New Fast Beam Conditions Monitoring (BCM1F) system for CMS
NASA Astrophysics Data System (ADS)
Zagozdzinska, A. A.; Bell, A. J.; Dabrowski, A. E.; Hempel, M.; Henschel, H. M.; Karacheban, O.; Przyborowski, D.; Leonard, J. L.; Penno, M.; Pozniak, K. T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.
2016-01-01
The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F—one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns bunch structure.
Seven years with the Swift Supergiant Fast X-ray Transients project
NASA Astrophysics Data System (ADS)
Romano, P.
2015-09-01
Supergiant Fast X-ray Transients (SFXTs) are HMXBs with OB supergiant companions. I review the results of the Swift SFXT project, which since 2007 has been exploiting Swift's capabilities in a systematic study of SFXTs and supergiant X-ray binaries (SGXBs) by combining follow-ups of outbursts, when detailed broad-band spectroscopy is possible, with long-term monitoring campaigns, when the out-of-outburst fainter states can be observed. This strategy has led us to measure their duty cycles as a function of luminosity, to extract their differential luminosity distributions in the soft X-ray domain, and to compare, with unprecedented detail, the X-ray variability in these different classes of sources. I also discuss the ;seventh year crisis;, the challenges that the recent Swift observations are making to the prevailing models attempting to explain the SFXT behavior.
The Swift Supergiant Fast X-ray Transient Project
NASA Astrophysics Data System (ADS)
Romano, P.; Barthelmy, S.; Bozzo, E.; Burrows, D.; Ducci, L.; Esposito, P.; Evans, P.; Kennea, J.; Krimm, H.; Vercellone, S.
2017-10-01
We present the Swift Supergiant Fast X-ray Transients project, a systematic study of SFXTs and classical supergiant X-ray binaries (SGXBs) through efficient long-term monitoring of 17 sources including SFXTs and classical SGXBs across more than 4 orders of magnitude in X-ray luminosity on timescales from hundred seconds to years. We derived dynamic ranges, duty cycles, and luminosity distributions to highlight systematic differences that help discriminate between different theoretical models proposed to explain the differences between the wind accretion processes in SFXTs and classical SGXBs. Our follow-ups of the SFXT outbursts provide a steady advancement in the comprehension of the mechanisms triggering the high X-ray level emission of these sources. In particular, the observations of the outburst of the SFXT prototype IGR J17544-2619, when the source reached a peak X-ray luminosity of 3×10^{38} erg s^{-1}, challenged for the first time the maximum theoretical luminosity achievable by a wind-fed neutron star high mass X-ray binary. We propose that this giant outburst was due to the formation of a transient accretion disc around the compact object. We also created a catalogue of over 1000 BAT flares which we use to predict the observability and perspectives with future missions.
Up and Down the Black Hole Radio/X-Ray Correlation: The 2017 Mini-outbursts from Swift J1753.5-0127
NASA Astrophysics Data System (ADS)
Plotkin, R. M.; Bright, J.; Miller-Jones, J. C. A.; Shaw, A. W.; Tomsick, J. A.; Russell, T. D.; Zhang, G.-B.; Russell, D. M.; Fender, R. P.; Homan, J.; Atri, P.; Bernardini, F.; Gelfand, J. D.; Lewis, F.; Cantwell, T. M.; Carey, S. H.; Grainge, K. J. B.; Hickish, J.; Perrott, Y. C.; Razavi-Ghods, N.; Scaife, A. M. M.; Scott, P. F.; Titterington, D. J.
2017-10-01
The candidate black hole X-ray binary Swift J1753.5-0127 faded to quiescence in 2016 November after a prolonged outburst that was discovered in 2005. Nearly three months later, the system displayed renewed activity that lasted through 2017 July. Here, we present radio and X-ray monitoring over ≈ 3 months of the renewed activity to study the coupling between the jet and the inner regions of the disk/jet system. Our observations cover low X-ray luminosities that have not historically been well-sampled ({L}{{X}}≈ 2× {10}33{--}{10}36 {erg} {{{s}}}-1; 1-10 keV), including time periods when the system was both brightening and fading. At these low luminosities, Swift J1753.5-0127 occupies a parameter space in the radio/X-ray luminosity plane that is comparable to “canonical” systems (e.g., GX 339-4), regardless of whether the system was brightening or fading, even though during its ≳11 year outburst, Swift J1753.5-0127 emitted less radio emission from its jet than expected. We discuss implications for the existence of a single radio/X-ray luminosity correlation for black hole X-ray binaries at the lowest luminosities ({L}{{X}}≲ {10}35 {erg} {{{s}}}-1), and we compare to supermassive black holes. Our campaign includes the lowest luminosity quasi-simultaneous radio/X-ray detection to date for a black hole X-ray binary during its rise out of quiescence, thanks to early notification from optical monitoring combined with fast responses from sensitive multiwavelength facilities.
Analytical N beam position monitor method
NASA Astrophysics Data System (ADS)
Wegscheider, A.; Langner, A.; Tomás, R.; Franchi, A.
2017-11-01
Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β*-leveling on luminosity will require many operational optics. A fast measurement of the β -function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs). A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.
NASA Technical Reports Server (NTRS)
Maoz, Dan; Smith, Paul S.; Jannuzi, Buell T.; Kaspi, Shai; Netzer, Hagai
1994-01-01
We have monitored spectrophotometrically a subsample (28) of the Palomar-Green Bright Quasar Sample for 2 years in order to test for correlations between continuum and emission-line variations and to determine the timescales relevant to mapping the broad-line regions of high-luminosity active galactic nuclei (AGNs). Half of the quasars showed optical continuum variations with amplitudes in the range 20-75%. The rise and fall time for the continuum variations is typically 0.5-2 years. In most of the objects with continuum variations, we detect correlated variations in the broad H-alpha and H-beta emission lines. The amplitude of the line variations is usually 2-4 times smaller than the optical continuum fluctuations. We present light curves and analyze spectra for six of the variable quasars with 1000-10,000 A luminosity in the range 0.3-4 x 10(exp 45) ergs/s. In four of these objects the lines respond to the continuum variations with a lag that is smaller than or comparable to our typical sampling interval (a few months). Although continued monitoring is required to confirm these results and increase their accuracy, the present evidence indicates that quasars with the above luminosities have broad-line regions smaller than about 1 1t-yr. Two of the quasars monitored show no detectable line variations despite relatively large-amplitude continuum changes. This could be a stronger manifestation of the low-amplitude line-response phenomenon we observe in the other quasars.
Two classes of fast-declining Type Ia supernovae
NASA Astrophysics Data System (ADS)
Dhawan, Suhail; Leibundgut, B.; Spyromilio, J.; Blondin, S.
2017-06-01
We aim to characterise a sample of fast-declining Type Ia supernovae (SN Ia) using their bolometric and near-infrared (NIR) properties. Based on these properties, we find that fast-declining SN Ia separate into two categories based on their bolometric and NIR properties. The peak bolometric luminosity (Lmax), the phase of the first maximum relative to the optical, the NIR peak luminosity, and the occurrence of a second maximum in the NIR distinguish a group of very faint SN Ia. Fast-declining supernovae show a large range of peak bolometric luminosities (Lmax differing by up to a factor of 8). All fast-declining SN Ia with Lmax < 0.3× 1043 erg s-1 are spectroscopically classified as 91bg-like and show only a single NIR peak. SNe with Lmax > 0.5× 1043 erg s-1 appear to smoothly connect to normal SN Ia. The total ejecta mass (Mej) values for SNe with enough late time data are ≲1 M⊙, indicating a sub-Chandrasekhar mass progenitor for these SNe.
Online Luminosity Measurement at CMS for Energy Frontier Physics after LS1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stickland, David P.
2015-09-20
This proposal was directed towards the measurement of Bunch-by-Bunch and Total Luminosity in the CMS experiment using Single-Crystal Diamond (sCVD) installed close to the Interaction Point - known as the Fast Beam Conditions Monitor, or BCM1F detector. The proposal was successfully carried out and in February 2015 CMS installed its upgraded BCM1F detector. At first collisions in June 2015 the BCM1F was used as the primary luminometer, then in August 2015 a Van De Meer scan has been carried out and the detailed luminometer calibration is under study. In all aspects of performance measurement the upgraded detector has satisfied itsmore » design parameters and as an overview of its performance in this report will show, we have high expectations that the detector will be a powerful addition to the luminosity measurement at CMS and LHC. The proposed upgrade of BCM1F was a collaboration of CMS Institutes in Germany (DESY-Zeuthen) and the USA (Princeton) and of CERN itself.« less
NASA Astrophysics Data System (ADS)
Bouchami, Jihene
The LHC proton-proton collisions create a hard radiation environment in the ATLAS detector. In order to quantify the effects of this environment on the detector performance and human safety, several Monte Carlo simulations have been performed. However, direct measurement is indispensable to monitor radiation levels in ATLAS and also to verify the simulation predictions. For this purpose, sixteen ATLAS-MPX devices have been installed at various positions in the ATLAS experimental and technical areas. They are composed of a pixelated silicon detector called MPX whose active surface is partially covered with converter layers for the detection of thermal, slow and fast neutrons. The ATLAS-MPX devices perform real-time measurement of radiation fields by recording the detected particle tracks as raster images. The analysis of the acquired images allows the identification of the detected particle types by the shapes of their tracks. For this aim, a pattern recognition software called MAFalda has been conceived. Since the tracks of strongly ionizing particles are influenced by charge sharing between adjacent pixels, a semi-empirical model describing this effect has been developed. Using this model, the energy of strongly ionizing particles can be estimated from the size of their tracks. The converter layers covering each ATLAS-MPX device form six different regions. The efficiency of each region to detect thermal, slow and fast neutrons has been determined by calibration measurements with known sources. The study of the ATLAS-MPX devices response to the radiation produced by proton-proton collisions at a center of mass energy of 7 TeV has demonstrated that the number of recorded tracks is proportional to the LHC luminosity. This result allows the ATLAS-MPX devices to be employed as luminosity monitors. To perform an absolute luminosity measurement and calibration with these devices, the van der Meer method based on the LHC beam parameters has been proposed. Since the ATLAS-MPX devices response and the luminosity are correlated, the results of measuring radiation levels are expressed in terms of particle fluences per unit integrated luminosity. A significant deviation has been obtained when comparing these fluences with those predicted by GCALOR, which is one of the ATLAS detector simulations. In addition, radiation measurements performed at the end of proton-proton collisions have demonstrated that the decay of radionuclides produced during collisions can be observed with the ATLAS-MPX devices. The residual activation of ATLAS components can be measured with these devices by means of ambient dose equivalent calibration. Keywords: pattern recognition, charge sharing effect, neutron detection efficiency, luminosity, van der Meer method, particle fluences, GCALOR simulation, residual activation, ambient dose equivalent.
NASA Technical Reports Server (NTRS)
Bodaghee, A.; Tomsick, J. A.; Rodriquez, J.; Chaty, S.; Pottschmidt, K.; Walter, R.; Romano, P.
2010-01-01
We present an analysis of a 37-ks observation of the supergiant fast X-ray transient (SFXT) IGRJ17391 -3021 (=XTEJ1739-302) gathered with Suzaku. The source evolved from quiescence to a low-activity level culminating in three weak flares lasting approx.3 ks each in which the peak luminosity is only a factor of 5 times that of the pre-flare luminosity. The minimum observed luminosity was 1.3 x 10(exp 33) erg/s (d/2.7 kpc)(exp 2) in the 0.5-10 keV range. The weak flares are accompanied by significant changes in the spectral parameters including a column density (N(sub H) = (4.1(+0.4/-0.5)) x 10(exp 22)/sq cm) that is approx.2-9 times the absorption measured during quiescence. Accretion of obscuring clumps of stellar wind material can explain both the small flares and the increase in NH. Placing this observation in the context of the recent Swift monitoring campaign, we find that weak-flaring episodes, or at least epochs of enhanced activity just above the quiescent level but well below the moderately bright or high-luminosity outbursts, represent more than 60+/-5% of all observations in the 0.5-10keV energy range making this the most common state in the emission behavior of IGRJ17391 -3021.
Bright and ultra-fast scintillation from a semiconductor?
Derenzo, Stephen E.; Bourret-Courshesne, Edith; Bizarri, Gregory; Canning, Andrew
2015-01-01
Semiconductor scintillators are worth studying because they include both the highest luminosities and shortest decay times of all known scintillators. Moreover, many semiconductors have the heaviest stable elements (Tl, Hg, Pb, Bi) as a major constituent and a high ion pair yield that is proportional to the energy deposited. We review the scintillation properties of semiconductors activated by native defects, isoelectronic impurities, donors and acceptors with special emphasis on those that have exceptionally high luminosities (e.g. ZnO:Zn, ZnS:Ag,Cl, CdS:Ag,Cl) and those that have ultra-fast decay times (e.g. ZnO:Ga; CdS:In). We discuss underlying mechanisms that are consistent with these properties and the possibilities for achieving (1) 200,000 photons/MeV and 1% fwhm energy resolution for 662 keV gamma rays, (2) ultra-fast (ns) decay times and coincident resolving times of 30 ps fwhm for time-of-flight positron emission tomography, and (3) both a high luminosity and an ultra-fast decay time from the same scintillator at cryogenic temperatures. PMID:26855462
Coherent curvature radiation and fast radio bursts
NASA Astrophysics Data System (ADS)
Ghisellini, Gabriele; Locatelli, Nicola
2018-06-01
Fast radio bursts are extragalactic radio transient events lasting a few milliseconds with a Jy flux at 1 GHz. We propose that these properties suggest a neutron star progenitor, and focus on coherent curvature radiation as the radiation mechanism. We study for which sets of parameters the emission can fulfil the observational constraints. Even if the emission is coherent, we find that self-absorption can limit the produced luminosities at low radio frequencies and that an efficient re-acceleration process is needed to balance the dramatic energy losses of the emitting particles. Self-absorption limits the luminosities at low radio frequency, while coherence favours steep optically thin spectra. Furthermore, the magnetic geometry must have a high degree of order to obtain coherent curvature emission. Particles emit photons along their velocity vectors, thereby greatly reducing the inverse Compton mechanism. In this case we predict that fast radio bursts emit most of their luminosities in the radio band and have no strong counterpart in any other frequency bands.
Polycrystalline CdTe detectors: A luminosity monitor for the LHC
NASA Astrophysics Data System (ADS)
Gschwendtner, E.; Placidia, M.; Schmicklera, H.
2003-09-01
The luminosity at the four interaction points of the Large Hadron Collider must be continuously monitored in order to provide an adequate tool for the control and optimization of the collision parameters and the beam optics. At both sides of the interaction points absorbers are installed to protect the super-conducting accelerator elements from quenches caused by the deposited energy of collision products. The luminosity detectors will be installed in the copper core of these absorbers to measure the electromagnetic and hadronic showers caused by neutral particles that are produced at the proton-proton collision in the interaction points. The detectors have to withstand extreme radiation levels (108 Gy/yr at the design luminosity) and their long-term operation has to be assured without requiring human intervention. In addition the demand for bunch-by-bunch luminosity measurements, i.e. 40 MHz detection speed, puts severe constraints on the detectors. Polycrystalline CdTe detectors have a high potential to fulfill the requirements and are considered as LHC luminosity monitors. In this paper the interaction region is shown and the characteristics of the CdTe detectors are presented.
Constraints on pulsed emission model for repeating FRB 121102
NASA Astrophysics Data System (ADS)
Kisaka, Shota; Enoto, Teruaki; Shibata, Shinpei
2017-12-01
Recent localization of the repeating fast radio burst (FRB) 121102 revealed the distance of its host galaxy and luminosities of the bursts. We investigated constraints on the young neutron star (NS) model, that (a) the FRB intrinsic luminosity is supported by the spin-down energy, and (b) the FRB duration is shorter than the NS rotation period. In the case of a circular cone emission geometry, conditions (a) and (b) determine the NS parameters within very small ranges, compared with that from only condition (a) discussed in previous works. Anisotropy of the pulsed emission does not affect the area of the allowed parameter region by virtue of condition (b). The determined parameters are consistent with those independently limited by the properties of the possible persistent radio counterpart and the circumburst environments such as surrounding materials. Since the NS in the allowed parameter region is older than the spin-down timescale, the hypothetical GRP (giant radio pulse)-like model expects a rapid radio flux decay of ≲1 Jy within a few years as the spin-down luminosity decreases. The continuous monitoring will provide constraints on the young NS models. If no flux evolution is seen, we need to consider an alternative model, e.g., the magnetically powered flare.
A decades-long fast-rise-exponential-decay flare in low-luminosity AGN NGC 7213
NASA Astrophysics Data System (ADS)
Yan, Zhen; Xie, Fu-Guo
2018-03-01
We analysed the four-decades-long X-ray light curve of the low-luminosity active galactic nucleus (LLAGN) NGC 7213 and discovered a fast-rise-exponential-decay (FRED) pattern, i.e. the X-ray luminosity increased by a factor of ≈4 within 200 d, and then decreased exponentially with an e-folding time ≈8116 d (≈22.2 yr). For the theoretical understanding of the observations, we examined three variability models proposed in the literature: the thermal-viscous disc instability model, the radiation pressure instability model, and the TDE model. We find that a delayed tidal disruption of a main-sequence star is most favourable; either the thermal-viscous disc instability model or radiation pressure instability model fails to explain some key properties observed, thus we argue them unlikely.
On Detecting Repetition from Fast Radio Bursts
NASA Astrophysics Data System (ADS)
Connor, Liam; Petroff, Emily
2018-07-01
Fast radio bursts (FRBs) are bright, millisecond-duration radio pulses of unknown origin. To date, only one (FRB 121102) out of several dozen has been seen to repeat, though the extent to which it is exceptional remains unclear. We discuss detecting repetition from FRBs, which will be very important for understanding their physical origin, and which also allows for host galaxy localization. We show how the combination of instrument sensitivity, beam shapes, and individual FRB luminosity functions affect the detection of sources with repetition that is not necessarily described by a homogeneous Poisson process. We demonstrate that the Canadian Hydrogen Intensity Mapping Experiment (CHIME) could detect many new repeating FRBs for which host galaxies could be subsequently localized using other interferometers, but it will not be an ideal instrument for monitoring FRB 121102. If the luminosity distributions of repeating FRBs are given by power laws with significantly more dim than bright bursts, CHIME’s repetition discoveries could preferentially come not from its own discoveries, but from sources first detected with lower-sensitivity instruments like the Australian Square Kilometer Array Pathfinder in fly’s eye mode. We then discuss observing strategies for upcoming surveys, and advocate following up sources at approximately regular intervals and with telescopes of higher sensitivity when possible. Finally, we discuss doing pulsar-like periodicity searching on FRB follow-up data, based on the idea that while most pulses are undetectable, folding on an underlying rotation period could reveal the hidden signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasliwal, M. M.; Kulkarni, S. R.; Ofek, E. O.
We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60 inch telescope during a search for 'Fast Transients In Nearest Galaxies' (P60-FasTING). Designed as a fast cadence (1 day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M 31, 6 in M 81, 3 in M 82, 1 in NGC 2403, and 1 in NGC 891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburstmore » environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical maximum-magnitude-rate-of-decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps the MMRD, which is characterized only by the white dwarf mass, was an oversimplification. Nova physics appears to be characterized by a relatively rich four-dimensional parameter space in white dwarf mass, temperature, composition, and accretion rate.« less
Measuring the Impact of AGN Outflows via Intensive UV and X-ray Monitoring Campaigns
NASA Astrophysics Data System (ADS)
Kriss, Gerard
2015-08-01
Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN, notably Mrk 509, NGC 5548, Mrk 335, and NGC 985. Another intensive campaign is planned for 2015-2016 on NGC 7469. In all cases, the mass flux and kinetic energy is dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Typically, the kinetic luminosity is less than a percent of the Eddington luminosity. In some cases, transient, broad UV absorption troughs have appeared (e.g., Mrk 335 and NGC 5548), with variability timescales suggesting locations near the broad-line region of the AGN. Yet these higher-velocity outflows also have low-impact kinetic luminosities. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The lower-ionization, narrow associated absorption lines in the UV spectrum of NGC 5548 that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. The intensive monitoring allows us to fit time-dependent photoionization models to the UV-absorbing gas, allowing precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.
Achieving BLISS: Challenges for Building Fast, Ultra-Sensitive Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M .; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.
2012-01-01
Topics: 1.Motivation and Intro to TESs. 2. BLISS Specifications-tolerance to dark power. 3.Measuring stray (dark) power-Tc (alpha) and G measurements. a) Overview two methods: JTD vs. TES. b) TES arrays: measurement and complications for Pd, Tc, and alpha. 4. Results: Pd compare, NEP, tau, 1/f issues. LIRGs and ULIRGs: Excellent example of distinct optical/UV and IR luminosity. Interaction long known, but huge luminosity is not predicted based on optical studies. (greater than 90% of the energy is emitted at in the far-IR). Large luminosity has both starburst and accretion components.
Soft X-ray characterisation of the long-term properties of supergiant fast X-ray transients
NASA Astrophysics Data System (ADS)
Romano, P.; Ducci, L.; Mangano, V.; Esposito, P.; Bozzo, E.; Vercellone, S.
2014-08-01
Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) that are characterised by a hard X-ray (≥ 15 keV) flaring behaviour. These flares reach peak luminosities of 1036-1037 erg s-1 and last a few hours in the hard X-rays. Aims: We investigate the long-term properties of SFXTs by examining the soft (0.3-10 keV) X-ray emission of the three least active SFXTs in the hard X-ray and by comparing them with the remainder of the SFXT sample. Methods: We performed the first high-sensitivity soft X-ray long-term monitoring with Swift/XRT of three relatively unexplored SFXTs, IGR J08408-4503, IGR J16328-4726, and IGR J16465-4507, whose hard X-ray duty cycles are the lowest measured among the SFXT sample. We assessed how long each source spends in each flux state and compared their properties with those of the prototypical SFXTs. Results: The behaviour of IGR J08408-4503 and IGR J16328-4726 resembles that of other SFXTs, and it is characterised by a relatively high inactivity duty cycle (IDC) and pronounced dynamic range (DR) in the X-ray luminosity. We found DR ~ 7400, IDC ~ 67% for IGR J08408-4503, and DR ~ 750, IDC ~ 61% for IGR J16328-4726 (in all cases the IDC is given with respect to the limiting flux sensitivity of XRT, that is 1-3 × 10-12 erg cm-2 s-1). In common with all the most extreme SFXT prototypes (IGR J17544-2619, XTE J1739-302, and IGR J16479-4514), IGR J08408-4503 shows two distinct flare populations. The first one is associated with the brightest outbursts (X-ray luminosity LX ≳ 1035 - 36 erg s-1), while the second comprises dimmer events with typical luminosities of LX ≲ 1035 erg s-1. This double-peaked distribution of the flares as a function of the X-ray luminosity seems to be a ubiquitous feature of the extreme SFXTs. The lower DR of IGR J16328-4726 suggests that this is an intermediate SFXT. IGR J16465-4507 is characterised by a low IDC ~ 5% and a relatively narrow DR ~ 40, reminiscent of classical supergiant HMXBs. The duty cycles measured with XRT are found to be comparable with those reported previously by BAT and INTEGRAL, when the higher limiting sensitivities of these instruments are taken into account and sufficiently long observational campaigns are available. By making use of these new results and those we reported previously, we prove that no clear correlation exists between the duty cycles of the SFXTs and their orbital periods. Conclusions: The unique sensitivity and scheduling flexibility of Swift/XRT allowed us to carry out an efficient long-term monitoring of the SFXTs, following their activity across more than 4 orders of magnitude in X-ray luminosity. While it is not possible to exclude that particular distributions of the clump and wind parameters may produce double-peaked differential distributions in the X-ray luminosities of the SFXTs, the lack of a clear correlation between the duty cycles and orbital periods of these sources make it difficult to interpret their peculiar variability by only using arguments related to the properties of supergiant star winds. Our findings favour the idea that a correct interpretation of the SFXT phenomenology requires a mechanism to strongly reduce the mass accretion rate onto the compact object during most of its orbit around the companion, as proposed in a number of theoretical works. Tables 1-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A55
Discovery of a New Photometric Sub-class of Faint and Fast Classical Novae
NASA Astrophysics Data System (ADS)
Kasliwal, M. M.; Cenko, S. B.; Kulkarni, S. R.; Ofek, E. O.; Quimby, R.; Rau, A.
2011-07-01
We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60 inch telescope during a search for "Fast Transients In Nearest Galaxies" (P60-FasTING). Designed as a fast cadence (1 day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M 31, 6 in M 81, 3 in M 82, 1 in NGC 2403, and 1 in NGC 891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburst environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical maximum-magnitude-rate-of-decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps the MMRD, which is characterized only by the white dwarf mass, was an oversimplification. Nova physics appears to be characterized by a relatively rich four-dimensional parameter space in white dwarf mass, temperature, composition, and accretion rate.
Fast Radio Bursts and Radio Transients from Black Hole Batteries
NASA Astrophysics Data System (ADS)
Mingarelli, Chiara M. F.; Levin, Janna; Lazio, T. Joseph W.
2015-12-01
Most black holes (BHs) will absorb a neutron star (NS) companion fully intact without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally, the luminosity was expected to be in high-energy X-rays or gamma-rays, however, we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs; millisecond-scale radio transients) NS-BH coalescence rates are too low to make these a primary FRB source. Instead, we propose that the transients form a FRB sub-population, distinguishable by a double peak with a precursor. The rapid ramp-up in luminosity manifests as a precursor to the burst which is 20%-80% as luminous given 0.5 ms timing resolution. The main burst arises from the peak luminosity before the merger. The post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS-BH pairs are especially desirable for ground-based gravitational wave (GW) observatories since the pair might not otherwise be detected, with EM counterparts greatly augmenting the scientific leverage beyond the GW signal. The EM signal’s ability to break degeneracies in the parameters encoded in the GW and probe the NS magnetic field strength is quite valuable, yielding insights into open problems in NS magnetic field decay.
Fast Radio Bursts and Radio Transients from Black Hole Batteries
NASA Astrophysics Data System (ADS)
Mingarelli, Chiara; Levin, Janna; Lazio, Joseph
2016-03-01
Most black holes (BHs) will absorb a neutron star (NS) companion fully intact, without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally the luminosity was expected in high-energy X-rays or gamma-rays, however we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs), NS-BH coalescence rates are too low to make these a primary FRB source. Instead, we propose the transients form a FRB sub-population, distinguishable by a double peak. The main burst is from the peak luminosity before merger, while the post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS-BH pairs are desirable for ground-based gravitational wave (GW) observatories since the pair might not be detected any other way, with EM counterparts augmenting the scientific leverage beyond the GW signal. Valuably, EM signal can break degeneracies in the parameters encoded in the GW as well as probe the NS magnetic field strength, yielding insights into open problems in NS magnetic field decay.
Discovery of a very Lyman-α-luminous quasar at z = 6.62.
Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei
2017-02-02
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 10 12 Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.
Discovery of a very Lyman-α-luminous quasar at z = 6.62
Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei
2017-01-01
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 1012 Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit. PMID:28150701
Clustering of moderate luminosity X-ray-selected type 1 and type 2 AGNs at z ∼ 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allevato, V.; Finoguenov, A.; Civano, F.
2014-11-20
We investigate, for the first time at z ∼ 3, the clustering properties of 189 Type 1 and 157 Type 2 X-ray active galactic nuclei (AGNs) of moderate luminosity ((L {sub bol}) = 10{sup 45.3} erg s{sup –1}), with photometric or spectroscopic redshifts in the range 2.2 < z < 6.8. These samples are based on Chandra and XMM-Newton data in COSMOS. We find that Type 1 and Type 2 COSMOS AGNs at z ∼ 3 inhabit DMHs with typical mass of log M{sub h} = 12.84{sub −0.11}{sup +0.10} and 11.73{sub −0.45}{sup +0.39} h {sup –1} M {sub ☉}, respectively.more » This result requires a drop in the halo masses of Type 1 and 2 COSMOS AGNs at z ∼ 3 compared to z ≲ 2 XMM-COSMOS AGNs with similar luminosities. Additionally, we infer that unobscured COSMOS AGNs at z ∼ 3 reside in 10 times more massive halos compared to obscured COSMOS AGNs, at the 2.6σ level. This result extends to z ∼ 3 the results found in COSMOS at z ≲ 2, and rules out the picture in which obscuration is purely an orientation effect. A model which assumes that the AGNs activity is triggered by major mergers is quite successful in predicting both the low halo mass of COSMOS AGNs and the typical mass of luminous SDSS quasars at z ∼ 3, with the latter inhabiting more massive halos respect to moderate luminosity AGNs. Alternatively we can argue, at least for Type 1 COSMOS AGNs, that they are possibly representative of an early phase of fast (i.e., Eddington limited) BH growth induced by cosmic cold flows or disk instabilities. Given the moderate luminosity, these new fast growing BHs have masses of ∼10{sup 7-8} M {sub ☉} at z ∼ 3 which might evolve into ∼10{sup 8.5-9} M {sub ☉} mass BHs at z = 0. Following our clustering measurements, we argue that this fast BH growth at z ∼ 3 in AGNs with moderate luminosity occurs in DMHs with typical mass of ∼ 6× 10{sup 12} h {sup –1} M {sub ☉}.« less
Microvariability of the blazar OJ 287
NASA Astrophysics Data System (ADS)
Jia, G. B.; Cen, X. F.; Ma, H. Y.; Wang, J. C.
1998-05-01
Results of BVRI CCD photometric monitoring and fast photometry in the I band for the blazar OJ 287 in 1994-1995 are presented. The predicted outburst of the blazar had been observed, the maximum appeared in 1994 November, after that, the luminosity decreased by 1.6 mag for about three months and dropped to near the level in 1994 April. Rapid variations with timescales of minutes, hours and one day were observed in our observations, with small amplitude. The amplitude of the most rapid variations (minutes) is in the range of 0fm043 -0fm12 . The results of the statistical analysis of the fast photometry data are as follows. In five nights out of six rapid variability appeared in the sampling interval, which ranged from 3.4 minutes to 6.5 minutes, with a rms amplitude of flux variations of 1.70%-2.3%. The rapid variability can be explained by the model of shocks within turbulent jet or of vortices and magnetic flux tubes on accretion disk. Table 5 is only available at the CDS via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html
NASA Technical Reports Server (NTRS)
Sparks, W. M.; Starrfield, S.; Truran, J. W.
1978-01-01
The paper reports use of a Lagrangian implicit hydrodynamics computer code incorporating a full nuclear-reaction network to follow a thermonuclear runaway in the hydrogen-rich envelope of a 1.25 solar-mass white dwarf. In this evolutionary sequence the envelope was assumed to be of normal (solar) composition and the resulting outburst closely resembles that of the slow nova HR Del. In contrast, previous CNO-enhanced models resemble fast nova outbursts. The slow-nova model ejects material by radiation pressure when the high luminosity of the rekindled hydrogen shell source exceeds the local Eddington luminosity of the outer layers. This is in contrast to the fast nova outburst where ejection is caused by the decay of the beta(+)-unstable nuclei. Nevertheless, radiation pressure probably plays a major role in ejecting material from the fast nova remnants. Therefore, the sequence from slow to fast novae can be interpreted as a sequence of white dwarfs with increasing amounts of enhanced CNO nuclei in their hydrogen envelopes, although other parameters such as the white-dwarf mass and accretion rate probably contribute to the observed variation between novae.
X-RAY VARIABILITY AND HARDNESS OF ESO 243-49 HLX-1: CLEAR EVIDENCE FOR SPECTRAL STATE TRANSITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Servillat, Mathieu; Farrell, Sean A.; Lin Dacheng
2011-12-10
The ultraluminous X-ray (ULX) source ESO 243-49 HLX-1, which reaches a maximum luminosity of 10{sup 42} erg s{sup -1} (0.2-10 keV), currently provides the strongest evidence for the existence of intermediate-mass black holes (IMBHs). To study the spectral variability of the source, we conduct an ongoing monitoring campaign with the Swift X-ray Telescope (XRT), which now spans more than two years. We found that HLX-1 showed two fast rise and exponential decay type outbursts in the Swift XRT light curve with increases in the count rate of a factor {approx}40 separated by 375 {+-} 13 days. We obtained new XMM-Newtonmore » and Chandra dedicated pointings that were triggered at the lowest and highest luminosities, respectively. From spectral fitting, the unabsorbed luminosities ranged from 1.9 Multiplication-Sign 10{sup 40} to 1.25 Multiplication-Sign 10{sup 42} erg s{sup -1}. We confirm here the detection of spectral state transitions from HLX-1 reminiscent of Galactic black hole binaries (GBHBs): at high luminosities, the X-ray spectrum showed a thermal state dominated by a disk component with temperatures of 0.26 keV at most, and at low luminosities the spectrum is dominated by a hard power law with a photon index in the range 1.4-2.1, consistent with a hard state. The source was also observed in a state consistent with the steep power-law state, with a photon index of {approx}3.5. In the thermal state, the luminosity of the disk component appears to scale with the fourth power of the inner disk temperature, which supports the presence of an optically thick, geometrically thin accretion disk. The low fractional variability (rms of 9% {+-} 9%) in this state also suggests the presence of a dominant disk. The spectral changes and long-term variability of the source cannot be explained by variations of the beaming angle and are not consistent with the source being in a super-Eddington accretion state as is proposed for most ULX sources with lower luminosities. All this indicates that HLX-1 is an unusual ULX as it is similar to GBHBs, which have non-beamed and sub-Eddington emission, but with luminosities three orders of magnitude higher. In this picture, a lower limit on the mass of the black hole of >9000 M{sub Sun} can be derived, and the relatively low disk temperature in the thermal state also suggests the presence of an IMBH of a few 10{sup 3} M{sub Sun }.« less
Integral luminosities of radio pulsars
NASA Astrophysics Data System (ADS)
Malov, I.; Malov, O.
The integral radio luminosities L for 311 normal pulsars and for 27 ones with the rotation period P<0.1 s (fast pulsars) are calculated using new data on their compilated spectra. The values of L lie in the range 10^27-10^30 erg/s for 88% of the normal pulsars and in the range 10^28-10^31 erg/s for 88% of the fast objects. The high correlation between L and estimates l=S x d^2 from the known catalogues is detected. It is shown that the coefficient K of a transformation of the neutron star rotation energy into radio emission increases when P grows for normal pulsars and falls for fast ones. The mean values of K are -3.73 and -4.85 for normal and fast pulsars, respectively. There are no changes of L with the kinematic age T = z/V, where z is the pulsar height over the Galactic plane and V = 300 km/s is its mean velocity. The correlation between L and the rate of the rotation energy losses E is detected for both pulsar groups under consideration. It is shown that L= A E^(1/3) for the whole sample. The total number of pulsars in the Galaxy and their birth rate are in agreement with data on the rate of supernova explosions.
Fast transient X-rays from flare stars and RS CVn binaries
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
1987-12-01
The authors have studied the fast transient X-ray (FTX) observations of the Ariel V satellite. They find that the FTX have characteristics very similar to the stellar flares detected in flare stars and RS CVn binaries by other satellites. It is found that, of the possible candidate objects, only the flare stars and RS CVn binaries can be associated with the Ariel V observations. 11 new flare stars and RS CVn binaries are associated with the FTX. This brings the total number of identifications with the flare stars and RS CVn binaries to 17. The authors further study the flare properties and correlate the peak X-ray luminosity of these Ariel V sources with the bolometric luminosity of the candidate stars. They discuss a solar flare model and show that the observed correlation can be explained under the assumption of constant temperature loops of binary sizes.
A Fast-Evolving, Luminous Transient Discovered by K2/Kepler
NASA Astrophysics Data System (ADS)
Rest, Armin; Garnavich, Peter; Khatami, David; Kasen, Daniel; Tucker, Brad; Shaya, Edward; Olling, Robert; Mushotzky, Richard; Zenteno, Alfredo; Margheim, Steven; Strampelli, Giovanni Maria; James, David; Smith, Chris; Forster, Francisco; Villar, Ashley
2018-01-01
For decades optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients (FELTs) have been identified. FELTs have peak luminosities comparable to type Ia supernovae, but rise to maximum in <10 days and fade from view in <30 days. Here we present the most extreme example of this class thus far, KSN2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. Possible energy sources for KSN2015K are the decay of radioactive elements, a central engine powered by accretion/magnetic fields, or hydrodynamic shock. We show that KSN2015K's luminosity makes it unlikely to be powered by radioactive isotopes, and we find that the shock breakout into a dense wind most likely energized the transient.
The design of a fast Level 1 Track trigger for the ATLAS High Luminosity Upgrade
NASA Astrophysics Data System (ADS)
Miller Allbrooke, Benedict Marc; ATLAS Collaboration
2017-10-01
The ATLAS experiment at the high-luminosity LHC will face a five-fold increase in the number of interactions per collision relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency, due to the increase in the likelihood of individual trigger thresholds being passed as a result of pile-up related activity. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper turn-on curves, b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, precise custom electronic device integrated in the hardware-based first trigger level of the experiment, with repercussions propagating as far as the detector read-out philosophy.
The Lick AGN Monitoring Project 2016: Extending Reverberation Mapping to Higher Luminosity AGNs
NASA Astrophysics Data System (ADS)
U, Vivian; LAMP2016 Collaboration
2017-01-01
The technique of reverberation mapping has been used to estimate virial black hole masses and, more fundamentally, to probe the broad line region structure in Seyfert I galaxies. Efforts from the previous Lick AGN Monitoring Project (LAMP) campaigns and other studies to date have culminated in a large sample of reverberation mapped AGNs and measurements of their black hole masses, which in turn enabled major improvement to various AGN scaling relations. However, the high-luminosity end of such relations remains poorly constrained; this is because of observational challenges presented by the weaker continuum flux variations and longer time dilation in these sources. To this end, we have initiated a new LAMP2016 campaign to target AGNs with luminosities of 10^44 erg/s, with predicted H-beta lags of ~20 - 60 days or black hole masses of 10^7 - 10^8.5 Msun. Designed to monitor ~20 AGNs biweekly from Spring 2016 through Winter 2017 with the Kast spectrograph on the 3-m Shane Telescope at Lick Observatory, we aim to probe luminosity-dependent trends in broad line region structure and dynamics, improve calibrations for single-epoch estimates of high-redshift quasar black hole masses, and test photoionization models for the radially-stratified structure of the broad line region. In this talk, I will present the overview and scope of LAMP2016 and show preliminary results from our ongoing campaign.
Frequency domain analysis of knock images
NASA Astrophysics Data System (ADS)
Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin
2014-12-01
High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.
Testing Ultracool Models with Precise Luminosities and Masses
NASA Astrophysics Data System (ADS)
Dupuy, Trent; Cushing, Michael; Liu, Michael; Burningham, Ben; Leggett, Sandy; Albert, Loic; Delorme, Philippe
2011-05-01
After years of patient orbital monitoring, there is a growing sample of brown dwarfs with well-determined dynamical masses, representing the gold standard for testing substellar models. A key element of our model tests to date has been the use of integrated-light photometry to provide accurate total luminosity measurements for these binaries. However, some of the ultracool binaries with the most promising orbit motion for yielding dynamical in the masses lack the mid-infrared photometry needed to constrain their SEDs. This is especially crucial for the latest type binaries (spectral types >T5) that will probe the coldest temperature regimes previously untested with dynamical masses. We propose to use IRAC to obtain the needed mid-infrared photometry for a sample of binaries that are part of our ongoing orbital monitoring program with Keck laser guide star adaptive optics. The observational effort needed to characterize these binaries' luminosities using Spitzer is much less daunting in than the years of orbital monitoring needed to measure precise dynamical masses, but it is equally vital for robust tests of theory.
Rapidly Rising Optical Transients from the Birth of Binary Neutron Stars
NASA Astrophysics Data System (ADS)
Hotokezaka, Kenta; Kashiyama, Kazumi; Murase, Kohta
2017-11-01
We study optical counterparts of a new-born pulsar in a double neutron star system like PSR J0737-3039A/B. This system is believed to have ejected a small amount of mass of { O }(0.1 {M}⊙ ) at the second core-collapse supernova. We argue that the initial spin of the new-born pulsar can be determined by the orbital period at the time when the second supernova occurs. The spin angular momentum of the progenitor is expected to be similar to that of the He-burning core, which is tidally synchronized with the orbital motion, and then the second remnant may be born as a millisecond pulsar. If the dipole magnetic field strength of the nascent pulsar is comparable with that inferred from the current spin-down rate of PSR J0737-3039B, the initial spin-down luminosity is comparable to the luminosity of super-luminous supernovae. We consider thermal emission arising from the supernova ejecta driven by the relativistic wind from such a new-born pulsar. The resulting optical light curves have a rise time of ˜10 days and a peak luminosity of ˜1044 erg s-1. The optical emission may last for a month to several months, due to the reprocessing of X-rays and UV photons via photoelectric absorption. These features are broadly consistent with those of the rapidly rising optical transients. The high spin-down luminosity and small ejecta mass are favorable for the progenitor of the repeating fast radio burst, FRB 121102. We discuss a possible connection between new-born double pulsars and fast radio bursts.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2011-04-27
Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at √s = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of μ, the average number of inelastic interactions per bunch crossing. Residual time- and μ-dependence between the methods is less than 2% for 0 < μ < 2.5. Absolute luminosity calibrations, performed using beam separation scans, have amore » common systematic uncertainty of ±11%, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most ±2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detector simulation.« less
Optical Variability of Two High-Luminosity Radio-Quiet Quasars, PDS 456 and PHL 1811
NASA Astrophysics Data System (ADS)
Gaskell, C. M.; Benker, A. J.; Campbell, J. S.; Crowley, K. A.; George, T. A.; Hedrick, C. H.; Hiller, M. E.; Klimek, E. S.; Leonard, J. P.; Peterson, B. W.; Sanders, K. M.
2003-12-01
PDS 456 and PHL 1811 are two of the highest luminosity low-redshift quasars. Both have optical luminosities comparable to 3C 273, but they have low radio luminosities. PDS 456 is a broad line object but PHL 1811 could be classified as a high-luminosity Narrow-Line Seyfert 1 (NLS1) object. We present the results of optical (V-band) continuum monitoring of PDS 456 and PHL 1811. We compare the variability properties of these two very different AGNs compared with the radio-loud AGN 3C 273, and we discuss the implications for the origin of the optical continuum variability in AGNs. This research has been supported in part by the Howard Hughes Foundation, Nebraska EPSCoR, the University of Nebraska Layman Fund, the University of Nebraska Undergraduate Creative Activities and Research Experiences, Pepsi-Cola, and the National Science Foundation through grant AST 03-07912.
A hardware fast tracker for the ATLAS trigger
NASA Astrophysics Data System (ADS)
Asbah, Nedaa
2016-09-01
The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 1034 cm-2 s-1. After a successful period of data taking from 2010 to early 2013, the LHC already started with much higher instantaneous luminosity. This will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project. It is a hardware processor that will provide, at every Level-1 accepted event (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance. FTK exploits hardware technologies with massive parallelism, combining Associative Memory ASICs, FPGAs and high-speed communication links.
Transients in the Local Universe : Systematically Searching the Gap between Novae and Supernovae
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi M.; Kulkarni, S.
2009-05-01
We present three systematic transient searches of the glaring luminosity gap between brightest novae (Mv = -10) and faintest supernovae (Mv = -16). The least explored regime in this gap, with several intriguing theoretical predictions, is short-duration transients (<10; days). Our searches are targeted and designed to be deeper and faster cadence (1-day) than traditional supernova searches and probe a larger volume compared to nova searches. We summarize discoveries from our search of the nearest, brightest galaxies (P60-FasTING, Fast Transients In Nearest Galaxies) and nearest galaxy clusters (CFHT-COVET, Coma and Virgo Exploration for Transients). We also highlight first results from the Palomar Transient Factory which targets local (<200 Mpc) luminosity concentrations. We suggest that building a complete inventory of transients in the local universe is timely. These transients are potential electromagnetic counterparts to next-generation instruments (e.g. Advanced LIGO, Auger, ICECUBE) which are also limited in sensitivity (due to intrumental or physical effects) to the local universe.
Origin of superluminal radio jets in microquasars
NASA Astrophysics Data System (ADS)
Yadav, J. S.; Bhandare, R. S.
In Microquasars, superluminal radio jets are seen at large distances from few hundred AU to 5000 AU with very high radio luminosity. We suggest that these superluminal jets are due to internal shocks which form in the previously generated slowly moving wind (from the accretion disk or the companion star) with beta < 0.01 as the fast moving discrete jet with beta sim 1 catches up and interacts with it. The black hole X-ray binaries with transient radio emission (mostly LMXBs) produce superluminal jets with beta_app > 1 when the accretion rate is high and the bolometric luminosity, L_bol approaches the Eddington Luminosity, L_Edd. On the other hand, the black hole X-ray binaries with persistent radio emission (mostly HMXBs) produce superluminal jets with beta_app < 1 at relatively low accretion rate. Our work here brings Galactic microquasars closer to extragalactic AGNs and quasars as the environment plays an important role in the formation of superluminal jets.
NASA Astrophysics Data System (ADS)
Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; McGreer, Ian; Schneider, Donald; Shen, Yue; Tao, Charling
2018-05-01
Previous Spitzer reverberation monitoring projects searching for UV/optical light absorbed and re-emitted in the IR by dust have been limited to low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle ( 1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high-luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. We continued this monitoring in Cycle 13 and now propose to extend this program in Cycle 14. By combining ground-based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. By continuing observations with this unqiue combination of resources we should detect reverberation in more objects and reduce the uncertainties for the remaining sources.
Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way
NASA Astrophysics Data System (ADS)
Islam, Nazma; Paul, Biswajit
2016-08-01
The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.
NASA Astrophysics Data System (ADS)
Eftekhari, T.; Berger, E.; Williams, P. K. G.; Blanchard, P. K.
2018-06-01
The discovery of a repeating fast radio burst (FRB) has led to the first precise localization, an association with a dwarf galaxy, and the identification of a coincident persistent radio source. However, further localizations are required to determine the nature of FRBs, the sources powering them, and the possibility of multiple populations. Here we investigate the use of associated persistent radio sources to establish FRB counterparts, taking into account the localization area and the source flux density. Due to the lower areal number density of radio sources compared to faint optical sources, robust associations can be achieved for less precise localizations as compared to direct optical host galaxy associations. For generally larger localizations that preclude robust associations, the number of candidate hosts can be reduced based on the ratio of radio-to-optical brightness. We find that confident associations with sources having a flux density of ∼0.01–1 mJy, comparable to the luminosity of the persistent source associated with FRB 121102 over the redshift range z ≈ 0.1–1, require FRB localizations of ≲20″. We demonstrate that even in the absence of a robust association, constraints can be placed on the luminosity of an associated radio source as a function of localization and dispersion measure (DM). For DM ≈1000 pc cm‑3, an upper limit comparable to the luminosity of the FRB 121102 persistent source can be placed if the localization is ≲10″. We apply our analysis to the case of the ASKAP FRB 170107, using optical and radio observations of the localization region. We identify two candidate hosts based on a radio-to-optical brightness ratio of ≳100. We find that if one of these is indeed associated with FRB 170107, the resulting radio luminosity (1029‑ 4 × 1030 erg s‑1 Hz‑1, as constrained from the DM value) is comparable to the luminosity of the FRB 121102 persistent source.
A Correlation Between Changes in Solar Luminosity and Differential Radius Measurements
NASA Technical Reports Server (NTRS)
Kroll, R. J.; Hill, H. A.; Beardsley, B. J.
1990-01-01
Solar luminosity variations occurring during solar cycle 21 can be attributed in large part to the presence of sunspots and faculae. Nevertheless, there remains a residual portion of the luminosity variation distinctly unaccounted for by these phenomena of solar activity. At the Santa Catalina Laboratory for Experimental Relativity by Astrometry (SCLERA), observations of the solar limb are capable of detecting changes in the solar limb darkening function by monitoring a quantity known as the differential radius. These observations are utilized in such a way that the effects of solar activity are minimized in order to reveal the more fundamental structure of the photosphere. The results of observations made during solar cycle 21 at various solar latitudes indicate that a measurable change did occur in the global photospheric limb darkening function. It is proposed that the residual luminosity change is associated in part with this change in limb darkening.
X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association
NASA Technical Reports Server (NTRS)
deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.;
2013-01-01
Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB black hole with a compact jet. In this case, it would be the first associated with a high-energy gamma-ray source.
Optical and X-ray radiation from fast pulsars - Effects of duty cycle and spectral shape
NASA Technical Reports Server (NTRS)
Pacini, F.; Salvati, M.
1987-01-01
The optical luminosity of PSR 0540 is considerably stronger than what one would have predicted in a simple model developed earlier where the pulses are synchrotron radiation by secondary electrons near the light cylinder. This discrepancy can be eliminated if one incorporates into the model the effects of the large duty cycle and the spectral properties of PSR 0540. It is also shown that the same model can provide a reasonable fit to the observed X-ray fluxes from fast pulsars.
ATLAS DBM Module Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soha, Aria; Gorisek, Andrej; Zavrtanik, Marko
2014-06-18
This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is beingmore » investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond-based luminosity monitor to complement the time-segmented ATLAS Beam Conditions Monitor (BCM) so that, when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning, the ATLAS luminosity measurement is not compromised.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Youhong, E-mail: youhong.zhang@mail.tsinghua.edu.cn
2011-01-01
The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binariesmore » (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 {+-} 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.« less
iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy
Blagorodnova, N.; Gezari, S.; Hung, T.; ...
2017-07-20
Here, we present ground-based and Swift observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The light curve of the object peaked at an absolute magmore » $${M}_{g}=-17.2$$. The maximum bolometric luminosity (from optical and UV) was $${L}_{p}\\simeq (1.0\\pm 0.15)\\times {10}^{43}$$ erg s -1, an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with $$L\\propto {e}^{-(t-{t}_{0})/\\tau }$$, where t 0 = 57631.0 (MJD) and $$\\tau \\simeq 15$$ days. The X-ray shows a marginal detection at $${L}_{X}={2.4}_{-1.1}^{1.9}\\times {10}^{39}$$ erg s -1 (Swift X-ray Telescope). No radio counterpart was detected down to 3σ, providing upper limits for monochromatic radio luminosities of $${\
iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagorodnova, N.; Gezari, S.; Hung, T.
Here, we present ground-based and Swift observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The light curve of the object peaked at an absolute magmore » $${M}_{g}=-17.2$$. The maximum bolometric luminosity (from optical and UV) was $${L}_{p}\\simeq (1.0\\pm 0.15)\\times {10}^{43}$$ erg s -1, an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with $$L\\propto {e}^{-(t-{t}_{0})/\\tau }$$, where t 0 = 57631.0 (MJD) and $$\\tau \\simeq 15$$ days. The X-ray shows a marginal detection at $${L}_{X}={2.4}_{-1.1}^{1.9}\\times {10}^{39}$$ erg s -1 (Swift X-ray Telescope). No radio counterpart was detected down to 3σ, providing upper limits for monochromatic radio luminosities of $${\
Quasi-spherical accretion in High Mass X-ray Binaries
NASA Astrophysics Data System (ADS)
Postnov, Konstantin
2016-07-01
Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.
Simulations of fast crab cavity failures in the high luminosity Large Hadron Collider
NASA Astrophysics Data System (ADS)
Yee-Rendon, Bruce; Lopez-Fernandez, Ricardo; Barranco, Javier; Calaga, Rama; Marsili, Aurelien; Tomás, Rogelio; Zimmermann, Frank; Bouly, Frédéric
2014-05-01
Crab cavities (CCs) are a key ingredient of the high luminosity Large Hadron Collider (HL-LHC) project for increasing the luminosity of the LHC. At KEKB, CCs have exhibited abrupt changes of phase and voltage during a time period of the order of a few LHC turns and considering the significant stored energy in the HL-LHC beam, CC failures represent a serious threat in regard to LHC machine protection. In this paper, we discuss the effect of CC voltage or phase changes on a time interval similar to, or longer than, the one needed to dump the beam. The simulations assume a quasistationary-state distribution to assess the particles losses for the HL-LHC. These distributions produce beam losses below the safe operation threshold for Gaussian tails, while, for non-Gaussian tails are on the same order of the limit. Additionally, some mitigation strategies are studied for reducing the damage caused by the CC failures.
Fundamental Properties of O-Type Stars
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Lanz, Thierry; Hubeny, Ivan
2006-01-01
We present a comprehensive analysis of high-resolution, far-ultraviolet HST STIS, FUSE, and optical spectra of 18 O stars in the Small Magellanic Cloud. Our analysis is based on the OSTAR2002 grid of NLTE metal-line-blanketed model atmospheres calculated with our code TLUSTY. We systematically explore and present the sensitivity of various UV and optical lines to different stellar parameters. We have obtained consistent fits of the UV and the optical spectrum to derive the effective temperature, surface gravity, surface composition, and microturbulent velocity of each star. Stellar radii, masses, and luminosities follow directly. For stars of the same spectral subtype, we find a general good agreement between effective temperature determinations obtained with TLUSTY, CMFGEN, and FASTWIND models, which are all lower than the standard T(sub eff) calibration of O stars. We propose a new calibration between the spectral type and effective temperature based on our results from UV metal lines, as well as optical hydrogen and helium lines. The lower effective temperatures translate into ionizing luminosities that are smaller by a factor of 3 compared to luminosities inferred from previous standard calibrations. The chemical composition analysis reveals that the surface of about 80% of the program stars is moderately to strongly enriched in nitrogen, while showing the original helium, carbon, and oxygen abundances. Our results support the new stellar evolution models that predict that the surface of fast rotating stars becomes nitrogen-rich during the main-sequence phase because of rotationally induced mixing. Enrichment factors are, however, larger than predicted by stellar evolution models. Most stars exhibit the "mass discrepancy" problem, which we interpret as a result of fast rotation that lowers the measured effective gravity. Nitrogen enrichment and low spectroscopic masses are therefore two manifestations of fast rotation. Our study thus emphasizes the importance of rotation in our understanding of the properties of massive stars and provides a framework for investigating populations of low-metallicity massive stars at low and high redshifts.
A direct localization of a fast radio burst and its host.
Chatterjee, S; Law, C J; Wharton, R S; Burke-Spolaor, S; Hessels, J W T; Bower, G C; Cordes, J M; Tendulkar, S P; Bassa, C G; Demorest, P; Butler, B J; Seymour, A; Scholz, P; Abruzzo, M W; Bogdanov, S; Kaspi, V M; Keimpema, A; Lazio, T J W; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Rupen, M; Spitler, L G; van Langevelde, H J
2017-01-04
Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct subarcsecond localizations may be the only way to provide reliable associations.
Two giant outbursts of V0332+53 observed with INTEGRAL
NASA Astrophysics Data System (ADS)
Ferrigno, Carlo; Ducci, Lorenzo; Bozzo, Enrico; Kretschmar, Peter; Kühnel, Matthias; Malacaria, Christian; Pottschmidt, Katja; Santangelo, Andrea; Savchenko, Volodymyr; Wilms, Jörn
2016-10-01
Context. In July 2015, the high-mass X-ray binary V0332+53 underwent a giant outburst, a decade after the previous one. V0332+53 hosts a strongly magnetized neutron star. During the 2004-2005 outburst, an anti-correlation between the centroid energy of its fundamental cyclotron resonance scattering features (CRSFs) and the X-ray luminosity was observed. Aims: The long (≈100 d) and bright (Lx ≈ 1038 erg s-1) 2015 outburst provided the opportunity to study the unique properties of the fundamental CRSF during another outburst and to study its dependence on the X-ray luminosity. Methods: The source was observed by the INTEGRAL satellite for ~330 ks. We exploit the spectral resolution at high energies of the SPectrometer on INTEGRAL (SPI) and the Joint European X-ray Monitors to characterize its spectral properties, focusing in particular on the CRSF-luminosity dependence. We complement the data of the 2015 outburst with those collected by SPI in 2004-2005, which have so far been left unpublished. Results: We find a highly significant anti-correlation of the centroid energy of the fundamental CRSF and the 3-100 keV luminosity of E1 ∝ -0.095(8)L37 keV. This trend is observed for both outbursts. We confirm the correlation between the width of the fundamental CRSF and the X-ray luminosity previously found in the JEM-X and IBIS dataset of the 2004-2005 outburst. By exploiting the RXTE/ASM and Swift/BAT monitoring data, we also report on the detection of a ~34 d modulation superimposed on the mean profiles and roughly consistent with the orbital period of the pulsar. We discuss possible interpretations of such variability.
libprofit: Image creation from luminosity profiles
NASA Astrophysics Data System (ADS)
Robotham, A. S. G.; Taranu, D.; Tobar, R.
2016-12-01
libprofit is a C++ library for image creation based on different luminosity profiles. It offers fast and accurate two-dimensional integration for a useful number of profiles, including Sersic, Core-Sersic, broken-exponential, Ferrer, Moffat, empirical King, point-source and sky, with a simple mechanism for adding new profiles. libprofit provides a utility to read the model and profile parameters from the command-line and generate the corresponding image. It can output the resulting image as text values, a binary stream, or as a simple FITS file. It also provides a shared library exposing an API that can be used by any third-party application. R and Python interfaces are available: ProFit (ascl:1612.004) and PyProfit (ascl:1612.005).
Equilibrium configuration of a stratus floating above accretion disks: Full-disk calculation
NASA Astrophysics Data System (ADS)
Itanishi, Yusuke; Fukue, Jun
2017-06-01
We examine floating strati above a luminous accretion disk, supported by the radiative force from the entire disk, and calculate the equilibrium locus, which depends on the disk luminosity and the optical depth of the stratus. Due to the radiative transfer effect (albedo effect), the floating height of the stratus with a finite optical depth generally becomes high, compared with the particle case. In contrast to the case of the near-disk approximation, moreover, the floating height becomes yet higher in the present full-disk calculation, since the intense radiation from the inner disk is taken into account. As a result, when the disk luminosity normalized by the Eddington luminosity is ˜0.3 and the stratus optical depth is around unity, the stable configuration disappears at around r ˜ 50 rg, rg being the Schwarzschild radius, and the stratus would be blown off as a cloudy wind consisting of many strati with appropriate conditions. This luminosity is sufficiently smaller than the Eddington one, and the present results suggest that the radiation-driven cloudy wind can be easily blown off from the sub-Eddington disk, and this can explain various outflows observed in ultra-fast outflow objects as well as in broad-absorption-line quasars.
Tracking the Iron Kα line and the Ultra Fast Outflow in NGC 2992 at different accretion states
NASA Astrophysics Data System (ADS)
Marinucci, A.; Bianchi, S.; Braito, V.; Matt, G.; Nardini, E.; Reeves, J.
