key primary mathematics curriculum policy…

  19. Why Photonic Systems for Space?

    DTIC Science & Technology

    2006-08-01

    AUG 2006 Conference Paper Postprint Oct 98 - Aug 00 WHY PHOTONIC SYSTEMS FOR SPACE? In-House 62204F LINK SN 01 Norman Bernstein, George Brost ...Invited Paper Why photonic systems for space? Norman P. Bernstein*, George A. Rrost. Michael J. Hayduk. James R. Hunter, James E. Nichter, Paul M

  20. Bernstein's levels of movement construction: A contemporary perspective.

    PubMed

    Profeta, Vitor L S; Turvey, Michael T

    2018-02-01

    Explanation of how goal-directed movements are made manifest is the ultimate aim of the field classically referred to as "motor control". Essential to the sought-after explanation is comprehension of the supporting functional architecture. Seven decades ago, the Russian physiologist and movement scientist Nikolai A. Bernstein proposed a hierarchical model to explain the construction of movements. In his model, the levels of the hierarchy share a common language (i.e., they are commensurate) and perform complementing functions to bring about dexterous movements. The science of the control and coordination of movement in the phylum Craniata has made considerable progress in the intervening seven decades. The contemporary body of knowledge about each of Bernstein's hypothesized functional levels is both more detailed and more sophisticated. A natural consequence of this progress, however, is the relatively independent theoretical development of a given level from the other levels. In this essay, we revisit each level of Bernstein's hierarchy from the joint perspectives of (a) the ecological approach to perception-action and (b) dynamical systems theory. We review a substantial and relevant body of literature produced in different areas of study that are accommodated by this ecological-dynamical version of Bernstein's levels. Implications for the control and coordination of movement and the challenges to producing a unified theory are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R. W.

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant,more » at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole radial plasma cross-section. The actual EBW experiment will cost several million dollars, and remains in the proposal stage. The HHFW current drive system has been experimentally implemented on NSTX, and successfully drives substantial current. The understanding of the experiment is to be accomplished in terms of general concepts of rf current drive, and also detailed modeling of the experiment which can discern the various competing processes which necessarily occur simultaneously in the experiment. An early discovery of the CompX codes, GENRAY and CQL3D, was that there could be significant interference between the neutral beam injection fast ions in the machine (injected for plasma heating) and the HHFW energy. Under many NSTX experimental conditions, power which could go to the fast ions would then be unavailable for current drive by the desired HHFW interaction with electrons. This result has been born out by experiments; the modeling helps in understanding difficulties with HHFW current drive, and has enabled adjustment of the experiment to avoid interaction with neutral beam injected fast ions thereby achieving stronger HHFW current drive. The detailed physics modeling of the various competing processes is almost always required in fusion energy plasma physics, to ensure a reasonably accurate and certain interpretation of the experiment, enabling the confident design of future, more advanced experiments and ultimately a commercial fusion reactor. More recent work entails detailed investigation of the interaction of the HHFW radiation for fast ions, accounting for the particularly large radius orbits in NSTX, and correlations between multiple HHFW-ion interactions. The spherical aspect of the NSTX experiment emphasized particular physics such as the large orbits which are present to some degree in all tokamaks, but gives clearer clues on the resulting physics phenomena since competing physics effects are reduced.« less

  2. New, high-efficiency ion trap mobility detection system for narcotics and explosives

    NASA Astrophysics Data System (ADS)

    McGann, William J.; Bradley, V.; Borsody, A.; Lepine, S.

    1994-10-01

    A new patented Ion Trap Mobility Spectrometer (ITMS) design is presented. Conventional IMS designs typically operate below 0.1% efficiency. This is due primarily to electric field driven, sample ion discharge on a shutter grid. Since 99.9% of the sample ions generated in the reaction region are lost in this discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an `ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a `field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. Many applications for this new detector are now being considered including the detection of narcotics and explosives. Preliminary ion spectra, reduced mobility data and sensitivity data are presented for fifteen narcotics, including cocaine, THC and LSD are reported.

  3. New high-efficiency ion-trap mobility detection system for narcotics

    NASA Astrophysics Data System (ADS)

    McGann, William J.

    1997-02-01

    A new patented Ion Trap Mobility Spectrometer design is presented. Conventional IMS designs typically operate below 0.1 percent efficiency. This is due primarily to electric field driven, sample ion discharge on a shutter grid. Since 99.9 percent of the sample ions generated in the reaction region are lost int his discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an 'ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a 'field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. One application for this new detector is now being developed, a portable, hand-held system with switching capability for the detection of drugs and explosives. Preliminary ion spectra and sensitivity data are presented for cocaine and heroin using a hand sniffer configuration.

  4. New high-efficiency ion trap mobility detection system for narcotics and explosives

    NASA Astrophysics Data System (ADS)

    McGann, William J.; Jenkins, Anthony; Ribiero, K.; Napoli, J.

    1994-03-01

    A new patented ion trap mobility spectrometer design is presented. Conventional IMS designs typically operate below 0.1% efficiency. This is due primarily to electrical-field-driven, sample ion discharge on a shutter grid. Since 99.9% of the sample ions generated in the reaction region are lost in this discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an `ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a `field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. Many applications for this new detector are now being considered including the detection of narcotics and explosives. Preliminary ion spectra, reduced mobility data and sensitivity data are presented for fifteen narcotics, including cocaine, THC, and LSD are reported.

  5. Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval

    NASA Technical Reports Server (NTRS)

    Alford, John A., II

    2012-01-01

    We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.

  6. Bernstein Revisited: The Recontextualisation of Equity in Contemporary Australian School Education

    ERIC Educational Resources Information Center

    Loughland, Tony; Sriprakash, Arathi

    2016-01-01

    This article draws on the sociology of Basil Bernstein to show how his detailed theories of "recontextualisation" and the "pedagogic device" provide useful analytic levers to examine the politics of educational change. We focus on recent policy developments that have significantly impacted Australian school education: the…

  7. A new hybrid code (CHIEF) implementing the inertial electron fluid equation without approximation

    NASA Astrophysics Data System (ADS)

    Muñoz, P. A.; Jain, N.; Kilian, P.; Büchner, J.

    2018-03-01

    We present a new hybrid algorithm implemented in the code CHIEF (Code Hybrid with Inertial Electron Fluid) for simulations of electron-ion plasmas. The algorithm treats the ions kinetically, modeled by the Particle-in-Cell (PiC) method, and electrons as an inertial fluid, modeled by electron fluid equations without any of the approximations used in most of the other hybrid codes with an inertial electron fluid. This kind of code is appropriate to model a large variety of quasineutral plasma phenomena where the electron inertia and/or ion kinetic effects are relevant. We present here the governing equations of the model, how these are discretized and implemented numerically, as well as six test problems to validate our numerical approach. Our chosen test problems, where the electron inertia and ion kinetic effects play the essential role, are: 0) Excitation of parallel eigenmodes to check numerical convergence and stability, 1) parallel (to a background magnetic field) propagating electromagnetic waves, 2) perpendicular propagating electrostatic waves (ion Bernstein modes), 3) ion beam right-hand instability (resonant and non-resonant), 4) ion Landau damping, 5) ion firehose instability, and 6) 2D oblique ion firehose instability. Our results reproduce successfully the predictions of linear and non-linear theory for all these problems, validating our code. All properties of this hybrid code make it ideal to study multi-scale phenomena between electron and ion scales such as collisionless shocks, magnetic reconnection and kinetic plasma turbulence in the dissipation range above the electron scales.

  8. Scientific and technological advancements in inertial fusion energy

    DOE PAGES

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  9. Two species drag/diffusion model for energetic particle driven modes

    NASA Astrophysics Data System (ADS)

    Aslanyan, V.; Sharapov, S. E.; Spong, D. A.; Porkolab, M.

    2017-12-01

    A nonlinear bump-on-tail model for the growth and saturation of energetic particle driven plasma waves has been extended to include two populations of fast particles—one dominated by dynamical friction at the resonance and the other by velocity space diffusion. The resulting temporal evolution of the wave amplitude and frequency depends on the relative weight of the two populations. The two species model is applied to burning plasma with drag-dominated alpha particles and diffusion-dominated ICRH accelerated minority ions, showing the stabilization of bursting modes. The model also suggests an explanation for the recent observations on the TJ-II stellarator, where Alfvén Eigenmodes transition between steady state and bursting as the magnetic configuration varied.

  10. Ion Ramp Structure of Bow shocks and Interplanetary Shocks: Differences and Similarities

    NASA Astrophysics Data System (ADS)

    Goncharov, O.; Safrankova, J.; Nemecek, Z.; Koval, A.; Szabo, A.; Prech, L.; Zastenker, G. N.; Riazantseva, M.

    2017-12-01

    Collisionless shocks play a significant role in the solar wind interaction with the Earth. Fast forward shocks driven by coronal mass ejections or by interaction of fast and slow solar wind streams can be encountered in the interplanetary space, whereas the bow shock is a standing fast reverse shock formed by an interaction of the supersonic solar wind with the Earth magnetic field. Both types of shocks are responsible for a transformation of a part of the energy of the directed solar wind motion to plasma heating and to acceleration of reflected particles to high energies. These processes are closely related to the shock front structure. In present paper, we compares the analysis of low-Mach number fast forward interplanetary shocks registered in the solar wind by the DSCOVR, WIND, and ACE with observations of bow shock crossings observed by the Cluster, THEMIS, MMS, and Spektr-R spacecraft. An application of the high-time resolution data facilitates further discussion on formation mechanisms of both types of shocks.

  11. [Recontextualization of nursing clinical simulation based on Basil Bernstein: semiology of pedagogical practice].

    PubMed

    dos Santos, Mateus Casanova; Leite, Maria Cecília Lorea; Heck, Rita Maria

    2010-12-01

    This is an investigative case study with descriptive and participative character, based on an educational experience with the Simulation in Nursing learning trigger. It was carried out during the second semester of the first cycle of Faculdade de Enfermagem (FEN), Universidade Federal de Pelotas (UFPel). The aim is to study the recontextualization of pedagogic practice of simulation-based theories developed by Basil Bernstein, an education sociologist, and to contribute with the improvement process of education planning, and especially the evaluation of learning trigger. The research shows that Bernstein's theory is a powerful tool semiotic pedagogical of practices which contributes to the planning and analysis of curricular educational device.

  12. A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1

    DOE PAGES

    Ku, S.; Chang, C. S.; Hager, R.; ...

    2018-04-18

    Here, a fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. As a result, the main suppression action is located in a thin radial layer around ψ N≃0.96–0.98, where ψ N is the normalized poloidal flux, with the time scale ~0.1more » ms.« less

  13. Fast discharge in a plasma gun with hemispherical insulator

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.; Sidelnikov, Yu. V.; Koshelev, K. N.

    2009-05-01

    A method of creation of hot dense plasma is proposed. It is based on cumulation of a shockwave, which originates on a hemispherical surface of insulator of plasma gun. The results of first experiments are presented. The shock wave is driven by fast electrical discharge (dI /dt>1012 A/s). The inductive storage with semiconductor opening switch is used as a current driver. Time resolved pin-hole images and vacuum ultraviolet (vuv) spectra are studied. Shockwaves from hemispherical insulator with 4 mm radius create plasma with a form of column about 1 mm diameter and 3-4 mm length. vuv spectra contain the lines of Ar ions that corresponds to the electron temperature about 20 eV. Possible practical application is discussed.

  14. 3D effects on transport and plasma control in the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Castejón, F.; Alegre, D.; Alonso, A.; Alonso, J.; Ascasíbar, E.; Baciero, A.; de Bustos, A.; Baiao, D.; Barcala, J. M.; Blanco, E.; Borchardt, M.; Botija, J.; Cabrera, S.; de la Cal, E.; Calvo, I.; Cappa, A.; Carrasco, R.; Castro, R.; De Castro, A.; Catalán, G.; Chmyga, A. A.; Chamorro, M.; Dinklage, A.; Eliseev, L.; Estrada, T.; Fernández-Marina, F.; Fontdecaba, J. M.; García, L.; García-Cortés, I.; García-Gómez, R.; García-Regaña, J. M.; Guasp, J.; Hatzky, R.; Hernanz, J.; Hernández, J.; Herranz, J.; Hidalgo, C.; Hollmann, E.; Jiménez-Denche, A.; Kirpitchev, I.; Kleiber, R.; Komarov, A. D.; Kozachoek, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; Liu, B.; López-Bruna, D.; López-Fraguas, A.; López-Miranda, B.; López-Razola, J.; Losada, U.; de la Luna, E.; Martín de Aguilera, A.; Martín-Díaz, F.; Martínez, M.; Martín-Gómez, G.; Martín-Hernández, F.; Martín-Rojo, A. B.; Martínez-Fernández, J.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melón, L.; Melnikov, A. V.; Méndez, P.; Merino, R.; Miguel, F. J.; van Milligen, B.; Molinero, A.; Momo, B.; Monreal, P.; Moreno, R.; Navarro, M.; Narushima, Y.; Nedzelskiy, I. S.; Ochando, M. A.; Olivares, J.; Oyarzábal, E.; de Pablos, J. L.; Pacios, L.; Panadero, N.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Petrov, A.; Petrov, S.; Portas, A. B.; Poveda, E.; Rattá, G. A.; Rincón, E.; Ríos, L.; Rodríguez, C.; Rojo, B.; Ros, A.; Sánchez, J.; Sánchez, M.; Sánchez, E.; Sánchez-Sarabia, E.; Sarksian, K.; Satake, S.; Sebastián, J. A.; Silva, C.; Solano, E. R.; Soleto, A.; Sun, B. J.; Tabarés, F. L.; Tafalla, D.; Tallents, S.; Tolkachev, A.; Vega, J.; Velasco, G.; Velasco, J. L.; Wolfers, G.; Yokoyama, M.; Zurro, B.

    2017-10-01

    The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals.

  15. Consistency between real and synthetic fast-ion measurements at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Geiger, B.; Salewski, M.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Michelsen, P. K.; Moseev, D.; Schubert, M.; Stober, J.; Tardini, G.; Wagner, D.; The ASDEX Upgrade Team

    2015-07-01

    Internally consistent characterization of the properties of the fast-ion distribution from multiple diagnostics is a prerequisite for obtaining a full understanding of fast-ion behavior in tokamak plasmas. Here we benchmark several absolutely-calibrated core fast-ion diagnostics at ASDEX Upgrade by comparing fast-ion measurements from collective Thomson scattering, fast-ion {{\\text{D}}α} spectroscopy, and neutron rate detectors with numerical predictions from the TRANSP/NUBEAM transport code. We also study the sensitivity of the theoretical predictions to uncertainties in the plasma kinetic profiles. We find that theory and measurements generally agree within these uncertainties for all three diagnostics during heating phases with either one or two neutral beam injection sources. This suggests that the measurements can be described by the same model assuming classical slowing down of fast ions. Since the three diagnostics in the adopted configurations probe partially overlapping regions in fast-ion velocity space, this is also consistent with good internal agreement among the measurements themselves. Hence, our results support the feasibility of combining multiple diagnostics at ASDEX Upgrade to reconstruct the fast-ion distribution function in 2D velocity space.

  16. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Galdon-Quiroga, J.; Garcia-Munoz, M.; Geiger, B.; Jacobsen, A. S.; Jaulmes, F.; Korsholm, S. B.; Lazanyi, N.; Leipold, F.; Ryter, F.; Salewski, M.; Schubert, M.; Stober, J.; Wagner, D.; the ASDEX Upgrade Team; the EUROFusion MST1 Team

    2016-11-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices. Here we present the first collective Thomson scattering (CTS) measurements of sawtooth-induced redistribution of fast ions at ASDEX Upgrade. These also represent the first localized fast-ion measurements on the high-field side of this device. The results indicate fast-ion losses in the phase-space measurement volume of about 50% across sawtooth crashes, in good agreement with values predicted with the Kadomtsev sawtooth model implemented in TRANSP and with the sawtooth model in the EBdyna_go code. In contrast to the case of sawteeth, we observe no fast-ion redistribution in the presence of fishbone modes. We highlight how CTS measurements can discriminate between different sawtooth models, in particular when aided by multi-diagnostic velocity-space tomography, and briefly discuss our results in light of existing measurements from other fast-ion diagnostics.

  17. Theorising Catholic Education: The Relevance of Bourdieu and Bernstein for Empirical Research

    ERIC Educational Resources Information Center

    Byrne, Richard; Devine, Dympna

    2017-01-01

    The broader theoretical frameworks of both Bourdieu (and his concepts of habitus, field, doxa, collusio and capital) and Bernstein (and his concepts of classification, framing and ritual) provide a deeper understanding of the distinctiveness of Catholic schooling. This article presents a model for theorising Catholic schooling in which levels of…

  18. 75 FR 58426 - Notice of Inventory Completion: The Colorado College, Colorado Springs, CO; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Counsel, The Colorado College c/o Jan Bernstein, President, Bernstein & Associates - NAGPRA Consultants... responsible for notifying the Hopi Tribe of Arizona; Navajo Nation, Arizona, New Mexico & Utah; Ohkay Owingeh, New Mexico; Pueblo of Acoma, New Mexico; Pueblo of Cochiti, New Mexico; Pueblo of Isleta, New Mexico...

  19. New Bernstein type inequalities for polynomials on ellipses

    NASA Technical Reports Server (NTRS)

    Freund, Roland; Fischer, Bernd

    1990-01-01

    New and sharp estimates are derived for the growth in the complex plane of polynomials known to have a curved majorant on a given ellipse. These so-called Bernstein type inequalities are closely connected with certain constrained Chebyshev approximation problems on ellipses. Also presented are some new results for approximation problems of this type.

  20. Codes, Code-Switching, and Context: Style and Footing in Peer Group Bilingual Play

    ERIC Educational Resources Information Center

    Kyratzis, Amy; Tang, Ya-Ting; Koymen, S. Bahar

    2009-01-01

    According to Bernstein (A sociolinguistic approach to socialization; with some reference to educability, Basil Blackwell Ltd., 1972), middle-class parents transmit an elaborated code to their children that relies on verbal means, rather than paralinguistic devices or shared assumptions, to express meanings. Bernstein's ideas were used to argue…

  1. Contesting Reform: Bernstein's Pedagogic Device and Madrasah Education in Singapore

    ERIC Educational Resources Information Center

    Tan, Charlene

    2010-01-01

    This paper highlights the active role played by various pedagogic agents in contesting the state educational reforms for madrasahs in Singapore. Drawing upon Basil Bernstein's pedagogic device, the paper identifies tensions and challenges that arise from the attempts by the state to implement curriculum reforms. The paper contends that the stakes…

  2. Regulating the Unthinkable: Bernstein's Pedagogic Device and the Paradox of Control

    ERIC Educational Resources Information Center

    Lim, Leonel

    2016-01-01

    Drawing upon Bernstein's writings on the pedagogic device, this article examines how critical thinking is regulated in Singapore through the process of pedagogic recontextualization. The potential of critical thinking to speak to alternative possibilities and notions of individual autonomy as well as its assumptions of a liberal arrangement of…

  3. Seeing Epistemic Order: Construction and Transmission of Evaluative Criteria

    ERIC Educational Resources Information Center

    Shalem, Yael; Slonimsky, Lynne

    2010-01-01

    This paper focuses on formative assessment in the field of higher education. It examines Bernstein's work on vertical discourses and knowledge structures with the view to deepening understanding of the concept of assessment "for" learning. The first part of the paper draws on Vygotsky's work on concept development and Bernstein's work on…

  4. Recent Observations and Modeling of Narrowband Stimulated Electromagnetic Emissions SEEs at the HAARP Facility

    NASA Astrophysics Data System (ADS)

    Scales, Wayne; Bernhardt, Paul; McCarrick, Michael; Briczinski, Stanley; Mahmoudian, Alireza; Fu, Haiyang; Ranade Bordikar, Maitrayee; Samimi, Alireza

    There has been significant interest in so-called narrowband Stimulated Electromagnetic Emission SEE over the past several years due to recent discoveries at the High Frequency Active Auroral Research Program HAARP facility near Gakone, Alaska. Narrowband SEE (NSEE) has been defined as spectral features in the SEE spectrum typically within 1 kHz of the transmitter (or pump) frequency. SEE is due to nonlinear processes leading to re-radiation at frequencies other than the pump wave frequency during heating the ionospheric plasma with high power HF radio waves. Although NSEE exhibits a richly complex structure, it has now been shown after a substantial number of observations at HAARP, that NSEE can be grouped into two basic classes. The first are those spectral features, associated with Stimulated Brillouin Scatter SBS, which typically occur when the pump frequency is not close to electron gyro-harmonic frequencies. Typically, these spectral features are within roughly 50 Hz of the pump wave frequency where it is to be noted that the O+ ion gyro-frequency is roughly 50 Hz. The second class of spectral features corresponds to the case when the pump wave frequency is typically within roughly 10 kHz of electron gyro-harmonic frequencies. In this case, spectral features ordered by harmonics of ion gyro-frequencies are typically observed, and termed Stimulated Ion Bernstein Scatter SIBS. There is also important parametric behavior on both classes of NSEE depending on the pump wave parameters including the field strength, antenna beam angle, and electron gyro-harmonic number. This presentation will first provide an overview of the recent NSEE experimental observations at HAARP. Both Stimulated Brillouin Scatter SBS and Stimulated Ion Bernstein Scatter SIBS observations will be discussed as well as their relationship to each other. Possible theoretical formulation in terms of parametric decay instabilities will be provided. Computer simulation model results will be presented to provide insight into associated higher order nonlinear effects including particle acceleration and wave-wave processes. Both theory and model results will be put into the context of the experimental observations. Finally, possible applications of NSEE will be pointed out including triggering diagnostics for artificial ionization layer formation, proton precipitation event diagnostics, and electron temperature measurements in the heated volume.

  5. Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure.

    PubMed

    Kitajima, Shunsuke; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Tominaga, Yoichi; Di Noto, Vito

    2013-10-21

    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers.

  6. Deuteron Beam Driven Fast Ignition of a Pre-Compressed Inertial Confinement Fusion (ICF) Fuel Capsule

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoling; Miley, George; Flippo, Kirk; Hora, Heinrich; Gaillard, Sandrine; Offermann, Dustin

    2012-10-01

    We proposed to utilize a new ``Deuterium Cluster'' type structure for the laser interaction foil to generate an energetic deuteron beam as the fast igniter to ignite inertial confinement fusion fuel capsule. The benefit of deuteron beam driven fast ignition is that its deposition in the target fuel will not only provide heating but also fuse with fuel as they slow down in the target. The preliminary results from recent laser-deuteron acceleration experiment at LANL were encouraging. Also, in most recent calculations, we found that a 12.73% extra energy gain from deuteron beam-target fusion could be achieved when quasi-Maxwellian deuteron beam was assumed, and when a ρrb = 4.5 g/cm2 was considered, where ρ is the fuel density, and rb is the ion beam focusing radius on the target. These results provide some insight into the contribution of the extra heat produced by deuteron beam-target fusion to the hot spot ignition process. If the physics works as anticipated, this novel type of interaction foil can efficiently generate energetic deuterons during intense laser pulses. The massive yield of deuterons should turn out to be the most efficient way of igniting the DT fuel, making the dream of near-term commercialization of FI fusion more achievable.

  7. Harmonic effects on ion-bulk waves and simulation of stimulated ion-bulk-wave scattering in CH plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.

    2017-08-01

    Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of k< {k}{{lor}}/2 (k lor is the wave number at loss-of-resonance point) is undamped Bernstein-Greene-Kruskal-like waves with harmonic superposition. Only when the wave number k of IBk waves satisfies {k}{{lor}}/2≲ k≤slant {k}{{lor}}, can a large-amplitude and mono-frequency IBk wave be excited. A novel stimulated scattering from IBk modes called stimulated ion-bulk-wave scattering (SIBS) or stimulated Feng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.

  8. Alternate Operating Modes For NDCX-II

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Cohen, R. H.; Lund, S. M.; Vay, J.-L.; Waldron, W. L.

    2012-10-01

    NDCX-II is a newly completed accelerator facility at LBNL, built to study ion-heated warm dense matter and aspects of ion-driven targets for inertial-fusion energy. The baseline design calls for using twelve induction cells to accelerate 40 nC of Li+ ions to 1.2 MeV. During commissioning, though, we plan to extend the source lifetime by extracting less total charge. For operational flexibility, the option of using a helium plasma source is also being investigated. Over time, we expect that NDCX-II will be upgraded to substantially higher energies, necessitating the use of heavier ions to keep a suitable deposition range in targets. Each of these options requires development of an alternate acceleration schedule and the associated transverse focusing. The schedules here are first worked out with a fast-running 1-D particle-in-cell code ASP, then 2-D and 3-D Warp simulations are used to verify the 1-D results and to design transverse focusing.

  9. Boosting laser-ion acceleration with multi-picosecond pulses

    PubMed Central

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-01-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm−2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines. PMID:28211913

  10. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Auna L., E-mail: mosera@fusion.gat.com; Hsu, Scott C., E-mail: scotthsu@lanl.gov

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional andmore » the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  11. Increasing ion and fusion yield in a dense plasma focus by combination of pre-ionization and heavy ion gas admixture

    NASA Astrophysics Data System (ADS)

    Farmanfarmaei, B.; Yousefi, H. R.; Salem, M. K.; Sari, A. H.

    2018-04-01

    The results of an experimental study of pre-ionization and heavy gas introduced into driven gas in a plasma focus device are reported. To achieve this purpose, we made use of two methods: first, the pre-ionization method by applying the shunt resistor and second, the admixture of heavy ions. We applied the different shunt resistors and found the optimum amount to be 200 MΩ at an optimum pressure of 0.5 Torr. Ion yield that was measured by array of Faraday cups and the energy of fast ions that was calculated by using the time-of-flight method were raised up to 22% and 45%, and the impurity caused by anode's erosion was reduced approximately by 67% in comparison to when there was no pre-ionization. Also, we have used the admixture of 5% argon ions with nitrogen (working gas) to improve the ion yield up to 45% in comparison with pure nitrogen. Finally, for the first time, we have utilized the combination of these methods together and have, consequently, reached the maximum ion yield and fusion yield. With this new method, ion yield raised up to 70% greater than that of the previous condition, i.e., without pre-ionization and heavy ion admixture.

  12. Overview of MAST results

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; Adamek, J.; Akers, R. J.; Allan, S.; Appel, L.; Asunta, O.; Barnes, M.; Ben Ayed, N.; Bigelow, T.; Boeglin, W.; Bradley, J.; Brünner, J.; Cahyna, P.; Carr, M.; Caughman, J.; Cecconello, M.; Challis, C.; Chapman, S.; Chorley, J.; Colyer, G.; Conway, N.; Cooper, W. A.; Cox, M.; Crocker, N.; Crowley, B.; Cunningham, G.; Danilov, A.; Darrow, D.; Dendy, R.; Diallo, A.; Dickinson, D.; Diem, S.; Dorland, W.; Dudson, B.; Dunai, D.; Easy, L.; Elmore, S.; Field, A.; Fishpool, G.; Fox, M.; Fredrickson, E.; Freethy, S.; Garzotti, L.; Ghim, Y. C.; Gibson, K.; Graves, J.; Gurl, C.; Guttenfelder, W.; Ham, C.; Harrison, J.; Harting, D.; Havlickova, E.; Hawke, J.; Hawkes, N.; Hender, T.; Henderson, S.; Highcock, E.; Hillesheim, J.; Hnat, B.; Holgate, J.; Horacek, J.; Howard, J.; Huang, B.; Imada, K.; Jones, O.; Kaye, S.; Keeling, D.; Kirk, A.; Klimek, I.; Kocan, M.; Leggate, H.; Lilley, M.; Lipschultz, B.; Lisgo, S.; Liu, Y. Q.; Lloyd, B.; Lomanowski, B.; Lupelli, I.; Maddison, G.; Mailloux, J.; Martin, R.; McArdle, G.; McClements, K.; McMillan, B.; Meakins, A.; Meyer, H.; Michael, C.; Militello, F.; Milnes, J.; Morris, A. W.; Motojima, G.; Muir, D.; Nardon, E.; Naulin, V.; Naylor, G.; Nielsen, A.; O'Brien, M.; O'Gorman, T.; Ono, Y.; Oliver, H.; Pamela, S.; Pangione, L.; Parra, F.; Patel, A.; Peebles, W.; Peng, M.; Perez, R.; Pinches, S.; Piron, L.; Podesta, M.; Price, M.; Reinke, M.; Ren, Y.; Roach, C.; Robinson, J.; Romanelli, M.; Rozhansky, V.; Saarelma, S.; Sangaroon, S.; Saveliev, A.; Scannell, R.; Schekochihin, A.; Sharapov, S.; Sharples, R.; Shevchenko, V.; Silburn, S.; Simpson, J.; Storrs, J.; Takase, Y.; Tanabe, H.; Tanaka, H.; Taylor, D.; Taylor, G.; Thomas, D.; Thomas-Davies, N.; Thornton, A.; Turnyanskiy, M.; Valovic, M.; Vann, R.; Walkden, N.; Wilson, H.; van Wyk, F.; Yamada, T.; Zoletnik, S.; MAST; MAST Upgrade Teams

    2015-10-01

    The Mega Ampère Spherical Tokamak (MAST) programme is strongly focused on addressing key physics issues in preparation for operation of ITER as well as providing solutions for DEMO design choices. In this regard, MAST has provided key results in understanding and optimizing H-mode confinement, operating with smaller edge localized modes (ELMs), predicting and handling plasma exhaust and tailoring auxiliary current drive. In all cases, the high-resolution diagnostic capability on MAST is complemented by sophisticated numerical modelling to facilitate a deeper understanding. Mitigation of ELMs with resonant magnetic perturbations (RMPs) with toroidal mode number nRMP = 2, 3, 4, 6 has been demonstrated: at high and low collisionality; for the first ELM following the transition to high confinement operation; during the current ramp-up; and with rotating nRMP = 3 RMPs. nRMP = 4, 6 fields cause less rotation braking whilst the power to access H-mode is less with nRMP = 4 than nRMP = 3, 6. Refuelling with gas or pellets gives plasmas with mitigated ELMs and reduced peak heat flux at the same time as achieving good confinement. A synergy exists between pellet fuelling and RMPs, since mitigated ELMs remove fewer particles. Inter-ELM instabilities observed with Doppler backscattering are consistent with gyrokinetic simulations of micro-tearing modes in the pedestal. Meanwhile, ELM precursors have been strikingly observed with beam emission spectroscopy (BES) measurements. A scan in beta at the L-H transition shows that pedestal height scales strongly with core pressure. Gyro-Bohm normalized turbulent ion heat flux (as estimated from the BES data) is observed to decrease with increasing tilt of the turbulent eddies. Fast ion redistribution by energetic particle modes depends on density, and access to a quiescent domain with ‘classical’ fast ion transport is found above a critical density. Highly efficient electron Bernstein wave current drive (1 A W-1) has been achieved in solenoid-free start-up. A new proton detector has characterized escaping fusion products. Langmuir probes and a high-speed camera suggest filaments play a role in particle transport in the private flux region whilst coherence imaging has measured scrape-off layer (SOL) flows. BOUT++ simulations show that fluxes due to filaments are strongly dependent on resistivity and magnetic geometry of the SOL, with higher radial fluxes at higher resistivity. Finally, MAST Upgrade is due to begin operation in 2016 to support ITER preparation and importantly to operate with a Super-X divertor to test extended leg concepts for particle and power exhaust.

