Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.
2010-01-01
It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233
Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed
2011-01-01
We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734
Automated Reconstruction of Neural Trees Using Front Re-initialization
Mukherjee, Amit; Stepanyants, Armen
2013-01-01
This paper proposes a greedy algorithm for automated reconstruction of neural arbors from light microscopy stacks of images. The algorithm is based on the minimum cost path method. While the minimum cost path, obtained using the Fast Marching Method, results in a trace with the least cumulative cost between the start and the end points, it is not sufficient for the reconstruction of neural trees. This is because sections of the minimum cost path can erroneously travel through the image background with undetectable detriment to the cumulative cost. To circumvent this problem we propose an algorithm that grows a neural tree from a specified root by iteratively re-initializing the Fast Marching fronts. The speed image used in the Fast Marching Method is generated by computing the average outward flux of the gradient vector flow field. Each iteration of the algorithm produces a candidate extension by allowing the front to travel a specified distance and then tracking from the farthest point of the front back to the tree. Robust likelihood ratio test is used to evaluate the quality of the candidate extension by comparing voxel intensities along the extension to those in the foreground and the background. The qualified extensions are appended to the current tree, the front is re-initialized, and Fast Marching is continued until the stopping criterion is met. To evaluate the performance of the algorithm we reconstructed 6 stacks of two-photon microscopy images and compared the results to the ground truth reconstructions by using the DIADEM metric. The average comparison score was 0.82 out of 1.0, which is on par with the performance achieved by expert manual tracers. PMID:24386539
Janson, Lucas; Schmerling, Edward; Clark, Ashley; Pavone, Marco
2015-01-01
In this paper we present a novel probabilistic sampling-based motion planning algorithm called the Fast Marching Tree algorithm (FMT*). The algorithm is specifically aimed at solving complex motion planning problems in high-dimensional configuration spaces. This algorithm is proven to be asymptotically optimal and is shown to converge to an optimal solution faster than its state-of-the-art counterparts, chiefly PRM* and RRT*. The FMT* algorithm performs a “lazy” dynamic programming recursion on a predetermined number of probabilistically-drawn samples to grow a tree of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm combines features of both single-query algorithms (chiefly RRT) and multiple-query algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the solution of Eikonal equations. As a departure from previous analysis approaches that are based on the notion of almost sure convergence, the FMT* algorithm is analyzed under the notion of convergence in probability: the extra mathematical flexibility of this approach allows for convergence rate bounds—the first in the field of optimal sampling-based motion planning. Specifically, for a certain selection of tuning parameters and configuration spaces, we obtain a convergence rate bound of order O(n−1/d+ρ), where n is the number of sampled points, d is the dimension of the configuration space, and ρ is an arbitrarily small constant. We go on to demonstrate asymptotic optimality for a number of variations on FMT*, namely when the configuration space is sampled non-uniformly, when the cost is not arc length, and when connections are made based on the number of nearest neighbors instead of a fixed connection radius. Numerical experiments over a range of dimensions and obstacle configurations confirm our the-oretical and heuristic arguments by showing that FMT*, for a given execution time, returns substantially better solutions than either PRM* or RRT*, especially in high-dimensional configuration spaces and in scenarios where collision-checking is expensive. PMID:27003958
NASA Astrophysics Data System (ADS)
Afanasyev, A. P.; Bazhenov, R. I.; Luchaninov, D. V.
2018-05-01
The main purpose of the research is to develop techniques for defining the best technical and economic trajectories of cables in urban power systems. The proposed algorithms of calculation of the routes for laying cables take into consideration topological, technical and economic features of the cabling. The discrete option of an algorithm Fast marching method is applied as a calculating tool. It has certain advantages compared to other approaches. In particular, this algorithm is cost-effective to compute, therefore, it is not iterative. Trajectories of received laying cables are considered as optimal ones from the point of view of technical and economic criteria. They correspond to the present rules of modern urban development.
A fast marching algorithm for the factored eikonal equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treister, Eran, E-mail: erantreister@gmail.com; Haber, Eldad, E-mail: haber@math.ubc.ca; Department of Mathematics, The University of British Columbia, Vancouver, BC
The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. Thismore » inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss–Newton.« less
Segmentation of hand radiographs using fast marching methods
NASA Astrophysics Data System (ADS)
Chen, Hong; Novak, Carol L.
2006-03-01
Rheumatoid Arthritis is one of the most common chronic diseases. Joint space width in hand radiographs is evaluated to assess joint damage in order to monitor progression of disease and response to treatment. Manual measurement of joint space width is time-consuming and highly prone to inter- and intra-observer variation. We propose a method for automatic extraction of finger bone boundaries using fast marching methods for quantitative evaluation of joint space width. The proposed algorithm includes two stages: location of hand joints followed by extraction of bone boundaries. By setting the propagation speed of the wave front as a function of image intensity values, the fast marching algorithm extracts the skeleton of the hands, in which each branch corresponds to a finger. The finger joint locations are then determined by using the image gradients along the skeletal branches. In order to extract bone boundaries at joints, the gradient magnitudes are utilized for setting the propagation speed, and the gradient phases are used for discriminating the boundaries of adjacent bones. The bone boundaries are detected by searching for the fastest paths from one side of each joint to the other side. Finally, joint space width is computed based on the extracted upper and lower bone boundaries. The algorithm was evaluated on a test set of 8 two-hand radiographs, including images from healthy patients and from patients suffering from arthritis, gout and psoriasis. Using our method, 97% of 208 joints were accurately located and 89% of 416 bone boundaries were correctly extracted.
A Domain Decomposition Parallelization of the Fast Marching Method
NASA Technical Reports Server (NTRS)
Herrmann, M.
2003-01-01
In this paper, the first domain decomposition parallelization of the Fast Marching Method for level sets has been presented. Parallel speedup has been demonstrated in both the optimal and non-optimal domain decomposition case. The parallel performance of the proposed method is strongly dependent on load balancing separately the number of nodes on each side of the interface. A load imbalance of nodes on either side of the domain leads to an increase in communication and rollback operations. Furthermore, the amount of inter-domain communication can be reduced by aligning the inter-domain boundaries with the interface normal vectors. In the case of optimal load balancing and aligned inter-domain boundaries, the proposed parallel FMM algorithm is highly efficient, reaching efficiency factors of up to 0.98. Future work will focus on the extension of the proposed parallel algorithm to higher order accuracy. Also, to further enhance parallel performance, the coupling of the domain decomposition parallelization to the G(sub 0)-based parallelization will be investigated.
Two-dimensional fast marching for geometrical optics.
Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore
2014-11-03
We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.
Molecular surface mesh generation by filtering electron density map.
Giard, Joachim; Macq, Benoît
2010-01-01
Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.
An Asymptotically-Optimal Sampling-Based Algorithm for Bi-directional Motion Planning
Starek, Joseph A.; Gomez, Javier V.; Schmerling, Edward; Janson, Lucas; Moreno, Luis; Pavone, Marco
2015-01-01
Bi-directional search is a widely used strategy to increase the success and convergence rates of sampling-based motion planning algorithms. Yet, few results are available that merge both bi-directional search and asymptotic optimality into existing optimal planners, such as PRM*, RRT*, and FMT*. The objective of this paper is to fill this gap. Specifically, this paper presents a bi-directional, sampling-based, asymptotically-optimal algorithm named Bi-directional FMT* (BFMT*) that extends the Fast Marching Tree (FMT*) algorithm to bidirectional search while preserving its key properties, chiefly lazy search and asymptotic optimality through convergence in probability. BFMT* performs a two-source, lazy dynamic programming recursion over a set of randomly-drawn samples, correspondingly generating two search trees: one in cost-to-come space from the initial configuration and another in cost-to-go space from the goal configuration. Numerical experiments illustrate the advantages of BFMT* over its unidirectional counterpart, as well as a number of other state-of-the-art planners. PMID:27004130
Vessel network detection using contour evolution and color components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ushizima, Daniela; Medeiros, Fatima; Cuadros, Jorge
2011-06-22
Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration, among other applications. There is an extensive literature related to this problem, often excluding the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper relies on an algorithm using front propagation to segment the vessel network. The algorithm includes a penalty in the wait queue on the fast marching heap to minimize leakage of the evolving interface. The method requires no manual labeling, a minimum numbermore » of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.« less
NASA Astrophysics Data System (ADS)
Huang, Xingguo; Sun, Hui
2018-05-01
Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.
Using flow information to support 3D vessel reconstruction from rotational angiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waechter, Irina; Bredno, Joerg; Weese, Juergen
2008-07-15
For the assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) morphologic and hemodynamic information about the vessel system. Rotational angiography is routinely used to image the 3D vascular geometry and we have shown previously that rotational subtraction angiography has the potential to also give quantitative information about blood flow. Flow information can be determined when the angiographic sequence shows inflow and possibly outflow of contrast agent. However, a standard volume reconstruction assumes that the vessel tree is uniformly filled with contrast agent during the whole acquisition. If this is not the case, the reconstruction exhibits artifacts. Here,more » we show how flow information can be used to support the reconstruction of the 3D vessel centerline and radii in this case. Our method uses the fast marching algorithm to determine the order in which voxels are analyzed. For every voxel, the rotational time intensity curve (R-TIC) is determined from the image intensities at the projection points of the current voxel. Next, the bolus arrival time of the contrast agent at the voxel is estimated from the R-TIC. Then, a measure of the intensity and duration of the enhancement is determined, from which a speed value is calculated that steers the propagation of the fast marching algorithm. The results of the fast marching algorithm are used to determine the 3D centerline by backtracking. The 3D radius is reconstructed from 2D radius estimates on the projection images. The proposed method was tested on computer simulated rotational angiography sequences with systematically varied x-ray acquisition, blood flow, and contrast agent injection parameters and on datasets from an experimental setup using an anthropomorphic cerebrovascular phantom. For the computer simulation, the mean absolute error of the 3D centerline and 3D radius estimation was 0.42 and 0.25 mm, respectively. For the experimental datasets, the mean absolute error of the 3D centerline was 0.45 mm. Under pulsatile and nonpulsatile conditions, flow information can be used to enable a 3D vessel reconstruction from rotational angiography with inflow and possibly outflow of contrast agent. We found that the most important parameter for the quality of the reconstruction of centerline and radii is the range through which the x-ray system rotates in the time span of the injection. Good results were obtained if this range was at least 135 deg. . As a standard c-arm can rotate 205 deg., typically one third of the acquisition can show inflow or outflow of contrast agent, which is required for the quantification of blood flow from rotational angiography.« less
Measurement of thermally ablated lesions in sonoelastographic images using level set methods
NASA Astrophysics Data System (ADS)
Castaneda, Benjamin; Tamez-Pena, Jose Gerardo; Zhang, Man; Hoyt, Kenneth; Bylund, Kevin; Christensen, Jared; Saad, Wael; Strang, John; Rubens, Deborah J.; Parker, Kevin J.
2008-03-01
The capability of sonoelastography to detect lesions based on elasticity contrast can be applied to monitor the creation of thermally ablated lesion. Currently, segmentation of lesions depicted in sonoelastographic images is performed manually which can be a time consuming process and prone to significant intra- and inter-observer variability. This work presents a semi-automated segmentation algorithm for sonoelastographic data. The user starts by planting a seed in the perceived center of the lesion. Fast marching methods use this information to create an initial estimate of the lesion. Subsequently, level set methods refine its final shape by attaching the segmented contour to edges in the image while maintaining smoothness. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology images. Results show that the algorithm outperforms manual segmentation in accuracy, inter- and intra-observer variability. The processing time per image is significantly reduced.
Fast marching methods for the continuous traveling salesman problem.
Andrews, June; Sethian, J A
2007-01-23
We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points ("cities") in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the traveling salesman problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both a heuristic and an optimal solution to this problem. The complexity of the heuristic algorithm is at worst case M.N log N, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh.
Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT
NASA Astrophysics Data System (ADS)
Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.
2009-11-01
Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Scheme for Entering Binary Data Into a Quantum Computer; Encryption for Remote Control via Internet or Intranet; Coupled Receiver/Decoders for Low-Rate Turbo Codes; Processing GPS Occultation Data To Characterize Atmosphere; Displacing Unpredictable Nulls in Antenna Radiation Patterns; Integrated Pointing and Signal Detector for Optical Receiver; Adaptive Thresholding and Parameter Estimation for PPM; Data-Driven Software Framework for Web-Based ISS Telescience; Software for Secondary-School Learning About Robotics; Fuzzy Logic Engine; Telephone-Directory Program; Simulating a Direction-Finder Search for an ELT; Formulating Precursors for Coating Metals and Ceramics; Making Macroscopic Assemblies of Aligned Carbon Nanotubes; Ball Bearings Equipped for In Situ Lubrication on Demand; Synthetic Bursae for Robots; Robot Forearm and Dexterous Hand; Making a Metal-Lined Composite-Overwrapped Pressure Vessel; Ex Vivo Growth of Bioengineered Ligaments and Other Tissues; Stroboscopic Goggles for Reduction of Motion Sickness; Articulating Support for Horizontal Resistive Exercise; Modified Penning-Malmberg Trap for Storing Antiprotons; Tumbleweed Rovers; Two-Photon Fluorescence Microscope for Microgravity Research; Biased Randomized Algorithm for Fast Model-Based Diagnosis; Fast Algorithms for Model-Based Diagnosis; Simulations of Evaporating Multicomponent Fuel Drops; Formation Flying of Tethered and Nontethered Spacecraft; and Two Methods for Efficient Solution of the Hitting- Set Problem.
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
HYBRID FAST HANKEL TRANSFORM ALGORITHM FOR ELECTROMAGNETIC MODELING
A hybrid fast Hankel transform algorithm has been developed that uses several complementary features of two existing algorithms: Anderson's digital filtering or fast Hankel transform (FHT) algorithm and Chave's quadrature and continued fraction algorithm. A hybrid FHT subprogram ...
NASA Astrophysics Data System (ADS)
Pura, John A.; Hamilton, Allison M.; Vargish, Geoffrey A.; Butman, John A.; Linguraru, Marius George
2011-03-01
Accurate ventricle volume estimates could improve the understanding and diagnosis of postoperative communicating hydrocephalus. For this category of patients, associated changes in ventricle volume can be difficult to identify, particularly over short time intervals. We present an automated segmentation algorithm that evaluates ventricle size from serial brain MRI examination. The technique combines serial T1- weighted images to increase SNR and segments the means image to generate a ventricle template. After pre-processing, the segmentation is initiated by a fuzzy c-means clustering algorithm to find the seeds used in a combination of fast marching methods and geodesic active contours. Finally, the ventricle template is propagated onto the serial data via non-linear registration. Serial volume estimates were obtained in an automated robust and accurate manner from difficult data.
NASA Technical Reports Server (NTRS)
Tuccillo, J. J.
1984-01-01
Numerical Weather Prediction (NWP), for both operational and research purposes, requires only fast computational speed but also large memory. A technique for solving the Primitive Equations for atmospheric motion on the CYBER 205, as implemented in the Mesoscale Atmospheric Simulation System, which is fully vectorized and requires substantially less memory than other techniques such as the Leapfrog or Adams-Bashforth Schemes is discussed. The technique presented uses the Euler-Backard time marching scheme. Also discussed are several techniques for reducing computational time of the model by replacing slow intrinsic routines by faster algorithms which use only hardware vector instructions.
2003-01-01
online, www.customs.ustreas.gov/xp/cgov/import/commercial_enforcement/ ctpat /fact_sheet.xm, March 24, 2003. [42] John M. Patterson, “Supply Chain... ctpat /fast/fast_info, March 24, 2003. [45] Our concept of the maturity scale is borrowed from Kevin P. McCormack and Wiliam C. Johnson, “Supply
Multiple feature fusion via covariance matrix for visual tracking
NASA Astrophysics Data System (ADS)
Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui
2018-04-01
Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.
Capabilities of a Global 3D MHD Model for Monitoring Extremely Fast CMEs
NASA Astrophysics Data System (ADS)
Wu, C. C.; Plunkett, S. P.; Liou, K.; Socker, D. G.; Wu, S. T.; Wang, Y. M.
2015-12-01
Since the start of the space era, spacecraft have recorded many extremely fast coronal mass ejections (CMEs) which have resulted in severe geomagnetic storms. Accurate and timely forecasting of the space weather effects of these events is important for protecting expensive space assets and astronauts and avoiding communications interruptions. Here, we will introduce a newly developed global, three-dimensional (3D) magnetohydrodynamic (MHD) model (G3DMHD). The model takes the solar magnetic field maps at 2.5 solar radii (Rs) and intepolates the solar wind plasma and field out to 18 Rs using the algorithm of Wang and Sheeley (1990, JGR). The output is used as the inner boundary condition for a 3D MHD model. The G3DMHD model is capable of simulating (i) extremely fast CME events with propagation speeds faster than 2500 km/s; and (ii) multiple CME events in sequence or simultaneously. We will demonstrate the simulation results (and comparison with in-situ observation) for the fastest CME in record on 23 July 2012, the shortest transit time in March 1976, and the well-known historic Carrington 1859 event.
Improving the Numerical Stability of Fast Matrix Multiplication
Ballard, Grey; Benson, Austin R.; Druinsky, Alex; ...
2016-10-04
Fast algorithms for matrix multiplication, namely those that perform asymptotically fewer scalar operations than the classical algorithm, have been considered primarily of theoretical interest. Apart from Strassen's original algorithm, few fast algorithms have been efficiently implemented or used in practical applications. However, there exist many practical alternatives to Strassen's algorithm with varying performance and numerical properties. Fast algorithms are known to be numerically stable, but because their error bounds are slightly weaker than the classical algorithm, they are not used even in cases where they provide a performance benefit. We argue in this study that the numerical sacrifice of fastmore » algorithms, particularly for the typical use cases of practical algorithms, is not prohibitive, and we explore ways to improve the accuracy both theoretically and empirically. The numerical accuracy of fast matrix multiplication depends on properties of the algorithm and of the input matrices, and we consider both contributions independently. We generalize and tighten previous error analyses of fast algorithms and compare their properties. We discuss algorithmic techniques for improving the error guarantees from two perspectives: manipulating the algorithms, and reducing input anomalies by various forms of diagonal scaling. In conclusion, we benchmark performance and demonstrate our improved numerical accuracy.« less
Deschamps, Thomas; Malladi, Ravi; Ravve, Igor
2004-01-01
In many instances, numerical integration of space-scale PDEs is the most time consuming operation of image processing. This is because the scale step is limited by conditional stability of explicit schemes. In this work, we introduce the unconditionally stable semi-implicit linearized difference scheme that is fashioned after additive operator split (AOS) [1], [2] for Beltrami and the subjective surface computation. The Beltrami flow [3], [4], [5] is one of the most effective denoising algorithms in image processing. For gray-level images, we show that the flow equation can be arranged in an advection-diffusion form, revealing the edge-enhancing properties of this flow. This also suggests the application of AOS method for faster convergence. The subjective surface [6] deals with constructing a perceptually meaningful interpretation from partial image data by mimicking the human visual system. However, initialization of the surface is critical for the final result and its main drawbacks are very slow convergence and the huge number of iterations required. In this paper, we first show that the governing equation for the subjective surface flow can be rearranged in an AOS implementation, providing a near real-time solution to the shape completion problem in 2D and 3D. Then, we devise a new initialization paradigm where we first "condition" the viewpoint surface using the Fast-Marching algorithm. We compare the original method with our new algorithm on several examples of real 3D medical images, thus revealing the improvement achieved.
Fast marching methods for the continuous traveling salesman problem
Andrews, June; Sethian, J. A.
2007-01-01
We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points (“cities”) in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the traveling salesman problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both a heuristic and an optimal solution to this problem. The complexity of the heuristic algorithm is at worst case M·N log N, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh. PMID:17220271
Fast marching methods for the continuous traveling salesman problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, J.; Sethian, J.A.
We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points ('cities') in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the Traveling Salesman Problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both amore » heuristic and an optimal solution to this problem. The order of the heuristic algorithm is at worst case M * N logN, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh.« less
Visual saliency-based fast intracoding algorithm for high efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin
2017-01-01
Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
An enhanced fast scanning algorithm for image segmentation
NASA Astrophysics Data System (ADS)
Ismael, Ahmed Naser; Yusof, Yuhanis binti
2015-12-01
Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.
A new fast algorithm for computing a complex number: Theoretic transforms
NASA Technical Reports Server (NTRS)
Reed, I. S.; Liu, K. Y.; Truong, T. K.
1977-01-01
A high-radix fast Fourier transformation (FFT) algorithm for computing transforms over GF(sq q), where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.
A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann
2003-01-01
A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water dynamical system. The 2D horizontal-to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative flux-form semi-Lagrangian algorithm. Time marching is split- explicit, with large-time-step for scalar transport, and small fractional time step for the Lagrangian dynamics, which permits the accurate propagation of fast waves. A mass, momentum, and total energy conserving algorithm is developed for mapping the state variables periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing with physical parameterizations and to prevent severe distortion of the Lagrangian surfaces. Deterministic baroclinic wave growth tests and long-term integrations using the Held-Suarez forcing are presented. Impact of the monotonicity constraint is discussed.