2018-06-01
The Seyfert 2 galaxy NGC 2992 has been monitored eight times by XMM-Newton in 2010 and then observed again in 2013, while in 2015 it was simultaneously targeted by Swift and NuSTAR. XMM-Newton always caught the source in a faint state (2-10 keV fluxes ranging from 0.3 to 1.6× 10-11 erg cm-2 s-1) but NuSTAR showed an increase in the 2-10 keV flux up to 6× 10-11 erg cm-2 s-1. We find possible evidence of an Ultra Fast Outflow with velocity v1 = 0.21 ± 0.01c (detected at about 99% confidence level) in such a flux state. The UFO in NGC 2992 is consistent with being ejected at a few tens of gravitational radii only at accretion rates greater than 2% of the Eddington luminosity. The analysis of the low flux 2010/2013 XMM data allowed us to determine that the Iron Kα emission line complex in this object is likely the sum of three distinct components: a constant, narrow one due to reflection from cold, distant material (likely the molecular torus); a narrow, but variable one which is more intense in brighter observations and a broad relativistic one emitted in the innermost regions of the accretion disk, which has been detected only in the 2003 XMM observation.
Associating Fast Radio Bursts with Their Host Galaxies
NASA Astrophysics Data System (ADS)
Eftekhari, T.; Berger, E.
2017-11-01
The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.
NASA Astrophysics Data System (ADS)
Blondin, Stéphane; Dessart, Luc; Hillier, D. John
2018-03-01
While Chandrasekhar-mass (MCh) models with a low 56Ni yield can match the peak luminosities of fast-declining, 91bg-like Type Ia supernovae (SNe Ia), they systematically fail to reproduce their faster light-curve evolution. Here, we illustrate the impact of a low ejecta mass on the radiative display of low-luminosity SNe Ia, by comparing a sub-MCh model resulting from the pure central detonation of a C-O white dwarf (WD) to an MCh delayed-detonation model with the same 56Ni yield of 0.12 M⊙. Our sub-MCh model from a 0.90 M⊙ WD progenitor has a ˜5 d shorter rise time in the integrated UV-optical-IR (uvoir) luminosity, as well as in the B band, and a ˜20 per cent higher peak uvoir luminosity (˜1 mag brighter peak MB). This sub-MCh model also displays bluer maximum-light colours due to the larger specific heating rate, and larger post-maximum uvoir and B-band decline rates. The luminosity decline at nebular times is also more pronounced, reflecting the enhanced escape of gamma rays resulting from the lower density of the progenitor WD. The deficit of stable nickel in the innermost ejecta leads to a notable absence of forbidden lines of [Ni II] in the nebular spectra. In contrast, the MCh model displays a strong line due to [Ni II] 1.939 μm, which could in principle serve to distinguish between different progenitor scenarios. Our sub-MCh model offers an unprecedented agreement with optical and near-infrared observations of the 91bg-like SN 1999by, making a strong case for a WD progenitor significantly below the Chandrasekhar-mass limit for this event and other low-luminosity SNe Ia.
Danks, Kelly A.; Pohlig, Ryan; Reisman, Darcy S.
2016-01-01
Objective To determine preliminary efficacy and to identify baseline characteristics predicting who would benefit most from fast walking training plus a step activity monitoring program (FAST+SAM) compared to fast walking training alone (FAST) in persons with chronic stroke. Design Randomized controlled trial with blinded assessors Setting Outpatient clinical research laboratory Participants 37 individuals greater than 6 months post-stroke. Interventions Subjects were assigned to either FAST which was walking training at their fastest possible speed on the treadmill (30 minutes) and over ground 3 times/week for 12 weeks or FAST plus a step activity monitoring program (FAST+SAM). The step activity monitoring program consisted of daily step monitoring with a StepWatch Activity monitor, goal setting, and identification of barriers to activity and strategies to overcome barriers. Main Outcome Measures Daily step activity metrics (steps/day, time walking/day), walking speed and six minute walk test distance (6MWT). Results There was a significant effect of time for both groups with all outcomes improving from pre to post-training, (all p<0.05). The FAST+SAM was superior to FAST for 6MWT (p=0.018), with a larger increase in the FAST+SAM group. The interventions had differential effectiveness based on baseline step activity. Sequential moderated regression models demonstrated that for subjects with baseline levels of step activity and 6MWT distances that were below the mean, the FAST+SAM intervention was more effective than FAST (1715±1584 vs. 254±933 steps/day, respectively; p<0.05 for overall model and ΔR2 for steps/day and 6MWT). Conclusions The addition of a step activity monitoring program to a fast walking training intervention may be most effective in persons with chronic stroke that have initial low levels of walking endurance and activity. Regardless of baseline performance, the FAST + SAM intervention was more effective for improving walking endurance. PMID:27240430
Clumpy wind accretion in supergiant neutron star high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.
2016-05-01
The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.
A tenuous X-ray corona enveloping AE Aquarii
NASA Astrophysics Data System (ADS)
Venter, L. A.; Meintjes, P. J.
2007-06-01
In this paper we propose that the observed unpulsed X-ray emission in AE Aquarii is the result of a very tenuous hot corona associated with the secondary star, which is pumped magnetohydrodynamically by the propeller action of the fast rotating white dwarf. It is shown that the closed coronal field of the secondary star envelops a substantial portion of the binary system, including the fast rotating magnetized white dwarf. This implies that the propeller outflow of material in AE Aquarii is initiated inside an enveloping magnetic cavity. The outflow crossing the secondary dead-zone field constitutes a βgen = (8πρv2esc/B2) >> 1 plasma, acting as a magnetohydrodynamic generator resulting in the induction of field-aligned currents in these closed magnetospheric circuits where βcir = (8πnkT/B2) << 1. The Ohmic heating of the coronal circuit can readily account for a Tx >= 107 K plasma in the coronal flux tubes connecting the generator and the stellar surface. Further, the bremsstrahlung losses of the thermal electrons in the coronal circuit can readily drive the observed unpulsed X-ray luminosity of Lx ~ 1031 ergs -1, which correlates with the luminosity and relatively large source implied by recent XMM-Newton observations.
On the Scatter in the Radius-Luminosity Relationship for Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.; Denney, K. D.; Bentz, M. C.
2015-03-01
We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ~40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ~0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ~0.13 dex.
The evolution of the disc variability along the hard state of the black hole transient GX 339-4
NASA Astrophysics Data System (ADS)
De Marco, B.; Ponti, G.; Muñoz-Darias, T.; Nandra, K.
2015-12-01
We report on the analysis of hard-state power spectral density function (PSD) of GX 339-4 down to the soft X-ray band, where the disc significantly contributes to the total emission. At any luminosity probed, the disc in the hard state is intrinsically more variable than in the soft state. However, the fast decrease of disc variability as a function of luminosity, combined with the increase of disc intensity, causes a net drop of fractional variability at high luminosities and low energies, which reminds the well-known behaviour of disc-dominated energy bands in the soft state. The peak frequency of the high-frequency Lorentzian (likely corresponding to the high-frequency break seen in active galactic nuclei, AGN) scales with luminosity, but we do not find evidence for a linear scaling. In addition, we observe that this characteristic frequency is energy dependent. We find that the normalization of the PSD at the peak of the high-frequency Lorentzian decreases with luminosity at all energies, though in the soft band this trend is steeper. Together with the frequency shift, this yields quasi-constant high-frequency (5-20 Hz) fractional rms at high energies, with less than 10 per cent scatter. This reinforces previous claims suggesting that the high-frequency PSD solely scales with black hole mass. On the other hand, this constancy breaks down in the soft band (where the scatter increases to ˜30 per cent). This is a consequence of the additional contribution from the disc component, and resembles the behaviour of optical variability in AGN.
On the nature of hydrogen-rich superluminous supernovae
NASA Astrophysics Data System (ADS)
Inserra, C.; Smartt, S. J.; Gall, E. E. E.; Leloudas, G.; Chen, T.-W.; Schulze, S.; Jerkstrand, A.; Nicholl, M.; Anderson, J. P.; Arcavi, I.; Benetti, S.; Cartier, R. A.; Childress, M.; Della Valle, M.; Flewelling, H.; Fraser, M.; Gal-Yam, A.; Gutiérrez, C. P.; Hosseinzadeh, G.; Howell, D. A.; Huber, M.; Kankare, E.; Krühler, T.; Magnier, E. A.; Maguire, K.; McCully, C.; Prajs, S.; Primak, N.; Scalzo, R.; Schmidt, B. P.; Smith, M.; Smith, K. W.; Tucker, B. E.; Valenti, S.; Wilman, M.; Young, D. R.; Yuan, F.
2018-03-01
We present two hydrogen-rich superluminous supernovae (SLSNe): SN2103hx and PS15br. These objects, together with SN2008es, are the only SLSNe showing a distinct, broad H α feature during the photospheric phase; also, they show no sign of strong interaction between fast moving ejecta and circumstellar shells in their early spectra. Despite the fact that the peak luminosity of PS15br is fainter than that of the other two objects, the spectrophotometric evolution is similar to SN2103hx and different from any other supernova in a similar luminosity space. We group all of them as SLSNe II and hence they are distinct from the known class of SLSN IIn. Both transients show a strong, multicomponent H α emission after 200 d past maximum, which we interpret as an indication of the interaction of the ejecta with an asymmetric, clumpy circumstellar material. The spectra and photometric evolution of the two objects are similar to Type II supernovae, although they have much higher luminosity and evolve on slower time-scales. This is qualitatively similar to how SLSNe I compare with normal type Ic, in that the former are brighter and evolve more slowly. We apply a magnetar and an interaction semi-analytical code to fit the light curves of our two objects and SN2008es. The overall observational data set would tend to favour the magnetar, or central engine, model as the source of the peak luminosity, although the clear signature of late-time interaction indicates that interaction can play a role in the luminosity evolution of SLSNe II at some phases.
Flaring activity of the SFXT IGR J16418-4532
NASA Astrophysics Data System (ADS)
Poliakov, D.; Aitov, V.; Ikhsanov, N.
2017-12-01
Supergiant fast X-ray transients (SFXTs) are a sub-class of wind-fed High Mass X-ray Binaries (HMXB) in which the normal companion is a supergiant. These systems were collected in a sub-class because of short flares (a few hours duration) in which the X-ray luminosity increases by a few orders of magnitude. One of the members of SFXTs is the X-ray 1212 s pulsar IGR J16418-4532, which is characterized by a high quiescent X-ray luminosity and flaring on a short timescale. We show that the degenerate component of the system is either a magnetar which accretes matter from a Keplerian disk of quasi-spherical flow, or a regularly magnetized neutron star which rotates near spin equilibrium and accretes matter from a non-Keplerian magnetic disk.
Codoped direct-gap semiconductor scintillators
Derenzo, Stephen Edward [Pinole, CA; Bourret-Courchesne, Edith [Berkeley, CA; Weber, Marvin J [Danville, CA; Klintenberg, Mattias K [Berkeley, CA
2008-07-29
Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.
Codoped direct-gap semiconductor scintillators
Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.
2006-05-23
Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.
The evolution of temperature and bolometric luminosity in Type II supernovae
NASA Astrophysics Data System (ADS)
Faran, T.; Nakar, E.; Poznanski, D.
2018-01-01
In this work, we present a uniform analysis of the temperature evolution and bolometric luminosity of a sample of 29 Type II supernovae (SNe), by fitting a blackbody model to their multiband photometry. Our sample includes only SNe with high quality multiband data and relatively well-sampled time coverage. Most of the SNe in our sample were detected less than a week after explosion so their light curves cover the evolution both before and after recombination starts playing a role. We use this sample to study the signature of hydrogen recombination, which is expected to appear once the observed temperature drops to ≈7000 K. Theory predicts that before recombination starts affecting the light curve, both the luminosity and the temperature should drop relatively fast, following a power law in time. Once the recombination front reaches inner parts of the outflow, it sets the observed temperature to be nearly constant, and slows the decline of the luminosity (or even leads to a re-brightening). We compare our data to analytic studies and find strong evidence for the signature of recombination. We also find that the onset of the optical plateau in a given filter, is effectively the time at which the blackbody peak reaches the central wavelength of the filter, as it cools, and it does not correspond to the time at which recombination starts affecting the emission.
NASA Astrophysics Data System (ADS)
Summa, Alexander; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas
2018-01-01
We present the first self-consistent, 3D core-collapse supernova simulations performed with the PROMETHEUS-VERTEX code for a rotating progenitor star. Besides using the angular momentum of the 15 M ⊙ model as obtained in the stellar evolution calculation with an angular frequency of ∼10‑3 rad s‑1 (spin period of more than 6000 s) at the Si/Si–O interface, we also computed 2D and 3D cases with no rotation and with a ∼300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast-rotating model develops an explosion in 3D when the Si/Si–O interface collapses through the shock. The explosion becomes possible by the support of a powerful standing accretion shock instability spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a “two-dimensionalization” of the turbulent energy spectrum (yielding roughly a ‑3 instead of a ‑5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the “universal critical luminosity condition” of Summa et al. to account for the effects of rotation, and we demonstrate its viability for a set of more than 40 core-collapse simulations, including 9 and 20 M ⊙ progenitors, as well as black-hole-forming cases of 40 and 75 M ⊙ stars to be discussed in forthcoming papers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio
2015-03-01
Halo dynamics influences global accelerator performance: beam lifetimes, emittance growth, dynamic aperture, and collimation efficiency. Halo monitoring and control are also critical for the operation of high-power machines. For instance, in the high-luminosity upgrade of the LHC, the energy stored in the beam tails may reach several megajoules. Fast losses can result in superconducting magnet quenches, magnet damage, or even collimator deformation. The need arises to measure the beam halo and to remove it at controllable rates. In the Tevatron and in the LHC, halo population densities and diffusivities were measured with collimator scans by observing the time evolution ofmore » losses following small inward or outward collimator steps, under different experimental conditions: with single beams and in collision, and, in the case of the Tevatron, with a hollow electron lens acting on a subset of bunches. After the LHC resumes operations, it is planned to compare measured diffusivities with the known strength of transverse damper excitations. New proposals for nondestructive halo population density measurements are also briefly discussed.« less
New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku
NASA Technical Reports Server (NTRS)
Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.
2011-01-01
From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.
NASA Astrophysics Data System (ADS)
Cai, Zhen-Yi; Lapi, Andrea; Bressan, Alessandro; De Zotti, Gianfranco; Negrello, Mattia; Danese, Luigi
2014-04-01
We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M crit <~ 109.8 M ⊙, which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ~= 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M UV <~ -18) can keep the universe fully ionized up to z ~= 6. This is consistent with (uncertain) data pointing to a rapid drop of the ionization degree above z ~= 6, such as indications of a decrease of the comoving emission rate of ionizing photons at z ~= 6, a decrease of sizes of quasar near zones, and a possible decline of the Lyα transmission through the intergalactic medium at z > 6. On the other hand, the electron scattering optical depth, τes, inferred from cosmic microwave background (CMB) experiments favor an ionization degree close to unity up to z ~= 9-10. Consistency with CMB data can be achieved if M crit ~= 108.5 M ⊙, implying that the UV luminosity functions extend to M UV ~= -13, although the corresponding τes is still on the low side of CMB-based estimates.
A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor.
Zhang, B-B; Zhang, B; Sun, H; Lei, W-H; Gao, H; Li, Y; Shao, L; Zhao, Y; Hu, Y-D; Lü, H-J; Wu, X-F; Fan, X-L; Wang, G; Castro-Tirado, A J; Zhang, S; Yu, B-Y; Cao, Y-Y; Liang, E-W
2018-01-31
Double neutron star (DNS) merger events are promising candidates of short gamma-ray burst (sGRB) progenitors as well as high-frequency gravitational wave (GW) emitters. On August 17, 2017, such a coinciding event was detected by both the LIGO-Virgo gravitational wave detector network as GW170817 and Gamma-Ray Monitor on board NASA's Fermi Space Telescope as GRB 170817A. Here, we show that the fluence and spectral peak energy of this sGRB fall into the lower portion of the distributions of known sGRBs. Its peak isotropic luminosity is abnormally low. The estimated event rate density above this luminosity is at least [Formula: see text] Gpc -3 yr -1 , which is close to but still below the DNS merger event rate density. This event likely originates from a structured jet viewed from a large viewing angle. There are similar faint soft GRBs in the Fermi archival data, a small fraction of which might belong to this new population of nearby, low-luminosity sGRBs.
WISE infrared properties of OH megamaser galaxies: Guide for future FAST OHM searching?
NASA Astrophysics Data System (ADS)
Zhang, JiangShui; Wang, JunZhi; Li, Di
2015-08-01
All 119 OH maser galaxies (110 out of them are megamasers, i.e., LOH > 10 Lsun) published so far were compiled and were cross-identified with the Wide-Field Infrared Survey Explorer (WISE) catalog, to investigate the middle infrared (MIR) properties of OH maser galaxies. The WISE magnitude data at the 3.4, 4.6, 12 and 22 μm (W1 to W4 band) were collected for the OH maser sample and one control sample, which are non-detection sources. The color-color diagrams show that both OH megamaser (OHM) and non-OHM (ultra)luminous infrared galaxies ((U)LIRGs) are far away from the single blackbody model line and many of them can follow the path described by the power-law model. The active galaxy nuclei (AGN) fraction is about 40% for both OHM and non-OHM (U)LIRGs, according to the AGN criteria W1-W2 ≥ 0.8. Among the Arecibo survey sample, OHM sources tend to have a lower luminosity at short MIR wavelengths (e.g., 3.4 μm and 4.6 μm) than that of non-OHM sources, which should come from the low OHM fraction among the survey sample with large 3.4 μm and 4.6 μm luminosity. The OHM fraction tends to increase with cooler MIR colors (larger F22 μm/F3.4 μm). In the case of the power-law model, we derived the spectral indices for our samples. For the Arecibo survey sample, OHM (U)LIRGs tend to have larger spectral index α22-12 than non-OHM sources, which agrees with previous results. One significant correlation exists between the WISE infrared luminosity at 22 μm and the color [W1]-[W4] for the Arecibo OHM hosts. In summary, these clues should provide suitable constraints on the sample selection for future OH megamaser surveys through the Five hundred aperture spherical telescope (FAST). Further potentials on FAST OH megamasers research are investigated, including detectability, sky density of OH megamasers etc.
Ionised outflows in z ~ 2.4 quasar host galaxies
NASA Astrophysics Data System (ADS)
Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.
2015-08-01
Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, P.ID: 086.B-0579(A).
Danks, Kelly A; Pohlig, Ryan; Reisman, Darcy S
2016-09-01
To determine preliminary efficacy and to identify baseline characteristics predicting who would benefit most from fast walking training plus a step activity monitoring program (FAST+SAM) compared with fast walking training (FAST) alone in persons with chronic stroke. Randomized controlled trial with blinded assessors. Outpatient clinical research laboratory. Individuals (N=37) >6 months poststroke. Subjects were assigned to either FAST, which was walking training at their fastest possible speed on the treadmill (30min) and overground 3 times per week for 12 weeks, or FAST+SAM. The step activity monitoring program consisted of daily step monitoring with an activity monitor, goal setting, and identification of barriers to activity and strategies to overcome barriers. Daily step activity metrics (steps/day [SPD], time walking per day), walking speed, and 6-minute walk test (6MWT) distance. There was a significant effect of time for both groups, with all outcomes improving from pre- to posttraining (all P values <.05). The FAST+SAM was superior to FAST for 6MWT (P=.018), with a larger increase in the FAST+SAM group. The interventions had differential effectiveness based on baseline step activity. Sequential moderated regression models demonstrated that for subjects with baseline levels of step activity and 6MWT distances that were below the mean, the FAST+SAM intervention was more effective than FAST (1715±1584 vs 254±933 SPD; P<.05 for overall model and ΔR(2) for SPD and 6MWT). The addition of a step activity monitoring program to a fast walking training intervention may be most effective in persons with chronic stroke who have initial low levels of walking endurance and activity. Regardless of baseline performance, the FAST+SAM intervention was more effective for improving walking endurance. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
ON THE SCATTER IN THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.
2015-03-01
We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1more » galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ∼40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ∼0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ∼0.13 dex.« less
UKIRT fast guide system improvements
NASA Astrophysics Data System (ADS)
Balius, Al; Rees, Nicholas P.
1997-09-01
The United Kingdom Infra-Red Telescope (UKIRT) has recently undergone the first major upgrade program since its construction. One part of the upgrade program was an adaptive tip-tilt secondary mirror closed with a CCD system collectively called the fast guide system. The installation of the new secondary and associated systems was carried out in the first half of 1996. Initial testing of the fast guide system has shown great improvement in guide accuracy. The initial installation included a fixed integration time CCD. In the first part of 1997 an integration time controller based on computed guide star luminosity was implemented in the fast guide system. Also, a Kalman type estimator was installed in the image tracking loop based on a dynamic model and knowledge of the statistical properties of the guide star position error measurement as a function of computed guide star magnitude and CCD integration time. The new configuration was tested in terms of improved guide performance nd graceful degradation when tracking faint guide stars. This paper describes the modified fast guide system configuration and reports the results of performance tests.
Single top quark production as a probe of anomalous tqγ and tqZ couplings at the FCC-ee
NASA Astrophysics Data System (ADS)
Khanpour, Hamzeh; Khatibi, Sara; Yanehsari, Morteza Khatiri; Najafabadi, Mojtaba Mohammadi
2017-12-01
In this paper, a detailed study to probe the top quark Flavour-Changing Neutral Currents (FCNC) tqγ and tqZ at the future e-e+ collider FCC-ee in two different center-of-mass energies of 240 and 350 GeV is presented. A set of useful variables are proposed and used in a multivariate technique to separate signal e-e+ → Z / γ → t q bar (t bar q) from Standard Model background processes. The study includes a fast detector simulation based on the DELPHES package to consider the detector effects. The upper limits on the FCNC branching ratios at 95% confidence level (CL) in terms of the integrated luminosity are presented. It is shown that with 300 fb-1 of integrated luminosity of data, FCC-ee would be able to exclude the effective coupling strengths above O (10-4 -10-5) which is corresponding to branching fraction of O (0.01 - 0.001)%. We show that moving to a high-luminosity regime leads to a significant improvement on the upper bounds on the top quark FCNC couplings to a photon or a Z boson.
Yellow evolved stars in open clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, J.R.
1987-05-01
This paper describes a program in which Galactic cluster post-AGB candidates were first identified and then analyzed for cluster membership via radial velocities, monitored for possible photometric variations, examined for evidence of mass loss, and classified as completely as possible in terms of their basic stellar parameters. The intrinsically brightest supergiants are found in the youngest clusters. With increasing cluster age, the absolute luminosities attained by the supergiants decline. It appears that the evolutionary tracks of luminosity class II stars are more similar to those of class I than of class III. Only two superluminous giant star candidates are foundmore » in open clusters. 154 references.« less
Photoionisation modelling of Nova LMC 1990 #1
NASA Technical Reports Server (NTRS)
Dopita, M. A.; Meatheringham, S. J.; Sutherland, R.; Williams, R. E.; Starrfield, S.; Sonneborn, G.; Shore, S.
1992-01-01
Nova LMC 1990A was a very fast Ne-O-Mg nova, for which a particularly dense coverage of spectral observation in both the UV and optical was obtained. The data for the nebular phase were subjected to an analysis by the photoionization modeling code MAPPINGS 2. The following parameters were obtained: L(sub max) = 8 x 10(exp 4) solar luminosity, T(sub eff) = 2 x 10(exp 5) K and the mass of ejecta = 5/5 x 10(exp -5) solar mass. The abundnace ratios in the ejecta were similar to those obtained by Williams et al. (1985) in the case of V693 CrA 1981. The N/O ratio and the overabundance of Al is consistent with ourburst on a ONeMg white dwarf of mass approximately equal to 1.2 solar mass, but the super-Eddington luminosity, and amount of mass ejected presents some problems to theory.
X-RAY OUTBURSTS OF ESO 243-49 HLX-1: COMPARISON WITH GALACTIC LOW-MASS X-RAY BINARY TRANSIENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhen; Zhang, Wenda; Yu, Wenfei
2015-09-20
We studied the outburst properties of the hyper-luminous X-ray source ESO 243-49 HLX-1, using the full set of Swift monitoring observations. We quantified the increase in the waiting time, recurrence time, and e-folding rise timescale along the outburst sequence, and the corresponding decrease in outburst duration, total radiated energy, and e-folding decay timescale, which confirms previous findings. HLX-1 spends less and less time in outburst and more and more time in quiescence, but its peak luminosity remains approximately constant. We compared the HLX-1 outburst properties with those of bright Galactic low-mass X-ray binary transients (LMXBTs). Our spectral analysis strengthens themore » similarity between state transitions in HLX-1 and those in Galactic LMXBTs. We also found that HLX-1 follows the nearly linear correlations between the hard-to-soft state transition luminosity and the peak luminosity, and between the rate of change of X-ray luminosity during the rise phase and the peak luminosity, which indicates that the occurrence of the hard-to-soft state transition of HLX-1 is similar to those of Galactic LMXBTs during outbursts. We found that HLX-1 does not follow the correlations between total radiated energy and peak luminosity, and between total radiated energy and e-folding rise/decay timescales we had previously identified in Galactic LMXBTs. HLX-1 would follow those correlations if the distance were several hundreds of kiloparsecs. However, invoking a much closer distance for HLX-1 is not a viable solution to this problem, as it introduces other, more serious inconsistencies with the observations.« less
Polarimetry of the Fast Radio Burst Source FRB121102
NASA Astrophysics Data System (ADS)
Michilli, Daniele; Seymour, Andrew; Hessels, Jason W. T.; Spitler, Laura; Gajjar, Vishal; Archibald, Anne; Bower, Geoffrey C.; Chatterjee, Shami; Cordes, Jim; Gourdji, Kelly; Heald, George; Kaspi, Victoria; Law, Casey; Sobey, Charlotte
2018-01-01
Fast radio bursts (FRBs) are millisecond-duration radio flashes of presumably extragalactic origin. FRB121102 is the only FRB known to repeat and the only one with a precise localization. It is co-located with a persistent radio source inside a star-forming region in a dwarf galaxy at z=0.2. While the persistent source is compatible with either a low-luminosity accreting black hole or a very energetic nebula and supernova remnant, the source of the bursts is still a mystery. We present new bursts from FRB121102 detected at relatively high radio frequencies of ~5GHz. These observations allow us to investigate the polarization properties of the bursts, placing new constraints on the environment of FRB121102.
The monitoring and data quality assessment of the ATLAS liquid argon calorimeter
NASA Astrophysics Data System (ADS)
Simard, Olivier; ATLAS Liquid Argon Calorimeter Group
2015-02-01
The ATLAS experiment is designed to study the proton-proton (pp) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, as well as for hadronic calorimetry in the range 1.5 < |η| < 4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5 K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and timing boards. In the first three years of LHC operation, approximately 27 fb-1 of pp collision data were collected at centre-of-mass energies of 7-8 TeV. Throughout this period, the calorimeter consistently operated with performances very close to specifications, with high data-taking efficiency. This is in large part due to a sophisticated data monitoring procedure designed to quickly identify issues that would degrade the detector performance, to ensure that only the best quality data are used for physics analysis. After a description of the detector design, main characteristics and operation principles, this paper details the data quality assessment procedures developed during the 2011 and 2012 LHC data-taking periods, when more than 98% of the luminosity recorded by ATLAS had high quality LAr calorimeter data suitable for physics analysis.
Significant contribution of the Cerenkov line-like radiation to the broad emission lines of quasars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, D. B.; You, J. H.; Chen, W. P.
2014-01-01
The Cerenkov line-like radiation in a dense gas (N {sub H} > 10{sup 13} cm{sup –3}) is potentially important in the exploration of the optical broad emission lines of quasars and Seyfert 1 galaxies. With this quasi-line emission mechanism, some long standing puzzles in the study of quasars could be resolved. In this paper, we calculate the power of the Cerenkov line-like radiation in dense gas and compare with the powers of other radiation mechanisms by a fast electron to confirm its importance. From the observed gamma-ray luminosity of 3C 279, we show that the total number of fast electronsmore » is sufficiently high to allow effective operation of the quasi-line emission. We present a model calculation for the luminosity of the Cerenkov Lyα line of 3C 279, which is high enough to compare with observations. We therefore conclude that the broad line of quasars may be a blend of the Cerenkov emission line with the real line produced by the bound-bound transition. A new approach to the absorption of the Cerenkov line is presented with the method of escape probability, which markedly simplifies the computation in the optically thick case. The revised set of formulae for the Cerenkov line-like radiation is more convenient in applications.« less
A coordinated X-ray, optical, and microwave study of the flare star Proxima Centauri
NASA Technical Reports Server (NTRS)
Haisch, B. M.; Linsky, J. L.; Slee, O. B.; Hearn, D. R.; Walker, A. R.; Rydgren, A. E.; Nicolson, G. D.
1978-01-01
Results are reported for a three-day coordinated observing program to monitor the flare star Proxima Centauri in the X-ray, optical, and radio spectrum. During this interval 30 optical flares and 12 possible radio bursts were observed. The SAS 3 X-ray satellite made no X-ray detections. An upper limit of 0.08 on the X-ray/optical luminosity ratio is derived for the brightest optical flare. The most sensitive of the radio telescopes failed to detect 6-cm emission during one major and three minor optical flares, and on this basis an upper limit on the flare radio emission (1 hundred-thousandth of the optimal luminosity) is derived.
Longitudinal bunch monitoring at the Fermilab Tevatron and Main Injector synchrotrons
Thurman-Keup, R.; Bhat, C.; Blokland, W.; ...
2011-10-17
The measurement of the longitudinal behavior of the accelerated particle beams at Fermilab is crucial to the optimization and control of the beam and the maximizing of the integrated luminosity for the particle physics experiments. Longitudinal measurements in the Tevatron and Main Injector synchrotrons are based on the analysis of signals from resistive wall current monitors. This study describes the signal processing performed by a 2 GHz-bandwidth oscilloscope together with a computer running a LabVIEW program which calculates the longitudinal beam parameters.
The front-end data conversion and readout electronics for the CMS ECAL upgrade
NASA Astrophysics Data System (ADS)
Mazza, G.; Cometti, S.
2018-03-01
The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with a 13 bits resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring a fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.
Construction of the optical part of a time-of-flight detector prototype for the AFP detector
Nozka, L.; Adamczyk, L.; Avoni, G.; ...
2016-11-22
We present the construction of the optical part of the ToF (time-of-flight) subdetector prototype for the AFP (ATLAS Forward Proton) detector. The ToF detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgrounds that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from themore » ToF allows the proton tagger to operate at the high luminosity required for measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through it. Finally, the emitted Cherenkov photons are detected by a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT) and processed by fast electronics.« less
Construction of the optical part of a time-of-flight detector prototype for the AFP detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozka, L.; Adamczyk, L.; Avoni, G.
We present the construction of the optical part of the ToF (time-of-flight) subdetector prototype for the AFP (ATLAS Forward Proton) detector. The ToF detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgrounds that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from themore » ToF allows the proton tagger to operate at the high luminosity required for measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through it. Finally, the emitted Cherenkov photons are detected by a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT) and processed by fast electronics.« less
Distance to VY Canis Majoris with VERA
NASA Astrophysics Data System (ADS)
Choi, Yoon Kyung; Hirota, Tomoya; Honma, Mareki; Kobayashi, Hideyuki; Bushimata, Takeshi; Imai, Hiroshi; Iwadate, Kenzaburo; Jike, Takaaki; Kameno, Seiji; Kameya, Osamu; Kamohara, Ryuichi; Kan-Ya, Yukitoshi; Kawaguchi, Noriyuki; Kijima, Masachika; Kim, Mi Kyoung; Kuji, Seisuke; Kurayama, Tomoharu; Manabe, Seiji; Maruyama, Kenta; Matsui, Makoto; Matsumoto, Naoko; Miyaji, Takeshi; Nagayama, Takumi; Nakagawa, Akiharu; Nakamura, Kayoko; Oh, Chung Sik; Omodaka, Toshihiro; Oyama, Tomoaki; Sakai, Satoshi; Sasao, Tetsuo; Sato, Katsuhisa; Sato, Mayumi; Shibata, Katsunori M.; Tamura, Yoshiaki; Tsushima, Miyuki; Yamashita, Kazuyoshi
2008-10-01
We report on astrometric observations of H2O masers around the red supergiant VY Canis Majoris carried out with VLBI Exploration of Radio Astrometry (VERA). Based on astrometric monitoring for 13 months, we successfully measured a trigonometric parallax of 0.88±0.08 mas, corresponding to a distance of 1.14+0.11-0.09kpc. This is the most accurate determined distance to VY CMa and the first one based on an annual parallax measurement. The luminosity of VY CMa has been overestimated due to a previously accepted distance. With our result, we re-estimated the luminosity of VY CMa to be (3±0.5) × 105Lodot using the bolometric flux integrated over optical and IR wavelengths. This improved luminosity value makes the location of VY CMa on the Hertzsprung-Russell (HR) diagram much closer to the theoretically allowable zone (i.e. the left side of the Hayashi track) than previous ones, though the uncertainty in the effective temperature of the stellar surface still does not permit us to make a final conclusion.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Yu, Wen-Fei
2018-03-01
Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition, indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions. It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work, we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary (LMXB) 4U 1636–536 based on data from the All Sky Monitor (ASM) on board RXTE, the Gas Slit Camera (GSC) on board MAXI and the Burst Alert Telescope (BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares, which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.
MAXI observations of long X-ray bursts
NASA Astrophysics Data System (ADS)
Serino, Motoko; Iwakiri, Wataru; Tamagawa, Toru; Sakamoto, Takanori; Nakahira, Satoshi; Matsuoka, Masaru; Yamaoka, Kazutaka; Negoro, Hitoshi
2016-12-01
We report nine long X-ray bursts from neutron stars, detected with the Monitor of All-sky X-ray Image (MAXI). Some of these bursts lasted for hours, and hence are qualified as superbursts, which are prolonged thermonuclear flashes on neutron stars and are relatively rare events. MAXI observes roughly 85% of the whole sky every 92 minutes in the 2-20 keV energy band, and has detected nine bursts with a long e-folding decay time, ranging from 0.27 to 5.2 hr, since its launch in 2009 August until 2015 August. The majority of the nine events were found to originate from transient X-ray sources. The persistent luminosities of the sources, when these prolonged bursts were observed, were lower than 1% of the Eddington luminosity for five of them and lower than 20% for the rest. This trend is contrastive to the 18 superbursts observed before MAXI, all but two of which originated from bright persistent sources. The distribution of the total emitted energy, i.e., the product of e-folding time and luminosity, of these bursts clusters around 1041-1042 erg, whereas both the e-folding time and luminosity ranges for an order of magnitude. Among the nine events, two were from 4U 1850-086 during phases of relatively low persistent flux, whereas it usually exhibits standard short X-ray bursts during outbursts.
NASA Astrophysics Data System (ADS)
Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Hori, Takafumi; Kawai, Nobuyuki; Negoro, Hitoshi; Mihara, Tatehiro
2016-08-01
We derive the first hard X-ray luminosity function (XLF) of stellar tidal disruption events (TDEs) by supermassive black holes (SMBHs), which gives an occurrence rate of TDEs per unit volume as a function of peak luminosity and redshift, utilizing an unbiased sample observed by the Monitor of All-sky X-ray Image (MAXI). On the basis of the light curves characterized by a power-law decay with an index of -5/3, a systematic search using the MAXI data detected four TDEs in the first 37 months of observations, all of which have been found in the literature. To formulate the TDE XLF, we consider the mass function of SMBHs, that of disrupted stars, the specific TDE rate as a function of SMBH mass, and the fraction of TDEs with relativistic jets. We perform an unbinned maximum likelihood fit to the MAXI TDE list and check the consistency with the observed TDE rate in the ROSAT all-sky survey. The results suggest that the intrinsic fraction of the jet-accompanying events is 0.0007%-34%. We confirm that at z ≲ 1.5 the contamination of the hard X-ray luminosity functions of active galactic nuclei by TDEs is not significant and hence that their contribution to the growth of SMBHs is negligible at the redshifts.
THE COLOR VARIABILITY OF QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Kasper B.; Rix, Hans-Walter; Knecht, Matthias
2012-01-10
We quantify quasar color variability using an unprecedented variability database-ugriz photometry of 9093 quasars from Sloan Digital Sky Survey (SDSS) Stripe 82, observed over 8 years at {approx}60 epochs each. We confirm previous reports that quasars become bluer when brightening. We find a redshift dependence of this blueing in a given set of bands (e.g., g and r), but show that it is the result of the flux contribution from less-variable or delayed emission lines in the different SDSS bands at different redshifts. After correcting for this effect, quasar color variability is remarkably uniform, and independent not only of redshift,more » but also of quasar luminosity and black hole mass. The color variations of individual quasars, as they vary in brightness on year timescales, are much more pronounced than the ranges in color seen in samples of quasars across many orders of magnitude in luminosity. This indicates distinct physical mechanisms behind quasar variability and the observed range of quasar luminosities at a given black hole mass-quasar variations cannot be explained by changes in the mean accretion rate. We do find some dependence of the color variability on the characteristics of the flux variations themselves, with fast, low-amplitude, brightness variations producing more color variability. The observed behavior could arise if quasar variability results from flares or ephemeral hot spots in an accretion disk.« less
Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN
NASA Astrophysics Data System (ADS)
Kim, M. S.; Ban, Y.; Cai, J.; Li, Q.; Liu, S.; Qian, S.; Wang, D.; Xu, Z.; Zhang, F.; Choi, Y.; Kim, D.; Goh, J.; Choi, S.; Hong, B.; Kang, J. W.; Kang, M.; Kwon, J. H.; Lee, K. S.; Lee, S. K.; Park, S. K.; Pant, L. M.; Mohanty, A. K.; Chudasama, R.; Singh, J. B.; Bhatnagar, V.; Mehta, A.; Kumar, R.; Cauwenbergh, S.; Costantini, S.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Ocampo, A.; Poyraz, D.; Salva, S.; Thyssen, F.; Tytgat, M.; Zaganidis, N.; Doninck, W. V.; Cabrera, A.; Chaparro, L.; Gomez, J. P.; Gomez, B.; Sanabria, J. C.; Avila, C.; Ahmad, A.; Muhammad, S.; Shoaib, M.; Hoorani, H.; Awan, I.; Ali, I.; Ahmed, W.; Asghar, M. I.; Shahzad, H.; Sayed, A.; Ibrahim, A.; Aly, S.; Assran, Y.; Radi, A.; Elkafrawy, T.; Sharma, A.; Colafranceschi, S.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Nuzzo, S.; Pugliese, G.; Radogna, R.; Venditti, R.; Verwilligen, P.; Benussi, L.; Bianco, S.; Piccolo, D.; Paolucci, P.; Buontempo, S.; Cavallo, N.; Merola, M.; Fabozzi, F.; Iorio, O. M.; Braghieri, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Vai, I.; Magnani, A.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Rodozov, M.; Sultanov, G.; Vutova, M.; Stoykova, S.; Hadjiiska, R.; Ibargüen, H. S.; Morales, M. I. P.; Bernardino, S. C.; Bagaturia, I.; Tsamalaidze, Z.; Crotty, I.
2014-10-01
The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time.
Stellar wind measurements for Colliding Wind Binaries using X-ray observations
NASA Astrophysics Data System (ADS)
Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko
2017-11-01
We report the results of the stellar wind measurement for two colliding wind binaries. The X-ray spectrum is the best measurement tool for the hot postshock gas. By monitoring the changing of the the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars.
NASA Technical Reports Server (NTRS)
Bodaghee, Arash; Tomsick, John A.; Rodriquez, Jerome; Chaty, Sylvain; Pottschmidt, Katja; Walter, Roland; Romano, Patrizia
2011-01-01
We present the results from analyses of Suzaku observations of the supergiant X-ray binaries IGR Jl6207-5129 and IGR Jl7391-3021. For IGR Jl6207-5129, we provide the first broadband (0.5-60 keV) spectrum from which we confirm a large intrinsic column density (N(sub H) = 16 X 10(exp 22)/square cm), and constrain the cutoff energy for the first time (E(sub c) 19 keV). We observed a prolonged (> 30 ks) attenuation of the X-ray flux which we tentatively attribute to an eclipse of the probable neutron star by its massive companion. For IGR Jl739J-3021, we witnessed a transition from quiescence to a low-activity phase punctuated by weak flares whose peak luminosities in the 0.5-10 keV band are only a factor of 5 times that of the pre-flare emission. The weak flaring is accompanied by an increase in the absorbing column which suggests the accretion of obscuring clumps of wind. Placing this observation in the context of the recent Swift monitoring campaign, we now recognize that these low-activity epochs constitute the most common emission phase for this system, and perhaps in other supergiant fast X-ray transients (SFXTs) as well.
Real-time monitoring of CO2 storage sites: Application to Illinois Basin-Decatur Project
Picard, G.; Berard, T.; Chabora, E.; Marsteller, S.; Greenberg, S.; Finley, R.J.; Rinck, U.; Greenaway, R.; Champagnon, C.; Davard, J.
2011-01-01
Optimization of carbon dioxide (CO2) storage operations for efficiency and safety requires use of monitoring techniques and implementation of control protocols. The monitoring techniques consist of permanent sensors and tools deployed for measurement campaigns. Large amounts of data are thus generated. These data must be managed and integrated for interpretation at different time scales. A fast interpretation loop involves combining continuous measurements from permanent sensors as they are collected to enable a rapid response to detected events; a slower loop requires combining large datasets gathered over longer operational periods from all techniques. The purpose of this paper is twofold. First, it presents an analysis of the monitoring objectives to be performed in the slow and fast interpretation loops. Second, it describes the implementation of the fast interpretation loop with a real-time monitoring system at the Illinois Basin-Decatur Project (IBDP) in Illinois, USA. ?? 2011 Published by Elsevier Ltd.
MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, C. L.; Ivezic, Z.; Bullock, E.
2010-10-01
We model the time variability of {approx}9000 spectroscopically confirmed quasars in SDSS Stripe 82 as a damped random walk (DRW). Using 2.7 million photometric measurements collected over 10 yr, we confirm the results of Kelly et al. and Kozlowski et al. that this model can explain quasar light curves at an impressive fidelity level (0.01-0.02 mag). The DRW model provides a simple, fast (O(N) for N data points), and powerful statistical description of quasar light curves by a characteristic timescale ({tau}) and an asymptotic rms variability on long timescales (SF{sub {infinity}}). We searched for correlations between these two variability parametersmore » and physical parameters such as luminosity and black hole mass, and rest-frame wavelength. Our analysis shows SF{sub {infinity}} to increase with decreasing luminosity and rest-frame wavelength as observed previously, and without a correlation with redshift. We find a correlation between SF{sub {infinity}} and black hole mass with a power-law index of 0.18 {+-} 0.03, independent of the anti-correlation with luminosity. We find that {tau} increases with increasing wavelength with a power-law index of 0.17, remains nearly constant with redshift and luminosity, and increases with increasing black hole mass with a power-law index of 0.21 {+-} 0.07. The amplitude of variability is anti-correlated with the Eddington ratio, which suggests a scenario where optical fluctuations are tied to variations in the accretion rate. However, we find an additional dependence on luminosity and/or black hole mass that cannot be explained by the trend with Eddington ratio. The radio-loudest quasars have systematically larger variability amplitudes by about 30%, when corrected for the other observed trends, while the distribution of their characteristic timescale is indistinguishable from that of the full sample. We do not detect any statistically robust differences in the characteristic timescale and variability amplitude between the full sample and the small subsample of quasars detected by ROSAT. Our results provide a simple quantitative framework for generating mock quasar light curves, such as currently used in LSST image simulations.« less
Swift Observations of SMC X-3 during Its 2016-2017 Super-Eddington Outburst
NASA Astrophysics Data System (ADS)
Weng, Shan-Shan; Ge, Ming-Yu; Zhao, Hai-Hui; Wang, Wei; Zhang, Shuang-Nan; Bian, Wei-Hao; Yuan, Qi-Rong
2017-07-01
The Be X-ray pulsar SMC X-3 underwent a giant outburst from 2016 August to 2017 March, which was monitored with the Swift satellite. During the outburst, its broadband flux increased dramatically, and the unabsorbed X-ray luminosity reached an extreme value of ˜ {10}39 erg s-1 around August 24. Using the Swift/XRT data, we measured the observed pulse frequency of the neutron star to compute the orbital parameters of the binary system. After applying the orbital corrections to Swift observations, we found that the spin frequency increased steadily from 128.02 mHz on August 10 and approached the spin equilibrium of ˜128.74 mHz in 2017 January with an unabsorbed luminosity of {L}{{X}}˜ 2× {10}37 erg s-1, indicating a strong dipolar magnetic field of B˜ 6.8× {10}12 G at the neutron star surface. The spin-up rate is tightly correlated with its X-ray luminosity during the super-Eddington outburst. The pulse profile in the Swift/XRT data is variable, showing double peaks at the early stage of outburst and then merging into a single peak at low luminosity. Additionally, we report that a low-temperature ({kT}˜ 0.2 keV) thermal component emerges in the phase-averaged spectra as the flux decays, and it may be produced from the outer truncated disk or the boundary layer between the exterior flow and the magnetosphere.
Radio and gamma-ray properties of extragalactic jets from the TANAMI sample
Böck, M.; Kadler, M.; Müller, C.; ...
2016-05-04
The TANAMI program has been observing parsec-scale radio jets of southern (declination south of - 30°) γ-ray bright AGN, simultaneously with Fermi/LAT monitoring of their γ-ray emission, via high-resolution radio imaging with Very Long Baseline Interferometry techniques. In this paper, we present the radio and γ-rayproperties of the TANAMI sources based on one year of contemporaneous TANAMI and Fermi/LAT data. A large fraction (72%) of the TANAMI sample can be associated with bright γ-ray sources for this time range. Association rates differ for different optical classes with all BL Lacs, 76% of quasars, and just 17% of galaxies detected bymore » the LAT. Upper limits were established on the γ-ray flux from TANAMI sources not detected by LAT. This analysis led to the identification of three new Fermi sources whose detection was later confirmed. The γ-ray and radio luminosities are related by L γ ∝ L r 0.89±0.04. The brightness temperatures of the radio cores increase with the average γ-ray luminosity and the presence of brightness temperatures above the inverse Compton limit implies strong Doppler boosting in those sources. The undetected sources have lower γ/radio luminosity ratios and lower contemporaneous brightness temperatures. Finally, unless the Fermi/LAT-undetected blazars are much γ-ray-fainter than the Fermi/LAT-detected sources, their γ-ray luminosity should not be significantly lower than the upper limits calculated here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendigutía, I.; Brittain, S.; Eiroa, C.
This work presents X-Shooter/Very Large Telescope spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of 12 ultraviolet, optical, and near-infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a meanmore » mass accretion rate of 1.11 × 10{sup –7} and 4.50 × 10{sup –7} M{sub ☉} yr{sup –1} for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ∼15 yr. Averaged accretion luminosities derived from the Balmer excess are consistent with the ones inferred from the empirical calibrations with the emission line luminosities, indicating that those can be extrapolated to HAe stars. In spite of that, the accretion rate variations do not generally coincide with those estimated from the line luminosities, suggesting that the empirical calibrations are not useful to accurately quantify accretion rate variability.« less
An Expanded Rossi X-Ray Timing Explorer Survey of X-Ray Variability in Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Markowitz, A.; Edelson, R.
2004-12-01
The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogeneous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from ~1 day to ~3.5 yr. The 2-10 keV variability on timescales of ~1 day, as probed by ASCA, is included. All sources exhibit stronger X-ray variability toward longer timescales, but the increase is greater for relatively higher luminosity sources. Variability amplitudes are anticorrelated with X-ray luminosity and black hole mass, but amplitudes saturate and become independent of luminosity or black hole mass toward the longest timescales. The data are consistent with the models of power spectral density (PSD) movement described by Markowitz and coworkers and McHardy and coworkers, whereby Seyfert 1 galaxies' variability can be described by a single, universal PSD shape whose break frequency scales with black hole mass. The best-fitting scaling relations between variability timescale, black hole mass, and X-ray luminosity imply an average accretion rate of ~5% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all timescales. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.
Compensation of orbit distortion due to quadrupole motion using feed-forward control at KEK ATF
NASA Astrophysics Data System (ADS)
Bett, D. R.; Charrondière, C.; Patecki, M.; Pfingstner, J.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.; Burrows, P. N.; Christian, G. B.; Perry, C.
2018-07-01
The high luminosity requirement for a future linear collider sets a demanding limit on the beam quality at the Interaction Point (IP). One potential source of luminosity loss is the motion of the ground itself. The resulting misalignments of the quadrupole magnets cause distortions to the beam orbit and hence an increase in the beam emittance. This paper describes a technique for compensating this orbit distortion by using seismometers to monitor the misalignment of the quadrupole magnets in real-time. The first demonstration of the technique was achieved at the Accelerator Test Facility (ATF) at KEK in Japan. The feed-forward system consisted of a seismometer-based quadrupole motion monitoring system, an FPGA-based feed-forward processor and a stripline kicker plus associated electronics. Through the application of a kick calculated from the position of a single quadruple, the system was able to remove about 80% of the component of the beam jitter that was correlated to the motion of the quadrupole. As a significant fraction of the orbit jitter in the ATF final focus is due to sources other than quadrupole misalignment, this amounted to an approximately 15% reduction in the absolute beam jitter.
A Repeating Fast Radio Burst: Radio and X-ray Follow-up Observations of FRB 121102
NASA Astrophysics Data System (ADS)
Scholz, Paul; Spitler, Laura; Hessels, Jason; Bogdanov, Slavko; Brazier, Adam; Camilo, Fernando; Chatterjee, Shami; Cordes, James M.; Crawford, Fronefield; Deneva, Julia S.; Ferdman, Robert; Freire, Paulo; Kaspi, Victoria M.; Lazarus, Patrick; Lynch, Ryan; Madsen, Erik; McLaughlin, Maura; Patel, Chitrang; Ransom, Scott M.; Seymour, Andrew; Stairs, Ingrid H.; Stappers, Benjamin; van Leeuwen, Joeri; Zhu, Weiwei
2016-04-01
A new phenomenon has emerged in high-energy astronomy in the past few years: the Fast Radio Burst. Fast Radio Bursts (FRBs) are millisecond-duration radio bursts whose dispersion measures imply that they originate from far outside of the Galaxy. Their origin is as yet unknown; their durations and energetics imply that they involve compact objects, such as neutron stars or black holes. Due to their extreme luminosities implied by their distances and the previous absence of any repeat burst in follow-up observations, many potential explanations involve one-time cataclysmic events. However, in our Arecibo telescope follow-up observations of FRB 121102 (discovered in the PALFA survey; Spitler et al. 2014), we find additional bursts at the same location and dispersion measure as the original burst. We also present the results of Swift and Chandra X-ray observations of the field. This result shows that, for at least a sub-set of the FRB population, the source can repeat and thus cannot be explained by a cataclysmic origin.
A New Relativistic Component of the Accretion Disk Wind in PDS 456
NASA Astrophysics Data System (ADS)
Reeves, J. N.; Braito, V.; Nardini, E.; Lobban, A. P.; Matzeu, G. A.; Costa, M. T.
2018-02-01
Past X-ray observations of the nearby luminous quasar PDS 456 (at z = 0.184) have revealed a wide angle accretion disk wind, with an outflow velocity of ∼‑0.25c. Here, we unveil a new, relativistic component of the wind through hard X-ray observations with NuSTAR and XMM-Newton, obtained in 2017 March when the quasar was in a low-flux state. This very fast wind component, with an outflow velocity of ‑0.46 ± 0.02c, is detected in the iron K band, in addition to the ‑0.25c wind zone. The relativistic component may arise from the innermost disk wind, launched from close to the black hole at a radius of ∼10 gravitational radii. The opacity of the fast wind also increases during a possible obscuration event lasting for 50 ks. We suggest that the very fast wind may only be apparent during the lowest X-ray flux states of PDS 456, becoming overly ionized as the luminosity increases. Overall, the total wind power may even approach the Eddington value.
Mapping the Substellar Mass-Luminosity Relation Down to the L/T Transition
NASA Astrophysics Data System (ADS)
Dupuy, Trent
2016-10-01
Substellar models underpin our theoretical understanding of brown dwarfs and gas-giant exoplanets, so assessing their accuracy is paramount. The past several years have seen progress in testing models thanks to a growing number of dynamical (total) masses for brown dwarf binaries determined via (relative) orbit monitoring from ground-based AO. However, the strongest tests of models require individual masses, particularly for calibrating the mass-luminosity relation. This is poorly constrained over the range of spectral types most influenced by clouds (mid-L to early-T). Given the observed prevalence of clouds in the atmospheres of directly imaged planets, testing models at such temperatures is crucial.We propose a 3-year program to obtain individual masses for a sample of 11 substellar binaries. Our proposal builds on nearly a decade of orbital monitoring from the ground to measure dynamical total masses. Our goal is thus to measure precise mass ratios, utilizing HST's unique wide-field, high-angular resolution astrometric capabilities. We will obtain WFC3-UVIS images capturing our targets and numerous reference stars so that we can measure the relative amount of orbital motion in each component to determine mass ratios. Three of our targets have I-band photocenter orbits measured at USNO and VLT and thus only require one epoch of resolved I-band imaging to unlock individual masses. We will use this first large sample of substellar individual masses to map out the mass-luminosity relation over a wide range of temperatures (1000-2000 K) including the L/T transition. This will become a touchstone sample for tests of ultracool atmospheric models in the era of JWST.
Mapping the Substellar Mass-Luminosity Relation Down to the L/T Transition
NASA Astrophysics Data System (ADS)
Dupuy, Trent
2017-08-01
Substellar models underpin our theoretical understanding of brown dwarfs and gas-giant exoplanets, so assessing their accuracy is paramount. The past several years have seen progress in testing models thanks to a growing number of dynamical (total) masses for brown dwarf binaries determined via (relative) orbit monitoring from ground-based AO. However, the strongest tests of models require individual masses, particularly for calibrating the mass-luminosity relation. This is poorly constrained over the range of spectral types most influenced by clouds (mid-L to early-T). Given the observed prevalence of clouds in the atmospheres of directly imaged planets, testing models at such temperatures is crucial.We propose a 3-year program to obtain individual masses for a sample of 11 substellar binaries. Our proposal builds on nearly a decade of orbital monitoring from the ground to measure dynamical total masses. Our goal is thus to measure precise mass ratios, utilizing HST's unique wide-field, high-angular resolution astrometric capabilities. We will obtain WFC3-UVIS images capturing our targets and numerous reference stars so that we can measure the relative amount of orbital motion in each component to determine mass ratios. Three of our targets have I-band photocenter orbits measured at USNO and VLT and thus only require one epoch of resolved I-band imaging to unlock individual masses. We will use this first large sample of substellar individual masses to map out the mass-luminosity relation over a wide range of temperatures (1000-2000 K) including the L/T transition. This will become a touchstone sample for tests of ultracool atmospheric models in the era of JWST.
A search for changing look quasars in second epoch imaging
NASA Astrophysics Data System (ADS)
Findlay, Joseph; Myers, Adam; McGreer, Ian
2018-01-01
Over nearly two decades, the Sloan Digital Sky Survey has compiled a catalog of over half a million confirmed quasars. During that period approximately ten percent of these objects have been spectroscopically observed in two or more epochs over baselines of ten or more years. This led recently to the discovery of the largest change in luminosity ever before observed in a quasar. The dimming emission was a reflection of very significant changes in continuum and broad line properties, the source had effectively transitioned from a Type I quasar to a Type II AGN. Since then several more "changing look" quasars have been discovered in multi-epoch SDSS spectroscopy. Among them are objects with rising and falling luminosities, appearing and disappearing broad lines. The origin of this behavior is still very uncertain, currently favored is the scenario in which an accreting black hole is simply starved of fuel. Other plausible scenarios include flaring due to stellar tidal disruption close to the black hole or large changes in accretion flow, which can occur during transitions between radiatively efficient and inefficient accretion regimes. Monitoring of larger numbers of changing look quasars will help to elucidate these ideas.In this poster, we report on the progress of a pilot study in which we hope to learn how to select changing look quasars in multi-epoch imaging. This will allow us to take advantage of the entire SDSS quasar catalog rather than just the ten percent of objects with multi-epoch spectroscopy. Comparing archival SDSS and more recent Legacy Survey imaging over ten-year baselines we select objects whose photometry is consistent with the large changes in luminosity expected in changing look quasars. We aim to build up a catalog of both transitioned and transitioning objects for future monitoring.
Probing the central engine and environment of AGN using ARIES 1.3-m and 3.6-m telescopes
NASA Astrophysics Data System (ADS)
Chand, Hum; Rakshit, Suvendu; Jalan, Priyanka; Ojha, Vineet; Srianand, Raghunathan; Vivek, Mariappan; Mishra, Sapna; Omar, Amitesh; Kumar, Parveen; Joshi, Ravi; Gopal-Krishna; Kumar, Rathna
2018-04-01
We discuss three long term observational programmes to probe the central engine and environment of active galactic nuclei (AGN) using the recently installed ARIES 1.3-m and 3.6-m telescopes. The first programme is on the photometric reverberation mapping of low luminosity AGN by mainly using the ARIES 1.3-m telescope. The major impact of this programme other than to estimate the black hole mass will be to extend the broad line region (BLR) radius-luminosity (RBLR-LAGN) relation to the unexplored low luminosity regime, and to constrain the AGN broad line region geometry. The second programme is to use long slit spectroscopy on the ARIES 3.6-m telescope to discover new high redshift quasar pairs with angular separation less than 1-arcmin. Here, the background QSOs sight-line will be used to probe the environment of the foreground QSOs at kpc-Mpc scales. The major impact of this programme will be on the discovery of new pairs which have been missed in the SDSS survey due to fiber collision below 1-arcmin separation, and use them to understand about any excess overdensity around the QSO, any anisotropic emission of QSOs, and/or any episodic activity of QSOs. The third programme is related to spectral variability studies of the C IV broad absorption line (BAL) QSOs, based on low resolution spectroscopy using the ARIES 3.6-m telescope. Here, those most interesting cases will be monitored, where the BAL flow emerges afresh or disappears completely in the C IV trough of BAL QSOs sample as seen in SDSS multi-epoch observations. Continuous monitoring of such a sample will be important for our understanding of the nature and origin of the flow, along with their stability and dynamical evolution.
Discovery of pulsations from NGC 300 ULX1 and its fast period evolution
NASA Astrophysics Data System (ADS)
Carpano, S.; Haberl, F.; Maitra, C.; Vasilopoulos, G.
2018-05-01
The supernova impostor SN 2010da located in the nearby galaxy NGC 300, later identified as a likely supergiant B[e] high-mass X-ray binary, was simultaneously observed by NuSTAR and XMM-Newton between 2016 December 16 and 20, over a total time span of ˜310 ks. We report the discovery of a strong periodic modulation in the X-ray flux with a pulse period of 31.6 s and a very rapid spin-up, and confirm therefore that the compact object is a neutron star. We find that the spin period is changing from 31.71 s to 31.54 s over that period, with a spin-up rate of -5.56 × 10-7 s s-1, likely the largest ever observed from an accreting neutron star. The spectrum is described by a power-law and a disc blackbody model, leading to a 0.3-30 keV unabsorbed luminosity of 4.7 × 1039 erg s-1. Applying our best-fitting model successfully to the spectra of an XMM-Newton observation from 2010, suggests that the lower fluxes of NGC 300 ULX1 reported from observations around that time are caused by a large amount of absorption, while the intrinsic luminosity was similar as seen in 2016. A more constant luminosity level is also consistent with the long-term pulse period evolution approaching an equilibrium value asymptotically. We conclude that the source is another candidate for the new class of ultraluminous X-ray pulsars.