  13. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    NASA Astrophysics Data System (ADS)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  14. Argonne/HEP Dark Energy Survey Group

    Science.gov Websites

    Kuehn U of C Summer School at Yerkes Observatory 2012-07 Kuehn Lemont High 2012-02 Kuehn Canada-America -Mexico Physics Grad Student Conference 2012-02 Bernstein ANL QuarkNet 2011-03 Kuhlmann Rockford High Kids2Work 2010-04 Kuhlmann Rockford High School 2010-02 Bernstein ANL QuarkNet 2010-02 Kuhlmann Rockford

  15. The Use and Value of Bernstein's Work in Studying (In)Equalities in Undergraduate Social Science Education

    ERIC Educational Resources Information Center

    McLean, Monica; Abbas, Andrea; Ashwin, Paul

    2013-01-01

    This paper illustrates how critical use of Basil Bernstein's theory illuminates the mechanisms by which university knowledge, curriculum and pedagogy both reproduce and interrupt social inequalities. To this end, empirical examples are selected from the findings of the ESRC-funded project "Pedagogic Quality and Inequality in University First…

  16. Explorations in Policy Enactment: Feminist Thought Experiments with Basil Bernstein's Code Theory

    ERIC Educational Resources Information Center

    Singh, Parlo; Pini, Barbara; Glasswell, Kathryn

    2018-01-01

    This paper builds on feminist elaborations of Bernstein's code theory to engage in a series of thought experiments with interview data produced during a co-inquiry design-based research intervention project. It presents three accounts of thinking/writing with data. Our purpose in presenting three different accounts of interview data is to…

  17. David, Mr Bear and Bernstein: Searching for an Equitable Pedagogy through Guided Group Work

    ERIC Educational Resources Information Center

    Boyle, Bill; Charles, Marie

    2012-01-01

    The authors' experiences of observing teaching and learning in schools have led them to become concerned at the dominant paradigm of a "pedagogy of poverty" at the expense of a "pedagogy of plenty". Bernstein's theory of power and control of education knowledge is overtly practised in classrooms globally. This is evidenced in…

  18. From Chebyshev to Bernstein: A Tour of Polynomials Small and Large

    ERIC Educational Resources Information Center

    Boelkins, Matthew; Miller, Jennifer; Vugteveen, Benjamin

    2006-01-01

    Consider the family of monic polynomials of degree n having zeros at -1 and +1 and all their other real zeros in between these two values. This article explores the size of these polynomials using the supremum of the absolute value on [-1, 1], showing that scaled Chebyshev and Bernstein polynomials give the extremes.

  19. Calculations of Alfven Wave Driving Forces, Plasma Flow and Current Drive in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Elfimov, Artur; Galvao, Ricardo; Amarante-Segundo, Gesil; Nascimento, Ivan

    2000-10-01

    A general form of time-averaged poloidal ponderomotive forces induced by fast and kinetic Alfvin waves by direct numerical calculations and in geometric optics approximation are analyzed on the basis of the collisionless two fluid (ions and electrons) magneto-hydrodynamics equation. Analytical approximations are used to clarify the effect of Larmour radius on radio-frequency (RF) ponderomotive forces and on poloidal flows induced by them in tokamak plasmas.The RF ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The gradient electromagnetic stress force is combined with fluid dynamic (Reynolds) stress force. It is shown that accounting only Reynolds stress term can overestimate the plasma flow and it is found that the finite ion Larmor radius effect play fundamental role in ponderomotive forces that can drive a poloidal flow, which is larger than a flow driven by a wave momentum transfer force. Finally, balancing the RF forces by the electron-ion friction and viscous force the current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code [Phys. Plasmas, v.6 (1999) p.2437]. Strongly sheared current and plasma flow waves is found.

  20. The phase-space dependence of fast-ion interaction with tearing modes

    DOE PAGES

    Heidbrink, William W.; Bardoczi, Laszlo; Collins, Cami S.; ...

    2018-03-19

    Modulation of various neutral beam sources probes the interaction of fast ions with tearing modes (TM) in the DIII-D tokamak. As measured by electron cyclotron emission, the (m,n) = (2,1) tearing modes have an island width of ~8 cm and change phase 180 at the q = 2 surface. (Here, m is the poloidal mode number and n is the toroidal mode number.) Deuterium neutral beam injection by six sources with differing injection geometries produces the fast ions. To study the interaction in different parts of phase space, on successive discharges, one of the six sources is modulated at 20more » Hz to populate different fast-ion orbits. The modulation only changes the island width by a few millimeters, implying that any fast-ion effect on mode stability is below detection limits. When compared to the expected signals in the absence of TM-induced transport, both the average and modulated neutron signals deviate, implying that fast-ion transport occurs in much of phase space. Fast-ion D-α (FIDA) measurements detect reductions in signal at wavelengths that are sensitive to counter-passing ions. Neutral particle analyzer data imply poor confinement of trapped fast ions. Lastly, calculations of the expected fast-ion transport that use measured TM properties successfully reproduce the data.« less

  1. The phase-space dependence of fast-ion interaction with tearing modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidbrink, William W.; Bardoczi, Laszlo; Collins, Cami S.

    Modulation of various neutral beam sources probes the interaction of fast ions with tearing modes (TM) in the DIII-D tokamak. As measured by electron cyclotron emission, the (m,n) = (2,1) tearing modes have an island width of ~8 cm and change phase 180 at the q = 2 surface. (Here, m is the poloidal mode number and n is the toroidal mode number.) Deuterium neutral beam injection by six sources with differing injection geometries produces the fast ions. To study the interaction in different parts of phase space, on successive discharges, one of the six sources is modulated at 20more » Hz to populate different fast-ion orbits. The modulation only changes the island width by a few millimeters, implying that any fast-ion effect on mode stability is below detection limits. When compared to the expected signals in the absence of TM-induced transport, both the average and modulated neutron signals deviate, implying that fast-ion transport occurs in much of phase space. Fast-ion D-α (FIDA) measurements detect reductions in signal at wavelengths that are sensitive to counter-passing ions. Neutral particle analyzer data imply poor confinement of trapped fast ions. Lastly, calculations of the expected fast-ion transport that use measured TM properties successfully reproduce the data.« less

  2. Measurement and Simulation of First-Orbit Fast-Ion D-Alpha Emission and the Application to Fast-Ion Loss Detection in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Bolte, Nathan; Heidbrink, W. W.; Pace, D. C.; van Zeeland, M. A.; Chen, X.

    2015-11-01

    A new fast-ion diagnostic method uses passive emission of D-alpha radiation to determine fast-ion losses quantitatively. The passive fast-ion D-alpha simulation (P-FIDAsim) forward models the Doppler-shifted spectra of first-orbit fast ions that charge exchange with edge neutrals. Simulated spectra are up to 80 % correlated with experimental spectra. Calibrated spectra are used to estimate the 2D neutral density profile by inverting simulated spectra. The inferred neutral density shows the expected increase toward each x-point and an average value of 8 × 10 9 cm-3 at the plasma boundary and 1 × 10 11 cm-3 near the wall. Measuring and simulating first-orbit spectra effectively ``calibrates'' the system, allowing for the quantification of more general fast-ion losses. Sawtooth crashes are estimated to eject 1.2 % of the fast-ion inventory, in good agreement with a 1.7 % loss estimate made by TRANSP. Sightlines sensitive to passing ions observe larger sawtooth losses than sightlines sensitive to trapped ions. Supported by US DOE under SC-G903402, DE-FC02-04ER54698.

  3. Analysis techniques for diagnosing runaway ion distributions in the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J., E-mail: jkim536@wisc.edu; Anderson, J. K.; Capecchi, W.

    2016-11-15

    An advanced neutral particle analyzer (ANPA) on the Madison Symmetric Torus measures deuterium ions of energy ranges 8-45 keV with an energy resolution of 2-4 keV and time resolution of 10 μs. Three different experimental configurations measure distinct portions of the naturally occurring fast ion distributions: fast ions moving parallel, anti-parallel, or perpendicular to the plasma current. On a radial-facing port, fast ions moving perpendicular to the current have the necessary pitch to be measured by the ANPA. With the diagnostic positioned on a tangent line through the plasma core, a chord integration over fast ion density, background neutral density,more » and local appropriate pitch defines the measured sample. The plasma current can be reversed to measure anti-parallel fast ions in the same configuration. Comparisons of energy distributions for the three configurations show an anisotropic fast ion distribution favoring high pitch ions.« less

  4. Kinetic effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Siminos, Evangelos; Svedung Wettervik, Benjamin; Grech, Mickael; Fülöp, Tünde

    2016-10-01

    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is shown, using particle-in-cell simulations and an analysis of separatrices in single-particle phase-space, that this transition is mediated by the complex interplay of fast electron dynamics and ion motion at the initial stage of the interaction. It thus depends on the ion charge-to-mass ratio and can be controlled by varying the laser temporal profile. Moreover, we find a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread. This work was supported by the Knut and Alice Wallenberg Foundation (pliona project) and the European Research Council (ERC-2014-CoG Grant 647121).

  5. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.

    PubMed

    Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B

    2016-03-04

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.

  6. A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Decker, Joan; Peysson, Yves; Preinhaelter, Josef; Shevchenko, Vladimir; Taylor, Gary; Vahala, Linda; Vahala, George

    2011-08-01

    The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs) operate generally in high-β regimes, in which the usual EC O- and X-modes are cut off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves—controllable localized H&CD that can be used for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions, which are the fundamental EBW parameters that can be chosen and controlled. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.

  7. The Social Construction of Time in Contemporary Education: Implications for Technology, Equality and Bernstein's "Conditions for Democracy"

    ERIC Educational Resources Information Center

    Leaton Gray, Sandra

    2017-01-01

    This article discusses how the introduction of technology has led to a fundamental shift in the relationship between education and time. As a means of analysing the extent of such changes on pupils from different backgrounds, I use Bernstein's "conditions for democracy" as a framework for evaluating the impact new understandings of time…

  8. Dispersion of electron Bernstein waves including weakly relativistic and electromagnetic effects. Part 2. Extraordinary modes

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.

    1987-06-01

    Extraordinary solutions of the weakly relativistic, electromagnetic dispersion relation are investigated for waves propagating perpendicular to a uniform magnetic field in a Maxwellian plasma. As in a companion paper, which treated ordinary modes, weakly relativistic effects are found to modify dramatically the dispersion predicted by strictly non-relativistic ‘classical’ theory in the neighbourhood of harmonics of the cyclotron frequency Ωe. The infinite families of classical Gross-Bernstein and Dnestrovskii-Kostomarov modes are truncated to include only harmonics s satisfying s (ω2p mc2/4kB TΩ2e)⅓ and s (ωp/Ωe)⅔/8 respectively where ωp is the plasma frequency and T the temperature. All classical cut-offs and resonances are removed apart from the x- and z- mode cut-offs. The only coupling between large- and small-wave-vector modes is between the z mode and a Gross-Bernstein mode near the upper-hybrid frequency and between the x mode and the second Gross-Bernstein mode near 2Ωe. Dispersion of the weakly relativistic counterpart of the x mode departs only slightly from that predicted by cold plasma theory except near Ωe and 2Ωe.

  9. Turbulent Transport of Fast Ions in the Large Plasma Device (LAPD)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu; Heidbrink, William; McWilliams, Roger; Boehmer, Heinrich; Carter, Troy; Popovich, Pavel; Tripathi, Shreekrishna; Vincena, Steve; Jenko, Frank

    2010-11-01

    Due to gyroradius averaging and drift-orbit averaging, the transport of fast ions by microturbulence is often smaller than for thermal ions. In this experiment, Strong drift wave turbulence is observed in LAPD on gradients produced by a plate obstacle. Energetic lithium ions orbit through the turbulent region. Scans with a collimated analyzer and with probes give detailed profiles of the fast ion spatial distribution and of the fluctuating fields. The fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Unlike the diffusive transport caused by Coulomb collisions, in this case the turbulent transport is non-diffusive. Analysis and simulation suggest that the fast ions interact ballistically with stationary two-dimensional electrostatic turbulence. The energy dependence of the transport is well explained by gyro-averaging theory. In new experiments, different sources and obstacles alter the drift-wave turbulence to modify the nature of the transport.

  10. On S.N. Bernstein’s derivation of Mendel’s Law and ‘rediscovery’ of the Hardy-Weinberg distribution

    PubMed Central

    Stark, Alan; Seneta, Eugene

    2012-01-01

    Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type proportions) from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears that he had no direct influence on the subsequent development of population genetics. A basic assumption of Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian coefficients of heredity while maintaining the population distribution. How W. Johannsen’s monograph influenced Bernstein is discussed. PMID:22888285

  11. A folded waveguide ICRF antenna for PBX-M and TFTR

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Carter, M. D.; Fogelman, C. H.; Yugo, J. J.; Baity, F. W.; Bell, G. L.; Gardner, W. L.; Goulding, R. H.; Hoffman, D. J.; Ryan, P. M.; Swain, D. W.; Taylor, D. J.; Wilson, R.; Bernabei, S.; Kugel, H.; Ono, M.

    1996-02-01

    The folded waveguide (FWG) antenna is an advanced ICRF launcher under development at ORNL that offers many significant advantages over current-strap type antennas. These features are particularly beneficial for reactor-relevant applications such as ITER and TPX. Previous tests of a development folded waveguide with a low density plasma load have shown a factor of 5 increase in power capability over loop antennas into similar plasma conditions. The performance and reliability of a FWG with an actual tokamak plasma load must now be verified for further acceptance of this concept. A 58 MHz, 4 MW folded waveguide is being designed and built for the PBX-M and TFTR tokamaks at Princeton Plasma Physics Laboratory. This design has a square cross-section that can be installed as either a fast wave (FW) or ion-Bernstein wave (IBW) launcher by 90° rotation. Two new features of the design are: a shorter quarter-wavelength resonator configuration and a rear-feed input power coupling loop. Loading calculations with a standard shorting plate indicate that a launched power level of 4 MW is possible on either machine. Mechanical and disruption force analysis indicates that bolted construction will withstand the disruption loads. An experimental program is planned to characterize the plasma loading, heating effectiveness, power capability, impurity generation and other factors for both FW and IBW cases. High power tests of the new configuration are being performed with a development FWG unit on RFTF at ORNL.

  12. Flash Desorption/Mass Spectrometry for the Analysis of Less- and Nonvolatile Samples Using a Linearly Driven Heated Metal Filament

    NASA Astrophysics Data System (ADS)

    Usmanov, Dilshadbek T.; Ninomiya, Satoshi; Hiraoka, Kenzo

    2013-11-01

    In this paper, the important issue of the desorption of less- and nonvolatile compounds with minimal sample decomposition in ambient mass spectrometry is approached using ambient flash desorption mass spectrometry. The preheated stainless steel filament was driven down and up along the vertical axis in 0.3 s. At the lowest position, it touched the surface of the sample with an invasion depth of 0.1 mm in 50 ms (flash heating) and was removed from the surface (fast cooling). The heating rate corresponds to ~104 °C/s at the filament temperature of 500 °C. The desorbed gaseous molecules were ionized by using a dielectric barrier discharge ion source, and the produced ions were detected by a time-of-flight (TOF) mass spectrometer. Less-volatile samples, such as pharmaceutical tablets, narcotics, explosives, and C60 gave molecular and protonated molecule ions as major ions with thermal decomposition minimally suppressed. For synthetic polymers (PMMA, PLA, and PS), the mass spectra reflected their backbone structures because of the suppression of the sequential thermal decompositions of the primary products. The present technique appears to be suitable for high-throughput qualitative analyses of many types of solid samples in the range from a few ng to 10 μg with minimal sample consumption. Some contribution from tribodesorption in addition to thermal desorption was suggested for the desorption processes. [Figure not available: see fulltext.

  13. Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma devicea)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Tripathi, S. K. P.; Van Compernolle, B.

    2012-05-01

    The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn /n˜δφ/kTe ˜ 0.5, f ˜ 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E × B drift through biasing the obstacle and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz and is enhanced with large bias and small Bz. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (ρfast/ρs ˜ 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (Er) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static Er are evaluated both analytically and numerically. Simulation results indicate that the Er induced transport is predominately convective.

  14. Measurements of fast ion spatial dynamics during magnetic activity in the RFP

    NASA Astrophysics Data System (ADS)

    Goetz, J. A.; Anderson, J. K.; Bonofiglo, P.; Kim, J.; McConnell, R.; Magee, R. M.

    2017-10-01

    Fast ions in the RFP are only weakly affected by a stochastic magnetic field and behave nearly classically in concentration too low to excite Alfvenic activity. At high fast ion concentration sourced by H-NBI in 300kA RFP discharges, a substantial drop in core-localized high pitch fast ions is observed during bursts of coupled EPM and IAE (magnetic island-induced Alfven eigenmode) activity (100-200kHz) through neutral particle analysis. Sourcing instead fast deuterium with NBI, the DD fusion products can measure the dynamics of the fast ion density profile. Both a collimated neutron detector and a new 3MeV fusion proton detector loaned by TriAlpha Energy measure the fast ion density profile with 5cm spatial resolution and 100 μs temporal resolution. In D-NBI, the bursting EPM is excited at slightly lower frequency and the IAE activity is nearly absent, likely due to an isotope effect and loss of wave-particle interaction. In these cases, neutral particle analysis shows little change in the core-localized high pitch fast ion content, and the fusion product profile indicates little change in the fast ion density profile, leaving unexplained the mechanism removing EPM drive. We measure a substantial redistribution of the fast ion profile due to strong lower-frequency ( 30kHz) MHD activity that accompanies the current profile relaxation in the RFP. Profile flattening is strongest in low bulk density discharges, which often occur with a total increase in global neutron flux from acceleration of the beam ions. Work supported by US DoE.

  15. Velocity space resolved absolute measurement of fast ion losses induced by a tearing mode in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Galdon-Quiroga, J.; Garcia-Munoz, M.; Sanchis-Sanchez, L.; Mantsinen, M.; Fietz, S.; Igochine, V.; Maraschek, M.; Rodriguez-Ramos, M.; Sieglin, B.; Snicker, A.; Tardini, G.; Vezinet, D.; Weiland, M.; Eriksson, L. G.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2018-03-01

    Absolute flux of fast ion losses induced by tearing modes have been measured by means of fast ion loss detectors (FILD) for the first time in RF heated plasmas in the ASDEX Upgrade tokamak. Up to 30 MW m-2 of fast ion losses are measured by FILD at 5 cm from the separatrix, consistent with infra-red camera measurements, with energies in the range of 250-500 keV and pitch angles corresponding to large trapped orbits. A resonant interaction between the fast ions in the high energy tail of the ICRF distribution and a m/n  =  5/4 tearing mode leads to enhanced fast ion losses. Around 9.3 +/- 0.7 % of the fast ion losses are found to be coherent with the mode and scale linearly with its amplitude, indicating the convective nature of the transport mechanism. Simulations have been carried out to estimate the contribution of the prompt losses. A good agreement is found between the simulated and the measured velocity space of the losses. The velocity space resonances that may be responsible for the enhanced fast ion losses are identified.

  16. On method of solving third-order ordinary differential equations directly using Bernstein polynomials

    NASA Astrophysics Data System (ADS)

    Khataybeh, S. N.; Hashim, I.

    2018-04-01

    In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.

  17. On the Effects of Social Class on Language Use: A Fresh Look at Bernstein's Theory

    ERIC Educational Resources Information Center

    Aliakbari, Mohammad; Allahmoradi, Nazal

    2014-01-01

    Basil Bernstein (1971) introduced the notion of the Restricted and the Elaborated code, claiming that working-class speakers have access only to the former but middle-class members to both. In an attempt to test this theory in the Iranian context and to investigate the effect of social class on the quality of students language use, we examined the…

  18. Calculation of the fast ion tail distribution for a spherically symmetric hot spot

    NASA Astrophysics Data System (ADS)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-01

    The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.

  19. Measurement and simulation of passive fast-ion D-alpha emission from the DIII-D tokamak

    DOE PAGES

    Bolte, Nathan G.; Heidbrink, William W.; Pace, David; ...

    2016-09-14

    Spectra of passive fast-ion D-alpha (FIDA) light from beam ions that charge exchange with background neutrals are measured and simulated. The fast ions come from three sources: ions that pass through the diagnostic sightlines on their first full orbit, an axisymmetric confined population, and ions that are expelled into the edge region by instabilities. A passive FIDA simulation (P-FIDASIM) is developed as a forward model for the spectra of the first-orbit fast ions and consists of an experimentally-validated beam deposition model, an ion orbit-following code, a collisional-radiative model, and a synthetic spectrometer. Model validation consists of the simulation of 86more » experimental spectra that are obtained using 6 different neutral beam fast-ion sources and 13 different lines of sight. Calibrated spectra are used to estimate the neutral density throughout the cross-section of the tokamak. The resulting 2D neutral density shows the expected increase toward each X-point with average neutral densities of 8 X 10 9 cm -3 at the plasma boundary and 1 X 10 11 cm -3 near the wall. Here, fast ions that are on passing orbits are expelled by the sawtooth instability more readily than trapped ions. In a sample discharge, approximately 1% of the fast-ion population is ejected into the high neutral density region per sawtooth crash.« less

  20. Measurements of ion energies during plasma heating of the Proto-MPEX High Intensity Plasma Source

    NASA Astrophysics Data System (ADS)

    Caughman, J. B. O.; Goulding, R. H.; Biewer, T. M.; Bigelow, T. S.; Caneses, J.; Diem, S. J.; Green, D. L.; Isler, R. C.; Rapp, J.; Piotrowicz, P.; Beers, C. J.; Kafle, N.; Showers, M. A.

    2017-10-01

    The Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) is a linear high-intensity RF plasma source that combines a high-density helicon plasma generator with ion and electron heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration with the goal of delivering a plasma heat flux of 10 MW/m2 at a target. The helicon plasma is produced by coupling 13.56 MHz RF power at levels >100 kW. Additional heating is provided by ion cyclotron heating (ICH) ( 25 kW) and electron Bernstein wave (EBW) heating ( 25 kW) at 28 GHz. Measurements of the ion energy distribution with a retarding field energy analyzer (RFEA) show an increase in ion energies in the edge of the plasma when ICH is applied, which is consistent with COMSOL modeling of the power deposition from the antenna. Views of the target plate with an infrared camera show an increase in the surface temperature at large radii during ICH, and these areas map back to magnetic field lines near the antenna. The change in the power deposition at the target during ICH is compared with Thomson Scattering and RFEA measurements near the target. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  1. Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements

    NASA Astrophysics Data System (ADS)

    Reimer, René; Dinklage, Andreas; Wolf, Robert; Dunne, Mike; Geiger, Benedikt; Hobirk, Jörg; Reich, Matthias; ASDEX Upgrade Team; McCarthy, Patrick J.

    2017-04-01

    High precision measurements of fast ion effects on the magnetic equilibrium in the ASDEX Upgrade tokamak have been conducted in a high-power (10 MW) neutral-beam injection discharge. An improved analysis of the spectral motional Stark effect data based on forward-modeling, including the Zeeman effect, fine-structure and non-statistical sub-level distribution, revealed changes in the order of 1% in |B| . The results were found to be consistent with results from the equilibrium solver CLISTE. The measurements allowed us to derive the fast ion pressure fraction to be Δ {{p}\\text{FI}}/{{p}\\text{mhd}}≈ 10 % and variations of the fast ion pressure are consistent with calculations of the transport code TRANSP. The results advance the understanding of fast ion confinement and magneto-hydrodynamic stability in the presence of fast ions.

  2. Studies of ion kinetic effects in OMEGA shock-driven implosions using fusion burn imaging

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Seguin, F. H.; Rinderknecht, H. G.; Sio, H.; Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Zimmerman, G.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Marshall, F. J.; Seka, W.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Meyerhofer, D. D.; Atzeni, S.; Nikroo, A.

    2014-10-01

    Ion kinetic effects have been inferred in a series of shock-driven implosions at OMEGA from an increasing yield discrepancy between observations and hydrodynamic simulations as the ion-ion mean free path increases. To more precisely identify the nature and impact of ion kinetic effects, spatial burn profile measurements of DD and D3He reactions in these D3He-filled shock-driven implosions are presented and contrasted to both purely hydrodynamic models and models that include ion kinetic effects. It is shown that in implosions where the ion mean free path is equal to or greater than the size of the fuel region, purely hydrodynamic models fail to capture the observed burn profiles, while a model that includes ion diffusion is able to recover the observed burn profile shape. These results further elucidate the ion kinetic mechanisms that are present under long mean-free-path conditions after shock convergence in both shock-driven and ablatively-driven implosions. This work was supported in part by the U.S. DOE, NLUF, LLE, and LLNL.

  3. Kinetic and finite ion mass effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Siminos, E.; Grech, M.; Svedung Wettervik, B.; Fülöp, T.

    2017-12-01

    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring (HB) and ion acceleration. It is demonstrated using particle-in-cell simulations and an analysis of separatrices in single-electron phase-space, that ion motion can suppress fast electron escape to the vacuum, which would otherwise lead to transition to the relativistic transparency regime. A simple analytical estimate shows that for large laser pulse amplitude a 0 the time scale over which ion motion becomes important is much shorter than usually anticipated. As a result of enhanced ion mobility, the threshold density above which HB occurs decreases with the charge-to-mass ratio. Moreover, the transition threshold is seen to depend on the laser temporal profile, due to the effect that the latter has on electron heating. Finally, we report a new regime in which a transition from relativistic transparency to HB occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread.

  4. Knowledge Distribution and Power Relations in HIV-Related Education and Prevention for Gay Men: An Application of Bernstein to Australian Community-Based Pedagogical Devices

    ERIC Educational Resources Information Center

    McInnes, David; Murphy, Dean

    2011-01-01

    This paper seeks to make a theoretical and analytic intervention into the field of HIV-related education and prevention by applying the pedagogy framework of Basil Bernstein to a series of pedagogical devices developed and used in community-based programmes targeting gay men in Australia. The paper begins by outlining why it is such an…

  5. Changes in the Classification and Framing of Education in Britain, 1950s to 2000s: An Interpretive Essay after Bernstein

    ERIC Educational Resources Information Center

    Grace, Gerald

    2008-01-01

    Using the concepts of classification and framing and other relevant writings by Basil Bernstein, an attempt will be made to construct a theorised account of changes in the socio-political context of education in Britain; of the mode of governance in education and of the constructs and practice of educational leadership from the 1950s to the…

  6. Adiabatic model of field reversal by fast ions in an axisymmetric open trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsidulko, Yu. A., E-mail: tsidulko@mail.ru

    2016-06-15

    A model of field reversal by fast ions has been developed under the assumption of preservation of fast-ion adiabatic invariants. Analytical solutions obtained in the approximation of a narrow fast-ion layer and numerical solutions to the evolutionary problem are presented. The solutions demonstrate the process of formation of a field reversed configuration with parameters close to those of the planned experiment.

  7. Fast Faraday cup for fast ion beam TOF measurements in deuterium filled plasma focus device and correlation with Lee model

    NASA Astrophysics Data System (ADS)

    Damideh, Vahid; Ali, Jalil; Saw, Sor Heoh; Rawat, Rajdeep Singh; Lee, Paul; Chaudhary, Kashif Tufail; Rizvi, Zuhaib Haider; Dabagh, Shadab; Ismail, Fairuz Diyana; Sing, Lee

    2017-06-01

    In this work, the design and construction of a 50 Ω fast Faraday cup and its results in correlation with the Lee Model Code for fast ion beam and ion time of flight measurements for a Deuterium filled plasma focus device are presented. Fast ion beam properties such as ion flux, fluence, speed, and energy at 2-8 Torr Deuterium are studied. The minimum 34 ns full width at half maximum ion signal at 12 kV, 3 Torr Deuterium in INTI PF was captured by a Faraday cup. The maximum ion energy of 67 ± 5 keV at 4 Torr Deuterium was detected by the Faraday cup. Ion time of flight measurements by the Faraday cup show consistent correlation with Lee Code results for Deuterium especially at near to optimum pressures.

  8. Simultaneous use of camera and probe diagnostics to unambiguously identify and study the dynamics of multiple underlying instabilities during the route to plasma turbulence.

    PubMed

    Thakur, S C; Brandt, C; Light, A; Cui, L; Gosselin, J J; Tynan, G R

    2014-11-01

    We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.

  9. On a new scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an extraordinary wave in the inhomogeneous plasma of magnetic traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusakov, E. Z., E-mail: Evgeniy.Gusakov@mail.ioffe.ru; Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Irzak, M. A., E-mail: irzak@mail.ioffe.ru

    The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.

  10. Anomalous momentum and energy transfer rates for electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth's magnetosphere. III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasperse, John R.; Basu, Bamandas; Lund, Eric J.

    2010-06-15

    Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for themore » ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].« less

  11. Excitation of high frequency pressure driven modes in non-axisymmetric equilibrium at high βpol in PBX-M

    NASA Astrophysics Data System (ADS)

    Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.

    1993-12-01

    High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded

  12. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  13. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  14. Knudsen and inverse Knudsen layer effect on tail ion distribution and fusion reactivity in inertial confinement fusion targets

    NASA Astrophysics Data System (ADS)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-01

    A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas-pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. It is found that while the fast ion distribution can be significantly depleted in the hot spot, leading to a reduction of the fusion reactivity in this region, a surplus of fast ions is present in the neighboring cold region. The presence of this fast ion surplus in the neighboring cold region is shown to lead to a partial recovery of the fusion yield lost in the hot spot.