NASA Astrophysics Data System (ADS)
Danala, Gopichandh; Wang, Yunzhi; Thai, Theresa; Gunderson, Camille C.; Moxley, Katherine M.; Moore, Kathleen; Mannel, Robert S.; Cheng, Samuel; Liu, Hong; Zheng, Bin; Qiu, Yuchen
2017-02-01
Accurate tumor segmentation is a critical step in the development of the computer-aided detection (CAD) based quantitative image analysis scheme for early stage prognostic evaluation of ovarian cancer patients. The purpose of this investigation is to assess the efficacy of several different methods to segment the metastatic tumors occurred in different organs of ovarian cancer patients. In this study, we developed a segmentation scheme consisting of eight different algorithms, which can be divided into three groups: 1) Region growth based methods; 2) Canny operator based methods; and 3) Partial differential equation (PDE) based methods. A number of 138 tumors acquired from 30 ovarian cancer patients were used to test the performance of these eight segmentation algorithms. The results demonstrate each of the tested tumors can be successfully segmented by at least one of the eight algorithms without the manual boundary correction. Furthermore, modified region growth, classical Canny detector, and fast marching, and threshold level set algorithms are suggested in the future development of the ovarian cancer related CAD schemes. This study may provide meaningful reference for developing novel quantitative image feature analysis scheme to more accurately predict the response of ovarian cancer patients to the chemotherapy at early stage.
Schwenke, M; Hennemuth, A; Fischer, B; Friman, O
2012-01-01
Phase-contrast MRI (PC MRI) can be used to assess blood flow dynamics noninvasively inside the human body. The acquired images can be reconstructed into flow vector fields. Traditionally, streamlines can be computed based on the vector fields to visualize flow patterns and particle trajectories. The traditional methods may give a false impression of precision, as they do not consider the measurement uncertainty in the PC MRI images. In our prior work, we incorporated the uncertainty of the measurement into the computation of particle trajectories. As a major part of the contribution, a novel numerical scheme for solving the anisotropic Fast Marching problem is presented. A computing time comparison to state-of-the-art methods is conducted on artificial tensor fields. A visual comparison of healthy to pathological blood flow patterns is given. The comparison shows that the novel anisotropic Fast Marching solver outperforms previous schemes in terms of computing time. The visual comparison of flow patterns directly visualizes large deviations of pathological flow from healthy flow. The novel anisotropic Fast Marching solver efficiently resolves even strongly anisotropic path costs. The visualization method enables the user to assess the uncertainty of particle trajectories derived from PC MRI images.
FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.
2016-09-01
We present a novel algorithm, FAST-PT, for performing convolution or mode-coupling integrals that appear in nonlinear cosmological perturbation theory. The algorithm uses several properties of gravitational structure formation—the locality of the dark matter equations and the scale invariance of the problem—as well as Fast Fourier Transforms to describe the input power spectrum as a superposition of power laws. This yields extremely fast performance, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation. We describe the algorithm and demonstrate its application to calculating nonlinear corrections to the matter power spectrum, including one-loop standard perturbation theorymore » and the renormalization group approach. We also describe our public code (in Python) to implement this algorithm. The code, along with a user manual and example implementations, is available at https://github.com/JoeMcEwen/FAST-PT.« less
Maximum Principles and Application to the Analysis of An Explicit Time Marching Algorithm
NASA Technical Reports Server (NTRS)
LeTallec, Patrick; Tidriri, Moulay D.
1996-01-01
In this paper we develop local and global estimates for the solution of convection-diffusion problems. We then study the convergence properties of a Time Marching Algorithm solving Advection-Diffusion problems on two domains using incompatible discretizations. This study is based on a De-Giorgi-Nash maximum principle.
A feature-preserving hair removal algorithm for dermoscopy images.
Abbas, Qaisar; Garcia, Irene Fondón; Emre Celebi, M; Ahmad, Waqar
2013-02-01
Accurate segmentation and repair of hair-occluded information from dermoscopy images are challenging tasks for computer-aided detection (CAD) of melanoma. Currently, many hair-restoration algorithms have been developed, but most of these fail to identify hairs accurately and their removal technique is slow and disturbs the lesion's pattern. In this article, a novel hair-restoration algorithm is presented, which has a capability to preserve the skin lesion features such as color and texture and able to segment both dark and light hairs. Our algorithm is based on three major steps: the rough hairs are segmented using a matched filtering with first derivative of gaussian (MF-FDOG) with thresholding that generate strong responses for both dark and light hairs, refinement of hairs by morphological edge-based techniques, which are repaired through a fast marching inpainting method. Diagnostic accuracy (DA) and texture-quality measure (TQM) metrics are utilized based on dermatologist-drawn manual hair masks that were used as a ground truth to evaluate the performance of the system. The hair-restoration algorithm is tested on 100 dermoscopy images. The comparisons have been done among (i) linear interpolation, inpainting by (ii) non-linear partial differential equation (PDE), and (iii) exemplar-based repairing techniques. Among different hair detection and removal techniques, our proposed algorithm obtained the highest value of DA: 93.3% and TQM: 90%. The experimental results indicate that the proposed algorithm is highly accurate, robust and able to restore hair pixels without damaging the lesion texture. This method is fully automatic and can be easily integrated into a CAD system. © 2011 John Wiley & Sons A/S.
Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations
NASA Astrophysics Data System (ADS)
Detrixhe, Miles; Gibou, Frédéric
2016-10-01
The fast sweeping method is a popular algorithm for solving a variety of static Hamilton-Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.
Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying
2016-04-01
As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.
Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.
Mei, Gang; Xu, Nengxiong; Xu, Liangliang
2016-01-01
This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.
Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu; University of California Santa Barbara, Santa Barbara, CA, 93106; Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu
The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling,more » and show state-of-the-art speedup values for the fast sweeping method.« less
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1992-01-01
The development of efficient iterative solution methods for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations is discussed. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. In this work, another approach based on the classical conjugate gradient method, known as the Generalized Minimum Residual (GMRES) algorithm is investigated. The GMRES algorithm has been used in the past by a number of researchers for solving steady viscous and inviscid flow problems. Here, we investigate the suitability of this algorithm for solving the system of non-linear equations that arise in unsteady Navier-Stokes solvers at each time step.
NASA Astrophysics Data System (ADS)
Ghaffarian, Saman; Ghaffarian, Salar
2014-11-01
This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.
Fast algorithm for computing complex number-theoretic transforms
NASA Technical Reports Server (NTRS)
Reed, I. S.; Liu, K. Y.; Truong, T. K.
1977-01-01
A high-radix FFT algorithm for computing transforms over FFT, where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.
A New Approximate Chimera Donor Cell Search Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Nixon, David (Technical Monitor)
1998-01-01
The objectives of this study were to develop chimera-based full potential methodology which is compatible with overflow (Euler/Navier-Stokes) chimera flow solver and to develop a fast donor cell search algorithm that is compatible with the chimera full potential approach. Results of this work included presenting a new donor cell search algorithm suitable for use with a chimera-based full potential solver. This algorithm was found to be extremely fast and simple producing donor cells as fast as 60,000 per second.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... Part of the Fast Automated Transfer Program March 30, 2010. I. Introduction On January 19, 2010, The... made unsponsored ADRs eligible for DTC's Fast Automated Securities Transfer Program (``FAST'').\\4\\ \\3... associated with safekeeping, transfer, shipping and insurance costs. \\4\\ FAST was designed to eliminate some...
NASA Technical Reports Server (NTRS)
Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.
1995-01-01
In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.
Fast algorithm for bilinear transforms in optics
NASA Astrophysics Data System (ADS)
Ostrovsky, Andrey S.; Martinez-Niconoff, Gabriel C.; Ramos Romero, Obdulio; Cortes, Liliana
2000-10-01
The fast algorithm for calculating the bilinear transform in the optical system is proposed. This algorithm is based on the coherent-mode representation of the cross-spectral density function of the illumination. The algorithm is computationally efficient when the illumination is partially coherent. Numerical examples are studied and compared with the theoretical results.
Fast and stable algorithms for computing the principal square root of a complex matrix
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Lian, Sui R.; Mcinnis, Bayliss C.
1987-01-01
This note presents recursive algorithms that are rapidly convergent and more stable for finding the principal square root of a complex matrix. Also, the developed algorithms are utilized to derive the fast and stable matrix sign algorithms which are useful in developing applications to control system problems.
Fast, Parallel and Secure Cryptography Algorithm Using Lorenz's Attractor
NASA Astrophysics Data System (ADS)
Marco, Anderson Gonçalves; Martinez, Alexandre Souto; Bruno, Odemir Martinez
A novel cryptography method based on the Lorenz's attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher.
2013-03-21
At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 35-36 Flight Engineer Chris Cassidy of NASA (left) displays a flight data file book titled “Fast Rendezvous” March 21 as he, Soyuz Commander Pavel Vinogradov (center) and Flight Engineer Alexander Misurkin (right) train for launch to the International Space Station March 29, Kazakh time, in their Soyuz TMA-08M spacecraft from the Baikonur Cosmodrome for a 5 ½ month mission. The “fast rendezvous” refers to the expedited four-orbit, six-hour trip from the launch pad to reach the International Space Station March 29 through an accelerated rendezvous burn plan, the first time this approach will be used for crews flying to the international complex. NASA/Victor Zelentsov
NASA Astrophysics Data System (ADS)
Brantut, Nicolas
2018-02-01
Acoustic emission and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenised wave velocity measurements and approximate source locations. Here I present a numerical method and its implementation in a free software to perform a joint inversion of acoustic emission locations together with the three-dimensional, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from acoustic emissions and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of acoustic emissions progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse acoustic emissions are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15%, with an increase in anisotropy of up to 20%. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localised changes associated with microcracking and damage generation.
Pulmonary artery segmentation and quantification in sickle cell associated pulmonary hypertension
NASA Astrophysics Data System (ADS)
Linguraru, Marius George; Mukherjee, Nisha; Van Uitert, Robert L.; Summers, Ronald M.; Gladwin, Mark T.; Machado, Roberto F.; Wood, Bradford J.
2008-03-01
Pulmonary arterial hypertension is a known complication associated with sickle-cell disease; roughly 75% of sickle cell disease-afflicted patients have pulmonary arterial hypertension at the time of death. This prospective study investigates the potential of image analysis to act as a surrogate for presence and extent of disease, and whether the size change of the pulmonary arteries of sickle cell patients could be linked to sickle-cell associated pulmonary hypertension. Pulmonary CT-Angiography scans from sickle-cell patients were obtained and retrospectively analyzed. Randomly selected pulmonary CT-Angiography studies from patients without sickle-cell anemia were used as negative controls. First, images were smoothed using anisotropic diffusion. Then, a combination of fast marching and geodesic active contours level sets were employed to segment the pulmonary artery. An algorithm based on fast marching methods was used to compute the centerline of the segmented arteries. From the centerline, the diameters at the pulmonary trunk and first branch of the pulmonary arteries were measured automatically. Arterial diameters were normalized to the width of the thoracic cavity, patient weight and body surface. Results show that the pulmonary trunk and first right and left pulmonary arterial branches at the pulmonary trunk junction are significantly larger in diameter with increased blood flow in sickle-cell anemia patients as compared to controls (p values of 0.0278 for trunk and 0.0007 for branches). CT with image processing shows great potential as a surrogate indicator of pulmonary hemodynamics or response to therapy, which could be an important tool for drug discovery and noninvasive clinical surveillance.
Zhao, Henry; Pesavento, Lauren; Coote, Skye; Rodrigues, Edrich; Salvaris, Patrick; Smith, Karen; Bernard, Stephen; Stephenson, Michael; Churilov, Leonid; Yassi, Nawaf; Davis, Stephen M; Campbell, Bruce C V
2018-04-01
Clinical triage scales for prehospital recognition of large vessel occlusion (LVO) are limited by low specificity when applied by paramedics. We created the 3-step ambulance clinical triage for acute stroke treatment (ACT-FAST) as the first algorithmic LVO identification tool, designed to improve specificity by recognizing only severe clinical syndromes and optimizing paramedic usability and reliability. The ACT-FAST algorithm consists of (1) unilateral arm drift to stretcher <10 seconds, (2) severe language deficit (if right arm is weak) or gaze deviation/hemineglect assessed by simple shoulder tap test (if left arm is weak), and (3) eligibility and stroke mimic screen. ACT-FAST examination steps were retrospectively validated, and then prospectively validated by paramedics transporting culturally and linguistically diverse patients with suspected stroke in the emergency department, for the identification of internal carotid or proximal middle cerebral artery occlusion. The diagnostic performance of the full ACT-FAST algorithm was then validated for patients accepted for thrombectomy. In retrospective (n=565) and prospective paramedic (n=104) validation, ACT-FAST displayed higher overall accuracy and specificity, when compared with existing LVO triage scales. Agreement of ACT-FAST between paramedics and doctors was excellent (κ=0.91; 95% confidence interval, 0.79-1.0). The full ACT-FAST algorithm (n=60) assessed by paramedics showed high overall accuracy (91.7%), sensitivity (85.7%), specificity (93.5%), and positive predictive value (80%) for recognition of endovascular-eligible LVO. The 3-step ACT-FAST algorithm shows higher specificity and reliability than existing scales for clinical LVO recognition, despite requiring just 2 examination steps. The inclusion of an eligibility step allowed recognition of endovascular-eligible patients with high accuracy. Using a sequential algorithmic approach eliminates scoring confusion and reduces assessment time. Future studies will test whether field application of ACT-FAST by paramedics to bypass suspected patients with LVO directly to endovascular-capable centers can reduce delays to endovascular thrombectomy. © 2018 American Heart Association, Inc.
Ong, Eng Teo; Lee, Heow Pueh; Lim, Kian Meng
2004-09-01
This article presents a fast algorithm for the efficient solution of the Helmholtz equation. The method is based on the translation theory of the multipole expansions. Here, the speedup comes from the convolution nature of the translation operators, which can be evaluated rapidly using fast Fourier transform algorithms. Also, the computations of the translation operators are accelerated by using the recursive formulas developed recently by Gumerov and Duraiswami [SIAM J. Sci. Comput. 25, 1344-1381(2003)]. It is demonstrated that the algorithm can produce good accuracy with a relatively low order of expansion. Efficiency analyses of the algorithm reveal that it has computational complexities of O(Na), where a ranges from 1.05 to 1.24. However, this method requires substantially more memory to store the translation operators as compared to the fast multipole method. Hence, despite its simplicity in implementation, this memory requirement issue may limit the application of this algorithm to solving very large-scale problems.
A fast elitism Gaussian estimation of distribution algorithm and application for PID optimization.
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.
A Fast Elitism Gaussian Estimation of Distribution Algorithm and Application for PID Optimization
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA. PMID:24892059
NASA Astrophysics Data System (ADS)
Park, Sang-Gon; Jeong, Dong-Seok
2000-12-01
In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.
Wang, Lu; Zhang, Chunxi; Gao, Shuang; Wang, Tao; Lin, Tie; Li, Xianmu
2016-12-07
The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long ( 6 × 10 5 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series.
Wang, Lu; Zhang, Chunxi; Gao, Shuang; Wang, Tao; Lin, Tie; Li, Xianmu
2016-01-01
The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long (6×105 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series. PMID:27941600
Computational electromagnetics: the physics of smooth versus oscillatory fields.
Chew, W C
2004-03-15
This paper starts by discussing the difference in the physics between solutions to Laplace's equation (static) and Maxwell's equations for dynamic problems (Helmholtz equation). Their differing physical characters are illustrated by how the two fields convey information away from their source point. The paper elucidates the fact that their differing physical characters affect the use of Laplacian field and Helmholtz field in imaging. They also affect the design of fast computational algorithms for electromagnetic scattering problems. Specifically, a comparison is made between fast algorithms developed using wavelets, the simple fast multipole method, and the multi-level fast multipole algorithm for electrodynamics. The impact of the physical characters of the dynamic field on the parallelization of the multi-level fast multipole algorithm is also discussed. The relationship of diagonalization of translators to group theory is presented. Finally, future areas of research for computational electromagnetics are described.
Fast algorithm for wavefront reconstruction in XAO/SCAO with pyramid wavefront sensor
NASA Astrophysics Data System (ADS)
Shatokhina, Iuliia; Obereder, Andreas; Ramlau, Ronny
2014-08-01
We present a fast wavefront reconstruction algorithm developed for an extreme adaptive optics system equipped with a pyramid wavefront sensor on a 42m telescope. The method is called the Preprocessed Cumulative Reconstructor with domain decomposition (P-CuReD). The algorithm is based on the theoretical relationship between pyramid and Shack-Hartmann wavefront sensor data. The algorithm consists of two consecutive steps - a data preprocessing, and an application of the CuReD algorithm, which is a fast method for wavefront reconstruction from Shack-Hartmann sensor data. The closed loop simulation results show that the P-CuReD method provides the same reconstruction quality and is significantly faster than an MVM.
A rate-constrained fast full-search algorithm based on block sum pyramid.
Song, Byung Cheol; Chun, Kang-Wook; Ra, Jong Beom
2005-03-01
This paper presents a fast full-search algorithm (FSA) for rate-constrained motion estimation. The proposed algorithm, which is based on the block sum pyramid frame structure, successively eliminates unnecessary search positions according to rate-constrained criterion. This algorithm provides the identical estimation performance to a conventional FSA having rate constraint, while achieving considerable reduction in computation.
Fast Lossless Compression of Multispectral-Image Data
NASA Technical Reports Server (NTRS)
Klimesh, Matthew
2006-01-01
An algorithm that effects fast lossless compression of multispectral-image data is based on low-complexity, proven adaptive-filtering algorithms. This algorithm is intended for use in compressing multispectral-image data aboard spacecraft for transmission to Earth stations. Variants of this algorithm could be useful for lossless compression of three-dimensional medical imagery and, perhaps, for compressing image data in general.
NASA Astrophysics Data System (ADS)
Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong
2017-12-01
First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.
Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fijany, A.; Milman, M.; Redding, D.
1994-12-31
In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm,more » designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.« less
Fast algorithm for chirp transforms with zooming-in ability and its applications.
Deng, X; Bihari, B; Gan, J; Zhao, F; Chen, R T
2000-04-01
A general fast numerical algorithm for chirp transforms is developed by using two fast Fourier transforms and employing an analytical kernel. This new algorithm unifies the calculations of arbitrary real-order fractional Fourier transforms and Fresnel diffraction. Its computational complexity is better than a fast convolution method using Fourier transforms. Furthermore, one can freely choose the sampling resolutions in both x and u space and zoom in on any portion of the data of interest. Computational results are compared with analytical ones. The errors are essentially limited by the accuracy of the fast Fourier transforms and are higher than the order 10(-12) for most cases. As an example of its application to scalar diffraction, this algorithm can be used to calculate near-field patterns directly behind the aperture, 0 < or = z < d2/lambda. It compensates another algorithm for Fresnel diffraction that is limited to z > d2/lambdaN [J. Opt. Soc. Am. A 15, 2111 (1998)]. Experimental results from waveguide-output microcoupler diffraction are in good agreement with the calculations.
Integrated Multiscale Modeling of Molecular Computing Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Beylkin
2012-03-23
Significant advances were made on all objectives of the research program. We have developed fast multiresolution methods for performing electronic structure calculations with emphasis on constructing efficient representations of functions and operators. We extended our approach to problems of scattering in solids, i.e. constructing fast algorithms for computing above the Fermi energy level. Part of the work was done in collaboration with Robert Harrison and George Fann at ORNL. Specific results (in part supported by this grant) are listed here and are described in greater detail. (1) We have implemented a fast algorithm to apply the Green's function for themore » free space (oscillatory) Helmholtz kernel. The algorithm maintains its speed and accuracy when the kernel is applied to functions with singularities. (2) We have developed a fast algorithm for applying periodic and quasi-periodic, oscillatory Green's functions and those with boundary conditions on simple domains. Importantly, the algorithm maintains its speed and accuracy when applied to functions with singularities. (3) We have developed a fast algorithm for obtaining and applying multiresolution representations of periodic and quasi-periodic Green's functions and Green's functions with boundary conditions on simple domains. (4) We have implemented modifications to improve the speed of adaptive multiresolution algorithms for applying operators which are represented via a Gaussian expansion. (5) We have constructed new nearly optimal quadratures for the sphere that are invariant under the icosahedral rotation group. (6) We obtained new results on approximation of functions by exponential sums and/or rational functions, one of the key methods that allows us to construct separated representations for Green's functions. (7) We developed a new fast and accurate reduction algorithm for obtaining optimal approximation of functions by exponential sums and/or their rational representations.« less
Fast Fourier Transform algorithm design and tradeoffs
NASA Technical Reports Server (NTRS)
Kamin, Ray A., III; Adams, George B., III
1988-01-01
The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.
An algorithm to compute the sequency ordered Walsh transform
NASA Technical Reports Server (NTRS)
Larsen, H.
1976-01-01
A fast sequency-ordered Walsh transform algorithm is presented; this sequency-ordered fast transform is complementary to the sequency-ordered fast Walsh transform introduced by Manz (1972) and eliminating gray code reordering through a modification of the basic fast Hadamard transform structure. The new algorithm retains the advantages of its complement (it is in place and is its own inverse), while differing in having a decimation-in time structure, accepting data in normal order, and returning the coefficients in bit-reversed sequency order. Applications include estimation of Walsh power spectra for a random process, sequency filtering and computing logical autocorrelations, and selective bit reversing.