The periodic very young source EC 53 reached its maximum brightness
NASA Astrophysics Data System (ADS)
Giannini, T.; Antoniucci, S.; Lorenzetti, D.; Harutyunyan, A.; Licchelli, D.; Munari, U.
2018-06-01
In the framework of our EXor monitoring program dubbed EXORCISM (EXOR OptiCal and Infrared Systematic Monitoring - Antoniucci et al. 2013 PPVI, Lorenzetti et al. 2007 ApJ 665, 1182; Lorenzetti et al. 2009 ApJ 693, 1056), we observed the object EC53 recently signaled by Johnston et al. (ATel #11614) as a strongly embedded source showing a sub-mm luminosity burst, They also provide H- and K-band observations detecting this brightness increase also in the near-IR, in the scattered light by the nebula surrounding a compact source, invisible at those wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnyakov, A.; Barnyakov, M.; Novosibirsk State University, str. Pirogova 2, Novosibirsk,
2015-07-01
IMCP is an R and D project aimed at the exploitation of secondary emission of electrons from the surface of microchannel plates (MCP) for fast timing of showers in high rate environments. The usage of MCPs in 'ionisation' mode has long been proposed and is used extensively in ion time-of-flight mass spectrometers. What has not been investigated in depth is their use to detect the ionizing component of showers. The fast time resolution of MCPs exceeds anything that has been previously used in calorimeters, and, if exploited effectively, could aid in the event reconstruction at high luminosities. Results from testsmore » with electrons with energies up to 150 GeV of MCP devices with different characteristics will be presented, in particular detection efficiency and time resolution. (authors)« less
V2676 Oph: Estimating Physical Parameters of a Moderately Fast Nova
NASA Astrophysics Data System (ADS)
Raj, A.; Pavana, M.; Kamath, U. S.; Anupama, G. C.; Walter, F. M.
2018-03-01
Using our previously reported observations, we derive some physical parameters of the moderately fast nova V2676 Oph 2012 #1. The best-fit Cloudy model of the nebular spectrum obtained on 2015 May 8 shows a hot white dwarf source with TBB≍1.0×105 K having a luminosity of 1.0×1038 erg/s. Our abundance analysis shows that the ejecta are significantly enhanced relative to solar, He/H=2.14, O/H=2.37, S/H=6.62 and Ar/H=3.25. The ejecta mass is estimated to be 1.42×10-5 M⊙. The nova showed a pronounced dust formation phase after 90 d from discovery. The J-H and H-K colors were very large as compared to other molecule- and dust-forming novae in recent years. The dust temperature and mass at two epochs have been estimated from spectral energy distribution fits to infrared photometry.
Lessons and prospects from the pMSSM after LHC Run I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill-Rowley, M.; Hewett, J. L.; Ismail, A.
2015-03-01
We study SUSY signatures at the 7, 8 and 14 TeV LHC employing the 19-parameter, R-parity conserving p(henomenological)MSSM, in the scenario with a neutralino lightest supersymmetric particle (LSP). Our results were obtained via a fast Monte Carlo simulation of the ATLAS SUSY analysis suite. The flexibility of this framework allows us to study a wide variety of SUSY phenomena simultaneously and to probe for weak spots in existing SUSY search analyses. We determine the ranges of the sparticle masses that are either disfavored or allowed after the searches with the 7 and 8 TeV data sets are combined. We findmore » that natural SUSY models with light squarks and gluinos remain viable. We extrapolate to 14 TeV with both 300 fb(-1) and 3 ab(-1) of integrated luminosity and determine the expected sensitivity of the jets + MET and stop searches to the pMSSM parameter space. We find that the high-luminosity LHC will be powerful in probing SUSY with neutralino LSPs and can provide a more definitive statement on the existence of natural supersymmetry.« less
NASA Technical Reports Server (NTRS)
Wilson, Gordon R.
2001-01-01
This document is the fourth quarter progress report for year two on contract NAW-99002 'What is the relationship between heavy ion outflow and high latitude energetic particle precipitation'. In this project we are studying the relationship between the fluxes, mean energies, and field-aligned flow speeds of escaping suprathermal H+ and O+ measured by the TEAMS instrument on FAST and the energy flux of precipitating electrons obtained form the LBHL images taken by the Ultraviolet Imagery (UVI) camera on the Polar spacecraft. We have analyzed data from three time intervals, 7-11 Feb, 25-31 Jan, and 1-6 Feb 1997. We find that there indeed is a relationship between the O+ escape fluxes and the intensity of the aurora at the foot point of the field line. The time delay between an auroral intensification and the corresponding increase in escape flux is very short, only a few minutes. At low auroral luminosity the relationship between escape flux and luminosity appears to break down due possibly to the lack of sensitivity of the auroral emissions to large fluxes of low energy electrons.
Pre-nebular Light Curves of SNe I
Arnett, W. David; Fryer, Christopher; Matheson, Thomas
2017-08-29
We compare analytic predictions of supernova light curves with recent high-quality data from SN2011fe (Ia), KSN2011b (Ia), and the Palomar Transient Factory and the La Silla-QUEST variability survey (LSQ) (Ia). Because of the steady, fast cadence of observations, KSN2011b provides unique new information on SNe Ia: the smoothness of the light curve, which is consistent with significant large-scale mixing during the explosion, possibly due to 3D effects (e.g., Rayleigh–Taylor instabilities), and provides support for a slowly varying leakage (mean opacity). For a more complex light curve (SN2008D, SN Ib), we separate the luminosity due to multiple causes and indicate themore » possibility of a radioactive plume. The early rise in luminosity is shown to be affected by the opacity (leakage rate) for thermal and non-thermal radiation. A general derivation of Arnett's rule again shows that it depends upon all processes heating the plasma, not just radioactive ones, so that SNe Ia will differ from SNe Ibc if the latter have multiple heating processes.« less
Pre-nebular Light Curves of SNe I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnett, W. David; Fryer, Christopher; Matheson, Thomas
We compare analytic predictions of supernova light curves with recent high-quality data from SN2011fe (Ia), KSN2011b (Ia), and the Palomar Transient Factory and the La Silla-QUEST variability survey (LSQ) (Ia). Because of the steady, fast cadence of observations, KSN2011b provides unique new information on SNe Ia: the smoothness of the light curve, which is consistent with significant large-scale mixing during the explosion, possibly due to 3D effects (e.g., Rayleigh–Taylor instabilities), and provides support for a slowly varying leakage (mean opacity). For a more complex light curve (SN2008D, SN Ib), we separate the luminosity due to multiple causes and indicate themore » possibility of a radioactive plume. The early rise in luminosity is shown to be affected by the opacity (leakage rate) for thermal and non-thermal radiation. A general derivation of Arnett’s rule again shows that it depends upon all processes heating the plasma, not just radioactive ones, so that SNe Ia will differ from SNe Ibc if the latter have multiple heating processes.« less
Pre-nebular Light Curves of SNe I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnett, W. David; Fryer, Christopher; Matheson, Thomas
We compare analytic predictions of supernova light curves with recent high-quality data from SN2011fe (Ia), KSN2011b (Ia), and the Palomar Transient Factory and the La Silla-QUEST variability survey (LSQ) (Ia). Because of the steady, fast cadence of observations, KSN2011b provides unique new information on SNe Ia: the smoothness of the light curve, which is consistent with significant large-scale mixing during the explosion, possibly due to 3D effects (e.g., Rayleigh–Taylor instabilities), and provides support for a slowly varying leakage (mean opacity). For a more complex light curve (SN2008D, SN Ib), we separate the luminosity due to multiple causes and indicate themore » possibility of a radioactive plume. The early rise in luminosity is shown to be affected by the opacity (leakage rate) for thermal and non-thermal radiation. A general derivation of Arnett's rule again shows that it depends upon all processes heating the plasma, not just radioactive ones, so that SNe Ia will differ from SNe Ibc if the latter have multiple heating processes.« less
ATLAS fast physics monitoring: TADA
NASA Astrophysics Data System (ADS)
Sabato, G.; Elsing, M.; Gumpert, C.; Kamioka, S.; Moyse, E.; Nairz, A.; Eifert, T.; ATLAS Collaboration
2017-10-01
The ATLAS experiment at the LHC has been recording data from proton-proton collisions with 13 TeV center-of-mass energy since spring 2015. The collaboration is using a fast physics monitoring framework (TADA) to automatically perform a broad range of fast searches for early signs of new physics and to monitor the data quality across the year with the full analysis level calibrations applied to the rapidly growing data. TADA is designed to provide fast feedback directly after the collected data has been fully calibrated and processed at the Tier-0. The system can monitor a large range of physics channels, offline data quality and physics performance quantities. TADA output is available on a website accessible by the whole collaboration. It gets updated twice a day with the data from newly processed runs. Hints of potentially interesting physics signals or performance issues identified in this way are reported to be followed up by physics or combined performance groups. The note reports as well about the technical aspects of TADA: the software structure to obtain the input TAG files, the framework workflow and structure, the webpage and its implementation.
Carrera, Mónica; Gallardo, José M; Pascual, Santiago; González, Ángel F; Medina, Isabel
2016-06-16
Anisakids are fish-borne parasites that are responsible for a large number of human infections and allergic reactions around the world. World health organizations and food safety authorities aim to control and prevent this emerging health problem. In the present work, a new method for the fast monitoring of these parasites is described. The strategy is divided in three steps: (i) purification of thermostable proteins from fish-borne parasites (Anisakids), (ii) in-solution HIFU trypsin digestion and (iii) monitoring of several peptide markers by parallel reaction monitoring (PRM) mass spectrometry. This methodology allows the fast detection of Anisakids in <2h. An affordable assay utilizing this methodology will facilitate testing for regulatory and safety applications. The work describes for the first time, the Protein Biomarker Discovery and the Fast Monitoring for the identification and detection of Anisakids in fishery products. The strategy is based on the purification of thermostable proteins, the use of accelerated in-solution trypsin digestions under an ultrasonic field provided by High-Intensity Focused Ultrasound (HIFU) and the monitoring of several peptide biomarkers by Parallel Reaction Monitoring (PRM) Mass Spectrometry in a linear ion trap mass spectrometer. The workflow allows the unequivocal detection of Anisakids, in <2h. The present strategy constitutes the fastest method for Anisakids detection, whose application in the food quality control area, could provide to the authorities an effective and rapid method to guarantee the safety to the consumers. Copyright © 2016 Elsevier B.V. All rights reserved.
The ATLAS Diamond Beam Monitor: Luminosity detector at the LHC
NASA Astrophysics Data System (ADS)
Schaefer, D. M.; ATLAS Collaboration
2016-07-01
After the first three years of the LHC running, the ATLAS experiment extracted its pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes are based on chemical vapor deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This paper describes the lessons learned in construction and commissioning of the ATLAS Diamond Beam Monitor (DBM). We show results from the construction quality assurance tests and commissioning performance, including results from cosmic ray running in early 2015.
On the relevance of using open wireless sensor networks in environment monitoring.
Bagula, Antoine B; Inggs, Gordon; Scott, Simon; Zennaro, Marco
2009-01-01
This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.
NASA Astrophysics Data System (ADS)
Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.
2017-09-01
The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.
A radio monitoring survey of ultra-luminous X-ray sources
NASA Astrophysics Data System (ADS)
Körding, E.; Colbert, E.; Falcke, H.
2005-06-01
We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.
Towards equation of state of dark energy from quasar monitoring: Reverberation strategy
NASA Astrophysics Data System (ADS)
Czerny, B.; Hryniewicz, K.; Maity, I.; Schwarzenberg-Czerny, A.; Życki, P. T.; Bilicki, M.
2013-08-01
Context. High-redshift quasars can be used to constrain the equation of state of dark energy. They can serve as a complementary tool to supernovae Type Ia, especially at z > 1. Aims: The method is based on the determination of the size of the broad line region (BLR) from the emission line delay, the determination of the absolute monochromatic luminosity either from the observed statistical relation or from a model of the formation of the BLR, and the determination of the observed monochromatic flux from photometry. This allows the luminosity distance to a quasar to be obtained, independently from its redshift. The accuracy of the measurements is, however, a key issue. Methods: We modeled the expected accuracy of the measurements by creating artificial quasar monochromatic lightcurves and responses from the BLR under various assumptions about the variability of a quasar, BLR extension, distribution of the measurements in time, accuracy of the measurements, and the intrinsic line variability. Results: We show that the five-year monitoring of a single quasar based on the Mg II line should give an accuracy of 0.06-0.32 mag in the distance modulus which will allow new constraints to be put on the expansion rate of the Universe at high redshifts. Successful monitoring of higher redshift quasars based on C IV lines requires proper selection of the objects to avoid sources with much higher levels of the intrinsic variability of C IV compared to Mg II.
NASA Astrophysics Data System (ADS)
Caballero-García, M. D.; Camero-Arranz, A.; Özbey Arabacı, M.; Zurita, C.; Suso, J.; Gutiérrez-Soto, J.; Beklen, E.; Kiaeerad, F.; Garrido, R.; Hudec, R.
2016-05-01
Aims: We present a study of the Be/X-ray binary system V 0332+53 with the main goal of characterizing its behaviour mainly during the intermediate-luminosity X-ray event in 2008. In addition, we aim to contribute to the understanding of the behaviour of the donor companion by including optical data from our dedicated campaign starting in 2006. Methods: V 0332+53 was observed by RXTE and Swift during the decay of the intermediate-luminosity X-ray outburst of 2008, and with Suzaku before the rising of the third normal outburst of the 2010 series. In addition, we present recent data from the Spanish ground-based astronomical observatories of El Teide (Tenerife), Roque de los Muchachos (La Palma), and Sierra Nevada (Granada), and since 2006 from the Turkish TÜBİTAK National Observatory (Antalya). We have performed temporal analyses to investigate the transient behaviour of this system during several outbursts. Results: Our optical study revealed that continuous mass ejection episodes from the Be star have been taking place since 2006 and another is currently ongoing. The broad-band 1-60 keV X-ray spectrum of the neutron star during the decay of the 2008 outburst was well fitted with standard phenomenological models that were enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K-alpha fluorescence line at 6.4 keV. For the first time in V 0332+53 we tentatively see an increase in the cyclotron line energy with increasing flux (although further and more sensitive observations are needed to confirm this). The fast aperiodic variability shows a quasi-periodic oscillation (QPO) at 227 ± 9 mHz only during the lowest luminosities, which might indicate that the inner regions surrounding the magnetosphere are more visible during the lowest flux states.
NASA Astrophysics Data System (ADS)
Blondin, Stéphane; Dessart, Luc; Hillier, D. John; Khokhlov, Alexei M.
2017-09-01
The faster light-curve evolution of low-luminosity Type Ia supernovae (SNe Ia) suggests that they could result from the explosion of white dwarf (WD) progenitors below the Chandrasekhar mass (MCh). Here we present 1D non-local thermodynamic equilibrium time-dependent radiative transfer simulations of pure central detonations of carbon-oxygen WDs with a mass (Mtot) between 0.88 and 1.15 M⊙ and a 56Ni yield between 0.08 and 0.84 M⊙. Their lower ejecta density compared to MCh models results in a more rapid increase of the luminosity at early times and an enhanced γ-ray escape fraction past maximum light. Consequently, their bolometric light curves display shorter rise times and larger post-maximum decline rates. Moreover, the higher M(56Ni)/Mtot ratio at a given 56Ni mass enhances the temperature and ionization level in the spectrum-formation region for the less luminous models, giving rise to bluer colours at maximum light and a faster post-maximum evolution of the B - V colour. For sub-MCh models fainter than MB ≈ -18.5 mag at peak, the greater bolometric decline and faster colour evolution lead to a larger B-band post-maximum decline rate, ΔM15(B). In particular, all of our previously published MCh models (standard and pulsational delayed detonations) are confined to ΔM15(B) < 1.4 mag, while the sub-MCh models with Mtot ≲ 1 M⊙ extend beyond this limit to ΔM15(B) ≈ 1.65 mag for a peak MB ≈ -17 mag, in better agreement with the observed width-luminosity relation (WLR). Regardless of the precise ignition mechanism, these simulations suggest that fast-declining SNe Ia at the faint end of the WLR could result from the explosion of WDs whose mass is significantly below the Chandrasekhar limit.
CESR Upgrade: Plans and Recent Performance
NASA Astrophysics Data System (ADS)
Rogers, Joseph T.
1996-05-01
We are now in the second phase of a program to substantially upgrade the luminosity of the CESR e^+ e^- collider by increasing the number of stored bunches. In the first phase, completed in 1995, we progressed from collisions of beams of 7 bunches to beams of 9 trains of two bunches each, achieving a record luminosity of 3.2 × 10^32 cm-2s-1. To avoid unwanted collisions at each side of the interaction point, we electrostatically separate the beams on antisymmetric orbits, with a ± 2.1 mrad crossing angle at the interaction point. For the second phase we have altered the interaction region quadrupole magnets to increase the physical aperture and to reduce the maximum horizontal β in this region. We plan to store 9 trains of 3 bunches in the second phase, and anticipate a luminosity of 6 × 10^32 cm-2s-1. In the third phase installation, to begin in late 1997, we will replace the interaction region quadrupoles with a combination of a permanent magnet quadrupole and superconducting quadrupole pair on each side of the interaction point, which will further reduce the β functions throughout the interaction region and at the interaction point. To accomodate the higher currents we will replace each of the four 5-cell copper RF cavities with a single-cell superconducting cavity. In this phase we expect to achieve a luminosity in excess of 10^33 cm-2s-1 with 9 trains of 5 bunches. Recent development work includes the successful test of a superconducting RF cavity in CESR, installation of low-impedance electrostatic separators, upgrades to the vacuum system, a fast digital transverse feedback system, and new beam diagnostics. Recent studies have revealed the effects of collision at a crossing angle, the behavior of the long range beam-beam interaction at parasitic crossings, and the relationship of the dominant multibunch instability to photoemission in the beam chamber.
A straw chambers' tracker for the high rate experiment 835 at the Fermilab accumulator
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Dughera, G.; Giraudo, G.; Govi, G.; Marchetto, F.; Menichetti, E.; Pastrone, N.; Rumerio, P.; Trapani, P. P.
1998-02-01
Two layers of proportional drift tubes (aluminum mylar straws) are staggered in two cylindrical light chambers to measure charged particles' azimuthal angle. To stand the high rates (˜10 kHz/ cm2) and minimize the pile-up of the high luminosity experiment 835 at FNAL, a fast ASIC Amplifier-Shaper-Discriminator (ASD-8B) was chosen. The front-end electronics, designed exclusively with SMD components, was mounted on the downstream end plug of each chamber to avoid oscillations and noise. Design, construction and operational performances of these detectors are presented.
NASA Astrophysics Data System (ADS)
Akchurin, Nural; CMS Collaboration
2017-11-01
We report on the signal timing capabilities of thin silicon sensors when traversed by multiple simultaneous minimum ionizing particles (MIP). Three different planar sensors, 133, 211, and 285 μm thick in depletion thickness, have been exposed to high energy muons and electrons at CERN. We describe signal shape and timing resolution measurements as well as the response of these devices as a function of the multiplicity of MIPs. We compare these measurements to simulations where possible. We achieve better than 20 ps timing resolution for signals larger than a few tens of MIPs.
High-Speed Imaging of Dusty Plasma Instabilities
NASA Astrophysics Data System (ADS)
Tawidian, H.; Couëdel, L.; Mikikian, M.; Lecas, T.; Boufendi, L.; Vallée, O.
2011-11-01
Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).
Postharvest Monitoring of Tomato Ripening Using the Dynamic Laser Speckle
Pieczywek, Piotr Mariusz; Nowacka, Małgorzata; Dadan, Magdalena; Wiktor, Artur; Rybak, Katarzyna; Witrowa-Rajchert, Dorota; Zdunek, Artur
2018-01-01
The dynamic laser speckle (biospeckle) method was tested as a potential tool for the assessment and monitoring of the maturity stage of tomatoes. Two tomato cultivars—Admiro and Starbuck—were tested. The process of climacteric maturation of tomatoes was monitored during a shelf life storage experiment. The biospeckle phenomena were captured using 640 nm and 830 nm laser light wavelength, and analysed using two activity descriptors based on biospeckle pattern decorrelation—C4 and ε. The well-established optical parameters of tomatoes skin were used as a reference method (luminosity, a*/b*, chroma). Both methods were tested with respect to their prediction capabilities of the maturity and destructive indicators of tomatoes—firmness, chlorophyll and carotenoids content. The statistical significance of the tested relationships were investigated by means of linear regression models. The climacteric maturation of tomato fruit was associated with an increase in biospckle activity. Compared to the 830 nm laser wavelength the biospeckle activity measured at 640 nm enabled more accurate predictions of firmness, chlorophyll and carotenoids content. At 640 nm laser wavelength both activity descriptors (C4 and ε) provided similar results, while at 830 nm the ε showed slightly better performance. The linear regression models showed that biospeckle activity descriptors had a higher correlation with chlorophyll and carotenoids content than the a*/b* ratio and luminosity. The results for chroma were comparable with the results for both biospeckle activity indicators. The biospeckle method showed very good results in terms of maturation monitoring and the prediction of the maturity indices of tomatoes, proving the possibility of practical implementation of this method for the determination of the maturity stage of tomatoes. PMID:29617343
Does short-term fasting promote pathological eating patterns?
Schaumberg, Katherine; Anderson, Drew A; Reilly, Erin E; Anderson, Lisa M
2015-12-01
Fasting, or going a significant amount of time without eating, has been identified as a risk factor for the development of pathological eating patterns. Findings from several studies examining the impact of fasting on subsequent eating behaviors have been mixed. The current study recruited college students to record food intake, episodes of binge eating, and use of compensatory behaviors before, throughout, and following a 24-hour fast. Participants attended an initial appointment in which they completed measures of dietary restraint and disinhibition and received instructions on self-monitoring and fasting. Participants (N=122) self-monitored their eating behaviors for 96 h, including a 24-hour fasting period. Participants did not demonstrate significant increases in disordered eating behaviors following the fast (e.g., objective binge episodes, self-defined excessive eating or compensatory behavior use). Baseline disinhibition predicted excessive eating as well as objective binge episodes both before and after fasting. Altogether, findings have implications for research seeking to further understand how fasting may contribute to the development of pathological eating patterns; specifically, it seems that the ED risk associated with fasting is derived from the behavior's interaction with other individual difference variables. Copyright © 2015 Elsevier Ltd. All rights reserved.
Severity Summarization and Just in Time Alert Computation in mHealth Monitoring.
Pathinarupothi, Rahul Krishnan; Alangot, Bithin; Rangan, Ekanath
2017-01-01
Mobile health is fast evolving into a practical solution to remotely monitor high-risk patients and deliver timely intervention in case of emergencies. Building upon our previous work on a fast and power efficient summarization framework for remote health monitoring applications, called RASPRO (Rapid Alerts Summarization for Effective Prognosis), we have developed a real-time criticality detection technique, which ensures meeting physician defined interventional time. We also present the results from initial testing of this technique.
Evolution of the reverberation lag in GX 339-4 at the end of an outburst
NASA Astrophysics Data System (ADS)
De Marco, B.; Ponti, G.; Petrucci, P. O.; Clavel, M.; Corbel, S.; Belmont, R.; Chakravorty, S.; Coriat, M.; Drappeau, S.; Ferreira, J.; Henri, G.; Malzac, J.; Rodriguez, J.; Tomsick, J. A.; Ursini, F.; Zdziarski, A. A.
2017-10-01
We studied X-ray reverberation lags in the Black hole X-ray binary (BHXRB) GX 339-4 at the end of the 2014-2015 outburst. We analysed data from an XMM-Newton campaign covering the end of the transition from the soft to hard state, and the decrease of luminosity in the hard state. During all the observations we detected, at high frequencies, significant disc variability, responding to variations of the power-law emission with an average time delay of ∼0.009 ± 0.002 s. These new detections of disc thermal reverberation add to those previously obtained and suggest the lag to be always present in hard and hard-intermediate states. Our study reveals a net decrease of lag amplitude as a function of luminosity. We ascribe this trend to variations of the inner flow geometry. A possible scenario implies a decrease of the inner disc truncation radius as the luminosity increases at the beginning of the outburst, followed by an increase of the inner disc truncation radius as the luminosity decreases at the end of the outburst. Finally, we found hints of FeK reverberation (∼3σ significance) during the best quality observation of the XMM monitoring. The lag at the FeK energy has similar amplitude as that of the thermally reprocessed component, as expected if the same irradiated region of the disc is responsible for producing both the thermalized and reflected components. This finding suggests FeK reverberation in BHXRBs to be at the reach of current detectors provided observations of sufficiently long exposure are available.
The Problem of Spectral Mimicry of Supergiants
NASA Astrophysics Data System (ADS)
Klochkova, V. G.; Chentsov, E. L.
2018-01-01
The phenomenon of spectral mimicry refers to the fact that hypergiants and post-AGB supergiants—stars of different masses in fundamentally different stages of their evolution—have similar optical spectra, and also share certain other characteristics (unstable extended atmospheres, expanding dust-gas envelopes, high IR excesses). As a consequence, it is not always possible to distinguish post-AGB stars from hypergiants based on individual spectral observations in the optical. Examples of spectral mimicry are analyzed using uniform, high-quality spectral material obtained on the 6-m telescope of the Special Astrophysical Observatory in the course of long-term monitoring of high-luminosity stars. It is shown that unambiguously resolving the mimicry problem for individual stars requires the determination of a whole set of parameters: luminosity, wind parameters, spectral energy distribution, spectral features, velocity field in the atmosphere and circumstellar medium, behavior of the parameters with time, and the chemical composition of the atmosphere.
Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X-1
NASA Astrophysics Data System (ADS)
Güngör, C.; Ekşi, K. Y.; Göğüş, E.; Güver, T.
2017-10-01
Aql X-1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer/proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X-1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X-1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.
An X-ray/SDSS sample. I. Multi-phase outflow incidence and dependence on AGN luminosity
NASA Astrophysics Data System (ADS)
Perna, M.; Lanzuisi, G.; Brusa, M.; Mignoli, M.; Cresci, G.
2017-07-01
Aims: The connection between the growth of super-massive black holes (SMBHs) and the evolution of their host galaxies is nowadays well established, although the underlying mechanisms explaining their mutual relations are still debated. Multi-phase fast, massive outflows have been postulated to play a crucial role in this process. The aim of this work is to constrain the nature and the fraction of outflowing gas in active galactic nuclei (AGNs) as well as the nuclear conditions possibly at the origin of such phenomena. Methods: We present a large spectroscopic sample of X-ray detected SDSS AGNs at z< 0.8 with a high signal-to-noise ratio in the [O III]λ5007 line to unveil the faint wings of the emission profile associated with AGN-driven outflows. We used X-ray and optical flux ratio diagnostics to select the sample. We derived physical and kinematic characterization by re-analysing optical (and X-ray) spectra. Results: We derive the incidence of ionized ( 40%) and atomic (<1%) outflows covering a wide range of AGN bolometric luminosity from 1042 to 1046 erg/s. We also derive bolometric luminosities and X-ray bolometric corrections to test whether the presence of outflows is associated with an X-ray loudness, as suggested by our recent results obtained by studying high-z QSOs. Conclusions: We study the relations between the outflow velocity inferred from [O III] kinematic analysis and different AGN power tracers, such as black hole mass (MBH), [O III], and X-ray luminosity. We show a well-defined positive trend between outflow velocity and LX, for the first time, over a range of 5 order of magnitudes. Overall, we find that in the QSO-luminosity regime and at MBH> 108M⊙ the fraction of AGNs with outflows becomes >50%. Finally, we discuss our results about X-ray bolometric corrections and outflow incidence in cold and ionized phases in the context of an evolutionary sequence allowing two distinct stages for the feedback phase: first, an initial stage characterized by X-ray/optical obscured AGNs, in which the atomic gas is still present in the ISM and the outflow processes involve all the gas components and, second, a later stage associated with unobscured AGNs, in which the line of sight has been cleaned and the cold components have been heated or exhausted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbrich, Jan, E-mail: jan.forbrich@univie.ac.at; Rodríguez, Luis F.; Palau, Aina
2015-11-20
LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the resultsmore » of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.« less
Deepest View of AGN X-Ray Variability with the 7 Ms Chandra Deep Field-South Survey
NASA Astrophysics Data System (ADS)
Zheng, X. C.; Xue, Y. Q.; Brandt, W. N.; Li, J. Y.; Paolillo, M.; Yang, G.; Zhu, S. F.; Luo, B.; Sun, M. Y.; Hughes, T. M.; Bauer, F. E.; Vito, F.; Wang, J. X.; Liu, T.; Vignali, C.; Shu, X. W.
2017-11-01
We systematically analyze the X-ray variability of active galactic nuclei (AGNs) in the 7 Ms Chandra Deep Field-South survey. On the longest timescale (≈17 years), we find only a weak (if any) dependence of X-ray variability amplitudes on energy bands or obscuration. We use four different power spectral density (PSD) models to fit the anticorrelation between normalized excess variance ({σ }{nxv}2) and luminosity, and obtain a best-fit power-law index β ={1.16}-0.05+0.05 for the low-frequency part of the AGN PSD. We also divide the whole light curves into four epochs in order to inspect the dependence of {σ }{nxv}2 on these timescales, finding an overall increasing trend. The analysis of these shorter light curves also infers a β of ˜1.3 that is consistent with the above-derived β, which is larger than the frequently assumed value of β =1. We then investigate the evolution of {σ }{nxv}2. No definitive conclusion is reached because of limited source statistics, but if present, the observed trend goes in the direction of decreasing AGN variability at fixed luminosity toward high redshifts. We also search for transient events and find six notable candidate events with our considered criteria. Two of them may be a new type of fast transient events, one of which is reported here for the first time. We therefore estimate a rate of fast outbursts < \\dot{N}> ={1.0}-0.7+1.1× {10}-3 {{galaxy}}-1 {{yr}}-1 and a tidal disruption event (TDE) rate < {\\dot{N}}{TDE}> ={8.6}-4.9+8.5× {10}-5 {{galaxy}}-1 {{yr}}-1 assuming the other four long outbursts to be TDEs.
NASA Technical Reports Server (NTRS)
Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph
2015-01-01
We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.
Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC
NASA Astrophysics Data System (ADS)
Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group
2012-12-01
The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.
Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors
NASA Astrophysics Data System (ADS)
Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, Lorenzo; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.
2016-07-01
The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8 ×1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors.
Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs
NASA Astrophysics Data System (ADS)
Cardinali, M.; Dzyhgadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Ugur, C.; Zühlsdorf, M.; Dodokhov, V. Kh.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Düren, M.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Rosner, G.; Achenbach, P.; Corell, O.; Ferretti Bondy, M. I.; Hoek, M.; Lauth, W.; Rosner, C.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.
2014-12-01
The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R&D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and fast discriminators. The discriminators also provide time-over-threshold information thus enabling walk corrections to improve the timing resolution. Two types of frontend electronics cards optimised for reading out 64-channel PHOTONIS Planacon MCP-PMTs were tested: one based on the NINO ASIC and the other, called PADIWA, on FPGA discriminators. Promising results were obtained in a full characterisation using a fast laser setup and in a test experiment at MAMI, Mainz, with a small scale DIRC prototype.
Afandi, Bachar O; Hassanein, Mohamed M; Majd, Lina M; Nagelkerke, Nico J D
2017-01-01
Women with gestational diabetes mellitus (GDM) are categorized as at high risk for adverse events during Ramadan fasting. However, this is largely based on clinical opinion. In this study, we shed some light on what happens to glucose levels during Ramadan fasting. This is a prospective observational study. A total of 32 patients with GDM were recruited; 10 patients, treated with diet only (group 1), to observe their glucose levels before fasting and 22 patients who insisted on fasting the month of Ramadan, 13 treated with diet only (group 2) and nine treated with diet plus metformin 500 mg twice daily (group 3), to evaluate their glucose levels during fasting. Interstitial glucose was monitored in all by using the iPro2 Professional continuous glucose monitoring (CGM) system. Mean glucose level was 116±21 mg/dL (6.16±1.16 mmol/L), 106±9 mg/dL (5.88±0.49 mmol/L) and 99±7 mg/dL (5.49±0.34 mmol/L) in groups 1, 2 and 3, respectively. Patients in group 1 had the lowest rate of hypoglycemia (50%), followed by patients in group 2 (60%), whereas patients in group 3 had the highest rate of hypoglycemia (78%). CGM data indicates that Ramadan fasting in women with GDM treated with diet alone or with diet plus metformin was associated with lower mean glucose levels and higher rates of hypoglycemia when compared with non-fasting glucose levels. Women with GDM should be advised against fasting during Ramadan until further data is available.
Outdoor ultrafine particle concentrations in front of fast food restaurants.
Vert, Cristina; Meliefste, Kees; Hoek, Gerard
2016-01-01
Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A previous monitoring campaign could not separate the contribution of restaurants from road traffic. The main goal of this study has been the quantification of fast food restaurants' contribution to outdoor UFP concentrations. A portable particle number counter (DiscMini) has been used to carry out mobile monitoring in a largely pedestrianized area in the city center of Utrecht. A fixed route passing 17 fast food restaurants was followed on 8 days. UFP concentrations in front of the restaurants were 1.61 times higher than in a nearby square without any local sources used as control area and 1.22 times higher compared with all measurements conducted in between the restaurants. Adjustment for other sources such as passing mopeds, smokers or candles did not explain the increase. In conclusion, fast food restaurants result in significant increases in outdoor UFP concentrations in front of the restaurant.
Diabetes Canada Position Statement for People with Types 1 and 2 Diabetes Who Fast During Ramadan.
Bajaj, Harpreet Singh; Abouhassan, Tyceer; Ahsan, Muhammad Rauf; Arnaout, Amel; Hassanein, Mohamed; Houlden, Robyn L; Khan, Tayyab; Khandwala, Hasnain; Verma, Subodh
2018-04-27
Fasting from dawn to dusk during Ramadan, including abstaining from water and food, is 1 of the pillars of Islam and is observed by the majority of Muslims. Most research concerning diabetes and fasting during Ramadan originates from Middle Eastern or South Asian countries; however, differences exist in hours of work and fasting, pharmacotherapy and blood glucose monitoring between these countries and Canada. An expert forum of 7 Canadian experts and 1 international expert collaborated to develop Canadian guidelines using the same evidence-based principles, with the exception of an independent methods review used for the Diabetes Canada clinical practice guidelines. Diabetes Canada scientific leadership and Canadian health-care providers performed independent external reviews. Religious leaders endorsed the position statement and provided letters of support. An informed patient participated in the position-statement development. Each recommendation was approved with 100% consensus of the expert forum. Recommendations for risk stratification, education, pharmacotherapy and blood glucose monitoring for adults with type 1 and type 2 diabetes who intend to fast during Ramadan have been developed. This is the first Canadian position statement on the topic of Ramadan fasting and diabetes. It was developed by an expert faculty and endorsed by Diabetes Canada, and provides guidance about pharmacotherapy and glucose monitoring for health-care providers so that they can assist Canadian Muslims living with diabetes to observe fasting during Ramadan safely. Copyright © 2018. Published by Elsevier Inc.
MetaSensing's FastGBSAR: ground based radar for deformation monitoring
NASA Astrophysics Data System (ADS)
Rödelsperger, Sabine; Meta, Adriano
2014-10-01
The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early Warning system, to determine the state and danger of a slope or structure. In this paper, the technical principles of the instrument are described and case studies of different monitoring tasks are presented.
Fasting guidelines for diabetic children and adolescents
Azad, Kiswhar; Mohsin, Fauzia; Zargar, Abdul Hamid; Zabeen, Bedowra; Ahmad, Jamal; Raza, Syed Abbas; Tayyeb, Samin; Bajaj, Sarita; Ishtiaq, Osama; Kalra, Sanjay
2012-01-01
Fasting during the month of Ramadan, the ninth month of Islamic lunar calendar, is obligatory for all healthy adult and adolescent Muslims from the age of 12 years. Fasting starts from early dawn (Sohur/Sehri) till sunset (Iftar). During this period one has to abstain from eating and drinking. Islam has allowed many categories of people to be exempted from fasting, for example, young children, travelers, the sick, the elderly, pregnant, and lactating women. According to expert opinion, patients with type 1 diabetes (type 1 DM) who fast during Ramadan are at a very high risk to develop adverse events. However, some experienced physicians are of the opinion that fasting during Ramadan is safe for type 1 DM patients, including adolescents and older children, with good glycemic control who do regular self-monitoring and are under close professional supervision. The strategies to ensure safety of type 1 diabetic adolescents who are planning to fast include the following: Ramadan-focused medical education, pre-Ramadan medical assessment, following a healthy diet and physical activity pattern, modification in insulin regimen, and blood glucose monitoring as advised by the physician. PMID:22837907
Timing resolution studies of the optical part of the AFP Time-of-flight detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chytka, L.; Avoni, G.; Brandt, A.
We present results of the timing performance studies of the optical part and front-end electronics of the time-of-flight subdetector prototype for the ATLAS Forward Proton (AFP) detector obtained during the test campaigns at the CERN-SPS test-beam facility (120 GeV π + particles) in July 2016 and October 2016. The time-of-flight (ToF) detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgroundsmore » that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from the ToF allows the proton tagger to operate at the high luminosity required for the measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through them. The emitted Cherenkov photons are detected by a multi-anode micro-channel plate photomultiplier tube (MCP-PMT) and processed by fast electronics.« less
NASA Astrophysics Data System (ADS)
Zhang, Bing
2018-02-01
The origin of fast radio bursts (FRBs) remains mysterious. Recently, the only repeating FRB source, FRB 121102, was reported to possess an extremely large and variable rotation measure (RM). The inferred magnetic field strength in the burst environment is comparable to that in the vicinity of the supermassive black hole Sagittarius A* of our Galaxy. Here, we show that all of the observational properties of FRB 121102 (including the high RM and its evolution, the high linear polarization degree, an invariant polarization angle across each burst and other properties previously known) can be interpreted within the “cosmic comb” model, which invokes a neutron star with typical spin and magnetic field parameters whose magnetosphere is repeatedly and marginally combed by a variable outflow from a nearby low-luminosity accreting supermassive black hole in the host galaxy. We propose three falsifiable predictions (periodic “on/off” states, and periodic/correlated variation of RM and polarization angle) of the model and discuss other FRBs within the context of the cosmic comb model as well as the challenges encountered by other repeating FRB models in light of the new observations.
Mechanical Design Studies of the MQXF Long Model Quadrupole for the HiLumi LHC
Pan, Heng; Anderssen, Eric; Ambrosio, Giorgio; ...
2016-12-20
The Large Hadron Collider Luminosity upgrade (HiLumi) program requires new low-β triplet quadrupole magnets, called MQXF, in the Interaction Region (IR) to increase the LHC peak and integrated luminosity. The MQXF magnets, designed and fabricated in collaboration between CERN and the U.S. LARP, will all have the same cross section. The MQXF long model, referred as MQXFA, is a quadrupole using the Nb3Sn superconducting technology with 150 mm aperture and a 4.2 m magnetic length and is the first long prototype of the final MQXF design. The MQXFA magnet is based on the previous LARP HQ and MQXFS designs. Inmore » this paper we present the baseline design of the MQXFA structure with detailed 3D numerical analysis. A detailed tolerance analysis of the baseline case has been performed by using a 3D finite element model, which allows fast computation of structures modelled with actual tolerances. Tolerance sensitivity of each component is discussed to verify the actual tolerances to be achieved by vendors. In conclusion, tolerance stack-up analysis is presented in the end of this paper.« less
Timing resolution studies of the optical part of the AFP Time-of-flight detector
Chytka, L.; Avoni, G.; Brandt, A.; ...
2018-04-02
We present results of the timing performance studies of the optical part and front-end electronics of the time-of-flight subdetector prototype for the ATLAS Forward Proton (AFP) detector obtained during the test campaigns at the CERN-SPS test-beam facility (120 GeV π + particles) in July 2016 and October 2016. The time-of-flight (ToF) detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgroundsmore » that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from the ToF allows the proton tagger to operate at the high luminosity required for the measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through them. The emitted Cherenkov photons are detected by a multi-anode micro-channel plate photomultiplier tube (MCP-PMT) and processed by fast electronics.« less
NASA Technical Reports Server (NTRS)
Kong, Albert
2005-01-01
The primary research goal of this project is to perform follow-up observations of a recurrent ultraluminous supersoft X-ray source (SSS) in Ml0l. The source was first discovered by ROSAT and was confirmed as a SSS with a blackbody temperature of about l00eV by Chandra. During 2000 March, Chandra detected it at Lx=4e39 erg per second, and then in 2000 October, its luminosity dropped to around le39 erg per second. During 2004, Chandra is conducting a monitoring program for Ml0l. The SSS was near the detection limit during January, March, and May; the X-ray spectra were harder with a power-law shape, and the X-ray luminosity was about 3e37 erg/second, a factor of greater than 200 fainter than that in the previous high state. The source was found to be in outburst again during the July 5 observation, with an X-ray luminosity of about 7e39 erg/second. Data taken on July 6,7, and 8 show that the source was in a strong outburst with a peak bolometric luminosity of about 7e39 erg/second. In general, the X-ray spectra are best described with an absorbed blackbody model with temperatures of approximately 50-100eV. In addition, we found absorption edges at 0.33, 0.57, 0.66, and 0.88 keV in two of the high state spectra. These features may signal the presence of highly ionized gas in the vicinity of the accretor (e.g., warm absorber). In order to study an ultraluminous SSS in outburst in detail, we proposed a TOO XMM observation to observe the source. The observation was taken on July 23 and the source was fainter with a luminosity of 6e38 ergs, and a harder X-ray spectrum with a power-law tail seen up to 7 keV. This clearly indicates that the source was in the decline stage with spectral change. In addition to the XMM observation, we also arranged radio observation and a simultaneous CFHT observation. The X-ray results were published in ATel and ApJL. There were several more Chandra observations taken after 2004 July. The source was in a low luminosity state but it underwent another X-ray outburst in 2004 December. We are arranging more follow-up observations for this intriguing source.
Search for thj production with h → γγ at the LHC in the littlest Higgs model with T-parity
NASA Astrophysics Data System (ADS)
Yang, Bingfang; Hou, Biaofeng; Zhang, Huaying
2018-04-01
In the littlest Higgs model with T-parity, we study associated production of a Higgs and a single top quark at the 14 TeV LHC. We focus on the Higgs to two photons decay and the semileptonic top decay channel. By performing a fast detector simulation, we find that the thj search in the selected channel can excluded the top partner mass mT+ up to 805 (857) GeV for case A (case B) at 2σ confidence level at 14 TeV LHC with the integrated luminosity L = 3ab-1.
NASA Astrophysics Data System (ADS)
Bruzzi, Mara; Cartiglia, Nicolo; Pace, Emanuele; Talamonti, Cinzia
2015-10-01
The 10th edition of the International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices (RESMDD) was held in Florence, at Dipartimento di Fisica ed Astronomia on October 8-10, 2014. It has been aimed at discussing frontier research activities in several application fields as nuclear and particle physics, astrophysics, medical and solid-state physics. Main topics discussed in this conference concern performance of heavily irradiated silicon detectors, developments required for the luminosity upgrade of the Large Hadron Collider (HL-LHC), ultra-fast silicon detectors design and manufacturing, high-band gap semiconductor detectors, novel semiconductor-based devices for medical applications, radiation damage issues in semiconductors and related radiation-hardening technologies.
Scanning Synchronization of Colliding Bunches for MEIC Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Yu D.
2015-09-01
Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP).more » A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.« less
Photo-detectors for time of flight positron emission tomography (ToF-PET).
Spanoudaki, Virginia Ch; Levin, Craig S
2010-01-01
We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs.
Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET)
Spanoudaki, Virginia Ch.; Levin⋆, Craig S.
2010-01-01
We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs. PMID:22163482
Optical Variability Properties of High Luminosity AGN Classes
NASA Astrophysics Data System (ADS)
Stalin, C. S.; Gopal Krishna; Sagar, Ram; Wiita, Paul J.
2004-03-01
We present the results of a comparative study of the intranight optical variability (INOV) characteristics of radio-loud and radioquiet quasars, which involves a systematic intra-night optical monitoring of seven sets of high luminosity AGNs covering the redshift range z ' 0:2 to z ' 2:2. The sample, matched in the optical luminosity - redshift .MB?z/ plane, consists of seven radio-quiet quasars (RQQs), eight radio lobedominated quasars (LDQs), five radio core-dominated quasars (CDQs) and six BL Lac objects (BLs). Systematic CCD observations, aided by a careful data analysis procedure, have allowed us to detect INOV with amplitudes as low as about 1%. Present observations cover a total of 113 nights (720 hours) with only a single quasar monitored as continuously as possible on a given night. Considering the cases of only unambiguous detections of INOV we have estimated duty cycles (DCs) of 17%, 12%, 20% and 61% for RQQs, LDQs, CDQs, and BLs, respectively. The much lower amplitude and DC of INOV shown by RQQs compared to BLs may be understood in terms of their having optical synchrotron jets which are modestly misdirected from us. From our fairly extensive dataset, no general trend of a correlation between the INOVamplitude and the apparent optical brightness of the quasar is noticed. This suggests that the physical mechanisms of INOV and long term optical variability (LTOV) do not have a one-to-one relationship and different factors are involved. Also, the absence of a clear negative correlation between the INOV and LTOV characteristics of blazars of our sample points toward an inconspicuous contribution of accretion disk fluctuations to the observed INOV. The INOVduty cycle of theAGNs observed in this program suggests that INOV is associated predominantly with the highly polarized optical emission components. We also report new VLA imaging of two RQQs .1029C329&1252C020/ in our sample which has yielded a 5 GHz detection in one of them .1252 C 020I S5 GHz ' 1 mJy/.
Fetal acoustic stimulation test for early intrapartum fetal monitoring.
Goonewardene, M; Hanwellage, K
2011-03-01
The fetal acoustic stimulation test (FAST) is a simple cost effective screening test for antenatal fetal monitoring. The aim of the study was to evaluate the FAST as a screening test for early intrapartum fetal well being. An initial non stress test (NST) followed by a FAST using corometric model 146 was carried out in 486 participants in early labour with uncomplicated singleton pregnancies and > 32 weeks gestation. A repeat NST was recorded in the participants who had an initial non reactive NST. The results of the NST and FAST were compared with fetal outcome. Maternal perception of fetal movements after FAST, results of NST before and after FAST, and the babies' 5 minute APGAR scores were measured. Of the 486 participants 413 (85%) noticed fetal movements after FAST. Initial NST was non reactive in 203 (42%) but 149 (31%) became reactive after FAST. Compared to the NST, FAST had a better sensitivity (97% vs 62%, p < 0.001), specificity (100% vs 87%, p = 0.017), positive predictive value (100% vs 98%, p = 0.024), negative predictive value (79% vs 17%, p < 0.001) and accuracy (99%vs 64%, p < 0.001) in predicting 5 minute APGAR < 7 in the baby. FAST is a reliable screening test for assessing fetal well being in early labour. It complements the NST and is better than the NST alone.
Enhancing Our Knowledge of Northern Cepheids through Photometric Monitoring
NASA Astrophysics Data System (ADS)
Turner, D. G.; Majaess, D. J.; Lane, D. J.; Szabados, L.; Kovtyukh, V. V.; Usenko, I. A.; Berdnikov, L. N.
2009-09-01
A selection of known and newly-discovered northern hemisphere Cepheids and related objects are being monitored regularly through CCD observations at the automated Abbey Ridge Observatory, near Halifax, and photoelectric photometry from the Saint Mary's University Burke-Gaffney Observatory. Included is Polaris, which is displaying unusual fluctuations in its growing light amplitude, and a short-period, double-mode Cepheid, HDE 344787, with an amplitude smaller than that of Polaris, along with a selection of other classical Cepheids in need of additional observations. The observations are being used to establish basic parameters for the Cepheids, for application to the Galactic calibration of the Cepheid period-luminosity relation as well as studies of Galactic structure.
Li, Xuejian; Wang, Youqing
2016-12-01
Offline general-type models are widely used for patients' monitoring in intensive care units (ICUs), which are developed by using past collected datasets consisting of thousands of patients. However, these models may fail to adapt to the changing states of ICU patients. Thus, to be more robust and effective, the monitoring models should be adaptable to individual patients. A novel combination of just-in-time learning (JITL) and principal component analysis (PCA), referred to learning-type PCA (L-PCA), was proposed for adaptive online monitoring of patients in ICUs. JITL was used to gather the most relevant data samples for adaptive modeling of complex physiological processes. PCA was used to build an online individual-type model and calculate monitoring statistics, and then to judge whether the patient's status is normal or not. The adaptability of L-PCA lies in the usage of individual data and the continuous updating of the training dataset. Twelve subjects were selected from the Physiobank's Multi-parameter Intelligent Monitoring for Intensive Care II (MIMIC II) database, and five vital signs of each subject were chosen. The proposed method was compared with the traditional PCA and fast moving-window PCA (Fast MWPCA). The experimental results demonstrated that the fault detection rates respectively increased by 20 % and 47 % compared with PCA and Fast MWPCA. L-PCA is first introduced into ICU patients monitoring and achieves the best monitoring performance in terms of adaptability to changes in patient status and sensitivity for abnormality detection.
Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X–1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Güngör, C.; Ekşi, K. Y.; Göğüş, E.
Aql X–1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer /proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X–1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propellermore » stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X–1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.« less
Spectroscopic vector analysis for fast pattern quality monitoring
NASA Astrophysics Data System (ADS)
Sohn, Younghoon; Ryu, Sungyoon; Lee, Chihoon; Yang, Yusin
2018-03-01
In semiconductor industry, fast and effective measurement of pattern variation has been key challenge for assuring massproduct quality. Pattern measurement techniques such as conventional CD-SEMs or Optical CDs have been extensively used, but these techniques are increasingly limited in terms of measurement throughput and time spent in modeling. In this paper we propose time effective pattern monitoring method through the direct spectrum-based approach. In this technique, a wavelength band sensitive to a specific pattern change is selected from spectroscopic ellipsometry signal scattered by pattern to be measured, and the amplitude and phase variation in the wavelength band are analyzed as a measurement index of the pattern change. This pattern change measurement technique is applied to several process steps and verified its applicability. Due to its fast and simple analysis, the methods can be adapted to the massive process variation monitoring maximizing measurement throughput.
Near-infrared Observations of SiO Maser-emitting Asymptotic Giant Branch (AGB) Stars
NASA Astrophysics Data System (ADS)
Chibueze, James O.; Miyahara, Takeshi; Omodaka, Toshihiro; Ohta, Takashi; Fujii, Takahiro; Tanaka, Masuo; Motohara, Kentaro; Makoto, Miyoshi
2016-02-01
Near-infrared (NIR) monitoring observations of asymptotic giant branch stars exciting bright SiO masers have been made with the 1 m telescope of Kagoshima University. In order to investigate the properties of these stars and their envelopes, we combined our NIR photometric data with mid- and far-infrared flux data obtained by the IRAS satellite, SiO maser flux data provided by the Nobeyama Radio Observatory, visual magnitude data provided by the AAVSO, and the reported data on the expansion velocities of the circumstellar envelopes. The absolute magnitudes at the K-band and the distances are estimated using the period-luminosity relation of Mira variables determined by Feast et al. Then, mass-loss rates and isotropic luminosities of an SiO maser are estimated. The mass-loss rates range from approximately 10-8 {M}⊙ \\{{yr}}-1 to over 10-5 {M}⊙ {{yr}}-1. We found that the NIR pulsation amplitudes are correlated with the pulsation periods and the observed wavelengths. We also found correlations of the isotropic luminosities of SiO masers with the mass-loss rates and absolute magnitudes at the K-band. These results will help us to understand the pumping mechanism of SiO masers. We measured, for the first time, the periods and/or NIR magnitudes of TX Cam, BW Cam, IRAS 06297+4045, IRAS 18387-0423, and RT Cep.
Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.
Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith
2013-01-10
A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.
NASA Astrophysics Data System (ADS)
Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James
2017-11-01
The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakar, Ehud; Piro, Anthony L.
2014-06-20
Early observations of supernova light curves are powerful tools for shedding light on the pre-explosion structures of their progenitors and their mass-loss histories just prior to explosion. Some core-collapse supernovae that are detected during the first days after the explosion prominently show two peaks in the optical bands, including the R and I bands, where the first peak appears to be powered by the cooling of shocked surface material and the second peak is clearly powered by radioactive decay. Such light curves have been explored in detail theoretically for SN 1993J and 2011dh, where it was found that they maymore » be explained by progenitors with extended, low-mass envelopes. Here, we generalize these results. We first explore whether any double-peaked light curve of this type can be generated by a progenitor with a 'standard' density profile, such as a red supergiant or a Wolf-Rayet star. We show that a standard progenitor (1) cannot produce a double-peaked light curve in the R and I bands and (2) cannot exhibit a fast drop in the bolometric luminosity as is seen after the first peak. We then explore the signature of a progenitor with a compact core surrounded by extended, low-mass material. This may be a hydrostatic low-mass envelope or material ejected just prior to the explosion. We show that it naturally produces both of these features. We use this result to provide simple formulae to estimate (1) the mass of the extended material from the time of the first peak, (2) the extended material radius from the luminosity of the first peak, and (3) an upper limit on the core radius from the luminosity minimum between the two peaks.« less
NASA Astrophysics Data System (ADS)
Ofek, Eran O.
2017-09-01
The localization of the repeating fast radio burst (FRB), FRB 121102, suggests that it is associated with a persistent radio-luminous compact source in the FRB host galaxy. Using the FIRST radio catalog, I present a search for luminous persistent sources in nearby galaxies, with radio luminosities > 10 % of the FRB 121102 persistent source luminosity. The galaxy sample contains about 30% of the total galaxy g-band luminosity within < 108 Mpc, in a footprint of 10,600 deg2. After rejecting sources likely due to active galactic nuclei activity or background sources, I am left with 11 candidates that are presumably associated with galactic disks or star-formation regions. At least some of these candidates are likely to be due to chance alignment. In addition, I find 85 sources within 1\\prime\\prime of galactic nuclei. Assuming that the radio persistent sources are not related to galactic nuclei and that they follow the galaxy g-band light, the 11 sources imply a 95% confidence upper limit on the space density of luminous persistent sources of ≲ 5× {10}-5 Mpc-3, and that at any given time only a small fraction of galaxies host a radio-luminous persistent source (≲ {10}-3 {L}* -1). Assuming a persistent source lifetime of 100 years, this implies a birth rate of ≲ 5× {10}-7 yr-1 Mpc-3. Given the FRB volumetric rate, and assuming that all FRBs repeat and are associated with persistent radio sources, this sets a lower limit on the rate of FRB events per persistent source of ≳ 0.8 yr-1. I argue that these 11 candidates are good targets for FRB searches and I estimate the FRB event rate from these candidates.
Bolometric Light Curves of Peculiar Type II-P Supernovae
NASA Astrophysics Data System (ADS)
Lusk, Jeremy A.; Baron, E.
2017-04-01
We examine the bolometric light curves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au, and 2009E), which are thought to originate from blue supergiant progenitors like that of SN 1987A, using a new python package named SuperBoL. With this code, we calculate SNe light curves using three different common techniques common from the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the light curves calculated by SuperBoL, along with previously published light curves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction light curves largely agree with previously published light curves, but with what we believe to be more robust error calculations, with 0.2≲ δ {L}{bol}/{L}{bol}≲ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ˜5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric light curves from observed sets of broadband light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.
Bolometric Lightcurves of Peculiar Type II-P Supernovae
NASA Astrophysics Data System (ADS)
Lusk, Jeremy A.; Baron, Edward A.
2017-01-01
We examine the bolometric lightcurves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au and 2009E) which are thought to originate from blue supergiant progenitors using a new python package named SuperBoL. With this code, we calculate SNe lightcurves using three different techniques common in the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the lightcurves calculated by SuperBoL along with previously published lightcurves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction lightcurves largely agree with previously published lightcurves, but with what we believe to be more robust error calculations, with 0.2 ≤ δL/L ≤ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ˜5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric lightcurves from observed sets of broad-band light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.
Monitoring and analysis of combustion aerosol emissions from fast moving diesel trains.
Burchill, Michael J; Gramotnev, Dmitri K; Gramotnev, Galina; Davison, Brian M; Flegg, Mark B
2011-02-01
In this paper we report the results of the detailed monitoring and analysis of combustion emissions from fast moving diesel trains. A new highly efficient monitoring methodology is proposed based on the measurements of the total number concentration (TNC) of combustion aerosols at a fixed point (on a bridge overpassing the railway) inside the violently mixing zone created by a fast moving train. Applicability conditions for the proposed methodology are presented, discussed and linked to the formation of the stable and uniform mixing zone. In particular, it is demonstrated that if such a mixing zone is formed, the monitoring results are highly consistent, repeatable (with typically negligible statistical errors and dispersion), stable with respect to the external atmospheric turbulence and result in an unusual pattern of the aerosol evolution with two or three distinct TNC maximums. It is also shown that the stability and uniformity of the created mixing zone (as well as the repeatability of the monitoring results) increase with increasing length of the train (with an estimated critical train length of ~10 carriages, at the speed of ~150km/h). The analysis of the obtained evolutionary dependencies of aerosol TNC suggests that the major possible mechanisms responsible for the formation of the distinct concentration maximums are condensation (the second maximum) and thermal fragmentation of solid nanoparticle aggregates (third maximum). The obtained results and the new methodology will be important for monitoring and analysis of combustion emissions from fast moving trains, and for the determination of the impact of rail networks on the atmospheric environment and human exposure to combustion emissions. Copyright © 2010 Elsevier B.V. All rights reserved.
Dependence of the Broad Absorption Line Quasar Fraction on Radio Luminosity
NASA Astrophysics Data System (ADS)
Shankar, Francesco; Dai, Xinyu; Sivakoff, Gregory R.