  15. Fishbone Mode Excited by Deeply Trapped Energetic Beam Ions in EAST

    NASA Astrophysics Data System (ADS)

    Zheng, Ting; Wu, Bin; Xu, Liqing; Hu, Chundong; Zang, Qing; Ding, Siye; Li, Yingying; Wu, Xingquan; Wang, Jinfang; Shen, Biao; Zhong, Guoqiang; Li, Hao; Shi, Tonghui; EAST Team

    2016-06-01

    This paper describes the fishbone mode phenomena during the injection of high-power neutral beams in EAST (Experimental Advanced Superconducting Tokamak). The features of the fishbone mode are presented. The change in frequency of the mode during a fishbone burst is from 1 kHz to 6 kHz. The nonlinear behavior of the fishbone mode is analyzed by using a prey-predator model, which is consistent with the experimental results. This model indicates that the periodic oscillations of the fishbone mode always occur near the critical value of fast ion beta. Furthermore, the neutral beam analysis for the discharge is done by using the NUBEAM module of the TRANSP code. According to the numerical simulation results and theoretical calculation, it can be concluded that the fishbone mode is driven by the deeply trapped energetic beam ions in EAST. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001, 2014DFG61950 and 2013GB112003) and National Natural Science Foundation of China (Nos. 11175211 and 11275233)

  16. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets a)

    DOE PAGES

    Moser, Auna L.; Hsu, Scott C.

    2015-05-01

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  17. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets a)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Auna L.; Hsu, Scott C.

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  18. Dynamic Fluid-Kinetic (DyFK) Simulations of Storm-Enhanced Density Supply of Cleft Ion Fountain Outflows

    NASA Astrophysics Data System (ADS)

    Horwitz, J. L.; Zeng, W.; Foster, J. C.; Strangeway, R. J.; Adrian, M. L.; Moore, T. E.

    2008-12-01

    Elevated ionospheric density regions frequently appear to be convected from the subauroral plasmaspheric region toward noon, in association with convection of plasmaspheric tails in the dayside magnetosphere, typically during large geomagnetic storms. In this presentation, we explore the possibility that these Storm Enhanced Density (SED) regions could provide ionospheric plasma source populations for cleft ion fountain outflows. We use our Dynamic Fluid Kinetic (DyFK) code to simulate the entry of a high-density "plasmasphere-like" flux tube entering the cleft region and subjected to an episode of wave-driven transverse ion heating. The results of including different proportions of SED and soft electron precipitation levels, together with transverse ion heating effects on the resulting outflows, will be presented, including the O+ and H+ ion density and related parameter profiles for the simulated SED involved events. We will also compare these modeling results with SED-outflow observations from GPS TEC, and the FAST and IMAGE spacecraft. Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067, 2002.

  19. Human Performance: Women in Nontraditional Occupations and the Influence of the Menstrual Cycle (A Selected Bibliography)

    DTIC Science & Technology

    1980-05-01

    rhythms and human performance . New York: Academic Press, 1971. Richter, C. P.,Periodic phenomena in man and animals: Their relation neuroendoctine...Research Board, 1928, Lo. 45, 43-63. Bernstein, B. E. The relationship between menstruation and academic performance in high- and low-motivated...9780) Bernstein, B. E. Effect of menstruation on academic performance among college women. Archives of Sexual Behavior, 1977, 5, 289-296. l Bilhuber

  20. Binding energies of the ground triplet state a{sup 3}Σ{sub u}{sup +} of Rb{sub 2} and Cs{sub 2} in terms of the generalized Le Roy–Bernstein near-dissociation expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovkov, V. B.; Ivanov, V. S.

    Formulae of Le Roy–Bernstein near-dissociation theory are derived in a general isotope–invariant form, applicable to any term in the rotational expansion of a diatomic ro-vibrational term value. It is proposed to use the generalized Le Roy–Bernstein expansion to describe the binding energies (ro-vibrational term values) of the ground triplet state a{sup 3}Σ{sub u}{sup +} of alkali metal dimers. The parameters of this description are determined for Rb{sub 2} and Cs{sub 2} molecules. This approach gives a recipe to calculate the whole variety of the binding energies with characteristic accuracies from ∼1 × 10{sup −3} to 1 × 10{sup −2} cm{supmore » −1} using a relatively simple algebraic equation.« less

  1. Scintillator-based fast ion loss measurements in the EAST.

    PubMed

    Chang, J F; Isobe, M; Ogawa, K; Huang, J; Wu, C R; Xu, Z; Jin, Z; Lin, S Y; Hu, L Q

    2016-11-01

    A new scintillator-based fast ion loss detector (FILD) has been installed on Experimental Advanced Superconducting Tokamak (EAST) to investigate the fast ion loss behavior in high performance plasma with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). A two dimensional 40 mm × 40 mm scintillator-coated (ZnS:Ag) stainless plate is mounted in the front of the detector, capturing the escaping fast ions. Photons from the scintillator plate are imaged with a Phantom V2010 CCD camera. The lost fast ions can be measured with the pitch angle from 60° to 120° and the gyroradius from 10 mm to 180 mm. This paper will describe the details of FILD diagnostic on EAST and describe preliminary measurements during NBI and ICRH heating.

  2. BRIEF COMMUNICATION: Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Nielsen, S. K.; Bindslev, H.; Salewski, M.; Bürger, A.; Delabie, E.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.; Woskov, P.; TEXTOR Team

    2010-09-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions to the magnetic field. The fast-ion distribution is found to be anisotropic as expected. For a resolved angle of 39° to the magnetic field we find a drop in the fast-ion distribution of 20-40%. For a resolved angle of 83° to the magnetic field the drop is no larger than 20%.

  3. Lab experiments investigating astrophysical jet physics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2014-10-01

    Dynamics relevant to astrophysical plasmas is being investigated in lab experiments having similar physics and topology, but much smaller time and space scales. High speed movies and numerical simulations both show that highly collimated MHD-driven plasma flows are a critical feature; these collimated flows can be considered to be a lab version of an astrophysical jet. Having both axial and azimuthal magnetic fields, the jet is effectively an axially lengthening plasma-confining flux tube with embedded helical magnetic field (flux rope). The jet velocity is in good agreement with an MHD acceleration model. Axial stagnation of the jet compresses embedded azimuthal magnetic flux and so results in jet self-collimation. Jets kink when they breach the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can provide an effective gravity which provides the environment for a spontaneously-developing, fine-scale, extremely fast Rayleigh-Taylor instability that erodes the current channel to be smaller than the ion skin depth. This cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale can result in a fast magnetic reconnection whereby the jet breaks off from its source electrode. Supported by USDOE and NSF.

  4. Investigation of the long-lived saturated internal mode and its control on the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Wei, Deng; Yi, Liu; Xian-Qu, Wang; Wei, Chen; Yun-Bo, Dong; Ohdachi, S.; Xiao-Quan, Ji; Yong, Shen; Jian-Yong, Cao; Jun, Zhou; Bei-Bing, Feng; Yong-Gao, Li; Xian-Li, Huang; Jin-Ming, Gao; Xiao-Yu, Han; Mei, Huang; Xiao-Gang, Wang

    2014-01-01

    HL-2A plasmas heated by neutral beam injection (NBI) regularly exhibit n = 1 long-lived saturated magnetohydrodynamic instabilities. A reduction in the electron density and plasma stored energy and an increase in fast ion losses are usually observed in the presence of such perturbations. The observed long-lived saturated internal mode (LLM) occurs when the safety factor profile has a weak shear in a broad range of the plasma centre with qmin around unity. It is found that the ideal interchange mode can become marginally stable due to the weak magnetic shear reaching a critical value. The LLM, due to its pressure-driven feature, is destabilized by the strong interaction with fast ions in the low-shear region during the NBI. Furthermore, for the first time it is clearly observed that the LLMs can be suppressed by electron cyclotron resonant heating (ECRH), or by supersonic molecular beam injection in HL-2A plasmas. Low-n sidebands observed during the LLM are also suppressed by increasing the ECRH power. The control of LLMs is due to the change in the magnetic shear or in the pressure profile induced by the local heating or fuelling.

  5. Study of the effect of sawteeth on fast ions and neutron emission in MAST using a neutron camera

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Sperduti, A.; the MAST team

    2018-05-01

    The effect of the sawtooth instability on the confinement of fast ions on MAST, and the impact it has on the neutron emission, has been studied in detail using the TRANSP/NUBEAM codes coupled to a full orbit following code. The sawtooth models in TRANSP/NUBEAM indicate that, on MAST, passing and trapped fast ions are redistributed in approximately equal number and on a level that is consistent with the observations. It has not been possible to discriminate between the different sawtooth models since their predictions are all compatible with the neutron camera observations. Full orbit calculations of the fast ion motion have been used to estimate the characteristic time scales and energy thresholds that according to theoretical predictions govern the fast ions redistribution: no energy threshold for the redistribution for either passing and trapped fast ions was found. The characteristic times have, however, frequencies that are comparable with the frequencies of a m = 1, n = 1 perturbation and its harmonics with toroidal mode numbers n=2, \\ldots , 4, suggesting that on spherical tokamaks, in addition to the classical sawtooth-induced transport mechanisms of fast ions by attachment to the evolving perturbation and the associated E × B drift, a resonance mechanism between the m = 1 perturbation and the fast ions orbits might be at play.

  6. Dual view FIDA measurements on MAST

    NASA Astrophysics Data System (ADS)

    Michael, C. A.; Conway, N.; Crowley, B.; Jones, O.; Heidbrink, W. W.; Pinches, S.; Braeken, E.; Akers, R.; Challis, C.; Turnyanskiy, M.; Patel, A.; Muir, D.; Gaffka, R.; Bailey, S.

    2013-09-01

    A fast-ion deuterium alpha (FIDA) spectrometer was installed on MAST to measure radially resolved information about the fast-ion density and its distribution in energy and pitch angle. Toroidally and vertically directed collection lenses are employed, to detect both passing and trapped particle dynamics, and reference views are installed to subtract the background. This background is found to contain a substantial amount of passive FIDA emission driven by edge neutrals, and to depend delicately on viewing geometry. Results are compared with theoretical expectations based on the codes NUBEAM (for fast-ion distributions) and FIDASIM. Calibrating via the measured beam emission peaks, the toroidal FIDA signal profile agrees with classical simulations in magnetohydrodynamic quiescent discharges where the neutron rate is also classical. Long-lived modes (LLMs) and chirping modes decrease the core FIDA signal significantly, and the profile can be matched closely to simulations using anomalous diffusive transport; a spatially uniform diffusion coefficient is sufficient for chirping modes, while a core localized diffusion is better for a LLM. Analysis of a discharge with chirping mode activity shows a dramatic drop in the core FIDA signal and rapid increase in the edge passive signal at the onset of the burst indicating a very rapid redistribution towards the edge. Vertical-viewing measurements show a discrepancy with simulations at higher Doppler shifts when the neutron rate is classical, which, combined with the fact that the toroidal signals agree, means that the difference must be occurring for pitch angles near the trapped-passing boundary, although uncertainties in the background subtraction, which are difficult to assess, may contribute to this. Further evidence of an anomalous transport mechanism for these particles is provided by the fact that an increase of beam power does not increase the higher energy vertical FIDA signals, while the toroidal signals do increase.

  7. Simulation of linear and nonlinear Landau damping of lower hybrid waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Lei; Wang, X. Y.; Lin, Y.

    2013-06-15

    The linear physics of lower hybrid waves (LHWs) and their nonlinear interaction with particles through Landau damping are studied with the gyrokinetic electron and fully kinetic ion (GeFi) particle simulation model in the electrostatic limit. Unlike most other wave modes, the LHWs can resonantly interact with both electrons and ions, with the former being highly magnetized and latter nearly unmagnetized around the lower hybrid frequency. Direct interactions of LHWs with electrons and/or ions are investigated for cases with various k{sub ∥}/k,T{sub i}/T{sub e}, and wave amplitudes. In the linear electron Landau damping (ELD), the dispersion relation and the linear dampingmore » rate obtained from our simulation agree well with the analytical linear theory. As the wave amplitude increases, the nonlinear Landau effects are present, and a transition from strong decay at smaller amplitudes to weak decay at larger amplitudes is observed. In the nonlinear stage, the LHWs in the long time evolution finally exhibit a steady Bernstein-Greene-Kruskal mode, in which the wave amplitude is saturated above the noise level. While the resonant electrons are trapped in the wave field in the nonlinear ELD, the resonant ions are untrapped in the LHW time scales. The ion Landau damping is thus predominantly in a linear fashion, leading to a wave saturation level significantly lower than that in the ELD. On the long time scales, however, the ions are still weakly trapped. The results show a coupling between the LHW frequency and the ion cyclotron frequency during the long-time LHW evolution.« less

  8. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  9. Particle acceleration during merging-compression plasma start-up in the Mega Amp Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Allen, J. O.; Chapman, S. C.; Dendy, R. O.; Irvine, S. W. A.; Marshall, O.; Robb, D.; Turnyanskiy, M.; Vann, R. G. L.

    2018-02-01

    Magnetic reconnection occurred during merging-compression plasma start-up in the Mega Amp Spherical Tokamak (MAST), resulting in the prompt acceleration of substantial numbers of ions and electrons to highly suprathermal energies. Accelerated field-aligned ions (deuterons and protons) were detected using a neutral particle analyser at energies up to about 20 keV during merging in early MAST pulses, while nonthermal electrons have been detected indirectly in more recent pulses through microwave bursts. However no increase in soft x-ray emission was observed until later in the merging phase, by which time strong electron heating had been detected through Thomson scattering measurements. A test-particle code CUEBIT is used to model ion acceleration in the presence of an inductive toroidal electric field with a prescribed spatial profile and temporal evolution based on Hall-MHD simulations of the merging process. The simulations yield particle distributions with properties similar to those observed experimentally, including strong field alignment of the fast ions and the acceleration of protons to higher energies than deuterons. Particle-in-cell modelling of a plasma containing a dilute field-aligned suprathermal electron component suggests that at least some of the microwave bursts can be attributed to the anomalous Doppler instability driven by anisotropic fast electrons, which do not produce measurable enhancements in soft x-ray emission either because they are insufficiently energetic or because the nonthermal bremsstrahlung emissivity during this phase of the pulse is below the detection threshold. There is no evidence of runaway electron acceleration during merging, possibly due to the presence of three-dimensional field perturbations.

  10. Fast-ion distributions from third harmonic ICRF heating studied with neutron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Gatu Johnson, M.; Andersson Sundén, E.; Conroy, S.; Ericsson, G.; Eriksson, J.; Sjöstrand, H.; Weiszflog, M.; Johnson, T.; Gorini, G.; Nocente, M.; Tardocchi, M.; Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; EFDA Contributors, JET

    2013-11-01

    The fast-ion distribution from third harmonic ion cyclotron resonance frequency (ICRF) heating on the Joint European Torus is studied using neutron emission spectroscopy with the time-of-flight spectrometer TOFOR. The energy dependence of the fast deuteron distribution function is inferred from the measured spectrum of neutrons born in DD fusion reactions, and the inferred distribution is compared with theoretical models for ICRF heating. Good agreements between modelling and measurements are seen with clear features in the fast-ion distribution function, that are due to the finite Larmor radius of the resonating ions, replicated. Strong synergetic effects between ICRF and neutral beam injection heating were also seen. The total energy content of the fast-ion population derived from TOFOR data was in good agreement with magnetic measurements for values below 350 kJ.

  11. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maharaj, S. K., E-mail: smaharaj@sansa.org.za; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found formore » fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.« less

  12. Fast-ion Dα spectrum diagnostic in the EAST

    NASA Astrophysics Data System (ADS)

    Hou, Y. M.; Wu, C. R.; Huang, J.; Heidbrink, W. W.; von Hellermann, M. G.; Xu, Z.; Jin, Z.; Chang, J. F.; Zhu, Y. B.; Gao, W.; Chen, Y. J.; Lyu, B.; Hu, R. J.; Zhang, P. F.; Zhang, L.; Gao, W.; Wu, Z. W.; Yu, Y.; Ye, M. Y.

    2016-11-01

    In toroidal magnetic fusion devices, fast-ion D-alpha diagnostic (FIDA) is a powerful method to study the fast-ion feature. The fast-ion characteristics can be inferred from the Doppler shifted spectrum of Dα light according to charge exchange recombination process between fast ions and probe beam. Since conceptual design presented in the last HTPD conference, significant progress has been made to apply FIDA systems on the Experimental Advanced Superconducting Tokamak (EAST). Both co-current and counter-current neutral beam injectors are available, and each can deliver 2-4 MW beam power with 50-80 keV beam energy. Presently, two sets of high throughput spectrometer systems have been installed on EAST, allowing to capture passing and trapped fast-ion characteristics simultaneously, using Kaiser HoloSpec transmission grating spectrometer and Bunkoukeiki FLP-200 volume phase holographic spectrometer coupled with Princeton Instruments ProEM 1024B eXcelon and Andor DU-888 iXon3 1024 CCD camera, respectively. This paper will present the details of the hardware descriptions and experimental spectrum.

  13. Interpretation of fast-ion signals during beam modulation experiments

    DOE PAGES

    Heidbrink, W. W.; Collins, C. S.; Stagner, L.; ...

    2016-07-22

    Fast-ion signals produced by a modulated neutral beam are used to infer fast-ion transport. The measured quantity is the divergence of perturbed fast-ion flux from the phase-space volume measured by the diagnostic, ∇•more » $$\\bar{Γ}$$. Since velocity-space transport often contributes to this divergence, the phase-space sensitivity of the diagnostic (or “weight function”) plays a crucial role in the interpretation of the signal. The source and sink make major contributions to the signal but their effects are accurately modeled by calculations that employ an exponential decay term for the sink. Recommendations for optimal design of a fast-ion transport experiment are given, illustrated by results from DIII-D measurements of fast-ion transport by Alfv´en eigenmodes. Finally, the signal-to-noise ratio of the diagnostic, systematic uncertainties in the modeling of the source and sink, and the non-linearity of the perturbation all contribute to the error in ∇•$$\\bar{Γ}$$.« less

  14. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  15. Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes

    DOE PAGES

    Collins, C. S.; Heidbrink, W. W.; Podestà, M.; ...

    2017-06-09

    Experiments in the DIII-D tokamak show that many overlapping small-amplitude Alfv en eigenmodes (AEs) cause fast-ion transport to sharply increase above a critical threshold, leading to fast-ion density profile resilience and reduced fusion performance. The threshold is above the AE linear stability limit and varies between diagnostics that are sensitive to different parts of fast-ion phase-space. A comparison with theoretical analysis using the nova and orbit codes shows that, for the neutral particle diagnostic, the threshold corresponds to the onset of stochastic particle orbits due to wave-particle resonances with AEs in the measured region of phase space. We manipulated themore » bulk fast-ion distribution and instability behavior through variations in beam deposition geometry, and no significant differences in the onset threshold outside of measurement uncertainties were found, in agreement with the theoretical stochastic threshold analysis. Simulations using the `kick model' produce beam ion density gradients consistent with the empirically measured radial critical gradient and highlight the importance of including the energy and pitch dependence of the fast-ion distribution function in critical gradient models. The addition of electron cyclotron heating changes the types of AEs present in the experiment, comparatively increasing the measured fast-ion density and radial gradient. Our studies provide the basis for understanding how to avoid AE transport that can undesirably redistribute current and cause fast-ion losses, and the measurements are being used to validate AE-induced transport models that use the critical gradient paradigm, giving greater confidence when applied to ITER.« less

  16. Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C. S.; Heidbrink, W. W.; Podestà, M.

    Experiments in the DIII-D tokamak show that many overlapping small-amplitude Alfv en eigenmodes (AEs) cause fast-ion transport to sharply increase above a critical threshold, leading to fast-ion density profile resilience and reduced fusion performance. The threshold is above the AE linear stability limit and varies between diagnostics that are sensitive to different parts of fast-ion phase-space. A comparison with theoretical analysis using the nova and orbit codes shows that, for the neutral particle diagnostic, the threshold corresponds to the onset of stochastic particle orbits due to wave-particle resonances with AEs in the measured region of phase space. We manipulated themore » bulk fast-ion distribution and instability behavior through variations in beam deposition geometry, and no significant differences in the onset threshold outside of measurement uncertainties were found, in agreement with the theoretical stochastic threshold analysis. Simulations using the `kick model' produce beam ion density gradients consistent with the empirically measured radial critical gradient and highlight the importance of including the energy and pitch dependence of the fast-ion distribution function in critical gradient models. The addition of electron cyclotron heating changes the types of AEs present in the experiment, comparatively increasing the measured fast-ion density and radial gradient. Our studies provide the basis for understanding how to avoid AE transport that can undesirably redistribute current and cause fast-ion losses, and the measurements are being used to validate AE-induced transport models that use the critical gradient paradigm, giving greater confidence when applied to ITER.« less

  17. Fast-ion stabilization of tokamak plasma turbulence

    NASA Astrophysics Data System (ADS)

    Di Siena, A.; Görler, T.; Doerk, H.; Poli, E.; Bilato, R.

    2018-05-01

    A significant reduction of the turbulence-induced anomalous heat transport has been observed in recent studies of magnetically confined plasmas in the presence of a significant fast-ion fractions. Therefore, the control of fast-ion populations with external heating might open the way to more optimistic scenarios for future fusion devices. However, little is known about the parameter range of relevance of these fast-ion effects which are often only highlighted in correlation with substantial electromagnetic fluctuations. Here, a significant fast ion induced stabilization is also found in both linear and nonlinear electrostatic gyrokinetic simulations which cannot be explained with the conventional assumptions based on pressure profile and dilution effects. Strong wave-fast particle resonant interactions are observed for realistic parameters where the fast particle trace approximation clearly failed and explained with the help of a reduced Vlasov model. In contrast to previous interpretations, fast particles can actively modify the Poisson field equation—even at low fast particle densities where dilution tends to be negligible and at relatively high temperatures, i.e. T  <  30T e . Further key parameters controlling the role of the fast ions are identified in the following and various ways of further optimizing their beneficial impact are explored. Finally, possible extensions into the electromagnetic regime are briefly discussed and the relevance of these findings for ITER standard scenarios is highlighted.

  18. Characterization of beam-driven instabilities and current redistribution in MST plasmas

    NASA Astrophysics Data System (ADS)

    Parke, E.

    2015-11-01

    A unique, high-rep-rate (>10 kHz) Thomson scattering diagnostic and a high-bandwidth FIR interferometer-polarimeter on MST have enabled characterization of beam-driven instabilities and magnetic equilibrium changes observed during high power (1 MW) neutral beam injection (NBI). While NBI leads to negligible net current drive, an increase in on-axis current density observed through Faraday rotation is offset by a reduction in mid-radius current. Identification of the phase flip in temperature fluctuations associated with tearing modes provides a sensitive measure of rational surface locations. This technique strongly constrains the safety factor for equilibrium reconstruction and provides a powerful new tool for measuring the equilibrium magnetic field. For example, the n = 6 temperature structure is observed to shift inward 1.1 +/- 0.6 cm, with an estimated reduction of q0 by 5%. This is consistent with a mid-radius reduction in current, and together the Faraday rotation and Thomson scattering measurements corroborate an inductive redistribution of current that compares well with TRANSP/MSTFit predictions. Interpreting tearing mode temperature structures in the RFP remains challenging; the effects of multiple, closely-spaced tearing modes on the mode phase measurement require further verification. In addition to equilibrium changes, previous work has shown that the large fast ion population drives instabilities at higher frequencies near the Alfvén continuum. Recent observations reveal a new instability at much lower frequency (~7 kHz) with strongly chirping behavior. It participates in extensive avalanches of the higher frequency energetic particle and Alfvénic modes to drive enhanced fast ion transport. Internal structures measured from Te and ne fluctuations, their dependence on the safety factor, as well as frequency scaling motivate speculation about mode identity. Work supported by U.S. DOE.

  19. Validation of fast-ion D-alpha spectrum measurements during EAST neutral-beam heated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J., E-mail: juan.huang@ipp.ac.cn; Wu, C. R.; Hou, Y. M.

    2016-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been installed on EAST. Fast ion features can be inferred from the Doppler shifted spectrum of Balmer-alpha light from energetic hydrogenic atoms. This paper will focus on the validation of FIDA measurements performed using MHD-quiescent discharges in 2015 campaign. Two codes have been applied to calculate the D{sub α} spectrum: one is a Monte Carlo code, Fortran 90 version FIDASIM, and the other is an analytical code, Simulation of Spectra (SOS). The predicted SOS fast-ion spectrum agrees well with the measurement; however, the level of fast-ionmore » part from FIDASIM is lower. The discrepancy is possibly due to the difference between FIDASIM and SOS velocity distribution function. The details will be presented in the paper to primarily address comparisons of predicted and observed spectrum shapes/amplitudes.« less

  20. Electron Jet Detected by MMS at Dipolarization Front

    NASA Astrophysics Data System (ADS)

    Liu, C. M.; Fu, H. S.; Vaivads, A.; Khotyaintsev, Y. V.; Gershman, D. J.; Hwang, K.-J.; Chen, Z. Z.; Cao, D.; Xu, Y.; Yang, J.; Peng, F. Z.; Huang, S. Y.; Burch, J. L.; Giles, B. L.; Ergun, R. E.; Russell, C. T.; Lindqvist, P.-A.; Le Contel, O.

    2018-01-01

    Using MMS high-resolution measurements, we present the first observation of fast electron jet (Ve 2,000 km/s) at a dipolarization front (DF) in the magnetotail plasma sheet. This jet, with scale comparable to the DF thickness ( 0.9 di), is primarily in the tangential plane to the DF current sheet and mainly undergoes the E × B drift motion; it contributes significantly to the current system at the DF, including a localized ring-current that can modify the DF topology. Associated with this fast jet, we observed a persistent normal electric field, strong lower hybrid drift waves, and strong energy conversion at the DF. Such strong energy conversion is primarily attributed to the electron-jet-driven current (E ṡ je ≈ 2 E ṡ ji), rather than the ion current suggested in previous studies.

  1. Bivariate tensor product [Formula: see text]-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators.

    PubMed

    Cai, Qing-Bo; Xu, Xiao-Wei; Zhou, Guorong

    2017-01-01

    In this paper, we construct a bivariate tensor product generalization of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of [Formula: see text]-integers. We obtain moments and central moments of these operators, give the rate of convergence by using the complete modulus of continuity for the bivariate case and estimate a convergence theorem for the Lipschitz continuous functions. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.

    High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths andmore » during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal indicates a much faster rise time for arcs than for ELMs. Based on this observation, an ELM/arc discrimination system is being implemented to maintain RF power during ELMs even when the reflection coefficient becomes large. This work is supported by US DOE contracts DE-AC-05-00OR22725 and DE-AC02- 09CH11466. References [1] C. K. Phillips, et al, Nuclear Fusion 10, 075015 (2009)« less

  3. Laser-driven ion acceleration: methods, challenges and prospects

    NASA Astrophysics Data System (ADS)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  4. High power heating of magnetic reconnection in merging tokamak experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Y.; Tanabe, H.; Gi, K.

    2015-05-15

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R∼10{sup 5}. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magneticmore » reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field B{sub rec}{sup 2}  ∼  B{sub p}{sup 2}. The guide toroidal field B{sub t} does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field B{sub t}, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with B{sub p} > 0.4 T will enables us to heat the plasma to the alpha heating regime: T{sub i} > 5 keV without using any additional heating facility.« less

  5. Structure of a magnetic flux annihilation layer formed by the collision of supersonic, magnetized plasma flows

    DOE PAGES

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; ...

    2016-05-31

    We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T i~¯ZT e, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilationmore » of the in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.« less

  6. Structure of a magnetic flux annihilation layer formed by the collision of supersonic, magnetized plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.

    We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T i~¯ZT e, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilationmore » of the in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.« less

  7. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less

  8. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE /E ˜20 %, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  9. Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple

    DOE PAGES

    Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; ...

    2016-11-07

    Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, thismore » presents a new route for controlling anion transfer in electrochemically-driven separation applications.« less

  10. Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Cohen, Samuel A.; Welch, Dale R.

    2018-04-01

    We report on 3D-3V particle-in-cell simulations of fast-ion energy-loss rates in a cold, weakly-magnetized, weakly-coupled plasma where the electron gyroradius, ρe, is comparable to or less than the Debye length, λDe, and the fast-ion velocity exceeds the electron thermal velocity, a regime in which the electron response may be impeded. These simulations use explicit algorithms, spatially resolve ρe and λDe, and temporally resolve the electron cyclotron and plasma frequencies. For mono-energetic dilute fast ions with isotropic velocity distributions, these scaling studies of the slowing-down time, τs, versus fast-ion charge are in agreement with unmagnetized slowing-down theory; with an applied magnetic field, no consistent anisotropy between τs in the cross-field and field-parallel directions could be resolved. Scaling the fast-ion charge is confirmed as a viable way to reduce the required computational time for each simulation. The implications of these slowing down processes are described for one magnetic-confinement fusion concept, the small, advanced-fuel, field-reversed configuration device.

  11. Electrostatic Wave Generation and Transverse Ion Acceleration by Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2007-01-01

    We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.

  12. Alternate Operating Scenarios for NDCX-II

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Cohen, R. H.; Lund, S. M.; Vay, J.-L.; Waldron, W. L.; Yeun, A.

    2011-10-01

    NDCX-II is an accelerator facility being built at LBNL to study ion-heated warm dense matter and aspects of ion-driven targets for inertial-fusion energy. The baseline design calls for using twelve induction cells to accelerate 40 nC of Li+ ions to 1.2 MeV. During commissioning, though, we plan to extend the source lifetime by extracting less total charge. For operational flexibility, the option of using a helium plasma source is also being investigated. Over time, we expect that NDCX-II will be upgraded to substantially higher energies, necessitating the use of heavier ions to keep a suitable deposition range in targets. Each of these options requires development of an alternate acceleration schedule and the associated transverse focusing. The schedules here are first worked out with a fast-running 1-D particle-in-cell code ASP, then 2-D and 3-D Warp simulations are used to verify the 1-D results and to design transverse focusing. Work performed under the auspices of U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344 and by LBNL under Contract DE-AC03-76SF00098.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinearmore » Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.« less

  14. Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu

    2011-10-01

    The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, S.; Chang, C. S.; Hager, R.