A fast method to emulate an iterative POCS image reconstruction algorithm.
Zeng, Gengsheng L
2017-10-01
Iterative image reconstruction algorithms are commonly used to optimize an objective function, especially when the objective function is nonquadratic. Generally speaking, the iterative algorithms are computationally inefficient. This paper presents a fast algorithm that has one backprojection and no forward projection. This paper derives a new method to solve an optimization problem. The nonquadratic constraint, for example, an edge-preserving denoising constraint is implemented as a nonlinear filter. The algorithm is derived based on the POCS (projections onto projections onto convex sets) approach. A windowed FBP (filtered backprojection) algorithm enforces the data fidelity. An iterative procedure, divided into segments, enforces edge-enhancement denoising. Each segment performs nonlinear filtering. The derived iterative algorithm is computationally efficient. It contains only one backprojection and no forward projection. Low-dose CT data are used for algorithm feasibility studies. The nonlinearity is implemented as an edge-enhancing noise-smoothing filter. The patient studies results demonstrate its effectiveness in processing low-dose x ray CT data. This fast algorithm can be used to replace many iterative algorithms. © 2017 American Association of Physicists in Medicine.
Fast parallel approach for 2-D DHT-based real-valued discrete Gabor transform.
Tao, Liang; Kwan, Hon Keung
2009-12-01
Two-dimensional fast Gabor transform algorithms are useful for real-time applications due to the high computational complexity of the traditional 2-D complex-valued discrete Gabor transform (CDGT). This paper presents two block time-recursive algorithms for 2-D DHT-based real-valued discrete Gabor transform (RDGT) and its inverse transform and develops a fast parallel approach for the implementation of the two algorithms. The computational complexity of the proposed parallel approach is analyzed and compared with that of the existing 2-D CDGT algorithms. The results indicate that the proposed parallel approach is attractive for real time image processing.
Fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, R.
1986-01-01
A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.
NASA Technical Reports Server (NTRS)
Jentz, R. R.; Wackerman, C. C.; Shuchman, R. A.; Onstott, R. G.; Gloersen, Per; Cavalieri, Don; Ramseier, Rene; Rubinstein, Irene; Comiso, Joey; Hollinger, James
1991-01-01
Previous research studies have focused on producing algorithms for extracting geophysical information from passive microwave data regarding ice floe size, sea ice concentration, open water lead locations, and sea ice extent. These studies have resulted in four separate algorithms for extracting these geophysical parameters. Sea ice concentration estimates generated from each of these algorithms (i.e., NASA/Team, NASA/Comiso, AES/York, and Navy) are compared to ice concentration estimates produced from coincident high-resolution synthetic aperture radar (SAR) data. The SAR concentration estimates are produced from data collected in both the Beaufort Sea and the Greenland Sea in March 1988 and March 1989, respectively. The SAR data are coincident to the passive microwave data generated by the Special Sensor Microwave/Imager (SSM/I).
NASA Astrophysics Data System (ADS)
Lee, Feifei; Kotani, Koji; Chen, Qiu; Ohmi, Tadahiro
2010-02-01
In this paper, a fast search algorithm for MPEG-4 video clips from video database is proposed. An adjacent pixel intensity difference quantization (APIDQ) histogram is utilized as the feature vector of VOP (video object plane), which had been reliably applied to human face recognition previously. Instead of fully decompressed video sequence, partially decoded data, namely DC sequence of the video object are extracted from the video sequence. Combined with active search, a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by total 15 hours of video contained of TV programs such as drama, talk, news, etc. to search for given 200 MPEG-4 video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 2 % in drama and news categories are achieved, which are more accurately and robust than conventional fast video search algorithm.
Zhang, Yao; Tang, Shengjing; Guo, Jie
2017-11-01
In this paper, a novel adaptive-gain fast super-twisting (AGFST) sliding mode attitude control synthesis is carried out for a reusable launch vehicle subject to actuator faults and unknown disturbances. According to the fast nonsingular terminal sliding mode surface (FNTSMS) and adaptive-gain fast super-twisting algorithm, an adaptive fault tolerant control law for the attitude stabilization is derived to protect against the actuator faults and unknown uncertainties. Firstly, a second-order nonlinear control-oriented model for the RLV is established by feedback linearization method. And on the basis a fast nonsingular terminal sliding mode (FNTSM) manifold is designed, which provides fast finite-time global convergence and avoids singularity problem as well as chattering phenomenon. Based on the merits of the standard super-twisting (ST) algorithm and fast reaching law with adaption, a novel adaptive-gain fast super-twisting (AGFST) algorithm is proposed for the finite-time fault tolerant attitude control problem of the RLV without any knowledge of the bounds of uncertainties and actuator faults. The important feature of the AGFST algorithm includes non-overestimating the values of the control gains and faster convergence speed than the standard ST algorithm. A formal proof of the finite-time stability of the closed-loop system is derived using the Lyapunov function technique. An estimation of the convergence time and accurate expression of convergence region are also provided. Finally, simulations are presented to illustrate the effectiveness and superiority of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Clustering algorithm for determining community structure in large networks
NASA Astrophysics Data System (ADS)
Pujol, Josep M.; Béjar, Javier; Delgado, Jordi
2006-07-01
We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.
NASA Astrophysics Data System (ADS)
Brantut, Nicolas
2018-06-01
Acoustic emission (AE) and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenized wave velocity measurements and approximate source locations. Here, I present a numerical method and its implementation in a free software to perform a joint inversion of AE locations together with the 3-D, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from AEs and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of AEs progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse AEs are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15 per cent, with an increase in anisotropy of up to 20 per cent. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localized changes associated with microcracking and damage generation.
Transition zone structure beneath Ethiopia from 3-D fast marching pseudo-migration stacking
NASA Astrophysics Data System (ADS)
Benoit, M. H.; Lopez, A.; Levin, V.
2008-12-01
Several models for the origin of the Afar hotspot have been put forth over the last decade, but much ambiguity remains as to whether the hotspot tectonism found there is due to a shallow or deeply seated feature. Additionally, there has been much debate as to whether the hotspot owes its existence to a 'classic' mantle plume feature or if it is part of the African Superplume complex. To further understand the origin of the hotspot, we employ a new receiver function stacking method that incorporates a fast-marching three- dimensional ray tracing algorithm to improve upon existing studies of the mantle transition zone structure. Using teleseismic data from the Ethiopia Broadband Seismic Experiment and the EAGLE (Ethiopia Afar Grand Lithospheric Experiment) experiment, we stack receiver functions using a three-dimensional pseudo- migration technique to examine topography on the 410 and 660 km discontinuities. Previous methods of receiver function pseudo-migration incorporated ray tracing methods that were not able to ray trace through highly complicated 3-D structure, or the ray tracing techniques only produced 3-D time perturbations associated 1-D rays in a 3-D velocity medium. These previous techniques yielded confusing and incomplete results for when applied to the exceedingly complicated mantle structure beneath Ethiopia. Indeed, comparisons of the 1-D versus 3-D ray tracing techniques show that the 1-D technique mislocated structure laterally in the mantle by over 100 km. Preliminary results using our new technique show a shallower then average 410 km discontinuity and a deeper than average 660 km discontinuity over much of the region, suggested that the hotspot has a deep seated origin.
A Novel Fast and Secure Approach for Voice Encryption Based on DNA Computing
NASA Astrophysics Data System (ADS)
Kakaei Kate, Hamidreza; Razmara, Jafar; Isazadeh, Ayaz
2018-06-01
Today, in the world of information communication, voice information has a particular importance. One way to preserve voice data from attacks is voice encryption. The encryption algorithms use various techniques such as hashing, chaotic, mixing, and many others. In this paper, an algorithm is proposed for voice encryption based on three different schemes to increase flexibility and strength of the algorithm. The proposed algorithm uses an innovative encoding scheme, the DNA encryption technique and a permutation function to provide a secure and fast solution for voice encryption. The algorithm is evaluated based on various measures including signal to noise ratio, peak signal to noise ratio, correlation coefficient, signal similarity and signal frequency content. The results demonstrate applicability of the proposed method in secure and fast encryption of voice files
Fast Ss-Ilm a Computationally Efficient Algorithm to Discover Socially Important Locations
NASA Astrophysics Data System (ADS)
Dokuz, A. S.; Celik, M.
2017-11-01
Socially important locations are places which are frequently visited by social media users in their social media lifetime. Discovering socially important locations provide several valuable information about user behaviours on social media networking sites. However, discovering socially important locations are challenging due to data volume and dimensions, spatial and temporal calculations, location sparseness in social media datasets, and inefficiency of current algorithms. In the literature, several studies are conducted to discover important locations, however, the proposed approaches do not work in computationally efficient manner. In this study, we propose Fast SS-ILM algorithm by modifying the algorithm of SS-ILM to mine socially important locations efficiently. Experimental results show that proposed Fast SS-ILM algorithm decreases execution time of socially important locations discovery process up to 20 %.
BFL: a node and edge betweenness based fast layout algorithm for large scale networks
Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru
2009-01-01
Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673
Fast Facts: Recent Statistics from the Library Research Service, No. 232-247, March-December 2006
ERIC Educational Resources Information Center
Lance, Keith Curry; Cairns, Schanie; Cole, Holly; Dickenson, Don; Eastburn, Daphne; French, Jennifer; Marks, Robbie Bravman; Williamson, M. Claire
2006-01-01
This submission presents sixteen issues of Fast Facts from the Library Research Service covering topics regarding academic, public, school and special libraries in Colorado, the Mountain West and Southwest Regions. The following are Fast Facts titles from 2006 (1) Colorado Public Library Performance Rankings (2004 Data); (2) How Librarians Help…
A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
White, J. A.; Morrison, J. H.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
Autofocus algorithm using one-dimensional Fourier transform and Pearson correlation
NASA Astrophysics Data System (ADS)
Bueno Mario, A.; Alvarez-Borrego, Josue; Acho, L.
2004-10-01
A new autofocus algorithm based on one-dimensional Fourier transform and Pearson correlation for Z automatized microscope is proposed. Our goal is to determine in fast response time and accuracy, the best focused plane through an algorithm. We capture in bright and dark field several images set at different Z distances from biological organism sample. The algorithm uses the one-dimensional Fourier transform to obtain the image frequency content of a vectors pattern previously defined comparing the Pearson correlation of these frequency vectors versus the reference image frequency vector, the most out of focus image, we find the best focusing. Experimental results showed the algorithm has fast response time and accuracy in getting the best focus plane from captured images. In conclusions, the algorithm can be implemented in real time systems due fast response time, accuracy and robustness. The algorithm can be used to get focused images in bright and dark field and it can be extended to include fusion techniques to construct multifocus final images beyond of this paper.
A fast algorithm for vertex-frequency representations of signals on graphs
Jestrović, Iva; Coyle, James L.; Sejdić, Ervin
2016-01-01
The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645
Fast Optimization for Aircraft Descent and Approach Trajectory
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Schuet, Stefan; Brenton, J.; Timucin, Dogan; Smith, David; Kaneshige, John
2017-01-01
We address problem of on-line scheduling of the aircraft descent and approach trajectory. We formulate a general multiphase optimal control problem for optimization of the descent trajectory and review available methods of its solution. We develop a fast algorithm for solution of this problem using two key components: (i) fast inference of the dynamical and control variables of the descending trajectory from the low dimensional flight profile data and (ii) efficient local search for the resulting reduced dimensionality non-linear optimization problem. We compare the performance of the proposed algorithm with numerical solution obtained using optimal control toolbox General Pseudospectral Optimal Control Software. We present results of the solution of the scheduling problem for aircraft descent using novel fast algorithm and discuss its future applications.
Fast Facts: Recent Statistics from the Library Research Service, Nos. 248-255. March-December 2007
ERIC Educational Resources Information Center
Online Submission, 2007
2007-01-01
Issues 248 through 255 of "Fast Facts" from the Library Research Service present data gleaned from libraries in Colorado and across the nation. Topics addressed in these "Fast Facts" from 2007 include the library labor market, the benefits to libraries of using a statewide courier service, and the results of a patron survey at…
An improved VSS NLMS algorithm for active noise cancellation
NASA Astrophysics Data System (ADS)
Sun, Yunzhuo; Wang, Mingjiang; Han, Yufei; Zhang, Congyan
2017-08-01
In this paper, an improved variable step size NLMS algorithm is proposed. NLMS has fast convergence rate and low steady state error compared to other traditional adaptive filtering algorithm. But there is a contradiction between the convergence speed and steady state error that affect the performance of the NLMS algorithm. Now, we propose a new variable step size NLMS algorithm. It dynamically changes the step size according to current error and iteration times. The proposed algorithm has simple formulation and easily setting parameters, and effectively solves the contradiction in NLMS. The simulation results show that the proposed algorithm has a good tracking ability, fast convergence rate and low steady state error simultaneously.
Computer program for fast Karhunen Loeve transform algorithm
NASA Technical Reports Server (NTRS)
Jain, A. K.
1976-01-01
The fast KL transform algorithm was applied for data compression of a set of four ERTS multispectral images and its performance was compared with other techniques previously studied on the same image data. The performance criteria used here are mean square error and signal to noise ratio. The results obtained show a superior performance of the fast KL transform coding algorithm on the data set used with respect to the above stated perfomance criteria. A summary of the results is given in Chapter I and details of comparisons and discussion on conclusions are given in Chapter IV.
Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems
Van Benthem, Mark H.; Keenan, Michael R.
2008-11-11
A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.
A Fast Algorithm for the Convolution of Functions with Compact Support Using Fourier Extensions
Xu, Kuan; Austin, Anthony P.; Wei, Ke
2017-12-21
In this paper, we present a new algorithm for computing the convolution of two compactly supported functions. The algorithm approximates the functions to be convolved using Fourier extensions and then uses the fast Fourier transform to efficiently compute Fourier extension approximations to the pieces of the result. Finally, the complexity of the algorithm is O(N(log N) 2), where N is the number of degrees of freedom used in each of the Fourier extensions.
A Fast Algorithm for the Convolution of Functions with Compact Support Using Fourier Extensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kuan; Austin, Anthony P.; Wei, Ke
In this paper, we present a new algorithm for computing the convolution of two compactly supported functions. The algorithm approximates the functions to be convolved using Fourier extensions and then uses the fast Fourier transform to efficiently compute Fourier extension approximations to the pieces of the result. Finally, the complexity of the algorithm is O(N(log N) 2), where N is the number of degrees of freedom used in each of the Fourier extensions.
Singh, Manav Deep; Jain, Kanika
2017-11-01
To find out whether 30-2 Swedish Interactive Threshold Algorithm (SITA) Fast is comparable to 30-2 SITA Standard as a tool for perimetry among the patients with intracranial tumors. This was a prospective cross-sectional study involving 80 patients aged ≥18 years with imaging proven intracranial tumors and visual acuity better than 20/60. The patients underwent multiple visual field examinations using the two algorithms till consistent and repeatable results were obtained. A total of 140 eyes of 80 patients were analyzed. Almost 60% of patients undergoing perimetry with SITA Standard required two or more sessions to obtain consistent results, whereas the same could be obtained in 81.42% with SITA Fast in the first session itself. Of 140 eyes, 70 eyes had recordable field defects and the rest had no defects as detected by either of the two algorithms. Mean deviation (MD) (P = 0.56), pattern standard deviation (PSD) (P = 0.22), visual field index (P = 0.83) and number of depressed points at P < 5%, 2%, 1%, and 0.5% on MD and PSD probability plots showed no statistically significant difference between two algorithms. Bland-Altman test showed that considerable variability existed between two algorithms. Perimetry performed by SITA Standard and SITA Fast algorithm of Humphrey Field Analyzer gives comparable results among the patients of intracranial tumors. Being more time efficient and with a shorter learning curve, SITA Fast my be recommended as a standard test for the purpose of perimetry among these patients.
Fast Algorithms for Estimating Mixture Parameters
1989-08-30
The investigation is a two year project with the first year sponsored by the Army Research Office and the second year by the National Science Foundation (Grant... Science Foundation during the coming year. Keywords: Fast algorithms; Algorithms Mixture Distribution Random Variables. (KR)...numerical testing of the accelerated fixed-point method was completed. The work on relaxation methods will be done under the sponsorship of the National
NASA Astrophysics Data System (ADS)
Zackay, Barak; Ofek, Eran O.
2017-01-01
Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform” algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of 2{N}f{N}t+{N}t{N}{{Δ }}{{log}}2({N}f), where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm’s computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB.
NASA Technical Reports Server (NTRS)
2013-01-01
Topics covered include: Remote Data Access with IDL Data Compression Algorithm Architecture for Large Depth-of-Field Particle Image Velocimeters Vectorized Rebinning Algorithm for Fast Data Down-Sampling Display Provides Pilots with Real-Time Sonic-Boom Information Onboard Algorithms for Data Prioritization and Summarization of Aerial Imagery Monitoring and Acquisition Real-time System (MARS) Analog Signal Correlating Using an Analog-Based Signal Conditioning Front End Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array Robust Multivariable Optimization and Performance Simulation for ASIC Design; Castable Amorphous Metal Mirrors and Mirror Assemblies; Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems; Apparatus for Pumping a Fluid; Cobra Fiber-Optic Positioner Upgrade; Improved Wide Operating Temperature Range of Li-Ion Cells; Non-Toxic, Non-Flammable, -80 C Phase Change Materials; Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization; Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models; Hand-Based Biometric Analysis; The Next Generation of Cold Immersion Dry Suit Design Evolution for Hypothermia Prevention; Integrated Lunar Information Architecture for Decision Support Version 3.0 (ILIADS 3.0); Relay Forward-Link File Management Services (MaROS Phase 2); Two Mechanisms to Avoid Control Conflicts Resulting from Uncoordinated Intent; XTCE GOVSAT Tool Suite 1.0; Determining Temperature Differential to Prevent Hardware Cross-Contamination in a Vacuum Chamber; SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws; Remote Data Exploration with the Interactive Data Language (IDL); Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals; Partitioned-Interval Quantum Optical Communications Receiver; and Practical UAV Optical Sensor Bench with Minimal Adjustability.
Alarm systems detect volcanic tremor and earthquake swarms during Redoubt eruption, 2009
NASA Astrophysics Data System (ADS)
Thompson, G.; West, M. E.
2009-12-01
We ran two alarm algorithms on real-time data from Redoubt volcano during the 2009 crisis. The first algorithm was designed to detect escalations in continuous seismicity (tremor). This is implemented within an application called IceWeb which computes reduced displacement, and produces plots of reduced displacement and spectrograms linked to the Alaska Volcano Observatory internal webpage every 10 minutes. Reduced displacement is a measure of the amplitude of volcanic tremor, and is computed by applying a geometrical spreading correction to a displacement seismogram. When the reduced displacement at multiple stations exceeds pre-defined thresholds and there has been a factor of 3 increase in reduced displacement over the previous hour, a tremor alarm is declared. The second algorithm was to designed to detect earthquake swarms. The mean and median event rates are computed every 5 minutes based on the last hour of data from a real-time event catalog. By comparing these with thresholds, three swarm alarm conditions can be declared: a new swarm, an escalation in a swarm, and the end of a swarm. The end of swarm alarm is important as it may mark a transition from swarm to continuous tremor. Alarms from both systems were dispatched using a generic alarm management system which implements a call-down list, allowing observatory scientists to be called in sequence until someone acknowledged the alarm via a confirmation web page. The results of this simple approach are encouraging. The tremor alarm algorithm detected 26 of the 27 explosive eruptions that occurred from 23 March - 4 April. The swarm alarm algorithm detected all five of the main volcanic earthquake swarm episodes which occurred during the Redoubt crisis on 26-27 February, 21-23 March, 26 March, 2-4 April and 3-7 May. The end-of-swarm alarms on 23 March and 4 April were particularly helpful as they were caused by transitions from swarm to tremor shortly preceding explosive eruptions; transitions which were detected much earlier by the swarm algorithm than they were by the tremor algorithm.
Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing.
Sha, Bei; Liu, Xuan; Ge, Xiao-Lu; Guo, Cheng-Shan
2014-09-22
A method for fast reconstruction of off-axis digital holograms based on digital multiplexing algorithm is proposed. Instead of the existed angular multiplexing (AM), the new method utilizes a spatial multiplexing (SM) algorithm, in which four off-axis holograms recorded in sequence are synthesized into one SM function through multiplying each hologram with a tilted plane wave and then adding them up. In comparison with the conventional methods, the SM algorithm simplifies two-dimensional (2-D) Fourier transforms (FTs) of four N*N arrays into a 1.25-D FTs of one N*N arrays. Experimental results demonstrate that, using the SM algorithm, the computational efficiency can be improved and the reconstructed wavefronts keep the same quality as those retrieved based on the existed AM method. This algorithm may be useful in design of a fast preview system of dynamic wavefront imaging in digital holography.
Target surface finding using 3D SAR data
NASA Astrophysics Data System (ADS)
Ruiter, Jason R.; Burns, Joseph W.; Subotic, Nikola S.