2008-11-01
We find that the fraction of classical broad absorption line quasars (BALQSOs) among the FIRST radio sources in the Sloan Data Release 3, is 20.5+ 7.3-5.9% at the faintest radio powers detected (L1.4 GHz ~ 1032 erg s-1), and rapidly drops to lesssim8% at L1.4 GHz ~ 3 × 1033 erg s-1. Similarly, adopting the broader absorption index (AI) definition of Trump et al., we find the fraction of radio BALQSOs to be 44+ 8.1-7.8%, reducing to 23.1+ 7.3-6.1% at high luminosities. While the high fraction at low radio power is consistent with the recent near-IR estimates by Dai et al., the lower fraction at high radio powers is intriguing and confirms previous claims based on smaller samples. The trend is independent of the redshift range, the optical and radio flux selection limits, or the exact definition of a radio match. We also find that at fixed optical magnitude, the highest bins of radio luminosity are preferentially populated by non-BALQSOs, consistent with the overall trend. We do find, however, that those quasars identified as AI-BALQSOs but not under the classical definition do not show a significant drop in their fraction as a function of radio power, further supporting independent claims that these sources, characterized by lower equivalent width, may represent an independent class from the classical BALQSOs. We find the balnicity index, a measure of the absorption trough in BALQSOs, and the mean maximum wind velocity to be roughly constant at all radio powers. We discuss several plausible physical models which may explain the observed fast drop in the fraction of the classical BALQSOs with increasing radio power, although none is entirely satisfactory. A strictly evolutionary model for the BALQSO and radio emission phases requires a strong fine-tuning to work, while a simple geometric model, although still not capable of explaining polar BALQSOs and the paucity of FRII BALQSOs, is statistically successful in matching the data if part of the apparent radio luminosity function is due to beamed, non-BALQSOs.
LEO P: AN UNQUENCHED VERY LOW-MASS GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuinn, Kristen B. W.; Skillman, Evan D.; Berg, Danielle
Leo P is a low-luminosity dwarf galaxy discovered through the blind H i Arecibo Legacy Fast ALFA survey. The H i and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with active star formation, an underlying older population, and an extremely low oxygen abundance. We have obtained optical imaging with the Hubble Space Telescope to two magnitudes below the red clump in order to study the evolution of Leo P. We refine the distance measurement to Leo P to be 1.62 ± 0.15 Mpc, based on the luminosity of the horizontal branch stars and 10more » newly identified RR Lyrae candidates. This places the galaxy at the edge of the Local Group, ∼0.4 Mpc from Sextans B, the nearest galaxy in the NGC 3109 association of dwarf galaxies of which Leo P is clearly a member. The star responsible for ionizing the H ii region is most likely an O7V or O8V spectral type, with a stellar mass ≳25 M{sub ⊙}. The presence of this star provides observational evidence that massive stars at the upper end of the initial mass function are capable of being formed at star formation rates as low as ∼10{sup −5} M{sub ⊙} yr{sup −1}. The best-fitting star formation history (SFH) derived from the resolved stellar populations of Leo P using the latest PARSEC models shows a relatively constant star formation rate over the lifetime of the galaxy. The modeled luminosity characteristics of Leo P at early times are consistent with low-luminosity dSph Milky Way satellites, suggesting that Leo P is what a low-mass dSph would look like if it evolved in isolation and retained its gas. Despite the very low mass of Leo P, the imprint of reionization on its SFH is subtle at best, and consistent with being totally negligible. The isolation of Leo P, and the total quenching of star formation of Milky Way satellites of similar mass, implies that the local environment dominates the quenching of the Milky Way satellites.« less
Investigating the possibility of a monitoring fast ion diagnostic for ITER.
De Angelis, R; von Hellermann, M G; Orsitto, F P; Tugarinov, S
2008-10-01
In burning plasma fusion devices, fast ion transport plays a central role in the performances of the machines. Moreover the losses of energetic particles might cause severe damages on plasma facing components. Therefore real time measurements of fast ion transport would provide valuable information for safe and reliable plasma operations. In this paper, we examine the feasibility of a monitoring system based on active charge exchange recombination spectroscopy making use of the 0.5 MeV/amu ITER heating neutral beams for detecting fast (4)He(+2) (alphas) particles in ITER plasmas. There are two time scales relevant to fast ion dynamics: the first is the slowing down time of the distribution function which is of the order of 1 s, and the second is the time scale of burstlike transport events such as collective Alfven mode excitations, which--for typical ITER plasma parameters--can be as low as 0.2-1 ms. To detect such fast events a broadband high-throughput spectrometer is needed, while for the reconstruction of the alpha velocity distribution function a higher resolution spectrometer and longer integration time are necessary. To monitor a spatial redistribution of fast particles due to the propagation of the instability, it is proposed to use a limited number of spatial channels, looking at the charge exchange He II spectra induced by the heating beams, whose energy matches the slowing down energies of fast particles. The proposal is to share the motional stark effect periscope on equatorial port 3 [A. Malaquias et al., Rev. Sci. Instrum. 75, 3393 (2004)] adding additional fibers and suitable instruments. A signal to noise ratio of 5 could be achieved with a spatial resolution of a/15 and a time resolution of 5 ms, in a broad spectral band of 100 A, corresponding to the spectral broadening of the line emitted by alpha particles with energies DeltaE < or = 1.5 MeV. Fast H and D ion populations created by heating neutral beam or ion cyclotron resonance heating are expected to produce significantly lower charge exchange signal levels and can only be monitored on substantially longer time scales as it is expected because of the strong energy difference with respect to the heating neutral beam and the consequently low charge exchange cross sections.
Accidental Beam Losses and Protection in the LHC
NASA Astrophysics Data System (ADS)
Schmidt, R.; Working Group On Machine Protection
2005-06-01
At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuta, H.; Imura, A.; Furuta, Y.
Recently, technique of Gadolinium loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and 'nuclear Gain (GA)' for IAEA safeguards. For the practical use, R and D of the 1 ton class compact detector, which is measurable above ground, is necessary. Especially, it is important to reduce much amount of fast neutron background induced by cosmic muons with data analysis for the measurement above ground. We developed a prototype of the Gd-LS detector with 200 L of the target volume, which has Pulse Shape Discrimination (PSD) ability for the fast neutronmore » reduction with data analysis. Usually, it is well known that it is difficult to keep high fast neutron reduction power of PSD with the large volume size such as the neutrino reactor monitor. We evaluated the PSD ability of our prototype with real fast neutrons induced by the muons in our laboratory above ground, and we could confirm to keep the high fast neutron reduction power with even our large detector size. (authors)« less
Characterization of irradiated APDs for picosecond time measurements
NASA Astrophysics Data System (ADS)
Centis Vignali, M.; Dalal, R.; Gallinaro, M.; Harrop, B.; Jain, G.; Lu, C.; McClish, M.; McDonald, K. T.; Moll, M.; Newcomer, F. M.; Ugobono, S. Otero; White, S.
2018-01-01
For their operation at the CERN High Luminosity Large Hadron Collider (HL-LHC), the ATLAS and CMS experiments are planning to implement dedicated systems to measure the time of arrival of minimum ionizing particles with an accuracy of about 30 ps. The timing detectors will be subjected to radiation levels corresponding up to a 1-MeV neutrons fluence (Φeq) of 1015 cm-2 for the goal integrated luminosity of HL-LHC of 3000 fb-1. In this paper, deep-diffused Avalanche Photo Diodes (APDs) produced by Radiation Monitoring Devices are examined as candidate timing detectors for HL-LHC applications. These APDs are operated at 1.8 kV, resulting in a gain of up to 500. The timing performance of the detectors is evaluated using a pulsed laser. The effects of radiation damage on current, signal amplitude, noise, and timing performance of the APDs are evaluated using detectors irradiated with neutrons up to Φeq = 1015 cm-2.
NASA Technical Reports Server (NTRS)
Markowitz, A.; Uttley, P.
2005-01-01
We present a broadband power spectral density function (PSD) measured from extensive RXTE monitoring data of the low-luminosity AGN NGC 4258, which has an accurate, maser-determined black hole mass of (3.9 plus or minus 0.1) x 10(exp 7) solar mass. We constrain the PSD break time scale to be greater than 4.5 d at greater than 90% confidence, which appears to rule out the possibility that NGC 4258 is an analogue of black hole X-ray binaries (BHXRBs) in the high/soft state. In this sense, the PSD of NGC 4258 is different to that of some more-luminous Seyferts, which appear similar to the PSDs of high/soft state X-ray binaries. This result supports previous analogies between LLAGN and X-ray binaries in the low/hard state based on spectral energy distributions, indicating that the AGN/BHXRB analogy is valid across a broad range of accretion rates.
Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator
NASA Astrophysics Data System (ADS)
Valero, A.; Tile Calorimeter System, ATLAS
2017-10-01
The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.
Real-time supernova neutrino burst monitor at Super-Kamiokande
NASA Astrophysics Data System (ADS)
Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; McLachlan, T.; Nishimura, Y.; Richard, E.; Okumura, K.; Labarga, L.; Fernandez, P.; Berkman, S.; Tanaka, H. A.; Tobayama, S.; Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Goldhaber, M.; Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.; Hong, N.; Kim, J. Y.; Lim, I. T.; Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Tateishi, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Mitsuka, G.; Mijakowski, P.; Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.; Wilking, M. J.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.; Martin, J. F.; de Perio, P.; Konaka, A.; Chen, S.; Zhang, Y.; Connolly, K.; Wilkes, R. J.
2016-08-01
We present a real-time supernova neutrino burst monitor at Super-Kamiokande (SK). Detecting supernova explosions by neutrinos in real time is crucial for giving a clear picture of the explosion mechanism. Since the neutrinos are expected to come earlier than light, a fast broadcasting of the detection may give astronomers a chance to make electromagnetic radiation observations of the explosions right at the onset. The role of the monitor includes a fast announcement of the neutrino burst detection to the world and a determination of the supernova direction. We present the online neutrino burst detection system and studies of the direction determination accuracy based on simulations at SK.
The middle infrared properties of OH megamaser host galaxies
NASA Astrophysics Data System (ADS)
Zhang, J. S.; Wang, J. Z.; Di, G. X.; Zhu, Q. F.; Guo, Q.; Wang, J.
2014-10-01
We compiled all 119 OH maser galaxies (110 out of them are megamasers, i.e., LOH> 10 L⊙) published so far and cross-identified these OH masers with the Wide-Field Infrared Survey Explorer (WISE) catalog, to investigate the middle infrared (MIR) properties of OH maser galaxies. The WISE magnitude data at the 3.4, 4.6, 12 and 22 μm (W1 to W4) are collected for the OH maser sample and one control sample, which are non-detection sources. The color-color diagrams show that both OH megamaser (OHM) and non-OHM (ultra)luminous infrared galaxies ((U)LIRGs) are far away from the single blackbody model line and many of them can follow the path described by the power-law model. The active galaxy nuclei (AGN) fraction is about ~40% for both OHM and non-OHM (U)LIRGs, according to the AGN criteria W1 - W2 ≥ 0.8. Among the Arecibo survey sample, OHM sources tend to have a lower luminosity at short MIR wavelengths (e.g., 3.4 μm and 4.6 μm) than that of non-OHM sources, which should come from the low OHM fraction among the survey sample with large 3.4 μm and 4.6 μm luminosity. The OHM fraction tends to increase with cooler MIR colors (larger F22 μm/F3.4 μm). These may be good for sample selection when searching OH megamasers, such as excluding extreme luminous sources at short MIR wavelengths, choosing sources with cooler MIR colors. In the case of the power-law model, we derived the spectral indices for our samples. For the Arecibo survey sample, OHM (U)LIRGs tend to have larger spectral index α22-12 than non-OHM sources, which agrees with previous results. One significant correlation exists between the WISE infrared luminosity at 22μm and the color [W1]-[W4] for the Arecibo OHM hosts. These clues should provide suitable constraints on the sample selection for OH megamaser surveys by future advanced telescopes (e.g., FAST). In addition, the correlation of maser luminosity and the MIR luminosity of maser hosts tends to be non-significant, which may indirectly support the pumping of OHM emission that is dominated by the far infrared radiation, instead of the MIR radiation. Tables 4-7 are available in electronic form at http://www.aanda.org
Liquid Nitrogen as Fast High Voltage Switching Medium
NASA Astrophysics Data System (ADS)
Dickens, J.; Neuber, A.; Haustein, M.; Krile, J.; Krompholz, H.
2002-12-01
Compact pulsed power systems require new switching technologies. For high voltages, liquid nitrogen seems to be a suitable switching medium, with high hold-off voltage, low dielectric constant, and no need for pressurized systems as in high pressure gas switches. The discharge behavior in liquid nitrogen, such as breakdown voltages, formative times, current rise as function of voltage, recovery, etc. are virtually unknown, however. The phenomenology of breakdown in liquid nitrogen is investigated with high speed (temporal resolution < 1 ns) electrical and optical diagnostics, in a coaxial system with 50-Ohm impedance. Discharge current and voltage are determined with transmission line type current sensors and capacitive voltage dividers. The discharge luminosity is measured with photomultiplier tubes. Preliminary results of self-breakdown investigations (gap 1 mm, breakdown voltage 44 kV, non-boiling supercooled nitrogen) show a fast (2 ns) transition from an unknown current level to several mA, a long-duration (100 ns) phase with constant current superimposed by ns-spikes, and a final fast transition to the impedance limited current during several nanoseconds. The optical measurements will be expanded toward spectroscopy and high speed photography with the aim of clarifying the overall breakdown mechanisms, including electronic initiation, bubble formation, bubble dynamics, and their role in breakdown, for different electrode geometries (different macroscopic field enhancements).
Integrated Life-Cycle Framework for Maintenance, Monitoring and Reliability of Naval Ship Structures
2012-08-15
number of times, a fast and accurate method for analyzing the ship hull is required. In order to obtain this required computational speed and accuracy...Naval Engineers Fleet Maintenance & Modernization Symposium (FMMS 2011) [8] and the Eleventh International Conference on Fast Sea Transportation ( FAST ...probabilistic strength of the ship hull. First, a novel deterministic method for the fast and accurate calculation of the strength of the ship hull is
The Web Based Monitoring Project at the CMS Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Perez, Juan Antonio; Badgett, William; Behrens, Ulf
The Compact Muon Solenoid is a large a complex general purpose experiment at the CERN Large Hadron Collider (LHC), built and maintained by many collaborators from around the world. Efficient operation of the detector requires widespread and timely access to a broad range of monitoring and status information. To the end the Web Based Monitoring (WBM) system was developed to present data to users located anywhere from many underlying heterogeneous sources, from real time messaging systems to relational databases. This system provides the power to combine and correlate data in both graphical and tabular formats of interest to the experimenters,more » including data such as beam conditions, luminosity, trigger rates, detector conditions, and many others, allowing for flexibility on the user’s side. This paper describes the WBM system architecture and describes how the system has been used from the beginning of data taking until now (Run1 and Run 2).« less
The web based monitoring project at the CMS experiment
NASA Astrophysics Data System (ADS)
Lopez-Perez, Juan Antonio; Badgett, William; Behrens, Ulf; Chakaberia, Irakli; Jo, Youngkwon; Maeshima, Kaori; Maruyama, Sho; Patrick, James; Rapsevicius, Valdas; Soha, Aron; Stankevicius, Mantas; Sulmanas, Balys; Toda, Sachiko; Wan, Zongru
2017-10-01
The Compact Muon Solenoid is a large a complex general purpose experiment at the CERN Large Hadron Collider (LHC), built and maintained by many collaborators from around the world. Efficient operation of the detector requires widespread and timely access to a broad range of monitoring and status information. To that end the Web Based Monitoring (WBM) system was developed to present data to users located anywhere from many underlying heterogeneous sources, from real time messaging systems to relational databases. This system provides the power to combine and correlate data in both graphical and tabular formats of interest to the experimenters, including data such as beam conditions, luminosity, trigger rates, detector conditions, and many others, allowing for flexibility on the user’s side. This paper describes the WBM system architecture and describes how the system has been used from the beginning of data taking until now (Run1 and Run 2).
Web Based Monitoring in the CMS Experiment at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badgett, William; Borrello, Laura; Chakaberia, Irakli
2014-09-03
The Compact Muon Solenoid (CMS) is a large and complex general purpose experiment at the CERN Large Hadron Collider (LHC), built and maintained by many collaborators from around the world. Efficient operation of the detector requires widespread and timely access to a broad range of monitoring and status information. To this end the Web Based Monitoring (WBM) system was developed to present data to users located anywhere from many underlying heterogeneous sources, from real time messaging systems to relational databases. This system provides the power to combine and correlate data in both graphical and tabular formats of interest to themore » experimenters, including data such as beam conditions, luminosity, trigger rates, detector conditions, and many others, allowing for flexibility on the user side. This paper describes the WBM system architecture and describes how the system was used during the first major data taking run of the LHC.« less
Geslot, B; Vermeeren, L; Filliatre, P; Lopez, A Legrand; Barbot, L; Jammes, C; Bréaud, S; Oriol, L; Villard, J-F
2011-03-01
Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 10(20) n∕cm(2). A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.
NASA Astrophysics Data System (ADS)
Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.
2011-03-01
Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.
Real-time detection of fast and thermal neutrons in radiotherapy with CMOS sensors.
Arbor, Nicolas; Higueret, Stephane; Elazhar, Halima; Combe, Rodolphe; Meyer, Philippe; Dehaynin, Nicolas; Taupin, Florence; Husson, Daniel
2017-03-07
The peripheral dose distribution is a growing concern for the improvement of new external radiation modalities. Secondary particles, especially photo-neutrons produced by the accelerator, irradiate the patient more than tens of centimeters away from the tumor volume. However the out-of-field dose is still not estimated accurately by the treatment planning softwares. This study demonstrates the possibility of using a specially designed CMOS sensor for fast and thermal neutron monitoring in radiotherapy. The 14 microns-thick sensitive layer and the integrated electronic chain of the CMOS are particularly suitable for real-time measurements in γ/n mixed fields. An experimental field size dependency of the fast neutron production rate, supported by Monte Carlo simulations and CR-39 data, has been observed. This dependency points out the potential benefits of a real-time monitoring of fast and thermal neutron during beam intensity modulated radiation therapies.
Monitoring AGNs with Hbeta Asymmetry with the Wyoming Infra-Red Observatory
NASA Astrophysics Data System (ADS)
Brotherton, Michael S.; Du, Pu; Wang, Jian-Min; Wang, Kai; Huang, Zhengpeng; Hu, Chen; Li, Yan-rong; Kasper, David H.; Chick, William T.; Nguyen, My L.; Maithil, Jaya; Hand, Derek; Bai, Jin-Ming; Ho, Luis
2018-06-01
We present preliminary results from two seasons of reverberation mapping of AGNs using the optical longslit spectrograph on the 2.3 meter WIRO telescope. The majority of the sample is part of our "Monitoring AGNs with Hbeta Asymmetry" project, also known as MAHA, which targets rarer AGNs with extremely asymmetric profiles that may provide new insights into the full diversity of size and structure of the broad-line region (BLR). Our hundreds of nights of telescope time provide dozens of epochs of spectra for approximately two dozen objects. Notably we find that many AGNs with broader asymmetric Hbeta emission lines possess time lags significantly shorter than expected for their luminosity in comparison to the majority of AGNs reverberation mapped.
Database usage and performance for the Fermilab Run II experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonham, D.; Box, D.; Gallas, E.
2004-12-01
The Run II experiments at Fermilab, CDF and D0, have extensive database needs covering many areas of their online and offline operations. Delivering data to users and processing farms worldwide has represented major challenges to both experiments. The range of applications employing databases includes, calibration (conditions), trigger information, run configuration, run quality, luminosity, data management, and others. Oracle is the primary database product being used for these applications at Fermilab and some of its advanced features have been employed, such as table partitioning and replication. There is also experience with open source database products such as MySQL for secondary databasesmore » used, for example, in monitoring. Tools employed for monitoring the operation and diagnosing problems are also described.« less
NASA Astrophysics Data System (ADS)
Dupuy, Trent J.; Liu, Michael C.; Leggett, S. K.; Ireland, Michael J.; Chiu, Kuenley; Golimowski, David A.
2015-05-01
We have discovered that SDSS J105213.51+442255.7 (T0.5 ± 1.0) is a binary in Keck laser guide star adaptive optics imaging, displaying a large J- to K-band flux reversal ({Δ }J=-0.45+/- 0.09 mag, {Δ }K=0.52+/- 0.05 mag). We determine a total dynamical mass from Keck orbital monitoring (88 ± 5 {{M}Jup}) and a mass ratio by measuring the photocenter orbit from CFHT/WIRCam absolute astrometry ({{M}B}/{{M}A}=0.78+/- 0.07). Combining these provides the first individual dynamical masses for any field L or T dwarfs, 49 ± 3 {{M}Jup} for the L6.5±1.5 primary and 39 ± 3 {{M}Jup} for the T1.5±1.0 secondary. Such a low mass ratio for a nearly equal luminosity binary implies a shallow mass-luminosity relation over the L/T transition ({Δ }log {{L}bol}/{Δ }log M=0.6-0.8+0.6). This provides the first observational support that cloud dispersal plays a significant role in the luminosity evolution of substellar objects. Fully cloudy models fail our coevality test for this binary, giving ages for the two components that disagree by 0.2 dex (2.0σ). In contrast, our observed masses and luminosities can be reproduced at a single age by “hybrid” evolutionary tracks where a smooth change from a cloudy to cloudless photosphere around 1300 K causes slowing of luminosity evolution. Remarkably, such models also match our observed JHK flux ratios and colors well. Overall, it seems that the distinguishing features SDSS J1052+4422AB, like a J-band flux reversal and high-amplitude variability, are normal for a field L/T binary caught during the process of cloud dispersal, given that the age (1.11-0.20+0.17 Gyr) and surface gravity (log g = 5.0-5.2) of SDSS J1052+4422AB are typical for field ultracool dwarfs. Based on data obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope, which is operated by the National Research Council of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
NASA Astrophysics Data System (ADS)
Xiao, Di; Dai, Zi-Gao
2017-09-01
Recently, a precise (sub-arcsecond) localization of the repeating fast radio burst (FRB) 121102 led to the discovery of persistent radio and optical counterparts, the identification of a host dwarf galaxy at a redshift of z = 0.193, and several campaigns of searches for higher-frequency counterparts, which gave only upper limits on the emission flux. Although the origin of FRBs remains unknown, most of the existing theoretical models are associated with pulsars, or more specifically, magnetars. In this paper, we explore persistent high-energy emission from a rapidly rotating highly magnetized pulsar associated with FRB 121102 if internal gradual magnetic dissipation occurs in the pulsar wind. We find that the efficiency of converting the spin-down luminosity to the high-energy (e.g., X-ray) luminosity is generally much smaller than unity, even for a millisecond magnetar. This provides an explanation for the non-detection of high-energy counterparts to FRB 121102. We further constrain the spin period and surface magnetic field strength of the pulsar with the current high-energy observations. In addition, we compare our results with the constraints given by the other methods in previous works and expect to apply our new method to some other open issues in the future.
NASA Astrophysics Data System (ADS)
Qie, X.; Pu, Y.; Jiang, R.; Liu, M.; Sun, Z.
2017-12-01
Positive recoil leader was observed in both rocket-triggered and tower lightning flashes. The similar processes are observed in all the cases: an initial weakening dart leader propagated downward from the cloud with weak luminosity and terminated finally before reaching the ground. Then the bidirectional leaders started and propagated in the preexisting and decaying channel below the terminated downward dart leader, and the luminosity of the bileader ends was asymmetrical, but both with its tip being the weakest. The upward positive leader end started earlier and fast than the downward negative leader end. The bidirectional leader developed with the positive leader moving upward, along the decayed downward negative leader channel, and the negative leader downward, along the remnants of the channel created by the previous stroke or ICC, and, hence, could be viewed as a kind of recoil leader. However, the polarity of this recoil leader is contrary to the traditional recoil leader with negative leader end retrogressing along an existing positive leader channel. The bidirectional leaders observed herein are new as they are excited by a decayed negative leader with in the preexisting discharge channel, unlike other bidirectional leaders, e.g., the electric breakdown in virgin air or traditional recoil processes formed in a decayed positive leader channel.
Ultraviolet Opacity and Fluorescence in Supernova Envelopes
NASA Technical Reports Server (NTRS)
Li, Hongwei; McCray, Richard
1996-01-01
By the time the expanding envelope of a Type 2 supernova becomes transparent in the optical continuum, most of the gamma-ray luminosity produced by radioactive Fe/Co/Ni clumps propagates into the hydrogen/helium envelope and is deposited there, if at all. The resulting fast electrons excite He 1 and H 1, the two- photon continua of which are the dominant internal sources of ultraviolet radiation. The UV radiation is blocked by scattering in thousands of resonance lines of metals and converted by fluorescence into optical and infrared emission lines that escape freely. We describe results of Monte Carlo calculations that simulate non-LTE scattering and fluorescence in more than five million allowed lines of Ca, Sc, Ti, V, Cr, Mn, Fe, Co, and Ni. For a model approximating conditions in the envelope of SN 1987A, the calculated emergent spectrum resembles the observed one. For the first 2 yr after explosion, the ultraviolet radiation (lambda less than or approximately equals 3000) is largely blocked and converted into a quasi continuum of many thousands of weak optical and infrared emission lines and some prominent emission features, such as the Ca 2 lambdalambda8600 triplet. Later, as the envelope cools and expands, it becomes more transparent, and an increasing fraction of the luminosity emerges in the UV band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Di; Dai, Zi-Gao, E-mail: dzg@nju.edu.cn
2017-09-10
Recently, a precise (sub-arcsecond) localization of the repeating fast radio burst (FRB) 121102 led to the discovery of persistent radio and optical counterparts, the identification of a host dwarf galaxy at a redshift of z = 0.193, and several campaigns of searches for higher-frequency counterparts, which gave only upper limits on the emission flux. Although the origin of FRBs remains unknown, most of the existing theoretical models are associated with pulsars, or more specifically, magnetars. In this paper, we explore persistent high-energy emission from a rapidly rotating highly magnetized pulsar associated with FRB 121102 if internal gradual magnetic dissipation occursmore » in the pulsar wind. We find that the efficiency of converting the spin-down luminosity to the high-energy (e.g., X-ray) luminosity is generally much smaller than unity, even for a millisecond magnetar. This provides an explanation for the non-detection of high-energy counterparts to FRB 121102. We further constrain the spin period and surface magnetic field strength of the pulsar with the current high-energy observations. In addition, we compare our results with the constraints given by the other methods in previous works and expect to apply our new method to some other open issues in the future.« less
THE LOCAL [C ii] 158 μ m EMISSION LINE LUMINOSITY FUNCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmati, Shoubaneh; Yan, Lin; Capak, Peter
We present, for the first time, the local [C ii] 158 μ m emission line luminosity function measured using a sample of more than 500 galaxies from the Revised Bright Galaxy Sample. [C ii] luminosities are measured from the Herschel PACS observations of the Luminous Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey and estimated for the rest of the sample based on the far-infrared (far-IR) luminosity and color. The sample covers 91.3% of the sky and is complete at S{sub 60μm} > 5.24 Jy. We calculate the completeness as a function of [C ii] line luminosity and distance, basedmore » on the far-IR color and flux densities. The [C ii] luminosity function is constrained in the range ∼10{sup 7–9} L{sub ⊙} from both the 1/ V{sub max} and a maximum likelihood methods. The shape of our derived [C ii] emission line luminosity function agrees well with the IR luminosity function. For the CO(1-0) and [C ii] luminosity functions to agree, we propose a varying ratio of [C ii]/CO(1-0) as a function of CO luminosity, with larger ratios for fainter CO luminosities. Limited [C ii] high-redshift observations as well as estimates based on the IR and UV luminosity functions are suggestive of an evolution in the [C ii] luminosity function similar to the evolution trend of the cosmic star formation rate density. Deep surveys using the Atacama Large Millimeter Array with full capability will be able to confirm this prediction.« less
Evolution of the luminosity function of quasar accretion disks
NASA Technical Reports Server (NTRS)
Caditz, David M.; Petrosian, Vahe; Wandel, Amri
1991-01-01
Using an accretion-disk model, accretion disk luminosities are calculated for a grid of black hole masses and accretion rates. It is shown that, as the black-hole mass increases with time, the monochromatic luminosity at a given frequency first increases and then decreases rapidly as this frequency is crossed by the Wien cutoff. The upper limit on the monochromatic luminosity, which is characteristic for a given epoch, constrains the evolution of quasar luminosities and determines the evolultion of the quasar luminosity function.
Developments of fast emittance monitors for ion sources at RCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.
2016-02-15
Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real timemore » measurement with about 2 Hz has been achieved.« less
LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryukova, E.; Megeath, S. T.; Allen, T. S.
2012-08-15
We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Usingmore » protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those predicted by models and find that our observed luminosity functions are best matched by models that invoke competitive accretion, although we do not find strong agreement between the high-mass SF clouds and any of the models.« less
High conduction neutron absorber to simulate fast reactor environment in an existing test reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donna Post Guillen; Larry R. Greenwood; James R. Parry
2014-06-22
A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluencemore » monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.« less
NASA Astrophysics Data System (ADS)
Farzam, Parisa; Sutin, Jason; Wu, Kuan-Cheng; Zimmermann, Bernhard B.; Tamborini, Davide; Dubb, Jay; Boas, David A.; Franceschini, Maria Angela
2017-02-01
Intracranial pressure (ICP) monitoring has a key role in the management of neurosurgical and neurological injuries. Currently, the standard clinical monitoring of ICP requires an invasive transducer into the parenchymal tissue or the brain ventricle, with possibility of complications such as hemorrhage and infection. A non-invasive method for measuring ICP, would be highly preferable, as it would allow clinicians to promptly monitor ICP during transport and allow for monitoring in a larger number of patients. We have introduced diffuse correlation spectroscopy (DCS) as a non-invasive ICP monitor by fast measurement of pulsatile cerebral blood flow (CBF). The method is similar to Transcranial Doppler ultrasound (TCD), which derives ICP from the amplitude of the pulsatile cerebral blood flow velocity, with respect to the amplitude of the pulsatile arterial blood pressure. We believe DCS measurement is superior indicator of ICP than TCD estimation because DCS directly measures blood flow, not blood flow velocity, and the small cortical vessels measured by DCS are more susceptible to transmural pressure changes than the large vessels. For fast DCS measurements to recover pulsatile CBF we have developed a custom high-power long-coherent laser and a strategy for delivering it to the tissue within ANSI standards. We have also developed a custom FPGA-based correlator board, which facilitates DCS data acquisitions at 50-100 Hz. We have tested the feasibility of measuring pulsatile CBF and deriving ICP in two challenging scenarios: humans and rats. SNR is low in human adults due to large optode distances. It is similarly low in rats because the fast heart rate in this setting requires a high repetition rate.
MTR FAST NEUTRON FLUX MEASUREMENTS FOR CYCLE 146
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, L D; Hogg, C H
1962-03-20
The fast neutron fluxes in selected positions of the MTR were measured for Cycle 146. The measurements were made at the beginning, throughout, and at the end of the cycle (564 Mwd). Vertical traverses for each position monitors are shown. (auth)
The AMchip04 and the processing unit prototype for the FastTracker
NASA Astrophysics Data System (ADS)
Andreani, A.; Annovi, A.; Beretta, M.; Bogdan, M.; Citterio, M.; Alberti, F.; Giannetti, P.; Lanza, A.; Magalotti, D.; Piendibene, M.; Shochet, M.; Stabile, A.; Tang, J.; Tompkins, L.; Volpi, G.
2012-08-01
Modern experiments search for extremely rare processes hidden in much larger background levels. As the experiment`s complexity, the accelerator backgrounds and luminosity increase we need increasingly complex and exclusive event selection. We present the first prototype of a new Processing Unit (PU), the core of the FastTracker processor (FTK). FTK is a real time tracking device for the ATLAS experiment`s trigger upgrade. The computing power of the PU is such that a few hundred of them will be able to reconstruct all the tracks with transverse momentum above 1 GeV/c in ATLAS events up to Phase II instantaneous luminosities (3 × 1034 cm-2 s-1) with an event input rate of 100 kHz and a latency below a hundred microseconds. The PU provides massive computing power to minimize the online execution time of complex tracking algorithms. The time consuming pattern recognition problem, generally referred to as the ``combinatorial challenge'', is solved by the Associative Memory (AM) technology exploiting parallelism to the maximum extent; it compares the event to all pre-calculated ``expectations'' or ``patterns'' (pattern matching) simultaneously, looking for candidate tracks called ``roads''. This approach reduces to a linear behavior the typical exponential complexity of the CPU based algorithms. Pattern recognition is completed by the time data are loaded into the AM devices. We report on the design of the first Processing Unit prototypes. The design had to address the most challenging aspects of this technology: a huge number of detector clusters (``hits'') must be distributed at high rate with very large fan-out to all patterns (10 Million patterns will be located on 128 chips placed on a single board) and a huge number of roads must be collected and sent back to the FTK post-pattern-recognition functions. A network of high speed serial links is used to solve the data distribution problem.
NASA Astrophysics Data System (ADS)
Lyu, Fen; Liang, En-Wei; Liang, Yun-Feng; Wu, Xue-Feng; Zhang, Jin; Sun, Xiao-Na; Lu, Rui-Jing; Zhang, Bing
2014-09-01
We present a spectral analysis for a sample of redshift-known gamma-ray bursts (GRBs) observed with Fermi/GBM. Together with the results derived from our systematical spectral energy distribution modeling with the leptonic models for a Fermi/LAT blazar sample, we compare the distributions of the GRBs and the blazars by plotting the synchrotron peak luminosity (L s) and the corresponding peak photon energy E s of blazars in the L p-E p-plane of GRBs, where L p and E p are the peak luminosity and peak photon energy of the GRB time-integrated νf ν spectrum, respectively. The GRBs are in the high-L p, high-E p corner of the plane and a tight L p-E p relation is found, i.e., L_p\\propto E_p2.13^{+0.54-0.46}. Both flat spectrum radio quasars (FSRQs) and low-synchrotron peaking BL Lac objects (LBLs) are clustered in the low-E p, low-L p corner. Intermediate- and high-synchrotron peaking BL Lac objects (IBLs and HBLs) have E s ~ 2 × 10-3-102 keV and L s ~ 1044-1047 erg s-1, but no dependence of L s on E s is found. We show that the tight Lp -Ep relation of GRBs is potentially explained with the synchrotron radiation of fast-cooling electrons in a highly magnetized ejecta, and the weak anti-correlation of L s-E s for FSRQs and LBLs may be attributed to synchrotron radiation of slow-cooling electrons in a moderately magnetized ejecta. The distributions of IBLs and HBLs in the L p-E p-plane may be interpreted with synchrotron radiation of fast-cooling electrons in a matter-dominated ejecta. These results may present a unified picture for the radiation physics of relativistic jets in GRBs and blazars within the framework of the leptonic synchrotron radiation models.
The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tendulkar, S. P.; Kaspi, V. M.; Bassa, C. G.
The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10{sup −4}) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m{sub r′} = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance ofmore » 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M {sub *} ∼ (4–7) × 10{sup 7} M {sub ⊙}, assuming a mass-to-light ratio between 2 to 3 M {sub ⊙} L {sub ⊙} {sup −1}. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M {sub ⊙} yr{sup −1} and a substantial host dispersion measure (DM) depth ≲324 pc cm{sup −3}. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.« less
The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102
NASA Astrophysics Data System (ADS)
Tendulkar, S. P.; Bassa, C. G.; Cordes, J. M.; Bower, G. C.; Law, C. J.; Chatterjee, S.; Adams, E. A. K.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Hessels, J. W. T.; Kaspi, V. M.; Lazio, T. J. W.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Seymour, A.; Spitler, L. G.; van Langevelde, H. J.; Wharton, R. S.
2017-01-01
The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10-4) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6-0.″8) object displaying prominent Balmer and [O III] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m r‧ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M * ˜ (4-7) × 107 M ⊙, assuming a mass-to-light ratio between 2 to 3 M ⊙ L ⊙ -1. Based on the Hα flux, we estimate the star formation rate of the host to be 0.4 M ⊙ yr-1 and a substantial host dispersion measure (DM) depth ≲324 pc cm-3. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ˜200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.
NASA Astrophysics Data System (ADS)
Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Godet, Olivier; Grupe, Dirk; Webb, Natalie A.; Barret, Didier; Irwin, Jimmy A.
2018-03-01
The ultrasoft X-ray flare 2XMMi J184725.1-631724 was serendipitously detected in two XMM-Newton observations in 2006 and 2007, with a peak luminosity of 6 × 1043 erg s-1. It was suggested to be a tidal disruption event (TDE) because its position is consistent with the centre of an inactive galaxy. It is the only known X-ray TDE candidate whose X-ray spectra showed evidence of a weak steep power-law component besides a dominant supersoft thermal disc. We have carried out multiwavelength follow-up observations of the event. Multiple X-ray monitorings show that the X-ray luminosity has decayed significantly after 2011. Especially, in our deep Chandra observation in 2013, we detected a very faint counterpart that supports the nuclear origin of 2XMMi J184725.1-631724 but had an X-ray flux a factor of ˜1000 lower than in the peak of the event. Compared with follow-up ultraviolet (UV) observations, we found that there might be some enhanced UV emission associated with the TDE in the first XMM-Newton observation. We also obtained a high-quality UV-optical spectrum with the Southern Astrophysical Research (SOAR) Telescope and put a very tight constraint on the persistent nuclear activity, with a persistent X-ray luminosity expected to be lower than the peak of the flare by a factor of >2700. Therefore, our multiwavelength follow-up observations strongly support the TDE explanation of the event.
NASA Astrophysics Data System (ADS)
Bagchi, Manjari
2013-08-01
Luminosity is an intrinsic property of radio pulsars related to the properties of the magnetospheric plasma and the beam geometry, and inversely proportional to the observing frequency. In traditional models, luminosity has been considered as a function of the spin parameters of pulsars. On the other hand, parameter independent models like power law and lognormal have been also used to fit the observed luminosities. Some of the older studies on pulsar luminosities neglected observational biases, but all of the recent studies tried to model observational effects as accurately as possible. Luminosities of pulsars in globular clusters (GCs) and in the Galactic disk have been studied separately. Older studies concluded that these two categories of pulsars have different luminosity distributions, but the most recent study concluded that those are the same. This paper reviews all significant works on pulsar luminosities and discusses open questions.
Imfit: A Fast, Flexible Program for Astronomical Image Fitting
NASA Astrophysics Data System (ADS)
Erwin, Peter
2014-08-01
Imift is an open-source astronomical image-fitting program specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. Its object-oriented design allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with Imfit include Sersic, exponential, and Gaussian galaxy decompositions along with Core-Sersic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or the Cash statistic; the latter is particularly appropriate for cases of Poisson data in the low-count regime. The C++ source code for Imfit is available under the GNU Public License.
A “Cosmic Comb” Model of Fast Radio Bursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bing
2017-02-20
Recent observations of fast radio bursts (FRBs) indicate a perplexing, inconsistent picture. We propose a unified scenario to interpret diverse FRBs observed. A regular pulsar, otherwise unnoticeable at a cosmological distance, may produce a bright FRB if its magnetosphere is suddenly “combed” by a nearby, strong plasma stream toward the anti-stream direction. If the Earth is to the night side of the stream, the combed magnetic sheath would sweep across the direction of Earth and make a detectable FRB. The stream could be an AGN flare, a GRB or supernova blastwave, a tidal disruption event, or even a stellar flare.more » Since it is the energy flux received by the pulsar rather than the luminosity of the stream origin that defines the properties of the FRB, this model predicts a variety of counterparts of FRBs, including a possible connection between FRB 150418 and an AGN flare, a possible connection between FRB 131104 and a weak GRB, a steady radio nebula associated with the repeating FRB 121102, and probably no bright counterparts for some FRBs.« less
Remarks on the maximum luminosity
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon
2018-04-01
The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.
Hard X-Ray Emission and the Ionizing Source in LINERs
NASA Technical Reports Server (NTRS)
Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.
2000-01-01
We report X-ray fluxes in the 2-10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4 x 10(exp 39) and 5 x 10(exp 41) ergs/s, which are significantly smaller than that of the "classical" low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2-10 keV of LINERs with broad H.alpha emission in their optical spectra (LINER 1s) are proportional to their Ha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad H.alpha emission (LINER 2s) in our sample are lower than LINER 1s at a given H.alpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their H.alpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.
Optimizing integrated luminosity of future hadron colliders
NASA Astrophysics Data System (ADS)
Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank
2015-10-01
The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).
Testing and Improving the Luminosity Relations for Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Collazzi, Andrew C.
2012-01-01
Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of "standard candle” where standard candle is meant in the usual sense that luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, methods are employed to do just that. First, generalized forms of two tests are performed on the luminosity relations. All the luminosity relations pass one of these tests, and all but two pass the other. Even with this failure, redundancies in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the "Firmani relation” is shown to have poorer accuracy than first advertised. It is also shown to be derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a luminosity indicator (Epeak) are measured. The result is an irreducible systematic error of 28%. Finally, the work concludes with a discussion about the impact of the work and the future of GRB luminosity relations.
Exploring the multiband emission of TXS 0536+145: the most distant -γray flaring blazar
Orienti, M.; D'Ammando, F.; Giroletti, M.; ...
2014-09-15
We report results of a multi-band monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high γ-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becoming the γ-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic γ-ray luminosity of 6.6×1049 erg s-1 which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicinamore » single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the γ-ray source with TXS 0536+145. Both the radio and γ-ray light curves show a similar behaviour, with the γ-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high resolution parsec-scale radio images. During the flare the γ-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The γ-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift γ-ray blazar population.« less
NASA Astrophysics Data System (ADS)
Javadi, Atefeh; Saberi, Maryam; van Loon, Jacco Th.; Khosroshahi, Habib; Golabatooni, Najmeh; Mirtorabi, Mohammad Taghi
2015-03-01
We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope, of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fourth paper of the series, we present a search for variable red giant stars in an almost square degree region comprising most of the galaxy's disc, carried out with the WFCAM (Wide Field CAMera) instrument in the K band. These data, taken during the period 2005-2007, were complemented by J- and H-band images. Photometry was obtained for 403 734 stars in this region; of these, 4643 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. The variable stars are concentrated towards the centre of M33, more so than low-mass, less-evolved red giants. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. Most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey. The photometric catalogue is made publicly available at the Centre de Données astronomiques de Strasbourg.
NASA Astrophysics Data System (ADS)
Javadi, Atefeh; van Loon, Jacco Th.; Mirtorabi, Mohammad Taghi
2011-02-01
We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive data set was obtained in the K band with the UIST instrument for the central 4 × 4 arcmin2 (1 kpc2) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18 398 stars in this region; of these, 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the variability survey and the photometric catalogue - which is made publicly available at the Centre de Données astronomiques de Strasbourg - and discuss the properties of the variable stars. The most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey.
Exploring the multiband emission of TXS 0536+145: the most distant γ-ray flaring blazar
NASA Astrophysics Data System (ADS)
Orienti, M.; D'Ammando, F.; Giroletti, M.; Finke, J.; Ajello, M.; Dallacasa, D.; Venturi, T.
2014-11-01
We report results of a multiband monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high γ-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becoming the γ-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic γ-ray luminosity of 6.6 × 1049 erg s-1 which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicina single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the γ-ray source with TXS 0536+145. Both the radio and γ-ray light curves show a similar behaviour, with the γ-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high-resolution parsec-scale radio images. During the flare the γ-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The γ-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift γ-ray blazar population.
Ground-based photographic monitoring.
Frederick C. Hall
2001-01-01
Land management professionals (foresters, wildlife biologists, range managers, and land managers such as ranchers and forest land owners) often have need to evaluate their management activities. Photographic monitoring is a fast, simple, and effective way to determine if changes made to an area have been successful. Ground-based photo monitoring means using photographs...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malathi, N.; Sahoo, P., E-mail: sahoop@igcar.gov.in; Ananthanarayanan, R.
2015-02-15
An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision,more » sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.« less
NASA Astrophysics Data System (ADS)
Ning, G.; Shum, P.; Aditya, S.; Gong, Yandong
2006-09-01
We use the expression relating the output state of polarization and PMD vector. Based on this expression we get the power fading including first-order PMD and chromatic dispersion, which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for power fading, we get the average power penalty for chromatic dispersion and PMD. We propose a novel and fast PMD and chromatic dispersion monitoring technology. Measured results agree well with theoretical analysis.
NASA Technical Reports Server (NTRS)
Waldron, W. L.
1985-01-01
The observed X-ray emission from early-type stars can be explained by the recombination stellar wind model (or base coronal model). The model predicts that the true X-ray luminosity from the base coronal zone can be 10 to 1000 times greater than the observed X-ray luminosity. From the models, scaling laws were found for the true and observed X-ray luminosities. These scaling laws predict that the ratio of the observed X-ray luminosity to the bolometric luminosity is functionally dependent on several stellar parameters. When applied to several other O and B stars, it is found that the values of the predicted ratio agree very well with the observed values.
Implications of the Observed Ultraluminous X-Ray Source Luminosity Function
NASA Technical Reports Server (NTRS)
Swartz, Douglas A.; Tennant, Allyn; Soria, Roberto; Yukita, Mihoko
2012-01-01
We present the X-ray luminosity function (XLF) of ultraluminous X-ray (ULX) sources with 0.3-10.0 keV luminosities in excess of 10(sup 39) erg/s in a complete sample of nearby galaxies. The XLF shows a break or cut-off at high luminosities that deviates from its pure power law distribution at lower luminosities. The cut-off is at roughly the Eddington luminosity for a 90-140 solar mass accretor. We examine the effects on the observed XLF of sample biases, of small-number statistics (at the high luminosity end) and of measurement uncertainties. We consider the physical implications of the shape and normalization of the XLF. The XLF is also compared and contrasted to results of other recent surveys.
A STUDY OF RO-VIBRATIONAL OH EMISSION FROM HERBIG Ae/Be STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brittain, Sean D.; Reynolds, Nickalas; Najita, Joan R.
2016-10-20
We present a study of ro-vibrational OH and CO emission from 21 disks around Herbig Ae/Be stars. We find that the OH and CO luminosities are proportional over a wide range of stellar ultraviolet luminosities. The OH and CO line profiles are also similar, indicating that they arise from roughly the same radial region of the disk. The CO and OH emission are both correlated with the far-ultraviolet luminosity of the stars, while the polycyclic aromatic hydrocarbon (PAH) luminosity is correlated with the longer wavelength ultraviolet luminosity of the stars. Although disk flaring affects the PAH luminosity, it is notmore » a factor in the luminosity of the OH and CO emission. These properties are consistent with models of UV-irradiated disk atmospheres. We also find that the transition disks in our sample, which have large optically thin inner regions, have lower OH and CO luminosities than non-transition disk sources with similar ultraviolet luminosities. This result, while tentative given the small sample size, is consistent with the interpretation that transition disks lack a gaseous disk close to the star.« less
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Brown, Alexander; Linsky, Jeffrey L.; Kellett, Barry J.; Bromage, Gordon E.; Hodgkin, Simon T.; Pye, John P.
1994-01-01
We report the results of a volume-limited ROSAT Wide Field Camera (WFC) survey of all nondegenerate stars within 10 pc. Of the 220 known star systems within 10 pc, we find that 41 are positive detections in at least one of the two WFC filter bandpasses (S1 and S2), while we consider another 14 to be marginal detections. We compute X-ray luminosities for the WFC detections using Einstein Imaging Proportional Counter (IPC) data, and these IPC luminosities are discussed along with the WFC luminosities throughout the paper for purposes of comparison. Extreme ultraviolet (EUV) luminosity functions are computed for single stars of different spectral types using both S1 and S2 luminosities, and these luminosity functions are compared with X-ray luminosity functions derived by previous authors using IPC data. We also analyze the S1 and S2 luminosity functions of the binary stars within 10 pc. We find that most stars in binary systems do not emit EUV radiation at levels different from those of single stars, but there may be a few EUV-luminous multiple-star systems which emit excess EUV radiation due to some effect of binarity. In general, the ratio of X-ray luminosity to EUV luminosity increases with increasing coronal emission, suggesting that coronally active stars have higher coronal temperatures. We find that our S1, S2, and IPC luminosities are well correlated with rotational velocity, and we compare activity-rotation relations determined using these different luminosities. Late M stars are found to be significantly less luminous in the EUV than other late-type stars. The most natural explanation for this results is the concept of coronal saturation -- the idea that late-type stars can emit only a limited fraction of their total luminosity in X-ray and EUV radiation, which means stars with very low bolometric luminosities must have relatively low X-ray and EUV luminosities as well. The maximum level of coronal emission from stars with earlier spectral types is studied also. To understand the saturation levels for these stars, we have compiled a large number of IPC luminosities for stars with a wide variety of spectral types and luminosity classes. We show quantitatively that if the Sun were completely covered with X-ray-emitting coronal loops, it would be near the saturation limit implied by this compilation, supporting the idea that stars near upper limits in coronal activity are completely covered with active regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, E.; Leibler, C. N.; Chornock, R.
We present a search for fast optical transients (τ ∼ 0.5 hr-1 day) using repeated observations of the Pan-STARRS1 Medium-Deep Survey (PS1/MDS) fields. Our search takes advantage of the consecutive g {sub P1} r {sub P1} observations (16.5 minutes in each filter), by requiring detections in both bands, with non-detections on preceding and subsequent nights. We identify 19 transients brighter than 22.5 AB mag (S/N ≳ 10). Of these, 11 events exhibit quiescent counterparts in the deep PS1/MDS templates that we identify as M4-M9 dwarfs at d ≈ 0.2-1.2 kpc. The remaining eight transients lack quiescent counterparts, exhibit mild butmore » significant astrometric shifts between the g {sub P1} and r {sub P1} images, colors of (g – r){sub P1} ≈ 0.5-0.8 mag, non-varying light curves, and locations near the ecliptic plane with solar elongations of about 130°, which are all indicative of main-belt asteroids near the stationary point of their orbits. With identifications for all 19 transients, we place an upper limit of R {sub FOT}(τ ∼ 0.5 hr) ≲ 0.12 deg{sup –2} day{sup –1} (95% confidence level) on the sky-projected rate of extragalactic fast transients at ≲ 22.5 mag, a factor of 30-50 times lower than previous limits; the limit for a timescale of ∼1 day is R {sub FOT} ≲ 2.4 × 10{sup –3} deg{sup –2} day{sup –1}. To convert these sky-projected rates to volumetric rates, we explore the expected peak luminosities of fast optical transients powered by various mechanisms, and find that non-relativistic events are limited to M ≈ –10 to ≈ – 14 mag for a timescale of ∼0.5 hr to ∼1 day, while relativistic sources (e.g., gamma-ray bursts, magnetar-powered transients) can reach much larger luminosities. The resulting volumetric rates are ≲ 13 Mpc{sup –3} yr{sup –1} (M ≈ –10 mag), ≲ 0.05 Mpc{sup –3} yr{sup –1} (M ≈ –14 mag), and ≲ 10{sup –6} Mpc{sup –3} yr{sup –1} (M ≈ –24 mag), significantly above the nova, supernova, and gamma-ray burst rates, respectively, indicating that much larger surveys are required to provide meaningful constraints. Motivated by the results of our search, we discuss strategies for identifying fast optical transients in the Large Synoptic Survey Telescope main survey, and reach the optimistic conclusion that the veil of foreground contaminants can be lifted with the survey data, without the need for expensive follow-up observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toloba, E.; Guhathakurta, P.; Boselli, A.
2015-02-01
We analyze the stellar kinematics of 39 dwarf early-type galaxies (dEs) in the Virgo Cluster. Based on the specific stellar angular momentum λ{sub Re} and the ellipticity, we find 11 slow rotators and 28 fast rotators. The fast rotators in the outer parts of the Virgo Cluster rotate significantly faster than fast rotators in the inner parts of the cluster. Moreover, 10 out of the 11 slow rotators are located in the inner 3° (D < 1 Mpc) of the cluster. The fast rotators contain subtle disk-like structures that are visible in high-pass filtered optical images, while the slow rotatorsmore » do not exhibit these structures. In addition, two of the dEs have kinematically decoupled cores and four more have emission partially filling in the Balmer absorption lines. These properties suggest that Virgo Cluster dEs may have originated from late-type star-forming galaxies that were transformed by the environment after their infall into the cluster. The correlation between λ{sub Re} and the clustercentric distance can be explained by a scenario where low luminosity star-forming galaxies fall into the cluster, their gas is rapidly removed by ram-pressure stripping, although some of it can be retained in their core, their star formation is quenched but their stellar kinematics are preserved. After a long time in the cluster and several passes through its center, the galaxies are heated up and transformed into slow rotating dEs.« less
BMSW - Fast Solar Wind Monitor - three years in orbit: Status and prospects
NASA Astrophysics Data System (ADS)
Prech, Lubomir; Zastenker, Georgy; Nemecek, Zdenek; Safrankova, Jana; Vaverka, Jakub; Cermak, Ivo; Chesalin, Lev S.; Gavrilova, Elena
Fast Solar Wind Monitor BMSW is an instrument flown as a part of the PLASMA-F complex onboard the Russian Spektr-R radioastronomical spacecraft. The spacecraft was launched on July 18, 2011. During the COSPAR-2014 Assembly meeting, the instrument is supposed to celebrate three successful years in operation. With a set of 6 Faraday’s cups, the instrument has a unique time resolution --- 0.5--1 s for a full energy spectrum (96 energy steps) and 31~ms for basic solar wind plasma parameters directing the instrument to study of fast solar wind discontinuities including interplanetary shocks, a fast variability of proton and alpha particle parameters, and to study of solar wind turbulence up to the ion kinetic scales. The measurement technique, its implementation, and ground data processing are discussed in the contribution. The performance of the instrument design and electronics are presented. We discuss heritage of this instrument utilized in design of future instruments being prepared for the further projects as Luna-Glob.
Chandra Observations of Pluto's Escaping Atmosphere in Support of the New Horizons Mission
NASA Astrophysics Data System (ADS)
McNutt, Ralph, Jr.
2013-09-01
Current models of Pluto's extended N2+CH4 atmosphere are still very uncertain, causing numerous difficulties in optimizing the New Horizons fast flyby operations plan for the dwarf planet. Applying knowledge gained from studying cometary X-ray emission, Chandra ACIS-S photometric imaging of X-rays produced by CXE between the solar wind and Pluto's atmosphere will address both the run of atmospheric density and the interaction of the solar wind with the extended Plutonian atmosphere. Determining the atmosphere's extent and amount of free molecular escape will aid the atmospheric sounding measurements of the NH ALICE instrument, while determining the x-ray luminosity will help the NH PEPSI instrument characterize the solar wind particle environment.
Small-strip Thin Gap Chambers for the muon spectrometer upgrade of the ATLAS experiment
NASA Astrophysics Data System (ADS)
Perez Codina, E.; ATLAS Muon Collaboration
2016-07-01
The ATLAS muon system upgrade to be installed during the LHC long shutdown in 2018/19, the so-called New Small Wheel (NSW), is designed to cope with the increased instantaneous luminosity in LHC Run 3. The small-strip Thin Gap Chambers (sTGC) will provide the NSW with a fast trigger and high precision tracking. The construction protocol has been validated by test beam experiments on a full-size prototype sTGC detector, showing the performance requirements are met. The intrinsic spatial resolution for a single layer has been found to be about 45 μm for a perpendicular incident angle, and the transition region between pads has been measured to be about 4 mm.
Disc-jet quenching of the galactic black hole Swift J1753.5-0127
NASA Astrophysics Data System (ADS)
Rushton, A. P.; Shaw, A. W.; Fender, R. P.; Altamirano, D.; Gandhi, P.; Uttley, P.; Charles, P. A.; Kolehmainen, M.; Anderson, G. E.; Rumsey, C.; Titterington, D. J.
2016-11-01
We report on radio and X-ray monitoring observations of the BHC Swift J1753.5-0127 taken over a ˜10 yr period. Presented are daily radio observations at 15 GHz with the Arcminute Microkelvin Imager Large Array (AMI-LA) and X-ray data from Swift X-ray Telescope and Burst Alert Telescope. Also presented is a deep 2 h JVLA observation taken in an unusually low-luminosity soft-state (with a low disc temperature). We show that although the source has remained relatively radio-quiet compared to XRBs with a similar X-ray luminosity in the hard-state, the power-law relationship scales as ζ = 0.96 ± 0.06, I.e. slightly closer to what has been considered for radiatively inefficient accretion discs. We also place the most stringent limit to date on the radio-jet quenching in an XRB soft-state, showing the connection of the jet quenching to the X-ray power-law component; the radio flux in the soft-state was found to be < 21 μJy, which is a quenching factor of ≳ 25.
NASA Astrophysics Data System (ADS)
Sugizaki, Mutsumi; Mihara, Tatehiro; Nakajima, Motoki; Makishima, Kazuo
2017-12-01
To study observationally the spin-period changes of accreting pulsars caused by the accretion torque, the present work analyzes X-ray light curves of 12 Be binary pulsars obtained by the MAXI Gas-Slit Camera all-sky survey and their pulse periods measured by the Fermi Gamma-ray Burst Monitor pulsar project, both covering more than six years, from 2009 August to 2016 March. The 12 objects were selected because they are accompanied by clear optical identification and accurate measurements of surface magnetic fields. The luminosity L and the spin-frequency derivatives \\dot{ν}, measured during large outbursts with L ≳ 1 × 1037 erg s-1, were found to follow approximately the theoretical relations in the accretion torque models, represented by \\dot{ν} ∝ L^{α} (α ≃ 1), and the coefficient of proportionality between \\dot{ν} and Lα agrees, within a factor of ˜3, with that proposed by Ghosh and Lamb (1979b, ApJ, 234, 296). In the course of the present study, the orbital elements of several sources were refined.
Luminosity correlations in quasars
NASA Technical Reports Server (NTRS)
Chanan, G. A.
1983-01-01
Simulations are conducted with and without flux thresholds in an investigation of quasar luminosity correlations by means of a Monte Carlo analysis, for various model distributions of quasars in X-rays and optical luminosity. For the case where the X-ray photons are primary, an anticorrelation between X-ray-to-optical luminosity ratio and optical luminosity arises as a natural consequence which resembles observations. The low optical luminosities of X-ray selected quasars can be understood as a consequence of the same effect, and similar conclusions may hold if the X-ray and optical luminosities are determined independently by a third parameter, although they do not hold if the optical photons are primary. The importance of such considerations is demonstrated through a reanalysis of the published X-ray-to-optical flux ratios for the 3CR sample.
X-ray studies of quasars with the Einstein Observatory. IV - X-ray dependence on radio emission
NASA Technical Reports Server (NTRS)
Worrall, D. M.; Tananbaum, H.; Giommi, P.; Zamorani, G.
1987-01-01
The X-ray properties of a sample of 114 radio-loud quasars observed with the Einstein Observatory are examined, and the results are compared with those obtained from a large sample of radio-quiet quasars. The results of statistical analysis of the dependence of X-ray luminosity on combined functions of optical and radio luminosity show that the dependence on both luminosities is important. However, statistically significant differences are found between subsamples of flat radio spectra quasars and steep radio spectra quasars with regard to dependence of X-ray luminosity on only radio luminosity. The data are consistent with radio-loud quasars having a physical component, not directly related to the optical luminosity, which produces the core radio luminosity plus 'extra' X-ray emission.
NASA Astrophysics Data System (ADS)
Caratelli, A.; Bonacini, S.; Kloukinas, K.; Marchioro, A.; Moreira, P.; De Oliveira, R.; Paillard, C.