    Here, a fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. As a result, the main suppression action is located in a thin radial layer around ψ N≃0.96–0.98, where ψ N is the normalized poloidal flux, with the time scale ~0.1more » ms.« less

  16. The mean ionic charge state of solar energetic Fe ions above 200 MeV per nucleon

    NASA Technical Reports Server (NTRS)

    Tylka, A. J.; Boberg, P. R.; Adams, J. H., Jr.; Beahm, L. P.; Dietrich, W. F.; Kleis, T.

    1995-01-01

    We have analyzed the geomagnetic transmission of solar energetic Fe ions at approximately 200-600 MeV per nucleon during the great solar energetic particle (SEP) events of 1989 September-October. By comparing fluences from the Chicago charged-particle telescope on IMP-8 in interplanetary space and from NRL's Heavy Ions in Space (HIIS) experiment aboard the Long Duration Exposure Facility (LDEF) in low-Earth orbit, we obtain a mean ionic charge (Q(sub 3)) = 14.2 +/- 1.4. This result is significantly lower than (Q) observed at approximately 1 MeV per nucleon in impulsive, He-3 rich SEP events, indicating that neither acceleration at the flare site nor flare-heated plasma significantly contributes to the high-energy Fe ions we observe. But it agrees well with the (Q) observed in gradual SEP events at approximately 1 MeV per nucleon, in which ions are accelerated by shocks driven by fast coronal mass ejections, and hence shows that particles are accelerated to very high energies in this way. We also note apparent differences between solar wind and SEP charge state distributions, which may favor a coronal (rather than solar wind) seed population or may suggest additional ionization in the ambient shock-region plasma.

  17. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5'-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  18. Vacuum ultraviolet photoionization of carbohydrates and nucleotides.

    PubMed

    Shin, Joong-Won; Bernstein, Elliot R

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  19. Design of a retarding potential grid system for a neutral particle analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titus, J. B., E-mail: jtitus@wisc.edu; Mezonlin, E. D.; Anderson, J. K.

    2014-11-15

    The ion energy distribution in a magnetically confined plasma can be inferred from charge exchange neutral particles. On the Madison Symmetric Torus (MST), deuterium neutrals are measured by the Florida A and M University compact neutral particle analyzer (CNPA) and the advanced neutral particle analyzer (ANPA). The CNPA energy range covers the bulk deuterium ions to the beginning of the fast ion tail (0.34–5.2 keV) with high-energy resolution (25 channels) while the ANPA covers the vast majority of the fast ion tail distribution (∼10–45 keV) with low energy resolution (10 channels). Though the ANPA has provided insight into fast ionmore » energization in MST plasma, more can be gained by increasing the energy resolution in that energy range. To utilize the energy resolution of the CNPA, fast ions can be retarded by an electric potential well, enabling their detection by the diagnostic. The ion energy distribution can be measured with arbitrary resolution by combining data from many similar MST discharges with different energy ranges on the CNPA, providing further insight into ion energization and fast ion dynamics on MST.« less

  20. Energetic particles in laboratory, space and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Turnyanskiy, M. R.

    2017-01-01

    Some recent studies of energetic particles in laboratory, space and astrophysical plasmas are discussed, and a number of common themes identified. Such comparative studies can elucidate the underlying physical processes. For example microwave bursts observed during edge localised modes (ELMs) in the mega amp spherical tokamak (MAST) can be attributed to energetic electrons accelerated by parallel electric fields associated with the ELMs. The very large numbers of electrons known to be accelerated in solar flares must also arise from parallel electric fields, and the demonstration of energetic electron production during ELMs suggests close links at the kinetic level between ELMs and flares. Energetic particle studies in solar flares have focussed largely on electrons rather than ions, since bremsstrahlung from deka-keV electrons provides the best available explanation of flare hard x-ray emission. However ion acceleration (but not electron acceleration) has been observed during merging startup of plasmas in MAST with dimensionless parameters similar to those of the solar corona during flares. Recent measurements in the Earth’s radiation belts demonstrate clearly a direct link between ion cyclotron emission (ICE) and fast particle population inversion, supporting the hypothesis that ICE in tokamaks is driven by fast particle distributions of this type. Shear Alfvén waves in plasmas with beta less than the electron to ion mass ratio have a parallel electric field that, in the solar corona, could accelerate electrons to hard x-ray-emitting energies; an extension of this calculation to plasmas with Alfvén speed arbitrarily close to the speed of light suggests that the mechanism could play a role in the production of cosmic ray electrons.

  1. Numerical simulation of plasma processes driven by transverse ion heating

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  2. Atomic and Molecular Spectroscopic Studies of the DIII-D Neutral Beam Ion Source and Neutralizer

    NASA Astrophysics Data System (ADS)

    Crowley, B.; Rauch, J.; Scoville, J. T.; Sharma, S. K.; Choksi, B.

    2015-11-01

    The neutral beam system is interesting in that it comprises two distinct low temperature plasmas. Firstly, the ion source is typically a filament or RF driven plasma from which ions are extracted by a high voltage accelerator grid system. Secondly the neutralizer is essentially a low temperature plasma system with the beam serving as the primary ionization source and the neutralizer walls serving as conducting boundaries. Atomic spectroscopy of Doppler shifted D-alpha light emanating from the fast atoms is studied to determine the composition of the source and the divergence of the beam. Molecular spectroscopy involves measuring fine structure in electron-vibrational rotational bands. The technique has applications in low temperature plasmas and here it is used to determine gas temperature in the neutralizer. We describe the experimental set-up and the physics model used to relate the spectroscopic data to the plasma parameters and we present results of recent experiments exploring how to increase neutralization efficiency. Supported by the US DOE under DE-FC02-04ER54698.

  3. Multispacecraft study of shock-flux rope interaction

    NASA Astrophysics Data System (ADS)

    Blanco-Cano, X.; Burgess, D.; Sundberg, T.; Kajdic, P.

    2016-12-01

    Interplanetary (IP) shocks can be driven in the solar wind by fast coronal mass ejections. These shocks play an active role in particle acceleration near the Sun and through the heliosphere, being associated to solar energetic particle (SEP) and energetic storm particle (ESP) events. IP shocks can interact with structures in the solar wind, and with planetary magnetospheres. In this work we study how the properties of an IP shock change when it interacts with a medium scale flux rope (FR). We use measurements from CLUSTER, WIND and ACE. These three spacecraft observed the shock-FR interaction at different stages of its evolution. We find that the shock-FR interaction locally changes the shock geometry, affecting ion injection processes, and the upstream and downstream regions. While WIND and ACE observed a quasi-perpendicular shock, CLUSTER crossed a quasi-parallel shock and a foreshock with a variety of ion distributions. The complexity of the ion foreshock can be explained by the dynamics of the shock transitioning from quasi-perpendicular to quasi-parallel, and the geometry of the magnetic field around the flux rope.

  4. Confinement degradation by Alfvén-eigenmode induced fast-ion transport in steady-state scenario discharges

    DOE PAGES

    Heidbrink, William W.; Ferron, John R.; Holcomb, Christopher T.; ...

    2014-08-21

    Here, analysis of neutron and fast-ion D α data from the DIII-D tokamak shows that Alfvén eigenmode activity degrades fast-ion confinement in many high β N, high q min, steady-state scenario discharges. (β N is the normalized plasma pressure and q min is the minimum value of the plasma safety factor.) Fast-ion diagnostics that are sensitive to the co-passing population exhibit the largest reduction relative to classical predictions. The increased fast-ion transport in discharges with strong AE activity accounts for the previously observed reduction in global confinement with increasing q min; however, not all high q min discharges show appreciablemore » degradation. Two relatively simple empirical quantities provide convenient monitors of these effects: (1) an 'AE amplitude' signal based on interferometer measurements and (2) the ratio of the neutron rate to a zero-dimensional classical prediction.« less

  5. Fusion yield rate recovery by escaping hot-spot fast ions in the neighboring fuel layer

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-02-01

    Free-streaming loss by fast ions can deplete the tail population in the hot spot of an inertial confinement fusion (ICF) target. Escaping fast ions in the neighboring fuel layer of a cryogenic target can produce a surplus of fast ions locally. In contrast to the Knudsen layer effect that reduces hot-spot fusion reactivity due to tail ion depletion, the inverse Knudsen layer effect increases fusion reactivity in the neighboring fuel layer. In the case of a burning ICF target in the presence of significant hydrodynamic mix which aggravates the Knudsen layer effect, the yield recovery largely compensates for the yield reduction. For mix-dominated sub-ignition targets, the yield reduction is the dominant process.

  6. Measurements of Turbulent Transport of Fast Ions in the LAPD

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Boehmer, H.; Heidbrink, W. W.; McWilliams, R.; Zhao, L.; Carter, T.; Leneman, D.; Vincena, S.

    2004-11-01

    Understanding the spatial transport induced by fluctuations is important to the confinement of magnetized plasmas. The paradox of fast ions being much better confined than thermal ions, i.e. the effective diffusion coefficient of fast ions being much smaller than that of thermal ions, has been observed experimentally [1], explained theoretically [2], and analyzed by simulations [3]. Gyroradius averaging and drift averaging are two predicted effects that are responsible for reduced fast-ion transport. Our goal is to quantitatively confirm these effects and make further exploration by measuring fast-ion transport as a function of gyroradius in the LArge Plasma Device (LAPD) plasma with well-characterized background fluctuations. A 3D gridded analyzer is used to measure the spatial profile of the beam produced by an ion gun launching 500 eV Argon ions [4]. Strong drift wave fluctuations are generated by inserting a disk into the center of the plasma. First results will be presented. [1] W. Heidbrink, G. Sadler, Nucl. Fusion, Vol. 34, p. 535 (1994); [2] P. C. Efthimion et al., Plasma Phys. and Cont. Nucl. Fusion Res., Vol. 1, p. 307 (1988); [3] G. Manfredi, R. Dendy, Phys. Rev. Lett. 76, p. 4360 (1996); [4] H. Boehmer et al. , Rev. Sci. Instrum. , Vol. 75, p. 1013 (2002)

  7. Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments

    DOE PAGES

    Waltz, Ronald E.; Bass, Eric M.; Heidbrink, William W.; ...

    2015-10-30

    Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code, used tomore » validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. Lastly, these results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.« less

  8. The Two Electron Oxidation of Cobalt Phthalocyanines by Thionyl Chloride: Implications for Lithium/Thionyl Chloride Batteries

    DTIC Science & Technology

    1989-10-20

    Phthalocyanines by Thionyl Chloride. Implications for Lithium /Thionyl Chloride Batteries By P.A. Bernstein and A.B.P. Lever* D T IC in NOV.0 3.1W9. M...Thionyl Chloride. Implications forI Lithium /Thionvl Chloride Batteries 12 PERSONAL AUTHOR(S) P.A. Bernstein and A.B.P. Lever* 13a. TYPE OF REPORT 13b...SUBJECT TERMS (Continue on reverse if necessary and identify by olock numoer) FIELD GROUP SUB-GROUP .’ Phthalocyanine," Lithium Battery, Thionyl

  9. Bernstein-Greene-Kruskal Modes in a Three-Dimensional Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.S.; Bhattacharjee, A.

    2005-12-09

    Bernstein-Greene-Kruskal modes in a three-dimensional (3D) unmagnetized plasma are constructed. It is shown that 3D solutions that depend only on energy do not exist. However, 3D solutions that depend on energy and additional constants of motion (such as angular momentum) do exist. Exact analytical as well as numerical solutions are constructed assuming spherical symmetry, and their properties are contrasted with those of 1D solutions. Possible extensions to solutions with cylindrical symmetry with or without a finite magnetic guide field are discussed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, J.; Max-Planck-Institut für Quantenoptik Garching, Hans-Kopfermann-Str. 1, 85748 Garching bei München; Bolton, P. R.

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies andmore » typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.« less

  11. Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Eugene S.; Cohen, Samuel A.; Welch, Dale R.

    We report on 3D-3V particle-in-cell simulations of fast-ion energy-loss rates in a cold, weakly-magnetized, weakly-coupled plasma where the electron gyroradius, ρe, is comparable to or less than the Debye length, λ De, and the fast-ion velocity exceeds the electron thermal velocity, a regime in which the electron response may be impeded. These simulations use explicit algorithms, spatially resolve ρ e and λ De, and temporally resolve the electron cyclotron and plasma frequencies. For mono-energetic dilute fast ions with isotropic velocity distributions, these scaling studies of the slowing-down time, τ s, versus fast-ion charge are in agreement with unmagnetized slowing-down theory;more » with an applied magnetic field, no consistent anisotropy between τs in the cross-field and field-parallel directions could be resolved. Scaling the fast-ion charge is confirmed as a viable way to reduce the required computational time for each simulation. In conclusion, the implications of these slowing down processes are described for one magnetic-confinement fusion concept, the small, advanced-fuel, field-reversed configuration device.« less

  12. Non-Maxwellian fast particle effects in gyrokinetic GENE simulations

    NASA Astrophysics Data System (ADS)

    Di Siena, A.; Görler, T.; Doerk, H.; Bilato, R.; Citrin, J.; Johnson, T.; Schneider, M.; Poli, E.; JET Contributors

    2018-04-01

    Fast ions have recently been found to significantly impact and partially suppress plasma turbulence both in experimental and numerical studies in a number of scenarios. Understanding the underlying physics and identifying the range of their beneficial effect is an essential task for future fusion reactors, where highly energetic ions are generated through fusion reactions and external heating schemes. However, in many of the gyrokinetic codes fast ions are, for simplicity, treated as equivalent-Maxwellian-distributed particle species, although it is well known that to rigorously model highly non-thermalised particles, a non-Maxwellian background distribution function is needed. To study the impact of this assumption, the gyrokinetic code GENE has recently been extended to support arbitrary background distribution functions which might be either analytical, e.g., slowing down and bi-Maxwellian, or obtained from numerical fast ion models. A particular JET plasma with strong fast-ion related turbulence suppression is revised with these new code capabilities both with linear and nonlinear gyrokinetic simulations. It appears that the fast ion stabilization tends to be less strong but still substantial with more realistic distributions, and this improves the quantitative power balance agreement with experiments.

  13. Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma

    DOE PAGES

    Evans, Eugene S.; Cohen, Samuel A.; Welch, Dale R.

    2018-04-05

    We report on 3D-3V particle-in-cell simulations of fast-ion energy-loss rates in a cold, weakly-magnetized, weakly-coupled plasma where the electron gyroradius, ρe, is comparable to or less than the Debye length, λ De, and the fast-ion velocity exceeds the electron thermal velocity, a regime in which the electron response may be impeded. These simulations use explicit algorithms, spatially resolve ρ e and λ De, and temporally resolve the electron cyclotron and plasma frequencies. For mono-energetic dilute fast ions with isotropic velocity distributions, these scaling studies of the slowing-down time, τ s, versus fast-ion charge are in agreement with unmagnetized slowing-down theory;more » with an applied magnetic field, no consistent anisotropy between τs in the cross-field and field-parallel directions could be resolved. Scaling the fast-ion charge is confirmed as a viable way to reduce the required computational time for each simulation. In conclusion, the implications of these slowing down processes are described for one magnetic-confinement fusion concept, the small, advanced-fuel, field-reversed configuration device.« less

  14. Excitation of a nonlinear plasma ion wake by intense energy sources with applications to the crunch-in regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, Aakash A.

    We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less

  15. Excitation of a nonlinear plasma ion wake by intense energy sources with applications to the crunch-in regime

    DOE PAGES

    Sahai, Aakash A.

    2017-08-23

    We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less

  16. Saturation mechanisms of backward stimulated Raman scattering in a one-dimensional geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friou, A.; Bénisti, D.; Gremillet, L.

    2013-10-15

    In this paper, we investigate the saturation mechanisms of backward stimulated Raman scattering (BSRS) induced by nonlinear kinetic effects. In particular, we stress the importance of accounting for both the nonlinear frequency shift of the electron plasma wave and the growth of sidebands, in order to understand what stops the coherent growth of Raman scattering. Using a Bernstein-Greene-Kruskal approach, we provide an estimate for the maximum amplitude reached by a BSRS-driven plasma wave after the phase of monotonic growth. This estimate is in very good agreement with the results from kinetic simulations of stimulated Raman scattering using both a Vlasovmore » and a Particle in Cell code. Our analysis, which may be generalized to a multidimensional geometry, should provide a means to estimate the limits of backward Raman amplification or the effectiveness of strategies that aim at strongly reducing Raman reflectivity in a fusion plasma.« less

  17. Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Budny, R.; Nazikian, R.; Heidbrink, W. W.; Kurki-Suonio, T.; Salmi, A.; Schaffer, M. J.; van Zeeland, M. A.; Shinohara, K.; Snipes, J. A.; Spong, D.

    2010-11-01

    The fast beam-ion confinement in the presence of a scaled mock-up of two Test Blanket Modules (TBM) for ITER was studied in DIII-D. The TBM on DIII-D has four vertically arranged protective carbon tiles with thermocouples placed at the back of each tile. Temperature increases of up to 200^oC were measured for the two tiles closest to the midplane when the TBM fields were present. These measurements agree qualitatively with results from the full orbit-following beam-ion code, SPIRAL, that predict beam-ion losses to be localized on the central two carbon tiles when the TBM fields present. Within the experimental uncertainties no significant change in the fast-ion population was found in the core of these plasmas which is consistent with SPIRAL analysis. These experiments indicate that the TBM fields do not affect the fast-ion confinement in a harmful way which is good news for ITER.

  18. Ion energy spread and current measurements of the rf-driven multicusp ion source

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.

    1997-03-01

    Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm2 can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges.

  19. A gradient-based model parametrization using Bernstein polynomials in Bayesian inversion of surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Gosselin, Jeremy M.; Dosso, Stan E.; Cassidy, John F.; Quijano, Jorge E.; Molnar, Sheri; Dettmer, Jan

    2017-10-01

    This paper develops and applies a Bernstein-polynomial parametrization to efficiently represent general, gradient-based profiles in nonlinear geophysical inversion, with application to ambient-noise Rayleigh-wave dispersion data. Bernstein polynomials provide a stable parametrization in that small perturbations to the model parameters (basis-function coefficients) result in only small perturbations to the geophysical parameter profile. A fully nonlinear Bayesian inversion methodology is applied to estimate shear wave velocity (VS) profiles and uncertainties from surface wave dispersion data extracted from ambient seismic noise. The Bayesian information criterion is used to determine the appropriate polynomial order consistent with the resolving power of the data. Data error correlations are accounted for in the inversion using a parametric autoregressive model. The inversion solution is defined in terms of marginal posterior probability profiles for VS as a function of depth, estimated using Metropolis-Hastings sampling with parallel tempering. This methodology is applied to synthetic dispersion data as well as data processed from passive array recordings collected on the Fraser River Delta in British Columbia, Canada. Results from this work are in good agreement with previous studies, as well as with co-located invasive measurements. The approach considered here is better suited than `layered' modelling approaches in applications where smooth gradients in geophysical parameters are expected, such as soil/sediment profiles. Further, the Bernstein polynomial representation is more general than smooth models based on a fixed choice of gradient type (e.g. power-law gradient) because the form of the gradient is determined objectively by the data, rather than by a subjective parametrization choice.

  20. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as compared to models that do not include electron-impact ionisation. We estimate infrared emissions from H3+, and while, in an H/H2/He atmosphere, these are larger from planets orbiting close to more active stars, they still appear too low to be detected with current observatories.

  1. Suppression of Alfvénic modes through modification of the fast ion distribution

    NASA Astrophysics Data System (ADS)

    Fredrickson, Eric

    2017-10-01

    Experiments on NSTX-U have shown for the first time that small amounts of high pitch-angle, low ρL beam ions can strongly suppress the counter-propagating Global Alfvén Eigenmodes (GAE) [1]. GAE have been implicated in the redistribution of fast ions and modification of the electron power balance in previous experiments on NSTX. The ability to predict the stability of Alfvén modes, and development of methods to control them, is important for fusion reactors like ITER, which like NSTX, will be heated with a large population of non-thermal, super-Alfvénic ions (unlike the normal operation of conventional tokamaks). The suppression of the GAE by adding a small population of high-pitch resonant fast ions is qualitatively consistent with an analytic model of the Doppler-shifted ion-cyclotron resonance drive responsible for GAE instability [2]. The model predicts that fast ions with k⊥ρL <1.9 are stabilizing, which is in good agreement with the experimental observations. A quantitative analysis was done using the HYM stability code [3] of one of the nearly 100 identified examples of GAE suppression. The simulations find remarkable agreement with the observed mode numbers and frequencies of the unstable GAE prior to suppression. Adding the population of high pitch-angle, low ρL beam ions to the HYM fast ion distribution function predicts complete suppression of the GAE. TRANSP/NUBEAM calculations for the example analyzed with HYM suggest that the additional beam source increases the population of resonant fast ions with k⊥ρL <1.9 by roughly a factor of four. Work supported by U.S. DOE Contract DE-AC02-09CH11466.

  2. The transparency trap.

    PubMed

    Bernstein, Ethan

    2014-10-01

    To promote accountability, productivity, and shared learning, many organizations create open work environments and gather reams of data on how individuals spend their time. A few years ago, HBS professor Ethan Bernstein set out to find empirical evidence that such approaches improve organizational performance. What he discovered is that this kind of transparency often has an unintended consequence: It can leave employees feeling vulnerable and exposed. When that happens, they conceal any conduct that deviates from the norm so that they won't have to explain it. Unrehearsed, experimental behaviors sometimes stop altogether. But Bernstein also discovered organizations that had established zones of privacy within open environments by setting four types of boundaries: around teams, between feedback and evaluation, between decision rights and improvement rights, and around periods of experimentation. Moreover, across several studies, the companies that had done all this were the ones that consistently got the most creative, efficient, and thoughtful work from their employees. Bernstein's conclusion? By balancing transparency and privacy, organizations can capture the benefits of both, and encourage just the right amount of "positive deviance" needed to increase innovation and productivity.

  3. Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Lara, B.M.; Moya-Cessa, H.; Klimov, A.B.

    2005-02-01

    We show that, if one combines the Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser, additional series of collapses and revivals of the vibrational state of the ion can be generated.

  4. High-Energy Electron Shell in ECR Ion Source:

    NASA Astrophysics Data System (ADS)

    Niimura, M. G.; Goto, A.; Yano, Y.

    1997-05-01

    As an injector of cyclotrons and RFQ linacs, ECR ion source (ECRIS) is expected to deliver highly charged ions (HCI) at high beam-current (HBC). Injections of light gases and supplementary electrons have been employed for enhancement of HCI and HBC, respectively. Further amelioration of the performance may be feasible by investigating the hot-electron ring inside an ECRIS. Its existence has been granted because of the MeV of Te observable via X-ray diagnostics. However, its location, acceleration mechanism, and effects on the performance are not well known.We found them by deriving the radially negative potential distribution for an ECRIS from measured endloss-current data. It was evidenced from a hole-burning on the parabolic potential profile (by uniformly distributed warm-electron space charges of 9.5x10^5cm-3) and from a local minimum of the electrostatically-trapped ion distribution. A high-energy electron shell (HEES) was located right on the ECR-radius of 6 cm with shell-halfwidth of 1 cm. Such a thin shell around core plasma can only be generated by the Sadeev-Shapiro or v_phxBz acceleration mechanism that can raise Te up to a relativistic value. Here, v_ph is the phase velocity of ES Bernstein waves propagating backwards against incident microwave and Bz the axial mirror magnetic field. The HEES carries diamagnetic current which reduces the core magnetic pressure, thereby stabilizing the ECR surface against driftwave instabilities similarly to gas-mixing.

  5. Alfvén cascades in JET discharges with NBI-heating

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Alper, B.; Baranov, Yu. F.; Berk, H. L.; Borba, D.; Boswell, C.; Breizman, B. N.; Challis, C. D.; de Baar, M.; DeLa Luna, E.; Evangelidis, E. A.; Hacquin, S.; Hawkes, N. C.; Kiptily, V. G.; Pinches, S. D.; Sandquist, P.; Voitsekhovich, I.; Young, N. P.; Contributors, JET-EFDA

    2006-10-01

    Alfvén cascade (AC) eigenmodes excited by energetic ions accelerated with ion-cyclotron resonance heating in JET reversed-shear discharges are studied experimentally in high-density plasmas fuelled by neutral beam injection (NBI) and by deuterium pellets. The recently developed O-mode interferometry technique and Mirnov coils are employed for detecting ACs. The spontaneous improvements in plasma confinement (internal transport barrier (ITB) triggering events) and grand ACs are found to correlate within 0.2 s in JET plasmas with densities up to ~5 × 1019 m-3. Measurements with high time resolution show that ITB triggering events happen before 'grand' ACs in the majority of JET discharges, indicating that this improvement in confinement is likely to be associated with the decrease in the density of rational magnetic surfaces just before qmin(t) passes an integer value. Experimentally observed ACs excited by sub-Alfvénic NBI-produced ions with parallel velocities as low as V||NBI ap 0.2 · VA are found to be most likely associated with the geodesic acoustic effect that significantly modifies the shear-Alfvén dispersion relation at low frequency. Experiments were performed with a tritium NBI-blip (short time pulse) into JET plasmas with NBI-driven ACs. Although considerable NBI-driven AC activity was present, good agreement was found both in the radial profile and in the time evolution of DT neutrons between the neutron measurements and the TRANSP code modelling based on the Coulomb collision model, indicating the ACs have at most a small effect on fast particle confinement in this case.

  6. Characteristics of Ions Emission from Ultrashort Laser Produced Plasma

    PubMed Central

    Elsied, Ahmed M.; Termini, Nicholas C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2016-01-01

    The dynamic characteristics of the ions emitted from ultrashort laser interaction with materials were studied. A series of successive experiments were conducted for six different elements (C, Al, Cu, Mo, Gd, and W) using 40 fs, 800 nm Ti: Sapphire laser. Time-of-flight (TOF) ion profile was analyzed and charge emission dependencies were investigated. The effects of incident laser interaction with each element were studied over a wide range of laser fluences (0.8 J/cm2 to 24 J/cm2) corresponding to laser intensities (2.0 × 1013 W/cm2 to 6.0 × 1014 W/cm2). The dependencies of the angular resolved ion flux and energy were also investigated. The TOF ion profile exhibits two peaks corresponding to a fast and a slow ion regime. The slow ions emission was the result of thermal vaporization while fast ions emission was due to time dependent ambipolar electric field. A theoretical model is proposed to predict the total ion flux emitted during femtosecond laser interaction that depends on laser parameters, material properties, and plume hydrodynamics. Incident laser fluence directly impacts average charge state and in turn affects the ion flux. Slow ions velocity exhibited different behavior from fast ions velocity. The fast ions energy and flux were found to be more collimated. PMID:27905553

  7. Development towards a fast ion loss detector for the reversed field pinch.

    PubMed

    Bonofiglo, P J; Anderson, J K; Almagri, A F; Kim, J; Clark, J; Capecchi, W; Sears, S H; Egedal, J

    2016-11-01

    A fast ion loss detector has been constructed and implemented on the Madison Symmetric Torus (MST) to investigate energetic ion losses and transport due to energetic particle and MHD instabilities. The detector discriminates particle orbits solely on pitch and consists of two thin-foil, particle collecting plates that are symmetric with respect to the device aperture. One plate collects fast ion signal, while the second aids in the minimization of background and noise effects. Initial measurements are reported along with suggestions for the next design phase of the detector.

  8. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W. L.; Qiao, B., E-mail: bqiao@pku.edu.cn; Huang, T. W.

    2016-07-15

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulsesmore » at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.« less

  9. New Insight into Short-Wavelength Solar Wind Fluctuations from Vlasov Theory

    NASA Technical Reports Server (NTRS)

    Sahraoui, Fouad; Belmont, G.; Goldstein, M. L.

    2012-01-01

    The nature of solar wind (SW) turbulence below the proton gyroscale is a topic that is being investigated extensively nowadays, both theoretically and observationally. Although recent observations gave evidence of the dominance of kinetic Alfven waves (KAWs) at sub-ion scales with omega < omega(sub ci), other studies suggest that the KAW mode cannot carry the turbulence cascade down to electron scales and that the whistler mode (i.e., omega > omega (sub ci)) is more relevant. Here, we study key properties of the short-wavelength plasma modes under limited, but realistic, SW conditions, Typically Beta(sub i) approx. > Beta (sub e) 1 and for high oblique angles of propagation 80 deg <= Theta (sub kB) < 90 deg as observed from the Cluster spacecraft data. The linear properties of the plasma modes under these conditions are poorly known, which contrasts with the well-documented cold plasma limit and/or moderate oblique angles of propagation (Theta (sub kB) < 80 deg). Based on linear solutions of the Vlasov kinetic theory, we discuss the relevance of each plasma mode (fast, Bernstein, KAW, whistler) in carrying the energy cascade down to electron scales. We show, in particular, that the shear Alfven mode (known in the magnetohydrodynamic limit) extends at scales kappa rho (sub i) approx. > 1 to frequencies either larger or smaller than omega (sub ci), depending on the anisotropy kappa (parallel )/ kappa(perpendicular). This extension into small scales is more readily called whistler (omega > omega (sub ci)) or KAW (omega < omega (sub ci)) although the mode is essentially the same. This contrasts with the well-accepted idea that the whistler branch always develops as a continuation at high frequencies of the fast magnetosonic mode. We show, furthermore, that the whistler branch is more damped than the KAW one, which makes the latter the more relevant candidate to carry the energy cascade down to electron scales. We discuss how these new findings may facilitate resolution of the controversy concerning the nature of the small-scale turbulence, and we discuss the implications for present and future spacecraft wave measurements in the SW.

  10. Kinetic-MHD hybrid simulation of fishbone modes excited by fast ions on the experimental advanced superconducting tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Pei, Youbin; Xiang, Nong; Hu, Youjun; Todo, Y.; Li, Guoqiang; Shen, Wei; Xu, Liqing

    2017-03-01

    Kinetic-MagnetoHydroDynamic hybrid simulations are carried out to investigate fishbone modes excited by fast ions on the Experimental Advanced Superconducting Tokamak. The simulations use realistic equilibrium reconstructed from experiment data with the constraint of the q = 1 surface location (q is the safety factor). Anisotropic slowing down distribution is used to model the distribution of the fast ions from neutral beam injection. The resonance condition is used to identify the interaction between the fishbone mode and the fast ions, which shows that the fishbone mode is simultaneously in resonance with the bounce motion of the trapped particles and the transit motion of the passing particles. Both the passing and trapped particles are important in destabilizing the fishbone mode. The simulations show that the mode frequency chirps down as the mode reaches the nonlinear stage, during which there is a substantial flattening of the perpendicular pressure of fast ions, compared with that of the parallel pressure. For passing particles, the resonance remains within the q = 1 surface, while, for trapped particles, the resonant location moves out radially during the nonlinear evolution. In addition, parameter scanning is performed to examine the dependence of the linear frequency and growth rate of fishbones on the pressure and injection velocity of fast ions.