2005-05-01
Methods of generating more literal, easily interpretable imagery from 3-D SAR data are being studied to provide all weather, near-visual target identification and/or scene interpretation. One method of approaching this problem is to automatically generate shape-based geometric renderings from the SAR data. In this paper we describe the application of the Marching Tetrahedrons surface finding algorithm to 3-D SAR data. The Marching Tetrahedrons algorithm finds a surface through the 3-D data cube, which provides a recognizable representation of the target surface. This algorithm was applied to the public-release X-patch simulations of a backhoe, which provided densely sampled 3-D SAR data sets. The performance of the algorithm to noise and spatial resolution were explored. Surface renderings were readily recognizable over a range of spatial resolution, and maintained their fidelity even under relatively low Signal-to-Noise Ratio (SNR) conditions.
Psychophysical Comparisons in Image Compression Algorithms.
1999-03-01
Leister, M., "Lossy Lempel - Ziv Algorithm for Large Alphabet Sources and Applications to Image Compression ," IEEE Proceedings, v.I, pp. 225-228, September...1623-1642, September 1990. Sanford, M.A., An Analysis of Data Compression Algorithms used in the Transmission of Imagery, Master’s Thesis, Naval...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS PSYCHOPHYSICAL COMPARISONS IN IMAGE COMPRESSION ALGORITHMS by % Christopher J. Bodine • March
Banjak, Hussein; Grenier, Thomas; Epicier, Thierry; Koneti, Siddardha; Roiban, Lucian; Gay, Anne-Sophie; Magnin, Isabelle; Peyrin, Françoise; Maxim, Voichita
2018-06-01
Fast tomography in Environmental Transmission Electron Microscopy (ETEM) is of a great interest for in situ experiments where it allows to observe 3D real-time evolution of nanomaterials under operating conditions. In this context, we are working on speeding up the acquisition step to a few seconds mainly with applications on nanocatalysts. In order to accomplish such rapid acquisitions of the required tilt series of projections, a modern 4K high-speed camera is used, that can capture up to 100 images per second in a 2K binning mode. However, due to the fast rotation of the sample during the tilt procedure, noise and blur effects may occur in many projections which in turn would lead to poor quality reconstructions. Blurred projections make classical reconstruction algorithms inappropriate and require the use of prior information. In this work, a regularized algebraic reconstruction algorithm named SIRT-FISTA-TV is proposed. The performance of this algorithm using blurred data is studied by means of a numerical blur introduced into simulated images series to mimic possible mechanical instabilities/drifts during fast acquisitions. We also present reconstruction results from noisy data to show the robustness of the algorithm to noise. Finally, we show reconstructions with experimental datasets and we demonstrate the interest of fast tomography with an ultra-fast acquisition performed under environmental conditions, i.e. gas and temperature, in the ETEM. Compared to classically used SIRT and SART approaches, our proposed SIRT-FISTA-TV reconstruction algorithm provides higher quality tomograms allowing easier segmentation of the reconstructed volume for a better final processing and analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Correlation-coefficient-based fast template matching through partial elimination.
Mahmood, Arif; Khan, Sohaib
2012-04-01
Partial computation elimination techniques are often used for fast template matching. At a particular search location, computations are prematurely terminated as soon as it is found that this location cannot compete with an already known best match location. Due to the nonmonotonic growth pattern of the correlation-based similarity measures, partial computation elimination techniques have been traditionally considered inapplicable to speed up these measures. In this paper, we show that partial elimination techniques may be applied to a correlation coefficient by using a monotonic formulation, and we propose basic-mode and extended-mode partial correlation elimination algorithms for fast template matching. The basic-mode algorithm is more efficient on small template sizes, whereas the extended mode is faster on medium and larger templates. We also propose a strategy to decide which algorithm to use for a given data set. To achieve a high speedup, elimination algorithms require an initial guess of the peak correlation value. We propose two initialization schemes including a coarse-to-fine scheme for larger templates and a two-stage technique for small- and medium-sized templates. Our proposed algorithms are exact, i.e., having exhaustive equivalent accuracy, and are compared with the existing fast techniques using real image data sets on a wide variety of template sizes. While the actual speedups are data dependent, in most cases, our proposed algorithms have been found to be significantly faster than the other algorithms.
Key Generation for Fast Inversion of the Paillier Encryption Function
NASA Astrophysics Data System (ADS)
Hirano, Takato; Tanaka, Keisuke
We study fast inversion of the Paillier encryption function. Especially, we focus only on key generation, and do not modify the Paillier encryption function. We propose three key generation algorithms based on the speeding-up techniques for the RSA encryption function. By using our algorithms, the size of the private CRT exponent is half of that of Paillier-CRT. The first algorithm employs the extended Euclidean algorithm. The second algorithm employs factoring algorithms, and can construct the private CRT exponent with low Hamming weight. The third algorithm is a variant of the second one, and has some advantage such as compression of the private CRT exponent and no requirement for factoring algorithms. We also propose the settings of the parameters for these algorithms and analyze the security of the Paillier encryption function by these algorithms against known attacks. Finally, we give experimental results of our algorithms.
NASA Technical Reports Server (NTRS)
Jameson, A.
1975-01-01
The use of a fast elliptic solver in combination with relaxation is presented as an effective way to accelerate the convergence of transonic flow calculations, particularly when a marching scheme can be used to treat the supersonic zone in the relaxation process.
Synthetic aperture radar image formation for the moving-target and near-field bistatic cases
NASA Astrophysics Data System (ADS)
Ding, Yu
This dissertation addresses topics in two areas of synthetic aperture radar (SAR) image formation: time-frequency based SAR imaging of moving targets and a fast backprojection (BP) algorithm for near-field bistatic SAR imaging. SAR imaging of a moving target is a challenging task due to unknown motion of the target. We approach this problem in a theoretical way, by analyzing the Wigner-Ville distribution (WVD) based SAR imaging technique. We derive approximate closed-form expressions for the point-target response of the SAR imaging system, which quantify the image resolution, and show how the blurring in conventional SAR imaging can be eliminated, while the target shift still remains. Our analyses lead to accurate prediction of the target position in the reconstructed images. The derived expressions also enable us to further study additional aspects of WVD-based SAR imaging. Bistatic SAR imaging is more involved than the monostatic SAR case, because of the separation of the transmitter and the receiver, and possibly the changing bistatic geometry. For near-field bistatic SAR imaging, we develop a novel fast BP algorithm, motivated by a newly proposed fast BP algorithm in computer tomography. First we show that the BP algorithm is the spatial-domain counterpart of the benchmark o -- k algorithm in bistatic SAR imaging, yet it avoids the frequency-domain interpolation in the o -- k algorithm, which may cause artifacts in the reconstructed image. We then derive the band-limited property for BP methods in both monostatic and bistatic SAR imaging, which is the basis for developing the fast BP algorithm. We compare our algorithm with other frequency-domain based algorithms, and show that it achieves better reconstructed image quality, while having the same computational complexity as that of the frequency-domain based algorithms.
Fast ℓ1-regularized space-time adaptive processing using alternating direction method of multipliers
NASA Astrophysics Data System (ADS)
Qin, Lilong; Wu, Manqing; Wang, Xuan; Dong, Zhen
2017-04-01
Motivated by the sparsity of filter coefficients in full-dimension space-time adaptive processing (STAP) algorithms, this paper proposes a fast ℓ1-regularized STAP algorithm based on the alternating direction method of multipliers to accelerate the convergence and reduce the calculations. The proposed algorithm uses a splitting variable to obtain an equivalent optimization formulation, which is addressed with an augmented Lagrangian method. Using the alternating recursive algorithm, the method can rapidly result in a low minimum mean-square error without a large number of calculations. Through theoretical analysis and experimental verification, we demonstrate that the proposed algorithm provides a better output signal-to-clutter-noise ratio performance than other algorithms.
Fast and Exact Continuous Collision Detection with Bernstein Sign Classification
Tang, Min; Tong, Ruofeng; Wang, Zhendong; Manocha, Dinesh
2014-01-01
We present fast algorithms to perform accurate CCD queries between triangulated models. Our formulation uses properties of the Bernstein basis and Bézier curves and reduces the problem to evaluating signs of polynomials. We present a geometrically exact CCD algorithm based on the exact geometric computation paradigm to perform reliable Boolean collision queries. Our algorithm is more than an order of magnitude faster than prior exact algorithms. We evaluate its performance for cloth and FEM simulations on CPUs and GPUs, and highlight the benefits. PMID:25568589
ARYANA: Aligning Reads by Yet Another Approach
2014-01-01
Motivation Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. Contribution We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. Availability ARYANA with complete source code can be obtained from http://github.com/aryana-aligner PMID:25252881
ARYANA: Aligning Reads by Yet Another Approach.
Gholami, Milad; Arbabi, Aryan; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Sadeghi, Mehdi
2014-01-01
Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $10(6) prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. ARYANA with complete source code can be obtained from http://github.com/aryana-aligner.
A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network
2016-04-10
to interference from a given transmission . We then use our algorithm to perform a network capacity analysis comparing different wireless technologies...A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network Greg Kuperman, Jun Sun, and Aradhana Narula-Tam MIT...the maximum achievable capacity of a multi-hop wireless mesh network subject to interference constraints. Being able to quickly determine the maximum
A fast complex integer convolution using a hybrid transform
NASA Technical Reports Server (NTRS)
Reed, I. S.; K Truong, T.
1978-01-01
It is shown that the Winograd transform can be combined with a complex integer transform over the Galois field GF(q-squared) to yield a new algorithm for computing the discrete cyclic convolution of complex number points. By this means a fast method for accurately computing the cyclic convolution of a sequence of complex numbers for long convolution lengths can be obtained. This new hybrid algorithm requires fewer multiplications than previous algorithms.
Li, Weizhong
2018-02-12
San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.
USDA-ARS?s Scientific Manuscript database
In the spring of 2012, extremely high temperatures were recorded in the upper Midwest during the month of March. This sustained heat wave not only made March the warmest on record, but also induced remarkably fast development of arthropods and plants. In terms of degree-days, however, the arthropod ...
USDA-ARS?s Scientific Manuscript database
In the spring of 2012, extremely high temperatures were recorded in the upper Midwest during the month of March. This sustained heat wave not only made March the warmest on record, but also induced remarkably fast development of arthropods and plants. In terms of degree-days, however, the arthropod ...
Multicore and GPU algorithms for Nussinov RNA folding
2014-01-01
Background One segment of a RNA sequence might be paired with another segment of the same RNA sequence due to the force of hydrogen bonds. This two-dimensional structure is called the RNA sequence's secondary structure. Several algorithms have been proposed to predict an RNA sequence's secondary structure. These algorithms are referred to as RNA folding algorithms. Results We develop cache efficient, multicore, and GPU algorithms for RNA folding using Nussinov's algorithm. Conclusions Our cache efficient algorithm provides a speedup between 1.6 and 3.0 relative to a naive straightforward single core code. The multicore version of the cache efficient single core algorithm provides a speedup, relative to the naive single core algorithm, between 7.5 and 14.0 on a 6 core hyperthreaded CPU. Our GPU algorithm for the NVIDIA C2050 is up to 1582 times as fast as the naive single core algorithm and between 5.1 and 11.2 times as fast as the fastest previously known GPU algorithm for Nussinov RNA folding. PMID:25082539
A variational approach to multi-phase motion of gas, liquid and solid based on the level set method
NASA Astrophysics Data System (ADS)
Yokoi, Kensuke
2009-07-01
We propose a simple and robust numerical algorithm to deal with multi-phase motion of gas, liquid and solid based on the level set method [S. Osher, J.A. Sethian, Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988) 12; M. Sussman, P. Smereka, S. Osher, A level set approach for capturing solution to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146; J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999; S. Osher, R. Fedkiw, Level Set Methods and Dynamics Implicit Surface, Applied Mathematical Sciences, vol. 153, Springer, 2003]. In Eulerian framework, to simulate interaction between a moving solid object and an interfacial flow, we need to define at least two functions (level set functions) to distinguish three materials. In such simulations, in general two functions overlap and/or disagree due to numerical errors such as numerical diffusion. In this paper, we resolved the problem using the idea of the active contour model [M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321; V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, International Journal of Computer Vision 22 (1997) 61; G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001; R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer-Verlag, 2003] introduced in the field of image processing.
Fast, Inclusive Searches for Geographic Names Using Digraphs
Donato, David I.
2008-01-01
An algorithm specifies how to quickly identify names that approximately match any specified name when searching a list or database of geographic names. Based on comparisons of the digraphs (ordered letter pairs) contained in geographic names, this algorithmic technique identifies approximately matching names by applying an artificial but useful measure of name similarity. A digraph index enables computer name searches that are carried out using this technique to be fast enough for deployment in a Web application. This technique, which is a member of the class of n-gram algorithms, is related to, but distinct from, the soundex, PHONIX, and metaphone phonetic algorithms. Despite this technique's tendency to return some counterintuitive approximate matches, it is an effective aid for fast, inclusive searches for geographic names when the exact name sought, or its correct spelling, is unknown.
The Block V Receiver fast acquisition algorithm for the Galileo S-band mission
NASA Technical Reports Server (NTRS)
Aung, M.; Hurd, W. J.; Buu, C. M.; Berner, J. B.; Stephens, S. A.; Gevargiz, J. M.
1994-01-01
A fast acquisition algorithm for the Galileo suppressed carrier, subcarrier, and data symbol signals under low data rate, signal-to-noise ratio (SNR) and high carrier phase-noise conditions has been developed. The algorithm employs a two-arm fast Fourier transform (FFT) method utilizing both the in-phase and quadrature-phase channels of the carrier. The use of both channels results in an improved SNR in the FFT acquisition, enabling the use of a shorter FFT period over which the carrier instability is expected to be less significant. The use of a two-arm FFT also enables subcarrier and symbol acquisition before carrier acquisition. With the subcarrier and symbol loops locked first, the carrier can be acquired from an even shorter FFT period. Two-arm tracking loops are employed to lock the subcarrier and symbol loops parameter modification to achieve the final (high) loop SNR in the shortest time possible. The fast acquisition algorithm is implemented in the Block V Receiver (BVR). This article describes the complete algorithm design, the extensive computer simulation work done for verification of the design and the analysis, implementation issues in the BVR, and the acquisition times of the algorithm. In the expected case of the Galileo spacecraft at Jupiter orbit insertion PD/No equals 14.6 dB-Hz, R(sym) equals 16 symbols per sec, and the predicted acquisition time of the algorithm (to attain a 0.2-dB degradation from each loop to the output symbol SNR) is 38 sec.
An efficient and accurate 3D displacements tracking strategy for digital volume correlation
NASA Astrophysics Data System (ADS)
Pan, Bing; Wang, Bo; Wu, Dafang; Lubineau, Gilles
2014-07-01
Owing to its inherent computational complexity, practical implementation of digital volume correlation (DVC) for internal displacement and strain mapping faces important challenges in improving its computational efficiency. In this work, an efficient and accurate 3D displacement tracking strategy is proposed for fast DVC calculation. The efficiency advantage is achieved by using three improvements. First, to eliminate the need of updating Hessian matrix in each iteration, an efficient 3D inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid time-consuming integer-voxel displacement searching, a generalized reliability-guided displacement tracking strategy is designed to transfer accurate and complete initial guess of deformation for each calculation point from its computed neighbors. Third, to avoid the repeated computation of sub-voxel intensity interpolation coefficients, an interpolation coefficient lookup table is established for tricubic interpolation. The computational complexity of the proposed fast DVC and the existing typical DVC algorithms are first analyzed quantitatively according to necessary arithmetic operations. Then, numerical tests are performed to verify the performance of the fast DVC algorithm in terms of measurement accuracy and computational efficiency. The experimental results indicate that, compared with the existing DVC algorithm, the presented fast DVC algorithm produces similar precision and slightly higher accuracy at a substantially reduced computational cost.
A fast algorithm for identifying friends-of-friends halos
NASA Astrophysics Data System (ADS)
Feng, Y.; Modi, C.
2017-07-01
We describe a simple and fast algorithm for identifying friends-of-friends features and prove its correctness. The algorithm avoids unnecessary expensive neighbor queries, uses minimal memory overhead, and rejects slowdown in high over-density regions. We define our algorithm formally based on pair enumeration, a problem that has been heavily studied in fast 2-point correlation codes and our reference implementation employs a dual KD-tree correlation function code. We construct features in a hierarchical tree structure, and use a splay operation to reduce the average cost of identifying the root of a feature from O [ log L ] to O [ 1 ] (L is the size of a feature) without additional memory costs. This reduces the overall time complexity of merging trees from O [ L log L ] to O [ L ] , reducing the number of operations per splay by orders of magnitude. We next introduce a pruning operation that skips merge operations between two fully self-connected KD-tree nodes. This improves the robustness of the algorithm, reducing the number of merge operations in high density peaks from O [δ2 ] to O [ δ ] . We show that for cosmological data set the algorithm eliminates more than half of merge operations for typically used linking lengths b ∼ 0 . 2 (relative to mean separation). Furthermore, our algorithm is extremely simple and easy to implement on top of an existing pair enumeration code, reusing the optimization effort that has been invested in fast correlation function codes.
Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.
Tao, Liang; Kwan, Hon Keung
2012-07-01
Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
Liu, Wenfen
2017-01-01
Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447
NASA Astrophysics Data System (ADS)
Liu, Peng; Yang, Yong-qing; Li, Zhi-guo; Han, Jun-feng; Wei, Yu; Jing, Feng
2018-02-01
Aiming at the shortage of the incremental encoder with simple process to change along the count "in the presence of repeatability and anti disturbance ability, combined with its application in a large project in the country, designed an electromechanical switch for generating zero, zero crossing signal. A mechanical zero electric and zero coordinate transformation model is given to meet the path optimality, single, fast and accurate requirements of adaptive fast change algorithm, the proposed algorithm can effectively solve the contradiction between the accuracy and the change of the time change. A test platform is built to verify the effectiveness and robustness of the proposed algorithm. The experimental data show that the effect of the algorithm accuracy is not influenced by the change of the speed of change, change the error of only 0.0013. Meet too fast, the change of system accuracy, and repeated experiments show that this algorithm has high robustness.
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor)
2007-01-01
A reconstruction technique for reducing computation burden in the 3D image processes, wherein the reconstruction procedure comprises an inverse and a forward model. The inverse model uses a hybrid dual Fourier algorithm that combines a 2D Fourier inversion with a 1D matrix inversion to thereby provide high-speed inverse computations. The inverse algorithm uses a hybrid transfer to provide fast Fourier inversion for data of multiple sources and multiple detectors. The forward model is based on an analytical cumulant solution of a radiative transfer equation. The accurate analytical form of the solution to the radiative transfer equation provides an efficient formalism for fast computation of the forward model.
A digitally implemented preambleless demodulator for maritime and mobile data communications
NASA Astrophysics Data System (ADS)
Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.
The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.
Barboza, P.S.; Jorde, Dennis G.
2002-01-01
We compared food intake, body mass and body composition of male and female black ducks (Anas rubripes) during winter (January-March). Birds were fed the same complete diet ad libitum on consecutive days each week without fasting (control; nine male; nine female) or with either short fasts (2 day.week-1; nine male; nine female), or long fasts (4 day.week-1; eleven male; twelve female). We continued treatments through spring (March-May) to measure the effect of intermittent fasts on body mass and egg production. Daily food intake of fasted birds was up to four times that of unfasted birds. Weekly food intake of males was similar among treatments (364 g.kg-1.week-1) but fasted females consumed more than unfasted females in January (363 g.kg-1.week-1 vs. 225 g.kg-1.week-1). Although both sexes lost 10-14% body mass, fasted females lost less mass and lipid than unfasted females during winter. Total body nitrogen was conserved over winter in both sexes even though the heart and spleen lost mass while the reproductive tract and liver gained mass. Intermittent fasting increased liver, intestinal tissue and digesta mass of females but not of males. Fasting delayed egg production in spring but did not affect size, fertility or hatching of the clutch. Females on long fasts were still heavier than controls after laying eggs. Thus black ducks combine flexibility of food intake with plasticity of digestive tract, liver and adipose tissue when food supply is interrupted during winter. Females modulate body mass for survival and defer reproduction when food supply is interrupted in spring.
Massively Parallel Solution of Poisson Equation on Coarse Grain MIMD Architectures
NASA Technical Reports Server (NTRS)
Fijany, A.; Weinberger, D.; Roosta, R.; Gulati, S.
1998-01-01
In this paper a new algorithm, designated as Fast Invariant Imbedding algorithm, for solution of Poisson equation on vector and massively parallel MIMD architectures is presented. This algorithm achieves the same optimal computational efficiency as other Fast Poisson solvers while offering a much better structure for vector and parallel implementation. Our implementation on the Intel Delta and Paragon shows that a speedup of over two orders of magnitude can be achieved even for moderate size problems.