2015-03-01
The future upgrades of the LHC experiments will increase the beam luminosity leading to a corresponding growth of the amounts of data to be treated by the data acquisition systems. To address these needs, the GBT (Giga-Bit Transceiver optical link [1,2]) architecture was developed to provide the simultaneous transfer of readout data, timing and trigger signals as well as slow control and monitoring data. The GBT-SCA ASIC, part of the GBT chip-set, has the purpose to distribute control and monitoring signals to the on-detector front-end electronics and perform monitoring operations of detector environmental parameters. In order to meet the requirements of different front-end ASICs used in the experiments, it provides various user-configurable interfaces capable to perform simultaneous operations. It is designed employing radiation tolerant design techniques to ensure robustness against SEUs and TID radiation effects and is implemented in a commercial 130 nm CMOS technology. This work presents the GBT-SCA architecture, the ASIC interfaces, the data transfer protocol, and its integration with the GBT optical link.
Fast global orbit feedback system in PLS-II
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, C.; Kim, J. M.; Kim, K. R.; Lee, E. H.; Lee, J. W.; Lee, T. Y.; Park, C. D.; Shin, S.; Yoon, J. C.; Cho, W. S.; Park, G. S.; Kim, S. C.
2016-12-01
The transverse position of the electron beam in the Pohang Light Source-II is stabilized by the global orbit feedback system. A slow orbit feedback system has been operating at 2 Hz, and a fast orbit feedback (FOFB) system at 813 Hz was installed recently. This FOFB system consists of 96 electron-beam-position monitors, 48 horizontal fast correctors, 48 vertical fast correctors and Versa Module Europa bus control system. We present the design and implementation of the FOFB system and its test result. Simulation analysis is presented and future improvements are suggested.
Very low luminosity active galaxies and the X-ray background
NASA Technical Reports Server (NTRS)
Elvis, M.; Soltan, A.; Keel, W. C.
1984-01-01
The properties of very low luminosity active galactic nuclei are not well studied, and, in particular, their possible contribution to the diffuse X-ray background is not known. In the present investigation, an X-ray luminosity function for the range from 10 to the 39th to 10 to the 42.5th ergs/s is constructed. The obtained X-ray luminosity function is integrated to estimate the contribution of these very low luminosity active galaxies to the diffuse X-ray background. The construction of the X-ray luminosity function is based on data obtained by Keel (1983) and some simple assumptions about optical and X-ray properties.
The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey
NASA Technical Reports Server (NTRS)
Burg, R.; Giacconi, R.; Forman, W.; Jones, C.
1994-01-01
We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.
Detecting wrong notes in advance: neuronal correlates of error monitoring in pianists.
Ruiz, María Herrojo; Jabusch, Hans-Christian; Altenmüller, Eckart
2009-11-01
Music performance is an extremely rapid process with low incidence of errors even at the fast rates of production required. This is possible only due to the fast functioning of the self-monitoring system. Surprisingly, no specific data about error monitoring have been published in the music domain. Consequently, the present study investigated the electrophysiological correlates of executive control mechanisms, in particular error detection, during piano performance. Our target was to extend the previous research efforts on understanding of the human action-monitoring system by selecting a highly skilled multimodal task. Pianists had to retrieve memorized music pieces at a fast tempo in the presence or absence of auditory feedback. Our main interest was to study the interplay between auditory and sensorimotor information in the processes triggered by an erroneous action, considering only wrong pitches as errors. We found that around 70 ms prior to errors a negative component is elicited in the event-related potentials and is generated by the anterior cingulate cortex. Interestingly, this component was independent of the auditory feedback. However, the auditory information did modulate the processing of the errors after their execution, as reflected in a larger error positivity (Pe). Our data are interpreted within the context of feedforward models and the auditory-motor coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrashekhar, MVS
The objective is to develop and implement a superior low-cost, large area (potentially >32in), easily deployable, close proximity, harsh environment innovative neutron sensor needed for next generation fuel cycle monitoring. We will exploit recent breakthroughs at the PI’s lab on the electrochemistry of epitaxial graphene (EG) formed on commercial SiC wafers, a transformative nanomaterial system with superior radiation detection and durability properties to develop a new paradigm in detection for fast neutrons, a by-product of fission reactors. There are currently few effective detection/monitoring schemes, especially solid-state ones at present. This is essential for monitoring and control of future fuel cyclesmore » to make them more efficient and reliable. By exploiting these novel materials, as well as innovative hybrid SiC/EG/Cladding device architectures conceived by the team, will develop low-cost, high performance solutions to fast-neutron detection. Finally, we will also explore 3-terminal device implementations for neutron detectors with built-in electronic gain to further shrink these devices and improve their sensitivity.« less
Evidence for different accretion regimes in GRO J1008-57
NASA Astrophysics Data System (ADS)
Kühnel, Matthias; Fürst, Felix; Pottschmidt, Katja; Kreykenbohm, Ingo; Ballhausen, Ralf; Falkner, Sebastian; Rothschild, Richard E.; Klochkov, Dmitry; Wilms, Jörn
2017-11-01
We present a comprehensive spectral analysis of the BeXRB GRO J1008-57 over a luminosity range of three orders of magnitude using NuSTAR, Suzaku, and RXTE data. We find significant evolution of the spectral parameters with luminosity. In particular, the photon index hardens with increasing luminosity at intermediate luminosities in the range 1036-1037 erg s-1. This evolution is stable and repeatedly observed over different outbursts. However, at the extreme ends of the observed luminosity range, we find that the correlation breaks down, with a significance level of at least 3.7σ. We conclude that these changes indicate transitions to different accretion regimes, which are characterized by different deceleration processes, such as Coulomb or radiation breaking. We compare our observed luminosity levels of these transitions to theoretical predications and discuss the variation of those theoretical luminosity values with fundamental neutron star parameters. Finally, we present detailed spectroscopy of the unique "triple peaked" outburst in 2014/15 which does not fit in the general parameter evolution with luminosity. The pulse profile on the other hand is consistent with what is expected at this luminosity level, arguing against a change in accretion geometry. In summary, GRO J1008-57 is an ideal target to study different accretion regimes due to the well-constrained evolution of its broad-band spectral continuum over several orders of magnitude in luminosity.
Comparison of Fast Neutron Detector Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stange, Sy; Mckigney, Edward Allen
2015-02-09
This report documents the work performed for the Department of Homeland Security Domestic Nuclear Detection O ce as the project Fast Neutron Detection Evaluation under contract HSHQDC-14-X-00022. This study was performed as a follow-on to the project Study of Fast Neutron Signatures and Measurement Techniques for SNM Detection - DNDO CFP11-100 STA-01. That work compared various detector technologies in a portal monitor con guration, focusing on a comparison between a number of fast neutron detection techniques and two standard thermal neutron detection technologies. The conclusions of the earlier work are contained in the report Comparison of Fast Neutron Detector Technologies.more » This work is designed to address questions raised about assumptions underlying the models built for the earlier project. To that end, liquid scintillators of two di erent sizes{ one a commercial, o -the-shelf (COTS) model of standard dimensions and the other a large, planer module{were characterized at Los Alamos National Laboratory. The results of those measurements were combined with the results of the earlier models to gain a more complete picture of the performance of liquid scintillator as a portal monitor technology.« less
Guilt by Association-Based Discovery of Botnet Footprints
2010-11-01
our fast flux database using our Fast Flux Monitor ( FFM ); a Web service application designed to detect whether a domain exhibits fast flux (FF) or...double flux (DF) behaviour. The primary technical components of FFM include: (1) sensors which perform real-time detection of FF service networks...sensors for our FFM active sensors: (1) FF Activity Index, (2) Footprint Index, and (3) Time To Live (TTL), and (4) Guilt by Association Score. In
NASA Technical Reports Server (NTRS)
Mruphy, Kendrah D.; Yaqoob, Tahir; Terashima, Yuichi
2007-01-01
We present the results of a one year monitoring campaign of the Seyfert 1.9 galaxy NGC 2992 with RXTE. Historically, the source has been shown to vary dramatically in 2-10 keV flux over timescales of years and was thought to be slowly transitioning between periods of quiescence and active accretion. Our results show that in one year the source continuum flux covered almost the entire historical range, making it unlikely that the low-luminosity states correspond to the accretion mechanism switching off. During flaring episodes we found that a highly redshifted Fe K line appears, implying that the violent activity is occurring in the inner accretion disk, within 100 gravitational radii of the central black hole. We also found that the Compton y parameter for the X-ray continuum remained approximately constant during the large amplitude variability. These observations make NGC 2992 well-suited for future multi-waveband monitoring, as a test-bed for constraining accretion models.
NASA Astrophysics Data System (ADS)
Wang, Tinggui; Yan, Lin; Dou, Liming; Jiang, Ning; Sheng, Zhenfeng; Yang, Chenwei
2018-07-01
We report the discovery of a sample of 19 low-redshift (z < 0.22) spectroscopically non-Seyfert galaxies that show slow declining mid-infrared (MIR) light curves (LCs), similar to those of tidal disruption event (TDE) candidates with extreme coronal lines. Two sources also showed relatively fast-rising MIR LCs. They consist of a 61 per cent sample of Wide-field Infrared Survey Explorer (WISE) MIR variable non-Seyfert galaxies with Sloan Digital Sky Survey (SDSS) spectra. In a comparison sample of optically selected Seyfert galaxies, the fraction of sources with such a LC is only 15 per cent. After rejecting five plausible obscured Seyfert galaxies with red MIR colours, the remaining 14 objects are studied in detail in this article. We fit the declining part of the LC with an exponential law and the decay time is typically one year. The observed peak MIR luminosities (νLν) after subtracting host galaxies are in the range of a few 1042-1044 erg s-1, with a median of 5 × 1043 erg s-1 in the W2 band. The black hole masses are distributed over a wide range, with more than half between 107 and 108 M⊙, but are significantly different from those of optical/UV selected TDEs. Furthermore, MIR luminosities are correlated with the black hole mass, stellar mass or luminosity of their host bulges. Most galaxies in the sample are red and luminous, with an absolute r magnitude between -20 and -23. We estimate the rate of event as about 10-4 galaxy-1 yr-1 among luminous red galaxies. We discuss several possibilities for variable infrared sources and conclude that most likely they are caused by short sporadic fuelling of supermassive black holes via either the instability of accretion flows or tidal disruption of stars.
X-ray pulsars in nearby irregular galaxies
NASA Astrophysics Data System (ADS)
Yang, Jun
2018-01-01
The Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Irregular Galaxy IC 10 are valuable laboratories to study the physical, temporal and statistical properties of the X-ray pulsar population with multi-satellite observations, in order to probe fundamental physics. The known distance of these galaxies can help us easily categorize the luminosity of the pulsars and their age difference can be helpful for for studying the origin and evolution of compact objects. Therefore, a complete archive of 116 XMM-Newton PN, 151 Chandra (Advanced CCD Imaging Spectrometer) ACIS, and 952 RXTE PCA observations for the pulsars in the Small Magellanic Cloud (SMC) were collected and analyzed, along with 42 XMM-Newton and 30 Chandra observations for the Large Magellanic Cloud, spanning 1997-2014. From a sample of 67 SMC pulsars we generate a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and X-ray spectrum. Combining all three satellites, I generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 28/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<10 s) are rarely detected, which yet are more prone to giant outbursts. In parallel we compare the observed pulse profiles to our general relativity (GR) model of X-ray emission in order to constrain the physical parameters of the pulsars.In addition, we conduct a search for optical counterparts to X-ray sources in the local dwarf galaxy IC 10 to form a comparison sample for Magellanic Cloud X-ray pulsars.
NASA Astrophysics Data System (ADS)
Gall, C.; Stritzinger, M. D.; Ashall, C.; Baron, E.; Burns, C. R.; Hoeflich, P.; Hsiao, E. Y.; Mazzali, P. A.; Phillips, M. M.; Filippenko, A. V.; Anderson, J. P.; Benetti, S.; Brown, P. J.; Campillay, A.; Challis, P.; Contreras, C.; Elias de la Rosa, N.; Folatelli, G.; Foley, R. J.; Fraser, M.; Holmbo, S.; Marion, G. H.; Morrell, N.; Pan, Y.-C.; Pignata, G.; Suntzeff, N. B.; Taddia, F.; Robledo, S. Torres; Valenti, S.
2018-03-01
We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Δm15 (B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B- and H-band magnitudes differ by 0.60 mag and 0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that differ by 14% and 9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B - V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, 56Ni production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the differences in the B - V colour evolution along the Lira regime suggest that the progenitor of SN 2011iv had a higher central density than SN 2007on. The photometry tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A58
Monitoring and decreasing public smoking among youth.
Jason, Leonard A; Pokorny, Steven B; Sanem, Julia R; Adams, Monica L
2006-09-01
This study examined the impact of tobacco possession laws on public smoking among youth. There were two intervention sites: a fast food restaurant and a shopping mall. Two control sites were also monitored for public smoking among youth. Preliminary findings suggest that when police issued tickets to minors for violating tobacco possession laws, the number of youth smoking in public declined in both towns, with a more dramatic decrease occurring at the fast food site. In contrast, public smoking among youth in the control sites was not affected. The significance of reducing number of youth smoking in public through tobacco possession laws is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Applegate, J.H.
1988-06-01
It is shown that a radiative envelope in which the Kramers opacity law holds cannot transport a luminosity larger than a critical value, and it is argued that the transition to red giant structure is triggered by the star's luminosity exceeding the critical value. If the Kramers law is used for all temperatures and densities, the radius of the star diverges as the critical luminosity is approached. In real stars the radiative envelope expands as the luminosity increases until the star intersects the Hayashi track. Once on the Hayashi track, luminosities in excess of the critical luminosity can be accommodatedmore » by forcing most of the mass of the envelope into the convection zone. 17 references.« less
Lessan, N; Hannoun, Z; Hasan, H; Barakat, M T
2015-02-01
Ramadan fasting represents a major shift in meal timing and content for practicing Muslims. This study used continuous glucose monitoring (CGM) to assess changes in markers of glycaemic excursions during Ramadan fasting to investigate the short-term safety of this practice in different groups of patients with diabetes. A total of 63 subjects (56 with diabetes, seven healthy volunteers; 39 male, 24 female) had CGM performed during, before and after Ramadan fasting. Mean CGM curves were constructed for each group for these periods that were then used to calculate indicators of glucose control and excursions. Post hoc data analyses included comparisons of different medication categories (metformin/no medication, gliptin, sulphonylurea and insulin). Medication changes during Ramadan followed American Diabetes Association guidelines. Among patients with diabetes, there was a significant difference in mean CGM curve during Ramadan, with a slow fall during fasting hours followed by a rapid rise in glucose level after the sunset meal (iftar). The magnitude of this excursion was greatest in the insulin-treated group, followed by the sulphonylurea-treated group. Markers of control deteriorated in a small number (n=3) of patients. Overall, whether fasting or non-fasting, subjects showed no statistically significant changes in mean interstitial glucose (IG), mean amplitude of glycaemic excursion (MAGE), high and low blood glucose indices (HBGI/LBGI), and number of glucose excursions and rate of hypoglycaemia. The main change in glycaemic control with Ramadan fasting in patients with diabetes is in the pattern of excursions. Ramadan fasting caused neither overall deterioration nor improvement in the majority of patients with good baseline glucose control. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laycock, Silas; Cappallo, Rigel; Oram, Kathleen
We report the discovery of a large amplitude (factor of ∼100) X-ray transient (IC 10 X-2, CXOU J002020.99+591758.6) in the nearby dwarf starburst galaxy IC 10 during our Chandra monitoring project. Based on the X-ray timing and spectral properties, and an optical counterpart observed with Gemini, the system is a high-mass X-ray binary consisting of a luminous blue supergiant and a neutron star. The highest measured luminosity of the source was 1.8 × 10{sup 37} erg s{sup –1}during an outburst in 2003. Observations before, during, and after a second outburst in 2010 constrain the outburst duration to be less thanmore » 3 months (with no lower limit). The X-ray spectrum is a hard power law (Γ = 0.3) with fitted column density (N{sub H} = 6.3 × 10{sup 21} atom cm{sup –2}), consistent with the established absorption to sources in IC 10. The optical spectrum shows hydrogen Balmer lines strongly in emission at the correct blueshift (-340 km s{sup –1}) for IC 10. The N III triplet emission feature is seen, accompanied by He II [4686] weakly in emission. Together these features classify the star as a luminous blue supergiant of the OBN subclass, characterized by enhanced nitrogen abundance. Emission lines of He I are seen, at similar strength to Hβ. A complex of Fe II permitted and forbidden emission lines are seen, as in B[e] stars. The system closely resembles galactic supergiant fast X-ray transients, in terms of its hard spectrum, variability amplitude, and blue supergiant primary.« less
Evolution of the luminosity function of extragalactic objects
NASA Technical Reports Server (NTRS)
Petrosian, V.
1985-01-01
A nonparametric procedure for determination of the evolution of the luminosity function of extragalactic objects and use of this for prediction of expected redshift and luminosity distribution of objects is described. The relation between this statistical evolution of the population and their physical evolution, such as the variation with cosmological epoch of their luminosity and formation rate is presented. This procedure when applied to a sample of optically selected quasars with redshifts less than two shows that the luminosity function evolves more strongly for higher luminosities, indicating a larger quasar activity at earlier epochs and a more rapid evolution of the objects during their higher luminosity phases. It is also shown that absence of many quasars at redshifts greater than three implies slowing down of this evolution in the conventional cosmological models, perhaps indicating that this is near the epoch of the birth of the quasar (and galaxies).
Testing and Improving the Luminosity Relations for Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Collazzi, Andrew
2011-08-01
Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of 'standard candle'; where standard candle is meant in the usual sense that their luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, several methods are employed to do just that. First, generalized forms of two tests are performed on all of the luminosity relations. All the luminosity relations pass the second of these tests, and all but two pass the first. Even with this failure, the redundancy in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the 'Firmani relation' is shown to have poorer accuracy than first advertised. In addition, it is shown to be exactly derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a popular luminosity indicator (Epeak ) are measured. The result is that an irreducible systematic error of 28% exists. After that, a preliminary investigation into the usefulness of breaking GRBs into individual pulses is conducted. The results of an 'ideal' set of data do not provide for confident results due to large error bars. Finally, the work concludes with a discussion about the impact of the work and the future of GRB luminosity relations.
The 2.35 year itch of Cygnus OB2 #9. I. Optical and X-ray monitoring
NASA Astrophysics Data System (ADS)
Nazé, Y.; Mahy, L.; Damerdji, Y.; Kobulnicky, H. A.; Pittard, J. M.; Parkin, E. R.; Absil, O.; Blomme, R.
2012-10-01
Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity. Aims: In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision. Methods: This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton. Results: In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad Hα line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time. Conclusions: It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage. Based on observations collected at OHP, with Swift, and with XMM-Newton.Tables 1 and 2 are available in electronic form at http://www.aanda.org
Luminosity variations of protostars at the Hayashi stage
NASA Astrophysics Data System (ADS)
Abdulmyanov, T. R.
2017-09-01
In the present paper, the luminosity variations of protostars at the Hayashi stage are considered. According to the density wave model, the luminosity of protostars will have significant variations throughout the Hayashi stage. The initial moments of the formation of protoplanetary rings of the Solar system and the luminosity of the protostar for these moments are obtained.
NLC Luminosity as a Function of Beam Parameters
NASA Astrophysics Data System (ADS)
Nosochkov, Y.
2002-06-01
Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.
NASA Astrophysics Data System (ADS)
Alhroob, M.; Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Bozza, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; DiGirolamo, B.; Doubek, M.; Favre, G.; Godlewski, J.; Hallewell, G.; Hasib, A.; Katunin, S.; Langevin, N.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Strauss, M.; Vacek, V.; Zwalinski, L.
2015-03-01
Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: one of these will monitor air leaks into the low pressure condenser while the other will measure return vapour flow along with C3F8/C2F6 blend composition, should blend operation be necessary to protect the ATLAS silicon tracker under increasing LHC luminosity. We describe these instruments and their electronics.
Truck monitoring and warning systems for freeway-to-freeway connections
DOT National Transportation Integrated Search
1999-10-01
This research focuses on the development and evaluation of a truck monitoring and warning (TM&W) system for detecting high, long, fast trucks at freeway-to-freeway connections and activating displays to warn the truck drivers of potential hazards as ...
Multivariate Analysis for Quantification of Plutonium(IV) in Nitric Acid Based on Absorption Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Amanda M.; Adami, Susan R.; Sinkov, Sergey I.
Development of more effective, reliable, and fast methods for monitoring process streams is a growing opportunity for analytical applications. Many fields can benefit from on-line monitoring, including the nuclear fuel cycle where improved methods for monitoring radioactive materials will facilitate maintenance of proper safeguards and ensure safe and efficient processing of materials. On-line process monitoring with a focus on optical spectroscopy can provide a fast, non-destructive method for monitoring chemical species. However, identification and quantification of species can be hindered by the complexity of the solutions if bands overlap or show condition-dependent spectral features. Plutonium (IV) is one example ofmore » a species which displays significant spectral variation with changing nitric acid concentration. Single variate analysis (i.e. Beer’s Law) is difficult to apply to the quantification of Pu(IV) unless the nitric acid concentration is known and separate calibration curves have been made for all possible acid strengths. Multivariate, or chemometric, analysis is an approach that allows for the accurate quantification of Pu(IV) without a priori knowledge of nitric acid concentration.« less
From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration
NASA Astrophysics Data System (ADS)
Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans
2009-05-01
A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.
NASA Astrophysics Data System (ADS)
Palmer, R. B.; Gallardo, J. C.
INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION
New beam-position monitor system for upgraded Photon Factory storage ring.
Haga, K; Honda, T; Tadano, M; Obina, T; Kasuga, T
1998-05-01
Accompanying the brilliance-upgrading project at the Photon Factory storage ring, the beam-position monitor (BPM) system has been renovated. The new system was designed to enable precise and fast measurements to correct the closed-orbit distortion (COD), as well as to feed back the orbit position during user runs. There are 42 BPMs newly installed, amounting to a total of 65 BPMs. All of the BPMs are calibrated on the test bench using a coaxially strung metallic wire. The measured electrical offsets are typically 200 micro m in both directions, which is 1/2-1/3 of those of the old-type BPMs. In the signal-processing system, PIN diode switches are employed in order to improve reliability. In the fastest mode, this system is capable of measuring COD within about 10 ms; this fast acquisition will allow fast suppression of the beam movement for frequencies up to 50 Hz using a global feedback system.
Torsion limits from t t macr production at the LHC
NASA Astrophysics Data System (ADS)
de Almeida, F. M. L.; de Andrade, F. R.; do Vale, M. A. B.; Nepomuceno, A. A.
2018-04-01
Torsion models constitute a well-known class of extended quantum gravity models. In this work, one investigates the phenomenological consequences of a torsion field interacting with top quarks at the LHC. A torsion field could appear as a new heavy state characterized by its mass and couplings to fermions. This new state would form a resonance decaying into a top antitop pair. The latest ATLAS t t ¯ production results from LHC 13 TeV data are used to set limits on torsion parameters. The integrated luminosity needed to observe torsion resonance at the next LHC upgrades are also evaluated, considering different values for the torsion mass and its couplings to Standard Model fermions. Finally, prospects for torsion exclusion at the future LHC phases II and III are obtained using fast detector simulations.
Space Density Of Optically-Selected Type II Quasars From The SDSS
NASA Astrophysics Data System (ADS)
Reyes, Reinabelle; Zakamska, N. L.; Strauss, M. A.; Green, J.; Krolik, J. H.; Shen, Y.; Richards, G. T.
2007-12-01
Type II quasars are luminous Active Galactic Nuclei (AGN) whose central regions are obscured by large amounts of gas and dust. In this poster, we present a catalog of 887 type II quasars with redshifts z<0.83 from the Sloan Digital Sky Survey (SDSS), selected based on their emission lines, and derive the 1/Vmax [OIII] 5007 luminosity function from this sample. Since some objects may not be included in the sample because they lack strong emission lines, the derived luminosity function is only a lower limit. We also derive the [OIII] 5007 luminosity function for a sample of type I (broad-line) quasars in the same redshift range. Taking [OIII] 5007 luminosity as a tracer of intrinsic luminosity in both type I and type II quasars, we obtain lower limits to the type II quasar fraction as a function of [OIII] 5007 luminosity, from L[OIII] = 108.3 to 1010 Lsun, which roughly correspond to bolometric luminosities of 1044 to 1046 erg/s.
The High Luminosity LHC Project
NASA Astrophysics Data System (ADS)
Rossi, Lucio
The High Luminosity LHC is one of the major scientific project of the next decade. It aims at increasing the luminosity reach of LHC by a factor five for peak luminosity and a factor ten in integrated luminosity. The project, now fully approved and funded, will be finished in ten years and will prolong the life of LHC until 2035-2040. It implies deep modifications of the LHC for about 1.2 km around the high luminosity insertions of ATLAS and CMS and relies on new cutting edge technologies. We are developing new advanced superconducting magnets capable of reaching 12 T field; superconducting RF crab cavities capable to rotate the beams with great accuracy; 100 kA and hundred meter long superconducting links for removing the power converter out of the tunnel; new collimator concepts, etc... Beside the important physics goals, the High Luminosity LHC project is an ideal test bed for new technologies for the next hadron collider for the post-LHC era.
Luminosity function and cosmological evolution of X-ray selected quasars
NASA Technical Reports Server (NTRS)
Maccacaro, T.; Gioia, I. M.
1983-01-01
The preliminary analysis of a complete sample of 55 X-ray sources is presented as part of the Medium Sensitivity Survey of the Einstein Observatory. A pure luminosity evolutionary law is derived in order to determine the uniform distribution of the sources and the rates of evolution for Active Galactic Nuclei (AGNs) observed by X-ray and optical techniques are compared. A nonparametric representation of the luminosity function is fitted to the observational data. On the basis of the reduced data, it is determined that: (1) AGNs evolve cosmologically; (2) less evolution is required to explain the X-ray data than the optical data; (3) the high-luminosity portion of the X-ray luminosity can be described by a power-law with a slope of gamma = 3.6; and (4) the X-ray luminosity function flattens at low luminosities. Some of the implications of the results for conventional theoretical models of the evolution of quasars and Seyfert galaxies are discussed.
Cosmology with Gravitational Wave/Fast Radio Burst Associations
NASA Astrophysics Data System (ADS)
Wei, Jun-Jie; Wu, Xue-Feng; Gao, He
2018-06-01
Recently, some theoretical models predicted that a small fraction of fast radio bursts (FRBs) could be associated with gravitational waves (GWs). In this Letter, we discuss the possibility of using GW/FRB association systems, if they are commonly detected in the future, as a complementary cosmic probe. We propose that upgraded standard sirens can be constructed from the joint measurements of luminosity distances D L derived from GWs and dispersion measures DMIGM derived from FRBs (i.e., the combination D L · DMIGM). Moreover, unlike the traditional standard-siren approach (i.e., the D L method) and the DMIGM method that rely on the optimization of the Hubble constant H 0, this D L · DMIGM method has the advantage of being independent of H 0. Through Monte Carlo simulations, we prove that the D L · DMIGM method is more effective for constraining cosmological parameters than D L or DMIGM separately, and that it enables us to achieve accurate multimessenger cosmology from approximately 100 GW/FRB systems. Additionally, even if GW/FRB associations do not exist, the methodology developed here can still be applied to those GWs and FRBs that occur at the same redshifts.
Testing the magnetar scenario for superluminous supernovae with circular polarimetry
NASA Astrophysics Data System (ADS)
Cikota, Aleksandar; Leloudas, Giorgos; Bulla, Mattia; Inserra, Cosimo; Chen, Ting-Wan; Spyromilio, Jason; Patat, Ferdinando; Cano, Zach; Cikota, Stefan; Coughlin, Michael W.; Kankare, Erkki; Lowe, Thomas B.; Maund, Justyn R.; Rest, Armin; Smartt, Stephen J.; Smith, Ken W.; Wainscoat, Richard J.; Young, David R.
2018-05-01
Superluminous supernovae (SLSNe) are at least ˜5 times more luminous than common supernovae (SNe). Especially hydrogen-poor SLSN-I are difficult to explain with conventional powering mechanisms. One possible scenario that might explain such luminosities is that SLSNe-I are powered by an internal engine, such as a magnetar or an accreting black hole. Strong magnetic fields or collimated jets can circularly polarize light. In this work, we measured circular polarization of two SLSNe-I with the FOcal Reducer and low dispersion Spectrograph (FORS2) mounted at the ESO's Very Large Telescope (VLT). PS17bek, a fast evolving SLSN-I, was observed around peak, while OGLE16dmu, a slowly evolving SLSN-I, was observed 100 days after maximum. Neither SLSN shows evidence of circularly polarized light, however, these non-detections do not rule out the magnetar scenario as the powering engine for SLSNe-I. We calculate the strength of the magnetic field and the expected circular polarization as a function of distance from the magnetar, which decreases very fast. Additionally, we observed no significant linear polarization for PS17bek at four epochs, suggesting that the photosphere near peak is close to spherical symmetry.
NASA Astrophysics Data System (ADS)
Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.
2018-03-01
Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.
Fast low-level light pulses from the night sky observed with the SKYFLASH program
NASA Astrophysics Data System (ADS)
Winckler, J. R.; Franz, R. C.; Nemzek, R. J.
1993-05-01
This paper presents further discussion of and new data on fast subvisual increases in the luminosity of the night sky described in our previous papers. A detailed technical description of the simple telescopic photometers used in the project SKYFLASH and their mode of operation including the detection of polarized Rayleigh-scattered flashes is provided. Distant lightning storms account for many of the events, and the complex relations between short and long luminous pulses with and without sferics are shown by examples from a new computerized data system, supplemented by two low-light-level TV cameras. Of particular interest are the previously observed 'long' events having a slow rise and fall, 20-ms duration, and showing small polarization and no coincident sferic. A group of such events on September 22-23 during the invasion of U.S. coasts by Hurricane Hugo, is discussed in detail. The recently observed 'plume' cloud-top-to-stratosphere lightning event is suggested as a possible source type for these flashes. An alternative source may be exploding meteors, recently identified during SKYFLASH observations by low-light-level television techniques as the origin of some sky-wide flash events described herein.
Fast low-level light pulses from the night sky observed with the SKYFLASH program
NASA Technical Reports Server (NTRS)
Winckler, J. R.; Franz, R. C.; Nemzek, R. J.
1993-01-01
This paper presents further discussion of and new data on fast subvisual increases in the luminosity of the night sky described in our previous papers. A detailed technical description of the simple telescopic photometers used in the project SKYFLASH and their mode of operation including the detection of polarized Rayleigh-scattered flashes is provided. Distant lightning storms account for many of the events, and the complex relations between short and long luminous pulses with and without sferics are shown by examples from a new computerized data system, supplemented by two low-light-level TV cameras. Of particular interest are the previously observed 'long' events having a slow rise and fall, 20-ms duration, and showing small polarization and no coincident sferic. A group of such events on September 22-23 during the invasion of U.S. coasts by Hurricane Hugo, is discussed in detail. The recently observed 'plume' cloud-top-to-stratosphere lightning event is suggested as a possible source type for these flashes. An alternative source may be exploding meteors, recently identified during SKYFLASH observations by low-light-level television techniques as the origin of some sky-wide flash events described herein.
NASA Astrophysics Data System (ADS)
Niino, Yuu
2018-05-01
We investigate how the statistical properties of dispersion measure (DM) and apparent flux density/fluence of (nonrepeating) fast radio bursts (FRBs) are determined by unknown cosmic rate density history [ρ FRB(z)] and luminosity function (LF) of the transient events. We predict the distributions of DMs, flux densities, and fluences of FRBs taking account of the variation of the receiver efficiency within its beam, using analytical models of ρ FRB(z) and LF. Comparing the predictions with the observations, we show that the cumulative distribution of apparent fluences suggests that FRBs originate at cosmological distances and ρ FRB increases with redshift resembling the cosmic star formation history (CSFH). We also show that an LF model with a bright-end cutoff at log10 L ν (erg s‑1 Hz‑1) ∼ 34 are favored to reproduce the observed DM distribution if ρ FRB(z) ∝ CSFH, although the statistical significance of the constraints obtained with the current size of the observed sample is not high. Finally, we find that the correlation between DM and flux density of FRBs is potentially a powerful tool to distinguish whether FRBs are at cosmological distances or in the local universe more robustly with future observations.
Recoil-ion momentum distributions for transfer ionization in fast proton-He collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, H.T.; Reinhed, P.; Schuch, R.
2005-07-15
We present high-luminosity experimental investigations of the transfer ionization (TI:p+He{yields}H{sup 0}+He{sup 2+}+e{sup -}) process in collisions between fast protons and neutral helium atoms in the earlier inaccessibly high-energy range 1.4-5.8 MeV. The protons were stored in the heavy-ion storage and cooler ring CRYRING, where they intersected a narrow supersonic helium gas jet. We discuss the longitudinal recoil-ion momentum distribution, as measured by means of cold-target recoil-ion momentum spectroscopy and find that this distribution splits into two completely separated peaks at the high end of our energy range. These separate contributions are discussed in terms of the earlier proposed Thomas TImore » (TTI) and kinematic TI mechansims. The cross section of the TTI process is found to follow a {sigma}{proportional_to}v{sup -b} dependence with b=10.78{+-}0.27 in accordance with the expected v{sup -11} asymptotic behavior. Further, we discuss the probability for shake-off accompanying electron transfer and the relation of this TI mechanism to photodouble ionization. Finally the influence of the initial-state electron velocity distribution on the TTI process is discussed.« less
REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Z. G.; Wang, J. S.; Huang, Y. F.
Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has suchmore » a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.« less
Luminosity and Stellar Mass Functions from the 6dF Galaxy Survey
NASA Astrophysics Data System (ADS)
Colless, M.; Jones, D. H.; Peterson, B. A.; Campbell, L.; Saunders, W.; Lah, P.
2007-12-01
The completed 6dF Galaxy Survey includes redshifts for over 124,000 galaxies. We present luminosity functions in optical and near-infrared passbands that span a range of 10^4 in luminosity. These luminosity functions show systematic deviations from the Schechter form. The corresponding luminosity densities in the optical and near-infrared are consistent with an old stellar population and a moderately declining star formation rate. Stellar mass functions, derived from the K band luminosities and simple stellar population models selected by b_J-r_F colour, lead to an estimate of the present-day stellar mass density of ρ_* = (5.00 ± 0.11) × 10^8 h M_⊙ Mpc^{-3}, corresponding to Ω_* h = (1.80 ± 0.04) × 10^{-3}.
Truck monitoring and warning systems for freeway-to-freeway connections : summary
DOT National Transportation Integrated Search
1999-10-01
This project focuses on the development and evaluation of a truck monitoring and warning (TM&W) system for detecting high, long, fast trucks at freeway-to-freeway connections and activating displays to warn the truck drivers of potential hazards as t...
Astronaut Andrew M. Allen monitors Columbia's systems from pilots station
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Andrew M. Allen monitors Columbia's systems from the pilot's station during the entry phase of the STS-62 mission. The fast-speed 35mm film highlights the many controls and displays and the cathode ray tubes on the forward flight deck.
Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J
2018-02-01
The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.
Luminosity determination in pp collisions at √{s} = 8 TeV using the ATLAS detector at the LHC
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kawade, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Menary, S. B.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.
2016-12-01
The luminosity determination for the ATLAS detector at the LHC during pp collisions at √{s} = 8 TeV in 2012 is presented. The evaluation of the luminosity scale is performed using several luminometers, and comparisons between these luminosity detectors are made to assess the accuracy, consistency and long-term stability of the results. A luminosity uncertainty of δ L/L = ± 1.9% is obtained for the 22.7 fb^{-1} of pp collision data delivered to ATLAS at √{s} = 8 TeV in 2012.
Aaboud, M.; Aad, G.; Abbott, B.; ...
2016-11-28
The luminosity determination for the ATLAS detector at the LHC during pp collisions atmore » $$\\sqrt{s} = 8$$ TeV in 2012 is presented. The evaluation of the luminosity scale is performed using several luminometers, and comparisons between these luminosity detectors are made to assess the accuracy, consistency and long-term stability of the results. A luminosity uncertainty of $δL/L$= ± 1.9% is obtained for the 22.7fb –1 of pp collision data delivered to ATLAS at $$\\sqrt{s} = 8$$ TeV in 2012.« less
Vogeser, Michael; König, Daniel; Frey, Ingrid; Predel, Hans-Georg; Parhofer, Klaus Georg; Berg, Aloys
2007-09-01
Lifestyle changes with increased physical activity and balanced energy intake are recognized as the principal interventions in obesity and insulin resistance. Only few prospective studies, however, have so far addressed the potential role of routine biochemical markers of insulin sensitivity in the monitoring of respective interventions. Fasting insulin and glucose was measured in 33 obese individuals undergoing a lifestyle modification program (MOBILIS) at baseline and after 1 year. The HOMA-IR index (homeostasis model of insulin resistance) was calculated as [fasting serum glucose*fasting serum insulin/22.5], with lower values indicating a higher degree of insulin sensitivity. While the median body mass index (BMI) and waist circumference decreased by 10% and 11%, respectively, the HOMA-IR index decreased in an over-proportional manner by 45% within 1 year (BMI baseline, median 35.7, interquartile range (IQR) 33.7-37.7; after 1 year, median 32.2, IQR 29.6-35.1. HOMA-IR baseline, median 2.9, IQR 1.5-4.6; after 1 year 1.6, IQR 0.9-2.7). In contrast to HOMA-IR and fasting serum insulin, no significant changes in fasting serum glucose were observed. Baseline and post-intervention HOMA-IR showed a high degree of inter-individual variation with eight individuals maintaining high HOMA-IR values despite weight loss after 1 year of intervention. Individual changes in the carbohydrate metabolism achieved by a lifestyle intervention program were displayed by fasting serum insulin concentrations and the HOMA-IR but not by fasting glucose measurement alone. Therefore, assessment of the HOMA-IR may help to individualize lifestyle interventions in obesity and to objectify improvements in insulin sensitivity after therapeutic lifestyle changes.
Smaller, Lower-Power Fast-Neutron Scintillation Detectors
NASA Technical Reports Server (NTRS)
Patel, Jagdish; Blaes, Brent
2008-01-01
Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.
The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey
NASA Astrophysics Data System (ADS)
Akiyama, Masayuki; He, Wanqiu; Ikeda, Hiroyuki; Niida, Mana; Nagao, Tohru; Bosch, James; Coupon, Jean; Enoki, Motohiro; Imanishi, Masatoshi; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Onoue, Masafusa; Ouchi, Masami; Schulze, Andreas; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Terashima, Yuichi; Toba, Yoshiki; Ueda, Yoshihiro
2018-01-01
We present the luminosity function of z ˜ 4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg2. From stellar objects, 1666 z ˜ 4 quasar candidates are selected via the g-dropout selection down to i = 24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3, with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, a quasar luminosity function covering the wide luminosity range of M1450 = -22 to -29 mag is constructed. The quasar luminosity function is well described by a double power-law model with a knee at M1450 = -25.36 ± 0.13 mag and a flat faint-end slope with a power-law index of -1.30 ± 0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those seen at z ˜ 2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z > 5. If we convert the M1450 luminosity function to the hard X-ray 2-10 keV luminosity function using the relation between the UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected active galactic nuclei (AGNs) above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.
NASA Astrophysics Data System (ADS)
Kawamata, Ryota; Ishigaki, Masafumi; Shimasaku, Kazuhiro; Oguri, Masamune; Ouchi, Masami; Tanigawa, Shingo
2018-03-01
We construct z ∼ 6–7, 8, and 9 faint Lyman break galaxy samples (334, 61, and 37 galaxies, respectively) with accurate size measurements with the software glafic from the complete Hubble Frontier Fields (HFF) cluster and parallel fields data. These are the largest samples hitherto and reach down to the faint ends of recently obtained deep luminosity functions. At faint magnitudes, however, these samples are highly incomplete for galaxies with large sizes, implying that derivation of the luminosity function sensitively depends on the intrinsic size–luminosity relation. We thus conduct simultaneous maximum-likelihood estimation of luminosity function and size–luminosity relation parameters from the observed distribution of galaxies on the size–luminosity plane with the help of a completeness map as a function of size and luminosity. At z ∼ 6–7, we find that the intrinsic size–luminosity relation expressed as r e ∝ L β has a notably steeper slope of β ={0.46}-0.09+0.08 than those at lower redshifts, which in turn implies that the luminosity function has a relatively shallow faint-end slope of α =-{1.86}-0.18+0.17. This steep β can be reproduced by a simple analytical model in which smaller galaxies have lower specific angular momenta. The β and α values for the z ∼ 8 and 9 samples are consistent with those for z ∼ 6–7 but with larger errors. For all three samples, there is a large, positive covariance between β and α, implying that the simultaneous determination of these two parameters is important. We also provide new strong lens mass models of Abell S1063 and Abell 370, as well as updated mass models of Abell 2744 and MACS J0416.1‑2403.
An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102
NASA Astrophysics Data System (ADS)
Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Heald, G. H.; Kaspi, V. M.; Law, C. J.; Sobey, C.; Adams, E. A. K.; Bassa, C. G.; Bogdanov, S.; Brinkman, C.; Demorest, P.; Fernandez, F.; Hellbourg, G.; Lazio, T. J. W.; Lynch, R. S.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Siemion, A. P. V.; Tendulkar, S. P.; van Rooy, P.; Wharton, R. S.; Whitlow, D.
2018-01-01
Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source—FRB 121102—has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krisciunas, Kevin; Marion, G. H.; Suntzeff, Nicholas B.
2009-12-15
We obtained optical photometry of SN 2003gs on 49 nights, from 2 to 494 days after T(B {sub max}). We also obtained near-IR photometry on 21 nights. SN 2003gs was the first fast declining Type Ia SN that has been well observed since SN 1999by. While it was subluminous in optical bands compared to more slowly declining Type Ia SNe, it was not subluminous at maximum light in the near-IR bands. There appears to be a bimodal distribution in the near-IR absolute magnitudes of Type Ia SNe at maximum light. Those that peak in the near-IR after T(B {sub max})more » are subluminous in the all bands. Those that peak in the near-IR prior to T(B {sub max}), such as SN 2003gs, have effectively the same near-IR absolute magnitudes at maximum light regardless of the decline rate {delta}m {sub 15}(B). Near-IR spectral evidence suggests that opacities in the outer layers of SN 2003gs are reduced much earlier than for normal Type Ia SNe. That may allow {gamma} rays that power the luminosity to escape more rapidly and accelerate the decline rate. This conclusion is consistent with the photometric behavior of SN 2003gs in the IR, which indicates a faster than normal decline from approximately normal peak brightness.« less
An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102.
Michilli, D; Seymour, A; Hessels, J W T; Spitler, L G; Gajjar, V; Archibald, A M; Bower, G C; Chatterjee, S; Cordes, J M; Gourdji, K; Heald, G H; Kaspi, V M; Law, C J; Sobey, C; Adams, E A K; Bassa, C G; Bogdanov, S; Brinkman, C; Demorest, P; Fernandez, F; Hellbourg, G; Lazio, T J W; Lynch, R S; Maddox, N; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Scholz, P; Siemion, A P V; Tendulkar, S P; Van Rooy, P; Wharton, R S; Whitlow, D
2018-01-10
Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source-FRB 121102-has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 10 5 radians per square metre to +1.33 × 10 5 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.
Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows
NASA Astrophysics Data System (ADS)
Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei
2016-02-01
Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.
Long-term downward trend in total solar irradiance.
Willson, R C; Hudson, H S; Frohlich, C; Brusa, R W
1986-11-28
The first 5 years (from 1980 to 1985) of total solar irradiance observations by the first Active Cavity Radiometer Irradiance Monitor (ACRIM I) experiment on board the Solar Maximum Mission spacecraft show a clearly defined downward trend of -0.019% per year. The existence of this trend has been confirmed by the internal self-calibrations of ACRIM I, by independent measurements from sounding rockets and balloons, and by observations from the Nimbus-7 spacecraft. The trend appears to be due to unpredicted variations of solar luminosity on time scales of years, and it may be related to solar cycle magnetic activity.
X-ray rebrightening of the Be/X-ray transient Swift J0243.6+6124
NASA Astrophysics Data System (ADS)
Rouco Escorial, A.; Degenaar, N.; van den Eijnden, J.; Wijnands, R.
2018-04-01
Swift J0243.6+6124 is a Be/X-ray transient that was discovered in October 2017 when it started a giant, type-II outburst (Atel #10809, Atel #10822). After reaching the peak around November 5th 2017, the source luminosity started to decay slowly over & sim;135 days, although the decay rate increased significantly around two weeks ago. To investigate how exactly the source would decay and potentially transit back into quiescence, we triggered a monitoring program (PI: Degenaar) on the system using the Neil Gehrels Swift observatory (Swift).
Optical search for extraterrestrial intelligence with Air Cerenkov telescopes.
Eichler, D; Beskin, G
2001-01-01
We propose using large Air Cerenkov telescopes (ACTs) to search for optical, pulsed signals from extraterrestrial intelligence. Such dishes collect tens of photons from a nanosecond-scale pulse of isotropic equivalent power of tens of solar luminosities at a distance of 100 pc. The field of view for giant ACTs can be on the order of 10 square degrees, and they will be able to monitor 10-100 stars simultaneously for nanosecond pulses of about 6th magnitude or brighter. Using the Earth's diameter as a baseline, orbital motion of the planet could be detected by timing the pulse arrivals.
Diabetic emergencies including hypoglycemia during Ramadan
Ahmad, Jamal; Pathan, Md Faruque; Jaleel, Mohammed Abdul; Fathima, Farah Naaz; Raza, Syed Abbas; Khan, A. K. Azad; Ishtiaq, Osama; Sheikh, Aisha
2012-01-01
Majority of physicians are of the opinion that Ramadan fasting is acceptable for well-balanced type 2 patients conscious of their disease and compliant with their diet and drug intake. Fasting during Ramadan for patients with diabetes carries a risk of an assortment of complications. Islamic rules allow patients not to fast. However, if patient with diabetes wish to fast, it is necessary to advice them to undertake regular monitoring of blood glucose levels several times a day, to reduce the risk of hypoglycemia during day time fasting or hyperglycemia during the night. Patient with type 1 diabetes who fast during Ramadan may be better managed with fast-acting insulin. They should have basic knowledge of carbohydrate metabolism, the standard principles of diabetes care, and pharmacology of various antidiabetic drugs. This Consensus Statement describes the management of the various diabetic emergencies that may occur during Ramadan. PMID:22837906
An order statistics approach to the halo model for galaxies
NASA Astrophysics Data System (ADS)
Paul, Niladri; Paranjape, Aseem; Sheth, Ravi K.
2017-04-01
We use the halo model to explore the implications of assuming that galaxy luminosities in groups are randomly drawn from an underlying luminosity function. We show that even the simplest of such order statistics models - one in which this luminosity function p(L) is universal - naturally produces a number of features associated with previous analyses based on the 'central plus Poisson satellites' hypothesis. These include the monotonic relation of mean central luminosity with halo mass, the lognormal distribution around this mean and the tight relation between the central and satellite mass scales. In stark contrast to observations of galaxy clustering; however, this model predicts no luminosity dependence of large-scale clustering. We then show that an extended version of this model, based on the order statistics of a halo mass dependent luminosity function p(L|m), is in much better agreement with the clustering data as well as satellite luminosities, but systematically underpredicts central luminosities. This brings into focus the idea that central galaxies constitute a distinct population that is affected by different physical processes than are the satellites. We model this physical difference as a statistical brightening of the central luminosities, over and above the order statistics prediction. The magnitude gap between the brightest and second brightest group galaxy is predicted as a by-product, and is also in good agreement with observations. We propose that this order statistics framework provides a useful language in which to compare the halo model for galaxies with more physically motivated galaxy formation models.
Toward a Unified View of Black-Hole High-Energy States
NASA Technical Reports Server (NTRS)
Nowak, Michael A.
1995-01-01
We present here a review of high-energy (greater than 1 keV) observations of seven black-hole candidates, six of which have estimated masses. In this review we focus on two parameters of interest: the ratio of 'nonthermal' to total luminosity as a function of the total luminosity divided by the Eddington luminosity, and the root-mean-square (rms) variability as a function of the nonthermal-to-total luminosity ratio. Below approx. 10% Eddington luminosity, the sources tend to be strictly nonthermal (the so called 'off' and 'low' states). Above this luminosity the sources become mostly thermal (the 'high' state). with the nonthermal component increasing with luminosity (the 'very high' and 'flare' states). There are important exceptions to this behavior, however, and no steady - as opposed to transient - source has been observed over a wide range of parameter space. In addition, the rms variability is positively correlated with the ratio of nonthermal to total luminosity, although there may be a minimum level of variability associated with 'thermal' states. We discuss these results in light of theoretical models and find that currently no single model describes the full range of black-hole high-energy behavior. In fact, the observations are exactly opposite from what one expects based upon simple notions of accretion disk instabilities.
Juchno, M.; Ambrosio, G.; Anerella, M.; ...
2016-01-26
Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb 3Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structuremore » was preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. As a result, this paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were performed at CERN and at LBNL, and presents the strain gauge measurements compared to the 3D finite element model predictions.« less
A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30
Abeysekara, A. U.; Archambault, S.; Archer, A.; ...
2017-02-21
We report that B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS detected a large-amplitude flare from B2 1215+30 during routine monitoring observations of the blazar 1ES 1218+304, located in the same field of view. The TeV flux reached 2.4 times the Crab Nebula flux with a variability timescale ofmore » $$\\lt 3.6\\,\\mathrm{hr}$$. Multiwavelength observations with Fermi-LAT, Swift, and the Tuorla Observatory revealed a correlated high GeV flux state and no significant optical counterpart to the flare, with a spectral energy distribution where the gamma-ray luminosity exceeds the synchrotron luminosity. Lastly, when interpreted in the framework of a one-zone leptonic model, the observed emission implies a high degree of beaming, with Doppler factor $$\\delta \\gt 10$$, and an electron population with spectral index $$p\\lt 2.3$$.« less
NASA Technical Reports Server (NTRS)
Klochkov, D.; Doroshenko, V.; Santangelo, A.; Staubert, R.; Ferrigno, C.; Kretschmar, P.; Caballero, I.; Wilms, J.; Kreykenbohm, I.; Pottschmidt, I.;
2012-01-01
Context. X-ray spectra of many accreting pulsars exhibit significant variations as a function of flux and thus of mass accretion rate. In some of these pulsars, the centroid energy of the cyclotron line(s), which characterizes the magnetic field strength at the site of the X-ray emission, has been found to vary systematically with flux. Aims. GX304-1 is a recently established cyclotron line source with a line energy around 50 keV. Since 2009, the pulsar shows regular outbursts with the peak flux exceeding one Crab. We analyze the INTEGRAL observations of the source during its outburst in January-February 2012. Methods. The observations covered almost the entire outburst, allowing us to measure the source's broad-band X-my spectrum at different flux levels. We report on the variations in the spectral parameters with luminosity and focus on the variations in the cyclotron line. Results. The centroid energy of the line is found to be positively correlated with the luminosity. We interpret this result as a manifestation of the local sub-Eddington (sub-critical) accretion regime operating in the source.
The remarkable infrared galaxy Arp 220 = IC 4553
NASA Technical Reports Server (NTRS)
Soifer, B. T.; Neugebauer, G.; Helou, G.; Lonsdale, C. J.; Hacking, P.; Rice, W.; Houck, J. R.; Low, F. J.; Rowan-Robinson, M.
1984-01-01
IRAS observations of the peculiar galaxy Arp 220 = IC 4553 show that it is extremely luminous in the far-infrared, with a total luminosity of 2 x 10 to the 12th solar luminosities. The infrared-to-blue luminosity ratio of this galaxy is about 80, which is the largest value of the ratio for galaxies in the UGC catalog, and places it in the range of the 'unidentified' infrared sources recently reported by Houck et al. in the IRAS all-sky survey. Other observations of Arp 220, combined with the luminosity in the infrared, allow either a Seyfert-like or starburst origin for this luminosity.
A limit to the X-ray luminosity of nearby normal galaxies
NASA Technical Reports Server (NTRS)
Worrall, D. M.; Marshall, F. E.; Boldt, E. A.
1979-01-01
Emission is studied at luminosities lower than those for which individual discrete sources can be studied. It is shown that normal galaxies do not appear to provide the numerous low luminosity X-ray sources which could make up the 2-60 keV diffuse background. Indeed, upper limits suggest luminosities comparable with, or a little less than, that of the galaxy. This is consistent with the fact that the average optical luminosity of the sample galaxies within approximately 20 Mpc is slightly lower than that of the galaxy. An upper limit of approximately 1% of the diffuse background from such sources is derived.
The luminosity function for the CfA redshift survey slices
NASA Technical Reports Server (NTRS)
De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.
1989-01-01
The luminosity function for two complete slices of the extension of the CfA redshift survey is calculated. The nonparametric technique of Lynden-Bell (1971) and Turner (1979) is used to determine the shape for the luminosity function of the 12 deg slice of the redshift survey. The amplitude of the luminosity function is determined, taking large-scale inhomogeneities into account. The effects of the Malmquist bias on a magnitude-limited redshift survey are examined, showing that the random errors in the magnitudes for the 12 deg slice affect both the determination of the luminosity function and the spatial density constrast of large scale structures.
The Herschel ATLAS: Evolution of the 250 Micrometer Luminosity Function Out to z = 0.5
NASA Technical Reports Server (NTRS)
Dye, S.; Dunne, L.; Eales, S.; Smith, D. J. B.; Amblard, A.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.; Blain, A. W.;
2010-01-01
We have determined the luminosity function of 250 micrometer-selected galaxies detected in the approximately equal to 14 deg(sup 2) science demonstration region of the Herschel-ATLAS project out to a redshift of z = 0.5. Our findings very clearly show that the luminosity function evolves steadily out to this redshift. By selecting a sub-group of sources within a fixed luminosity interval where incompleteness effects are minimal, we have measured a smooth increase in the comoving 250 micrometer luminosity density out to z = 0.2 where it is 3.6(sup +1.4) (sub -0.9) times higher than the local value.
Temperature, gravity, and bolometric correction scales for non-supergiant OB stars
NASA Astrophysics Data System (ADS)
Nieva, M.-F.
2013-02-01
Context. Precise and accurate determinations of the atmospheric parameters effective temperature and surface gravity are mandatory to derive reliable chemical abundances in OB stars. Furthermore, fundamental parameters like distances, masses, radii, luminosities can also be derived from the temperature and gravity of the stars. Aims: Atmospheric parameters recently determined at high precision with several independent spectroscopic indicators in non-local thermodynamic equilibrium, with typical uncertainties of ~300 K for temperature and of ~0.05 dex for gravity, are employed to calibrate photometric relationships. This is in order to investigate whether a faster tool to estimate atmospheric parameters can be provided. Methods: Temperatures and gravities of 30 calibrators, i.e. well-studied OB main sequence to giant stars in the solar neighbourhood, are compared to reddening-independent quantities of the Johnson and Strömgren photometric systems, assuming normal reddening. In addition, we examine the spectral and luminosity classification of the star sample and compute bolometric corrections. Results: Calibrations of temperatures and gravities are proposed for various photometric indices and spectral types. Once the luminosity of the stars is well known, effective temperatures can be determined at a precision of ~400 K for luminosity classes III/IV and ~800 K for luminosity class V. Furthermore, surface gravities can reach internal uncertainties as low as ~0.08 dex when using our calibration to the Johnson Q-parameter. Similar precision is achieved for gravities derived from the β-index and the precision is lower for both atmospheric parameters when using the Strömgren indices [c1] and [u - b] . In contrast, external uncertainties are larger for the Johnson than for the Strömgren calibrations. Our uncertainties are smaller than typical differences among other methods in the literature, reaching values up to ± 2000 K for temperature and ± 0.25 dex for gravity, and in extreme cases, + 6000 K and ± 0.4 dex, respectively. A parameter calibration for sub-spectral types is also proposed. Moreover, we present a new bolometric correction relation to temperature based on our empirical data, rather than on synthetic grids. Conclusions: The photometric calibrations presented here are useful tools to estimate effective temperatures and surface gravities of non-supergiant OB stars in a fast manner. This is also applicable to some single-line spectroscopic binaries, but caution has to be taken for undetected double-lined spectroscopic binaries and single objects with anomalous reddening-law, dubious photometric quantities and/or luminosity classes, for which the systematic uncertainties may increase significantly. We recommend to use these calibrations only as a first step of the parameter estimation, with subsequent refinements based on spectroscopy. A larger sample covering more uniformly the parameter space under consideration will allow refinements to the present calibrations. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max- Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), proposals H2001-2.2-011 and H2005-2.2-016.Based on observations collected at the European Southern Observatory, Chile, ESO 074.B-0455(A) and from the ESO Archive.Based on spectral data retrieved from the ELODIE archive at Observatoire de Haute-Provence (OHP).Appendices A and B are available in electronic form at http://www.aanda.org
Correlations of the IR Luminosity and Eddington Ratio with a Hard X-ray Selected Sample of AGN
NASA Technical Reports Server (NTRS)
Mushotzy, Richard F.; Winter, Lisa M.; McIntosh, Daniel H.; Tueller, Jack
2008-01-01
We use the SWIFT Burst Alert Telescope (BAT) sample of hard x-ray selected active galactic nuclei (AGN) with a median redshift of 0.03 and the 2MASS J and K band photometry to examine the correlation of hard x-ray emission to Eddington ratio as well as the relationship of the J and K band nuclear luminosity to the hard x-ray luminosity. The BAT sample is almost unbiased by the effects of obscuration and thus offers the first large unbiased sample for the examination of correlations between different wavelength bands. We find that the near-IR nuclear J and K band luminosity is related to the BAT (14 - 195 keV) luminosity over a factor of 10(exp 3) in luminosity (L(sub IR) approx.equals L(sub BAT)(sup 1.25) and thus is unlikely to be due to dust. We also find that the Eddington ratio is proportional to the x-ray luminosity. This new result should be a strong constraint on models of the formation of the broad band continuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balman, Şölen; Godon, Patrick; Sion, Edward M., E-mail: solen@astroa.physics.metu.edu.tr, E-mail: patrick.godon@villanova.edu, E-mail: edward.sion@villanova.edu
We present a total of ∼45 ks (3 × 15 ks) of Swift X-Ray Telescope (XRT) observations for three nonmagnetic nova-like (NL) cataclysmic variables (CVs; MV Lyr, BZ Cam, V592 Cas) in order to study characteristics of boundary layers (BLs) in CVs. The nonmagnetic NLs are found mostly in a state of high mass accretion rate (≥1 × 10{sup –9} M {sub ☉} yr{sup –1}), and some show occasional low states. Using the XRT data, we find optically thin multiple-temperature cooling flow type emission spectra with X-ray temperatures (kT {sub max}) of 21-50 keV. These hard X-ray-emitting BLs diverge frommore » simple isobaric cooling flows, indicating X-ray temperatures that are of virial values in the disk. In addition, we detect power-law emission components from MV Lyr and BZ Cam and plausibly from V592 Cas, which may be a result of the Compton scattering of the optically thin emission from the fast wind outflows in these systems and/or Compton upscattering of the soft disk photons. The X-ray luminosities of the (multitemperature) thermal plasma emission in the 0.1-50.0 keV range are (0.9-5.0) × 10{sup 32} erg s{sup –1}. The ratio of the X-ray and disk luminosities (calculated from the UV-optical wavelengths) yields an efficiency (L{sub x} /L {sub disk}) ∼ 0.01-0.001. Given this non-radiative ratio for the X-ray-emitting BLs with no significant optically thick blackbody emission in the soft X-rays (consistent with ROSAT observations), together with the high/virial X-ray temperatures, we suggest that high-state NL systems may have optically thin BLs merged with ADAF-like flows and/or X-ray coronae. In addition, we note that the axisymmetric bipolar and/or rotation-dominated fast-wind outflows detected in these three NLs (particularly BZ Cam and V592 Cas) or some other NL may also be explained in the context of ADAF-like BL regions.« less
Swift observations of GS 1826-238
NASA Astrophysics Data System (ADS)
Ji, L.; Santangelo, A.; Zhang, S.; Ducci, L.; Suleimanov, V.