  11. Action-angle formulation of generalized, orbit-based, fast-ion diagnostic weight functions

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.

    2017-09-01

    Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnostic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-space weight functions are discretized, a linear equation relating the fast-ion density and the expected diagnostic signal is formed. In a technique known as velocity-space tomography, many measurements can be combined to create an ill-conditioned system of linear equations that can be solved using various computational methods. However, when velocity-space weight functions (which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostic measurements. In this work, we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-α diagnostics are also shown.

  12. Advanced ST plasma scenario simulations for NSTX

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Synakowski, E. J.; Bell, M. E.; Gates, D. A.; Harvey, R. W.; Kaye, S. M.; Mau, T. K.; Menard, J.; Phillips, C. K.; Taylor, G.; Wilson, R.; NSTX Research Team

    2005-08-01

    Integrated scenario simulations are done for NSTX that address four primary objectives for developing advanced spherical torus (ST) configurations: high β and high βN inductive discharges to study all aspects of ST physics in the high β regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high β for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX and non-solenoidal startup and plasma current rampup. The simulations done here use the tokamak simulation code and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam deposition profile and other characteristics. CURRAY is used to calculate the high harmonic fast wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with βT ap 40% at βN's of 7.7-9, IP = 1.0 MA and BT = 0.35 T. The plasma is 100% non-inductive and has a flattop of four skin times. The resulting global energy confinement corresponds to a multiplier of H98(y),2 = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control and early heating/H-mode transition for producing and optimizing these plasma configurations.

  13. Nanomaterials for renewable energy production and storage.

    PubMed

    Chen, Xiaobo; Li, Can; Grätzel, Michaël; Kostecki, Robert; Mao, Samuel S

    2012-12-07

    Over the past decades, there have been many projections on the future depletion of the fossil fuel reserves on earth as well as the rapid increase in green-house gas emissions. There is clearly an urgent need for the development of renewable energy technologies. On a different frontier, growth and manipulation of materials on the nanometer scale have progressed at a fast pace. Selected recent and significant advances in the development of nanomaterials for renewable energy applications are reviewed here, and special emphases are given to the studies of solar-driven photocatalytic hydrogen production, electricity generation with dye-sensitized solar cells, solid-state hydrogen storage, and electric energy storage with lithium ion rechargeable batteries.

  14. Suppression of energetic particle driven instabilities with HHFW heating

    DOE PAGES

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; ...

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fastmore » Wave heating.« less

  15. Fast-Cycle Curriculum Development Strategies for E-Business Programs: The Bentley College Experience.

    ERIC Educational Resources Information Center

    Fedorowicz, Jane; Gogan, Janis L.

    2001-01-01

    Presents two types of fast-cycle curriculum development processes: research driven and stakeholder driven. Illustrates their application in the Bentley College business school's new course modules, elective courses, and graduate program on electronic commerce. (Contains 19 references.) (SK)

  16. Sawtooth control in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Angioni, C.; Budny, R. V.; Buttery, R. J.; Coda, S.; Eriksson, L.-G.; Gimblett, C. G.; Goodman, T. P.; Hastie, R. J.; Henderson, M. A.; Koslowski, H. R.; Mantsinen, M. J.; Martynov, An; Mayoral, M.-L.; Mück, A.; Nave, M. F. F.; Sauter, O.; Westerhof, E.; Contributors, JET–EFDA

    2005-12-01

    Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclotron heating in order to locally increase the current penetration time in the core. The latter is also achieved in various machines by depositing electron cyclotron current drive or ion cyclotron current drive close to the q = 1 rational surface. Crucially, localized current drive also succeeds in destabilizing sawteeth which are otherwise stabilized by a co-existing population of energetic trapped ions in the core. In addition, a recent reversed toroidal field campaign at JET demonstrates that counter-neutral beam injection (NBI) results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and the direction of injection also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based neutral beam injection (NNBI) heating planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted that a finite orbit effect of asymmetrically distributed circulating ions could strongly modify sawtooth stability. Furthermore, NNBI driven current with non-monotonic profile could significantly slow down the evolution of the safety factor in the core, thereby delaying sawteeth.

  17. Neoclassical parallel flow calculation in the presence of external parallel momentum sources in Heliotron J

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioka, K.; Nakamura, Y.; Nishimura, S.

    A moment approach to calculate neoclassical transport in non-axisymmetric torus plasmas composed of multiple ion species is extended to include the external parallel momentum sources due to unbalanced tangential neutral beam injections (NBIs). The momentum sources that are included in the parallel momentum balance are calculated from the collision operators of background particles with fast ions. This method is applied for the clarification of the physical mechanism of the neoclassical parallel ion flows and the multi-ion species effect on them in Heliotron J NBI plasmas. It is found that parallel ion flow can be determined by the balance between themore » parallel viscosity and the external momentum source in the region where the external source is much larger than the thermodynamic force driven source in the collisional plasmas. This is because the friction between C{sup 6+} and D{sup +} prevents a large difference between C{sup 6+} and D{sup +} flow velocities in such plasmas. The C{sup 6+} flow velocities, which are measured by the charge exchange recombination spectroscopy system, are numerically evaluated with this method. It is shown that the experimentally measured C{sup 6+} impurity flow velocities do not contradict clearly with the neoclassical estimations, and the dependence of parallel flow velocities on the magnetic field ripples is consistent in both results.« less

  18. Ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Rosenberg, Adam Lewis

    Ion absorption of the high harmonic fast wave in a spherical torus is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent NSTX shots has revealed that under some conditions when neutral beam and RF power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the RF-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is an RF interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering is presented, along with results from the TRANSP transport analysis code, ray-tracing codes HPRT and CURRAY, full-wave code and AORSA, quasilinear code CQL3D, and ion loss codes EIGOL and CONBEAM.

  19. Fast ionized X-ray absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample.more » The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.« less

  1. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less

  2. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2015-06-24

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less

  3. Fast Lithium-Ion Transportation in Crystalline Polymer Electrolytes.

    PubMed

    Fu, Xiao-Bin; Yang, Guang; Wu, Jin-Ze; Wang, Jia-Chen; Chen, Qun; Yao, Ye-Feng

    2018-01-05

    Fast lithium-ion transportation is found in the crystalline polymer electrolytes, α-CD-PEO n /Li + (n=12, 40), prepared by self-assembly of α-cyclodextrin (CD), polyethylene oxide (PEO) and Li + salts. A detailed solid-state NMR study combined with the X-ray diffraction technique reveals the unique structural features of the samples, that is, a) the tunnel structure formed by the assembled CDs, providing the ordered long-range pathway for Li + ion transportation; b) the all-trans conformational sequence of the PEO chains in the tunnels, attenuating significantly the coordination between Li + and the EO segments. The origin of the fast lithium-ion transportation has been attributed to these unique structural features. This work demonstrates the first example in solid polymer electrolytes (SPEs) for "creating" fast ion transportation through material design and will find potential applications in the design of new ionconducting SPE materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Correlation between hypersensitivity induced by esophageal acid infusion and the baseline impedance level in patients with suspected gastroesophageal reflux.

    PubMed

    Seo, A Young; Shin, Cheol Min; Kim, Nayoung; Yoon, Hyuk; Park, Young Soo; Lee, Dong Ho

    2015-07-01

    To evaluate the relevance between the pH parameters and baseline impedance level or esophageal hypomotility in patients with suspected gastroesophageal reflux. The recordings of 51 patients with heartburn, acid regurgitation, globus or noncardiac chest pain were analyzed. Evaluation included a 24-h multichannel intraluminal impedance-pH test while on off-proton pump inhibitor therapy over 1 week, high-resolution manometry and Bernstein test. Mean baseline impedance level at the most distal portion of the impedance channel was assessed manually. Esophageal hypomotility was evaluated using transitional zone defect (TZD) and distal break (DB) length measurement. In the study subjects (n = 51), 6 had a DeMeester score of more than 14.7 and 14 had a positive symptom index. The Bernstein test was positive in ten patients. The baseline impedance level was inversely correlated with the acid exposure time % (r = -0.660, P < 0.001). Also, all reflux and weakly acid reflux time % measured by impedance monitoring showed a weak correlation with TZD + DB length (r = 0.327 and 0.324, P = 0.019 and 0.020, respectively). Although a positive Bernstein test has no relevance for the acid exposure time or acid-related symptoms as represented by the DeMeester score or symptom index, the baseline impedance level was significantly lower in patients with a positive Bernstein test than in those with a negative one (2,628.4 ± 862.7 vs. 1,752.2 ± 611.1 Ω, P = 0.004). A lower baseline impedance level is closely related to increased esophageal acid exposure. Hypersensitivity induced by esophageal acid infusion might be attributed to acid-induced mucosal changes of the esophagus.

  5. Numerical simulation of exploding pusher targets

    NASA Astrophysics Data System (ADS)

    Atzeni, S.; Rosenberg, M. J.; Gatu Johnson, M.; Petrasso, R. D.

    2017-10-01

    Exploding pusher targets, i.e. gas-filled large aspect-ratio glass or plastic shells, driven by a strong laser-generated shock, are widely used as pulsed sources of neutrons and fast charged particles. Recent experiments on exploding pushers provided evidence for the transition from a purely fluid behavior to a kinetic one. Indeed, fluid models largely overpredict yield and temperature as the Knudsen number Kn (ratio of ion mean-free path to compressed gas radius) is comparable or larger than one. At Kn = 0.3 - 1, fluid codes reasonably estimate integral quantities as yield and neutron-averaged temperatures, but do not reproduce burn radii, burn profiles and DD/DHe3 yield ratio. This motivated a detailed simulation study of intermediate-Kn exploding pushers. We will show how simulation results depend on models for laser-interaction, electron conductivity (flux-limited local vs nonlocal), viscosity (physical vs artificial), and ion mixing. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), and Eurofusion Project AWP17-ENR-IFE-CEA-01.

  6. Precursor ion scan driven fast untargeted screening and semi-determination of caffeoylquinic acid derivatives in Cynara scolymus L.

    PubMed

    Shen, Qing; Lu, Yanbin; Dai, Zhiyuan; Cheung, Hon-Yeung

    2015-01-01

    A precursor ion scan (PIS) technique based strategy was developed for rapid screening and semi-determination of caffeoylquinic acid derivatives (CADs) in artichoke (Cynara scolymus L.) using ultra-performance liquid chromatography (UPLC) coupled with tandem mass spectrometry. 1,5-Dicaffeoylquinic acid and 5-caffeoylquinic acid were used for studying the fragmentation behaviour of two classes of CADs, setting m/z 191 as a diagnostic moiety. When it was applied to artichoke sample, ten CADs were detected and elucidated in a single PIS run. Furthermore, method validation was implemented including: specificity (no interference), linearity (≥0.9993), limit of detection (LOD<0.12 ng mL(-1)) and limit of quantification (LOQ<0.25 ng mL(-1)), precision (RSD≤3.6), recovery (91.4-95.9%) and stability (at least 12 h). This approach was proven to be a powerful, selective and sensitive tool for rapid screening and semi-determination of untargeted components in natural products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Expansion of a radially symmetric blast shell into a uniformly magnetized plasma

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Moreno, Q.; Doria, D.; Romagnani, L.; Sarri, G.; Folini, D.; Walder, R.; Bret, A.; d'Humières, E.; Borghesi, M.

    2018-05-01

    The expansion of a thermal pressure-driven radial blast shell into a dilute ambient plasma is examined with two-dimensional PIC simulations. The purpose is to determine if laminar shocks form in a collisionless plasma which resemble their magnetohydrodynamic counterparts. The ambient plasma is composed of electrons with the temperature of 2 keV and cool fully ionized nitrogen ions. It is permeated by a spatially uniform magnetic field. A forward shock forms between the shocked ambient medium and the pristine ambient medium, which changes from an ion acoustic one through a slow magnetosonic one to a fast magnetosonic shock with increasing shock propagation angles relative to the magnetic field. The slow magnetosonic shock that propagates obliquely to the magnetic field changes into a tangential discontinuity for a perpendicular propagation direction, which is in line with the magnetohydrodynamic model. The expulsion of the magnetic field by the expanding blast shell triggers an electron-cyclotron drift instability.

  8. One-volt-driven superfast polymer actuators based on single-ion conductors

    PubMed Central

    Kim, Onnuri; Kim, Hoon; Choi, U. Hyeok; Park, Moon Jeong

    2016-01-01

    The key challenges in the advancement of actuator technologies related to artificial muscles include fast-response time, low operation voltages and durability. Although several researchers have tackled these challenges over the last few decades, no breakthrough has been made. Here we describe a platform for the development of soft actuators that moves a few millimetres under 1 V in air, with a superfast response time of tens of milliseconds. An essential component of this actuator is the single-ion-conducting polymers that contain well-defined ionic domains through the introduction of zwitterions; this achieved an exceptionally high dielectric constant of 76 and a 300-fold enhancement in ionic conductivity. Moreover, the actuator demonstrated long-term durability, with negligible changes in the actuator stroke over 20,000 cycles in air. Owing to its low-power consumption (only 4 mW), we believe that this actuator could pave the way for cutting-edge biomimetic technologies in the future. PMID:27857067

  9. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Joong-Won, E-mail: jshin@govst.edu; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872; Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate,more » rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.« less

  10. A programmable five qubit quantum computer using trapped atomic ions

    NASA Astrophysics Data System (ADS)

    Debnath, Shantanu

    2017-04-01

    In order to harness the power of quantum information processing, several candidate systems have been investigated, and tailored to demonstrate only specific computations. In my thesis work, we construct a general-purpose multi-qubit device using a linear chain of trapped ion qubits, which in principle can be programmed to run any quantum algorithm. To achieve such flexibility, we develop a pulse shaping technique to realize a set of fully connected two-qubit rotations that entangle arbitrary pairs of qubits using multiple motional modes of the chain. Following a computation architecture, such highly expressive two-qubit gates along with arbitrary single-qubit rotations can be used to compile modular universal logic gates that are effected by targeted optical fields and hence can be reconfigured according to any algorithm circuit programmed in the software. As a demonstration, we run the Deutsch-Jozsa and Bernstein-Vazirani algorithm, and a fully coherent quantum Fourier transform, that we use to solve the `period finding' and `quantum phase estimation' problem. Combining these results with recent demonstrations of quantum fault-tolerance, Grover's search algorithm, and simulation of boson hopping establishes the versatility of such a computation module that can potentially be connected to other modules for future large-scale computations.

  11. The Material Plasma Exposure eXperiment (MPEX)

    NASA Astrophysics Data System (ADS)

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Canik, J.; Caughman, J. B. O.; Duckworth, R. C.; Goulding, R. H.; Hillis, D. L.; Lore, J. D.; Lumsdaine, A.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Shaw, G. C.; Luo, G.-N.

    2014-10-01

    Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The Material Plasma Exposure eXperiment (MPEX) will address this regime with electron temperatures of 1--10 eV and electron densities of 1021--1020 m-3. The resulting heat fluxes are about 10 MW/m2. MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH). Preliminary modeling has been used for pre-design studies of MPEX. MPEX will be capable to expose neutron irradiated samples. In this concept targets will be irradiated in ORNL's High Flux Isotope Reactor (HFIR) or possibly at the Spallation Neutron Source (SNS) and then subsequently (after a sufficient long cool-down period) exposed to fusion reactor relevant plasmas in MPEX. The current state of the pre-design of MPEX including the concept of handling irradiated samples will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  12. Fast-Ion Spectrometry of ICF Implosions and Laser-Foil Experiments at the Omega and MTW Laser Facilities

    NASA Astrophysics Data System (ADS)

    Sinenian, Nareg

    Fast ions generated from laser-plasma interactions (LPI) have been used to study inertial confinement fusion (ICF) implosions and laser-foil interactions. LPI, which vary in nature depending on the wavelength and intensity of the driver, generate hot electrons with temperatures ranging from tens to thousands of kilo-electron-volts. These electrons, which accelerate the ions measured in this work, can be either detrimental or essential to implosion performance depending on the ICF scheme employed. In direct-drive hot-spot ignition, hot electrons can preheat the fuel and raise the adiabat, potentially degrading compression in the implosion. The amount of preheat depends on the hot-electron source characteristics and the time duration over which electrons can deposit energy into the fuel. This time duration is prescribed by the evolution of a sheath that surrounds the implosion and traps electrons. Fast-ion measurements have been used to develop a circuit model that describes the time decay of the sheath voltage for typical OMEGA implosions. In the context of electron fast ignition, the produced fast ions are considered a loss channel that has been characterized for the first time. These ions have also been used as a diagnostic tool to infer the temperature of the hot electrons in fast-ignition experiments. It has also been shown that the hot-electron temperature scales with laser intensity as expected, but is enhanced by a factor of 2-3. This enhancement is possibly due to relativistic effects and leads to poor implosion performance. Finally, fast-ion generation by ultra-intense lasers has also been studied using planar targets. The mean and maximum energies of protons and heavy ions has been measured, and it has been shown that a two-temperature hot-electron distribution affects the energies of heavy ions and protons. This work is important for advanced fusion concepts that utilize ion beams and also has applications in medicine. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  13. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    DOE PAGES

    Van Zeeland, Michael A.; Ferraro, Nathaniel M.; Grierson, Brian A.; ...

    2015-06-26

    In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotatingmore » $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $$\\rho >0.7$$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion $${{\\text{D}}_{\\alpha}}$$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile was allowed to recover. Finally, the role of resonances between fast ion drift motion and the applied 3D fields in the context of selectively targeting regions of fast ion phase space is also discussed.« less

  14. DIII-D research advancing the scientific basis for burning plasmas and fusion energy

    NASA Astrophysics Data System (ADS)

    W. M. SolomonThe DIII-D Team

    2017-10-01

    The DIII-D tokamak has addressed key issues to advance the physics basis for ITER and future steady-state fusion devices. In work related to transient control, magnetic probing is used to identify a decrease in ideal stability, providing a basis for active instability sensing. Improved understanding of 3D interactions is emerging, with RMP-ELM suppression correlated with exciting an edge current driven mode. Should rapid plasma termination be necessary, shattered neon pellet injection has been shown to be tunable to adjust radiation and current quench rate. For predictive simulations, reduced transport models such as TGLF have reproduced changes in confinement associated with electron heating. A new wide-pedestal variant of QH-mode has been discovered where increased edge transport is found to allow higher pedestal pressure. New dimensionless scaling experiments suggest an intrinsic torque comparable to the beam-driven torque on ITER. In steady-state-related research, complete ELM suppression has been achieved that is relatively insensitive to q 95, having a weak effect on the pedestal. Both high-q min and hybrid steady-state plasmas have avoided fast ion instabilities and achieved increased performance by control of the fast ion pressure gradient and magnetic shear, and use of external control tools such as ECH. In the boundary, experiments have demonstrated the impact of E× B drifts on divertor detachment and divertor asymmetries. Measurements in helium plasmas have found that the radiation shortfall can be eliminated provided the density near the X-point is used as a constraint in the modeling. Experiments conducted with toroidal rings of tungsten in the divertor have indicated that control of the strike-point flux is important for limiting the core contamination. Future improvements are planned to the facility to advance physics issues related to the boundary, transients and high performance steady-state operation.

  15. DIII-D research advancing the scientific basis for burning plasmas and fusion energy

    DOE PAGES

    Solomon, Wayne M.

    2017-07-12

    The DIII-D tokamak has addressed key issues to advance the physics basis for ITER and future steady-state fusion devices. In work related to transient control, magnetic probing is used to identify a decrease in ideal stability, providing a basis for active instability sensing. Improved understanding of 3D interactions is emerging, with RMP-ELM suppression correlated with exciting an edge current driven mode. Should rapid plasma termination be necessary, shattered neon pellet injection has been shown to be tunable to adjust radiation and current quench rate. For predictive simulations, reduced transport models such as TGLF have reproduced changes in confinement associated withmore » electron heating. A new wide- pedestal variant of QH-mode has been discovered where increased edge transport is found to allow higher pedestal pressure. New dimensionless scaling experiments suggest an intrinsic torque comparable to the beam-driven torque on ITER. In steady-state-related research, complete ELM suppression has been achieved that is relatively insensitive to q 95, having a weak effect on the pedestal. Both high-q min and hybrid steady-state plasmas have avoided fast ion instabilities and achieved increased performance by control of the fast ion pressure gradient and magnetic shear, and use of external control tools such as ECH. In the boundary, experiments have demonstrated the impact of E × B drifts on divertor detachment and divertor asymmetries. Measurements in helium plasmas have found that the radiation shortfall can be eliminated provided the density near the X-point is used as a constraint in the modeling. Experiments conducted with toroidal rings of tungsten in the divertor have indicated that control of the strike-point flux is important for limiting the core contamination. In conclusion, future improvements are planned to the facility to advance physics issues related to the boundary, transients and high performance steady-state operation.« less

  16. DIII-D research advancing the scientific basis for burning plasmas and fusion energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Wayne M.

    The DIII-D tokamak has addressed key issues to advance the physics basis for ITER and future steady-state fusion devices. In work related to transient control, magnetic probing is used to identify a decrease in ideal stability, providing a basis for active instability sensing. Improved understanding of 3D interactions is emerging, with RMP-ELM suppression correlated with exciting an edge current driven mode. Should rapid plasma termination be necessary, shattered neon pellet injection has been shown to be tunable to adjust radiation and current quench rate. For predictive simulations, reduced transport models such as TGLF have reproduced changes in confinement associated withmore » electron heating. A new wide- pedestal variant of QH-mode has been discovered where increased edge transport is found to allow higher pedestal pressure. New dimensionless scaling experiments suggest an intrinsic torque comparable to the beam-driven torque on ITER. In steady-state-related research, complete ELM suppression has been achieved that is relatively insensitive to q 95, having a weak effect on the pedestal. Both high-q min and hybrid steady-state plasmas have avoided fast ion instabilities and achieved increased performance by control of the fast ion pressure gradient and magnetic shear, and use of external control tools such as ECH. In the boundary, experiments have demonstrated the impact of E × B drifts on divertor detachment and divertor asymmetries. Measurements in helium plasmas have found that the radiation shortfall can be eliminated provided the density near the X-point is used as a constraint in the modeling. Experiments conducted with toroidal rings of tungsten in the divertor have indicated that control of the strike-point flux is important for limiting the core contamination. In conclusion, future improvements are planned to the facility to advance physics issues related to the boundary, transients and high performance steady-state operation.« less

  17. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leyser, T.B.

    1994-06-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. Themore » electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission.« less

  18. A tangentially viewing fast ion D-alpha diagnostic for NSTX.

    PubMed

    Bortolon, A; Heidbrink, W W; Podestà, M

    2010-10-01

    A second fast ion D-alpha (FIDA) installation is planned at NSTX to complement the present perpendicular viewing FIDA diagnostics. Following the present diagnostic scheme, the new diagnostic will consist of two instruments: a spectroscopic diagnostic that measures fast ion spectra and profiles at 16 radial points with 5-10 ms resolution and a system that uses a band pass filter and photomultiplier to measure changes in FIDA light with 50 kHz sampling rate. The new pair of FIDA instruments will view the heating beams tangentially. The viewing geometry minimizes spectral contamination by beam emission or edge sources of background emission. The improved velocity-space resolution will provide detailed information about neutral-beam current drive and about fast ion acceleration and transport by injected radio frequency waves and plasma instabilities.

  19. Fusion Energy and Stopping Power in a Degenerate DT Pellet Driven by a Laser-Accelerated Proton Beam

    NASA Astrophysics Data System (ADS)

    Mehrangiz, M.; Ghasemizad, A.; Jafari, S.; Khanbabaei, B.

    2016-06-01

    In this paper, we have improved the fast ignition scheme in order to have more authority needed for high-energy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we employ a laser-to-ion converter foil as a scheme for generating energetic ion beams to ignite the fusion fuel. We find the favorable intensity and wavelength of incident laser by evaluating the laser-proton conversion gain. By calculating the source-target distance, proton beam power and energy are estimated. Our analysis is generalized to the plasma degeneracy effects which can increase the fusion gain several orders of magnitude by decreasing the ion-electron collisions in the plasma. It is found that the wavelength of 0.53 μm and the intensity of about 1020 W/cm2, by saving about 10% conversion coefficient, are the suitable measured values for converting a laser into protons. Besides, stopping power and fusion burn calculations have been done in degenerate and non-degenerate plasma mediums. The results indicate that in the presence of degeneracy, the rate of fusion enhances. Supported by the Research Council of University of Guilan

  20. Multispacecraft study of shock-flux rope interaction

    NASA Astrophysics Data System (ADS)

    Blanco-Cano, Xochitl; Burgess, David; Sundberg, Torbjorn; Kajdic, Primoz

    2017-04-01

    Interplanetary (IP) shocks can be driven in the solar wind by fast coronal mass ejections. These shocks can accelerate particles near the Sun and through the heliosphere, being associated to solar energetic particle (SEP) and energetic storm particle (ESP) events. IP shocks can interact with structures in the solar wind, and with planetary magnetospheres. In this study we show how the properties of an IP shock change when it interacts with a medium scale flux rope (FR) like structure. We use data measurements from CLUSTER, WIND and ACE. These three spacecraft observed the shock-FR interaction at different stages of its evolution. We find that the shock-FR interaction locally changes the shock geometry, affecting ion injection processes, and the upstream and downstream regions. While WIND and ACE observed a quasi-perpendicular shock, CLUSTER crossed a quasi-parallel shock and a foreshock with a variety of ion distributions. The complexity of the ion foreshock can be explained by the dynamics of the shock transitioning from quasi-perpendicular to quasi-parallel, and the geometry of the magnetic field around the flux rope. Interactions such as the one we discuss can occur often along the extended IP shock fronts, and hence their importance towards a better understanding of shock acceleration.

  1. Scaling Trapped Ion Quantum Computers Using Fast Gates and Microtraps

    NASA Astrophysics Data System (ADS)

    Ratcliffe, Alexander K.; Taylor, Richard L.; Hope, Joseph J.; Carvalho, André R. R.

    2018-06-01

    Most attempts to produce a scalable quantum information processing platform based on ion traps have focused on the shuttling of ions in segmented traps. We show that an architecture based on an array of microtraps with fast gates will outperform architectures based on ion shuttling. This system requires higher power lasers but does not require the manipulation of potentials or shuttling of ions. This improves optical access, reduces the complexity of the trap, and reduces the number of conductive surfaces close to the ions. The use of fast gates also removes limitations on the gate time. Error rates of 10-5 are shown to be possible with 250 mW laser power and a trap separation of 100 μ m . The performance of the gates is shown to be robust to the limitations in the laser repetition rate and the presence of many ions in the trap array.

  2. On the multistream approach of relativistic Weibel instability. II. Bernstein-Greene-Kruskal-type waves in magnetic trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghizzo, A.

    2013-08-15

    The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the “multiring” model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al.[Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.

  3. Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements

    NASA Astrophysics Data System (ADS)

    Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso

    2017-09-01

    This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.

  4. Using neutral beams as a light ion beam probe (invited)

    DOE PAGES

    Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.; ...

    2014-08-05

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less

  5. Using neutral beams as a light ion beam probe (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi, E-mail: chenxi@fusion.gat.com; Heidbrink, W. W.; Van Zeeland, M. A.

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less

  6. Using neutral beams as a light ion beam probe (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less

  7. Generation of quasi-monoenergetic heavy ion beams via staged shock wave acceleration driven by intense laser pulses in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-09-01

    Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.

  8. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to themore » predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.« less

  9. Superposed epoch analysis of ion temperatures during CME- and CIR/HSS-driven storms

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Scime, E. E.

    2012-12-01

    The NASA Two Wide-angle Imaging Neutral atom Spectrometers (TWINS) Mission provides a global view of the magnetosphere with near-continuous coverage. Utilizing a novel technique to calculate ion temperatures from the TWINS energetic neutral atom (ENA) measurements, we generate ion temperature maps of the magnetosphere. These maps can be used to study ion temperature evolution during geomagnetic storms. A superposed epoch analysis of the ion temperature evolution during 48 storms will be presented. Zaniewski et al. [2006] performed a superposed epoch analysis of ion temperatures by storm interval using data from the MENA instrument on the IMAGE mission, demonstrating significant dayside ion heating during the main phase. The TWINS measurements provide more continuous coverage and improved spatial and temporal resolution. Denton and Borovsky [2008] noted differences in ion temperature evolution at geosynchronous orbit between coronal mass ejection (CME)- and corotating interaction region (CIR)/high speed stream (HSS)- driven storms. Using our global ion temperature maps, we have found consistent results for select individual storms [Keesee et al., 2012]. We will present superposed epoch analyses for the subgroups of CME- and CIR/HSS-driven storms to compare global ion temperature evolution during the two types of storms.

  10. Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Bonoli, Paul

    2014-10-01

    This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.

  11. Power of performance of the thumb adductor muscles: effect of laterality and gender.

    PubMed

    Gutnik, Boris; Nash, Derek; Ricacho, Norberto; Hudson, Grant; Skirius, Jonas

    2006-01-01

    The aim of this work was to originally measure mechanical power output of the thumb adductor muscles during fast adduction of the thumb in the horizontal plane. This information will contribute to biomechanical guidelines to help clinicians, sport medicine and rehabilitation specialists in the objective functional evaluation of abnormalities of thumb adductors. Participants performed 20 fast adductions in response to audio signals. Maximum and average angular velocity and angular acceleration were measured. Tangential components of these parameters were then derived. The force of adduction was obtained from the tangential acceleration and the mass of the rotational system. The power was then calculated as the product of the force of adduction and average tangential velocity during the acceleration phase of adduction. All young and untrained males and females were strictly right handed. There was no significant difference in power between dominant and nondominant muscles for either males or females, but males developed significantly more power than females. Because adduction was performed at maximal speed, these data may be explained by the influence of parallel and series elastic elements in the muscle, as well as by influence of fast twitch fibers. Power may be used as a clinical index of the effectiveness of muscle contraction. The similarity of power outputs from dominant and nondominant thumb adductor muscles of right-handers can suggest a classical Bernstein approach. This theoretical approach purports that peripheral factors can distort central commands projected to dominant and nondominant extremities.