Overview of fast algorithm in 3D dynamic holographic display
NASA Astrophysics Data System (ADS)
Liu, Juan; Jia, Jia; Pan, Yijie; Wang, Yongtian
2013-08-01
3D dynamic holographic display is one of the most attractive techniques for achieving real 3D vision with full depth cue without any extra devices. However, huge 3D information and data should be preceded and be computed in real time for generating the hologram in 3D dynamic holographic display, and it is a challenge even for the most advanced computer. Many fast algorithms are proposed for speeding the calculation and reducing the memory usage, such as:look-up table (LUT), compressed look-up table (C-LUT), split look-up table (S-LUT), and novel look-up table (N-LUT) based on the point-based method, and full analytical polygon-based methods, one-step polygon-based method based on the polygon-based method. In this presentation, we overview various fast algorithms based on the point-based method and the polygon-based method, and focus on the fast algorithm with low memory usage, the C-LUT, and one-step polygon-based method by the 2D Fourier analysis of the 3D affine transformation. The numerical simulations and the optical experiments are presented, and several other algorithms are compared. The results show that the C-LUT algorithm and the one-step polygon-based method are efficient methods for saving calculation time. It is believed that those methods could be used in the real-time 3D holographic display in future.
A second-order accurate parabolized Navier-Stokes algorithm for internal flows
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1984-01-01
A parabolized implicit Navier-Stokes algorithm which is of second-order accuracy in both the cross flow and marching directions is presented. The algorithm is used to analyze three model supersonic flow problems (the flow over a 10-degree edge). The results are found to be in good agreement with the results of other techniques available in the literature.
Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1986-01-01
The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.
Validation and detection of vessel landmarks by using anatomical knowledge
NASA Astrophysics Data System (ADS)
Beck, Thomas; Bernhardt, Dominik; Biermann, Christina; Dillmann, Rüdiger
2010-03-01
The detection of anatomical landmarks is an important prerequisite to analyze medical images fully automatically. Several machine learning approaches have been proposed to parse 3D CT datasets and to determine the location of landmarks with associated uncertainty. However, it is a challenging task to incorporate high-level anatomical knowledge to improve these classification results. We propose a new approach to validate candidates for vessel bifurcation landmarks which is also applied to systematically search missed and to validate ambiguous landmarks. A knowledge base is trained providing human-readable geometric information of the vascular system, mainly vessel lengths, radii and curvature information, for validation of landmarks and to guide the search process. To analyze the bifurcation area surrounding a vessel landmark of interest, a new approach is proposed which is based on Fast Marching and incorporates anatomical information from the knowledge base. Using the proposed algorithms, an anatomical knowledge base has been generated based on 90 manually annotated CT images containing different parts of the body. To evaluate the landmark validation a set of 50 carotid datasets has been tested in combination with a state of the art landmark detector with excellent results. Beside the carotid bifurcation the algorithm is designed to handle a wide range of vascular landmarks, e.g. celiac, superior mesenteric, renal, aortic, iliac and femoral bifurcation.
A Hybrid Method for Pancreas Extraction from CT Image Based on Level Set Methods
Tan, Hanqing; Fujita, Hiroshi
2013-01-01
This paper proposes a novel semiautomatic method to extract the pancreas from abdominal CT images. Traditional level set and region growing methods that request locating initial contour near the final boundary of object have problem of leakage to nearby tissues of pancreas region. The proposed method consists of a customized fast-marching level set method which generates an optimal initial pancreas region to solve the problem that the level set method is sensitive to the initial contour location and a modified distance regularized level set method which extracts accurate pancreas. The novelty in our method is the proper selection and combination of level set methods, furthermore an energy-decrement algorithm and an energy-tune algorithm are proposed to reduce the negative impact of bonding force caused by connected tissue whose intensity is similar with pancreas. As a result, our method overcomes the shortages of oversegmentation at weak boundary and can accurately extract pancreas from CT images. The proposed method is compared to other five state-of-the-art medical image segmentation methods based on a CT image dataset which contains abdominal images from 10 patients. The evaluated results demonstrate that our method outperforms other methods by achieving higher accuracy and making less false segmentation in pancreas extraction. PMID:24066016
Fast-match on particle swarm optimization with variant system mechanism
NASA Astrophysics Data System (ADS)
Wang, Yuehuang; Fang, Xin; Chen, Jie
2018-03-01
Fast-Match is a fast and effective algorithm for approximate template matching under 2D affine transformations, which can match the target with maximum similarity without knowing the target gesture. It depends on the minimum Sum-of-Absolute-Differences (SAD) error to obtain the best affine transformation. The algorithm is widely used in the field of matching images because of its fastness and robustness. In this paper, our approach is to search an approximate affine transformation over Particle Swarm Optimization (PSO) algorithm. We treat each potential transformation as a particle that possesses memory function. Each particle is given a random speed and flows throughout the 2D affine transformation space. To accelerate the algorithm and improve the abilities of seeking the global excellent result, we have introduced the variant system mechanism on this basis. The benefit is that we can avoid matching with huge amount of potential transformations and falling into local optimal condition, so that we can use a few transformations to approximate the optimal solution. The experimental results prove that our method has a faster speed and a higher accuracy performance with smaller affine transformation space.
Fast and accurate image recognition algorithms for fresh produce food safety sensing
NASA Astrophysics Data System (ADS)
Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin; Kang, Sukwon; Lefcourt, Alan M.
2011-06-01
This research developed and evaluated the multispectral algorithms derived from hyperspectral line-scan fluorescence imaging under violet LED excitation for detection of fecal contamination on Golden Delicious apples. The algorithms utilized the fluorescence intensities at four wavebands, 680 nm, 684 nm, 720 nm, and 780 nm, for computation of simple functions for effective detection of contamination spots created on the apple surfaces using four concentrations of aqueous fecal dilutions. The algorithms detected more than 99% of the fecal spots. The effective detection of feces showed that a simple multispectral fluorescence imaging algorithm based on violet LED excitation may be appropriate to detect fecal contamination on fast-speed apple processing lines.
TWO-LEVEL TIME MARCHING SCHEME USING SPLINES FOR SOLVING THE ADVECTION EQUATION. (R826371C004)
A new numerical algorithm using quintic splines is developed and analyzed: quintic spline Taylor-series expansion (QSTSE). QSTSE is an Eulerian flux-based scheme that uses quintic splines to compute space derivatives and Taylor series expansion to march in time. The new scheme...
A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid
NASA Technical Reports Server (NTRS)
Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.
1995-01-01
In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.
Du, Yuncheng; Budman, Hector M; Duever, Thomas A
2017-06-01
Accurate and fast quantitative analysis of living cells from fluorescence microscopy images is useful for evaluating experimental outcomes and cell culture protocols. An algorithm is developed in this work to automatically segment and distinguish apoptotic cells from normal cells. The algorithm involves three steps consisting of two segmentation steps and a classification step. The segmentation steps are: (i) a coarse segmentation, combining a range filter with a marching square method, is used as a prefiltering step to provide the approximate positions of cells within a two-dimensional matrix used to store cells' images and the count of the number of cells for a given image; and (ii) a fine segmentation step using the Active Contours Without Edges method is applied to the boundaries of cells identified in the coarse segmentation step. Although this basic two-step approach provides accurate edges when the cells in a given image are sparsely distributed, the occurrence of clusters of cells in high cell density samples requires further processing. Hence, a novel algorithm for clusters is developed to identify the edges of cells within clusters and to approximate their morphological features. Based on the segmentation results, a support vector machine classifier that uses three morphological features: the mean value of pixel intensities in the cellular regions, the variance of pixel intensities in the vicinity of cell boundaries, and the lengths of the boundaries, is developed for distinguishing apoptotic cells from normal cells. The algorithm is shown to be efficient in terms of computational time, quantitative analysis, and differentiation accuracy, as compared with the use of the active contours method without the proposed preliminary coarse segmentation step.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1994-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.
3 CFR 8953 - Proclamation 8953 of March 29, 2013. Cesar Chavez Day, 2013
Code of Federal Regulations, 2014 CFR
2014-01-01
..., Cesar Chavez knew hard work and hardship from an early age. He labored long hours for little pay, taking... rallied a generation of workers around “La Causa,” marching and fasting and boycotting for fair pay and... attention to his cause, he received a telegram from Dr. Martin Luther King, Jr. “As brothers in the fight...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Xiao; Blazek, Jonathan A.; McEwen, Joseph E.
Cosmological perturbation theory is a powerful tool to predict the statistics of large-scale structure in the weakly non-linear regime, but even at 1-loop order it results in computationally expensive mode-coupling integrals. Here we present a fast algorithm for computing 1-loop power spectra of quantities that depend on the observer's orientation, thereby generalizing the FAST-PT framework (McEwen et al., 2016) that was originally developed for scalars such as the matter density. This algorithm works for an arbitrary input power spectrum and substantially reduces the time required for numerical evaluation. We apply the algorithm to four examples: intrinsic alignments of galaxies inmore » the tidal torque model; the Ostriker-Vishniac effect; the secondary CMB polarization due to baryon flows; and the 1-loop matter power spectrum in redshift space. Code implementing this algorithm and these applications is publicly available at https://github.com/JoeMcEwen/FAST-PT.« less
Fast Inference with Min-Sum Matrix Product.
Felzenszwalb, Pedro F; McAuley, Julian J
2011-12-01
The MAP inference problem in many graphical models can be solved efficiently using a fast algorithm for computing min-sum products of n × n matrices. The class of models in question includes cyclic and skip-chain models that arise in many applications. Although the worst-case complexity of the min-sum product operation is not known to be much better than O(n(3)), an O(n(2.5)) expected time algorithm was recently given, subject to some constraints on the input matrices. In this paper, we give an algorithm that runs in O(n(2) log n) expected time, assuming that the entries in the input matrices are independent samples from a uniform distribution. We also show that two variants of our algorithm are quite fast for inputs that arise in several applications. This leads to significant performance gains over previous methods in applications within computer vision and natural language processing.
NASA Astrophysics Data System (ADS)
Yip, Stephen S. F.; Coroller, Thibaud P.; Sanford, Nina N.; Huynh, Elizabeth; Mamon, Harvey; Aerts, Hugo J. W. L.; Berbeco, Ross I.
2016-01-01
Change in PET-based textural features has shown promise in predicting cancer response to treatment. However, contouring tumour volumes on longitudinal scans is time-consuming. This study investigated the usefulness of contour propagation in texture analysis for the purpose of pathologic response prediction in esophageal cancer. Forty-five esophageal cancer patients underwent PET/CT scans before and after chemo-radiotherapy. Patients were classified into responders and non-responders after the surgery. Physician-defined tumour ROIs on pre-treatment PET were propagated onto the post-treatment PET using rigid and ten deformable registration algorithms. PET images were converted into 256 discrete values. Co-occurrence, run-length, and size zone matrix textures were computed within all ROIs. The relative difference of each texture at different treatment time-points was used to predict the pathologic responders. Their predictive value was assessed using the area under the receiver-operating-characteristic curve (AUC). Propagated ROIs from different algorithms were compared using Dice similarity index (DSI). Contours propagated by the fast-demons, fast-free-form and rigid algorithms did not fully capture the high FDG uptake regions of tumours. Fast-demons propagated ROIs had the least agreement with other contours (DSI = 58%). Moderate to substantial overlap were found in the ROIs propagated by all other algorithms (DSI = 69%-79%). Rigidly propagated ROIs with co-occurrence texture failed to significantly differentiate between responders and non-responders (AUC = 0.58, q-value = 0.33), while the differentiation was significant with other textures (AUC = 0.71‒0.73, p < 0.009). Among the deformable algorithms, fast-demons (AUC = 0.68‒0.70, q-value < 0.03) and fast-free-form (AUC = 0.69‒0.74, q-value < 0.04) were the least predictive. ROIs propagated by all other deformable algorithms with any texture significantly predicted pathologic responders (AUC = 0.72‒0.78, q-value < 0.01). Propagated ROIs using deformable registration for all textures can lead to accurate prediction of pathologic response, potentially expediting the temporal texture analysis process. However, fast-demons, fast-free-form, and rigid algorithms should be applied with care due to their inferior performance compared to other algorithms.
Ultrafast adiabatic quantum algorithm for the NP-complete exact cover problem
Wang, Hefeng; Wu, Lian-Ao
2016-01-01
An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of fast random or regular signals during evolution, the runtime can be reduced substantially, whereas advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem (EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to implementing the problem with trapped ions. PMID:26923834
Fast detection of the fuzzy communities based on leader-driven algorithm
NASA Astrophysics Data System (ADS)
Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He
2018-03-01
In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.
A modified dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of a split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three-dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard successive overrelaxation iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition.
Distributed Pheromone-Based Swarming Control of Unmanned Air and Ground Vehicles for RSTA
2008-03-20
Forthcoming in Proceedings of SPIE Defense & Security Conference, March 2008, Orlando, FL Distributed Pheromone -Based Swarming Control of Unmanned...describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of...onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm
Feasibility of the MUSIC Algorithm for the Active Protection System
2001-03-01
Feasibility of the MUSIC Algorithm for the Active Protection System ARL-MR-501 March 2001 Canh Ly Approved for public release; distribution... MUSIC Algorithm for the Active Protection System Canh Ly Sensors and Electron Devices Directorate Approved for public release; distribution unlimited...This report compares the accuracy of the doppler frequency of an incoming projectile with the use of the MUSIC (multiple signal classification
Parallel CE/SE Computations via Domain Decomposition
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Jorgenson, Philip C. E.; Wang, Xiao-Yen; Chang, Sin-Chung
2000-01-01
This paper describes the parallelization strategy and achieved parallel efficiency of an explicit time-marching algorithm for solving conservation laws. The Space-Time Conservation Element and Solution Element (CE/SE) algorithm for solving the 2D and 3D Euler equations is parallelized with the aid of domain decomposition. The parallel efficiency of the resultant algorithm on a Silicon Graphics Origin 2000 parallel computer is checked.
Modeling and inversion Matlab algorithms for resistivity, induced polarization and seismic data
NASA Astrophysics Data System (ADS)
Karaoulis, M.; Revil, A.; Minsley, B. J.; Werkema, D. D.
2011-12-01
M. Karaoulis (1), D.D. Werkema (3), A. Revil (1,2), A., B. Minsley (4), (1) Colorado School of Mines, Dept. of Geophysics, Golden, CO, USA. (2) ISTerre, CNRS, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France. (3) U.S. EPA, ORD, NERL, ESD, CMB, Las Vegas, Nevada, USA . (4) USGS, Federal Center, Lakewood, 10, 80225-0046, CO. Abstract We propose 2D and 3D forward modeling and inversion package for DC resistivity, time domain induced polarization (IP), frequency-domain IP, and seismic refraction data. For the resistivity and IP case, discretization is based on rectangular cells, where each cell has as unknown resistivity in the case of DC modelling, resistivity and chargeability in the time domain IP modelling, and complex resistivity in the spectral IP modelling. The governing partial-differential equations are solved with the finite element method, which can be applied to both real and complex variables that are solved for. For the seismic case, forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wavepaths are materialized by Fresnel volumes rather than by conventional rays. This approach accounts for complicated velocity models and is advantageous because it considers frequency effects on the velocity resolution. The inversion can accommodate data at a single time step, or as a time-lapse dataset if the geophysical data are gathered for monitoring purposes. The aim of time-lapse inversion is to find the change in the velocities or resistivities of each model cell as a function of time. Different time-lapse algorithms can be applied such as independent inversion, difference inversion, 4D inversion, and 4D active time constraint inversion. The forward algorithms are benchmarked against analytical solutions and inversion results are compared with existing ones. The algorithms are packaged as Matlab codes with a simple Graphical User Interface. Although the code is parallelized for multi-core cpus, it is not as fast as machine code. In the case of large datasets, someone should consider transferring parts of the code to C or Fortran through mex files. This code is available through EPA's website on the following link http://www.epa.gov/esd/cmb/GeophysicsWebsite/index.html Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.
A new algorithm for attitude-independent magnetometer calibration
NASA Technical Reports Server (NTRS)
Alonso, Roberto; Shuster, Malcolm D.
1994-01-01
A new algorithm is developed for inflight magnetometer bias determination without knowledge of the attitude. This algorithm combines the fast convergence of a heuristic algorithm currently in use with the correct treatment of the statistics and without discarding data. The algorithm performance is examined using simulated data and compared with previous algorithms.
Spherical Demons: Fast Surface Registration
Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2009-01-01
We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813
Spherical demons: fast surface registration.
Yeo, B T Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2008-01-01
We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast - registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces.
A fast hidden line algorithm for plotting finite element models
NASA Technical Reports Server (NTRS)
Jones, G. K.
1982-01-01
Effective plotting of finite element models requires the use of fast hidden line plot techniques that provide interactive response. A high speed hidden line technique was developed to facilitate the plotting of NASTRAN finite element models. Based on testing using 14 different models, the new hidden line algorithm (JONES-D) appears to be very fast: its speed equals that for normal (all lines visible) plotting and when compared to other existing methods it appears to be substantially faster. It also appears to be very reliable: no plot errors were observed using the new method to plot NASTRAN models. The new algorithm was made part of the NPLOT NASTRAN plot package and was used by structural analysts for normal production tasks.
A Formal Algorithm for Routing Traces on a Printed Circuit Board
NASA Technical Reports Server (NTRS)
Hedgley, David R., Jr.
1996-01-01
This paper addresses the classical problem of printed circuit board routing: that is, the problem of automatic routing by a computer other than by brute force that causes the execution time to grow exponentially as a function of the complexity. Most of the present solutions are either inexpensive but not efficient and fast, or efficient and fast but very costly. Many solutions are proprietary, so not much is written or known about the actual algorithms upon which these solutions are based. This paper presents a formal algorithm for routing traces on a print- ed circuit board. The solution presented is very fast and efficient and for the first time speaks to the question eloquently by way of symbolic statements.
3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion
Dou, Qingxu; Wei, Lijun; Magee, Derek R.; Atkins, Phil R.; Chapman, David N.; Curioni, Giulio; Goddard, Kevin F.; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R.; Rustighi, Emiliano; Swingler, Steven G.; Rogers, Christopher D. F.; Cohn, Anthony G.
2016-01-01
We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation. PMID:27827836
3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion.
Dou, Qingxu; Wei, Lijun; Magee, Derek R; Atkins, Phil R; Chapman, David N; Curioni, Giulio; Goddard, Kevin F; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R; Rustighi, Emiliano; Swingler, Steven G; Rogers, Christopher D F; Cohn, Anthony G
2016-11-02
We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed "multi-utility multi-sensor" system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation.
NASA Astrophysics Data System (ADS)
Olifer, L.; Mann, I. R.; Morley, S. K.; Ozeke, L. G.; Choi, D.
2018-05-01
We present observations of very fast radiation belt loss as resolved using high time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The time scale of these losses is revealed to be as short as ˜0.5-2 hr during intense magnetic storms, with some storms demonstrating almost total loss on these time scales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the September 2014 storm shows fast extinction but no recovery for around 2 weeks. By contrast, the moderate September 2012 storm which generated a three radiation belt morphology shows more gradual loss. We compute the last closed drift shell (LCDS) for each of these four storms and show a very strong correspondence between the LCDS and the loss patterns of trapped electrons in each storm. Most significantly, the location of the LCDS closely mirrors the high time resolution losses observed in GPS flux. The fast losses occur on a time scale shorter than the Van Allen Probes orbital period, are explained by proximity to the LCDS, and progress inward, consistent with outward transport to the LCDS by fast ultralow frequency wave radial diffusion. Expressing the location of the LCDS in L*, and not model magnetopause standoff distance in units of RE, clearly reveals magnetopause shadowing as the cause of the fast loss observed by the GPS satellites.
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-01-01
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection. PMID:29023385
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-10-12
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.
Fast image matching algorithm based on projection characteristics
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun
2011-06-01
Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.
NASA Technical Reports Server (NTRS)
Hung, Stephen H. Y.
1989-01-01
A fast 3-D object recognition algorithm that can be used as a quick-look subsystem to the vision system for the Special-Purpose Dexterous Manipulator (SPDM) is described. Global features that can be easily computed from range data are used to characterize the images of a viewer-centered model of an object. This algorithm will speed up the processing by eliminating the low level processing whenever possible. It may identify the object, reject a set of bad data in the early stage, or create a better environment for a more powerful algorithm to carry the work further.
Distributed Function Mining for Gene Expression Programming Based on Fast Reduction.
Deng, Song; Yue, Dong; Yang, Le-chan; Fu, Xiong; Feng, Ya-zhou
2016-01-01
For high-dimensional and massive data sets, traditional centralized gene expression programming (GEP) or improved algorithms lead to increased run-time and decreased prediction accuracy. To solve this problem, this paper proposes a new improved algorithm called distributed function mining for gene expression programming based on fast reduction (DFMGEP-FR). In DFMGEP-FR, fast attribution reduction in binary search algorithms (FAR-BSA) is proposed to quickly find the optimal attribution set, and the function consistency replacement algorithm is given to solve integration of the local function model. Thorough comparative experiments for DFMGEP-FR, centralized GEP and the parallel gene expression programming algorithm based on simulated annealing (parallel GEPSA) are included in this paper. For the waveform, mushroom, connect-4 and musk datasets, the comparative results show that the average time-consumption of DFMGEP-FR drops by 89.09%%, 88.85%, 85.79% and 93.06%, respectively, in contrast to centralized GEP and by 12.5%, 8.42%, 9.62% and 13.75%, respectively, compared with parallel GEPSA. Six well-studied UCI test data sets demonstrate the efficiency and capability of our proposed DFMGEP-FR algorithm for distributed function mining.