2018-02-01
GS 1826-238 is a well-studied low-mass X-ray binary neutron star. This source was in a persistent hard state since its discovery in 1988 and until 2014 June. After that, the source exhibited several softer periods of enhanced intensity in the energy range 2-20 keV. We studied the long-term light curves of MAXI (Monitor of All Sky X-ray Image) and Swift/BAT, and found clearly two branches in the MAXI-BAT and hardness-intensity diagrams, which correspond to the persistent state and softer periods, respectively. We analysed 21 Swift/XRT observations, of which four were located in the persistent state while the others were in softer periods or in a state between them. The XRT spectra could be generally fitted by using an absorbed Comptonization model with no other components required. We found a peculiar relationship between the luminosity and the hardness in the energy range of 0.6-10 keV: when the luminosity is larger (smaller) than 4 per cent-6 per cent Ledd, the hardness is anti-correlated (correlated) with luminosity. We also estimated the variability for each observation by using the fractional rms in the 0.1-10 Hz range. We found that the observations in the persistent state had a large fractional rms of ˜25 per cent, similar to other low-mass X-ray binaries. However, the variability is mainly found in the range of 5 per cent-20 per cent during softer periods. We suggest that GS 1826-238 did not evolve into the soft state of atoll sources, and all the observed XRT observations during the softer periods resemble a peculiar intermediate state of atoll sources.
An Expanded RXTE Survey of Long-Term X-ray Variability in Seyfert 1 Galaxies
NASA Technical Reports Server (NTRS)
Markowitz, A.; Edelson, R.
2004-01-01
The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogenous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from approx. 1 day to approx. 3.5 years. 2-10 keV variability on time scales of approx. 1 day, as probed by ASCA, are included. All sources exhibit stronger X-ray variability towards longer time scales, with variability amplitudes saturating at the longest time scales, but the increase is greater for relatively higher luminosity sources. The well-documented anticorrelation between variability amplitude and luminosity is confirmed on all time scales. However, anticorrelations between variability amplitude and black hole mass estimate are evident on only the shortest time scales probed. The data are consistent with the models of power spectral density (PSD) movement described in Markowitz et al. (2003) and McHardy et al. (2004), whereby Seyfert 1 galaxies variability can be described by a single, universal PSD shape whose cutoff frequency scales with black hole mass. The best-fitting scaling relations between variability time scale, black hole mass and X-ray luminosity support an average accretion rate of 2% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all time scales. Color-flux diagrams support also Seyfert 1s' softening as they brighten. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.
The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)
NASA Astrophysics Data System (ADS)
Feigelson, Eric; Guedel, M.
2007-12-01
The XMM-Newton Extended Survey of the Taurus Molecular Cloud is an exceptionally large and growing X-ray survey of the Taurus Molecular Cloud (TMC). Now comprising 31 1/2-degree diameter fields, observed with the three XMM-Newton EPIC cameras. High-resolution spectroscopy has been obtained for about ten T Tauri stars (TTS) with the RGS instruments, and the Optical Monitor secured an optical/UV survey. XEST detects essentially the entire surveyed TTS population of the TMC in X-rays including about half of the observed (8/16) brown dwarfs and Class I protostars (8/20). Several new candidate members are identified. The X-ray luminosity (LX) of TTS shows related correlations with both stellar bolometric luminosity and mass. Classical TTS show suppressed X-ray output in the CCD band by a factor of about 2. These statistical results confirm results from other star formation regions. Different from previous reports on TMC, XEST identifies no activity-rotation relation. Brown dwarfs are found to follow trends set by TTS, both for accreting and non-accreting objects. But a decrease of the fractional luminosity, LX/Lbol, is seen with decreasing mass indicating weakened heating efficiency in the substellar domain. XEST reports five members of the class of "Two-Absorber X-Ray" (TAX) sources which reveal a double-peaked spectrum originating from two unrelated sources with different absorption column densities. The softer emission is thought to be related to jets, as explicitly seen in DG Tau. RGS spectroscopy shows a systematic "X-ray soft excess" in classical TTS, suggesting excessive cool (1-2 MK) plasma due to accretion, although the excess seems to correlate with magnetic activity as well. XEST has been supported by the Space Science Institute (Bern/Switz.).
Portable Intelligent Tritium in Air Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purghel, L.; Calin, M.R.; Bartos, D.
2005-07-15
The tritium detection method used for this monitor is original, patented in Romania. The detection unit consists of a single ionization chamber, a special fast preamplifier and a dedicated software associated to the detection unit, for signals processing. Some results concerning the tritium in relative strong gamma-ray fields are presented.
Astronaut Andrew Allen monitors Columbia's systems from pilots station
1994-03-05
STS062-41-025 (18 March 1994) --- Astronaut Andrew M. Allen monitors Columbia's systems from the pilot's station during the entry phase of the STS-62 mission. The fast-speed 35mm film highlights the many controls and displays and the cathode ray tubes on the forward flight deck.
Burst Statistics Using the Lag-Luminosity Relationship
NASA Technical Reports Server (NTRS)
Band, D. L.; Norris, J. P.; Bonnell, J. T.
2003-01-01
Using the lag-luminosity relation and various BATSE catalogs we create a large catalog of burst redshifts, peak luminosities and emitted energies. These catalogs permit us to evaluate the lag-luminosity relation, and to study the burst energy distribution. We find that this distribution can be described as a power law with an index of alpha = 1.76 +/- 0.05 (95% confidence), close to the alpha = 2 predicted by the original quasi-universal jet model.
Challenges in Finding AGNs in the Low Luminosity Regime
NASA Astrophysics Data System (ADS)
Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara
2016-08-01
Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.
Studies of Transient X-Ray Sources with the Ariel 5 All-Sky Monitor. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Kaluzienski, L. J.
1977-01-01
The All-Sky Monitor, an imaging X-ray detector launched aboard the Ariel 5 satellite, was used to obtain detailed light curves of three new sources. Additional data essential to the determination of the characteristic luminosities, rates of occurrence (and possible recurrence), and spatial distribution of these objects was also obtained. The observations are consistent with a roughly uniform galactic disk population consisting of at least two source sub-classes, with the second group (Type 2) at least an order of magnitude less luminous and correspondingly more frequent than the first (Type 1). While both subtypes are probably unrelated to the classical optical novae (or supernovae), they are most readily interpreted within the standard mass exchange X-ray binary model, with outbursts triggered by Roche-lobe overflow (Type 1) or enhancements in the stellar wind density of the companion (Type 2), respectively.
Exceptional AGN long-timescale X-ray variability: The case of PHL 1092
NASA Astrophysics Data System (ADS)
Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.
2012-12-01
PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜ 260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from - 1.57 to - 2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We present here results from our monitoring campaign.
Characterization of exoplanets from their formation. III. The statistics of planetary luminosities
NASA Astrophysics Data System (ADS)
Mordasini, C.; Marleau, G.-D.; Mollière, P.
2017-12-01
Context. This paper continues a series in which we predict the main observable characteristics of exoplanets based on their formation. In Paper I we described our global planet formation and evolution model that is based on the core accretion paradigm. In Paper II we studied the planetary mass-radius relationship with population syntheses. Aims: In this paper we present an extensive study of the statistics of planetary luminosities during both formation and evolution. Our results can be compared with individual directly imaged extrasolar (proto)planets and with statistical results from surveys. Methods: We calculated three populations of synthetic planets assuming different efficiencies of the accretional heating by gas and planetesimals during formation. We describe the temporal evolution of the planetary mass-luminosity relation. We investigate the relative importance of the shock and internal luminosity during formation, and predict a statistical version of the post-formation mass vs. entropy "tuning fork" diagram. Because the calculations now include deuterium burning we also update the planetary mass-radius relationship in time. Results: We find significant overlap between the high post-formation luminosities of planets forming with hot and cold gas accretion because of the core-mass effect. Variations in the individual formation histories of planets can still lead to a factor 5 to 20 spread in the post-formation luminosity at a given mass. However, if the gas accretional heating and planetesimal accretion rate during the runaway phase is unknown, the post-formation luminosity may exhibit a spread of as much as 2-3 orders of magnitude at a fixed mass. As a key result we predict a flat log-luminosity distribution for giant planets, and a steep increase towards lower luminosities due to the higher occurrence rate of low-mass (M ≲ 10-40 M⊕) planets. Future surveys may detect this upturn. Conclusions: Our results indicate that during formation an estimation of the planetary mass may be possible for cold gas accretion if the planetary gas accretion rate can be estimated. If it is unknown whether the planet still accretes gas, the spread in total luminosity (internal + accretional) at a given mass may be as large as two orders of magnitude, therefore inhibiting the mass estimation. Due to the core-mass effect even planets which underwent cold accretion can have large post-formation entropies and luminosities, such that alternative formation scenarios such as gravitational instabilities do not need to be invoked. Once the number of self-luminous exoplanets with known ages and luminosities increases, the resulting luminosity distributions may be compared with our predictions.
NASA Astrophysics Data System (ADS)
Nakanishi, Hideya; Imazu, Setsuo; Ohsuna, Masaki; Kojima, Mamoru; Nonomura, Miki; Shoji, Mamoru; Emoto, Masahiko; Yoshida, Masanobu; Iwata, Chie; Miyake, Hitoshi; Nagayama, Yoshio; Kawahata, Kazuo
To deal with endless data streams acquired in LHD steady-state experiments, the LHD data acquisition system was designed with a simple concept that divides a long pulse into a consecutive series of 10-s “subshots”. Latest digitizers applying high-speed PCI-Express technology, however, output nonstop gigabyte per second data streams whose subshot intervals would be extremely long if 10-s rule was applied. These digitizers need shorter subshot intervals, less than 10-s long. In contrast, steady-state fusion plants need uninterrupted monitoring of the environment and device soundness. They adopt longer subshot lengths of either 10 min or 1 day. To cope with both uninterrupted monitoring and ultra-fast diagnostics, the ability to vary the subshot length according to the type of operation is required. In this study, a design modification that enables variable subshot lengths was implemented and its practical effectiveness in LHD was verified.
Aad, G.; Abajyan, T.; Abbott, B.; ...
2013-08-14
The luminosity calibration for the ATLAS detector at the LHC during pp collisions at √s = 7 TeV in 2010 and 2011 is presented. Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors, and comparisons are made of the long-term stability and accuracy of this calibration applied to the pp collisions at √s = 7 TeV. A luminosity uncertainty of δL/L= ± 3.5 % is obtained for the 47 pb -1 of data delivered to ATLAS in 2010, and an uncertainty of δL/L= ± 1.8 % is obtained for the 5.5 fb -1 delivered in 2011.
THE IMPORTANCE OF {sup 56}Ni IN SHAPING THE LIGHT CURVES OF TYPE II SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakar, Ehud; Poznanski, Dovi; Katz, Boaz
2016-06-01
What intrinsic properties shape the light curves of SNe II? To address this question we derive observational measures that are robust (i.e., insensitive to detailed radiative transfer) and constrain the contribution from {sup 56}Ni as well as a combination of the envelope mass, progenitor radius, and explosion energy. By applying our methods to a sample of SNe II from the literature, we find that a {sup 56}Ni contribution is often significant. In our sample, its contribution to the time-weighted integrated luminosity during the photospheric phase ranges between 8% and 72% with a typical value of 30%. We find that themore » {sup 56}Ni relative contribution is anti-correlated with the luminosity decline rate. When added to other clues, this in turn suggests that the flat plateaus often observed in SNe II are not a generic feature of the cooling envelope emission, and that without {sup 56}Ni many of the SNe that are classified as II-P would have shown a decline rate that is steeper by up to 1 mag/100 days. Nevertheless, we find that the cooling envelope emission, and not {sup 56}Ni contribution, is the main driver behind the observed range of decline rates. Furthermore, contrary to previous suggestions, our findings indicate that fast decline rates are not driven by lower envelope masses. We therefore suggest that the difference in observed decline rates is mainly a result of different density profiles of the progenitors.« less
A universal relation for the propeller mechanisms in magnetic rotating stars at different scales
NASA Astrophysics Data System (ADS)
Campana, Sergio; Stella, Luigi; Mereghetti, Sandro; de Martino, Domitilla
2018-02-01
Accretion of matter onto a magnetic, rotating object can be strongly affected by the interaction with its magnetic field. This occurs in a variety of astrophysical settings involving young stellar objects, white dwarfs, and neutron stars. As matter is endowed with angular momentum, its inflow toward the star is often mediated by an accretion disc. The pressure of matter and that originating from the stellar magnetic field balance at the magnetospheric radius: at smaller distances the motion of matter is dominated by the magnetic field, and funnelling towards the magnetic poles ensues. However, if the star, and thus its magnetosphere, is fast spinning, most of the inflowing matter will be halted at the magnetospheric radius by centrifugal forces, resulting in a characteristic reduction of the accretion luminosity. The onset of this mechanism, called the propeller, has been widely adopted to interpret a distinctive knee in the decaying phase of the light curve of several transiently accreting X-ray pulsar systems. By comparing the observed luminosity at the knee for different classes of objects with the value predicted by accretion theory on the basis of the independently measured magnetic field, spin period, mass, and radius of the star, we disclose here a general relation for the onset of the propeller which spans about eight orders of magnitude in spin period and ten in magnetic moment. The parameter-dependence and normalisation constant that we determine are in agreement with basic accretion theory.
Study of the VMM1 read-out chip in a neutron irradiation environment
NASA Astrophysics Data System (ADS)
Alexopoulos, T.; Fanourakis, G.; Geralis, T.; Kokkoris, M.; Kourkoumeli-Charalampidi, A.; Papageorgiou, K.; Tsipolitis, G.
2016-05-01
Within 2015, the LHC operated close to the design energy of √s = 13-14 TeV delivering instantaneous luminosities up to Script L = 5 × 1033 cm-2s-1. The ATLAS Phase-I upgrade in 2018/19 will introduce the MicroMEGAS detectors in the area of the small wheel at the end caps. Accompanying new electronics are designed and built such as the VMM front end ASIC, which provides energy, timing and triggering information and allows fast data read-out. The first VMM version (VMM1) has been widely produced and tested in various test beams, whilst the second version (VMM2) is currently being tested. This paper focuses on the VMM1 single event upset studies and more specifically on the response of the configuration registers under harsh radiation environments. Similar conditions are expected at Run III with Script L = 2 × 1034 cm-2s-1 and a mean of 55 interactions per bunch crossing. Two VMM1s were exposed in a neutron irradiation environment using the TANDEM Van Der Graaff accelerator at NSCR Demokritos, Athens, Greece. The results showed a rate of SEU occurrences at a measured cross section of (4.1±0.8)×10-14 cm2/bit for each VMM. Consequently, when extrapolating this value to the luminosity expected in Run III, the occurrence is roughly 6 SEUs/min in all the read-out system comprising 40,000 VMMs installed during the Phase-I upgrade.
SWIFT REVEALS A ∼5.7 DAY SUPER-ORBITAL PERIOD IN THE M31 GLOBULAR CLUSTER X-RAY BINARY XB158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, R.; Garcia, M. R.; Murray, S. S.
2015-03-01
The M31 globular cluster X-ray binary XB158 (a.k.a. Bo 158) exhibits intensity dips on a 2.78 hr period in some observations, but not others. The short period suggests a low mass ratio, and an asymmetric, precessing disk due to additional tidal torques from the donor star since the disk crosses the 3:1 resonance. Previous theoretical three-dimensional smoothed particle hydrodynamical modeling suggested a super-orbital disk precession period 29 ± 1 times the orbital period, i.e., ∼81 ± 3 hr. We conducted a Swift monitoring campaign of 30 observations over ∼1 month in order to search for evidence of such a super-orbital period. Fitting the 0.3-10 keV Swift X-Ray Telescopemore » luminosity light curve with a sinusoid yielded a period of 5.65 ± 0.05 days, and a >5σ improvement in χ{sup 2} over the best fit constant intensity model. A Lomb-Scargle periodogram revealed that periods of 5.4-5.8 days were detected at a >3σ level, with a peak at 5.6 days. We consider this strong evidence for a 5.65 day super-orbital period, ∼70% longer than the predicted period. The 0.3-10 keV luminosity varied by a factor of ∼5, consistent with variations seen in long-term monitoring from Chandra. We conclude that other X-ray binaries exhibiting similar long-term behavior are likely to also be X-ray binaries with low mass ratios and super-orbital periods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banzatti, A.; Meyer, M. R.; Manara, C. F.
2014-01-01
Young stars are known to show variability due to non-steady mass accretion rate from their circumstellar disks. Accretion flares can produce strong energetic irradiation and heating that may affect the disk in the planet formation region, close to the central star. During an extreme accretion outburst in the young star EX Lupi, the prototype of EXor variables, remarkable changes in molecular gas emission from ∼1 AU in the disk have recently been observed. Here, we focus on water vapor and explore how it is affected by variable accretion luminosity in T Tauri stars. We monitored a young highly variable solar-massmore » star, DR Tau, using simultaneously two high/medium-resolution spectrographs at the European Southern Observatory Very Large Telescope: VISIR at 12.4 μm to observe water lines from the disk and X-shooter covering from 0.3 to 2.5 μm to constrain the stellar accretion. Three epochs spanning timescales from several days to several weeks were obtained. The accretion luminosity was estimated to change within a factor of ∼2 and no change in water emission was detected at a significant level. In comparison with EX Lupi and EXor outbursts, DR Tau suggests that the less long-lived and weaker variability phenomena typical of T Tauri stars may leave water at planet-forming radii in the disk mostly unaffected. We propose that these systems may provide evidence for two processes that act over different timescales: ultraviolet photochemistry in the disk atmosphere (faster) and heating of the deeper disk layers (slower).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohmi, K.
In recent high luminosity colliders, the finite crossing angle scheme becomes popular to gain the multiplicity of luminosity with multi-bunch or long bunch operation. Success of KEKB showed that the finite crossing angle scheme was no problem to achieve the beam-beam parameter up to 0.05. The authors have studied the beam-beam interactions with/without crossing angle toward higher luminosity. They discuss how the crossing angle affects the beam-beam parameter and luminosity in the present KEK B factory (KEKB) using computer simulations.
Scuss u-Band Emission as a Star-Formation-Rate Indicator
NASA Astrophysics Data System (ADS)
Zhou, Zhimin; Zhou, Xu; Wu, Hong; Fan, Xiao-Hui; Fan, Zhou; Jiang, Zhao-Ji; Jing, Yi-Peng; Li, Cheng; Lesser, Michael; Jiang, Lin-Hua; Ma, Jun; Nie, Jun-Dan; Shen, Shi-Yin; Wang, Jia-Li; Wu, Zhen-Yu; Zhang, Tian-Meng; Zou, Hu
2017-01-01
We present and analyze the possibility of using optical u-band luminosities to estimate star-formation rates (SFRs) of galaxies based on the data from the South Galactic Cap u band Sky Survey (SCUSS), which provides a deep u-band photometric survey covering about 5000 deg2 of the South Galactic Cap. Based on two samples of normal star-forming galaxies selected by the BPT diagram, we explore the correlations between u-band, Hα, and IR luminosities by combing SCUSS data with the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer (WISE). The attenuation-corrected u-band luminosities are tightly correlated with the Balmer decrement-corrected Hα luminosities with an rms scatter of ˜0.17 dex. The IR-corrected u luminosities are derived based on the correlations between the attenuation of u-band luminosities and WISE 12 (or 22) μm luminosities, and then calibrated with the Balmer-corrected Hα luminosities. The systematic residuals of these calibrations are tested against the physical properties over the ranges covered by our sample objects. We find that the best-fitting nonlinear relations are better than the linear ones and recommended to be applied in the measurement of SFRs. The systematic deviations mainly come from the pollution of old stellar population and the effect of dust extinction; therefore, a more detailed analysis is needed in future work.
A novel toolbox for E. coli lysis monitoring.
Rajamanickam, Vignesh; Wurm, David; Slouka, Christoph; Herwig, Christoph; Spadiut, Oliver
2017-01-01
The bacterium Escherichia coli is a well-studied recombinant host organism with a plethora of applications in biotechnology. Highly valuable biopharmaceuticals, such as antibody fragments and growth factors, are currently being produced in E. coli. However, the high metabolic burden during recombinant protein production can lead to cell death, consequent lysis, and undesired product loss. Thus, fast and precise analyzers to monitor E. coli bioprocesses and to retrieve key process information, such as the optimal time point of harvest, are needed. However, such reliable monitoring tools are still scarce to date. In this study, we cultivated an E. coli strain producing a recombinant single-chain antibody fragment in the cytoplasm. In bioreactor cultivations, we purposely triggered cell lysis by pH ramps. We developed a novel toolbox using UV chromatograms as fingerprints and chemometric techniques to monitor these lysis events and used flow cytometry (FCM) as reference method to quantify viability offline. Summarizing, we were able to show that a novel toolbox comprising HPLC chromatogram fingerprinting and data science tools allowed the identification of E. coli lysis in a fast and reliable manner. We are convinced that this toolbox will not only facilitate E. coli bioprocess monitoring but will also allow enhanced process control in the future.
USDA-ARS?s Scientific Manuscript database
Catalytic fast pyrolysis of eucalyptus wood was performed on a continuous laboratory scale fluidized bed fast pyrolysis system. Catalytic activity was monitored from use of fresh catalyst up to a cumulative biomass to catalyst ratio (B/C) of 4/1 over extruded pellets of three different ZSM-5 catalys...
Ricci, Joseph A; Vargas, Christina R; Ho, Olivia A; Lin, Samuel J; Tobias, Adam M; Lee, Bernard T
2017-07-01
Postoperative free flap care has historically required intensive monitoring for 24 hours in an intensive care unit. Continuous monitoring with tissue oximetry has allowed earlier detection of vascular compromise, decreasing flap loss and improving salvage. This study aims to identify whether a fast-track postoperative paradigm can be safely used with tissue oximetry to decrease intensive monitoring and costs. All consecutive microsurgical breast reconstructions performed at a single institution were reviewed (2008-2014) and cases requiring return to the operating room were identified. Data evaluated included patient demographics, the take back time course, and complications of flap loss and salvage. A cost-benefit analysis was performed to analyse the utility of a postoperative intensive monitoring setting. There were 900 flaps performed and 32 required an unplanned return to the operating room. There were 16 flaps that required a reexploration within the first 24 hours; the standard length of intensive unit monitoring. After 4 hours, there were 7 flaps (44%) detected by tissue oximetry for reexploration. After 15 hours of intensive monitoring postoperatively, cost analysis revealed that the majority (15/16; 94%) of failing flaps had been identified and the cost of identifying each subsequent failing flap exceeded the cost of another hour of intensive monitoring. The postoperative paradigm for microsurgical flaps has historically required intensive unit monitoring. Using tissue oximetry, a fast-track pathway can reduce time spent in an intensive monitoring setting from 24 to 15 hours with significant cost savings and minimal risk of missing a failing free flap.
Monitoring/Verification using DMS: TATP Example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan Weeks, Kevin Kyle, Manuel Manard
Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operations-management systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biologicalmore » materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. Fast GC is the leading field analytical method for gas phase separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.« less
Evaluation of cable tension sensors of FAST reflector from the perspective of EMI
NASA Astrophysics Data System (ADS)
Zhu, Ming; Wang, Qiming; Egan, Dennis; Wu, Mingchang; Sun, Xiao
2016-06-01
The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.
NASA Astrophysics Data System (ADS)
Ning, G.; Shum, P.
2007-06-01
We derive the expressions for the power fading including first-order polarization mode dispersion (PMD), chromatic dispersion, chirp parameter as well as polarization-dependent chromatic dispersion (PCD), which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for radio frequency (RF) signals power fading, we get the average power fading for chromatic dispersion, chirp parameter, first-order PMD and PCD for both double sideband (DSB) modulation and single sideband (SSB) modulation. We also demonstrate a fast PMD and chromatic dispersion monitoring technology with reduced polarization-dependent gain. The measured results agree well with theoretical analysis.
Al-Agha, Abdulmoein E; Kafi, Shahd E; Zain Aldeen, Abdullah M; Khadwardi, Raghdah H
2017-04-01
To assess the benefit of using the flash glucose monitoring system (FGMS) in children and adolescents with type 1 diabetes mellitus (T1DM) during Ramadan fasting. Methods: A prospective pilot study of 51 participants visited the pediatric diabetes clinic at King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia from between June until and July 2016. The FreeStyle® Libre™ FGMS (Abbott Diabetes Care, Alameda, CA, USA) was used. Hypoglycemia was defined as glucose values of less than 70 mg/dL, while hyperglycemia as glucose values of more than 150 mg/dL for all participants based on our institute's protocol. Results: Participants were able to fast for 67.0% of the total days eligible for fasting, whereas they did not fast on 33% of the days due to either hypoglycemia (15.4%) or non-diabetes-related reasons (17.6 %). None of the participants developed severe hypoglycemia. The mean number of hyperglycemic episodes during fasting hours was 1.29, per day, which was higher than that of hypoglycemic episodes (0.7). None of the participants developed diabetic ketoacidosis (DKA). Glycemic control with mean of estimated hemoglobin A1C reading during Ramadan (8.16 ± 1.64% [pre study]) to 8.2 ± 1.63% [post study] p=0.932. Conclusions: Children and adolescents with T1DM who use the FGMS could fast without the risk of life-threatening episodes of severe hypoglycemia (namely seizure, coma), or DKA during Ramadan. Adequate education and good glycemic control prior to Ramadan are important strategies in combination with the use of an FGMS to achieve better outcome.
Evolution of the X-ray luminosity in young HII galaxies
NASA Astrophysics Data System (ADS)
Rosa González, D.; Terlevich, E.; Jiménez Bailón, E.; Terlevich, R.; Ranalli, P.; Comastri, A.; Laird, E.; Nandra, K.
2009-10-01
In an effort to understand the correlation between X-ray emission and present star formation rate, we obtained XMM-Newton data to estimate the X-ray luminosities of a sample of actively star-forming HII galaxies. The obtained X-ray luminosities are compared to other well-known tracers of star formation activity such as the far-infrared and the ultraviolet luminosities. We also compare the obtained results with empirical laws from the literature and with recently published analysis applying synthesis models. We use the time delay between the formation of the stellar cluster and that of the first X-ray binaries, in order to put limits on the age of a given stellar burst. We conclude that the generation of soft X-rays, as well as the Hα or infrared luminosities is instantaneous. The relation between the observed radio and hard X-ray luminosities, on the other hand, points to the existence of a time delay between the formation of the stellar cluster and the explosion of the first massive stars and the consequent formation of supernova (SN) remnants and high-mass X-ray binaries, which originate the radio and hard X-ray fluxes, respectively. When comparing hard X-rays with a star formation indicator that traces the first million years of evolution (e.g. Hα luminosities), we found a deficit in the expected X-ray luminosity. This deficit is not found when the X-ray luminosities are compared with infrared luminosities, a star formation tracer that represents an average over the last 108yr. The results support the hypothesis that hard X-rays are originated in X-ray binaries which, as SN remnants, have a formation time delay of a few mega years after the star-forming burst. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. E-mail: danrosa@inaoep.mx ‡ Visiting Fellow, IoA, Cambridge, UK.
Does the obscured AGN fraction really depend on luminosity?
NASA Astrophysics Data System (ADS)
Sazonov, S.; Churazov, E.; Krivonos, R.
2015-12-01
We use a sample of 151 local non-blazar active galactic nuclei (AGN) selected from the INTEGRAL all-sky hard X-ray survey to investigate if the observed declining trend of the fraction of obscured (i.e. showing X-ray absorption) AGN with increasing luminosity is mostly an intrinsic or selection effect. Using a torus-obscuration model, we demonstrate that in addition to negative bias, due to absorption in the torus, in finding obscured AGN in hard X-ray flux-limited surveys, there is also positive bias in finding unobscured AGN, due to Compton reflection in the torus. These biases can be even stronger taking into account plausible intrinsic collimation of hard X-ray emission along the axis of the obscuring torus. Given the AGN luminosity function, which steepens at high luminosities, these observational biases lead to a decreasing observed fraction of obscured AGN with increasing luminosity even if this fraction has no intrinsic luminosity dependence. We find that if the central hard X-ray source in AGN is isotropic, the intrinsic (i.e. corrected for biases) obscured AGN fraction still shows a declining trend with luminosity, although the intrinsic obscured fraction is significantly larger than the observed one: the actual fraction is larger than ˜85 per cent at L ≲ 1042.5 erg s-1 (17-60 keV), and decreases to ≲60 per cent at L ≳ 1044 erg s-1. In terms of the half-opening angle θ of an obscuring torus, this implies that θ ≲ 30° in lower luminosity AGN, and θ ≳ 45° in higher luminosity ones. If, however, the emission from the central supermassive black hole is collimated as dL/dΩ ∝ cos α, the intrinsic dependence of the obscured AGN fraction is consistent with a luminosity-independent torus half-opening angle θ ˜ 30°.
Fast and precise technique for magnet lattice correction via sine-wave excitation of fast correctors
Yang, X.; Smaluk, V.; Yu, L. H.; ...
2017-05-02
A novel technique has been developed to improve the precision and shorten the measurement time of the LOCO (linear optics from closed orbits) method. This technique, named AC LOCO, is based on sine-wave (ac) beam excitation via fast correctors. Such fast correctors are typically installed at synchrotron light sources for the fast orbit feedback. The beam oscillations are measured by beam position monitors. The narrow band used for the beam excitation and measurement not only allows us to suppress effectively the beam position noise but also opens the opportunity for simultaneously exciting multiple correctors at different frequencies (multifrequency mode). Wemore » demonstrated at NSLS-II that AC LOCO provides better lattice corrections and works much faster than the traditional LOCO method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makita, M.; Nersisyan, G.; McKeever, K.
2014-02-15
We have studied the propagation of fast electrons through laser irradiated Ti foils by monitoring the emission of hard X-rays and K-α radiation from bare foils and foils backed by a thick epoxy layer. Key observations include strong refluxing of electrons and divergence of the electron beam in the foil with evidence of magnetic field collimation. Our diagnostics have allowed us to estimate the fast electron temperature and fraction of laser energy converted to fast electrons. We have observed clear differences between the fast electron temperatures observed with bare and epoxy backed targets which may be due to the effectsmore » of refluxing.« less
Luminosity function and jet structure of Gamma-Ray Burst
NASA Astrophysics Data System (ADS)
Pescalli, A.; Ghirlanda, G.; Salafia, O. S.; Ghisellini, G.; Nappo, F.; Salvaterra, R.
2015-02-01
The structure of gamma-ray burst (GRB) jets impacts on their prompt and afterglow emission properties. The jet of GRBs could be uniform, with constant energy per unit solid angle within the jet aperture, or it could be structured, namely with energy and velocity that depend on the angular distance from the axis of the jet. We try to get some insight about the still unknown structure of GRBs by studying their luminosity function. We show that low (1046-48 erg s-1) and high (i.e. with L ≥ 1050 erg s-1) luminosity GRBs can be described by a unique luminosity function, which is also consistent with current lower limits in the intermediate luminosity range (1048-50 erg s-1). We derive analytical expressions for the luminosity function of GRBs in uniform and structured jet models and compare them with the data. Uniform jets can reproduce the entire luminosity function with reasonable values of the free parameters. A structured jet can also fit adequately the current data, provided that the energy within the jet is relatively strongly structured, i.e. E ∝ θ-k with k ≥ 4. The classical E ∝ θ-2 structured jet model is excluded by the current data.
Polar CAP Boundary Identification Using Redline Imaging Data
NASA Astrophysics Data System (ADS)
Spanswick, E.; Roy, E. A.; Gallardo-Lacourt, B.; Donovan, E.; Ridley, A. J.; Gou, D.
2017-12-01
The location of the polar cap boundary is typically detected using low-orbit satellite measurements in which the boundary is identified by its unique signature of a sharp decrease in energy and particle flux poleward of the auroral oval. A previous study based in optical data by Blanchard et al. [1995] suggested that a dramatic gradient in redline aurora may also be an indicator of the polar cap boundary. While this study has been heavily cited, it was only based on few events and its findings have largely gone uncontested. Since the Blanchard study, satellite instrumentation and available auroral data have improved significantly. Auroral imaging has moved well beyond the capabilities of the instrumentation in the previous study in terms of sensitivity and both spatial and temporal resolution. We now have access to decades of optical data from arrays spanning a huge spatial range; none of which was available previously. In this study we have used data from FAST and DMSP satellites in conjunction with the University of Calgary's Narrow-band All-sky Cameras for Auroral Monitoring (NASCAM) ground based auroral imaging array and the REdline Geospace Observatory (REGO) data to assess the viability of automated detection of the polar cap boundary. In our analysis we used redline (630nm) auroral signatures from the ground based imagers around the location of the polar cap boundary observed in satellite data. We have characterized the polar cap boundary luminosity and location using the redline auroral data during different geomagnetic conditions. Our results enable a new tool to automatically identify the polar cap boundary to reach a deeper understanding of the connection between polar cap location and auroral activity.
A Search for Water Maser Emission from Brown Dwarfs and Low-luminosity Young Stellar Objects
NASA Astrophysics Data System (ADS)
Gómez, José F.; Palau, Aina; Uscanga, Lucero; Manjarrez, Guillermo; Barrado, David
2017-05-01
We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L ⊙. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with L bol ≳ 1 L ⊙. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission. Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of L bol ≃ 3.6-5.3 L ⊙) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L bol ≤ 1 L ⊙ or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.
Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey
NASA Astrophysics Data System (ADS)
Smith, Anthony J.; Loveday, Jon; Cross, Nicholas J. G.
2009-08-01
We present luminosity and surface-brightness distributions of 40111 galaxies with K-band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K- and r-band magnitude, K-band surface brightness and K-band radius are included explicitly in the 1/Vmax estimate of the space density and luminosity function. The bivariate brightness distribution in K-band absolute magnitude and surface brightness is presented and found to display a clear luminosity-surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K-band luminosity function are found to be M* - 5 logh = -23.19 +/- 0.04,α = -0.81 +/- 0.04 and φ* = (0.0166 +/- 0.0008)h3Mpc-3, although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be j = (6.305 +/- 0.067) × 108LsolarhMpc-3. However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.
The Quasar Fraction in Low-Frequency Selected Complete Samples and Implications for Unified Schemes
NASA Technical Reports Server (NTRS)
Willott, Chris J.; Rawlings, Steve; Blundell, Katherine M.; Lacy, Mark
2000-01-01
Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines - the 'quasar fraction' - as a function of redshift and of radio and narrow emission line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow line and radio) than it is on redshift. Above a narrow [OII] emission line luminosity of log(base 10) (L(sub [OII])/W) approximately > 35 [or radio luminosity log(base 10) (L(sub 151)/ W/Hz.sr) approximately > 26.5], the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle theta(sub trans) approximately equal 53 deg. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower-luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in theta(sub trans) and/or a gradual increase in the fraction of lightly-reddened (0 approximately < A(sub V) approximately < 5) lines-of-sight with decreasing quasar luminosity; and (ii) the emergence of a distinct second population of low luminosity radio sources which, like M8T, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.
NASA Astrophysics Data System (ADS)
Ballantyne, David R.
2016-04-01
Deep X-ray surveys have provided a comprehensive and largely unbiased view of AGN evolution stretching back to z˜5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, we present a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function - all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is demonstrated at z ≈0 and 0.9, and clear luminosity dependence in the AGN bias and mean halo mass is predicted at both z. The results support the idea that there are at least two different modes of AGN triggering: one, at high luminosity, that only occurs in high mass, highly biased haloes, and one that can occur over a wide range of halo masses and leads to luminosities that are correlated with halo mass. This latter mode dominates at z<0.9. The CLFs for Type 2 and Type 1 AGNs are also constrained at z ≈0, and we find evidence that unobscured quasars are more likely to be found in higher mass halos than obscured quasars. Thus, the AGN unification model seems to fail at quasar luminosities.
Improvements on the accuracy of beam bugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.J.; Fessenden, T.
1998-08-17
At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as ''beam bugs'', have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less
Improvements on the accuracy of beam bugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y J; Fessenden, T
1998-09-02
At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as "beam bugs", have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less
Monitoring and Decreasing Public Smoking among Youth
ERIC Educational Resources Information Center
Jason, Leonard A.; Pokorny, Steven B.; Sanem, Julia R.; Adams, Monica L.
2006-01-01
This study examined the impact of tobacco possession laws on public smoking among youth. There were two intervention sites: a fast food restaurant and a shopping mall. Two control sites were also monitored for public smoking among youth. Preliminary findings suggest that when police issued tickets to minors for violating tobacco possession laws,…
Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
Nguyen, Thanh Tat; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Chien Cong; Endo, Satoru
2016-11-01
Fast neutron, gamma-ray, and boron doses have different relative biological effectiveness (RBE). In boron neutron capture therapy (BNCT), the clinical dose is the total of these dose components multiplied by their RBE. Clinical dose monitoring is necessary for quality assurance of the irradiation profile; therefore, the fast neutron, gamma-ray, and boron doses should be separately monitored. To estimate these doses separately, and to monitor the boron dose without monitoring the thermal neutron fluence, the authors propose a triple ionization chamber method using graphite-walled carbon dioxide gas (C-CO 2 ), tissue-equivalent plastic-walled tissue-equivalent gas (TE-TE), and boron-loaded tissue-equivalent plastic-walled tissue-equivalent gas [TE(B)-TE] chambers. To use this method for dose monitoring for a neutron and gamma-ray field moderated by D 2 O from a Be-covered Li target (Be-covered Li BNCT field), the relative sensitivities of these ionization chambers are required. The relative sensitivities of the TE-TE, C-CO 2 , and TE(B)-TE chambers to fast neutron, gamma-ray, and boron doses are calculated with the particle and heavy-ion transport code system (PHITS). The relative sensitivity of the TE(B)-TE chamber is calculated with the same method as for the TE-TE and C-CO 2 chambers in the paired chamber method. In the Be-covered Li BNCT field, the relative sensitivities of the ionization chambers to fast neutron, gamma-ray, and boron doses are calculated from the kerma ratios, mass attenuation coefficient tissue-to-wall ratios, and W-values. The Be-covered Li BNCT field consists of neutrons and gamma-rays which are emitted from a Be-covered Li target, and this resultant field is simulated by using PHITS with the cross section library of ENDF-VII. The kerma ratios and mass attenuation coefficient tissue-to-wall ratios are determined from the energy spectra of neutrons and gamma-rays in the Be-covered Li BNCT field. The W-value is calculated from recoil charged particle spectra by the collision of neutrons and gamma-rays with the wall and gas materials of the ionization chambers in the gas cavities of TE-TE, C-CO 2 , and TE(B)-TE chambers ( 10 B concentrations of 10, 50, and 100 ppm in the TE-wall). The calculated relative sensitivity of the C-CO 2 chamber to the fast neutron dose in the Be-covered Li BNCT field is 0.029, and those of the TE-TE and TE(B)-TE chambers are both equal to 0.965. The relative sensitivities of the C-CO 2 , TE-TE, and TE(B)-TE chambers to the gamma-ray dose in the Be-covered Li BNCT field are all 1 within the 1% calculation uncertainty. The relative sensitivities of TE(B)-TE to boron dose with concentrations of 10, 50, and 100 ppm 10 B are calculated to be 0.865 times the ratio of the in-tumor to in-chamber wall boron concentration. The fast neutron, gamma-ray, and boron doses of a tumor in-air can be separately monitored by the triple ionization chamber method in the Be-covered Li BNCT field. The results show that these doses can be easily converted to the clinical dose with the depth correction factor in the body and the RBE.
Galaxy luminosity function and Tully-Fisher relation: reconciled through rotation-curve studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cattaneo, Andrea; Salucci, Paolo; Papastergis, Emmanouil, E-mail: andrea.cattaneo@oamp.fr, E-mail: salucci@sissa.it, E-mail: papastergis@astro.cornell.edu
2014-03-10
The relation between galaxy luminosity L and halo virial velocity v {sub vir} required to fit the galaxy luminosity function differs from the observed Tully-Fisher relation between L and disk speed v {sub rot}. Because of this, the problem of reproducing the galaxy luminosity function and the Tully-Fisher relation simultaneously has plagued semianalytic models since their inception. Here we study the relation between v {sub rot} and v {sub vir} by fitting observational average rotation curves of disk galaxies binned in luminosity. We show that the v {sub rot}-v {sub vir} relation that we obtain in this way can fullymore » account for this seeming inconsistency. Therefore, the reconciliation of the luminosity function with the Tully-Fisher relation rests on the complex dependence of v {sub rot} on v {sub vir}, which arises because the ratio of stellar mass to dark matter mass is a strong function of halo mass.« less
Padé Approximant and Minimax Rational Approximation in Standard Cosmology
NASA Astrophysics Data System (ADS)
Zaninetti, Lorenzo
2016-02-01
The luminosity distance in the standard cosmology as given by $\\Lambda$CDM and consequently the distance modulus for supernovae can be defined by the Pad\\'e approximant. A comparison with a known analytical solution shows that the Pad\\'e approximant for the luminosity distance has an error of $4\\%$ at redshift $= 10$. A similar procedure for the Taylor expansion of the luminosity distance gives an error of $4\\%$ at redshift $=0.7 $; this means that for the luminosity distance, the Pad\\'e approximation is superior to the Taylor series. The availability of an analytical expression for the distance modulus allows applying the Levenberg--Marquardt method to derive the fundamental parameters from the available compilations for supernovae. A new luminosity function for galaxies derived from the truncated gamma probability density function models the observed luminosity function for galaxies when the observed range in absolute magnitude is modeled by the Pad\\'e approximant. A comparison of $\\Lambda$CDM with other cosmologies is done adopting a statistical point of view.
NASA Astrophysics Data System (ADS)
Sopczak, André; Ali, Babar; Asawatavonvanich, Thanawat; Begera, Jakub; Bergmann, Benedikt; Billoud, Thomas; Burian, Petr; Caicedo, Ivan; Caforio, Davide; Heijne, Erik; Janeček, Josef; Leroy, Claude; Mánek, Petr; Mochizuki, Kazuya; Mora, Yesid; Pacík, Josef; Papadatos, Costa; Platkevič, Michal; Polanský, Štěpán; Pospíšil, Stanislav; Suk, Michal; Svoboda, Zdeněk
2017-03-01
A network of Timepix (TPX) devices installed in the ATLAS cavern measures the LHC luminosity as a function of time as a stand-alone system. The data were recorded from 13-TeV proton-proton collisions in 2015. Using two TPX devices, the number of hits created by particles passing the pixel matrices was counted. A van der Meer scan of the LHC beams was analyzed using bunch-integrated luminosity averages over the different bunch profiles for an approximate absolute luminosity normalization. It is demonstrated that the TPX network has the capability to measure the reduction of LHC luminosity with precision. Comparative studies were performed among four sensors (two sensors in each TPX device) and the relative short-term precision of the luminosity measurement was determined to be 0.1% for 10-s time intervals. The internal long-term time stability of the measurements was below 0.5% for the data-taking period.
Evolution of the Blue and Far-Infrared Galaxy Luminosity Functions
NASA Technical Reports Server (NTRS)
Lonsdale, Carol J.; Chokshi, Arati
1993-01-01
The space density of blue-selected galaxies at moderate redshifts is determined here directly by deriving the luminosity function. Evidence is found for density evolution for moderate luminosity galaxies at a rate of (1+z) exp delta, with a best fit of delta + 4 +/- 2, between the current epoch and Z greater than about 0.1. At M(b) less than -22 evidence is found for about 0.5-1.5 mag of luminosity evolution in addition to the density evolution, corresponding to an evolutionary rate of about (1+z) exp gamma, with gamma = 0.5-2.5, but a redshift of about 0.4. Assuming a steeper faint end slope of alpha = -1.3 similar to that observed in the Virgo cluster, could explain the data with a luminosity evolution rate of gamma = 1-2, without need for any density evolution. Acceptable fits are found by comparing composite density and luminosity evolution models to faint IRAS 60 micron source counts, implying that the blue and far-IR evolutionary rates may be similar.
NASA Astrophysics Data System (ADS)
Yu, J.; Gan, Z.; Zhong, L.; Deng, L.
2018-04-01
The objective of this paper is to investigate the use of UAV remote sensing in the monitoring and management of construction projects in riparian areas through the case study of embankment construction projects' monitoring in the Three Gorges Reservoir area. A three-step approach is proposed to address the problem: data acquisition with UAV, data processing, and monitoring information extraction. The results of the case study demonstrate that UAV remote sensing is capable of providing fast and accurate measurements and calculations for the needs of monitoring of riparian constructions.
Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.
Schaefer
2000-04-10
The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.
Ultraluminous X-ray sources as neutrino pulsars
NASA Astrophysics Data System (ADS)
Mushtukov, Alexander A.; Tsygankov, Sergey S.; Suleimanov, Valery F.; Poutanen, Juri
2018-05-01
The classical limit on the accretion luminosity of a neutron star is given by the Eddington luminosity. The advanced models of accretion on to magnetized neutron stars account for the appearance of magnetically confined accretion columns and allow the accretion luminosity to be higher than the Eddington value by a factor of tens. However, the recent discovery of pulsations from ultraluminous X-ray source (ULX) in NGC 5907 demonstrates that the accretion luminosity can exceed the Eddington value up to by a factor of 500. We propose a model explaining observational properties of ULX-1 in NGC 5907 without any ad hoc assumptions. We show that the accretion column at extreme luminosity becomes advective. Enormous energy release within a small geometrical volume and advection result in very high temperatures at the bottom of accretion column, which demand to account for the energy losses due to neutrino emission which can be even more effective than the radiation energy losses. We show that the total luminosity at the mass accretion rates above 1021 g s-1 is dominated by the neutrino emission similarly to the case of core-collapse supernovae. We argue that the accretion rate measurements based on detected photon luminosity in case of bright ULXs powered by neutron stars can be largely underestimated due to intense neutrino emission. The recently discovered pulsating ULX-1 in galaxy NGC 5907 with photon luminosity of {˜ } 10^{41} {erg s^{-1}} is expected to be even brighter in neutrinos and is thus the first known Neutrino Pulsar.
Monitoring solar-type stars for luminosity variations
NASA Technical Reports Server (NTRS)
Lockwood, G. W.; Skiff, B. A.
1988-01-01
Since 1984, researchers have made more than 1500 differential photometric b (471 nm) and y (551 nm) measurements of three dozen solar-like lower main sequence stars whose chromospheric activity was previosly studied by O. C. Wilson. Here, researchers describe their methodology and the statistical tests used to distinguish intrinsic stellar variability from observational and instrument errors. The incidence of detected variability among the program and comparison stars is summarized. Among the 100 plus pairs of stars measured differentially, only a dozen were found that were unusually constant, with peak-to-peak amplitudes of seasonal mean brightness smaller than 0.3 percent (0.003 mag) over a two-to-three-year interval.
Detector Developments for the High Luminosity LHC Era (1/4)
Straessner, Arno
2018-04-27
Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.
The line continuum luminosity ratio in AGN: Or on the Baldwin Effect
NASA Technical Reports Server (NTRS)
Mushotzky, R.; Ferland, F. J.
1983-01-01
The luminosity dependence of the equivalent width of CIV in active galaxies, the "Baldwin" effect, is shown to be a consequence of a luminosity dependent ionization parameter. This law also agrees with the lack of a "Baldwin" effect in Ly alpha or other hydrogen lines. A fit to the available data gives a weak indication that the mean covering factor decreases with increasing luminosity, consistent with the inference from X-ray observations. The effects of continuum shape and density on various line ratios of interest are discussed.
Unified treatment of the luminosity distance in cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Jaiyul; Scaccabarozzi, Fulvio, E-mail: jyoo@physik.uzh.ch, E-mail: fulvio@physik.uzh.ch
Comparing the luminosity distance measurements to its theoretical predictions is one of the cornerstones in establishing the modern cosmology. However, as shown in Biern and Yoo, its theoretical predictions in literature are often plagued with infrared divergences and gauge-dependences. This trend calls into question the sanity of the methods used to derive the luminosity distance. Here we critically investigate four different methods—the geometric approach, the Sachs approach, the Jacobi mapping approach, and the geodesic light cone (GLC) approach to modeling the luminosity distance, and we present a unified treatment of such methods, facilitating the comparison among the methods and checkingmore » their sanity. All of these four methods, if exercised properly, can be used to reproduce the correct description of the luminosity distance.« less
Compton scattering of the microwave background by quasar-blown bubbles
NASA Technical Reports Server (NTRS)
Voit, G. Mark
1994-01-01
At least 10% of quasars drive rapid outflows from the central regions of their host galaxies. The mass and energy flow rates in these winds are difficult to measure, but their kinetic luminosities probably exceed 10(exp 45) ergs/s. This kind of outflow easily sunders the interstellar medium of the host and blows a bubble in the intergalactic medium. After the quasar shuts off, the hot bubble continues to shock intergalactic gas until its leading edge merges with the Hubble flow. The interior hot gas Compton scatters microwave background photons, potentially providing a way to detect these bubbles. Assuming that quasar kinetic luminosities scale with their blue luminosities, we integrate over the quasar luminosity function to find the total distortion (y) of the microwave background produced by the entire population of quasar wind bubbles. This calculation of y distortion is remarkably insensitive to the properties of the intergalactic medium (IGM), quasar lifetimes, and cosmological parameters. Current Cosmic Background Explorer (COBE) limits on y constrain the kinetic luminosities of quasars to be less than several times their bolometric radiative luminosities. Within this constraint, quasars can still expel enough kinetic luminosity to shock the entire IGM by z = 0, but cannot heat and ionize the IGM by z = 4 unless omega(sub IGM) much less than 10(exp -2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asai, K.; Matsuoka, M.; Mihara, T.
2013-08-20
We present the luminosity dwell-time distributions during the hard states of two low-mass X-ray binaries containing a neutron star (NS), 4U 1608-52 and Aql X-1, observed with MAXI/GSC. The luminosity distributions show a steep cutoff on the low-luminosity side at {approx}1.0 Multiplication-Sign 10{sup 36} erg s{sup -1} in both sources. The cutoff implies a rapid luminosity decrease in their outburst decay phases and this decrease can be interpreted as being due to the propeller effect. We estimate the surface magnetic field of 4U 1608-52 to be (0.5-1.6) Multiplication-Sign 10{sup 8} G and Aql X-1 to be (0.6-1.9) Multiplication-Sign 10{sup 8}more » G from the cutoff luminosity and apply the same propeller mechanism to the similar rapid luminosity decrease observed in the transient Z source, XTE J1701-462, with RXTE/ASM. Assuming that the spin period of the NS is on the order of milliseconds, the observed cutoff luminosity implies a surface magnetic field on the order of 10{sup 9} G.« less
Classical novae and recurrent novae: General properties
NASA Technical Reports Server (NTRS)
Hack, Margherita; Selvelli, Pierluigi; Duerbeck, Hilmar W.
1993-01-01
We describe the observable characteristics of classical novae and recurrent novae obtained by different techniques (photometry, spectroscopy, and imaging) in all the available spectral ranges. We consider the three stages in the life of a nova: quiescence (pre- and post-outburst), outburst, final decline and nebular phase. We describe the photometric properties during the quiescent phase. We describe the photometric properties during outburst, the classification according the rate of decline (magnitudes per day), which permits us to define very fast, fast, intermediate, slow, and very slow novae and the correlation between luminosity and speed class. We report the scanty data on the spectra of the few known prenovae and those on the spectra of old novae and those of dwarf novae and nova-like, which, however, are almost undistinguishable. We describe the typical spectra appearing from the beginning of the outburst, just before maximum, up to the nebular phase and the correlation between spectral type at maximum, expansional velocity, and speed class of the nova. We report the existing infrared observations, which permit us to explain some of the characteristics of the outburst light curve, and give evidence of the formation of a dust shell in slow and intermediate novae (with the important exception of the very slow nova HR Del 1967) and its absence or quasi-absence in fast novae. The ultraviolet and X-ray observations are described. The X ray observations of novae, mainly from the two satellites EINSTEIN and EXOSAT, are reported. Observations of the final decline and of the envelopes appearing several months after outburst are also reported.
Accounting for the dispersion in the x ray properties of early-type galaxies
NASA Technical Reports Server (NTRS)
White, Raymond E., III; Sarazin, Craig L.
1990-01-01
The x ray luminosities of early-type galaxies are correlated with their optical (e.g., blue) luminosities (L sub X approx. L sub B exp 1.6), but the x ray luminosities exhibit considerable scatter for a given optical luminosity L sub B. This dispersion in x ray luminosity is much greater than the dispersion of other properties of early-type galaxies (for a given L sub B), such as luminosity scale-length, velocity dispersion, color, and metallicity. Here, researchers consider several possible sources for the dispersion in x ray luminosity. Some of the scatter in x ray luminosity may result from stellar population variations between galaxies with similar L sub B. Since the x ray emitting gas is from accumulated stellar mass loss, the L sub X dispersion may be due to variations in integrated stellar mass loss rates. Another possible cause of the L sub X dispersion may be variations in the amount of cool material in the galaxies; cool gas may act as an energy sink for the hot gas. Infrared emission may be used to trace such cool material, so researchers look for a correlation between the infrared emission and the x ray emission of early-type galaxies at fixed L sub B. Velocity dispersion variations between galaxies of similar L sub B may also contribute to the L sub X dispersion. The most likely a priori source of the dispersion in L sub X is probably the varying amount of ram-pressure stripping in a range of galaxy environments. The hot gaseous halos of early-type galaxies can be stripped in encounters with other galaxies or with ambient cluster gas if the intracluster gas is sufficiently dense. Researchers find that the most likely cause of dispersion in the x ray properties of early type galaxies is probably the ram-pressure stripping of gaseous halos from galaxies. For a sample of 81 early-type galaxies with x ray luminosities or upper limits derived from Einstein Observatory observations (CFT) researchers calculated the cumulative distribution of angular distances between the x ray sample members and bright galaxies from the Revised Shapley - Ames catalog. Collectively, galaxies with low x ray luminosities (for a given L sub B) tend to be in denser environments than galaxies with higher x ray luminosities.
Measurements and modelling of fast-ion redistribution due to resonant MHD instabilities in MAST
NASA Astrophysics Data System (ADS)
Jones, O. M.; Cecconello, M.; McClements, K. G.; Klimek, I.; Akers, R. J.; Boeglin, W. U.; Keeling, D. L.; Meakins, A. J.; Perez, R. V.; Sharapov, S. E.; Turnyanskiy, M.; the MAST Team
2015-12-01
The results of a comprehensive investigation into the effects of toroidicity-induced Alfvén eigenmodes (TAE) and energetic particle modes on the NBI-generated fast-ion population in MAST plasmas are reported. Fast-ion redistribution due to frequency-chirping TAE in the range 50 kHz-100 kHz and frequency-chirping energetic particle modes known as fishbones in the range 20 kHz-50 kHz, is observed. TAE and fishbones are also observed to cause losses of fast ions from the plasma. The spatial and temporal evolution of the fast-ion distribution is determined using a fission chamber, a radially-scanning collimated neutron flux monitor, a fast-ion deuterium alpha spectrometer and a charged fusion product detector. Modelling using the global transport analysis code Transp, with ad hoc anomalous diffusion and fishbone loss models introduced, reproduces the coarsest features of the affected fast-ion distribution in the presence of energetic particle-driven modes. The spectrally and spatially resolved measurements show, however, that these models do not fully capture the effects of chirping modes on the fast-ion distribution.
Monitoring Indoor Air Quality for Enhanced Occupational Health.
Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque
2017-02-01
Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".
A fast-evolving luminous transient discovered by K2/Kepler
NASA Astrophysics Data System (ADS)
Rest, A.; Garnavich, P. M.; Khatami, D.; Kasen, D.; Tucker, B. E.; Shaya, E. J.; Olling, R. P.; Mushotzky, R.; Zenteno, A.; Margheim, S.; Strampelli, G.; James, D.; Smith, R. C.; Förster, F.; Villar, V. A.
2018-04-01
For decades, optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients have been identified1-5. These have peak luminosities comparable to type Ia supernovae, but rise to maximum in less than ten days and fade from view in less than one month. Here we present the most extreme example of this class of object thus far: KSN 2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. We show that, unlike type Ia supernovae, the light curve of KSN 2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN 2015K is well fitted by a model where the supernova runs into external material presumably expelled in a pre-supernova mass-loss episode. The rapid rise of KSN 2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.
A binary link tracker for the BaBar level 1 trigger system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berenyi, A.; Chen, H.K.; Dao, K.
1999-08-01
The BaBar detector at PEP-II will operate in a high-luminosity e{sup +}e{sup {minus}} collider environment near the {Upsilon}(4S) resonance with the primary goal of studying CP violation in the B meson system. In this environment, typical physics events of interest involve multiple charged particles. These events are identified by counting these tracks in a fast first level (Level 1) trigger system, by reconstructing the tracks in real time. For this purpose, a Binary Link Tracker Module (BLTM) was designed and fabricated for the BaBar Level 1 Drift Chamber trigger system. The BLTM is responsible for linking track segments, constructed bymore » the Track Segment Finder Modules (TSFM), into complete tracks. A single BLTM module processes a 360 MBytes/s stream of segment hit data, corresponding to information from the entire Drift Chamber, and implements a fast and robust algorithm that tolerates high hit occupancies as well as local inefficiencies of the Drift Chamber. The algorithms and the necessary control logic of the BLTM were implemented in Field Programmable Gate Arrays (FPGAs), using the VHDL hardware description language. The finished 9U x 400 mm Euro-format board contains roughly 75,000 gates of programmable logic or about 10,000 lines of VHDL code synthesized into five FPGAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deptuch, Gregory; Hoff, James; Jindariani, Sergo
Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less
NASA Astrophysics Data System (ADS)
H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Superb Collaboration; Jankowski, F.; Keane, E. F.; Petroff, E.