  12. Observation of Beam-driven Modes during Neutral Beam Heating on the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Fredrickson, E. D.

    2001-10-01

    Multiple, coherent modes at frequencies up to the deuterium ion cyclotron frequency are observed during neutral beam injection heating of the National Spherical Torus Experiment (NSTX). NSTX plasmas are heated with up to 5 MW of deuterium neutral beam injection (NBI) power at a full energy of 80 kV. This gives a neutral beam ion velocity of ≈ 2.8 x 10^6 m/s, which is ≈ 3 V_Alfvén. The modes are seen in the frequency range of ≈ 0.4 MHz to ≈ 2.5 MHz. They are the first experimental observation of compressional Alfvén eigenmodes (CAE). The modes are excited by a resonant interaction with the non-Maxwellian, anisotropic ion distribution of the energetic beam ions and localized in an effective potential well of the form (m/r)^2 - (ω/V_Alfvén)^2. The resonance condition for the beam ions is approximately ω \\cal L ω_ci k_allel V_fast = 0, and the ``bump-on-tail" is in the perpendicular energy distribution resulting from the injection geometry (R_tan=50-70 cm, R_0=85 cm) and large orbit size (B_T=0.3-0.45 T, a=68 cm) for the beam ions. The modes are predicted to be localized on the low field side of the plasma, towards the plasma edge.(S.M. Mahajon , D.W. Ross, Phys. Fluids 26 (1983) 2561.)(B. Coppi, S. Cowley, R. Kulsrud, P. Detragiache, and F. Pegoraro, Phys. Fluids 29, (1986) 4060.)(Gorelenkov N.N., Cheng C.Z., Nucl. Fusion 35, (1995), pp 1743-1752.) The parametric scaling of the mode frequency with density and magnetic field is consistent with Alfvénic modes. The complex structure of the multiple frequency peaks is qualitatively consistent with predictions of CAE mode theories, although to date the modeling has been done in a simple geometry. There has been no observation of enhanced beam ion loss associated with the mode activity. Rather the presence of the modes is suspected to enhance the transfer of energy from the fast ions to the thermal ions or electrons. The drive for the mode is relatively strong, γ/ω ≈ 0.1 - 0.5 %, and the wave damping is thought to be electron Landau damping or stochastic damping on the thermal ions.(D. Gates, R. White, (submitted to Phys. Rev. Lett. May 2001).)

  13. Nonlinear response and bistability of driven ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  14. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  15. STUDY ON LITHIUM FAST ION CONDUCTORS OF Li2O SiO2 V2O5 SYSTEM

    NASA Astrophysics Data System (ADS)

    Huang, Geng; Wang, Wenji

    Fast ion conductors of Li2O SiO2 V2O5 system have been prepared by using Li2O, SiO2 and V2O5 as starting materials. The optimal ratio of starting materials was designed by Uniform Design. The conductivities of both electric and ionic were investigated. The highest ion conductivity is 1.5 × 10-4S/cm at ambient temperature for the above lithium fast ion conductor system, the electronic conductivity is 4 orders of magnitude lower than the ionic conductivity.

  16. First measurements of Dα spectrum produced by anisotropic fast ions in the gas dynamic trap

    NASA Astrophysics Data System (ADS)

    Lizunov, A.; Anikeev, A.

    2014-11-01

    Angled injection of eight deuterium beams in gas dynamic trap (GDT) plasmas builds up the population of fast ions with the distribution function, which conserves a high degree of initial anisotropy in space, energy, and pitch angle. Unlike the Maxwellian distribution case, the fast ion plasma component in GDT cannot be exhaustively characterized by the temperature and density. The instrumentation complex to study of fast ions is comprised of motional Stark effect diagnostic, analyzers of charge exchange atoms, and others. The set of numerical codes using for equilibrium modeling is also an important tool of analysis. In the recent campaign of summer 2014, we recorded first signals from the new fast ion D-alpha diagnostic on GDT. This paper presents the diagnostic description and results of pilot measurements. The diagnostic has four lines of sight, distributed across the radius of an axially symmetric plasma column in GDT. In the present setup, a line-integrated optical signal is measured in each channel. In the transverse direction, the spatial resolution is 18 mm. Collected light comes to the grating spectrometer with the low-noise detector based on a charge-coupled device matrix. In the regime of four spectra stacked vertically on the sensor, the effective spectral resolution of measurements is approximately 0.015 nm. Exposure timing is provided by the fast optical ferroelectric crystal shutter, allowing frames of duration down to 70 μs. This number represents the time resolution of measurements. A large dynamic range of the camera permits for a measurement of relatively small light signals produced by fast ions on top of the bright background emission from the bulk plasma. The fast ion emission has a non-Gaussian spectrum featuring the characteristic width of approximately 4 nm, which can be separated from relatively narrow Gaussian lines of D-alpha and H-alpha coming from the plasma periphery, and diagnostic beam emission. The signal to noise ratio varies from approximately ten for the central channel to approximately five for the outermost channel. We used the special set of Monte Carlo codes to fit the measured spectra. The shape of model fit shows a good agreement with the experimental fast ion D-alpha spectrum.

  17. Coincidence ion imaging with a fast frame camera

    NASA Astrophysics Data System (ADS)

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen

    2014-12-01

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.

  18. On the Role of Ionospheric Ions in Sawtooth Events

    NASA Astrophysics Data System (ADS)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Frey, H. U.

    2016-12-01

    Global multifluid simulations have suggested that ions of ionospheric origin play a key role in driving sawtooth events, particularly events driven by coronal mass ejections (CMEs), through a feedback mechanism.1,2 The energy input from the first substorm causes ion outflow, which is claimed to drive the next substorm. We show that in situ data from Cluster in the tail during sawtooth events do not support this hypothesis. We show two detailed event studies, one driven by a CME and one driven by a streaming interaction region (SIR), as well as a statistical survey of all sawtooth events for which Cluster tail data are available. While examples exist of nightside outflow reaching the mid-tail ( 19 RE) region during CME-driven events, the overwhelming majority of both CME-driven and SIR-driven sawtooth injections have ionospheric ions in this region originating from the cusp, where the outflow is predominantly directly driven by the solar wind. The 19 RE region is critical because that is the region where near-Earth neutral line reconnection occurs. We conclude that while ionospheric outflow may contribute to sawtooth events, the injections are not the result of a feedback between the tail and the ionosphere. 1O. J. Brambles et al. (2011), Science 332, 1183, doi:10.1126/science.1202869.2O. J. Brambles et al. (2013), JGR 118, 6026, doi:10.1002/jgra.50522.

  19. Informatics-Aided Density Functional Theory Study on the Li Ion Transport of Tavorite-Type LiMTO4F (M(3+)-T(5+), M(2+)-T(6+)).

    PubMed

    Jalem, Randy; Kimura, Mayumi; Nakayama, Masanobu; Kasuga, Toshihiro

    2015-06-22

    The ongoing search for fast Li-ion conducting solid electrolytes has driven the deployment surge on density functional theory (DFT) computation and materials informatics for exploring novel chemistries before actual experimental testing. Existing structure prototypes can now be readily evaluated beforehand not only to map out trends on target properties or for candidate composition selection but also for gaining insights on structure-property relationships. Recently, the tavorite structure has been determined to be capable of a fast Li ion insertion rate for battery cathode applications. Taking this inspiration, we surveyed the LiMTO4F tavorite system (M(3+)-T(5+) and M(2+)-T(6+) pairs; M is nontransition metals) for solid electrolyte use, identifying promising compositions with enormously low Li migration energy (ME) and understanding how structure parameters affect or modulate ME. We employed a combination of DFT computation, variable interaction analysis, graph theory, and a neural network for building a crystal structure-based ME prediction model. Candidate compositions that were predicted include LiGaPO4F (0.25 eV), LiGdPO4F (0.30 eV), LiDyPO4F (0.30 eV), LiMgSO4F (0.21 eV), and LiMgSeO4F (0.11 eV). With chemical substitutions at M and T sites, competing effects among Li pathway bottleneck size, polyanion covalency, and local lattice distortion were determined to be crucial for controlling ME. A way to predict ME for multiple structure types within the neural network framework was also explored.

  20. Fast-ion transport in low density L-mode plasmas at TCV using FIDA spectroscopy and the TRANSP code

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Karpushov, A. N.; Duval, B. P.; Marini, C.; Sauter, O.; Andrebe, Y.; Testa, D.; Marascheck, M.; Salewski, M.; Schneider, P. A.; the TCV Team; the EUROfusion MST1 Team

    2017-11-01

    Experiments with the new neutral beam injection source of TCV have been performed with high fast-ion fractions (>20%) that exhibit a clear reduction of the loop voltage and a clear increase of the plasma pressure in on- and off-axis heating configurations. However, good quantitative agreement between the experimental data and TRANSP predictions is only found when including strong additional fast-ion losses. These losses could in part be caused by turbulence or MHD activity as, e.g. high frequency modes near the frequency of toroidicity induced Alfvén eignmodes are observed. In addition, a newly installed fast-ion D-alpha (FIDA) spectroscopy system measures strong passive radiation and, hence, indicates the presence of high background neutral densities such that charge-exchange losses are substantial. Also the active radiation measured with the FIDA diagnostic, as well as data from a neutral particle analyzer, suggest strong fast-ion losses and large neutral densities. The large neutral densities can be justified since high electron temperatures (3-4 keV), combined with low electron densities (about 2× {10}19 m-3) yield long mean free paths of the neutrals which are penetrating from the walls.

  1. Influence of field ionization effect on the divergence of laser-driven fast electrons

    NASA Astrophysics Data System (ADS)

    Lang, Y.; Yang, X. H.; Xu, H.; Jin, Z.; Zhuo, H. B.

    2018-07-01

    The effect of field ionization on the divergence of fast electrons (E k ≥ 50 keV), driven by ultrashort-ultraintense laser pulse interaction with plasma, is studied by using 2D3V particle-in-cell simulations. It is found that, due to temperature anisotropy of the fast electrons in the ionizing target, strong fluctuant magnetic fields in the preplasma region is generated through Weibel instability. In turn, the field induces an enhancement of the hot electron divergence for the target with ionization process. Meanwhile, compared with the target without an ionization process, larger divergence of hot electrons can also be seen in the ionizing target with laser intensity varying from 5 × 1019 W/cm2 to 5 × 1020 W/cm2 and the divergence is weakly dependent on target materials for a fixed profile of preplasma. The results here are useful for the application of laser-driven fast electron beams.

  2. Stable transport in proton driven fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.

    2009-09-15

    Proton beam transport in the context of proton driven fast ignition is usually assumed to be stable due to proton high inertia, but an analytical analysis of the process is still lacking. The stability of a charge and current neutralized proton beam passing through a plasma is therefore conducted here, for typical proton driven fast ignition parameters. In the cold regime, two fast growing modes are found, with an inverse growth rate much smaller than the beam time of flight to the target core. The stability issue is thus not so obvious, and kinetic effects are investigated. One unstable modemore » is found stabilized by the background plasma proton and electron temperatures. The second mode is also damped, providing the proton beam thermal spread is larger than {approx}10 keV. In fusion conditions, the beam propagation should therefore be stable.« less

  3. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET

    2016-11-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.

  4. LETTER: Investigation of the effect of Alfven resonance mode conversion on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    1995-07-01

    In order to reduce or to avoid ion cyclotron damping, the use of frequencies below the ion cyclotron frequency of minority ion species or the second harmonic of majority ion species has been proposed for fast wave current drive based on direct electron absorption. For these scenarios, the Alfven or ion-ion hybrid resonance can appear on the high field side of a tokamak. The presence of these resonances causes parasitic absorption, competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, neglecting effects from toroidicity, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10% in the current drive scenarios for the planned ITER experiment. If the single pass absorption in the centre can be made sufficiently high, the conversion at the Alfven resonance becomes negligible

  5. Ion temperature gradient mode driven solitons and shocks

    NASA Astrophysics Data System (ADS)

    Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.

    2016-04-01

    Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.

  6. Guided post-acceleration of laser-driven ions by a miniature modular structure

    PubMed Central

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  7. Variations of High-Energy Ions during Fast Plasma Flows and Dipolarization in the Plasma Sheet: Comparison Among Different Ion Species

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Nose, M.; Miyashita, Y.; Lui, A.

    2014-12-01

    We investigate the responses of different ion species (H+, He+, He++, and O+) to fast plasma flows and local dipolarization in the plasma sheet in terms of energy density. We use energetic (9-210 keV) ion composition measurements made by the Geotail satellite at r = 10~31 RE. The results are summarized as follows: (1) whereas the O+-to-H+ ratio decreases with earthward flow velocity, it increases with tailward flow velocity with Vx dependence steeper for perpendicular flows than for parallel flows; (2) for fast earthward flows, the energy density of each ion species increases without any clear preference for heavy ions; (3) for fast tailward flows the ion energy density increases initially, then it decreases to below pre-flow levels except for O+; (4) the O+-to-H+ ratio does not increase through local dipolarization irrespective of dipolarization amplitude, background BZ, X distance, and VX; (5) in general, the H+ and He++ ions behave similarly. Result (1) can be attributed to radial transport along with the earthward increase of the background O+-to-H+ ratio. Results (2) and (4) indicate that ion energization associated with local dipolarization is not mass-dependent possibly because in the energy range of our interest the ions are not magnetized irrespective of species. In the tailward outflow region of reconnection, where the plasma sheet becomes thinner, the H+ ions escape along the field line more easily than the O+ ions, which possibly explains result (3). Result (5) suggests that the solar wind is the primary source of the high-energy H+ ions.

  8. Ion Bernstein wave heating research

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    1993-02-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat the tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low perpendicular phase velocity (ω/k⊥≊VTi≪Vα) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α particles. In addition, the property of IBW's that k⊥ρi≊1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. IBW's can be excited with loop antennas or with a lower-hybrid-like waveguide launcher at the plasma edge, the latter structure being one that is especially compatible with reactor application. In either case, the mode at the plasma edge is an electron plasma wave (EPW). Deeper in the plasma, the EPW is mode transformed into an IBW. Such launching and mode transformation of IBW's were first demonstrated in experiments in the Advanced Concepts Torus-1 (ACT-1) [Phys. Rev. Lett. 45, 1105 (1980)] plasma torus and in particle simulation calculations. These and other aspects of IBW heating physics have been investigated through a number of experiments performed on ACT-1, the Japanese Institute of Plasma Physics Tokamak II-Upgrade (JIPPTII-U) [Phys. Rev. Lett. 54, 2339 (1985)], the Tokyo University Non-Circular Tokamak (TNT) [Nucl. Fusion 26, 1097 (1986)], the Princeton Large Tokamak (PLT) [Phys. Rev. Lett. 60, 294 (1988)], and Alcator-C [Phys. Rev. Lett. 60, 298 (1988)]. In these experiments both linear and nonlinear heating processes have been observed. Interestingly, improvement of plasma confinement was also observed in the PLT and Alcator-C experiments, opening up the possible use of IBW's for the active control of plasma transport. Two theoretical explanations have been proposed: one based on four-wave mixing of IBW with low-frequency turbulence, the other on the nonlinear generation of a velocity-shear layer. Both models are consistent with the observed threshold power level of a few hundred kW in the experiments. Experiments on lower field plasmas on JFTII-M [Eighth Topical Conference on Radio-Frequency Power in Plasmas, Irvine, CA, 1989 (American Institute of Physics, New York, 1989), p. 350] and DIII-D [Eighth Topical Conference on Radio-Frequency Power in Plasmas, Irvine, CA, 1989 (American Institute of Physics, New York, 1989), p. 314] have raised some concern with the IBW wave-launching process. The experiments showed serious impurity release from the walls but little or no core heating, a combination of circumstances strongly suggestive of edge heating. Possible parasitic channels could include the excitation of short wavelength modes by the Faraday shield's fringing fields, antenna-sheath-wave excitation, an axial-convective loss channel, and nonlinear processes such as parametric instability and ponderomotive effects. Suggested remedies include changes in the antenna phasing, the use of low-Z insulators, operating at higher frequencies, positioning the plasma differently with respect to the antenna, eliminating the Faraday shields, and using a waveguide launcher. The recent JIPPTII-U experiment, employing a 0-π phased antenna array with a higher frequency 130 MHz source, demonstrated that those remedies can indeed work. Looking to the future, one seeks additional ways in which IBWH can improve tokamak performance. The strong ponderomotive potential of the IBWH antenna may be used to stabilize external kinks and, acting as an rf limiter, to control the plasma edge. Control of the plasma pressure profile with local IBWH heating is already an important part of the Princeton Beta Experiment-Modified (PBX-M) [Ninth Topical Conference on Radio-Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] program in its exploration of the second-stability regime. Application of IBWH may also improve the performance of neutral beam heating and the efficiency and localization of lower-hybrid current drive for current profile control. Used with pellet injection, IBWH may also prolong the period of good confinement. The three planned high-power IBWH experiments covering vastly different parameters: f=40-80 MHz for PBX-M; f=130 MHz for JIPPT-II-U; and f=430 MHz for the Frascati Tokamak-Upgrade (FT-U) [16th European Physical Society Conference on Controlled Fusion and Plasma Physics, Venice, Italy, 1989 (European Physical Society, Amsterdam, 1989), Vol. III, p. 1069] appear to be well positioned to explore these possibilities and to clarify other issues including the physics of wave launching and associated nonlinear processes.

  9. A Experimental Investigation of Fast Ion Confinement on the Isx-B Tokamak

    NASA Astrophysics Data System (ADS)

    Carnevali, Antonino

    An experimental investigation of fast ion confinement was conducted on the ISX-B tokamak at the Oak Ridge National Laboratory to ascertain that the beam ion behavior is properly described by classical processes. Data were collected during tangential injection of H('0) beams (co-, counter -, and co- plus counter-) at power levels up to 1.9 MW in low plasma current (I(,p) = 80 to 215 kA) D('+) discharges. Experimental energy spectra of energetic charge-exchange neutrals along several sightlines in the torus equatorial plane are compared with the predictions of Fokker-Planck and orbit-following Monte Carlo calculations to verify the validity of classical theory. A further tool used in this investigation is the comparison of predicted and experimental beam-plasma neutron emission during injection of beams doped with 3% D('0). Both the fast neutral spectra and the beam-plasma neutron emission are in close agreement (within factors of <2) with the calculated values under a variety of plasma parameters, beam parameters, and injection geometries. Furthermore, measured decay rates of the beam-plasma neutron production following beam turn-off show that the beam slowing down --at energies close to the injection energy and in the plasma core-- is classical within a 30% uncertainty. These results demonstrate that classical theory describes well the behavior of the beam ions. Moreover, MHD activity is shown not to cause enhanced fast ion losses in the ISX-B. Also, beam additivity experiments indicate that the fast ion density in the plasma volume is proportional to the injected beam power P(,b). An unresolved issue is whether the central fast ion density is linear with P(,b). In addition, the analysis of charge-exchange spectra is critically evaluated. It is shown that the analysis need be integrated with a knowledge of the orbit topology to correctly interpret the spectra. Cases where the zero banana width, Fokker-Planck calculation is adequate/inadequate to predict fast neutral spectra and power deposited in the plasma are discussed.

  10. Effects of fast ions on interchange modes in the Large Helical Device plasmas

    NASA Astrophysics Data System (ADS)

    Pinon, Jonhathan; Todo, Yasushi; Wang, Hao

    2018-07-01

    Effects of fast ions on the magnetohydrodynamic (MHD) instabilities in a Large Helical Device (LHD) plasma with the central beta value (=pressure normalized by the magnetic pressure) 4% have been investigated with hybrid simulations for energetic particles interacting with an MHD fluid. When fast ions are neglected, it is found that the dominant instability is an ideal interchange mode with the dominant harmonic m/n = 2/1, where m, n are respectively the poloidal and toroidal numbers. The spatial peak location of the m/n = 2/1 harmonic is close to the ι = 1/2 magnetic surface located at r/a = 0.29, where ι is the rotational transform and r/a is the normalized radius. The second unstable mode is a resistive interchange mode with m/n =3/2 that peaks at r/a = 0.65 nearby the ι = 2/3 surface, which grows more slowly than the m/n = 2/1 mode. The nonlinear coupling of the m/n = 3/2 and 2/1 mode results in the growth of the m/n = 5/3 mode and other modes leading to the global reduction and flattening of the pressure profile. When fast ions are considered with the central beta value 0.2% and the total pressure profile is kept the same, the ideal interchange mode with m/n = 2/1 located close to the plasma center is stabilized while the resistive interchange mode with m/n = 3/2 located far from the plasma center is less affected. The stabilization is attributed to the reduction of bulk pressure gradient, which is the dilution of the free energy source, because the energy transfer between the fast ions and the interchange modes is found to be negligible. For higher fast-ion pressure, Alfvén eigenmodes are destabilized by fast ions.

  11. A 1D ion species model for an RF driven negative ion source

    NASA Astrophysics Data System (ADS)

    Turner, I.; Holmes, A. J. T.

    2017-08-01

    A one-dimensional model for an RF driven negative ion source has been developed based on an inductive discharge. The RF source differs from traditional filament and arc ion sources because there are no primary electrons present, and is simply composed of an antenna region (driver) and a main plasma discharge region. However the model does still make use of the classical plasma transport equations for particle energy and flow, which have previously worked well for modelling DC driven sources. The model has been developed primarily to model the Small Negative Ion Facility (SNIF) ion source at CCFE, but may be easily adapted to model other RF sources. Currently the model considers the hydrogen ion species, and provides a detailed description of the plasma parameters along the source axis, i.e. plasma temperature, density and potential, as well as current densities and species fluxes. The inputs to the model are currently the RF power, the magnetic filter field and the source gas pressure. Results from the model are presented and where possible compared to existing experimental data from SNIF, with varying RF power, source pressure.

  12. Dense blocks of energetic ions driven by multi-petawatt lasers

    PubMed Central

    Weng, S. M.; Liu, M.; Sheng, Z. M.; Murakami, M.; Chen, M.; Yu, L. L.; Zhang, J.

    2016-01-01

    Laser-driven ion accelerators have the advantages of compact size, high density, and short bunch duration over conventional accelerators. Nevertheless, it is still challenging to simultaneously enhance the yield and quality of laser-driven ion beams for practical applications. Here we propose a scheme to address this challenge via the use of emerging multi-petawatt lasers and a density-modulated target. The density-modulated target permits its ions to be uniformly accelerated as a dense block by laser radiation pressure. In addition, the beam quality of the accelerated ions is remarkably improved by embedding the target in a thick enough substrate, which suppresses hot electron refluxing and thus alleviates plasma heating. Particle-in-cell simulations demonstrate that almost all ions in a solid-density plasma of a few microns can be uniformly accelerated to about 25% of the speed of light by a laser pulse at an intensity around 1022 W/cm2. The resulting dense block of energetic ions may drive fusion ignition and more generally create matter with unprecedented high energy density. PMID:26924793

  13. Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Bonanomi, N.; Mantica, P.; Di Siena, A.; Delabie, E.; Giroud, C.; Johnson, T.; Lerche, E.; Menmuir, S.; Tsalas, M.; Van Eester, D.; Contributors, JET

    2018-05-01

    The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high (3He)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic 3He ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the 3He distribution function has also been studied.

  14. Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys.

    PubMed

    Wang, Zhiguo; Gu, Meng; Zhou, Yungang; Zu, Xiaotao; Connell, Justin G; Xiao, Jie; Perea, Daniel; Lauhon, Lincoln J; Bang, Junhyeok; Zhang, Shengbai; Wang, Chongmin; Gao, Fei

    2013-09-11

    The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governs the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability, and phase equilibrium.

  15. Electron-Rich Driven Electrochemical Solid-State Amorphization in Li-Si Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiguo; Gu, Meng; Zhou, Yungang

    2013-08-14

    The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governsmore » the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability and phase equilibrium.« less

  16. Kinetic instability of electrostatic ion cyclotron waves in inter-penetrating plasmas

    NASA Astrophysics Data System (ADS)

    Bashir, M. F.; Ilie, R.; Murtaza, G.

    2018-05-01

    The Electrostatic Ion Cyclotron (EIC) instability that includes the effect of wave-particle interaction is studied owing to the free energy source through the flowing velocity of the inter-penetrating plasmas. It is shown that the origin of this current-less instability is different from the classical current driven EIC instability. The threshold conditions applicable to a wide range of plasma parameters and the estimate of the growth rate are determined as a function of the normalized flowing velocity ( u0/vt f e ), the temperature ( Tf/Ts ) and the density ratios ( nf 0/ns 0 ) of flowing component to static one. The EIC instability is driven by either flowing electrons or flowing ions, depending upon the different Doppler shifted frequency domains. It is found that the growth rate for electron-driven instability is higher than the ion-driven one. However, in both cases, the denser (hotter) is the flowing plasma, the lesser (greater) is the growth rate. The possible applications related to the terrestrial solar plasma environment are also discussed.

  17. Stability properties and fast ion confinement of hybrid tokamak plasma configurations

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Brunetti, D.; Pfefferle, D.; Faustin, J. M. P.; Cooper, W. A.; Kleiner, A.; Lanthaler, S.; Patten, H. W.; Raghunathan, M.

    2015-11-01

    In hybrid scenarios with flat q just above unity, extremely fast growing tearing modes are born from toroidal sidebands of the near resonant ideal internal kink mode. New scalings of the growth rate with the magnetic Reynolds number arise from two fluid effects and sheared toroidal flow. Non-linear saturated 1/1 dominant modes obtained from initial value stability calculation agree with the amplitude of the 1/1 component of a 3D VMEC equilibrium calculation. Viable and realistic equilibrium representation of such internal kink modes allow fast ion studies to be accurately established. Calculations of MAST neutral beam ion distributions using the VENUS-LEVIS code show very good agreement of observed impaired core fast ion confinement when long lived modes occur. The 3D ICRH code SCENIC also enables the establishment of minority RF distributions in hybrid plasmas susceptible to saturated near resonant internal kink modes.

  18. Kinetic equilibrium reconstruction for the NBI- and ICRH-heated H-mode plasma on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zhen, ZHENG; Nong, XIANG; Jiale, CHEN; Siye, DING; Hongfei, DU; Guoqiang, LI; Yifeng, WANG; Haiqing, LIU; Yingying, LI; Bo, LYU; Qing, ZANG

    2018-04-01

    The equilibrium reconstruction is important to study the tokamak plasma physical processes. To analyze the contribution of fast ions to the equilibrium, the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics, kinetic diagnostics and TRANSP code. It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region. The fast-ion current contributes mainly in the core region while contributes little to the pedestal current. A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current. It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.

  19. Discrete Kinetic Eigenmode Spectra of Electron Plasma Oscillations in Weakly Collisional Plasma: A Numerical Study

    NASA Technical Reports Server (NTRS)

    Black, Carrie; Germaschewski, Kai; Bhattacharjee, Amitava; Ng, C. S.

    2013-01-01

    It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator. The effect of the collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.

  20. Review of laser-driven ion sources and their applications.

    PubMed

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of scientific, industrial and medical applications of laser-driven proton or ion sources, some of which have already been established, while the others are yet to be demonstrated. In most applications, the laser-driven ion sources are complementary to the conventional accelerators, exhibiting significantly different properties. Finally, we summarize the paper.

  1. Fast Ionized X-Ray Absorbers in AGNs

    NASA Technical Reports Server (NTRS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-01-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N(sub H), line-of-sight (LoS) velocity v, ionization parameter xi, among others. Assuming that the wind density scales as n varies as r(exp. -1), we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe K alpha absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  2. Ion-driven deuterium permeation through tungsten at high temperatures

    NASA Astrophysics Data System (ADS)

    Gasparyan, Yu. M.; Golubeva, A. V.; Mayer, M.; Pisarev, A. A.; Roth, J.

    2009-06-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17-10 18 D/m 2s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  3. The cooling of confined ions driven by laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyna, L.G.; Sobehart, J.R.

    1993-07-01

    We finalize the dynamics of confined ions driven by a quantized radiation field. The ions can absorb photons from an incident laser beam and relax back to the ground state by either induced emissions or spontaneous emissions. Here we assume that the absorption of photons is immediately followed by spontaneous emissions, resulting in single-level ions perturbed by the exchange of momentum with the radiation field. The probability distribution of the ions is calculated using singular expansions in the low noise asymptotic limit. The present calculations reproduce the quantum results in the limit of heavy particles in static traps, and themore » classical results of ions in radio-frequency confining wells.« less

  4. Nonlinear structure formation in ion-temperature-gradient driven drift waves in pair-ion plasma with nonthermal electron distribution

    NASA Astrophysics Data System (ADS)

    Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.

    2018-02-01

    Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.

  5. Ion sound instability driven by the ion flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshkarov, O., E-mail: koshkarov.alexandr@usask.ca; Smolyakov, A. I.; National Research Centre

    2015-05-15

    Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes. The instability develops due to coupling of negative and positive energy modes mediated by reflections from the boundary. It is shown that the wave dispersion due to deviation from quasineutrality is crucial for the stability. In finite length system, the dispersion is characterized by the length of the system measured in units of the Debye length. The instabilitymore » is studied analytically and the results are compared with direct, initial value numerical simulations.« less

  6. Narrow Radiative Recombination Continua: A Signature of Ions Crossing the Contact Discontinuity of Astrophysical Shocks

    NASA Technical Reports Server (NTRS)

    Behar, Ehud; Nordon, Raanan; Soker, Noam; Kastner, Joel H.; Yu, Young Sam

    2009-01-01

    X-rays from planetary nebulae (PNs) are believed to originate from a shock driven into the fast stellar wind (v 1000 kilometers per second) as it collides with an earlier circumstellar slow wind (v 10 kilometers per second). In theory, the shocked fast wind (hot hubble) and the ambient cold nebula can remain separated by magnetic fields along a surface referred to as the contact discontinuity (CD) that inhibits diffusion and heat conduction. The CD region is extremely difficult to probe directly owing to its small size and faint emission. This has largely left the study of CDs, stellar-shocks, and the associated micro-physics in the realm of theory. This paper presents spectroscopic evidence for ions from the hot bubble (kT approximately equal to 100 eV) crossing the CD and penetrating the cold nebular gas (kT approximately equal to 1 eV). Specifically, a narrow radiative recombination continuum (RRC) emission feature is identified in the high resolution X-ray spectrum of the PN BD+30degree3639 indicating bare C VII ions are recombining with cool electrons at kT(sub e) = 1.7 plus or minus 1.3 eV. An upper limit to the flux of the narrow RRC of H-like C VI is obtained as well. The RRCs are interpreted as due to C ions from the hot bubble of BD+30degree3639 crossing the CD into the cold nebula, where they ultimately recombine with its cool electrons. The RRC flux ratio of C VII to C VI constrains the temperature jump across the CD to deltakT greater than 80 eV, providing for the first time direct evidence for the stark temperature disparity between the two sides of an astrophysical CD, and constraining the role of magnetic fields and heat conduction accordingly. Two colliding-wind binaries are noted to have similar RRCs suggesting a temperature jump and CD crossing by ions may be common feature of stellar wind shocks.