ERIC Educational Resources Information Center
Steffen, Nicolle Olivia; Lance, Keith Curry; Lietzau, Zeth; Dickenson, Don
2005-01-01
Eleven issues of "Fast Facts" from the Library Research Service cover information from libraries across Colorado. These issues focus on topics from the public, academic, and school sectors. These topics include patron use of AskColorado (a statewide virtual reference service) and the rising use of online services. The "Fast…
Propagation Characteristics Of Weakly Guiding Optical Fibers
NASA Technical Reports Server (NTRS)
Manshadi, Farzin
1992-01-01
Report discusses electromagnetic propagation characteristics of weakly guiding optical-fiber structures having complicated shapes with cross-sectional dimensions of order of wavelength. Coupling, power-dividing, and transition dielectric-waveguide structures analyzed. Basic data computed by scalar-wave, fast-Fourier-transform (SW-FFT) technique, based on numerical solution of scalar version of wave equation by forward-marching fast-Fourier-transform method.
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
NASA Astrophysics Data System (ADS)
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
Fast algorithm of low power image reformation for OLED display
NASA Astrophysics Data System (ADS)
Lee, Myungwoo; Kim, Taewhan
2014-04-01
We propose a fast algorithm of low-power image reformation for organic light-emitting diode (OLED) display. The proposed algorithm scales the image histogram in a way to reduce power consumption in OLED display by remapping the gray levels of the pixels in the image based on the fast analysis of the histogram of the input image while maintaining contrast of the image. The key idea is that a large number of gray levels are never used in the images and these gray levels can be effectively exploited to reduce power consumption. On the other hand, to maintain the image contrast the gray level remapping is performed by taking into account the object size in the image to which each gray level is applied, that is, reforming little for the gray levels in the objects of large size. Through experiments with 24 Kodak images, it is shown that our proposed algorithm is able to reduce the power consumption by 10% even with 9% contrast enhancement. Our algorithm runs in a linear time so that it can be applied to moving pictures with high resolution.
Leibon, Gregory; Rockmore, Daniel N.; Park, Wooram; Taintor, Robert; Chirikjian, Gregory S.
2008-01-01
We present algorithms for fast and stable approximation of the Hermite transform of a compactly supported function on the real line, attainable via an application of a fast algebraic algorithm for computing sums associated with a three-term relation. Trade-offs between approximation in bandlimit (in the Hermite sense) and size of the support region are addressed. Numerical experiments are presented that show the feasibility and utility of our approach. Generalizations to any family of orthogonal polynomials are outlined. Applications to various problems in tomographic reconstruction, including the determination of protein structure, are discussed. PMID:20027202
Phase-unwrapping algorithm by a rounding-least-squares approach
NASA Astrophysics Data System (ADS)
Juarez-Salazar, Rigoberto; Robledo-Sanchez, Carlos; Guerrero-Sanchez, Fermin
2014-02-01
A simple and efficient phase-unwrapping algorithm based on a rounding procedure and a global least-squares minimization is proposed. Instead of processing the gradient of the wrapped phase, this algorithm operates over the gradient of the phase jumps by a robust and noniterative scheme. Thus, the residue-spreading and over-smoothing effects are reduced. The algorithm's performance is compared with four well-known phase-unwrapping methods: minimum cost network flow (MCNF), fast Fourier transform (FFT), quality-guided, and branch-cut. A computer simulation and experimental results show that the proposed algorithm reaches a high-accuracy level than the MCNF method by a low-computing time similar to the FFT phase-unwrapping method. Moreover, since the proposed algorithm is simple, fast, and user-free, it could be used in metrological interferometric and fringe-projection automatic real-time applications.
A fast D.F.T. algorithm using complex integer transforms
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1978-01-01
Winograd (1976) has developed a new class of algorithms which depend heavily on the computation of a cyclic convolution for computing the conventional DFT (discrete Fourier transform); this new algorithm, for a few hundred transform points, requires substantially fewer multiplications than the conventional FFT algorithm. Reed and Truong have defined a special class of finite Fourier-like transforms over GF(q squared), where q = 2 to the p power minus 1 is a Mersenne prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 61. In the present paper it is shown that Winograd's algorithm can be combined with the aforementioned Fourier-like transform to yield a new algorithm for computing the DFT. A fast method for accurately computing the DFT of a sequence of complex numbers of very long transform-lengths is thus obtained.
Fast self contained exponential random deviate algorithm
NASA Astrophysics Data System (ADS)
Fernández, Julio F.
1997-03-01
An algorithm that generates random numbers with an exponential distribution and is about ten times faster than other well known algorithms has been reported before (J. F. Fernández and J. Rivero, Comput. Phys. 10), 83 (1996). That algorithm requires input of uniform random deviates. We now report a new version of it that needs no input and is nearly as fast. The only limitation we predict thus far for the quality of the output is the amount of computer memory available. Performance results under various tests will be reported. The algorithm works in close analogy to the set up that is often used in statistical physics in order to obtain the Gibb's distribution. N numbers, that are are stored in N registers, change with time according to the rules of the algorithm, keeping their sum constant. Further details will be given.
Fast Steerable Principal Component Analysis
Zhao, Zhizhen; Shkolnisky, Yoel; Singer, Amit
2016-01-01
Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm is O(nL3 + L4), while existing algorithms take O(nL4). The new algorithm computes the expansion coefficients of the images in a Fourier–Bessel basis efficiently using the nonuniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and existing algorithms for steerable PCA. PMID:27570801
ROBNCA: robust network component analysis for recovering transcription factor activities.
Noor, Amina; Ahmad, Aitzaz; Serpedin, Erchin; Nounou, Mohamed; Nounou, Hazem
2013-10-01
Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF)-gene regulations. Most of the contemporary algorithms either exhibit the drawback of inconsistency and poor reliability, or suffer from prohibitive computational complexity. In addition, the existing algorithms do not possess the ability to counteract the presence of outliers in the microarray data. Hence, robust and computationally efficient algorithms are needed to enable practical applications. We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. An attractive feature of the ROBNCA algorithm is the derivation of a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared with FastNCA and the non-iterative NCA (NI-NCA). ROBNCA estimates the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, correlation and/or amount of outliers in case of synthetic data. The ROBNCA algorithm is also tested on Saccharomyces cerevisiae data and Escherichia coli data, and it is observed to outperform the existing algorithms. The run time of the ROBNCA algorithm is comparable with that of FastNCA, and is hundreds of times faster than NI-NCA. The ROBNCA software is available at http://people.tamu.edu/∼amina/ROBNCA
A comparison of optimization algorithms for localized in vivo B0 shimming.
Nassirpour, Sahar; Chang, Paul; Fillmer, Ariane; Henning, Anke
2018-02-01
To compare several different optimization algorithms currently used for localized in vivo B 0 shimming, and to introduce a novel, fast, and robust constrained regularized algorithm (ConsTru) for this purpose. Ten different optimization algorithms (including samples from both generic and dedicated least-squares solvers, and a novel constrained regularized inversion method) were implemented and compared for shimming in five different shimming volumes on 66 in vivo data sets from both 7 T and 9.4 T. The best algorithm was chosen to perform single-voxel spectroscopy at 9.4 T in the frontal cortex of the brain on 10 volunteers. The results of the performance tests proved that the shimming algorithm is prone to unstable solutions if it depends on the value of a starting point, and is not regularized to handle ill-conditioned problems. The ConsTru algorithm proved to be the most robust, fast, and efficient algorithm among all of the chosen algorithms. It enabled acquisition of spectra of reproducible high quality in the frontal cortex at 9.4 T. For localized in vivo B 0 shimming, the use of a dedicated linear least-squares solver instead of a generic nonlinear one is highly recommended. Among all of the linear solvers, the constrained regularized method (ConsTru) was found to be both fast and most robust. Magn Reson Med 79:1145-1156, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Fast transform decoding of nonsystematic Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Truong, T. K.; Cheung, K.-M.; Reed, I. S.; Shiozaki, A.
1989-01-01
A Reed-Solomon (RS) code is considered to be a special case of a redundant residue polynomial (RRP) code, and a fast transform decoding algorithm to correct both errors and erasures is presented. This decoding scheme is an improvement of the decoding algorithm for the RRP code suggested by Shiozaki and Nishida, and can be realized readily on very large scale integration chips.
Prototype for Meta-Algorithmic, Content-Aware Image Analysis
2015-03-01
PROTOTYPE FOR META-ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS UNIVERSITY OF VIRGINIA MARCH 2015 FINAL TECHNICAL REPORT...ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS 5a. CONTRACT NUMBER FA8750-12-C-0181 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62305E 6. AUTHOR(S) S...approaches were studied in detail and their results on a sample dataset are presented. 15. SUBJECT TERMS Image Analysis , Computer Vision, Content
A fast algorithm for computer aided collimation gamma camera (CACAO)
NASA Astrophysics Data System (ADS)
Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.
2000-08-01
The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.
A novel directional asymmetric sampling search algorithm for fast block-matching motion estimation
NASA Astrophysics Data System (ADS)
Li, Yue-e.; Wang, Qiang
2011-11-01
This paper proposes a novel directional asymmetric sampling search (DASS) algorithm for video compression. Making full use of the error information (block distortions) of the search patterns, eight different direction search patterns are designed for various situations. The strategy of local sampling search is employed for the search of big-motion vector. In order to further speed up the search, early termination strategy is adopted in procedure of DASS. Compared to conventional fast algorithms, the proposed method has the most satisfactory PSNR values for all test sequences.
A pipeline design of a fast prime factor DFT on a finite field
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, In-Shek; Shao, H. M.; Reed, Irving S.; Shyu, Hsuen-Chyun
1988-01-01
A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.
Engineering Design Handbook: Reliable Military Electronics
1976-01-15
p. 30. CBS-Hytron: "I..ow-o::stPower Trall8istors," E1a::Drnic Design, 1 Nov. 1956, p. 24. Chang, C. M.: "An NPN High-Power Fast Germanium Col:e...34Monovibrator Has Fast Recovery Time," Electronics, Dec. 1957, p. 158. Carlson, A W. : "Junction Transistor Counters," EledronicDesign, 1 March 1957, p. 28...Method Makes Fast Pulses in Transistor Circuits," Electronic Design, 28 May 1958, p. 44. Stassior, R. A : "Pulse Applications cf a Diffused-Meltback
New correction procedures for the fast field program which extend its range
NASA Technical Reports Server (NTRS)
West, M.; Sack, R. A.
1990-01-01
A fast field program (FFP) algorithm was developed based on the method of Lee et al., for the prediction of sound pressure level from low frequency, high intensity sources. In order to permit accurate predictions at distances greater than 2 km, new correction procedures have had to be included in the algorithm. Certain functions, whose Hankel transforms can be determined analytically, are subtracted from the depth dependent Green's function. The distance response is then obtained as the sum of these transforms and the Fast Fourier Transformation (FFT) of the residual k dependent function. One procedure, which permits the elimination of most complex exponentials, has allowed significant changes in the structure of the FFP algorithm, which has resulted in a substantial reduction in computation time.
Fast and accurate computation of projected two-point functions
NASA Astrophysics Data System (ADS)
Grasshorn Gebhardt, Henry S.; Jeong, Donghui
2018-01-01
We present the two-point function from the fast and accurate spherical Bessel transformation (2-FAST) algorithm
Saa, Pedro A.; Nielsen, Lars K.
2016-01-01
Motivation: Computation of steady-state flux solutions in large metabolic models is routinely performed using flux balance analysis based on a simple LP (Linear Programming) formulation. A minimal requirement for thermodynamic feasibility of the flux solution is the absence of internal loops, which are enforced using ‘loopless constraints’. The resulting loopless flux problem is a substantially harder MILP (Mixed Integer Linear Programming) problem, which is computationally expensive for large metabolic models. Results: We developed a pre-processing algorithm that significantly reduces the size of the original loopless problem into an easier and equivalent MILP problem. The pre-processing step employs a fast matrix sparsification algorithm—Fast- sparse null-space pursuit (SNP)—inspired by recent results on SNP. By finding a reduced feasible ‘loop-law’ matrix subject to known directionalities, Fast-SNP considerably improves the computational efficiency in several metabolic models running different loopless optimization problems. Furthermore, analysis of the topology encoded in the reduced loop matrix enabled identification of key directional constraints for the potential permanent elimination of infeasible loops in the underlying model. Overall, Fast-SNP is an effective and simple algorithm for efficient formulation of loop-law constraints, making loopless flux optimization feasible and numerically tractable at large scale. Availability and Implementation: Source code for MATLAB including examples is freely available for download at http://www.aibn.uq.edu.au/cssb-resources under Software. Optimization uses Gurobi, CPLEX or GLPK (the latter is included with the algorithm). Contact: lars.nielsen@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27559155
Overview of implementation of DARPA GPU program in SAIC
NASA Astrophysics Data System (ADS)
Braunreiter, Dennis; Furtek, Jeremy; Chen, Hai-Wen; Healy, Dennis
2008-04-01
This paper reviews the implementation of DARPA MTO STAP-BOY program for both Phase I and II conducted at Science Applications International Corporation (SAIC). The STAP-BOY program conducts fast covariance factorization and tuning techniques for space-time adaptive process (STAP) Algorithm Implementation on Graphics Processor unit (GPU) Architectures for Embedded Systems. The first part of our presentation on the DARPA STAP-BOY program will focus on GPU implementation and algorithm innovations for a prototype radar STAP algorithm. The STAP algorithm will be implemented on the GPU, using stream programming (from companies such as PeakStream, ATI Technologies' CTM, and NVIDIA) and traditional graphics APIs. This algorithm will include fast range adaptive STAP weight updates and beamforming applications, each of which has been modified to exploit the parallel nature of graphics architectures.
Morin, Jean-François; Botton, Eléonore; Jacquemard, François; Richard-Gireme, Anouk
2013-01-01
The Fetal medicine foundation (FMF) has developed a new algorithm called Prenatal Risk Calculation (PRC) to evaluate Down syndrome screening based on free hCGβ, PAPP-A and nuchal translucency. The peculiarity of this algorithm is to use the degree of extremeness (DoE) instead of the multiple of the median (MoM). The biologists measuring maternal seric markers on Kryptor™ machines (Thermo Fisher Scientific) use Fast Screen pre I plus software for the prenatal risk calculation. This software integrates the PRC algorithm. Our study evaluates the data of 2.092 patient files of which 19 show a fœtal abnormality. These files have been first evaluated with the ViewPoint software based on MoM. The link between DoE and MoM has been analyzed and the different calculated risks compared. The study shows that Fast Screen pre I plus software gives the same risk results as ViewPoint software, but yields significantly fewer false positive results.
An Annotation Agnostic Algorithm for Detecting Nascent RNA Transcripts in GRO-Seq.
Azofeifa, Joseph G; Allen, Mary A; Lladser, Manuel E; Dowell, Robin D
2017-01-01
We present a fast and simple algorithm to detect nascent RNA transcription in global nuclear run-on sequencing (GRO-seq). GRO-seq is a relatively new protocol that captures nascent transcripts from actively engaged polymerase, providing a direct read-out on bona fide transcription. Most traditional assays, such as RNA-seq, measure steady state RNA levels which are affected by transcription, post-transcriptional processing, and RNA stability. GRO-seq data, however, presents unique analysis challenges that are only beginning to be addressed. Here, we describe a new algorithm, Fast Read Stitcher (FStitch), that takes advantage of two popular machine-learning techniques, hidden Markov models and logistic regression, to classify which regions of the genome are transcribed. Given a small user-defined training set, our algorithm is accurate, robust to varying read depth, annotation agnostic, and fast. Analysis of GRO-seq data without a priori need for annotation uncovers surprising new insights into several aspects of the transcription process.
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.
Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng
2016-09-07
Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers.
NASA Astrophysics Data System (ADS)
Rachmawati, D.; Budiman, M. A.; Siburian, W. S. E.
2018-05-01
On the process of exchanging files, security is indispensable to avoid the theft of data. Cryptography is one of the sciences used to secure the data by way of encoding. Fast Data Encipherment Algorithm (FEAL) is a block cipher symmetric cryptographic algorithms. Therefore, the file which wants to protect is encrypted and decrypted using the algorithm FEAL. To optimize the security of the data, session key that is utilized in the algorithm FEAL encoded with the Goldwasser-Micali algorithm, which is an asymmetric cryptographic algorithm and using probabilistic concept. In the encryption process, the key was converted into binary form. The selection of values of x that randomly causes the results of the cipher key is different for each binary value. The concept of symmetry and asymmetry algorithm merger called Hybrid Cryptosystem. The use of the algorithm FEAL and Goldwasser-Micali can restore the message to its original form and the algorithm FEAL time required for encryption and decryption is directly proportional to the length of the message. However, on Goldwasser- Micali algorithm, the length of the message is not directly proportional to the time of encryption and decryption.
Fast Algorithms for Designing Unimodular Waveform(s) With Good Correlation Properties
NASA Astrophysics Data System (ADS)
Li, Yongzhe; Vorobyov, Sergiy A.
2018-03-01
In this paper, we develop new fast and efficient algorithms for designing single/multiple unimodular waveforms/codes with good auto- and cross-correlation or weighted correlation properties, which are highly desired in radar and communication systems. The waveform design is based on the minimization of the integrated sidelobe level (ISL) and weighted ISL (WISL) of waveforms. As the corresponding optimization problems can quickly grow to large scale with increasing the code length and number of waveforms, the main issue turns to be the development of fast large-scale optimization techniques. The difficulty is also that the corresponding optimization problems are non-convex, but the required accuracy is high. Therefore, we formulate the ISL and WISL minimization problems as non-convex quartic optimization problems in frequency domain, and then simplify them into quadratic problems by utilizing the majorization-minimization technique, which is one of the basic techniques for addressing large-scale and/or non-convex optimization problems. While designing our fast algorithms, we find out and use inherent algebraic structures in the objective functions to rewrite them into quartic forms, and in the case of WISL minimization, to derive additionally an alternative quartic form which allows to apply the quartic-quadratic transformation. Our algorithms are applicable to large-scale unimodular waveform design problems as they are proved to have lower or comparable computational burden (analyzed theoretically) and faster convergence speed (confirmed by comprehensive simulations) than the state-of-the-art algorithms. In addition, the waveforms designed by our algorithms demonstrate better correlation properties compared to their counterparts.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1995-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.
Olifer, Leonid; Mann, Ian R.; Morley, Steven Karl; ...
2018-04-20
We present observations of very fast radiation belt loss as resolved using high time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The time scale of these losses is revealed to be as short as ~0.5–2 hr during intense magnetic storms, with some storms demonstrating almost total loss on these time scales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the September 2014 storm shows fast extinction but no recovery for around 2 weeks. By contrast, themore » moderate September 2012 storm which generated a three radiation belt morphology shows more gradual loss. Here, we compute the last closed drift shell (LCDS) for each of these four storms and show a very strong correspondence between the LCDS and the loss patterns of trapped electrons in each storm. Most significantly, the location of the LCDS closely mirrors the high time resolution losses observed in GPS flux. The fast losses occur on a time scale shorter than the Van Allen Probes orbital period, are explained by proximity to the LCDS, and progress inward, consistent with outward transport to the LCDS by fast ultralow frequency wave radial diffusion. Expressing the location of the LCDS in L*, and not model magnetopause standoff distance in units of RE, clearly reveals magnetopause shadowing as the cause of the fast loss observed by the GPS satellites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olifer, Leonid; Mann, Ian R.; Morley, Steven Karl
We present observations of very fast radiation belt loss as resolved using high time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The time scale of these losses is revealed to be as short as ~0.5–2 hr during intense magnetic storms, with some storms demonstrating almost total loss on these time scales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the September 2014 storm shows fast extinction but no recovery for around 2 weeks. By contrast, themore » moderate September 2012 storm which generated a three radiation belt morphology shows more gradual loss. Here, we compute the last closed drift shell (LCDS) for each of these four storms and show a very strong correspondence between the LCDS and the loss patterns of trapped electrons in each storm. Most significantly, the location of the LCDS closely mirrors the high time resolution losses observed in GPS flux. The fast losses occur on a time scale shorter than the Van Allen Probes orbital period, are explained by proximity to the LCDS, and progress inward, consistent with outward transport to the LCDS by fast ultralow frequency wave radial diffusion. Expressing the location of the LCDS in L*, and not model magnetopause standoff distance in units of RE, clearly reveals magnetopause shadowing as the cause of the fast loss observed by the GPS satellites.« less
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks
Vestergaard, Christian L.; Génois, Mathieu
2015-01-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.
Vestergaard, Christian L; Génois, Mathieu
2015-10-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.
An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China.
Zou, Hui; Zou, Zhihong; Wang, Xiaojing
2015-11-12
The increase and the complexity of data caused by the uncertain environment is today's reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006-2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality.
Algorithms for System Identification and Source Location.