2017-01-01
Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results: The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Φγ(E > 350 GeV) < 1.33 × 10-8 m-2 s-1. Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 × 1047 erg/s at 99% C.L.
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2014-10-01
A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.
Current Status of the Beam Position Monitoring System at TLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, C. H.; Hu, K. H.; Chen, Jenny
2006-11-20
The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This reportmore » summarizes the system structure, the software environment and the preliminary beam test of the BPM system.« less
NASA Technical Reports Server (NTRS)
Singh, J. J.; Davis, W. T.; Puster, R. L.
1983-01-01
A fast-response oxygen monitoring and control system, based on a Y2O3-stabilized ZrO2 sensor, was developed and tested in the laboratory. The system is capable of maintaining oxygen concentration in the CH4-O2-air combustion product gases at 20.9 + or - 1.0 percent. If the oxygen concentration in the exhaust stream differs from that in normal air by 25 percent or more, an alarm signal is provided for automatic tunnel shutdown. The overall prototype system response time was reduced from about 1 sec in the original configuration to about 0.2 sec. The basis of operation and the results of laboratory tests of the system are described.
The Swift Supergiant Fast X-Ray Transients Project:. [A Review, New Results and Future Perspectives
NASA Technical Reports Server (NTRS)
Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Vercellone, S.; Bocchino, F.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.;
2013-01-01
We present a review of the Supergiant Fast X-ray Transients (SFXT) Project, a systematic investigation of the properties of SFXTs with a strategy that combines Swift monitoring programs with outburst follow-up observations. This strategy has quickly tripled the available sets of broad-band data of SFXT outbursts, and gathered a wealth of out-of-outburst data, which have led us to a broad-band spectral characterization, an assessment of the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present some new observational results obtained through our outburst follow-ups, as fitting examples of the exceptional capabilities of Swift in catching bright flares and monitor them panchromatically.
NASA Astrophysics Data System (ADS)
Banerjee, Amrita; Chakraborty, Sumit; Altan-Bonnet, Nihal; Grebel, Haim
2013-09-01
Infrared (IR) spectroscopy provides fingerprinting of the energy and orientation of molecular bonds. The IR signals are generally weak and require amplification. Here we present a new plasmonic platform, made of freely suspended graphene, which was coating periodic metal structures. Only monolayer thick films were needed for a fast signal recording. We demonstrated unique IR absorption signals of bound proteins: these were the hemagglutinin area (HA1) of swine influenza (H1N1) and the avian influenza (H5N1) viruses bound to their respective tri-saccharides ligand receptors. The simplicity and sensitivity of such approach may find applications in fast monitoring of binding events.
Current Status of the Beam Position Monitoring System at TLS
NASA Astrophysics Data System (ADS)
Kuo, C. H.; Hu, K. H.; Chen, Jenny; Lee, Demi; Wang, C. J.; Hsu, S. Y.; Hsu, K. T.
2006-11-01
The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This report summarizes the system structure, the software environment and the preliminary beam test of the BPM system.
DOT National Transportation Integrated Search
2016-12-01
An independent evaluation of a non-video-based onboard monitoring system (OBMS) was conducted. The objective was to determine if the OBMS system performed reliably, improved driving safety and performance, and improved fuel efficiency in a commercial...
DOT National Transportation Integrated Search
2016-11-01
An independent evaluation of a non-video-based onboard monitoring system (OBMS) was conducted. The objective was to determine if the OBMS system performed reliably, improved driving safety and performance, and improved fuel efficiency in a commercial...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malony, Allen D; Shende, Sameer
This is the final progress report for the FastOS (Phase 2) (FastOS-2) project with Argonne National Laboratory and the University of Oregon (UO). The project started at UO on July 1, 2008 and ran until April 30, 2010, at which time a six-month no-cost extension began. The FastOS-2 work at UO delivered excellent results in all research work areas: * scalable parallel monitoring * kernel-level performance measurement * parallel I/0 system measurement * large-scale and hybrid application performance measurement * onlne scalable performance data reduction and analysis * binary instrumentation
Simulations of dust in interacting galaxies
NASA Astrophysics Data System (ADS)
Jonsson, Patrik
This dissertation studies the effects of dust in N-body simulations of interacting galaxies. A new Monte-Carlo radiative-transfer code, Sunrise , is used in conjunction with hydrodynamic simulations. Results from radiative- transfer calculations in over 20 SPH simulations of disk-galaxy major mergers (Cox, 2004) are presented. Dust has a profound effect on the appearance of these simulations. At peak luminosities, 90% of the bolometric luminosity is absorbed by dust. The dust obscuration increases with luminosity in such a way that the brightness at UV/ visual wavelengths remains roughly constant. A general relationship between the fraction of energy absorbed and the ratio of bolometric luminosity to baryonic mass is found to hold in galaxies with metallicities >0.7 [Special characters omitted.] over a factor of 50 in mass. The accuracy to which the simulations describe observed starburst galaxies is evaluated by comparing them to observations by Meurer et al. (1999) and Heckman et al. (1998). The simulations are found to follow a relation similar to the IRX-b relation found by Meurer et al. (1999) when similar luminosity objects are considered. The highest-luminosity simulated galaxies depart from this relation and occupy the region where local LIRGs/ULIRGs are found. Comparing to the Heckman et al. (1998) sample, the simulations are found to obey the same relations between UV luminosity, UV color, IR luminosity, absolute blue magnitude and metallicity as the observations. This agreement is contingent on the presence of a realistic mass-metallicity relation, and Milky-Way-like dust. SMC-like dust results in far too red a UV continuum slope. On the whole, the agreement between the simulated and observed galaxies is impressive considering that the simulations have not been fit to agree with the observations, and we conclude that the simulations provide a realistic replication of the real universe. The simulations are used to study the performance of star-formation indicators in the presence of dust. The far-infrared luminosity is found to be reliable. In contrast, the Ha and far-ultraviolet luminosities suffer severely from dust attenuation, and dust corrections can only partially remedy the situation.
LUMINOSITY FUNCTIONS OF LMXBs IN CENTAURUS A: GLOBULAR CLUSTERS VERSUS THE FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Rasmus; Gilfanov, Marat; Sivakoff, Gregory R.
2009-08-10
We study the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXB) in the nearby early-type galaxy Centaurus A, concentrating primarily on two aspects of binary populations: the XLF behavior at the low-luminosity limit and the comparison between globular cluster and field sources. The 800 ksec exposure of the deep Chandra VLP program allows us to reach a limiting luminosity of {approx}8 x 10{sup 35} erg s{sup -1}, about {approx}2-3 times deeper than previous investigations. We confirm the presence of the low-luminosity break of the overall LMXB XLF at log(L{sub X} ) {approx} 37.2-37.6, below which the luminosity distribution followsmore » a dN/d(ln L) {approx} const law. Separating globular cluster and field sources, we find a statistically significant difference between the two luminosity distributions with a relative underabundance of faint sources in the globular cluster population. This demonstrates that the samples are drawn from distinct parent populations and may disprove the hypothesis that the entire LMXB population in early-type galaxies is created dynamically in globular clusters. As a plausible explanation for this difference in the XLFs, we suggest an enhanced fraction of helium-accreting systems in globular clusters, which are created in collisions between red giants and neutron stars. Due to the four times higher ionization temperature of He, such systems are subject to accretion disk instabilities at {approx}20 times higher mass accretion rate and, therefore, are not observed as persistent sources at low luminosities.« less
ERIC Educational Resources Information Center
Adney, Kenneth J.
1991-01-01
An activity in which students compare the sun's brightness with that of a light bulb of known luminosity (in watts) to determine the luminosity of the sun is presented. As an extension, the luminosity value that the student obtains for the sun can also be used to estimate the sun's surface temperature. (KR)
Gamma-Ray Bursts and Cosmology
NASA Technical Reports Server (NTRS)
Norris, Jay P.
2003-01-01
The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.
The Evolution of Globular Cluster Systems In Early-Type Galaxies
NASA Astrophysics Data System (ADS)
Grillmair, Carl
1999-07-01
We will measure structural parameters {core radii and concentrations} of globular clusters in three early-type galaxies using deep, four-point dithered observations. We have chosen globular cluster systems which have young, medium-age and old cluster populations, as indicated by cluster colors and luminosities. Our primary goal is to test the hypothesis that globular cluster luminosity functions evolve towards a ``universal'' form. Previous observations have shown that young cluster systems have exponential luminosity functions rather than the characteristic log-normal luminosity function of old cluster systems. We will test to see whether such young system exhibits a wider range of structural parameters than an old systems, and whether and at what rate plausible disruption mechanisms will cause the luminosity function to evolve towards a log-normal form. A simple observational comparison of structural parameters between different age cluster populations and between diff er ent sub-populations within the same galaxy will also provide clues concerning both the formation and destruction mechanisms of star clusters, the distinction between open and globular clusters, and the advisability of using globular cluster luminosity functions as distance indicators.
Exploring the Faint End of the Luminosity-Metallicity Relation with Hα Dots
NASA Astrophysics Data System (ADS)
Hirschauer, Alec S.; Salzer, John J.
2015-01-01
The well-known correlation between a galaxy's luminosity and its gas-phase oxygen abundance (the luminosity-metallicity (L-Z) relation) offers clues toward our understanding of chemical enrichment histories and evolution. Bright galaxies are comparatively better studied than faint ones, leaving a relative dearth of observational data points to constrain the L-Z relation in the low-luminosity regime. We present high S/N nebular spectroscopy of low-luminosity star-forming galaxies observed with the KPNO 4m using the new KOSMOS spectrograph to derive direct-method metallicities. Our targets are strong point-like emission-line sources discovered serendipitously in continuum-subtracted narrowband images from the ALFALFA Hα survey. Follow-up spectroscopy of these "Hα dots" shows that these objects represent some of the lowest luminosity star-forming systems in the local Universe. Our KOSMOS spectra cover the full optical region and include detection of [O III] λ4363 in roughly a dozen objects. This paper presents some of the first scientific results obtained using this new spectrograph, and demonstrates its capabilities and effectiveness in deriving direct-method metallicities of faint objects.
Beam-dynamic effects at the CMS BRIL van der Meer scans
NASA Astrophysics Data System (ADS)
Babaev, A.
2018-03-01
The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC . BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-β effect. Both effects are important to luminosity measurements and influence calibration constants at the level of 1-2%. The simulations are carried out based on 2016 CMS van der Meer scan data for proton-proton collisions at a center-of-mass energy of 13 TeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milic, A.
The ATLAS Liquid Argon calorimeters are designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, an upgrade of the read-out electronics is being launched to cope with luminosities of up to 3x10{sup 34} cm{sup -2}s{sup -1}, which are beyond the original design by a factor of 3. An improved spatial granularity of the triggermore » primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the upgrade Phase-1 in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The read-out of the trigger signals will process 34000 so-called Super Cells at every LHC bunch-crossing at a frequency of 40 MHz. The new LTDB on-detector electronics is designed to be radiation tolerant in order to be operated for the remaining live-time of the ATLAS detector up to a total luminosity of 3000 fb{sup -1}. For the analog-to-digital conversion (12-bit ADC at 40 MSPS), the data serialization and the fast optical link (5.44 Gb/s) custom components have been developed. They have been qualified for the expected radiation environment of a total ionization dose of 1.3 kGy and a hadron fluence of 6 x 10{sup 13} h/cm{sup 2} with energies above 20 MeV. For the digital components like the ADC, cross-sections for single event effects have been determined. This talk will present R and D results from tests of the radiation tolerant components, the fast data processing electronics and prototypes of the LTDB and LDPS boards. First experience from a Demonstrator setup will be reported, in which about 1/10 of the full Super Cell readout will be equipped with prototype versions of the LTDB and LDPS boards. The Demonstrator will be operated in parallel to the regular ATLAS trigger read-out during the upcoming LHC run. (authors)« less
An X-ray Investigation of the NGC 346 Field in the SMC (2): The Field Population
NASA Technical Reports Server (NTRS)
Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Manfroid, J.; Marchenko, S.; Corcoran, M. F.; Moffat, A. F. J.; Skalkowski, G.
2003-01-01
We present results from a Chandra observation of the NGC 346 cluster, which is the ionizing source of N66, the most luminous HII region and the largest star formation region in the SMC. In the first part of this investigation, we have analysed the X-ray properties of the cluster itself and the remarkable star HD 5980. But the field contains additional objects of interest. In total, 79 X-ray point sources were detected in the Chandra observation: this is more than five times the number of sources detected by previous X-ray surveys. We investigate here their characteristics in detail. The sources possess rather high hardness ratios, and their cumulative luminosity function is steeper than that for the rest of the SMC at higher .luminosities. Their absorption columns suggest that most of the sources belong to NGC346. Using new UBV RI imaging with the ESO 2.2m telescope, we also discovered possible counterparts for 36 of these X-ray sources and estimated a B spectral type for a large number of these counterparts. This tends to suggest that most of the X-ray sources in the field are in fact X-ray binaries. Finally, some objects show X-ray and/or optical variability, with a need for further monitoring.
An X-ray Investigation of the NGC 346 Field. 1; The LBV HD 5980 and the NGC 346 Cluster
NASA Technical Reports Server (NTRS)
Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Corcoran, M. F.; Chu, Y.-H.; Koenigsberger, G.; Moffat, A. F. J.; Niemela, V. S.
2002-01-01
We present results from a Chandra observation of the NGC 346 star formation region, which contains numerous massive stars, and is related to N66, the largest H(II) region of the SMC (Small Magellanic Cloud). In this first paper, we will focus on the characteristics of the main objects of the field. The NGC 346 cluster itself shows only relatively faint X-ray emission (with L((sub X)(sup unabs)) is approximately 1.5 x 10(exp 34) erg s(exp -1), tightly correlated with the core of the cluster. In the field also lies HD 5980, a LBV (Luminous Blue Variable) star in a binary (or triple system) that is detected for the first time at X-ray energies. The star is X-ray bright, with an unabsorbed luminosity of L((sub X)(sup unabs)) is approximately 1.7 x 10(exp 34) erg s(exp -1), but needs to be monitored further to investigate its X-ray variability over a complete orbital cycle. The high X-ray luminosity may be associated either with colliding winds in the binary system or with the 1994 eruption. HD 5980 is surrounded by a region of diffuse X-ray emission, which may be a superimposed supernova remnant.
Multi-Epoch Multiwavelength Spectra and Models for Blazar 3C 279
NASA Technical Reports Server (NTRS)
Hartman, R. C.; Boettcher, M.; Aldering, G.; Aller, H.; Aller, M.; Backman, D. E.; Balonek, T. J.; Bertsch, D. L.; Bloom, S. D.; Bock, H.;
2001-01-01
Of the blazars detected by EGRET in GeV gamma-rays, 3C 279 is not only the best-observed by EGRET, but also one of the best-monitored at lower frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma-rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial gamma-ray contribution to the total luminosity of the object; in a high state, the gamma-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and gamma-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton + external Compton gamma-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low gamma-ray intensity.
Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Torrico, Damir D; Dunshea, Frank R
2018-06-03
Traditional methods to assess heart rate (HR) and blood pressure (BP) are intrusive and can affect results in sensory analysis of food as participants are aware of the sensors. This paper aims to validate a non-contact method to measure HR using the photoplethysmography (PPG) technique and to develop models to predict the real HR and BP based on raw video analysis (RVA) with an example application in chocolate consumption using machine learning (ML). The RVA used a computer vision algorithm based on luminosity changes on the different RGB color channels using three face-regions (forehead and both cheeks). To validate the proposed method and ML models, a home oscillometric monitor and a finger sensor were used. Results showed high correlations with the G color channel (R² = 0.83). Two ML models were developed using three face-regions: (i) Model 1 to predict HR and BP using the RVA outputs with R = 0.85 and (ii) Model 2 based on time-series prediction with HR, magnitude and luminosity from RVA inputs to HR values every second with R = 0.97. An application for the sensory analysis of chocolate showed significant correlations between changes in HR and BP with chocolate hardness and purchase intention.
FERMI GBM OBSERVATIONS OF V404 CYG DURING ITS 2015 OUTBURST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenke, P. A.; Veres, P.; Briggs, M. S.
2016-07-20
V404 Cygni was discovered in 1989 by the Ginga X-ray satellite during its only previously observed X-ray outburst and soon after confirmed as a black hole binary. On 2015 June 15, the Gamma-ray Burst Monitor (GBM) triggered on a new outburst of V404 Cygni. We present 13 days of GBM observations of this outburst, including Earth occultation flux measurements and spectral and temporal analysis. The Earth occultation fluxes reached 30 Crab with detected emission to 100 keV and determined, via hardness ratios, that the source was in a hard state. At high luminosity, spectral analysis between 8 and 300 keVmore » showed that the electron temperature decreased with increasing luminosity. This is expected if the protons and electrons are in thermal equilibrium during an outburst with the electrons cooled by the Compton scattering of softer seed photons from the disk. However, the implied seed photon temperatures are unusually high, suggesting a contribution from another source, such as the jet. No evidence of state transitions is seen during this time period. The temporal analysis reveals power spectra that can be modeled with two or three strong, broad Lorentzians, similar to the power spectra of black hole binaries in their hard state.« less
Swift and SALT observations of the multiple outbursts of MAXI J1957+032
NASA Astrophysics Data System (ADS)
Mata Sánchez, D.; Charles, P. A.; Armas Padilla, M.; Buckley, D. A. H.; Israel, G. L.; Linares, M.; Muñoz-Darias, T.
2017-06-01
The new recurrent X-ray transient MAXI J1957+032 has had four X-ray outbursts within 16 months, all very briefly detected (lasting <5 d). During the most recent event (2016 September/October), we obtained with the Southern African Large Telescope the first optical spectrum of the transient counterpart, showing the classic blue continuum of an X-ray irradiated disc in an LMXB and no other features. At high Galactic latitude below the plane (-13°) reddening is low but there is no quiescent counterpart visible on any of the existing sky surveys, nor any other known X-ray source in the region. Swift monitoring of three of the four events is presented, showing rapidly fading X-ray outbursts together with significant UVOT detections in the UV (W1,M2,W2), U and B bands. The optical properties are most like those of the short-period LMXBs, which, combined with the softening witnessed during the decay to quiescence would place the system at d < 13 kpc. The short duration and short recurrence time of the outbursts are reminiscent of the accreting millisecond X-ray pulsars, which exhibit peak luminosities of ˜ 1 per cent LEdd. Assuming this peak luminosity would place MAXI J1957+032 at a distance of d ˜ 5-6 kpc.
A unified model of supernova driven by magnetic monopoles
NASA Astrophysics Data System (ADS)
Peng, Qiu-He; Liu, Jing-Jing; Chou, Chih-Kang
2017-12-01
In this paper, we first discuss a series of important but puzzling physical mechanisms concerning the energy source, various kinds of core collapsed supernovae explosion mechanisms during central gravitational collapse in astrophysics. We also discuss the puzzle of possible association of γ -ray burst with gravitational wave perturbation, the heat source for the molten interior of the core of the Earth and finally the puzzling problem of the cooling of white dwarfs. We then make use of the estimations for the space flux of magnetic monopoles (hereafter MMs) and nucleon decay induced by MMs (called the Rubakov-Callen (RC) effect) to obtain the luminosity due to the RC effect. In terms of the formula for this RC luminosity, we present a unified treatment for the heat source of the Earth's core, the energy source for the white dwarf interior, various kinds of core collapsed supernovae (Type II Supernova (SNII), Type Ib Supernova (SNIb), Type Ic Supernova (SNIc), Super luminous supernova (SLSN)), and the production mechanism for γ -ray burst. This unified model can also be used to reasonably explain the possible association of the short γ -ray burst detected by the Fermi γ -ray Burst Monitoring Satellite (GBM) with the LIGO gravitational wave event GW150914 in September 2015.
What powers Hyperluminous infrared galaxies at z˜1-2?
NASA Astrophysics Data System (ADS)
Symeonidis, M.; Page, M. J.
2018-06-01
We investigate what powers hyperluminous infrared galaxies (HyLIRGs; LIR, 8-1000μm > 1013 L⊙) at z˜1-2, by examining the behaviour of the infrared AGN luminosity function in relation to the infrared galaxy luminosity function. The former corresponds to emission from AGN-heated dust only, whereas the latter includes emission from dust heated by stars and AGN. Our results show that the two luminosity functions are substantially different below 1013 L⊙ but converge in the HyLIRG regime. We find that the fraction of AGN dominated sources increases with total infrared luminosity and at L_IR>10^{13.5} L_{⊙} AGN can account for the entire infrared emission. We conclude that the bright end of the 1 < z < 2 infrared galaxy luminosity function is shaped by AGN rather than star-forming galaxies.
Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S
2015-05-01
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.
Effect of ramadan fasting on acenocoumarol-induced antocoagulant effect.
Mzoughi, Khadija; Zairi, Ihsen; Fennira, Sana; Kamoun, Sofien; Jnifene, Zouhayer; Ben Moussa, Fethia; Kraiem, Sondos
2017-10-01
Eating patterns, food intake and type of alimentation vary greatly during the month of ramadan. Furthermore, fasting, which practiced during the month of ramadan, can have an impact on drug's metabolism. These two factors, fasting and eating habits changes during the month of ramadan, may impact acenocoumarol anticoagulant effect, translated by variations of INR values. The aim of our study was to see ramadan fasting effects on INR variations in patients treated by acenocoumarol. A prospective monocentric study was conducted during the ramadan month on fasting outpatients that were treated by acenocoumarol. Baseline INR values (e.i. most recent available value before the month of ramadan) were compared to INR values obtained during the month of ramadan. All patients were monitored for signs of secondary haemorrhagic complications linked to treatment by anti-vitamin K (AVK). Thirty patients were included in the study with a sex ratio 1. Patients mean age was 65 years. Around two thirds of the patients were treated by AVK for atrial fibrillation. The majority of patients (94%) have been treated by AVK for more than a year. Mean INR was significantly higher during the month of ramadan than baseline (3.51 vs 2.52; p< 0.0001). There were also more overdoses during the month of ramadan than baseline (9 vs. 0; p=0.014). The increased INR values highlights the need of a close monitoring of INR values during the month of ramadan, particularly in patients with a high haemorrhagic risk.
A Search for Water Maser Emission from Brown Dwarfs and Low-luminosity Young Stellar Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez, José F.; Manjarrez, Guillermo; Palau, Aina
We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L {sub ⊙}. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with L {sub bol} ≳ 1 L {sub ⊙}. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission.more » Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of L {sub bol} ≃ 3.6–5.3 L {sub ⊙}) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L {sub bol} ≤ 1 L {sub ⊙} or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.« less
Fast gradient HPLC/MS separation of phenolics in green tea to monitor their degradation.
Šilarová, Petra; Česlová, Lenka; Meloun, Milan
2017-12-15
The degradation of catechins and other phenolics in green tea infusions were monitored using fast HPLC/MS separation. The final separation was performed within 2.5min using Ascentis Express C18 column (50mm×2.1mm i.d.) packed with 2μm porous shell particles. Degradation was studied in relation to the temperature of water (70, 80, 90°C) and the standing time of the infusion (up to 6h). Along with chromatographic separation, the antioxidant properties of the infusions were monitored using two spectrophotometric methods. During staying of green tea infusion, the degradation of some catechins probably to gallic acid was observed. Finally, the influence of tea bag storage on antioxidant properties of green tea was evaluated. Rapid degradation of antioxidants after 3weeks was observed. The principal component analysis, factor analysis and discriminant analysis were used for the statistical evaluation of obtained experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Laffont, Guillaume; Cotillard, Romain; Roussel, Nicolas; Desmarchelier, Rudy; Rougeault, Stéphane
2018-06-02
The harsh environment associated with the next generation of nuclear reactors is a great challenge facing all new sensing technologies to be deployed for on-line monitoring purposes and for the implantation of SHM methods. Sensors able to resist sustained periods at very high temperatures continuously as is the case within sodium-cooled fast reactors require specific developments and evaluations. Among the diversity of optical fiber sensing technologies, temperature resistant fiber Bragg gratings are increasingly being considered for the instrumentation of future nuclear power plants, especially for components exposed to high temperature and high radiation levels. Research programs are supporting the developments of optical fiber sensors under mixed high temperature and radiative environments leading to significant increase in term of maturity. This paper details the development of temperature-resistant wavelength-multiplexed fiber Bragg gratings for temperature and strain measurements and their characterization for on-line monitoring into the liquid sodium used as a coolant for the next generation of fast reactors.
Navigators for motion detection during real-time MRI-guided radiotherapy
NASA Astrophysics Data System (ADS)
Stam, Mette K.; Crijns, Sjoerd P. M.; Zonnenberg, Bernard A.; Barendrecht, Maurits M.; van Vulpen, Marco; Lagendijk, Jan J. W.; Raaymakers, Bas W.
2012-11-01
An MRI-linac system provides direct MRI feedback and with that the possibility of adapting radiation treatments to the actual tumour position. This paper addresses the use of fast 1D MRI, pencil-beam navigators, for this feedback. The accuracy of using navigators was determined on a moving phantom. The possibility of organ tracking and breath-hold monitoring based on navigator guidance was shown for the kidney. Navigators are accurate within 0.5 mm and the analysis has a minimal time lag smaller than 30 ms as shown for the phantom measurements. The correlation of 2D kidney images and navigators shows the possibility of complete organ tracking. Furthermore the breath-hold monitoring of the kidney is accurate within 1.5 mm, allowing gated radiotherapy based on navigator feedback. Navigators are a fast and precise method for monitoring and real-time tracking of anatomical landmarks. As such, they provide direct MRI feedback on anatomical changes for more precise radiation delivery.
Abad, Sergi; Pérez, Xavier; Planas, Antoni; Turon, Xavier
2014-04-01
Recently, the need for crude glycerol valorisation from the biodiesel industry has generated many studies for practical and economic applications. Amongst them, fermentations based on glycerol media for the production of high value metabolites are prominent applications. This has generated a need to develop analytical techniques which allow fast and simple glycerol monitoring during fermentation. The methodology should be fast and inexpensive to be adopted in research, as well as in industrial applications. In this study three different methods were analysed and compared: two common methodologies based on liquid chromatography and enzymatic kits, and the new method based on a DotBlot assay coupled with image analysis. The new methodology is faster and cheaper than the other conventional methods, with comparable performance. Good linearity, precision and accuracy were achieved in the lower range (10 or 15 g/L to depletion), the most common range of glycerol concentrations to monitor fermentations in terms of growth kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Alvarez, R.; Mennessier, M.-O.; Barthes, D.; Luri, X.; Mattei, J. A.
1997-01-01
Hipparcos astrometric and kinematical data of oxygen-rich Mira variables are used to calibrate absolute near-infrared magnitudes and kinematic parameters. Three distinct classes of stars with different kinematics and scale heights were identified. The two most significant groups present characteristics close to those usually assigned to extended/thick disk-halo populations and old disk populations, respectively, and thus they may differ by their metallicity abundance. Two parallel period-luminosity relations are found, one for each population. The shift between these relations is interpreted as the consequence of the effects of metallicity abundance on the luminosity.
Masses, luminosities and dynamics of galactic molecular clouds
NASA Technical Reports Server (NTRS)
Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.
1987-01-01
Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.
Observations of jets from low-luminosity stars - DG Tauri B
NASA Technical Reports Server (NTRS)
Jones, B. F.; Cohen, Martin
1986-01-01
Low spectral resolution studies of DG Tau B, the faint system of knots south of the T Tauri star DG Tau, are described. The observations show this object to be bipolar, with the blueshifted lobe having extraordinarily low excitation. Infrared observations of the exciting star show it to be of very low luminosity, with a bolometric luminosity of 0.88 solar luminosity. The visual extinction indicates a highly nonspherical distribution of circumstellar dust around the exciting star. In spite of this lack of embedding within an obvious dark cloud, the system is identified as a young one.
Development of Early Warning System Using ALOS-2/PALSAR-2 Data to Detect and Prevent Deforestation
NASA Astrophysics Data System (ADS)
Hayashi, M.; Nagatani, I.; Watanabe, T.; Tadono, T.; Miyoshi, H.; Watanabe, M.; Koyama, C.; Shimada, M.; Ogawa, T.; Ishii, K.; Higashiuwatoko, T.; Miura, M.; Okonogi, H.; Adachi, K.; Morita, T.
2017-12-01
Satellite observation is an efficient method for monitoring deforestation, and a synthetic aperture radar (SAR) is useful especially in cloudy tropical forest regions. In this context, JICA and JAXA cooperate to operate the deforestation monitoring system acquired data by the Phased Array type L-band SAR-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), which is named as "JICA-JAXA Forest Early Warning System in the Tropics" (JJ-FAST), and it have been released on November 2016. JJ-FAST detects deforestation areas, and provides their positional information for 77 countries, which is covering almost all tropical forests. It uses PALSAR-2 ScanSAR observation mode (wide-observation swath width) image, which is 50 m spatial resolution acquired at 1.5 months interval. The dark change areas compared with in two acquisitions by PALSAR-2 HV-polarization images are identified as deforestations in the system. We conducted field surveys to validate detection accuracy of the JJ-FAST in Peru (November and December, 2016), Botswana (April, 2017), and Gabon (July, 2017). As the results, 15 of 18 detected areas were correct deforestation areas, therefore user's accuracy could be confirmed as 83.3 % from limited number of the validation data. Erroneous detection areas were caused by seasonal change in agricultural land and open burning in grass land. For improvement of the accuracy, such areas must be excluded from the analysis by additional algorithms e.g. estimation of accurate masking for non-forested areas. Therefore, we are revising the forest map used for pre-processing step in the system. The JJ-FAST can be expected to contribute to monitor and reduce illegal deforestation activities in tropical forests.
Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources
NASA Astrophysics Data System (ADS)
Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto
2017-09-01
We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.
SCUSS u- BAND EMISSION AS A STAR-FORMATION-RATE INDICATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Zhimin; Zhou, Xu; Wu, Hong
2017-01-20
We present and analyze the possibility of using optical u- band luminosities to estimate star-formation rates (SFRs) of galaxies based on the data from the South Galactic Cap u band Sky Survey (SCUSS), which provides a deep u -band photometric survey covering about 5000 deg{sup 2} of the South Galactic Cap. Based on two samples of normal star-forming galaxies selected by the BPT diagram, we explore the correlations between u -band, H α , and IR luminosities by combing SCUSS data with the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer ( WISE ). The attenuation-corrected u -band luminositiesmore » are tightly correlated with the Balmer decrement-corrected H α luminosities with an rms scatter of ∼0.17 dex. The IR-corrected u luminosities are derived based on the correlations between the attenuation of u- band luminosities and WISE 12 (or 22) μ m luminosities, and then calibrated with the Balmer-corrected H α luminosities. The systematic residuals of these calibrations are tested against the physical properties over the ranges covered by our sample objects. We find that the best-fitting nonlinear relations are better than the linear ones and recommended to be applied in the measurement of SFRs. The systematic deviations mainly come from the pollution of old stellar population and the effect of dust extinction; therefore, a more detailed analysis is needed in future work.« less
A Faint Flux-limited Ly α Emitter Sample at z ∼ 0.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.
2017-10-20
We present a flux-limited sample of z ∼ 0.3 Ly α emitters (LAEs) from Galaxy Evolution Explorer ( GALEX ) grism spectroscopic data. The published GALEX z ∼ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Ly α emission line directly from our sample. We examine the evolution of these quantities from z ∼ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shownmore » by previous studies, the Ly α luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Ly α luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the H α luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Ly α escape fraction. Finally, we show that the observed Ly α luminosity density from AGNs is comparable to the observed Ly α luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Ly α luminosity density persists out to z ∼ 2.2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krolewski, Alex G.; Eisenstein, Daniel J., E-mail: akrolewski@college.harvard.edu
2015-04-10
We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasarsmore » at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.« less
Crustal anisotropy in the forearc of the Northern Cascadia Subduction Zone, British Columbia
NASA Astrophysics Data System (ADS)
Balfour, N. J.; Cassidy, J. F.; Dosso, S. E.
2012-01-01
This paper aims to identify sources and variations of crustal anisotropy from shear-wave splitting measurements in the forearc of the Northern Cascadia Subduction Zone of southwest British Columbia. Over 20 permanent stations and 15 temporary stations were available for shear-wave splitting analysis on ˜4500 event-station pairs for local crustal earthquakes. Results from 1100 useable shear-wave splitting measurements show spatial variations in fast directions, with margin-parallel fast directions at most stations and margin-perpendicular fast directions at stations in the northeast of the region. Crustal anisotropy is often attributed to stress and has been interpreted as the fast direction being related to the orientation of the maximum horizontal compressive stress. However, studies have also shown anisotropy can be complicated by crustal structure. Southwest British Columbia is a complex region of crustal deformation and some of the stations are located near large ancient faults. To use seismic anisotropy as a stress indicator requires identifying which stations are influenced by stress and which by structure. We determine the source of anisotropy at each station by comparing fast directions from shear-wave splitting results to the maximum horizontal compressive stress orientation determined from earthquake focal mechanism inversion. Most stations show agreement between the fast direction and the maximum horizontal compressive stress. This suggests that anisotropy is related to stress-aligned fluid-filled microcracks based on extensive dilatancy anisotropy. These stations are further analysed for temporal variations to lay groundwork for monitoring temporal changes in the stress over extended time periods. Determining the sources of variability in anisotropy can lead to a better understanding of the crustal structure and stress, and in the future may be used as a monitoring and mapping tool.
NASA Astrophysics Data System (ADS)
Schmitt, R.; Hugenschmidt, Manfred
1996-05-01
Carbon-dioxide-lasers operating in the pulsed mode with energy densities up to several tens of J/cm2 and peak power densities in the multi-MW/cm2-range may cause fast heating and melting. Eventually quasi-explosive ejection, decomposition or vaporization of material can be observed. Surface plasmas are strongly influencing the energy transfer from the laser radiation field to any target. For optically transparent plastics, such as PMMA for example, only slowly expanding plasmas (LSC-waves) are ignited at fluences around 20 J/cm2, with a low level of self-luminosity. High brightness, supersonically expanding plasma jets (LSD-waves) are generated at the same fluences on glasses. Similar conditions were found for metals as well. From recordings with a high speed CCD-camera, interesting features concerning the initial plasma phases and temporal evolution were deduced. Additionally, information was obtained concerning the quasi explosive ejection of material for PMMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milardi, C.; Alesini, D.; Biagini, M.E.
DAFNE is an accelerator complex consisting of a double ring lepton collider working at the c.m. energy of the {Phi}-resonance (1.02 GeV) and an injection system. In its original configuration the collider consisted of two independent rings, each {approx}97 m long, sharing two 10 m long interaction regions (IR1 and IR2) where the KLOE and FINUDA or DEAR detectors were respectively installed. A full energy injection system, including an S-band linac, 180 m long transfer lines and an accumulator/damping ring, provides fast and high efficiency electron positron injection also in topping-up mode during collisions. Recently the DAFNE collider has beenmore » upgraded in order to implement a new collision scheme based on large Piwinski angle and cancellation of the synchro-betatron resonances by means of electromagnetic sextupoles (Crab-Waist compensation). The novel approach has proved to be effective in improving beam-beam interaction and collider luminosity.« less
A NEW TWIST IN THE EVOLUTION OF LOW-MASS STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denissenkov, Pavel A., E-mail: pavelden@uvic.ca
2012-07-01
We show that the evolutionary track of a low-mass red giant should make an extended zigzag on the Hertzsprung-Russel diagram just after the bump luminosity if fast internal rotation and enhanced extra mixing in the radiative zone bring the temperature gradient close to the adiabatic one. This can explain both the location and peculiar surface chemical composition of Li-rich K giants studied by Kumar et al. We also discuss a striking resemblance between the photometric and composition peculiarities of these stars and giant components of RS CVn binaries. We demonstrate that the observationally constrained values of the temperature gradient inmore » the Li-rich K giants agree with the required rate of extra mixing only if the turbulence that is believed to be responsible for this extra mixing is highly anisotropic, with its associated transport coefficients in the horizontal direction strongly dominating over those in the vertical direction.« less
How fast can an AGN shut down? XMM-Newton observation of IC 2497
NASA Astrophysics Data System (ADS)
Schawinski, Kevin
2008-10-01
We propose to observe IC 2497 with XMM-Newton to detect, or rule out, an obscured AGN that might account for the illumination of `Hanny's Voorwerp'. The Voorwerp is a highly ionised cloud of gas extended over 15-25 kpc next to the spiral galaxy IC 2497. There is no source of ionisation within the Voorwerp, implicating a luminous 1E44 erg/s AGN in IC 2497 as the source. Swift XRT observations do not yield a detection, allowing the presence of a highly obscured, sufficiently luminous AGN. With 34 ksec of XMM observations, we could detect an obscured AGN down to 1E42 erg/s. We can thus either locate an obscured AGN, or we can for the first time constrain the shutdown time scale for a powerful AGN, as it drops by a factor of 100 in luminosity in 1E5 years.
GRAVITY-DARKENED SEASONS: INSOLATION AROUND RAPID ROTATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlers, John P.
2016-11-20
I model the effect of rapid stellar rotation on a planet’s insolation. Fast-rotating stars have induced pole-to-equator temperature gradients (known as gravity darkening) of up to several thousand Kelvin that affect the star’s luminosity and peak emission wavelength as a function of latitude. When orbiting such a star, a planet’s annual insolation can strongly vary depending on its orbital inclination. Specifically, inclined orbits result in temporary exposure to the star’s hotter poles. I find that gravity darkening can drive changes in a planet’s equilibrium temperature of up to ∼15% due to increased irradiance near the stellar poles. This effect canmore » also vary a planet’s exposure to UV radiation by up to ∼80% throughout its orbit as it is exposed to an irradiance spectrum corresponding to different stellar effective temperatures over time.« less
Heidbrink, William W.; Ferron, John R.; Holcomb, Christopher T.; ...
2014-08-21
Here, analysis of neutron and fast-ion D α data from the DIII-D tokamak shows that Alfvén eigenmode activity degrades fast-ion confinement in many high β N, high q min, steady-state scenario discharges. (β N is the normalized plasma pressure and q min is the minimum value of the plasma safety factor.) Fast-ion diagnostics that are sensitive to the co-passing population exhibit the largest reduction relative to classical predictions. The increased fast-ion transport in discharges with strong AE activity accounts for the previously observed reduction in global confinement with increasing q min; however, not all high q min discharges show appreciablemore » degradation. Two relatively simple empirical quantities provide convenient monitors of these effects: (1) an 'AE amplitude' signal based on interferometer measurements and (2) the ratio of the neutron rate to a zero-dimensional classical prediction.« less
Star formation quenching in quasar host galaxies
NASA Astrophysics Data System (ADS)
Carniani, Stefano
2017-10-01
Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.
Luminosity of serendipitous x-ray QSOs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margon, B.; Chanan, G.A.; Downes, R.A.
1982-02-01
We have identified the optical counterparts of 47 serendipitously discovered Einstein Observatory X-ray sources with previously unreported quasi-stellar objects. The mean ratio of X-ray to optical luminosity of this sample agrees reasonably well with that derived from X-ray observations of previously known QSOs. However, despite the fact that our limiting magnitude V = 18.5 should permit detection of typical QSOs (i.e., M/sub c/ = -26) to z = 0.9, the mean redshift of our sample is only z = 0.42 Thus the mean luminosity of these objects, M/sub c/ = -24, differs significantly from that of previous QSO surveys withmore » similar optical thresholds. The existence of large numbers of these lower luminosity QSOs which are difficult to discover by previous selection techniques, provides observational confirmation of the steep luminosity function inferred indirectly from optical counts. However, possible explanations for the lack of higher luminosity QSOs in our sample prove even more interesting. If one accepts the global value of the X-ray to optical luminosity ratio proposed by Zamorani et al, and Ku, Helfand, and Lucy, then reconciliation of this ratio with our observations severely constrains the QSO space density and luminosity functions. Alternatively, the ''typical'' QSO-a radio quiet, high redshift (z>1), optically luminous but not superluminous (M/sub c/> or =-27) object-may not be a strong X-ray source. This inference is not in conflict with existing results from Einstein X-ray surveys of preselected QSOs, which also fail to detect such objects. The contribution of QSOs to the diffuse X-ray background radiation is therefore highly uncertain, but may be quite small. Current X-ray data probably do not place significant constraints on the optical number counts of faint QSOs.« less
NASA Astrophysics Data System (ADS)
Shipley, Heath; Papovich, Casey
2015-08-01
We provide a new robust star-formation rate (SFR) calibration using the luminosity from polycyclic aromatic hydrogen (PAH) molecules. The PAH features emit strongly in the mid-infrared (mid-IR; 3-19μm), mitigating dust extinction, and they are very luminous, containing 5-10% of the total IR luminosity in galaxies. We derive the calibration of the PAH luminosity as a SFR indicator using a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.6. The PAH luminosity correlates linearly with the SFR as measured by the dust-corrected Hα luminosity (using the sum of the Hα and rest-frame 24μm luminosity from Kennicutt et al. 2009), with tight scatter of ~0.15 dex, comparable to the scatter in the dust-corrected Hα SFRs and Paα SFRs. We show this relation is sensitive to galaxy metallicity, where the PAH luminosity of galaxies with Z < 0.7 Z⊙ departs from the linear SFR relationship but in a behaved manor. We derive for this a correction to galaxies below solar metallicity. As a case study for observations with JWST, we apply the PAH SFR calibration to a sample of lensed galaxies at 1 < z < 3 with Spitzer Infrared Spectrograph (IRS) data, and we demonstrate the utility of PAHs to derive SFRs as accurate as those available from any other indicator. This new SFR indicator will be useful for probing the peak of the SFR density of the universe (1 < z < 3) and for studying the coevolution of star-formation and supermassive blackhole accretion contemporaneously in a galaxy.
NASA Astrophysics Data System (ADS)
Gruppioni, C.; Berta, S.; Spinoglio, L.; Pereira-Santaella, M.; Pozzi, F.; Andreani, P.; Bonato, M.; De Zotti, G.; Malkan, M.; Negrello, M.; Vallini, L.; Vignali, C.
2016-06-01
We present new estimates of AGN accretion and star formation (SF) luminosity in galaxies obtained for the local 12 μm sample of Seyfert galaxies (12MGS), by performing a detailed broad-band spectral energy distribution (SED) decomposition including the emission of stars, dust heated by SF and a possible AGN dusty torus. Thanks to the availability of data from the X-rays to the sub-millimetre, we constrain and test the contribution of the stellar, AGN and SF components to the SEDs. The availability of Spitzer-InfraRed Spectrograph (IRS) low-resolution mid-infrared (mid-IR) spectra is crucial to constrain the dusty torus component at its peak wavelengths. The results of SED fitting are also tested against the available information in other bands: the reconstructed AGN bolometric luminosity is compared to those derived from X-rays and from the high excitation IR lines tracing AGN activity like [Ne V] and [O IV]. The IR luminosity due to SF and the intrinsic AGN bolometric luminosity are shown to be strongly related to the IR line luminosity. Variations of these relations with different AGN fractions are investigated, showing that the relation dispersions are mainly due to different AGN relative contribution within the galaxy. Extrapolating these local relations between line and SF or AGN luminosities to higher redshifts, by means of recent Herschel galaxy evolution results, we then obtain mid- and far-IR line luminosity functions useful to estimate how many star-forming galaxies and AGN we expect to detect in the different lines at different redshifts and luminosities with future IR facilities (e.g. JWST, SPICA).
NASA Astrophysics Data System (ADS)
Buat, V.; Takeuchi, T. T.; Iglesias-Páramo, J.; Xu, C. K.; Burgarella, D.; Boselli, A.; Barlow, T.; Bianchi, L.; Donas, J.; Forster, K.; Friedman, P. G.; Heckman, T. M.; Lee, Y.-W.; Madore, B. F.; Martin, D. C.; Milliard, B.; Morissey, P.; Neff, S.; Rich, M.; Schiminovich, D.; Seibert, M.; Small, T.; Szalay, A. S.; Welsh, B.; Wyder, T.; Yi, S. K.
2007-12-01
We select far-infrared (FIR: 60 μm) and far-ultraviolet (FUV: 530 Å) samples of nearby galaxies in order to discuss the biases encountered by monochromatic surveys (FIR or FUV). Very different volumes are sampled by each selection, and much care is taken to apply volume corrections to all the analyses. The distributions of the bolometric luminosity of young stars are compared for both samples: they are found to be consistent with each other for galaxies of intermediate luminosities, but some differences are found for high (>5×1010 Lsolar) luminosities. The shallowness of the IRAS survey prevents us from securing a comparison at low luminosities (<2×109 Lsolar). The ratio of the total infrared (TIR) luminosity to the FUV luminosity is found to increase with the bolometric luminosity in a similar way for both samples up to 5×1010 Lsolar. Brighter galaxies are found to have a different behavior according to their selection: the LTIR/LFUV ratio of the FUV-selected galaxies brighter than 5×1010 Lsolar reaches a plateau, whereas LTIR/LFUV continues to increase with the luminosity of bright galaxies selected in FIR. The volume-averaged specific star formation rate (SFR per unit galaxy stellar mass, SSFR) is found to decrease toward massive galaxies within each selection. The mean values of the SSFR are found to be larger than those measured for optical and NIR-selected samples over the whole mass range for the FIR selection, and for masses larger than 1010 Msolar for the FUV selection. Luminous and massive galaxies selected in FIR appear as active as galaxies with similar characteristics detected at z~0.7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lusso, E.; Hennawi, J. F.; Richards, G. T.
2013-11-10
The fraction of active galactic nucleus (AGN) luminosity obscured by dust and re-emitted in the mid-IR is critical for understanding AGN evolution, unification, and parsec-scale AGN physics. For unobscured (Type 1) AGNs, where we have a direct view of the accretion disk, the dust covering factor can be measured by computing the ratio of re-processed mid-IR emission to intrinsic nuclear bolometric luminosity. We use this technique to estimate the obscured AGN fraction as a function of luminosity and redshift for 513 Type 1 AGNs from the XMM-COSMOS survey. The re-processed and intrinsic luminosities are computed by fitting the 18 bandmore » COSMOS photometry with a custom spectral energy distribution fitting code, which jointly models emission from hot dust in the AGN torus, from the accretion disk, and from the host galaxy. We find a relatively shallow decrease of the luminosity ratio as a function of L{sub bol}, which we interpret as a corresponding decrease in the obscured fraction. In the context of the receding torus model, where dust sublimation reduces the covering factor of more luminous AGNs, our measurements require a torus height that increases with luminosity as h ∝ L{sub bol}{sup 0.3-0.4}. Our obscured-fraction-luminosity relation agrees with determinations from Sloan Digital Sky Survey censuses of Type 1 and Type 2 quasars and favors a torus optically thin to mid-IR radiation. We find a much weaker dependence of the obscured fraction on 2-10 keV luminosity than previous determinations from X-ray surveys and argue that X-ray surveys miss a significant population of highly obscured Compton-thick AGNs. Our analysis shows no clear evidence for evolution of the obscured fraction with redshift.« less
CONSTRAINTS ON THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z {approx} 5 IN THE COSMOS FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, H.; Matsuoka, K.; Kajisawa, M.
2012-09-10
We present the result of our low-luminosity quasar survey in the redshift range of 4.5 {approx}< z {approx}< 5.5 in the COSMOS field. Using the COSMOS photometric catalog, we selected 15 quasar candidates with 22 < i' < 24 at z {approx} 5 that are {approx}3 mag fainter than the Sloan Digital Sky Survey quasars in the same redshift range. We obtained optical spectra for 14 of the 15 candidates using FOCAS on the Subaru Telescope and did not identify any low-luminosity type-1 quasars at z {approx} 5, while a low-luminosity type-2 quasar at z {approx} 5.07 was discovered. Inmore » order to constrain the faint end of the quasar luminosity function at z {approx} 5, we calculated the 1{sigma} confidence upper limits of the space density of type-1 quasars. As a result, the 1{sigma} confidence upper limits on the quasar space density are {Phi} < 1.33 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -24.52 < M{sub 1450} < -23.52 and {Phi} < 2.88 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -23.52 < M{sub 1450} < -22.52. The inferred 1{sigma} confidence upper limits of the space density are then used to provide constraints on the faint-end slope and the break absolute magnitude of the quasar luminosity function at z {approx} 5. We find that the quasar space density decreases gradually as a function of redshift at low luminosity (M{sub 1450} {approx} -23), being similar to the trend found for quasars with high luminosity (M{sub 1450} < -26). This result is consistent with the so-called downsizing evolution of quasars seen at lower redshifts.« less
The Dynamical Evolution of a Tubular Leonid Persistent Train
NASA Astrophysics Data System (ADS)
Jenniskens, Peter; Nugent, David; Plane, John M. C.
The dynamical evolution of the persistent train of a bright Leonid meteor was examined for evidence of the source of the luminosity and the physical conditions in the meteor path. The train consisted of two parallel somewhat diffuse luminous tracks, interpreted as the walls of a tube. A general lack of wind shear along the trail allowed these structures to remain intact for nearly 200 s, from which it was possible to determine that the tubular structure expanded at a near constant 10.5 ms^-1, independent of altitude between 86 and 97 km. An initial fast decrease of train intensity below 90 km was followed by an increase in intensity and then a gradual decrease at longer times, whereas at high altitudes the integrated intensity was nearly constant with time. These results are compared to a model that describes the dynamical evolution of the train by diffusion, following an initial rapid expansion of the hot gaseous trail behind the meteoroid. The train luminosity is produced by O (^1S) emission at 557 nm, driven by elevated atomic O levels produced by the meteor impact, as well as chemiluminescent reactions of the ablated metals Na and Fe with O_3. Ozone is rapidly removed within the train, both by thermal decomposition and catalytic destruction by the metallic species. Hence, the brightest emission occurs at the edge of the train between outwardly diffusing metallic species and inwardly diffusing O_3. Although the model is able to account plausibly for a number of characteristic features of the train evolution, significant discrepancies remain that cannot casily be resolved.
Flare Activity of Wide Binary Stars with Kepler
NASA Astrophysics Data System (ADS)
Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph
2018-01-01
We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.
The Belle II Silicon Vertex Detector
NASA Astrophysics Data System (ADS)
Friedl, M.; Ackermann, K.; Aihara, H.; Aziz, T.; Bergauer, T.; Bozek, A.; Campbell, A.; Dingfelder, J.; Drasal, Z.; Frankenberger, A.; Gadow, K.; Gfall, I.; Haba, J.; Hara, K.; Hara, T.; Higuchi, T.; Himori, S.; Irmler, C.; Ishikawa, A.; Joo, C.; Kah, D. H.; Kang, K. H.; Kato, E.; Kiesling, C.; Kodys, P.; Kohriki, T.; Koike, S.; Kvasnicka, P.; Marinas, C.; Mayekar, S. N.; Mibe, T.; Mohanty, G. B.; Moll, A.; Negishi, K.; Nakayama, H.; Natkaniec, Z.; Niebuhr, C.; Onuki, Y.; Ostrowicz, W.; Park, H.; Rao, K. K.; Ritter, M.; Rozanska, M.; Saito, T.; Sakai, K.; Sato, N.; Schmid, S.; Schnell, M.; Shimizu, N.; Steininger, H.; Tanaka, S.; Tanida, K.; Taylor, G.; Tsuboyama, T.; Ueno, K.; Uozumi, S.; Ushiroda, Y.; Valentan, M.; Yamamoto, H.
2013-12-01
The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×1035 cm-2 s-1 in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13 m2 and 223,744 channels-twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics.
The Dynamical Evolution of A Tubular Leonid Persistent Train
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Nugent, David; Plane, John M. C.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The dynamical evolution of the persistent train of a bright Leonid meteor was examined for evidence of the source of the luminosity and the physical conditions in the meteor path. The train consisted of two parallel somewhat diffuse luminous tracks, interpreted as the walls of a tube. A general lack of wind shear along the trail allowed these structures to remain intact for nearly 200 s, from which it was possible to determine that the tubular structure expanded at a near constant 10.5 m/s, independent of altitude between 86 and 97 km. An initial fast decrease of train intensity below 90 km was followed by an increase in intensity and then a gradual decrease at longer times, whereas at high attitudes the integrated intensity was nearly constant with time. These results are compared to a model that describes the dynamical evolution of the train by diffusion, following an initial rapid expansion of the hot gaseous trail behind the meteoroid. The train luminosity is produced by O ((sup 1)S) emission at 557 nm, driven by elevated atomic O levels produced by the meteor impact, as well as chemiluminescent reactions of the ablated metals Na and Fe with O3. Ozone is rapidly removed within the train, both by thermal decomposition and catalytic destruction by the metallic species. Hence, the brightest emission occurs at the edge of the train between outwardly diffusing metallic species and inwardly diffusing O3. Although the model is able to account plausibly for a number of characteristic features of the train evolution, significant discrepancies remain that cannot easily be resolved.
Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring
NASA Astrophysics Data System (ADS)
Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.
2015-08-01
Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.
Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager.
Macintosh, B; Graham, J R; Barman, T; De Rosa, R J; Konopacky, Q; Marley, M S; Marois, C; Nielsen, E L; Pueyo, L; Rajan, A; Rameau, J; Saumon, D; Wang, J J; Patience, J; Ammons, M; Arriaga, P; Artigau, E; Beckwith, S; Brewster, J; Bruzzone, S; Bulger, J; Burningham, B; Burrows, A S; Chen, C; Chiang, E; Chilcote, J K; Dawson, R I; Dong, R; Doyon, R; Draper, Z H; Duchêne, G; Esposito, T M; Fabrycky, D; Fitzgerald, M P; Follette, K B; Fortney, J J; Gerard, B; Goodsell, S; Greenbaum, A Z; Hibon, P; Hinkley, S; Cotten, T H; Hung, L-W; Ingraham, P; Johnson-Groh, M; Kalas, P; Lafreniere, D; Larkin, J E; Lee, J; Line, M; Long, D; Maire, J; Marchis, F; Matthews, B C; Max, C E; Metchev, S; Millar-Blanchaer, M A; Mittal, T; Morley, C V; Morzinski, K M; Murray-Clay, R; Oppenheimer, R; Palmer, D W; Patel, R; Perrin, M D; Poyneer, L A; Rafikov, R R; Rantakyrö, F T; Rice, E L; Rojo, P; Rudy, A R; Ruffio, J-B; Ruiz, M T; Sadakuni, N; Saddlemyer, L; Salama, M; Savransky, D; Schneider, A C; Sivaramakrishnan, A; Song, I; Soummer, R; Thomas, S; Vasisht, G; Wallace, J K; Ward-Duong, K; Wiktorowicz, S J; Wolff, S G; Zuckerman, B
2015-10-02
Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10(-6) and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter. Copyright © 2015, American Association for the Advancement of Science.
Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager
Macintosh, B.; Graham, J. R.; Barman, T.; ...
2015-10-02
Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10 –6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a massmore » twice that of Jupiter. As a result, this planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.« less
Systematic study of magnetar outbursts
NASA Astrophysics Data System (ADS)
Coti Zelati, F.; Rea, N.; Pons, J. A.; Campana, S.; Esposito, P.
2017-12-01
We present the results of the systematic study of all magnetar outbursts observed to date through a reanalysis of data acquired in about 1100 X-ray observations. We track the temporal evolution of the luminosity for all these events, model empirically their decays, and estimate the characteristic decay time-scales and the energy involved. We study the link between different parameters (maximum luminosity increase, outburst peak luminosities, quiescent X-ray and bolometric luminosities, energetics, decay time-scales, magnetic field, spin-down luminosity and age), and reveal several correlations between different quantities. We discuss our results in the framework of the models proposed to explain the triggering mechanism and evolution of magnetar outbursts. The study is complemented by the Magnetar Outburst Online Catalog (http://www.magnetars.ice.csic.es), an interactive database where the user can plot any combination of the parameters derived in this work and download all reduced data.
Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macintosh, B.; Graham, J. R.; Barman, T.
Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10 –6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a massmore » twice that of Jupiter. As a result, this planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.« less
Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager
NASA Astrophysics Data System (ADS)
Macintosh, B.; Graham, J. R.; Barman, T.; De Rosa, R. J.; Konopacky, Q.; Marley, M. S.; Marois, C.; Nielsen, E. L.; Pueyo, L.; Rajan, A.; Rameau, J.; Saumon, D.; Wang, J. J.; Patience, J.; Ammons, M.; Arriaga, P.; Artigau, E.; Beckwith, S.; Brewster, J.; Bruzzone, S.; Bulger, J.; Burningham, B.; Burrows, A. S.; Chen, C.; Chiang, E.; Chilcote, J. K.; Dawson, R. I.; Dong, R.; Doyon, R.; Draper, Z. H.; Duchêne, G.; Esposito, T. M.; Fabrycky, D.; Fitzgerald, M. P.; Follette, K. B.; Fortney, J. J.; Gerard, B.; Goodsell, S.; Greenbaum, A. Z.; Hibon, P.; Hinkley, S.; Cotten, T. H.; Hung, L.-W.; Ingraham, P.; Johnson-Groh, M.; Kalas, P.; Lafreniere, D.; Larkin, J. E.; Lee, J.; Line, M.; Long, D.; Maire, J.; Marchis, F.; Matthews, B. C.; Max, C. E.; Metchev, S.; Millar-Blanchaer, M. A.; Mittal, T.; Morley, C. V.; Morzinski, K. M.; Murray-Clay, R.; Oppenheimer, R.; Palmer, D. W.; Patel, R.; Perrin, M. D.; Poyneer, L. A.; Rafikov, R. R.; Rantakyrö, F. T.; Rice, E. L.; Rojo, P.; Rudy, A. R.; Ruffio, J.-B.; Ruiz, M. T.; Sadakuni, N.; Saddlemyer, L.; Salama, M.; Savransky, D.; Schneider, A. C.; Sivaramakrishnan, A.; Song, I.; Soummer, R.; Thomas, S.; Vasisht, G.; Wallace, J. K.; Ward-Duong, K.; Wiktorowicz, S. J.; Wolff, S. G.; Zuckerman, B.
2015-10-01
Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10-6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.
Fast Responding Oxygen Sensor For Respiratorial Analysis
NASA Astrophysics Data System (ADS)
Karpf, Hellfried H.; Kroneis, H. W.; Marsoner, Hermann J.; Metzler, H.; Gravenstein, N.
1990-02-01
Breath-by-breath monitoring of the partial pressure of oxygen is the main interest for the development of a fast responding optical oxygen sensor. Monitoring the P02 finds its main interest in critical care, in artificial respiration, in breath by breath determination of respiratorial coefficients and in pulmonarial examinations. The requirements arising from these and similar applications are high precision, high long term stability, and time constants in the range of less than 0.1 sec. In order to cope with these requirements, we investigated different possibilities of fast P02-measurements by means of optical sensors based on fluorescence quenching. The experimental set up is simple: a rigid transparent layer is coated with a thin layer of an hydrophobic polymer which has a high permeability for oxygen. The oxygen sensitive indicator material is embedded into this polymer. An experimental set up showed time constants of 30 milliseconds. The lifetime is in the range of several months. Testing of our test equipment by an independent working group resulted in surprisingly good correlation with data obtained by mass spectroscopy.