  7. Gyrokinetic stability of electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mishchenko, A.; Zocco, A.; Helander, P.; Könies, A.

    2018-02-01

    The gyrokinetic stability of electron-positron plasmas contaminated by an ion (proton) admixture is studied in a slab geometry. The appropriate dispersion relation is derived and solved. Stable K-modes, the universal instability, the ion-temperature-gradient-driven instability, the electron-temperature-gradient-driven instability and the shear Alfvén wave are considered. It is found that the contaminated plasma remains stable if the contamination degree is below some threshold and that the shear Alfvén wave can be present in a contaminated plasma in cases where it is absent without ion contamination.

  8. Building unbiased estimators from non-gaussian likelihoods with application to shear estimation

    DOE PAGES

    Madhavacheril, Mathew S.; McDonald, Patrick; Sehgal, Neelima; ...

    2015-01-15

    We develop a general framework for generating estimators of a given quantity which are unbiased to a given order in the difference between the true value of the underlying quantity and the fiducial position in theory space around which we expand the likelihood. We apply this formalism to rederive the optimal quadratic estimator and show how the replacement of the second derivative matrix with the Fisher matrix is a generic way of creating an unbiased estimator (assuming choice of the fiducial model is independent of data). Next we apply the approach to estimation of shear lensing, closely following the workmore » of Bernstein and Armstrong (2014). Our first order estimator reduces to their estimator in the limit of zero shear, but it also naturally allows for the case of non-constant shear and the easy calculation of correlation functions or power spectra using standard methods. Both our first-order estimator and Bernstein and Armstrong’s estimator exhibit a bias which is quadratic in true shear. Our third-order estimator is, at least in the realm of the toy problem of Bernstein and Armstrong, unbiased to 0.1% in relative shear errors Δg/g for shears up to |g| = 0.2.« less

  9. Electron Bernstein Wave Studies in MST

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric

    2013-10-01

    The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.

  10. Building unbiased estimators from non-Gaussian likelihoods with application to shear estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhavacheril, Mathew S.; Sehgal, Neelima; McDonald, Patrick

    2015-01-01

    We develop a general framework for generating estimators of a given quantity which are unbiased to a given order in the difference between the true value of the underlying quantity and the fiducial position in theory space around which we expand the likelihood. We apply this formalism to rederive the optimal quadratic estimator and show how the replacement of the second derivative matrix with the Fisher matrix is a generic way of creating an unbiased estimator (assuming choice of the fiducial model is independent of data). Next we apply the approach to estimation of shear lensing, closely following the workmore » of Bernstein and Armstrong (2014). Our first order estimator reduces to their estimator in the limit of zero shear, but it also naturally allows for the case of non-constant shear and the easy calculation of correlation functions or power spectra using standard methods. Both our first-order estimator and Bernstein and Armstrong's estimator exhibit a bias which is quadratic in true shear. Our third-order estimator is, at least in the realm of the toy problem of Bernstein and Armstrong, unbiased to 0.1% in relative shear errors Δg/g for shears up to |g|=0.2.« less

  11. Escape of anions from geminate recombination in THF due to charge delocalization

    DOE PAGES

    Chen, Hung -Cheng; Cook, Andrew R.; Asaoka, Sadayuki; ...

    2017-11-24

    Geminate recombination of 24 radical anions (M˙ –) with solvated protons (RH 2 +) was studied in tetrahydrofuran (THF) with pulse radiolysis. The recombination has two steps: (1) diffusion of M˙ – and RH 2 + together to form intimate (contact and solvent separated) ion pairs, driven by Coulomb attraction; (2) annihilation of anions due to proton transfer (PT) from RH 2 + to M˙ –. The non-exponential time-dependence of the geminate diffusion was determined. For all molecules protonated on O or N atoms the subsequent PT step is too fast (<0.2 ns) to measure, except for the anion ofmore » TCNE which did not undergo proton transfer. PT to C atoms was as slow as 70 ns and was always slow enough to be observable. A possible effect of charge delocalization on the PT rates could not be clearly separated from other factors. For 21 of the 24 molecules studied here, a free ion yield (71.6 ± 6.2 nmol J –1) comprising ~29% of the total, was formed. This yield of “Type I” free ions is independent of the PT rate because it arises entirely by escape from the initial distribution of ion pair distances without forming intimate ion pairs. Furthermore, three anions of oligo(9,9-dihexyl)fluorenes, F n˙ – (n = 2–4) were able to escape from intimate ion-pairs to form additional yields of “Type II” free ions with escape rate constants near 3 × 10 6 s –1. These experiments find no evidence for an inverted region for proton transfer.« less

  12. The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress

    NASA Astrophysics Data System (ADS)

    Schmitz, L.

    2017-02-01

    Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E   ×   B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E   ×   B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.

  13. Coincidence ion imaging with a fast frame camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei

    2014-12-15

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots onmore » each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.« less

  14. Computation of Alfvèn eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code

    NASA Astrophysics Data System (ADS)

    Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.; White, R. B.

    2017-09-01

    Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. In this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that has been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Additional information from the actual experiment enables further tuning of the model’s parameters to achieve a close match with measurements.

  15. Computation of Alfvèn eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.

    Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. Here, in this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that hasmore » been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Finally, additional information from the actual experiment enables further tuning of the model's parameters to achieve a close match with measurements.« less

  16. Computation of Alfvèn eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code

    DOE PAGES

    Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.; ...

    2017-07-20

    Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. Here, in this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that hasmore » been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Finally, additional information from the actual experiment enables further tuning of the model's parameters to achieve a close match with measurements.« less

  17. Modeling of the control of the driven current profile in ICRF MCCD on EAST plasma

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Cao, J. J.; Wu, Z. Y.; Chen, Y.; Du, D.

    2018-05-01

    Control of the current profile is a crucial issue for improved confinement and the inhibition of instability in advanced tokamak operation. Using typical discharge data for the Experimental Advanced Superconducting Tokamak, numerical simulations of driven-current profile control in mode conversion current drive (MCCD) in the ion cyclotron range of frequencies were performed employing a full-wave method and Ehst-Karney efficiency formula. Results indicate that the driven current profile in MCCD can be effectively modified by shifting the mode conversion layer. The peak of the driven current can be located at an aimed position in the normalized minor radius range (-0.60 ≤r/a≤0) by changing the radiofrequency and the minority-ion concentration. The efficiency of the off-axis MCCD can reach 233 kA/MW through optimization, and the mode converted ion cyclotron wave plays an important role in such scenarios. The effects of electron temperature and plasma density on the driven current profile are also investigated.

  18. Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Bass, E. M.; Heidbrink, W. W.; VanZeeland, M. A.

    2015-11-01

    Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient [Heidbrink et al 2013 Nucl. Fusion 53 093006]. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code [Waltz and Bass 2014 Nucl. Fusion 54 104006], used to validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the Angioni et al (2009 Nucl. Fusion 49 055013) energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a  <  0.5 and the central density is about half the slowing down density. These results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.

  19. Comparison of the Effects of Wave-Particle Interactions and the Kinetic Suprathermal Electron Population on the Acceleration of the Solar Wind

    NASA Technical Reports Server (NTRS)

    Tam, S. W. Y.; Chang, T.

    2002-01-01

    Kinetic effects due to wave-particle interactions and suprathermal electrons have been suggested in the literature as possible solar wind acceleration mechanisms. Ion cyclotron resonant heating, in particular, has been associated with some qualitative features observed in the solar wind. In terms of solar wind acceleration, however, it is interesting to compare the kinetic effects of suprathermal electrons with those due to the wave-particle interactions. The combined effects of the two acceleration mechanisms on the fast solar wind have been studied by Tam and Chang (1999a,b). In this study. we investigate the role of the suprathermal electron population in the acceleration of the solar wind. Our model follows the global kinetic evolution of the fast solar wind under the influence of ion cyclotron resonant heating, while taking into account Coulomb collisions, and the ambipolar electric field that is consistent with the particle distributions themselves. The kinetic effects due to the suprathermal electrons, which we define to be the tail of the electron distributions, can be included in the model as an option. By comparing the results with and without the inclusion of the suprathermal electron effects, we determine the relative importance of suprathermal electrons and wave-particle interactions in driving the solar wind. We find that although suprathermal electrons enhance the ambipolar electric potential in the solar wind considerably, their overall influence as an acceleration mechanism is relatively insignificant in a wave-driven solar wind.

  20. Experimental demonstration of a compact epithermal neutron source based on a high power laser

    NASA Astrophysics Data System (ADS)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.

    2017-07-01

    Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.

  1. Controllable robust laser driven ion acceleration from near-critical density relativistic self-transparent plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Meyer-Ter-Vehn, Juergen; Ruhl, Hartmut

    2017-10-01

    We introduce an alternative approach for laser driven self-injected high quality ion acceleration. We call it ion wave breaking acceleration. It operates in relativistic self-transparent plasma for ultra-intense ultra-short laser pulses. Laser propagating in a transparent plasma excites an electron wave as well as an ion wave. When the ion wave breaks, a fraction of ions is self-injected into the positive part of the laser driven wake. This leads to a superior ion pulse with peaked energy spectra; in particular in realistic three-dimensional geometry, the injection occurs localized close to the laser axis producing highly directed bunches. A theory is developed to investigate the ion wave breaking dynamics. Three dimensional Particle-in-Cell simulations with pure-gaussian laser pulses and pre-expanded near-critical density plasma targets have been done to verify the theoretical results. It is shown that hundreds of MeV, easily controllable and manipulable, micron-scale size, highly collimated and quasi-mono-energetic ion beams can be produced by using ultra-intense ultra-short laser pulses with total laser energies less than 10 Joules. Such ion beams may find important applications in tumour therapy. B. Liu acknowledges support from the Alexander von Humboldt Foundation. B. Liu and H. Ruhl acknowledge supports from the Gauss Centre for Supercomputing (GCS), and the Cluster-of-Excellence Munich Centre for Advanced Photonics (MAP).

  2. PIC simulations of a three component plasma described by Kappa distribution functions as observed in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, Marcos; Alves, Maria Virginia; Simões Junior, Fernando

    2016-04-01

    In plasmas out of thermodynamic equilibrium the particle velocity distribution can be described by the so called Kappa distribution. These velocity distribution functions are a generalization of the Maxwellian distribution. Since 1960, Kappa velocity distributions were observed in several regions of interplanetary space and astrophysical plasmas. Using KEMPO1 particle simulation code, modified to introduce Kappa distribution functions as initial conditions for particle velocities, the normal modes of propagation were analyzed in a plasma containing two species of electrons with different temperatures and densities and ions as a third specie.This type of plasma is usually found in magnetospheres such as in Saturn. Numerical solutions for the dispersion relation for such a plasma predict the presence of an electron-acoustic mode, besides the Langmuir and ion-acoustic modes. In the presence of an ambient magnetic field, the perpendicular propagation (Bernstein mode) also changes, as compared to a Maxwellian plasma, due to the Kappa distribution function. Here results for simulations with and without external magnetic field are presented. The parameters for the initial conditions in the simulations were obtained from the Cassini spacecraft data. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.

  3. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvas, T.; Tarvainen, O.; Komppula, J.

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity neededmore » at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.« less

  4. [Progress in heavy particle radiotherapy].

    PubMed

    Tsujii, H; Tsuji, H; Okumura, T

    1994-06-01

    In recent years, new types of ionizing radiations have been used as an attractive modality in cancer treatments. Low LET radiation such as protons and helium ions has the advantage of a high physical selectivity of irradiation. Clinical results have confirmed that they are of benefit in certain types of cancer. High LET particles such as fast neutrons, heavy ions (carbon, neon) and negative pions possess higher radiobiological effects (RBE). Moreover, the latter two particles have an advantage of improved dose distribution. The clinical indications for protons are those located in close vicinity to the critical normal organs, and those for fast neutrons are relatively superficial tumors. Further studies are needed to determine indications for pions. The available clinical experience in selected tumors with protons, pions and fast neutrons justifies the heavy-ion therapy programs. Successful results are anticipated from HIMAC (Heavy ion medical accelerator in Chiba) which is a dedicated facility for heavy-ion therapy.

  5. Design principles for solid-state lithium superionic conductors.

    PubMed

    Wang, Yan; Richards, William Davidson; Ong, Shyue Ping; Miara, Lincoln J; Kim, Jae Chul; Mo, Yifei; Ceder, Gerbrand

    2015-10-01

    Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.

  6. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Ebran, A.; Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-11-01

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment-which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron-accelerator (ELSA) at CEA-DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution.

  7. Nuclear physics in particle therapy: a review

    NASA Astrophysics Data System (ADS)

    Durante, Marco; Paganetti, Harald

    2016-09-01

    Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.

  8. Nuclear physics in particle therapy: a review.

    PubMed

    Durante, Marco; Paganetti, Harald

    2016-09-01

    Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.

  9. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.

  10. Long pulse high performance plasma scenario development for the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Bell, R. E.; Bell, M. G.; Gates, D. A.; Kaye, S. M.; LeBlanc, B. P.; Menard, J. E.; Phillips, C. K.; Synakowski, E. J.; Taylor, G.; Wilson, R.; Harvey, R. W.; Mau, T. K.; Ryan, P. M.; Sabbagh, S. A.

    2006-05-01

    The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall β limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, κ≈2.5, βN⩽5, β⩽15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high β plasmas can be reached at IP=1.0 MA, BT=0.35 T, κ≈2.5, βN⩽9, β⩽43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.

  11. Recent progress of the Laser-driven Ion-beam Trace Probe

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang

    2017-10-01

    The Laser-driven Ion-beam Trace Probe (LITP) is a new method to diagnose the poloidal magnetic field and radial electric field in tokamaks. Recently significant progresses have been made as follows. 1) The experimental system has been set up on the PKU Plasma Test (PPT) linear device and begun to validate the principle of LITP, including the ion source, the ion detector and the poloidal magnetic field cable. Preliminary experimental results matched the theoretical prediction well. 2) The reconstruction principle has been improved including the nonlinear effect. 3) Tomography methods have been applied in the reconstruction codes. Now the laser-driven ion-beam accelerator has been setup on the PPT device, and further test of LITP will start soon. After that a prototype of LITP system will be designed and setup on the HL-2A tokamak device. This work was supported by the CHINA MOST under 2012YQ030142, ITER-CHINA program 2015GB120001 and National Natural Science Foundation of China under 11575014 and 11375053.

  12. Robust ion current oscillations under a steady electric field: An ion channel analog.

    PubMed

    Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2016-08-01

    We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1/f power spectrum.

  13. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Krása, J.; Giuffrida, L.; Picciotto, A.; Torrisi, L.; Nowak, T.; Musumeci, P.; Velyhan, A.; Prokůpek, J.; Láska, L.; Mocek, T.; Ullschmied, J.; Rus, B.

    2011-05-01

    Multi-MeV beams of light ions have been produced using the 300 picosecond, kJ-class iodine laser, operating at the Prague Asterix Laser System facility in Prague. Real-time ion diagnostics have been performed by the use of various time-of-flight (TOF) detectors: ion collectors (ICs) with and without absorber thin films, new prototypes of single-crystal diamond and silicon carbide detectors, and an electrostatic ion mass spectrometer (IEA). In order to suppress the long photopeak induced by soft X-rays and to avoid the overlap with the signal from ultrafast particles, the ICs have been shielded with Al foil filters. The application of large-bandgap semiconductor detectors (>3 eV) ensured cutting of the plasma-emitted visible and soft-UV radiation and enhancing the sensitivity to the very fast proton/ion beams. Employing the IEA spectrometer, various ion species and charge states in the expanding laser-plasma have been determined. Processing of the experimental data based on the TOF technique, including estimation of the plasma fast proton maximum and peak energy, ion beam currents and total charge, total number of fast protons, as well as deconvolution processes, ion stopping power, and ion/photon transmission calculations for the different metallic filters used, are reported.

  14. Insights into asthenospheric anisotropy and deformation in Mainland China

    NASA Astrophysics Data System (ADS)

    Zhu, Tao

    2018-03-01

    Seismic anisotropy can provide direct constraints on asthenospheric deformation which also can be induced by the inherent mantle flow within our planet. Mantle flow calculations thus have been an effective tool to probe asthenospheric anisotropy. To explore the source of seismic anisotropy, asthenospheric deformation and the effects of mantle flow on seismic anisotropy in Mainland China, mantle flow models driven by plate motion (plate-driven) and by a combination of plate motion and mantle density heterogeneity (plate-density-driven) are used to predict the fast polarization direction of shear wave splitting. Our results indicate that: (1) plate-driven or plate-density-driven mantle flow significantly affects the predicted fast polarization direction when compared with simple asthenospheric flow commonly used in interpreting the asthenospheric source of seismic anisotropy, and thus new insights are presented; (2) plate-driven flow controls the fast polarization direction while thermal mantle flow affects asthenospheric deformation rate and local deformation direction significantly; (3) asthenospheric flow is an assignable contributor to seismic anisotropy, and the asthenosphere is undergoing low, large or moderate shear deformation controlled by the strain model, the flow plane/flow direction model or both in most regions of central and eastern China; and (4) the asthenosphere is under more rapid extension deformation in eastern China than in western China.

  15. Non-linear wave-particle interactions and fast ion loss induced by multiple Alfvén eigenmodes in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Kramer, Gerrit J.; Heidbrink, William W.

    2014-05-21

    A new non-linear feature has been observed in fast-ion loss from tokamak plasmas in the form of oscillations at the sum, difference and second harmonic frequencies of two independent Alfvén eigenmodes (AEs). Full orbit calculations and analytic theory indicate this non-linearity is due to coupling of fast-ion orbital response as it passes through each AE — a change in wave-particle phase k • r by one mode alters the force exerted by the next. Furthermore, the loss measurement is of barely confined, non-resonant particles, while similar non-linear interactions can occur between well-confined particles and multiple AEs leading to enhanced fast-ionmore » transport.« less

  16. Characterization of charge and kinetic energy distribution of ions emitted during nanosecond pulsed laser ablation of several metals

    NASA Astrophysics Data System (ADS)

    Dogar, A. H.; Ullah, S.; Qayyum, H.; Rehman, Z. U.; Qayyum, A.

    2017-09-01

    The ion flux from various metals (Al, Ti, Cu, Sn and W) ablated with 20 ns Nd:YAG laser radiation at a wavelength of 1064 nm was investigated by an ion collector operating in time-of-flight (TOF) configuration. The laser irradiance at the target was varied in the range of 1.7  ×  108-5.73  ×  108 W cm-2. Ion yield from various metals showed a linearly increasing trend with increasing laser irradiance, whereas ion yield was found to decrease with an increasing atomic mass of the target. Our results clearly indicate that ion yield is not a function of the volatility of the metal. TOF ion spectra showed at least two groups of low intensity peaks due to fast ions. The first group of ion peaks, which was present in the spectra of all five metals, was due to surface contamination. The additional fast ion structures in the spectra of Sn and W can be related to the ion acceleration due to the prompt electron emission from these high-Z metals. The ion velocity follows the anticipated inverse square root dependence on the ion mass. For the range of laser irradiance investigated here, the most probable energy of the Cu ions increases from about 100-600 eV. The fast increase in ion energy above ~3  ×  108 W cm-2 is related to the increase of the Columb part of the ion energy due to the production of multiply charged ions.

  17. Fast ion transport at a gas-metal interface

    DOE PAGES

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-11-06

    Fast ion transport and the resulting fusion yield reduction are computed at a gas-metal interface. The extent of fusion yield reduction is observed to depend sensitively on the charge state of the surrounding pusher material and the width of the atomically mixed region. These sensitivities suggest that idealized boundary conditions often implemented at the gas-pusher interface for the purpose of estimating fast ion loss will likely overestimate fusion reactivity reduction in several important limits. Additionally, the impact of a spatially complex material interface is investigated by considering a collection of droplets of the pusher material immersed in a DT plasma.more » It is found that for small Knudsen numbers, the extent of fusion yield reduction scales with the surface area of the material interface. As the Knudsen number is increased, but, the simple surface area scaling is broken, suggesting that hydrodynamic mix has a nontrivial impact on the extent of fast ion losses.« less

  18. Measurement of fast minority /sub 3/He/sup + +/ energy distribution during ICRF heating

    DOEpatents

    Post, D.E. Jr.; Grisham, L.R.; Medley, S.S.

    A method and means for measuring the fast /sub 3/He/sup + +/ distribution during /sub 3/He/sup + +/ minority Ion Cyclotron Resonance Frequency (ICRF) heating is disclosed. The present invention involves the use of 10 to 100 keV beams of neutral helium atoms to neutralize the fast /sub 3/He/sup + +/ ions in a heated plasma by double charge exchange (/sub 3/He/sup + +/ + /sub 4/He/sup 0/ ..-->.. /sub 3/He/sup 0/ + /sub 4/He/sup + +/). The neutralized fast /sub 3/He/sup 0/ atoms then escape from the hot plasma confined by a magnetic field and are detected by conventional neutral particle analyzing means. This technique permits the effectiveness of the coupling of the ion cyclotron waves to the /sub 3/He/sup + +/ minority ions to be accurately measured. The present invention is particularly adapted for use in evaluating the effectiveness of the intermediate coupling between the RF heating and the /sub 3/He/sup + +/ in an energetic toroidal plasma.

  19. Time of Flight based diagnostics for high energy laser driven ion beams

    NASA Astrophysics Data System (ADS)

    Scuderi, V.; Milluzzo, G.; Alejo, A.; Amico, A. G.; Booth, N.; Cirrone, G. A. P.; Doria, D.; Green, J.; Kar, S.; Larosa, G.; Leanza, R.; Margarone, D.; McKenna, P.; Padda, H.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Borghesi, M.; Cuttone, G.; Korn, G.

    2017-03-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  20. Fused Silica Ion Trap Chip with Efficient Optical Collection System for Timekeeping, Sensing, and Emulation

    DTIC Science & Technology

    2015-01-22

    applications in fast single photon sources, quantum repeater circuitry, and high fidelity remote entanglement of atoms for quantum information protocols. We...fluorescence for motion/force sensors through Doppler velocimetry; and for the efficient collection of single photons from trapped ions for...Doppler velocimetry; and for the efficient collection of single photons from trapped ions for applications in fast single photon sources, quantum

  1. Secondary electrons induced by fast ions under channeling conditions. II. Screening of fast heavy ions in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudo, H.; Shima, K.; Seki, S.

    1991-06-01

    Ion-beam shadowing effects have been observed for secondary electrons induced by various ions in the energy range of 1.8--3.8 MeV/amu, under various channeling conditions in Si and GaAs crystals. From a comparison of the energy spectra of electrons induced by ions of equal velocity, we have found reduced shadowing effects for heavy ions (Si, S, and Cl) as compared with light (H, He, C, and O) ions. It is concluded that the reduction results from the screening of the heavy ion's nuclear charge by bound electrons. By analyzing the reduced shadowing effect, the effective nuclear charges for the heavy ionsmore » within the target crystals have been determined.« less

  2. Spectroscopic investigations of beam-plasma interactions in an ion plume

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Peng, X.; Celenza, J. A.; Keefer, D.

    1993-01-01

    We report the results of spectroscopic investigations of beam-plasma interactions in the plume from a 3 cm ion source operated on argon. Ion-electron, ion-neutral, and electron-neutral scattering are identified by studying the dependence of neutral and ion emission intensities on chamber pressure and mass flow rate, and by analyzing the emission lineshapes at a non-orthogonal angle to the plume axis. Through the Doppler shift, we are able to separate contributions from fast beam ions and fast charge-exchange neutrals on the one hand, and of slow neutrals and slow ions on the other. We discuss the application of this new technique to the characterization of beam plasma interactions in the downstream region of ion thruster engines, and its potential for identifying the processes which lead to grid erosion.

  3. Role of Helium-Hydrogen ratio on energetic interchange mode behaviour and its effect on ion temperature and micro-turbulence in LHD

    NASA Astrophysics Data System (ADS)

    Michael, C. A.; Tanaka, K.; Akiyama, T.; Ozaki, T.; Osakabe, M.; Sakakibara, S.; Yamaguchi, H.; Murakami, S.; Yokoyama, M.; Shoji, M.; Vyacheslavov, L. N.; LHD Experimental Group

    2018-04-01

    In the Large helical device, a change of energetic particle mode is observed as He concentration is varied in ion-ITB type experiments, having constant electron density and input heating power but with a clear increase of central ion temperature in He rich discharges. This activity consists of bursty, but damped energetic interchange modes (EICs, Du et al 2015 Phys. Rev. Lett. 114 155003), whose occurrence rate is dramatically lower in the He-rich discharges. Mechanisms are discussed for the changes in drive and damping of the modes with He concentration. These EIC bursts consist of marked changes in the radial electric field, which is derived from the phase velocity of turbulence measured with the 2D phase contrast imaging (PCI) system. Similar bursts are detected in edge fast ion diagnostics. Ion thermal transport by gyro-Bohm scaling is recognised as a contribution to the change in ion temperature, though fast ion losses by these EIC modes may also contribute to the ion temperature dependence on He concentration, most particularly controlling the height of an ‘edge-pedestal’ in the Ti profile. The steady-state level of fast ions is shown to be larger in helium rich discharges on the basis of a compact neutral particle analyser (CNPA), and the fast-ion component of the diamagnetic stored energy. These events also have an influence on turbulence and transport. The large velocity shear induced produced during these events transiently improves confinement and suppresses turbulence, and has a larger net effect when bursts are more frequent in hydrogen discharges. This exactly offsets the increased gyro-Bohm related turbulence drive in hydrogen which results in the same time-averaged turbulence level in hydrogen as in helium.

  4. The response of a fast scintillator screen (YAP:Ce) to low energy ions (0-40 keV) and its use to detect fast-ion-loss in stellarator TJ-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, M., E-mail: marcos.martinez@externos.ciemat.es; Zurro, B.; Baciero, A.

    2016-11-15

    A systematic study of scintillation materials was undertaken to improve the time resolution of the fast ion diagnostic currently installed at TJ-II stellarator. It was found that YAP:Ce (formula YAlO{sub 3}:Ce, Yttrium Aluminum Perovskite doped with Cerium) ionoluminescence offers better sensitivity and time response compared to the standard detector material, SrGa{sub 2}S{sub 4}:Eu (TG-Green), currently used in TJ-II. A comparison between both materials was carried out by irradiating them with H{sup +} ions of up to 40 keV using a dedicated laboratory setup. It is found that for the low energy ions of interest at TJ-II, YAP:Ce offers 20 timesmore » higher sensitivity than TG-Green and much faster decay time, 27 ns versus 540 ns. It is expected that the use of YAP:Ce in combination with a faster data acquisition and an ion counting software as part of the TJ-II ion luminescent probe will provide 20 times faster data on ion loss.« less

  5. Free Energy Wells and Barriers to Ion Transport Across Membranes

    NASA Astrophysics Data System (ADS)

    Rempe, Susan

    2014-03-01

    The flow of ions across cellular membranes is essential to many biological processes. Ion transport is also important in synthetic materials used as battery electrolytes. Transport often involves specific ions and fast conduction. To achieve those properties, ion conduction pathways must solvate specific ions by just the ``right amount.'' The right amount of solvation avoids ion traps due to deep free energy wells, and avoids ion block due to high free energy barriers. Ion channel proteins in cellular membranes demonstrate this subtle balance in solvation of specific ions. Using ab initio molecular simulations, we have interrogated the link between binding site structure and ion solvation free energies in biological ion binding sites. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites for fast transport of specific ions. We acknowledge support from Sandia's LDRD program. Sandia National Labs is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US DOE's NNSA under contract DE-AC04-94AL85000.

  6. The K{sub a}-band 10-kW continuous wave gyrotron with wide-band fast frequency sweep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glyavin, M.; Luchinin, A.; Morozkin, M.

    2012-07-15

    The dual-frequency gyrotron with fast 2% frequency sweep at about 28 GHz is designed to power an electron cyclotron resonance ion source (ECRIS). Operation with an output power of up to 10 kW in CW mode and efficiency of 20% was demonstrated at both frequencies. Frequency manipulation has a characteristic time of about 1 ms and is based on magnetic field variation with an additional low-power coil. Fast frequency sweep will supposedly increase the ion current and the average ion charge of ECRIS. The possibility of 100% power modulation is demonstrated using the same control method.

  7. Pseudopotential SCF-MO studies of hypervalent compounds. II. XeF+5 and XeF6

    NASA Astrophysics Data System (ADS)

    Rothman, Michael J.; Bartell, Lawrence S.; Ewig, Carl S.; Van Wazer, John R.

    1980-07-01

    New evidence bearing upon the anomalous properties of xenon hexafluoride has been obtained via the ab initio molecular orbital approach applied successfully to the di- and tetrafluorides in paper I. Structures of both XeF+5 and XeF6 are governed by a stereochemically active lone pair. In the case of the square-pyramidal cation the Fax-Xe-Feq angle calculated for the bare ion is within 2° of the value observed in the crystalline complex. For the hexafluoride, however, the calculated deformation from Oh symmetry is appreciably greater than that deduced from electron diffraction intensities. Nevertheless, the results of calculations are in sufficient conformity with the Bartell-Gavin, Pitzer-Bernstein interpretation and at variance with the ''electronic-isomers'' interpretation to leave little doubt about the answer. With increasing fluorination in the XeFn series the HOMO-LUMO energy difference decreases and the second-order Jahn-Teller effect is enhanced. Increasing fluorination (and increased positive charge on Xe) also shortens bond lengths; calculated shortenings parallel observed shortenings. The deformation of XeF6 from Oh is along t1u bend and stretch coordinates to a C3v structure with long bonds adjacent to the lone pair, as expected according to the valence-shell-electron-pair-repulsion model. Pure t2g deformations are destabilizing but anharmonic t1u-t2g coupling significantly stabilizes the deformation. Steric aspects of the structure and force field are diagnosed and found to be minor. Values for the force constants f44, f55, f¯4444, f¯444'4', and f¯445 are derived and found to be of the magnitude forecast in the Bartell-Gavin and Pitzer-Bernstein treatments except that the calculations do not reproduce the delicate balances believed to lead to almost free pseudorotation in XeF6.