NASA Astrophysics Data System (ADS)
Nehorai, Arye
This thesis deals with several topics in least squares estimation and applications to source location. It begins with a derivation of a mapping between Wiener theory and Kalman filtering for nonstationary autoregressive moving average (ARMO) processes. Applying time domain analysis, connections are found between time-varying state space realizations and input-output impulse response by matrix fraction description (MFD). Using these connections, the whitening filters are derived by the two approaches, and the Kalman gain is expressed in terms of Wiener theory. Next, fast estimation algorithms are derived in a unified way as special cases of the Conjugate Direction Method. The fast algorithms included are the block Levinson, fast recursive least squares, ladder (or lattice) and fast Cholesky algorithms. The results give a novel derivation and interpretation for all these methods, which are efficient alternatives to available recursive system identification algorithms. Multivariable identification algorithms are usually designed only for left MFD models. In this work, recursive multivariable identification algorithms are derived for right MFD models with diagonal denominator matrices. The algorithms are of prediction error and model reference type. Convergence analysis results obtained by the Ordinary Differential Equation (ODE) method are presented along with simulations. Sources of energy can be located by estimating time differences of arrival (TDOA's) of waves between the receivers. A new method for TDOA estimation is proposed for multiple unknown ARMA sources and additive correlated receiver noise. The method is based on a formula that uses only the receiver cross-spectra and the source poles. Two algorithms are suggested that allow tradeoffs between computational complexity and accuracy. A new time delay model is derived and used to show the applicability of the methods for non -integer TDOA's. Results from simulations illustrate the performance of the algorithms. The last chapter analyzes the response of exact least squares predictors for enhancement of sinusoids with additive colored noise. Using the matrix inversion lemma and the Christoffel-Darboux formula, the frequency response and amplitude gain of the sinusoids are expressed as functions of the signal and noise characteristics. The results generalize the available white noise case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magome, T; University of Tokyo Hospital, Tokyo; University of Minnesota, Minneapolis, MN
Purpose: Megavoltage computed tomography (MVCT) imaging has been widely used for daily patient setup with helical tomotherapy (HT). One drawback of MVCT is its very long imaging time, owing to slow couch speed. The purpose of this study was to develop an MVCT imaging method allowing faster couch speeds, and to assess its accuracy for image guidance for HT. Methods: Three cadavers (mimicking closest physiological and physical system of patients) were scanned four times with couch speeds of 1, 2, 3, and 4 mm/s. The resulting MVCT images were reconstructed using an iterative reconstruction (IR) algorithm. The MVCT images weremore » registered with kilovoltage CT images, and the registration errors were compared with the errors with conventional filtered back projection (FBP) algorithm. Moreover, the fast MVCT imaging was tested in three cases of total marrow irradiation as a clinical trial. Results: Three-dimensional registration errors of the MVCT images reconstructed with the IR algorithm were significantly smaller (p < 0.05) than the errors of images reconstructed with the FBP algorithm at fast couch speeds (3, 4 mm/s). The scan time and imaging dose at a speed of 4 mm/s were reduced to 30% of those from a conventional coarse mode scan. For the patient imaging, a limited number of conventional MVCT (1.2 mm/s) and fast MVCT (3 mm/s) reveals acceptable reduced imaging time and dose able to use for anatomical registration. Conclusion: Fast MVCT with IR algorithm maybe clinically feasible alternative for rapid 3D patient localization. This technique may also be useful for calculating daily dose distributions or organ motion analyses in HT treatment over a wide area.« less
Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform
NASA Astrophysics Data System (ADS)
Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin
2013-12-01
Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.
NASA Astrophysics Data System (ADS)
Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.
2011-09-01
Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.
NASA Technical Reports Server (NTRS)
Truong, T. K.; Lipes, R.; Reed, I. S.; Wu, C.
1980-01-01
A fast algorithm is developed to compute two dimensional convolutions of an array of d sub 1 X d sub 2 complex number points, where d sub 2 = 2(M) and d sub 1 = 2(m-r+) for some 1 or = r or = m. This algorithm requires fewer multiplications and about the same number of additions as the conventional fast fourier transform method for computing the two dimensional convolution. It also has the advantage that the operation of transposing the matrix of data can be avoided.
Solar Energetic Particle Forecasting Algorithms and Associated False Alarms
NASA Astrophysics Data System (ADS)
Swalwell, B.; Dalla, S.; Walsh, R. W.
2017-11-01
Solar energetic particle (SEP) events are known to occur following solar flares and coronal mass ejections (CMEs). However, some high-energy solar events do not result in SEPs being detected at Earth, and it is these types of event which may be termed "false alarms". We define two simple SEP forecasting algorithms based upon the occurrence of a magnetically well-connected CME with a speed in excess of 1500 km s^{-1} (a "fast" CME) or a well-connected X-class flare and analyse them with respect to historical datasets. We compare the parameters of those solar events which produced an enhancement of {>} 40 MeV protons at Earth (an "SEP event") and the parameters of false alarms. We find that an SEP forecasting algorithm based solely upon the occurrence of a well-connected fast CME produces fewer false alarms (28.8%) than an algorithm which is based solely upon a well-connected X-class flare (50.6%). Both algorithms fail to forecast a relatively high percentage of SEP events (53.2% and 50.6%, respectively). Our analysis of the historical datasets shows that false-alarm X-class flares were either not associated with any CME, or were associated with a CME slower than 500 km s^{-1}; false-alarm fast CMEs tended to be associated with flare classes lower than M3. A better approach to forecasting would be an algorithm which takes as its base the occurrence of both CMEs and flares. We define a new forecasting algorithm which uses a combination of CME and flare parameters, and we show that the false-alarm ratio is similar to that for the algorithm based upon fast CMEs (29.6%), but the percentage of SEP events not forecast is reduced to 32.4%. Lists of the solar events which gave rise to {>} 40 MeV protons and the false alarms have been derived and are made available to aid further study.
NASA Astrophysics Data System (ADS)
Mishra, Puneet; Singla, Sunil Kumar
2013-01-01
In the modern world of automation, biological signals, especially Electroencephalogram (EEG) and Electrocardiogram (ECG), are gaining wide attention as a source of biometric information. Earlier studies have shown that EEG and ECG show versatility with individuals and every individual has distinct EEG and ECG spectrum. EEG (which can be recorded from the scalp due to the effect of millions of neurons) may contain noise signals such as eye blink, eye movement, muscular movement, line noise, etc. Similarly, ECG may contain artifact like line noise, tremor artifacts, baseline wandering, etc. These noise signals are required to be separated from the EEG and ECG signals to obtain the accurate results. This paper proposes a technique for the removal of eye blink artifact from EEG and ECG signal using fixed point or FastICA algorithm of Independent Component Analysis (ICA). For validation, FastICA algorithm has been applied to synthetic signal prepared by adding random noise to the Electrocardiogram (ECG) signal. FastICA algorithm separates the signal into two independent components, i.e. ECG pure and artifact signal. Similarly, the same algorithm has been applied to remove the artifacts (Electrooculogram or eye blink) from the EEG signal.
Computerized Liver Volumetry on MRI by Using 3D Geodesic Active Contour Segmentation
Huynh, Hieu Trung; Karademir, Ibrahim; Oto, Aytekin; Suzuki, Kenji
2014-01-01
OBJECTIVE Our purpose was to develop an accurate automated 3D liver segmentation scheme for measuring liver volumes on MRI. SUBJECTS AND METHODS Our scheme for MRI liver volumetry consisted of three main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the portal venous phase to reduce noise and produce the boundary-enhanced image. This boundary-enhanced image was used as a speed function for a 3D fast-marching algorithm to generate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the initial surface to precisely determine the liver boundaries. The liver volumes determined by our scheme were compared with those manually traced by a radiologist, used as the reference standard. RESULTS The two volumetric methods reached excellent agreement (intraclass correlation coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual volumetry was 24.0 ± 4.4 minutes (p < 0.001). CONCLUSION The MRI liver volumetry based on our automated scheme agreed excellently with reference-standard volumetry, and it required substantially less completion time. PMID:24370139
Computerized liver volumetry on MRI by using 3D geodesic active contour segmentation.
Huynh, Hieu Trung; Karademir, Ibrahim; Oto, Aytekin; Suzuki, Kenji
2014-01-01
Our purpose was to develop an accurate automated 3D liver segmentation scheme for measuring liver volumes on MRI. Our scheme for MRI liver volumetry consisted of three main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the portal venous phase to reduce noise and produce the boundary-enhanced image. This boundary-enhanced image was used as a speed function for a 3D fast-marching algorithm to generate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the initial surface to precisely determine the liver boundaries. The liver volumes determined by our scheme were compared with those manually traced by a radiologist, used as the reference standard. The two volumetric methods reached excellent agreement (intraclass correlation coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual volumetry was 24.0 ± 4.4 minutes (p < 0.001). The MRI liver volumetry based on our automated scheme agreed excellently with reference-standard volumetry, and it required substantially less completion time.
Bibliography of In-House and Contract Reports, Supplement 18
1992-10-01
Transparent Conforming Overlays 46 TITLE REPORT NO. YEAR Development, Service Tests, and Production Model 1307 -TR 1953 Tests, Autofocusing Rectifier...Development, Test, Preparation, Delivery, and ETL- 1307 1982 Installation of Algorithms for Optimal Adjustment of Inertial Survey Data Developmental Optical...B: Terrain ETL- 0428 1986 and Object Modeling Recognition (March 13, 1985 - March 13, 1986) Knowledge-Based Vision Techniques - Task B: Terrain ETL
Practical Sub-Nyquist Sampling via Array-Based Compressed Sensing Receiver Architecture
2016-07-10
different array ele- ments at different sub-Nyquist sampling rates. Signal processing inspired by the sparse fast Fourier transform allows for signal...reconstruction algorithms can be computationally demanding (REF). The related sparse Fourier transform algorithms aim to reduce the processing time nec- essary to...compute the DFT of frequency-sparse signals [7]. In particular, the sparse fast Fourier transform (sFFT) achieves processing time better than the
Zhang, Yue; Zou, Huanxin; Luo, Tiancheng; Qin, Xianxiang; Zhou, Shilin; Ji, Kefeng
2016-01-01
The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods. PMID:27754385
Use of a genetic algorithm for the analysis of eye movements from the linear vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Shelhamer, M.
2001-01-01
It is common in vestibular and oculomotor testing to use a single-frequency (sine) or combination of frequencies [sum-of-sines (SOS)] stimulus for head or target motion. The resulting eye movements typically contain a smooth tracking component, which follows the stimulus, in which are interspersed rapid eye movements (saccades or fast phases). The parameters of the smooth tracking--the amplitude and phase of each component frequency--are of interest; many methods have been devised that attempt to identify and remove the fast eye movements from the smooth. We describe a new approach to this problem, tailored to both single-frequency and sum-of-sines stimulation of the human linear vestibulo-ocular reflex. An approximate derivative is used to identify fast movements, which are then omitted from further analysis. The remaining points form a series of smooth tracking segments. A genetic algorithm is used to fit these segments together to form a smooth (but disconnected) wave form, by iteratively removing biases due to the missing fast phases. A genetic algorithm is an iterative optimization procedure; it provides a basis for extending this approach to more complex stimulus-response situations. In the SOS case, the genetic algorithm estimates the amplitude and phase values of the component frequencies as well as removing biases.
High-resolution seismic data regularization and wavefield separation
NASA Astrophysics Data System (ADS)
Cao, Aimin; Stump, Brian; DeShon, Heather
2018-04-01
We present a new algorithm, non-equispaced fast antileakage Fourier transform (NFALFT), for irregularly sampled seismic data regularization. Synthetic tests from 1-D to 5-D show that the algorithm may efficiently remove leaked energy in the frequency wavenumber domain, and its corresponding regularization process is accurate and fast. Taking advantage of the NFALFT algorithm, we suggest a new method (wavefield separation) for the detection of the Earth's inner core shear wave with irregularly distributed seismic arrays or networks. All interfering seismic phases that propagate along the minor arc are removed from the time window around the PKJKP arrival. The NFALFT algorithm is developed for seismic data, but may also be used for other irregularly sampled temporal or spatial data processing.
Fast stochastic algorithm for simulating evolutionary population dynamics
NASA Astrophysics Data System (ADS)
Tsimring, Lev; Hasty, Jeff; Mather, William
2012-02-01
Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.
Optimal and adaptive methods of processing hydroacoustic signals (review)
NASA Astrophysics Data System (ADS)
Malyshkin, G. S.; Sidel'nikov, G. B.
2014-09-01
Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.
The fractional Fourier transform and applications
NASA Technical Reports Server (NTRS)
Bailey, David H.; Swarztrauber, Paul N.
1991-01-01
This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.
A modified Dodge algorithm for the parabolized Navier-Stokes equation and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitive agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions.
Fast algorithm of adaptive Fourier series
NASA Astrophysics Data System (ADS)
Gao, You; Ku, Min; Qian, Tao
2018-05-01
Adaptive Fourier decomposition (AFD, precisely 1-D AFD or Core-AFD) was originated for the goal of positive frequency representations of signals. It achieved the goal and at the same time offered fast decompositions of signals. There then arose several types of AFDs. AFD merged with the greedy algorithm idea, and in particular, motivated the so-called pre-orthogonal greedy algorithm (Pre-OGA) that was proven to be the most efficient greedy algorithm. The cost of the advantages of the AFD type decompositions is, however, the high computational complexity due to the involvement of maximal selections of the dictionary parameters. The present paper offers one formulation of the 1-D AFD algorithm by building the FFT algorithm into it. Accordingly, the algorithm complexity is reduced, from the original $\\mathcal{O}(M N^2)$ to $\\mathcal{O}(M N\\log_2 N)$, where $N$ denotes the number of the discretization points on the unit circle and $M$ denotes the number of points in $[0,1)$. This greatly enhances the applicability of AFD. Experiments are carried out to show the high efficiency of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Brajard, J.; Moulin, C.; Thiria, S.
2008-10-01
This paper presents a comparison of the atmospheric correction accuracy between the standard sea-viewing wide field-of-view sensor (SeaWiFS) algorithm and the NeuroVaria algorithm for the ocean off the Indian coast in March 1999. NeuroVaria is a general method developed to retrieve aerosol optical properties and water-leaving reflectances for all types of aerosols, including absorbing ones. It has been applied to SeaWiFS images of March 1999, during an episode of transport of absorbing aerosols coming from pollutant sources in India. Water-leaving reflectances and aerosol optical thickness estimated by the two methods were extracted along a transect across the aerosol plume for three days. The comparison showed that NeuroVaria allows the retrieval of oceanic properties in the presence of absorbing aerosols with a better spatial and temporal stability than the standard SeaWiFS algorithm. NeuroVaria was then applied to the available SeaWiFS images over a two-week period. NeuroVaria algorithm retrieves ocean products for a larger number of pixels than the standard one and eliminates most of the discontinuities and artifacts associated with the standard algorithm in presence of absorbing aerosols.
CO Component Estimation Based on the Independent Component Analysis
NASA Astrophysics Data System (ADS)
Ichiki, Kiyotomo; Kaji, Ryohei; Yamamoto, Hiroaki; Takeuchi, Tsutomu T.; Fukui, Yasuo
2014-01-01
Fast Independent Component Analysis (FastICA) is a component separation algorithm based on the levels of non-Gaussianity. Here we apply FastICA to the component separation problem of the microwave background, including carbon monoxide (CO) line emissions that are found to contaminate the PLANCK High Frequency Instrument (HFI) data. Specifically, we prepare 100 GHz, 143 GHz, and 217 GHz mock microwave sky maps, which include galactic thermal dust, NANTEN CO line, and the cosmic microwave background (CMB) emissions, and then estimate the independent components based on the kurtosis. We find that FastICA can successfully estimate the CO component as the first independent component in our deflection algorithm because its distribution has the largest degree of non-Gaussianity among the components. Thus, FastICA can be a promising technique to extract CO-like components without prior assumptions about their distributions and frequency dependences.
CO component estimation based on the independent component analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichiki, Kiyotomo; Kaji, Ryohei; Yamamoto, Hiroaki
2014-01-01
Fast Independent Component Analysis (FastICA) is a component separation algorithm based on the levels of non-Gaussianity. Here we apply FastICA to the component separation problem of the microwave background, including carbon monoxide (CO) line emissions that are found to contaminate the PLANCK High Frequency Instrument (HFI) data. Specifically, we prepare 100 GHz, 143 GHz, and 217 GHz mock microwave sky maps, which include galactic thermal dust, NANTEN CO line, and the cosmic microwave background (CMB) emissions, and then estimate the independent components based on the kurtosis. We find that FastICA can successfully estimate the CO component as the first independentmore » component in our deflection algorithm because its distribution has the largest degree of non-Gaussianity among the components. Thus, FastICA can be a promising technique to extract CO-like components without prior assumptions about their distributions and frequency dependences.« less
A fast event preprocessor for the Simbol-X Low-Energy Detector
NASA Astrophysics Data System (ADS)
Schanz, T.; Tenzer, C.; Kendziorra, E.; Santangelo, A.
2008-07-01
The Simbol-X1 Low Energy Detector (LED), a 128 × 128 pixel DEPFET array, will be read out very fast (8000 frames/second). This requires a very fast onboard data preprocessing of the raw data. We present an FPGA based Event Preprocessor (EPP) which can fulfill this requirements. The design is developed in the hardware description language VHDL and can be later ported on an ASIC technology. The EPP performs a pixel related offset correction and can apply different energy thresholds to each pixel of the frame. It also provides a line related common-mode correction to reduce noise that is unavoidably caused by the analog readout chip of the DEPFET. An integrated pattern detector can block all invalid pixel patterns. The EPP has an internal pipeline structure and can perform all operation in realtime (< 2 μs per line of 64 pixel) with a base clock frequency of 100 MHz. It is utilizing a fast median-value detection algorithm for common-mode correction and a new pattern scanning algorithm to select only valid events. Both new algorithms were developed during the last year at our institute.
Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye
2014-02-01
Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.
Takeshima, T; Takahashi, T; Yamashita, J; Okada, Y; Watanabe, S
2018-05-25
Multi-emitter fitting algorithms have been developed to improve the temporal resolution of single-molecule switching nanoscopy, but the molecular density range they can analyse is narrow and the computation required is intensive, significantly limiting their practical application. Here, we propose a computationally fast method, wedged template matching (WTM), an algorithm that uses a template matching technique to localise molecules at any overlapping molecular density from sparse to ultrahigh density with subdiffraction resolution. WTM achieves the localization of overlapping molecules at densities up to 600 molecules μm -2 with a high detection sensitivity and fast computational speed. WTM also shows localization precision comparable with that of DAOSTORM (an algorithm for high-density super-resolution microscopy), at densities up to 20 molecules μm -2 , and better than DAOSTORM at higher molecular densities. The application of WTM to a high-density biological sample image demonstrated that it resolved protein dynamics from live cell images with subdiffraction resolution and a temporal resolution of several hundred milliseconds or less through a significant reduction in the number of camera images required for a high-density reconstruction. WTM algorithm is a computationally fast, multi-emitter fitting algorithm that can analyse over a wide range of molecular densities. The algorithm is available through the website. https://doi.org/10.17632/bf3z6xpn5j.1. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Exploitation of Microdoppler and Multiple Scattering Phenomena for Radar Target Recognition
2006-08-24
is tested with measurement data. The resulting GPR images demonstrate the effectiveness of the proposed algorithm. INTRODUCTION Subsurface imaging to...utilizes the fast Fourier . transform (FFT) to expedite the imaging GPR. Recently, we re- .... ported a fast and effective SAR-based subsurface ... imaging tech- nique that can provide good resolutions in both the range and cross-range domains I111. Our algorithm differs from Witten’s [91 and Hansen’s
Further optimization of SeDDaRA blind image deconvolution algorithm and its DSP implementation
NASA Astrophysics Data System (ADS)
Wen, Bo; Zhang, Qiheng; Zhang, Jianlin
2011-11-01
Efficient algorithm for blind image deconvolution and its high-speed implementation is of great value in practice. Further optimization of SeDDaRA is developed, from algorithm structure to numerical calculation methods. The main optimization covers that, the structure's modularization for good implementation feasibility, reducing the data computation and dependency of 2D-FFT/IFFT, and acceleration of power operation by segmented look-up table. Then the Fast SeDDaRA is proposed and specialized for low complexity. As the final implementation, a hardware system of image restoration is conducted by using the multi-DSP parallel processing. Experimental results show that, the processing time and memory demand of Fast SeDDaRA decreases 50% at least; the data throughput of image restoration system is over 7.8Msps. The optimization is proved efficient and feasible, and the Fast SeDDaRA is able to support the real-time application.
Fast algorithms for Quadrature by Expansion I: Globally valid expansions
NASA Astrophysics Data System (ADS)
Rachh, Manas; Klöckner, Andreas; O'Neil, Michael
2017-09-01
The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method. Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.
FBCOT: a fast block coding option for JPEG 2000
NASA Astrophysics Data System (ADS)
Taubman, David; Naman, Aous; Mathew, Reji
2017-09-01
Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically < 0.5dB). The algorithm provides only limited quality/SNR scalability, but offers truly reversible transcoding to/from any standard JPEG 2000 block bit-stream. The proposed FAST block coder can be used with EBCOT's post-compression RD-optimization methodology, allowing a target compressed bit-rate to be achieved even at low latencies, leading to the name FBCOT (Fast Block Coding with Optimized Truncation).