Fast energy spectrum and transverse beam profile monitoring and feedback systems for the SLC linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soderstrom, E.J.; Abrams, G.S.; Weinstein, A.J.
Fast energy spectrum and transverse beam profile monitoring systems have been tested at the SLC. The signals for each system are derived from digitizations of images on phosphor screens. Individual beam bunch images are digitized in the case of the transverse profile system and synchrotron radiation images produced by wiggler magnets for the energy spectrum. Measurements are taken at two-second intervals. Feedback elements have been installed for future use and consist of rf phase shifters to control energy spectrum and dipole correctors to control the beam launch into the linac affecting the transverse beam profile. Details of these systems, includingmore » hardware, timing, data acquisition, data reduction, measurement accuracy, and operational experience will be presented. 9 refs.« less
The X-ray monitoring of the long-period colliding wind binaries
NASA Astrophysics Data System (ADS)
Sugawara, Y.; Maeda, Y.; Tsuboi, Y.
2017-10-01
We present the first results from XMM-Newton and Swift observations of two long-period colliding wind binaries WR19 and WR125 around periastron passages. Mass-loss is one of the most important and uncertain parameters in the evolution of a massive star. The X-ray spectrum off the colliding wind binary is the best measure of conditions in the hot postshock gas. By monitoring the changing of the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars. It is known that WR19 (WC5+O9; P=10.1 yr) and WR125 (WC7+O9; P> 24.3 yr) are the dust-making binaries. Each periastron is expected to come in 2016-2017. Since 2016, we carry out on-going monitoring campaigns of WR19 and WR125 with XMM-Newton and Swift. On these observations, the X-rays from WR19 and WR125 were detected for the first time. In the case of WR19, as periastron approached, the column density increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense Wolf-Rayet wind.
Data Quality Monitoring System for New GEM Muon Detectors for the CMS Experiment Upgrade
NASA Astrophysics Data System (ADS)
King, Robert; CMS Muon Group Team
2017-01-01
The Gas Electron Multiplier (GEM) detectors are novel detectors designed to improve the muon trigger and tracking performance in CMS experiment for the high luminosity upgrade of the LHC. Partial installation of GEM detectors is planned during the 2016-2017 technical stop. Before the GEM system is installed underground, its data acquisition (DAQ) electronics must be thoroughly tested. The DAQ system includes several commercial and custom-built electronic boards running custom firmware. The front-end electronics are radiation-hard and communicate via optical fibers. The data quality monitoring (DQM) software framework has been designed to provide online verification of the integrity of the data produced by the detector electronics, and to promptly identify potential hardware or firmware malfunctions in the system. Local hits reconstruction and clustering algorithms allow quality control of the data produced by each GEM chamber. Once the new detectors are installed, the DQM will monitor the stability and performance of the system during normal data-taking operations. We discuss the design of the DQM system, the software being developed to read out and process the detector data, and the methods used to identify and report hardware and firmware malfunctions of the system.
Local Luminosity Function at 15 micro m and Galaxy Evolution Seen by ISOCAM 15 micro m Surveys
NASA Technical Reports Server (NTRS)
Xu, C.
2000-01-01
A local luminosity function at 15 micro m is derived using the bivariate (15 micro m vs. 60 micro m luminosities) method, based on the newly published ISOCAM LW3-band (15 micro m) survey of the very deep IRAS 60 micro m sample in the north ecliptic pole region (NEPR).
VY Canis Majoris: The Astrophysical Basis of Its Luminosity
NASA Astrophysics Data System (ADS)
Gehrz, Robert D.; Humphreys, R. M.; Jones, T. J.
2006-12-01
The luminosity of the famous red supergiant VY CMa ( L = 4 5 x 105 L ) is well-determined from its spectral energy distribution and distance, and places it near the empirical upper luminosity limit for cool hypergiants. In contrast, its surface temperature is fundamentally ill-defined. Implications for its location on the HR Diagram and its apparent size are discussed.
A reevaluation of the infrared-radio correlation for spiral galaxies
NASA Technical Reports Server (NTRS)
Devereux, Nicholas A.; Eales, Stephen A.
1989-01-01
The infrared radio correlation has been reexamined for a sample of 237 optically bright spiral galaxies which range from 10 to the 8th to 10 to the 11th solar luminosities in far-infrared luminosity. The slope of the correlation is not unity. A simple model in which dust heating by both star formation and the interstellar radiation field contribute to the far-infrared luminosity can account for the nonunity slope. The model differs from previous two component models, however, in that the relative contribution of the two components is independent of far-infrared color temperature, but is dependent on the far-infrared luminosity.
Using luminosity data as a proxy for economic statistics
Chen, Xi
2011-01-01
A pervasive issue in social and environmental research has been how to improve the quality of socioeconomic data in developing countries. Given the shortcomings of standard sources, the present study examines luminosity (measures of nighttime lights visible from space) as a proxy for standard measures of output (gross domestic product). We compare output and luminosity at the country level and at the 1° latitude × 1° longitude grid-cell level for the period 1992–2008. We find that luminosity has informational value for countries with low-quality statistical systems, particularly for those countries with no recent population or economic censuses. PMID:21576474
Einstein X-ray observations of Herbig Ae/Be stars
NASA Technical Reports Server (NTRS)
Damiani, F.; Micela, G.; Sciortino, S.; Harnden, F. R., Jr.
1994-01-01
We have investigated the X-ray emission from Herbig Ae/Be stars, using the full set of Einstein Imaging Proportional Counter (IPC) observations. Of a total of 31 observed Herbig stars, 11 are confidently identified with X-ray sources, with four additonal dubious identifications. We have used maximum likelihood luminosity functions to study the distribution of X-ray luminosity, and we find that Be stars are significantly brighter in X-rays than Ae stars and that their X-ray luminosity is independent of projected rotational velocity v sin i. The X-ray emission is instead correlated with stellar bolometric luminosity and with effective temperature, and also with the kinetic luminosity of the stellar wind. These results seem to exclude a solar-like origin for the X-ray emission, a possibility suggested by the most recent models of Herbig stars' structure, and suggest an analogy with the X-ray emission of O (and early B) stars. We also observe correlations between X-ray luminosity and the emission at 2.2 microns (K band) and 25 microns, which strengthen the case for X-ray emission of Herbig stars originating in their circumstellar envelopes.
Star formation in AGNs at the hundred parsec scale using MIR high-resolution images
NASA Astrophysics Data System (ADS)
Ruschel-Dutra, Daniel; Rodríguez Espinosa, José Miguel; González Martín, Omaira; Pastoriza, Miriani; Riffel, Rogério
2017-04-01
It has been well established in the past decades that the central black hole masses of galaxies correlate with dynamical properties of their harbouring bulges. This notion begs the question of whether there are causal connections between the active galactic nucleus (AGN) and its immediate vicinity in the host galaxy. In this paper, we analyse the presence of circumnuclear star formation in a sample of 15 AGN using mid-infrared observations. The data consist of a set of 11.3 μm polycyclic aromatic hydrocarbon emission and reference continuum images, taken with ground-based telescopes, with sub-arcsecond resolution. By comparing our star formation estimates with AGN accretion rates, derived from X-ray luminosities, we investigate the validity of theoretical predictions for the AGN-starburst connection. Our main results are: (I) circumnuclear star formation is found, at distances as low as tens of parsecs from the nucleus, in nearly half of our sample (7/15); (II) star formation luminosities are correlated with the bolometric luminosity of the AGN (LAGN) only for objects with LAGN ≥ 1042 erg s-1; (III) low-luminosity AGNs (LAGN < 1042 erg s-1) seem to have starburst luminosities far greater than their bolometric luminosities.
The effect of accretion environment at large radius on hot accretion flows
NASA Astrophysics Data System (ADS)
Yang, Xiao-Hong; Bu, De-Fu
2018-05-01
We study the effects of accretion environment (gas density, temperature, and angular momentum) at large radii (˜10 pc) on luminosity of hot accretion flows. The radiative feedback effects from the accretion flow on the accretion environment are also self-consistently taken into account. We find that the slowly rotating flows at large radii can significantly deviate from Bondi accretion when radiation heating and cooling are considered. We further find that when the temperature of environment gas is low (e.g. T = 2 × 107 K), the luminosity of hot accretion flows is high. When the temperature of gas is high (e.g. T ≥ 4 × 107 K), the luminosity of hot accretion flow significantly deceases. The environment gas density can also significantly influence the luminosity of accretion flows. When density is higher than ˜4 × 10-22 g cm-3 and temperature is lower than 2 × 107 K, hot accretion flow with luminosity lower than 2 per cent LEdd is not present. Therefore, the parsec-scale environment density and temperature are two important parameters to determine the luminosity. The results are also useful for the subgrid models adopted by the cosmological simulations.
Studies of hydrodynamic events in stellar evolution. 3: Ejection of planetary nebulae
NASA Technical Reports Server (NTRS)
Sparks, W. M.; Kutter, G. S.
1973-01-01
The dynamic behavior of the H-rich envelope (0.101 solar mass) of an evolved star (1.1 solar mass) as the luminosity rises to 19000 solar luminosity during the second ascent of the red giant branch. For luminosities in the range 3100 L 19000 solar luminosity the H-rich envelope pulsates like a long-period variable (LPV) with periods of the order of a year. As L reaches 19000 solar luminosity, the entire H-rich envelope is ejected as a shell with speeds of a few 10 km/s. The ejection occurs on a timescale of a few LPV pulsation periods. This ejection is associated with the formation of a planetary nebula. The computations are based on an implicit hydrodynamic computer code. T- and RHO-dependent opacities and excitation and ionization energies are included. As the H-rich envelope is accelerated off the stellar core, the gap between envelope and core is approximated by a vacuum, filled with radiation. Across the vacuum, the luminosity is conserved and the anisotropy of the radiation is considered as well as the solid angle subtended by the remnant star at the inner surface of the H-rich envelope. Spherical symmetry and the diffusion approximation are assumed.
The power of relativistic jets is larger than the luminosity of their accretion disks.
Ghisellini, G; Tavecchio, F; Maraschi, L; Celotti, A; Sbarrato, T
2014-11-20
Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central supermassive black hole, as well as from the magnetic field near the event horizon. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous samples used prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity, as measured by the broad emission lines, with the jet power dominating the disk luminosity, in agreement with numerical simulations. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter.
Narrow vs. Broad line Seyfert 1 galaxies: X-ray, optical and mid-infrared AGN characteristics
NASA Astrophysics Data System (ADS)
Lakićević, Maša; Popović, Luka Č.; Kovačević-Dojčinović, Jelena
2018-05-01
We investigated narrow line Seyfert 1 galaxies (NLS1s) at optical, mid-infrared (MIR) and X-ray wavelengths, comparing them to the broad line active galactic nuclei (BLAGNs). We found that black hole mass, coronal line luminosities, X-ray hardness ratio and X-ray, optical and MIR luminosities are higher for the BLAGNs than for NLS1s, while policyclic aromatic hydrocarbon (PAH) contribution and the accretion rates are higher for the NLS1s. Furthermore, we found some trends among spectral parameters that NLS1s have and BLAGNs do not have. The evolution of FWHM(Hβ) with the luminosities of MIR and coronal lines, continuum luminosities, PAH contribution, Hβ broad line luminosity, FWHM[O III] and EW(HβNLR), are important trends found for NLS1s. That may contribute to the insight that NLS1s are developing AGNs, growing their black holes, while their luminosities and FWHM(Hβ) consequently grow, and that BLAGNs are mature, larger objects of slower and/or different evolution. Black hole mass is related to PAH contribution only for NLS1s, which may suggest that PAHs are more efficiently destroyed in NLS1s.
Potential for luminosity improvement for low-energy RHIC operation with long bunches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, A.; Blaskiewicz, M.
Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beams at low energies. Luminosity decreases as the square of bunch intensity due to the beam loss from the RF bucket as a result of the longitudinal intra beam scattering (IBS), as well as due to the transverse emittance growth because of the transverse IBS. Both transverse and longitudinal IBS can be counteracted with electron cooling. This would allow one to keep the initial peak luminosity close to constant throughout the store essentially without the beam loss. In addition, the phase-space density of the hadron beamsmore » can be further increased by providing stronger electron cooling. Unfortunately, the defining limitation for low energies in RHIC is expected to be the space charge. Here we explore an idea of additional improvement in luminosity, on top of the one coming from just IBS compensation and longer stores, which may be expected if one can operate with longer bunches at the space-charge limit in a collider. This approach together with electron cooling may result in about 10-fold improvement in total luminosity for low-energy RHIC program.« less
NASA Astrophysics Data System (ADS)
Chiuchiolo, A.; Bajas, H.; Bajko, M.; Consales, M.; Giordano, M.; Perez, J. C.; Cusano, A.
2016-05-01
The luminosity upgrade of the Large Hadron Collider (HL-LHC) planned at the European Organization for Nuclear Research (CERN) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. The instrumentation required for the racetrack coils needs the development of reliable sensing systems able to monitor the magnet thermo-mechanical behavior during its service life, from the coil fabrication to the magnet operation. With this purpose, Fiber Bragg Grating (FBG) sensors have been embedded in the coils of the Short Model Coil (SMC) magnet fabricated at CERN. The FBG sensitivity to both temperature and strain required the development of a solution able to separate mechanical and temperature effects. This work presents for the first time a feasibility study devoted to the implementation of an embedded FBG sensor for the measurement of the "true" temperature in the impregnated Nb3Sn coil during the fabrication process.
NASA Astrophysics Data System (ADS)
Hwang, Jeonghwan; Lee, Jiwoong; Lee, Hochul; Yoe, Hyun
The wireless sensor networks (WSN) technology based on low power consumption is one of the important technologies in the realization of ubiquitous society. When the technology would be applied to the agricultural field, it can give big change in the existing agricultural environment such as livestock growth environment, cultivation and harvest of agricultural crops. This research paper proposes the 'Pig Farm Integrated Management System' based on WSN technology, which will establish the ubiquitous agricultural environment and improve the productivity of pig-raising farmers. The proposed system has WSN environmental sensors and CCTV at inside/outside of pig farm. These devices collect the growth-environment related information of pigs, such as luminosity, temperature, humidity and CO2 status. The system collects and monitors the environmental information and video information of pig farm. In addition to the remote-control and monitoring of the pig farm facilities, this system realizes the most optimum pig-raising environment based on the growth environmental data accumulated for a long time.
All-sky monitor observations of the decay of A0620-00 (Nova monocerotis 1975)
NASA Technical Reports Server (NTRS)
Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.
1976-01-01
The All-Sky X-ray Monitor onboard Ariel 5 has observed the 3-6 keV decline of the bright transient X-ray source A0620-00 on a virtually continuous basis during the period September 1975 - March 1976. The source behavior on timescales 100 minutes is characterized by smooth, exponential decays interrupted by substantial increases in October and February. The latter increase was an order-of-magnitude rise above the extrapolated exponential fall-off, and was followed by a final rapid decline. Upper limits of 2.5% and 10% were found for any periodicities in the range 0d.2 - 10d during the early and later decay phases, respectively. A probable correlation between the optical and 3-6 keV emission from A0620-00 was noted, effectively ruling out models involving traditional optical novae in favor of Roche-lobe overflow in a binary system. The existing data on the transient X-ray sources is consistent with two distinct luminosity-lifetime classes of these objects.
Longitudinal density monitor for the LHC
NASA Astrophysics Data System (ADS)
Jeff, A.; Andersen, M.; Boccardi, A.; Bozyigit, S.; Bravin, E.; Lefevre, T.; Rabiller, A.; Roncarolo, F.; Welsch, C. P.; Fisher, A. S.
2012-03-01
The longitudinal density monitor (LDM) is primarily intended for the measurement of the particle population in nominally empty rf buckets. These so-called satellite or ghost bunches can cause problems for machine protection as well as influencing the luminosity calibration of the LHC. The high dynamic range of the system allows measurement of ghost bunches with as little as 0.01% of the main bunch population at the same time as characterization of the main bunches. The LDM is a single-photon counting system using visible synchrotron light. The photon detector is a silicon avalanche photodiode operated in Geiger mode, which allows the longitudinal distribution of the LHC beams to be measured with a resolution of 90 ps. Results from the LDM are presented, including a proposed method for constructing a 3-dimensional beam density map by scanning the LDM sensor in the transverse plane. In addition, we present a scheme to improve the sensitivity of the system by using an optical switching technique.
NASA Astrophysics Data System (ADS)
Valentino, Gianluca; Baud, Guillaume; Bruce, Roderik; Gasior, Marek; Mereghetti, Alessio; Mirarchi, Daniele; Olexa, Jakub; Redaelli, Stefano; Salvachua, Belen; Valloni, Alessandra; Wenninger, Jorg
2017-08-01
During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β* and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.
[Effect of fasting-dietary therapy in patients with arterial hypertension and obesity].
Murav'ev, S A; Okonechnikova, N S; Dmitrieva, O A; Makarova, G A
2010-01-01
35 patients with arterial hypertension and obesity against the background of fasting-diet therapy and after 1 and 6 months after treatment conducted daily monitoring of blood pressure, microalbuminuria and glomerular filtration rate, the study of color and contrast sensitivity of retinal eyes. Fasting-diet therapy within 11 days results in reliable reduced daily average AD and stabilization of load pressure indicators; reduction originally pathological microalbuminurii at 18%, increase in the number of patients with normal speed glomerular filtering 48%; improving of eyes function, these changes are saved within 1-6 months after treatment without the using of antihypertensive therapy.
Axions and the luminosity function of white dwarfs. The thin and thick disks, and the halo
NASA Astrophysics Data System (ADS)
Isern, J.; García-Berro, E.; Torres, S.; Cojocaru, R.; Catalán, S.
2018-05-01
The evolution of white dwarfs is a simple gravothermal process of cooling. Since the shape of their luminosity function is sensitive to the characteristic cooling time, it is possible to use its slope to test the existence of additional sources or sinks of energy, such as those predicted by alternative physical theories. The aim of this paper is to study if the changes in the slope of the white dwarf luminosity function around bolometric magnitudes ranging from 8 to 10 and previously attributed to axion emission are, effectively, a consequence of the existence of axions and not an artifact introduced by the star formation rate. We compute theoretical luminosity functions of the thin and thick disk, and of the stellar halo including axion emission and we compare them with the existing observed luminosity functions. Since these stellar populations have different star formation histories, the slope change should be present in all of them at the same place if it is due to axions or any other intrinsic cooling mechanism. The signature of an unexpected cooling seems to be present in the luminosity functions of the thin and thick disks, as well as in the halo luminosity function. This additional cooling is compatible with axion emission, thus supporting to the idea that DFSZ axions, with a mass in the range of 4 to 10 meV, could exist. If this were the case, these axions could be detected by the future solar axioscope IAXO.
V458 Vul (Nova Vul 2007) becomes a highly-variable supersoft X-ray source
NASA Astrophysics Data System (ADS)
Drake, J. J.; Page, K. L.; Osborne, J. P.; Beardmore, A. P.; Ness, J.-U.; Starrfield, S.; Schwarz, G.; Tsujimoto, M.; Wesson, R.; Bode, M.; Rodriguez-Gil, P.; Gaensicke, B.; Steeghs, D.; Knigge, C.; Takei, D.; Zijlstra, A.
2008-09-01
Swift X-ray Telescope (XRT) monitoring observations of V458 Vul (Nova Vul 2007, S. Nakano, IAUC 8861) have found it to be entering a new phase characterised by a highly variable supersoft X-ray component accompanied by partially anti-correlated variations in the ultraviolet. An earlier report of entry into the supersoft phase (ATel #1246) has proven premature. XRT observations obtained from 2008 June 18 - September 1 found the nova to have declined in X-ray luminosity by a factor of 3 to an average of 0.02 count/s in the 0.3-10 keV band compared with the 2007 November-December period (ATel #1603).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruschi, Marco
The new ATLAS luminosity monitor has many innovative aspects implemented. Its photomultipliers tubes are used as detector elements by using the Cherenkov light produced by charged particles above threshold crossing the quartz windows. The analog shaping of the readout chain has been improved, in order to cope with the 25 ns bunch spacing of the LHC machine. The main readout card is a quite general processing unit based on 12 bit - 500 MS/s Flash ADC and on FPGAs, delivering the processed data to 1.3 Gb/s optical links. The article will describe all these aspects and will outline future perspectivesmore » of the card for next generation high energy physics experiments. (authors)« less
Cheng, D C; Newman, M F; Duke, P; Wong, D T; Finegan, B; Howie, M; Fitch, J; Bowdle, T A; Hogue, C; Hillel, Z; Pierce, E; Bukenya, D
2001-05-01
We compared (a) the perioperative complications; (b) times to eligibility for, and actual time of the following: extubation, less intense monitoring, intensive care unit (ICU), and hospital discharge; and (c) resource utilization of nursing ratio for patients receiving either a typical fentanyl/isoflurane/propofol regimen or a remifentanil/isoflurane/propofol regimen for fast-track cardiac anesthesia in 304 adults by using a prospective randomized, double-blinded, double-dummy trial. There were no differences in demographic data, or perioperative mortality and morbidity between the two study groups. The mini-mental status examination at postoperative Days 1 to 3 were similar between the two groups. The eligible and actual times for extubation, less intense monitoring, ICU discharge, and hospital discharge were not significantly different. Further analyses revealed no differences in times for extubation and resource utilization after stratification by preoperative risk scores, age, and country. The nurse/patient ratio was similar between the remifentanil/isoflurane/propofol and fentanyl/isoflu-rane/propofol groups during the initial ICU phase and less intense monitoring phase. Increasing preoperative risk scores and older age (>70 yr) were associated with longer times until extubation (eligible), ICU discharge (eligible and actual), and hospital discharge (eligible and actual). Times until extubation (eligible and actual) and less intense monitoring (eligible) were significantly shorter in Canadian patients than United States' patients. However, there was no difference in hospital length of stay in Canadian and United States' patients. We conclude that both anesthesia techniques permit early and similar times until tracheal extubation, less intense monitoring, ICU and hospital discharge, and reduced resource utilization after coronary artery bypass graft surgery. An ultra-short opioid technique was compared with a standard fast-track small-dose opioid technique in coronary artery bypass graft patients in a prospective randomized, double-blinded controlled study. The postoperative recovery and resource utilization, including stratification of preoperative risk score, age, and country, were analyzed.
Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa
2017-01-01
The successful clinical application of High Intensity Focused Ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic Motion Imaging guided Focused Ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The HMI lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map to be streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r2 = 0.81, slope = 0.90), width (r2 = 0.85, slope = 1.12) and area (r2 = 0.58, slope = 0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesion and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring. PMID:28323638
What can we learn from "internal plateaus"? The peculiar afterglow of GRB 070110
NASA Astrophysics Data System (ADS)
Beniamini, P.; Mochkovitch, R.
2017-09-01
Context. The origin of the prompt emission of gamma-ray bursts is highly debated. Proposed scenarios involve various dissipation processes (shocks, magnetic reconnection, and inelastic collisions) above or below the photosphere of an ultra-relativistic outflow. Aims: We search for observational features that could help to favour one scenario over the others by constraining the dissipation radius, the magnetization of the outflow, or by indicating the presence of shocks. Bursts showing peculiar behaviours can emphasize the role of a specific physical ingredient, which becomes more apparent under certain circumstances. Methods: We study GRB 070110, which exhibited several remarkable features during its early afterglow; I.e. a very flat plateau terminated by an extremely steep drop and immediately followed by a bump. We modelled the plateau as the photospheric emission from a long-lasting outflow of moderate Lorentz factor (Γ 20), which lags behind an ultra-relativistic (Γ > 100) ejecta that is responsible for the prompt emission. We computed the dissipation of energy in the forward and reverse shocks resulting from the deceleration of this ejecta by the external medium (uniform or stellar wind). Results: We find that photospheric emission from the long-lasting outflow can account for the plateau properties (luminosity and spectrum) assuming that some dissipation takes place in the flow. The geometrical timescale at the photospheric radius is so short that the observed decline at the end of the plateau likely corresponds to the actual shutdown of the activity in the central engine. The bump that follows results from the power dissipated in the reverse shock, which develops when the material making the plateau catches up with the initially fast shell in front, after the fast shell has decelerated. Conclusions: The proposed interpretation suggests that the prompt phase results from dissipation above the photosphere while the plateau has a photospheric origin. If the bump is produced by the reverse shock, it implies an upper limit (σ ≲ 0.1) on the magnetization of the low Γ material making the plateau. A plateau that is terminated by a drop as steep as in GRB 070110 was not observed in any other long burst. It could mean that persistent outflows are very uncommon or that the plateau luminosity or the energy of the emitted photons are generally much lower because the outflow remains mostly adiabatic or has a Lorentz factor below 10.
Fast Winds and Mass Loss from Metal-Poor Field Giants
NASA Astrophysics Data System (ADS)
Dupree, A. K.; Smith, Graeme H.; Strader, Jay
2009-11-01
Echelle spectra of the infrared He I λ10830 line were obtained with NIRSPEC on the Keck 2 telescope for 41 metal-deficient field giant stars including those on the red giant branch (RGB), asymptotic giant branch (AGB), and red horizontal branch (RHB). The presence of this He I line is ubiquitous in stars with T effgsim 4500 K and MV fainter than -1.5, and reveals the dynamics of the atmosphere. The line strength increases with effective temperature for T effgsim 5300 K in RHB stars. In AGB and RGB stars, the line strength increases with luminosity. Fast outflows (gsim 60 km s-1) are detected from the majority of the stars and about 40% of the outflows have sufficient speed as to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity for our sample ([Fe/H]= -0.7 to -3.0), suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from ~3 × 10-10 to ~6 × 10-8 M sun yr-1 estimated from the Sobolev approximation for line formation represent values with evolutionary significance for red giants and RHB stars. We estimate that 0.2 M sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for "wind smothering" of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Zhang, Zhicai
2018-04-01
Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high-resolution electron and photon energy measurements. Following the excellent performance achieved during LHC Run I at center-of-mass energies of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) is operating at the LHC with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run II has achieved unprecedented levels. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) has reached up to 40 interactions in 2016 and may increase further in 2017. These high pileup levels necessitate a retuning of the ECAL readout and trigger thresholds and reconstruction algorithms. In addition, the energy response of the detector must be precisely calibrated and monitored. We present new reconstruction algorithms and calibration strategies that were implemented to maintain the excellent performance of the CMS ECAL throughout Run II. We will show performance results from the 2015-2016 data taking periods and provide an outlook on the expected Run II performance in the years to come. Beyond the LHC, challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC) . We review the design and R&D studies for the CMS ECAL and present first test beam studies. Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates, and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. We present test beam results of hadron irradiated PbWO crystals up to fluences expected at the HL-LHC . We also report on the R&D for the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL-LHC.
Revisiting Optical Tidal Disruption Events with iPTF16axa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, T.; Gezari, S.; Blagorodnova, N.
We report the discovery by the intermediate Palomar Transient Factory (iPTF) of a candidate tidal disruption event (TDE) iPTF16axa at z = 0.108 and present its broadband photometric and spectroscopic evolution from three months of follow-up observations with ground-based telescopes and Swift. The light curve is well fitted with a t -5/3 decay, and we constrain the rise time to peak to be <49 rest-frame days after disruption, which is roughly consistent with the fallback timescale expected for the ~5 × 10 6 M ⊙ black hole inferred from the stellar velocity dispersion of the host galaxy. The UV and optical spectral energy distribution is well described by a constant blackbody temperature of T ~ 3 × 10 4 K over the monitoring period, with an observed peak luminosity of 1.1 × 10 44 erg s -1. The optical spectra are characterized by a strong blue continuum and broad He ii and Hα lines, which are characteristic of TDEs. We compare the photometric and spectroscopic signatures of iPTF16axa with 11 TDE candidates in the literature with well-sampled optical light curves. Based on a single-temperature fit to the optical and near-UV photometry, most of these TDE candidates have peak luminosities confined between log(L [erg s -1]) = 43.4–44.4, with constant temperatures of a few ×104 K during their power-law declines, implying blackbody radii on the order of 10 times the tidal disruption radius, that decrease monotonically with time. For TDE candidates with hydrogen and helium emission, the high helium-to-hydrogen ratios suggest that the emission arises from high-density gas, where nebular arguments break down. In conclusion, we find no correlation between the peak luminosity and the black hole mass, contrary to the expectations for TDEs to havemore » $$\\dot{M}\\propto {M}_{\\mathrm{BH}}^{-1/2}$$.« less
Revisiting Optical Tidal Disruption Events with iPTF16axa
Hung, T.; Gezari, S.; Blagorodnova, N.; ...
2017-06-08
We report the discovery by the intermediate Palomar Transient Factory (iPTF) of a candidate tidal disruption event (TDE) iPTF16axa at z = 0.108 and present its broadband photometric and spectroscopic evolution from three months of follow-up observations with ground-based telescopes and Swift. The light curve is well fitted with a t -5/3 decay, and we constrain the rise time to peak to be <49 rest-frame days after disruption, which is roughly consistent with the fallback timescale expected for the ~5 × 10 6 M ⊙ black hole inferred from the stellar velocity dispersion of the host galaxy. The UV and optical spectral energy distribution is well described by a constant blackbody temperature of T ~ 3 × 10 4 K over the monitoring period, with an observed peak luminosity of 1.1 × 10 44 erg s -1. The optical spectra are characterized by a strong blue continuum and broad He ii and Hα lines, which are characteristic of TDEs. We compare the photometric and spectroscopic signatures of iPTF16axa with 11 TDE candidates in the literature with well-sampled optical light curves. Based on a single-temperature fit to the optical and near-UV photometry, most of these TDE candidates have peak luminosities confined between log(L [erg s -1]) = 43.4–44.4, with constant temperatures of a few ×104 K during their power-law declines, implying blackbody radii on the order of 10 times the tidal disruption radius, that decrease monotonically with time. For TDE candidates with hydrogen and helium emission, the high helium-to-hydrogen ratios suggest that the emission arises from high-density gas, where nebular arguments break down. In conclusion, we find no correlation between the peak luminosity and the black hole mass, contrary to the expectations for TDEs to havemore » $$\\dot{M}\\propto {M}_{\\mathrm{BH}}^{-1/2}$$.« less
NASA Astrophysics Data System (ADS)
Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M.
2016-03-01
Context. The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of quasar processes and their relation with the host galaxy. Aims: In this study, we aim to measure the black hole mass of the bright lensed BAL QSO APM 08279+5255 at z = 3.911 through reverberation mapping, and to update and extend the monitoring of its C IV absorption line variability. Methods: We perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift with the use of 138 R-band photometric data and 30 spectra available over 16 years of observations. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. Results: We find a reverberation-mapping time lag of ~900 rest-frame days for both Si IV and C IV emission lines. This is consistent with an extension of the BLR size-to-luminosity relation for active galactic nuclei up to a luminosity of ~1048 erg s-1, and implies a black hole mass of 1010 M⊙. Additionally, we measure a recombination time lag of ~160 days in the rest frame for the C IV narrow absorption system, which implies an electron density of the absorbing gas of ~2.5 × 104 cm-3. Conclusions: The measured black hole mass of APM 08279+5255 indicates that the quasar resides in an under-massive host-galaxy bulge with Mbulge ~ 7.5MBH, and that the lens magnification is lower than ~8. Finally, the inferred electron density of the narrow-line absorber implies a distance of the order of 10 kpc of the absorbing gas from the quasar, placing it within the host galaxy.
The Fermi-LAT detection of magnetar-like pulsar PSR J1846-0258 at high-energy gamma-rays
NASA Astrophysics Data System (ADS)
Kuiper, L.; Hermsen, W.; Dekker, A.
2018-03-01
We report the detection of the pulsed signal of the radio-quiet magnetar-like pulsar PSR J1846-0258 in the high-energy γ-ray data of the Fermi Large Area Telescope (Fermi LAT). We produced phase-coherent timing models exploiting RXTE PCA and Swift XRT monitoring data for the post- (magnetar-like) outburst period from 2007 August 28 to 2016 September 4, with independent verification using INTEGRAL ISGRI and Fermi GBM data. Phase-folding barycentric arrival times of selected Fermi LAT events from PSR J1846-0258 resulted in a 4.2σ detection (30-100 MeV) of a broad pulse consistent in shape and aligned in phase with the profiles that we measured with Swift XRT (2.5-10 keV), INTEGRAL ISGRI (20-150 keV), and Fermi GBM (20-300 keV). The pulsed flux (30-100 MeV) is (3.91 ± 0.97) × 10-9 photons cm-2 s-1 MeV-1. Declining significances of the INTEGRAL ISGRI 20-150 keV pulse profiles suggest fading of the pulsed hard X-ray emission during the post-outburst epochs. We revisited with greatly improved statistics the timing and spectral characteristics of PSR B1509-58 as measured with the Fermi LAT. The broad-band pulsed emission spectra (from 2 keV up to GeV energies) of PSR J1846-0258 and PSR B1509-58 can be accurately described with similarly curved shapes, with maximum luminosities at 3.5 ± 1.1 MeV (PSR J1846-0258) and 2.23 ± 0.11 MeV (PSR B1509-58). We discuss possible explanations for observational differences between Fermi LAT detected pulsars that reach maximum luminosities at GeV energies, like the second magnetar-like pulsar PSR J1119-6127, and pulsars with maximum luminosities at MeV energies, which might be due to geometric differences rather than exotic physics in high-B fields.
The Evolution and Stability of Massive Stars
NASA Astrophysics Data System (ADS)
Shiode, Joshua Hajime
Massive stars are the ultimate source for nearly all the elements necessary for life. The first stars forge these elements from the sparse set of ingredients supplied by the Big Bang, and distribute enriched ashes throughout their galactic homes via their winds and explosive deaths. Subsequent generations follow suit, assembling from the enriched ashes of their predecessors. Over the last several decades, the astrophysics community has developed a sophisticated theoretical picture of the evolution of these stars, but it remains an incomplete accounting of the rich set of observations. Using state of the art models of massive stars, I have investigated the internal processes taking place throughout the life-cycles of stars spanning those from the first generation ("Population III") to the present-day ("Population I"). I will argue that early-generation stars were not highly unstable to perturbations, contrary to a host of past investigations, if a correct accounting is made for the viscous effect of convection. For later generations, those with near solar metallicity, I find that this very same convection may excite gravity-mode oscillations that produce observable brightness variations at the stellar surface when the stars are near the main sequence. If confirmed with modern high-precision monitoring experiments, like Kepler and CoRoT, the properties of observed gravity modes in massive stars could provide a direct probe of the poorly constrained physics of gravity mode excitation by convection. Finally, jumping forward in stellar evolutionary time, I propose and explore an entirely new mechanism to explain the giant eruptions observed and inferred to occur during the final phases of massive stellar evolution. This mechanism taps into the vast nuclear fusion luminosity, and accompanying convective luminosity, in the stellar core to excite waves capable of carrying a super-Eddington luminosity out to the stellar envelope. This energy transfer from the core to the envelope has the potential to unbind a significant amount of mass in close proximity to a star's eventual explosion as a core collapse supernova.
Revisiting Optical Tidal Disruption Events with iPTF16axa
NASA Astrophysics Data System (ADS)
Hung, T.; Gezari, S.; Blagorodnova, N.; Roth, N.; Cenko, S. B.; Kulkarni, S. R.; Horesh, A.; Arcavi, I.; McCully, C.; Yan, Lin; Lunnan, R.; Fremling, C.; Cao, Y.; Nugent, P. E.; Wozniak, P.
2017-06-01
We report the discovery by the intermediate Palomar Transient Factory (iPTF) of a candidate tidal disruption event (TDE) iPTF16axa at z = 0.108 and present its broadband photometric and spectroscopic evolution from three months of follow-up observations with ground-based telescopes and Swift. The light curve is well fitted with a t -5/3 decay, and we constrain the rise time to peak to be <49 rest-frame days after disruption, which is roughly consistent with the fallback timescale expected for the ˜5 × 106 M ⊙ black hole inferred from the stellar velocity dispersion of the host galaxy. The UV and optical spectral energy distribution is well described by a constant blackbody temperature of T ˜ 3 × 104 K over the monitoring period, with an observed peak luminosity of 1.1 × 1044 erg s-1. The optical spectra are characterized by a strong blue continuum and broad He II and Hα lines, which are characteristic of TDEs. We compare the photometric and spectroscopic signatures of iPTF16axa with 11 TDE candidates in the literature with well-sampled optical light curves. Based on a single-temperature fit to the optical and near-UV photometry, most of these TDE candidates have peak luminosities confined between log(L [erg s-1]) = 43.4-44.4, with constant temperatures of a few ×104 K during their power-law declines, implying blackbody radii on the order of 10 times the tidal disruption radius, that decrease monotonically with time. For TDE candidates with hydrogen and helium emission, the high helium-to-hydrogen ratios suggest that the emission arises from high-density gas, where nebular arguments break down. We find no correlation between the peak luminosity and the black hole mass, contrary to the expectations for TDEs to have \\dot{M}\\propto {M}{BH}-1/2.
Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey
NASA Astrophysics Data System (ADS)
Wang, Lei; Yang, Xiaohu; Shen, Shiyin; Mo, H. J.; van den Bosch, Frank C.; Luo, Wentao; Wang, Yu; Lau, Erwin T.; Wang, Q. D.; Kang, Xi; Li, Ran
2014-03-01
We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ˜65 000 candidate clusters with masses ≳ 1013 h- 1 M⊙ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z ≤ 0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65 per cent of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35 per cent, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses ≳ 1014 h- 1 M⊙ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses ≲ 1014 h- 1 M⊙ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses ≳ 1014 h- 1 M⊙ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.
The 5-10 keV AGN luminosity function at 0.01 < z < 4.0
NASA Astrophysics Data System (ADS)
Fotopoulou, S.; Buchner, J.; Georgantopoulos, I.; Hasinger, G.; Salvato, M.; Georgakakis, A.; Cappelluti, N.; Ranalli, P.; Hsu, L. T.; Brusa, M.; Comastri, A.; Miyaji, T.; Nandra, K.; Aird, J.; Paltani, S.
2016-03-01
The active galactic nuclei (AGN) X-ray luminosity function traces actively accreting supermassive black holes and is essential for the study of the properties of the AGN population, black hole evolution, and galaxy-black hole coevolution. Up to now, the AGN luminosity function has been estimated several times in soft (0.5-2 keV) and hard X-rays (2-10 keV). AGN selection in these energy ranges often suffers from identification and redshift incompleteness and, at the same time, photoelectric absorption can obscure a significant amount of the X-ray radiation. We estimate the evolution of the luminosity function in the 5-10 keV band, where we effectively avoid the absorbed part of the spectrum, rendering absorption corrections unnecessary up to NH ~ 1023 cm-2. Our dataset is a compilation of six wide, and deep fields: MAXI, HBSS, XMM-COSMOS, Lockman Hole, XMM-CDFS, AEGIS-XD, Chandra-COSMOS, and Chandra-CDFS. This extensive sample of ~1110 AGN (0.01 < z < 4.0, 41 < log Lx < 46) is 98% redshift complete with 68% spectroscopic redshifts. For sources lacking a spectroscopic redshift estimation we use the probability distribution function of photometric redshift estimation specifically tuned for AGN, and a flat probability distribution function for sources with no redshift information. We use Bayesian analysis to select the best parametric model from simple pure luminosity and pure density evolution to more complicated luminosity and density evolution and luminosity-dependent density evolution (LDDE). We estimate the model parameters that describe best our dataset separately for each survey and for the combined sample. We show that, according to Bayesian model selection, the preferred model for our dataset is the LDDE. Our estimation of the AGN luminosity function does not require any assumption on the AGN absorption and is in good agreement with previous works in the 2-10 keV energy band based on X-ray hardness ratios to model the absorption in AGN up to redshift three. Our sample does not show evidence of a rapid decline of the AGN luminosity function up to redshift four.
NASA Astrophysics Data System (ADS)
Sawicki, Marcin; Thompson, David
2006-09-01
We use our very deep UnGRI catalog of z~4, 3, and 2 UV-selected star-forming galaxies to study the cosmological evolution of the rest-frame 1700 Å luminosity density. The ability to reliably constrain the contribution of faint galaxies is critical here, and our data do so by reaching deep into the galaxy population, to M*LBG+2 at z~4 and deeper still at lower redshifts (M*LBG=-21.0 and L*LBG is the corresponding luminosity). We find that the luminosity density at z>~2 is dominated by the hitherto poorly studied galaxies fainter than L*LBG, and, indeed, the bulk of the UV light at these epochs comes from galaxies in the rather narrow luminosity range L=(0.1-1)L*LBG. Overall, there is a gradual rise in total luminosity density starting at >~4 (we find twice as much UV light at z~3 as at z~4), followed by a shallow peak or plateau within z~3-1, finally followed by the well-known plunge to z~0. Within this total picture, luminosity density in sub-L*LBG galaxies at z>~2 evolves more rapidly than that in more luminous objects; this trend is reversed at lower redshifts, z<~1-a reversal that is reminiscent of galaxy downsizing. We find that within the context of commonly used models there seemingly are not enough faint or bright LBGs to maintain ionization of intergalactic gas even as recently as z~4, and the problem becomes worse at higher redshifts: apparently the universe must be easier to reionize than some recent studies have assumed. Nevertheless, sub-L*LBG galaxies do dominate the total UV luminosity density at z>~2, and this dominance highlights the need for follow-up studies that will teach us more about these very numerous but thus far largely unexplored systems. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.
Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2
NASA Astrophysics Data System (ADS)
Sawicki, Marcin; Thompson, David
2006-05-01
We use very deep UnGRI multifield imaging obtained at the Keck telescope to study the evolution of the rest-frame 1700 Å galaxy luminosity function as the universe doubles its age from z~4 to ~2. We use exactly the same filters and color-color selection as those used by the Steidel team but probe significantly fainter limits, well below L*. The depth of our imaging allows us to constrain the faint end of the luminosity function, reaching M1700~-18.5 at z~3 (equivalent to ~1 Msolar yr-1), accounting for both N1/2 uncertainty in the number of galaxies and cosmic variance. We carefully examine many potential sources of systematic bias in our LF measurements before drawing the following conclusions. We find that the luminosity function of Lyman break galaxies evolves with time and that this evolution is differential with luminosity. The result is best constrained between the epochs at z~4 and ~3, where we find that the number density of sub-L* galaxies increases with time by at least a factor of 2.3 (11 σ statistical confidence); while the faint end of the LF evolves, the bright end appears to remain virtually unchanged, indicating that there may be differential, luminosity-dependent evolution (98.5% statistical probability). Potential systematic biases restrict our ability to draw strong conclusions about continued evolution of the luminosity function to lower redshifts, z~2.2 and ~1.7, but, nevertheless, it appears certain that the number density of z~2.2 galaxies at all luminosities we studied, -22>M1700>-18, is at least as high as that of their counterparts at z~3. While it is not yet clear what mechanism underlies the observed evolution, the fact that this evolution is differential with luminosity opens up new avenues of improving our understanding of how galaxies form and evolve at high redshift. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimaoka, T., E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, J. H.; Tsubota, M.
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes andmore » electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.« less
CLOUDCLOUD : general-purpose instrument monitoring and data managing software
NASA Astrophysics Data System (ADS)
Dias, António; Amorim, António; Tomé, António
2016-04-01
An effective experiment is dependent on the ability to store and deliver data and information to all participant parties regardless of their degree of involvement in the specific parts that make the experiment a whole. Having fast, efficient and ubiquitous access to data will increase visibility and discussion, such that the outcome will have already been reviewed several times, strengthening the conclusions. The CLOUD project aims at providing users with a general purpose data acquisition, management and instrument monitoring platform that is fast, easy to use, lightweight and accessible to all participants of an experiment. This work is now implemented in the CLOUD experiment at CERN and will be fully integrated with the experiment as of 2016. Despite being used in an experiment of the scale of CLOUD, this software can also be used in any size of experiment or monitoring station, from single computers to large networks of computers to monitor any sort of instrument output without influencing the individual instrument's DAQ. Instrument data and meta data is stored and accessed via a specially designed database architecture and any type of instrument output is accepted using our continuously growing parsing application. Multiple databases can be used to separate different data taking periods or a single database can be used if for instance an experiment is continuous. A simple web-based application gives the user total control over the monitored instruments and their data, allowing data visualization and download, upload of processed data and the ability to edit existing instruments or add new instruments to the experiment. When in a network, new computers are immediately recognized and added to the system and are able to monitor instruments connected to them. Automatic computer integration is achieved by a locally running python-based parsing agent that communicates with a main server application guaranteeing that all instruments assigned to that computer are monitored with parsing intervals as fast as milliseconds. This software (server+agents+interface+database) comes in easy and ready-to-use packages that can be installed in any operating system, including Android and iOS systems. This software is ideal for use in modular experiments or monitoring stations with large variability in instruments and measuring methods or in large collaborations, where data requires homogenization in order to be effectively transmitted to all involved parties. This work presents the software and provides performance comparison with previously used monitoring systems in the CLOUD experiment at CERN.
The Health Behavior Schedule-II for Diabetes Predicts Self-Monitoring of Blood Glucose
ERIC Educational Resources Information Center
Frank, Maxwell T.; Cho, Sungkun; Heiby, Elaine M.; Lee, Chun-I; Lahtela, Adrienne L.
2006-01-01
The Health Behavior Schedule-II for Diabetes (HBS-IID) is a 27-item questionnaire that was evaluated as a predictor of self-monitoring of blood glucose (SMBG). The HBS-IID was completed by 96 adults with Type 2 diabetes. Recent glycosylated hemoglobin HbA1c and fasting blood glucose results were taken from participants' medical records. Only 31.3%…
Multiple-User, Multitasking, Virtual-Memory Computer System
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Roth, Don J.; Stang, David B.
1993-01-01
Computer system designed and programmed to serve multiple users in research laboratory. Provides for computer control and monitoring of laboratory instruments, acquisition and anlaysis of data from those instruments, and interaction with users via remote terminals. System provides fast access to shared central processing units and associated large (from megabytes to gigabytes) memories. Underlying concept of system also applicable to monitoring and control of industrial processes.
Interferometric tomography of fuel cells for monitoring membrane water content.
Waller, Laura; Kim, Jungik; Shao-Horn, Yang; Barbastathis, George
2009-08-17
We have developed a system that uses two 1D interferometric phase projections for reconstruction of 2D water content changes over time in situ in a proton exchange membrane (PEM) fuel cell system. By modifying the filtered backprojection tomographic algorithm, we are able to incorporate a priori information about the object distribution into a fast reconstruction algorithm which is suitable for real-time monitoring.
NASA Astrophysics Data System (ADS)
Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M. R.; Eisel, T.; Fabjan, C.; Rementeria, C. A.; Griesmayer, E.; Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I.; Egorov, N.; Härkönen, J.; Luukka, P.; Tuominen, E.
2015-05-01
As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×1016 proton/cm2, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×1016 p/cm2 irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage.
Unveiling slim accretion disc in AGN through X-ray and Infrared observations
NASA Astrophysics Data System (ADS)
Castelló-Mor, Núria; Kaspi, Shai; Netzer, Hagai; Du, Pu; Hu, Chen; Ho, Luis C.; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Wang, Jian-Min
2017-05-01
In this work, which is a continuation of Castelló-Mor et al., we present new X-ray and infrared (IR) data for a sample of active galactic nuclei (AGN) covering a wide range in Eddington ratio over a small luminosity range. In particular, we rigorously explore the dependence of the optical-to-X-ray spectral index αOX and the IR-to-optical spectral index on the dimensionless accretion rate, \\dot{M} = \\dot{m}/η, where \\dot{m} = LAGN/LEdd and η is the mass-to-radiation conversion efficiency, in low- and high-accretion rate sources. We find that the spectral energy distribution (SED) of the faster accreting sources is surprisingly similar to those from the comparison sample of sources with lower accretion rate. In particular: (I) The optical-to-UV AGN SED of slow and fast accreting AGN can be fitted with thin accretion disc (AD) models. (II) The value of αOX is very similar in slow and fast accreting systems up to a dimensionless accretion rate \\dot{M}c ˜ 10. We only find a correlation between αOX and \\dot{M} for sources with \\dot{M} > \\dot{M}c. In such cases, the faster accreting sources appear to have systematically larger αOX values. (III) We also find that the torus in the faster accreting systems seems to be less efficient in reprocessing the primary AGN radiation having lower IR-to-optical spectral slopes. These findings, failing to recover the predicted differences between the SEDs of slim and thin ADs within the observed spectral window, suggest that additional physical processes or very special geometry act to reduce the extreme-UV radiation in fast accreting AGN. This may be related to photon trapping, strong winds and perhaps other yet unknown physical processes.
System for evaluating weld quality using eddy currents
Todorov, Evgueni I.; Hay, Jacob
2017-12-12
Electromagnetic and eddy current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An eddy current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.
Luminosity function of faint galaxies with ultraviolet continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanyan, D.A.
1985-05-01
The spatial density of faint galaxies with ultraviolet continuum in the Second Survey of the Byurakan Astrophysical Observatory is determined. The luminosity function of galaxies with ultraviolet continuum can be extended to objects fainter by 1-1.5 magnitudes. The spatial density of such galaxies in the interval of luminosities -16 /sup m/ .5 to -21 /sup m/ .5 is on the average 0.08 of the total density of field galaxies in the same interval of absolute magnitudes. The spatial density of low-luminosity galaxies with ultraviolet continuum is very high. In the interval from -12 /sup m/ .5 to -15 /sup m/more » .5 it is 0.23 Mpc/sup -3/.« less
X-ray studies of quasars with the Einstein Observatory. II
NASA Technical Reports Server (NTRS)
Zamorani, G.; Maccacaro, T.; Henry, J. P.; Tananbaum, H.; Soltan, A.; Liebert, J.; Stocke, J.; Strittmatter, P. A.; Weymann, R. J.; Smith, M. G.
1981-01-01
X-ray observations of 107 quasars have been carried out with the Einstein Observatory, and 79 have been detected. A correlation between optical emission and X-ray emission is found; and for radio-loud quasars, the data show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is about three times higher than that of radio-quiet quasars. The data also suggest that the ratio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. The data support the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift.
NASA Astrophysics Data System (ADS)
Magnoni, L.; Suthakar, U.; Cordeiro, C.; Georgiou, M.; Andreeva, J.; Khan, A.; Smith, D. R.
2015-12-01
Monitoring the WLCG infrastructure requires the gathering and analysis of a high volume of heterogeneous data (e.g. data transfers, job monitoring, site tests) coming from different services and experiment-specific frameworks to provide a uniform and flexible interface for scientists and sites. The current architecture, where relational database systems are used to store, to process and to serve monitoring data, has limitations in coping with the foreseen increase in the volume (e.g. higher LHC luminosity) and the variety (e.g. new data-transfer protocols and new resource-types, as cloud-computing) of WLCG monitoring events. This paper presents a new scalable data store and analytics platform designed by the Support for Distributed Computing (SDC) group, at the CERN IT department, which uses a variety of technologies each one targeting specific aspects of big-scale distributed data-processing (commonly referred as lambda-architecture approach). Results of data processing on Hadoop for WLCG data activities monitoring are presented, showing how the new architecture can easily analyze hundreds of millions of transfer logs in a few minutes. Moreover, a comparison of data partitioning, compression and file format (e.g. CSV, Avro) is presented, with particular attention given to how the file structure impacts the overall MapReduce performance. In conclusion, the evolution of the current implementation, which focuses on data storage and batch processing, towards a complete lambda-architecture is discussed, with consideration of candidate technology for the serving layer (e.g. Elasticsearch) and a description of a proof of concept implementation, based on Apache Spark and Esper, for the real-time part which compensates for batch-processing latency and automates problem detection and failures.
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers
NASA Astrophysics Data System (ADS)
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-01
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
The joint fit of the BHMF and ERDF for the BAT AGN Sample
NASA Astrophysics Data System (ADS)
Weigel, Anna K.; Koss, Michael; Ricci, Claudio; Trakhtenbrot, Benny; Oh, Kyuseok; Schawinski, Kevin; Lamperti, Isabella
2018-01-01
A natural product of an AGN survey is the AGN luminosity function. This statistical measure describes the distribution of directly measurable AGN luminosities. Intrinsically, the shape of the luminosity function depends on the distribution of black hole masses and Eddington ratios. To constrain these fundamental AGN properties, the luminosity function thus has to be disentangled into the black hole mass and Eddington ratio distribution function. The BASS survey is unique as it allows such a joint fit for a large number of local AGN, is unbiased in terms of obscuration in the X-rays and provides black hole masses for type-1 and type-2 AGN. The black hole mass function at z ~ 0 represents an essential baseline for simulations and black hole growth models. The normalization of the Eddington ratio distribution function directly constrains the AGN fraction. Together, the BASS AGN luminosity, black hole mass and Eddington ratio distribution functions thus provide a complete picture of the local black hole population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploeg, Harrison; Gordon, Chris; Crocker, Roland
Fermi Large Area Telescope data reveal an excess of GeV gamma rays from the direction of the Galactic Center and bulge. Several explanations have been proposed for this excess including an unresolved population of millisecond pulsars (MSPs) and self-annihilating dark matter. It has been claimed that a key discriminant for or against the MSP explanation can be extracted from the properties of the luminosity function describing this source population. Specifically, is the luminosity function of the putative MSPs in the Galactic Center consistent with that characterizing the resolved MSPs in the Galactic disk? To investigate this we have used amore » Bayesian Markov Chain Monte Carlo to evaluate the posterior distribution of the parameters of the MSP luminosity function describing both resolved MSPs and the Galactic Center excess. At variance with some other claims, our analysis reveals that, within current uncertainties, both data sets can be well fit with the same luminosity function.« less
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-16
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
Gauge-invariance and infrared divergences in the luminosity distance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch
2017-04-01
Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations ofmore » the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.« less
On the nature of the symbiotic binary AX Persei
NASA Technical Reports Server (NTRS)
Mikolajewska, Joanna; Kenyon, Scott J.
1992-01-01
Photometric and spectroscopic observations of the symbiotic binary AX Persei are presented. This system contains a red giant that fills its tidal lobe and transfers material into an accretion disk surrounding a low-mass main-sequence star. The stellar masses - 1 solar mass for the red giant and about 0.4 solar mass for the companion - suggest AX Per is poised to enter a common envelope phase of evolution. The disk luminosity increases from L(disk) about 100 solar luminosity in quiescence to L(disk) about 5700 solar luminosity in outburst for a distance of d = 2.5 kpc. Except for visual maximum, high ionization permitted emission lines - such as He II - imply an EUV luminosity comparable to the disk luminosity. High-energy photons emitted by a hot boundary layer between the disk and central star ionize a surrounding nebula to produce this permitted line emission. High ionization forbidden lines form in an extended, shock-excited region well out of the binary's orbital plane and may be associated with mass loss from the disk.
Cosmic evolution of AGN with moderate-to-high radiative luminosity in the COSMOS field
NASA Astrophysics Data System (ADS)
Ceraj, L.; Smolčić, V.; Delvecchio, I.; Delhaize, J.; Novak, M.
2018-05-01
We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1σ sensitivity of 2.3 μJy/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios >=5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of z ~ 6, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at z ~ 1.5 followed by a decrease out to a redshift z ~ 6.
Mass Accretion Rate of Very Low Luminosity Objects
NASA Astrophysics Data System (ADS)
Sung, Ren-Shiang; Lai, Shih-Ping; Hsieh, Tien-Hao
2013-08-01
We propose to measure the mass accretion rate of six Very Low Luminosity Objects (VeLLOs) using Near-infrared Integral Spectrometer (NIFS). The extremely low luminosity of VeLLOs, L_int ≤ 0.1 L_⊙, was previously thought not existing in the nature because the typical accretion rate gives much larger accretion luminosity even for the lowest mass star (``Luminosity Problem''). The commonly accepted solution is that the accretion rate is not constant but episodic. Thus, VeLLOs could be interpreted as protostars being in the quiescent phase of accretion activities. However, there is no observational data directly measuring the mass accretion rate of VeLLOs. The main goal of this proposal is to examine such theory and directly measure the mass accretion rate of VeLLOs for the first time. We propose to measure the blue continuum excess (veiling) of the stellar spectrum, which is the most reliable method for measuring the accretion rate. The measurements have to be made in infrared due to the very high extinction for highly embedded protostars. Our proposal provide a first opportunity to explain the long time ``Luminosity Problem'' through the observational aspects, and Gemini is the only instrument that can provide accurate and high sensitivity infrared spectroscopy measurements within reasonably short time scale.
The origin of the diffuse galactic IR/submm emission: Revisited after IRAS
NASA Technical Reports Server (NTRS)
Cox, P.; Mezger, P. G.
1987-01-01
Balloon observations are compared with Infrared Astronomy Satellite observations. There was good agreement for the longitudinal profiles. However, the dust emission observed by IRAS, contrary to the balloon observations which show dust emission only within the absolute value of b is equal to or less than 3 degrees, extends all the way to the galactic pole. The model fits were repeated using more recent parameters for the distribution of interstellar matter in the galactic disk and central region. The IR luminosities are derived for the revised galactic distance scale of solar radius - 8.5 Kpc. A total IR luminosity of 1.2 E10 solar luminosity is obtained, which is about one third of the estimated stellar luminosity of the Galaxy. The dust emission spectrum lambdaI(sub lambda) attains it maximum at 100 microns. A secondary maximum in the dust emission spectrum occurs at 10 microns, which contains 15% of the total IR luminosity of the Galaxy. The galactic dust emission spectrum was compared with the dust emission spectra of external IRAS galaxies. The warm dust luminosity relates to the present OB star formation rate, while flux densities observed at longer submm wavelengths are dominated by cold dust emission and thus can be used to estimate gas masses.
Jet and disc luminosities in tidal disruption events
NASA Astrophysics Data System (ADS)
Piran, Tsvi; Sądowski, Aleksander; Tchekhovskoy, Alexander
2015-10-01
Tidal disruption events (TDEs) explore the whole range of accretion rates and configurations. A challenging question is what the corresponding light curves of these events are. We explore numerically the disc luminosity and the conditions within the inner region of the disc using a fully general relativistic slim disc model. Those conditions determine the magnitude of the magnetic field that engulfs the black hole and this, in turn, determines the Blandford-Znajek jet power. We estimate this power in two different ways and show that they are self-consistent. We find, as expected earlier from analytic arguments , that neither the disc luminosity nor the jet power follows the accretion rate throughout the disruption event. The disc luminosity varies only logarithmically with the accretion rate at super-Eddington luminosities. The jet power follows initially the accretion rate but remains constant after the transition from super- to sub-Eddington. At lower accretion rates at the end of the magnetically arrested disc (MAD) phase, the disc becomes thin and the jet may stop altogether. These new estimates of the jet power and disc luminosity that do not simply follow the mass fallback rate should be taken into account when searching for TDEs and analysing light curves of TDE candidates. Identification of some of the above-mentioned transitions may enable us to estimate better TDE parameters.
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.