  8. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  9. A method for computing ion energy distributions for multifrequency capacitive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Alan C. F.; Lieberman, M. A.; Verboncoeur, J. P.

    2007-03-01

    The ion energy distribution (IED) at a surface is an important parameter for processing in multiple radio frequency driven capacitive discharges. An analytical model is developed for the IED in a low pressure discharge based on a linear transfer function that relates the time-varying sheath voltage to the time-varying ion energy response at the surface. This model is in good agreement with particle-in-cell simulations over a wide range of single, dual, and triple frequency driven capacitive discharge excitations.

  10. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers.

    PubMed

    Alejo, A; Kar, S; Ahmed, H; Krygier, A G; Doria, D; Clarke, R; Fernandez, J; Freeman, R R; Fuchs, J; Green, A; Green, J S; Jung, D; Kleinschmidt, A; Lewis, C L S; Morrison, J T; Najmudin, Z; Nakamura, H; Nersisyan, G; Norreys, P; Notley, M; Oliver, M; Roth, M; Ruiz, J A; Vassura, L; Zepf, M; Borghesi, M

    2014-09-01

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C(6+), O(8+), etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

  11. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Kar, S.; Ahmed, H.; Krygier, A. G.; Doria, D.; Clarke, R.; Fernandez, J.; Freeman, R. R.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Lewis, C. L. S.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Nersisyan, G.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Ruiz, J. A.; Vassura, L.; Zepf, M.; Borghesi, M.

    2014-09-01

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C6 +, O8 +, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

  12. Numerical studies of fast ion slowing down rates in cool magnetized plasma using LSP

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Kolmes, Elijah; Cohen, Samuel A.; Rognlien, Tom; Cohen, Bruce; Meier, Eric; Welch, Dale R.

    2016-10-01

    In MFE devices, rapid transport of fusion products from the core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. The first-orbit trajectories of most fusion products from small field-reversed configuration (FRC) devices will traverse the SOL, allowing those particles to deposit their energy in the SOL and be exhausted along the open field lines. Thus, the fast ion slowing-down time should affect the energy balance of an FRC reactor and its neutron emissions. However, the dynamics of fast ion energy loss processes under the conditions expected in the FRC SOL (with ρe <λDe) are analytically complex, and not yet fully understood. We use LSP, a 3D electromagnetic PIC code, to examine the effects of SOL density and background B-field on the slowing-down time of fast ions in a cool plasma. As we use explicit algorithms, these simulations must spatially resolve both ρe and λDe, as well as temporally resolve both Ωe and ωpe, increasing computation time. Scaling studies of the fast ion charge (Z) and background plasma density are in good agreement with unmagnetized slowing down theory. Notably, Z-scaling represents a viable way to dramatically reduce the required CPU time for each simulation. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  13. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  14. Dynamics of low- and high-Z metal ions emitted during nanosecond laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Polek, Mathew; Hassanein, Ahmed

    2016-11-01

    Dynamics of metal ions during laser-produced plasmas was studied. A 1064 nm, Nd: YAG laser pulse was used to ablate pure Al, Fe, Co, Mo, and Sn samples. Ion flux and velocity were measured using Faraday cup ion collector. Time-of-flight measurements showed decreasing ion flux and ion velocity with increasing atomic weight, and heavy metal ion flux profile exhibited multiple peaks that was not observed in lighter metals. Slow peak was found to follow shifted Maxwell Boltzmann distribution, while the fast peak was found to follow Gaussian distribution. Ion flux angular distribution that was carried out on Mo and Al using fixed laser intensity 2.5 × 1010 W/cm2 revealed that the slow ion flux peaks at small angles, that is, close to normal to the target ˜0° independent of target's atomic weight, and fast ion flux for Mo peaks at large angles ˜40° measured from the target normal, while it completely absents for Al. This difference in spatial and temporal distribution reveals that the emission mechanism of the fast and slow ions is different. From the slow ion flux angular distribution, the measured plume expansion ratio (plume forward peaking) was 1.90 and 2.10 for Al and Mo, respectively. Moreover, the effect of incident laser intensity on the ion flux emission as well as the emitted ion velocity were investigated using laser intensities varying from 2.5 × 1010 W/cm2 to 1.0 × 1011 W/cm2. Linear increase of fast ion flux and velocity, and quadratic increase of slow ion flux and velocity were observed. For further understanding of plume dynamics, laser optical emission spectroscopy was used to characterize Sn plasma by measuring the temporal and spatial evolution of plasma electron density Ne and electron temperature Te. At 3.5 mm away from the target, plasma density showed slow decrease with time, however electron temperature was observed to decrease dramatically. The maximum plasma density and temperature occurred at 0.5 mm away from target and were measured to be 8.0 × 1017 cm-3 and 1.3 eV, respectively.

  15. Understanding plume splitting of laser ablated plasma: A view from ion distribution dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Li, Xingwen; Wei, Wenfu

    2013-11-15

    Plume splitting in low-pressure ambient air was understood in view of ion distribution dynamics from the laser ablated Al plasma (1064 nm 0.57 J/mm{sup 2}) by combining fast photography and spatially resolved spectroscopy. In the beginning, the spectral lines were mainly from the Al III ion. Then, the Bragg peak in stopping power of the ambient gas to Al III could be the dominant reason for the enhanced emission from the fast moving part, and the recombination of Al III to Al I-II ions near the target surface was response to the radiations from the slow moving/stationary part. As themore » ambient gas pressure increased, stopping distances of the Al III decreased, and radiation from the air ions became pronounced. The laser shadowgraph image at 1100 Pa indicated that the shock wave front located between the fast moving and slow moving parts. Electron densities of the fast moving plasma, which peaked at the plasma front, were on the order of 10{sup 16} cm{sup −3}, and the electron temperatures were 2–3 eV.« less

  16. The effects of resonant magnetic perturbations on fast ion confinement in the Mega Amp Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Akers, R. J.; Boeglin, W. U.; Cecconello, M.; Keeling, D.; Jones, O. M.; Kirk, A.; Klimek, I.; Perez, R. V.; Shinohara, K.; Tani, K.

    2015-07-01

    The effects of resonant magnetic perturbations (RMPs) on the confinement of energetic (neutral beam) ions in the Mega Amp Spherical Tokamak (MAST) are assessed experimentally using measurements of neutrons, fusion protons and fast ion Dα (FIDA) light emission. In single null-diverted (SND) MAST pulses with relatively low plasma current (400 kA), the total neutron emission dropped by approximately a factor of two when RMPs with toroidal mode number n = 3 were applied. The measured neutron rate during RMPs was much lower than that calculated using the TRANSP plasma simulation code, even when non-classical (but axisymmetric) ad hoc fast ion transport was taken into account in the latter. Sharp drops in spatially-resolved neutron rates, fusion proton rates and FIDA emission were also observed. First principles-based simulations of RMP-induced fast ion transport in MAST, using the F3D-OFMC code, show similar losses for two alternative representations of the MAST first wall, with and without full orbit effects taken into account; for n = 6 RMPs in a 600 kA plasma, the additional loss of beam power due to the RMPs was found in the simulations to be approximately 11%.

  17. Coincidence electron/ion imaging with a fast frame camera

    NASA Astrophysics Data System (ADS)

    Li, Wen; Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander; Fan, Lin

    2015-05-01

    A new time- and position- sensitive particle detection system based on a fast frame CMOS camera is developed for coincidence electron/ion imaging. The system is composed of three major components: a conventional microchannel plate (MCP)/phosphor screen electron/ion imager, a fast frame CMOS camera and a high-speed digitizer. The system collects the positional information of ions/electrons from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of MCPs processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of electron/ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide. We further show that a time resolution of 30 ps can be achieved when measuring electron TOF spectrum and this enables the new system to achieve a good energy resolution along the TOF axis.

  18. Building 1D resonance broadened quasilinear (RBQ) code for fast ions Alfvénic relaxations

    NASA Astrophysics Data System (ADS)

    Gorelenkov, Nikolai; Duarte, Vinicius; Berk, Herbert

    2016-10-01

    The performance of the burning plasma is limited by the confinement of superalfvenic fusion products, e.g. alpha particles, which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using a resonance line broadened diffusion coefficient. The interaction of fast ions and AEs is captured for cases where there are either isolated or overlapping modes. A new code RBQ1D is being built which constructs diffusion coefficients based on realistic eigenfunctions that are determined by the ideal MHD code NOVA. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The evolution of fast ion constants of motion is governed by the QL diffusion equations which are adapted to find the ion distribution function.

  19. DOUBLE code simulations of emissivities of fast neutrals for different plasma observation view-lines of neutral particle analyzers on the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Mitosinkova, K.; Tomes, M.; Stockel, J.; Varju, J.; Stano, M.

    2018-03-01

    Neutral particle analyzers (NPA) measure line-integrated energy spectra of fast neutral atoms escaping the tokamak plasma, which are a product of charge-exchange (CX) collisions of plasma ions with background neutrals. They can observe variations in the ion temperature T i of non-thermal fast ions created by additional plasma heating. However, the plasma column which a fast atom has to pass through must be sufficiently short in comparison with the fast atom’s mean-free-path. Tokamak COMPASS is currently equipped with one NPA installed at a tangential mid-plane port. This orientation is optimal for observing non-thermal fast ions. However, in this configuration the signal at energies useful for T i derivation is lost in noise due to the too long fast atoms’ trajectories. Thus, a second NPA is planned to be connected for the purpose of measuring T i. We analyzed different possible view-lines (perpendicular mid-plane, tangential mid-plane, and top view) for the second NPA using the DOUBLE Monte-Carlo code and compared the results with the performance of the present NPA with tangential orientation. The DOUBLE code provides fast-atoms’ emissivity functions along the NPA view-line. The position of the median of these emissivity functions is related to the location from where the measured signal originates. Further, we compared the difference between the real central T i used as a DOUBLE code input and the T iCX derived from the exponential decay of simulated energy spectra. The advantages and disadvantages of each NPA location are discussed.

  20. High-performance rechargeable batteries with fast solid-state ion conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Joseph C.

    A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.

  1. Pulse

    MedlinePlus

    ... to take your wrist pulse References Bernstein D. History and physical examination. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016: ...

  2. Investigating the possibility of a monitoring fast ion diagnostic for ITER.

    PubMed

    De Angelis, R; von Hellermann, M G; Orsitto, F P; Tugarinov, S

    2008-10-01

    In burning plasma fusion devices, fast ion transport plays a central role in the performances of the machines. Moreover the losses of energetic particles might cause severe damages on plasma facing components. Therefore real time measurements of fast ion transport would provide valuable information for safe and reliable plasma operations. In this paper, we examine the feasibility of a monitoring system based on active charge exchange recombination spectroscopy making use of the 0.5 MeV/amu ITER heating neutral beams for detecting fast (4)He(+2) (alphas) particles in ITER plasmas. There are two time scales relevant to fast ion dynamics: the first is the slowing down time of the distribution function which is of the order of 1 s, and the second is the time scale of burstlike transport events such as collective Alfven mode excitations, which--for typical ITER plasma parameters--can be as low as 0.2-1 ms. To detect such fast events a broadband high-throughput spectrometer is needed, while for the reconstruction of the alpha velocity distribution function a higher resolution spectrometer and longer integration time are necessary. To monitor a spatial redistribution of fast particles due to the propagation of the instability, it is proposed to use a limited number of spatial channels, looking at the charge exchange He II spectra induced by the heating beams, whose energy matches the slowing down energies of fast particles. The proposal is to share the motional stark effect periscope on equatorial port 3 [A. Malaquias et al., Rev. Sci. Instrum. 75, 3393 (2004)] adding additional fibers and suitable instruments. A signal to noise ratio of 5 could be achieved with a spatial resolution of a/15 and a time resolution of 5 ms, in a broad spectral band of 100 A, corresponding to the spectral broadening of the line emitted by alpha particles with energies DeltaE < or = 1.5 MeV. Fast H and D ion populations created by heating neutral beam or ion cyclotron resonance heating are expected to produce significantly lower charge exchange signal levels and can only be monitored on substantially longer time scales as it is expected because of the strong energy difference with respect to the heating neutral beam and the consequently low charge exchange cross sections.

  3. The effects of electron cyclotron heating and current drive on toroidal Alfvén eigenmodes in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Garcia-Munoz, M.; Van Zeeland, M. A.; Bobkov, B.; Classen, I. G. J.; Ferreira, J.; Figueiredo, A.; Fitzgerald, M.; Galdon-Quiroga, J.; Gallart, D.; Geiger, B.; Gonzalez-Martin, J.; Johnson, T.; Lauber, P.; Mantsinen, M.; Nabais, F.; Nikolaeva, V.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Schneider, P. A.; Snicker, A.; Vallejos, P.; the AUG Team; the EUROfusion MST1 Team

    2018-01-01

    Dedicated studies performed for toroidal Alfvén eigenmodes (TAEs) in ASDEX-Upgrade (AUG) discharges with monotonic q-profiles have shown that electron cyclotron resonance heating (ECRH) can make TAEs more unstable. In these AUG discharges, energetic ions driving TAEs were obtained by ion cyclotron resonance heating (ICRH). It was found that off-axis ECRH facilitated TAE instability, with TAEs appearing and disappearing on timescales of a few milliseconds when the ECRH power was switched on and off. On-axis ECRH had a much weaker effect on TAEs, and in AUG discharges performed with co- and counter-current electron cyclotron current drive (ECCD), the effects of ECCD were found to be similar to those of ECRH. Fast ion distributions produced by ICRH were computed with the PION and SELFO codes. A significant increase in T e caused by ECRH applied off-axis is found to increase the fast ion slowing-down time and fast ion pressure causing a significant increase in the TAE drive by ICRH-accelerated ions. TAE stability calculations show that the rise in T e causes also an increase in TAE radiative damping and thermal ion Landau damping, but to a lesser extent than the fast ion drive. As a result of the competition between larger drive and damping effects caused by ECRH, TAEs become more unstable. It is concluded, that although ECRH effects on AE stability in present-day experiments may be quite significant, they are determined by the changes in the plasma profiles and are not particularly ECRH specific.

  4. Singlet oxygen production by chloroperoxidase-hydrogen peroxide-halide systems.

    PubMed

    Kanofsky, J R

    1984-05-10

    Singlet oxygen production in the chloroperoxidase-hydrogen peroxide-halide system was studied using 1268 nm chemiluminescence. With chloride or bromide ions, singlet oxygen is produced by the mechanism (formula; see text) (formula; see text) where X- is chloride or bromide ion. Under conditions where there is high enzyme activity and when Reaction B is fast relative to Reaction A, singlet oxygen is produced in near stoichiometric amounts. In contrast, when Reaction A is fast relative to Reaction B, oxidized halogen species (chlorine and hypochlorous acid for chloride ion; bromide, tribromide ion, and hypobromous acid for bromide ion) are the principle reaction products. With iodide ion, no 1268 nm chemiluminescence was detected. Past studies have shown that iodine and iodate ion are the major end products of this system.

  5. Extensional ionomeric polymer conductor composite actuators with ionic liquids

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Lin, Minren; Zhang, Qiming

    2008-03-01

    Although the Ionic Polymer-Metal Composite (IPMC) actuators developed up to date are in the form of bending actuators, development of extensional actuators based on IMPC is highly desirable from practical applications and fundamental understanding points of view. This talk presents the design, fabrication and characterization of a recent work on an extensional Ionic Polymer-Metal Composite actuator. The extensional actuator consists of the Nafion ionomer as the matrix and the sub-micron size RuO II particles as the conductive filler for the conductor/ionomr composites. In this investigation, several ionic liquids (IL) were investigated. For a Nafion/RuO II composite with 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) IL, it was found that as the ions are driven into the ionomer/RuO II composite (the composite under negative voltage), an extensional strain of 0.9% was observed; while as the ions were expelled from the ionomer/RuO II composite (under positive voltage), a contraction of -1.2% was observed. The results indicate that multiple ions are participating in charge transport and actuation process. In this paper, we also discuss several design considerations for future extensional actuators with fast response, much improved strain and stress level. Especially an actuator based on multilayer configuration can significantly increase the electric field level in the actuator and consequently significantly improve the actuator speed. The extensional actuator investigated here provides a unique platform to investigate various phenomena related to ion transport and their interaction with the ionomer/conductor matrix to realize high electromechanical performance.

  6. A comparative study of the tail ion distribution with reduced Fokker-Planck models

    NASA Astrophysics Data System (ADS)

    McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua; Berk, H. L.

    2014-03-01

    A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas and pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. While a significant reduction of the fusion reactivity in the hot spot compared to the nominal Maxwellian case is present, this reduction is found to be partially recovered by an increase of the fusion reactivity in the neighboring cold region.

  7. Measurement of the passive fast-ion D-alpha emission on the NSTX-U tokamak

    DOE PAGES

    Hao, G. Z.; Heidbrink, W. W.; Liu, D.; ...

    2018-01-08

    On National Spherical Torus Experiment Upgrade, the passive fast-ion D-alpha (passive-FIDA) spectra from charge exchange (CX) between the beam ions and the background neutrals are measured and simulated. The results indicate that the passive-FIDA signal is measurable and comparable to the active-FIDA on several channels, such as at the major radius R = 117 cm. For this, active-FIDA means the active D-alpha emission from the fast ions that CX with the injected neutrals. The shapes of measured spectra are in agreement with FIDASIM simulations on many fibers. Furthermore, the passive-FIDA spatial profile agrees with the simulation. When making measurements ofmore » active-FIDA in the edge region using time-slice subtraction, variations in the passive-FIDA contribution to the signal should be considered.« less

  8. A Fast-Ion Source for LAPD

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Boehmer, H.; Edrich, D.; Heidbrink, W. W.; McWilliams, R.; Leneman, D.

    2002-11-01

    To measure the fast-ion transport as a function of gyroradius, a 3-cm diameter, 17 MHz, ˜ 80 W, ˜ 3 mA, argon source is under development for use in the LArge Plasma Device (LAPD). In tests on the Irvine Mirror, the source performs reliably when oriented either parallel to the magnetic field or at an oblique angle and in either a CW or pulsed mode of operation. A radial energy analyzer measures the profile of the 200-500 eV beam. Laser-induced fluorescence (LIF) of cold 3d^2G_9/2 argon metastables excited by the source is readily measured but the hot argon ions in the beam itself are more difficult to detect. In preliminary tests on LAPD, the source operated successfully. Planned physics experiments include measurements of collisional fast-ion diffusion and fluctuation-induced transport.

  9. Measurement of the passive fast-ion D-alpha emission on the NSTX-U tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, G. Z.; Heidbrink, W. W.; Liu, D.

    On National Spherical Torus Experiment Upgrade, the passive fast-ion D-alpha (passive-FIDA) spectra from charge exchange (CX) between the beam ions and the background neutrals are measured and simulated. The results indicate that the passive-FIDA signal is measurable and comparable to the active-FIDA on several channels, such as at the major radius R = 117 cm. For this, active-FIDA means the active D-alpha emission from the fast ions that CX with the injected neutrals. The shapes of measured spectra are in agreement with FIDASIM simulations on many fibers. Furthermore, the passive-FIDA spatial profile agrees with the simulation. When making measurements ofmore » active-FIDA in the edge region using time-slice subtraction, variations in the passive-FIDA contribution to the signal should be considered.« less

  10. Multi-frequency ICRF diagnostic of Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lafonteese, David James

    This thesis explores the diagnostic possibilities of a fast wave-based method for measuring the ion density and temperature profiles of tokamak plasmas. In these studies fast waves are coupled to the plasma at frequencies at the second harmonic of the ion gyrofrequency, at which wave energy is absorbed by the finite-temperature ions. As the ion gyrofrequency is dependent upon the local magnetic field, which varies as l/R in a tokamak, this power absorption is radially localized. The simultaneous launching of multiple frequencies, all resonating at different plasma positions, allows local measurements of the ion density and temperature. To investigate the profile applications of wave damping measurements in a simulated tokamak, an inhouse slab-model ICRF code is developed. A variety of analysis methods are presented, and ion density and temperature profiles are reconstructed for hydrogen plasmas for the Electric Tokamak (ET) and ITER parameter spaces. These methods achieve promising results in simulated plasmas featuring bulk ion heating, off-axis RF heating, and density ramps. The experimental results of similar studies on the Electric Tokamak, a high aspect ratio (R/a = 5), low toroidal field (2.2 kG) device are then presented. In these studies, six fast wave frequencies were coupled using a single-strap, low-field-side antenna to ET plasmas. The frequencies were variable, and could be tuned to resonate at different radii for different experiments. Four magnetic pickup loops were used to measure of the toroidal component of the wave magnetic field. The expected greater eigenmode damping of center-resonant frequencies versus edge-resonant frequencies is consistently observed. Comparison of measured aspects of fast wave behavior in ET is made with the slab code predictions, which validate the code simulations under weakly-damped conditions. A density profile is measured for an ET discharge through analysis of the fast wave measurements, and is compared to an electron density profile derived from Thomson scattering data. The methodology behind a similar measurement of the ion temperature profile is also presented.

  11. Space charge tune shift, fast resonance traversal, and current limits in circular accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, G.H.

    1996-06-01

    Space charge tune shifts, fast resonance traversals, and current limits are important design issues for low energy, high power circular accelerators. Areas of interest are accumulator rings and fast cycling synchrotrons, and typical applications are for pulsed spallation neutron sources, heavy ion fusion storage ring drivers, and booster injectors for high energy proton and ion facilities. Aspects of the three topics are discussed in the paper. {copyright} {ital 1996 American Institute of Physics.}

  12. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system.

    PubMed

    Ji, Youzhi; Bai, Jing; Li, Jinhua; Luo, Tao; Qiao, Li; Zeng, Qingyi; Zhou, Baoxue

    2017-11-15

    A highly selective method for transforming ammonia nitrogen to N 2 was proposed, based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions (PEC-chlorine) system. The PEC-chlorine system was facilitated by a visible light response WO 3 nanoplate array (NPA) electrode in an ammonia solution containing chloride ions (Cl - ). Under illumination, photoholes from WO 3 promote the oxidation of Cl - to chlorine radical (Cl). This radical can selectively transform ammonia nitrogen to N 2 (79.9%) and NO 3 - (19.2%), similar to the breakpoint chlorination reaction. The ammonia nitrogen removal efficiency increased from 10.6% (PEC without Cl - ) to 99.9% with the PEC-chlorine system within 90 min operation, which can be attributed to the cyclic reactions between Cl - /Cl and the reaction intermediates (NH 2 , NHCl, etc.) that expand the degradation reactions from the surface of the electrodes to the whole solution system. Moreover, Cl is the main radical species contributing to the transformation of ammonia nitrogen to N 2 , which is confirmed by the tBuOH capture experiment. Compared to conventional breakpoint chlorination, the PEC-chlorine system is a more economical and efficient means for ammonia nitrogen degradation because of the fast removal rate, no additional chlorine cost, and its use of clean energy (since it is solar-driven). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. High Harmonic Fast Wave Damping on an Ion Beam: NSTX and DIII-D Regimes Compared

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Choi, C. C.; Petty, C. C.; Porkolab, M.; Wilson, J. R.; Murakami, M.; Harvey, R. W.

    2004-11-01

    Both NSTX and DIII-D use the combination of fast Alfven waves (FW) and neutral beam injection (NBI) for central electron heating and current drive. Damping of the fast wave on the beam ions at moderate to high harmonics (4th--20th) of the beam ion cyclotron frequency represents a loss process. In DIII-D current drive experiments at low density in which 4th and 8th harmonics were compared, damping at the 8th harmonic damping was much weaker than at the 4th [1]. However, recent simulations have predicted that in higher density and higher beam power regimes (of interest to the Advanced Tokamak program) the beam ion absorption will transition to the unmagnetized ion regime, where the damping is significant and essentially independent of harmonic number. In the present work, the transition from magnetized to unmagnetized ion regimes for the NSTX and DIII-D HHFW experiments is studied theoretically, with a combination of simple semi-analytic models and numerical models. \\vspace0.25 em [1] C.C. Petty, et al., Plasma Phys. and Contr. Fusion 43, 1747 (2001).

  14. Towards highest peak intensities for ultra-short MeV-range ion bunches

    NASA Astrophysics Data System (ADS)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  15. Towards highest peak intensities for ultra-short MeV-range ion bunches

    PubMed Central

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  16. Stochastic Acceleration of Ions Driven by Pc1 Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-01-01

    The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  17. Experimental evidence of ion-induced instabilities in the NSLS-II storage ring

    DOE PAGES

    Cheng, Weixing; Li, Yongjun; Podobedov, Boris

    2017-03-12

    Fast ion instability has been identified as one of the most prominent instabilities in the recently constructed NSLS-II storage ring at Brookhaven National Laboratory. At a relatively low beam current (~ 25 mA) multi-bunch fills, ion-induced instabilities have already been observed during the early stages of machine commissioning. At present user operation with 250 mA in ~1000 bunches, the fast ion still remains the dominant instability, even after months of vacuum conditioning at high current. Ion-induced dipole motions of the electron beam have been suppressed using the transverse bunch-by-bunch (BxB) feedback system. However other adverse effects of this instability, suchmore » as the vertical beam size increase along the bunch train cannot be cured by the feedback system. Therefore, to achieve the NSLS-II design current of 500 mA while maintaining a small vertical beam emittance, it is important to further understand the fast ion instability and develop mitigation techniques. This paper reports on a series of ion-instability observations at various fill patterns and beam currents using start-of-art NSLS-II diagnostic tools.« less

  18. Experimental evidence of ion-induced instabilities in the NSLS-II storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Weixing; Li, Yongjun; Podobedov, Boris

    Fast ion instability has been identified as one of the most prominent instabilities in the recently constructed NSLS-II storage ring at Brookhaven National Laboratory. At a relatively low beam current (~ 25 mA) multi-bunch fills, ion-induced instabilities have already been observed during the early stages of machine commissioning. At present user operation with 250 mA in ~1000 bunches, the fast ion still remains the dominant instability, even after months of vacuum conditioning at high current. Ion-induced dipole motions of the electron beam have been suppressed using the transverse bunch-by-bunch (BxB) feedback system. However other adverse effects of this instability, suchmore » as the vertical beam size increase along the bunch train cannot be cured by the feedback system. Therefore, to achieve the NSLS-II design current of 500 mA while maintaining a small vertical beam emittance, it is important to further understand the fast ion instability and develop mitigation techniques. This paper reports on a series of ion-instability observations at various fill patterns and beam currents using start-of-art NSLS-II diagnostic tools.« less

  19. Preferential Heating of Oxygen 5+ Ions by Finite-Amplitude Oblique Alfven Waves

    NASA Technical Reports Server (NTRS)

    Maneva, Yana G.; Vinas, Adolfo; Araneda, Jamie; Poedts, Stefaan

    2016-01-01

    Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5+ ions by large-scale finite-amplitude Alfven waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5+ ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfven-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles theta less than or equal to 30 deg. The obliquely propagating Alfven pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.

  20. An overview of recent physics results from NSTX

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Abrams, T.; Ahn, J.-W.; Allain, J. P.; Andre, R.; Andruczyk, D.; Barchfeld, R.; Battaglia, D.; Bhattacharjee, A.; Bedoya, F.; Bell, R. E.; Belova, E.; Berkery, J.; Berry, L.; Bertelli, N.; Beiersdorfer, P.; Bialek, J.; Bilato, R.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyer, M. D.; Boyle, D.; Brennan, D.; Breslau, J.; Brooks, J.; Buttery, R.; Capece, A.; Canik, J.; Chang, C. S.; Crocker, N.; Darrow, D.; Davis, W.; Delgado-Aparicio, L.; Diallo, A.; D'Ippolito, D.; Domier, C.; Ebrahimi, F.; Ethier, S.; Evans, T.; Ferraro, N.; Ferron, J.; Finkenthal, M.; Fonck, R.; Fredrickson, E.; Fu, G. Y.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gorelenkova, M.; Goumiri, I.; Gray, T.; Green, D.; Guttenfelder, W.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hirooka, Y.; Hooper, E. B.; Hosea, J.; Humphreys, D.; Jaeger, E. F.; Jarboe, T.; Jardin, S.; Jaworski, M. A.; Kaita, R.; Kessel, C.; Kim, K.; Koel, B.; Kolemen, E.; Kramer, G.; Ku, S.; Kubota, S.; LaHaye, R. J.; Lao, L.; LeBlanc, B. P.; Levinton, F.; Liu, D.; Lore, J.; Lucia, M.; Luhmann, N., Jr.; Maingi, R.; Majeski, R.; Mansfield, D.; Maqueda, R.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Mueller, D.; Munsat, T.; Muscatello, C.; Myra, J.; Nelson, B.; Nichols, J.; Ono, M.; Osborne, T.; Park, J.-K.; Peebles, W.; Perkins, R.; Phillips, C.; Podesta, M.; Poli, F.; Raman, R.; Ren, Y.; Roszell, J.; Rowley, C.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S. A.; Schuster, E.; Scotti, F.; Sechrest, Y.; Shaing, K.; Sizyuk, T.; Sizyuk, V.; Skinner, C.; Smith, D.; Snyder, P.; Solomon, W.; Sovenic, C.; Soukhanovskii, V.; Startsev, E.; Stotler, D.; Stratton, B.; Stutman, D.; Taylor, C.; Taylor, G.; Tritz, K.; Walker, M.; Wang, W.; Wang, Z.; White, R.; Wilson, J. R.; Wirth, B.; Wright, J.; Yuan, X.; Yuh, H.; Zakharov, L.; Zweben, S. J.

    2015-10-01

    The National Spherical Torus Experiment (NSTX) is currently being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploring the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Toroidal Alfvén eigenmode avalanches and higher frequency Alfvén eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium-oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Two Alfvén eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.

Top