Computation of multi-dimensional viscous supersonic jet flow
NASA Technical Reports Server (NTRS)
Kim, Y. N.; Buggeln, R. C.; Mcdonald, H.
1986-01-01
A new method has been developed for two- and three-dimensional computations of viscous supersonic flows with embedded subsonic regions adjacent to solid boundaries. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases relevant to internal supersonic flow is presented and compared with data. Comparison between data and computation are in general excellent thus indicating that the computational technique has great promise as a tool for calculating supersonic flow with embedded subsonic regions. Finally, a User's Manual is presented for the computer code used to perform the calculations.
Computation of multi-dimensional viscous supersonic flow
NASA Technical Reports Server (NTRS)
Buggeln, R. C.; Kim, Y. N.; Mcdonald, H.
1986-01-01
A method has been developed for two- and three-dimensional computations of viscous supersonic jet flows interacting with an external flow. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases associated with supersonic jet flow is presented and compared with other calculations for axisymmetric cases. Demonstration calculations indicate that the computational technique has great promise as a tool for calculating a wide range of supersonic flow problems including jet flow. Finally, a User's Manual is presented for the computer code used to perform the calculations.
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters
Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng
2016-01-01
Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046
NASA Astrophysics Data System (ADS)
Pan, Xiao-Min; Wei, Jian-Gong; Peng, Zhen; Sheng, Xin-Qing
2012-02-01
The interpolative decomposition (ID) is combined with the multilevel fast multipole algorithm (MLFMA), denoted by ID-MLFMA, to handle multiscale problems. The ID-MLFMA first generates ID levels by recursively dividing the boxes at the finest MLFMA level into smaller boxes. It is specifically shown that near-field interactions with respect to the MLFMA, in the form of the matrix vector multiplication (MVM), are efficiently approximated at the ID levels. Meanwhile, computations on far-field interactions at the MLFMA levels remain unchanged. Only a small portion of matrix entries are required to approximate coupling among well-separated boxes at the ID levels, and these submatrices can be filled without computing the complete original coupling matrix. It follows that the matrix filling in the ID-MLFMA becomes much less expensive. The memory consumed is thus greatly reduced and the MVM is accelerated as well. Several factors that may influence the accuracy, efficiency and reliability of the proposed ID-MLFMA are investigated by numerical experiments. Complex targets are calculated to demonstrate the capability of the ID-MLFMA algorithm.
Ergül, Özgür
2011-11-01
Fast and accurate solutions of large-scale electromagnetics problems involving homogeneous dielectric objects are considered. Problems are formulated with the electric and magnetic current combined-field integral equation and discretized with the Rao-Wilton-Glisson functions. Solutions are performed iteratively by using the multilevel fast multipole algorithm (MLFMA). For the solution of large-scale problems discretized with millions of unknowns, MLFMA is parallelized on distributed-memory architectures using a rigorous technique, namely, the hierarchical partitioning strategy. Efficiency and accuracy of the developed implementation are demonstrated on very large problems involving as many as 100 million unknowns.
Quantum Algorithms Based on Physical Processes
2013-12-03
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
Quantum Algorithms Based on Physical Processes
2013-12-02
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components
NASA Astrophysics Data System (ADS)
Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa
2016-10-01
Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.
Bernhardt, Paul W.; Zhang, Daowen; Wang, Huixia Judy
2014-01-01
Joint modeling techniques have become a popular strategy for studying the association between a response and one or more longitudinal covariates. Motivated by the GenIMS study, where it is of interest to model the event of survival using censored longitudinal biomarkers, a joint model is proposed for describing the relationship between a binary outcome and multiple longitudinal covariates subject to detection limits. A fast, approximate EM algorithm is developed that reduces the dimension of integration in the E-step of the algorithm to one, regardless of the number of random effects in the joint model. Numerical studies demonstrate that the proposed approximate EM algorithm leads to satisfactory parameter and variance estimates in situations with and without censoring on the longitudinal covariates. The approximate EM algorithm is applied to analyze the GenIMS data set. PMID:25598564
Fast algorithms of constrained Delaunay triangulation and skeletonization for band images
NASA Astrophysics Data System (ADS)
Zeng, Wei; Yang, ChengLei; Meng, XiangXu; Yang, YiJun; Yang, XiuKun
2004-09-01
For the boundary polygons of band-images, a fast constrained Delaunay triangulation algorithm is presented and based on it an efficient skeletonization algorithm is designed. In the process of triangulation the characters of uniform grid structure and the band-polygons are utilized to improve the speed of computing the third vertex for one edge within its local ranges when forming a Delaunay triangle. The final skeleton of the band-image is derived after reducing each triangle to local skeleton lines according to its topology. The algorithm with a simple data structure is easy to understand and implement. Moreover, it can deal with multiply connected polygons on the fly. Experiments show that there is a nearly linear dependence between triangulation time and size of band-polygons randomly generated. Correspondingly, the skeletonization algorithm is also an improvement over the previously known results in terms of time. Some practical examples are given in the paper.
An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China
Zou, Hui; Zou, Zhihong; Wang, Xiaojing
2015-01-01
The increase and the complexity of data caused by the uncertain environment is today’s reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006–2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality. PMID:26569283
NASA Astrophysics Data System (ADS)
Wang, Wenyun; Guo, Yingfu
2008-12-01
Phase-shifting methods for 3-D shape measurement have long been employed in optical metrology for their speed and accuracy. For real-time, accurate, 3-D shape measurement, a four-step phase-shifting algorithm which has the advantage of its symmetry is a good choice; however, its measurement error is sensitive to any fringe image errors caused by various sources such as motion blur. To alleviate this problem, a fast two-plus-one phase-shifting algorithm is proposed in this paper. This kind of technology will benefit many applications such as medical imaging, gaming, animation, computer vision, computer graphics, etc.
Digital SAR processing using a fast polynomial transform
NASA Technical Reports Server (NTRS)
Butman, S.; Lipes, R.; Rubin, A.; Truong, T. K.
1981-01-01
A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network.
Fast optimization of glide vehicle reentry trajectory based on genetic algorithm
NASA Astrophysics Data System (ADS)
Jia, Jun; Dong, Ruixing; Yuan, Xuejun; Wang, Chuangwei
2018-02-01
An optimization method of reentry trajectory based on genetic algorithm is presented to meet the need of reentry trajectory optimization for glide vehicle. The dynamic model for the glide vehicle during reentry period is established. Considering the constraints of heat flux, dynamic pressure, overload etc., the optimization of reentry trajectory is investigated by utilizing genetic algorithm. The simulation shows that the method presented by this paper is effective for the optimization of reentry trajectory of glide vehicle. The efficiency and speed of this method is comparative with the references. Optimization results meet all constraints, and the on-line fast optimization is potential by pre-processing the offline samples.
A VLSI pipeline design of a fast prime factor DFT on a finite field
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Shao, H. M.; Reed, I. S.; Shyu, H. C.
1986-01-01
A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). A pipeline structure is used to implement this prime factor DFT over GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.
Kazemi, Mahdi; Arefi, Mohammad Mehdi
2017-03-01
In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur
2009-05-01
Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.
NASA Astrophysics Data System (ADS)
Nouizi, F.; Erkol, H.; Luk, A.; Marks, M.; Unlu, M. B.; Gulsen, G.
2016-10-01
We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.
NASA Astrophysics Data System (ADS)
Zurek, Sebastian; Guzik, Przemyslaw; Pawlak, Sebastian; Kosmider, Marcin; Piskorski, Jaroslaw
2012-12-01
We explore the relation between correlation dimension, approximate entropy and sample entropy parameters, which are commonly used in nonlinear systems analysis. Using theoretical considerations we identify the points which are shared by all these complexity algorithms and show explicitly that the above parameters are intimately connected and mutually interdependent. A new geometrical interpretation of sample entropy and correlation dimension is provided and the consequences for the interpretation of sample entropy, its relative consistency and some of the algorithms for parameter selection for this quantity are discussed. To get an exact algorithmic relation between the three parameters we construct a very fast algorithm for simultaneous calculations of the above, which uses the full time series as the source of templates, rather than the usual 10%. This algorithm can be used in medical applications of complexity theory, as it can calculate all three parameters for a realistic recording of 104 points within minutes with the use of an average notebook computer.
Fast Solvers for Moving Material Interfaces
2008-01-01
interface method—with the semi-Lagrangian contouring method developed in References [16–20]. We are now finalizing portable C / C ++ codes for fast adaptive ...stepping scheme couples a CIR predictor with a trapezoidal corrector using the velocity evaluated from the CIR approximation. It combines the...formula with efficient geometric algorithms and fast accurate contouring techniques. A modular adaptive implementation with fast new geometry modules
NPLOT: an Interactive Plotting Program for NASTRAN Finite Element Models
NASA Technical Reports Server (NTRS)
Jones, G. K.; Mcentire, K. J.
1985-01-01
The NPLOT (NASTRAN Plot) is an interactive computer graphics program for plotting undeformed and deformed NASTRAN finite element models. Developed at NASA's Goddard Space Flight Center, the program provides flexible element selection and grid point, ASET and SPC degree of freedom labelling. It is easy to use and provides a combination menu and command driven user interface. NPLOT also provides very fast hidden line and haloed line algorithms. The hidden line algorithm in NPLOT proved to be both very accurate and several times faster than other existing hidden line algorithms. A fast spatial bucket sort and horizon edge computation are used to achieve this high level of performance. The hidden line and the haloed line algorithms are the primary features that make NPLOT different from other plotting programs.
Gog, Simon; Bader, Martin
2008-10-01
The problem of sorting signed permutations by reversals is a well-studied problem in computational biology. The first polynomial time algorithm was presented by Hannenhalli and Pevzner in 1995. The algorithm was improved several times, and nowadays the most efficient algorithm has a subquadratic running time. Simple permutations played an important role in the development of these algorithms. Although the latest result of Tannier et al. does not require simple permutations, the preliminary version of their algorithm as well as the first polynomial time algorithm of Hannenhalli and Pevzner use the structure of simple permutations. More precisely, the latter algorithms require a precomputation that transforms a permutation into an equivalent simple permutation. To the best of our knowledge, all published algorithms for this transformation have at least a quadratic running time. For further investigations on genome rearrangement problems, the existence of a fast algorithm for the transformation could be crucial. Another important task is the back transformation, i.e. if we have a sorting on the simple permutation, transform it into a sorting on the original permutation. Again, the naive approach results in an algorithm with quadratic running time. In this paper, we present a linear time algorithm for transforming a permutation into an equivalent simple permutation, and an O(n log n) algorithm for the back transformation of the sorting sequence.
Escalated convergent artificial bee colony
NASA Astrophysics Data System (ADS)
Jadon, Shimpi Singh; Bansal, Jagdish Chand; Tiwari, Ritu
2016-03-01
Artificial bee colony (ABC) optimisation algorithm is a recent, fast and easy-to-implement population-based meta heuristic for optimisation. ABC has been proved a rival algorithm with some popular swarm intelligence-based algorithms such as particle swarm optimisation, firefly algorithm and ant colony optimisation. The solution search equation of ABC is influenced by a random quantity which helps its search process in exploration at the cost of exploitation. In order to find a fast convergent behaviour of ABC while exploitation capability is maintained, in this paper basic ABC is modified in two ways. First, to improve exploitation capability, two local search strategies, namely classical unidimensional local search and levy flight random walk-based local search are incorporated with ABC. Furthermore, a new solution search strategy, namely stochastic diffusion scout search is proposed and incorporated into the scout bee phase to provide more chance to abandon solution to improve itself. Efficiency of the proposed algorithm is tested on 20 benchmark test functions of different complexities and characteristics. Results are very promising and they prove it to be a competitive algorithm in the field of swarm intelligence-based algorithms.
Efficient RNA structure comparison algorithms.
Arslan, Abdullah N; Anandan, Jithendar; Fry, Eric; Monschke, Keith; Ganneboina, Nitin; Bowerman, Jason
2017-12-01
Recently proposed relative addressing-based ([Formula: see text]) RNA secondary structure representation has important features by which an RNA structure database can be stored into a suffix array. A fast substructure search algorithm has been proposed based on binary search on this suffix array. Using this substructure search algorithm, we present a fast algorithm that finds the largest common substructure of given multiple RNA structures in [Formula: see text] format. The multiple RNA structure comparison problem is NP-hard in its general formulation. We introduced a new problem for comparing multiple RNA structures. This problem has more strict similarity definition and objective, and we propose an algorithm that solves this problem efficiently. We also develop another comparison algorithm that iteratively calls this algorithm to locate nonoverlapping large common substructures in compared RNAs. With the new resulting tools, we improved the RNASSAC website (linked from http://faculty.tamuc.edu/aarslan ). This website now also includes two drawing tools: one specialized for preparing RNA substructures that can be used as input by the search tool, and another one for automatically drawing the entire RNA structure from a given structure sequence.
A fast bilinear structure from motion algorithm using a video sequence and inertial sensors.
Ramachandran, Mahesh; Veeraraghavan, Ashok; Chellappa, Rama
2011-01-01
In this paper, we study the benefits of the availability of a specific form of additional information—the vertical direction (gravity) and the height of the camera, both of which can be conveniently measured using inertial sensors and a monocular video sequence for 3D urban modeling. We show that in the presence of this information, the SfM equations can be rewritten in a bilinear form. This allows us to derive a fast, robust, and scalable SfM algorithm for large scale applications. The SfM algorithm developed in this paper is experimentally demonstrated to have favorable properties compared to the sparse bundle adjustment algorithm. We provide experimental evidence indicating that the proposed algorithm converges in many cases to solutions with lower error than state-of-art implementations of bundle adjustment. We also demonstrate that for the case of large reconstruction problems, the proposed algorithm takes lesser time to reach its solution compared to bundle adjustment. We also present SfM results using our algorithm on the Google StreetView research data set.
A novel algorithm for fast grasping of unknown objects using C-shape configuration
NASA Astrophysics Data System (ADS)
Lei, Qujiang; Chen, Guangming; Meijer, Jonathan; Wisse, Martijn
2018-02-01
Increasing grasping efficiency is very important for the robots to grasp unknown objects especially subjected to unfamiliar environments. To achieve this, a new algorithm is proposed based on the C-shape configuration. Specifically, the geometric model of the used under-actuated gripper is approximated as a C-shape. To obtain an appropriate graspable position, this C-shape configuration is applied to fit geometric model of an unknown object. The geometric model of unknown object is constructed by using a single-view partial point cloud. To examine the algorithm using simulations, a comparison of the commonly used motion planners is made. The motion planner with the highest number of solved runs, lowest computing time and the shortest path length is chosen to execute grasps found by this grasping algorithm. The simulation results demonstrate that excellent grasping efficiency is achieved by adopting our algorithm. To validate this algorithm, experiment tests are carried out using a UR5 robot arm and an under-actuated gripper. The experimental results show that steady grasping actions are obtained. Hence, this research provides a novel algorithm for fast grasping of unknown objects.
Fast algorithms for chiral fermions in 2 dimensions
NASA Astrophysics Data System (ADS)
Hyka (Xhako), Dafina; Osmanaj (Zeqirllari), Rudina
2018-03-01
In lattice QCD simulations the formulation of the theory in lattice should be chiral in order that symmetry breaking happens dynamically from interactions. In order to guarantee this symmetry on the lattice one uses overlap and domain wall fermions. On the other hand high computational cost of lattice QCD simulations with overlap or domain wall fermions remains a major obstacle of research in the field of elementary particles. We have developed the preconditioned GMRESR algorithm as fast inverting algorithm for chiral fermions in U(1) lattice gauge theory. In this algorithm we used the geometric multigrid idea along the extra dimension.The main result of this work is that the preconditioned GMRESR is capable to accelerate the convergence 2 to 12 times faster than the other optimal algorithms (SHUMR) for different coupling constant and lattice 32x32. Also, in this paper we tested it for larger lattice size 64x64. From the results of simulations we can see that our algorithm is faster than SHUMR. This is a very promising result that this algorithm can be adapted also in 4 dimension.
Fast wavelet based algorithms for linear evolution equations
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
Dynamic grid refinement for partial differential equations on parallel computers
NASA Technical Reports Server (NTRS)
Mccormick, S.; Quinlan, D.
1989-01-01
The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids to provide adaptive resolution and fast solution of PDEs. An asynchronous version of FAC, called AFAC, that completely eliminates the bottleneck to parallelism is presented. This paper describes the advantage that this algorithm has in adaptive refinement for moving singularities on multiprocessor computers. This work is applicable to the parallel solution of two- and three-dimensional shock tracking problems.
High order solution of Poisson problems with piecewise constant coefficients and interface jumps
NASA Astrophysics Data System (ADS)
Marques, Alexandre Noll; Nave, Jean-Christophe; Rosales, Rodolfo Ruben
2017-04-01
We present a fast and accurate algorithm to solve Poisson problems in complex geometries, using regular Cartesian grids. We consider a variety of configurations, including Poisson problems with interfaces across which the solution is discontinuous (of the type arising in multi-fluid flows). The algorithm is based on a combination of the Correction Function Method (CFM) and Boundary Integral Methods (BIM). Interface and boundary conditions can be treated in a fast and accurate manner using boundary integral equations, and the associated BIM. Unfortunately, BIM can be costly when the solution is needed everywhere in a grid, e.g. fluid flow problems. We use the CFM to circumvent this issue. The solution from the BIM is used to rewrite the problem as a series of Poisson problems in rectangular domains-which requires the BIM solution at interfaces/boundaries only. These Poisson problems involve discontinuities at interfaces, of the type that the CFM can handle. Hence we use the CFM to solve them (to high order of accuracy) with finite differences and a Fast Fourier Transform based fast Poisson solver. We present 2-D examples of the algorithm applied to Poisson problems involving complex geometries, including cases in which the solution is discontinuous. We show that the algorithm produces solutions that converge with either 3rd or 4th order of accuracy, depending on the type of boundary condition and solution discontinuity.
A modified Dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Dwoyer, D. M.
1983-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitative agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions. Previously announced in STAR as N82-16363
Angelis, G I; Reader, A J; Kotasidis, F A; Lionheart, W R; Matthews, J C
2011-07-07
Iterative expectation maximization (EM) techniques have been extensively used to solve maximum likelihood (ML) problems in positron emission tomography (PET) image reconstruction. Although EM methods offer a robust approach to solving ML problems, they usually suffer from slow convergence rates. The ordered subsets EM (OSEM) algorithm provides significant improvements in the convergence rate, but it can cycle between estimates converging towards the ML solution of each subset. In contrast, gradient-based methods, such as the recently proposed non-monotonic maximum likelihood (NMML) and the more established preconditioned conjugate gradient (PCG), offer a globally convergent, yet equally fast, alternative to OSEM. Reported results showed that NMML provides faster convergence compared to OSEM; however, it has never been compared to other fast gradient-based methods, like PCG. Therefore, in this work we evaluate the performance of two gradient-based methods (NMML and PCG) and investigate their potential as an alternative to the fast and widely used OSEM. All algorithms were evaluated using 2D simulations, as well as a single [(11)C]DASB clinical brain dataset. Results on simulated 2D data show that both PCG and NMML achieve orders of magnitude faster convergence to the ML solution compared to MLEM and exhibit comparable performance to OSEM. Equally fast performance is observed between OSEM and PCG for clinical 3D data, but NMML seems to perform poorly. However, with the addition of a preconditioner term to the gradient direction, the convergence behaviour of NMML can be substantially improved. Although PCG is a fast convergent algorithm, the use of a (bent) line search increases the complexity of the implementation, as well as the computational time involved per iteration. Contrary to previous reports, NMML offers no clear advantage over OSEM or PCG, for noisy PET data. Therefore, we conclude that there is little evidence to replace OSEM as the algorithm of choice for many applications, especially given that in practice convergence is often not desired for algorithms seeking ML estimates.
Computationally efficient algorithm for high sampling-frequency operation of active noise control
NASA Astrophysics Data System (ADS)
Rout, Nirmal Kumar; Das, Debi Prasad; Panda, Ganapati
2015-05-01
In high sampling-frequency operation of active noise control (ANC) system the length of the secondary path estimate and the ANC filter are very long. This increases the computational complexity of the conventional filtered-x least mean square (FXLMS) algorithm. To reduce the computational complexity of long order ANC system using FXLMS algorithm, frequency domain block ANC algorithms have been proposed in past. These full block frequency domain ANC algorithms are associated with some disadvantages such as large block delay, quantization error due to computation of large size transforms and implementation difficulties in existing low-end DSP hardware. To overcome these shortcomings, the partitioned block ANC algorithm is newly proposed where the long length filters in ANC are divided into a number of equal partitions and suitably assembled to perform the FXLMS algorithm in the frequency domain. The complexity of this proposed frequency domain partitioned block FXLMS (FPBFXLMS) algorithm is quite reduced compared to the conventional FXLMS algorithm. It is further reduced by merging one fast Fourier transform (FFT)-inverse fast Fourier transform (IFFT) combination to derive the reduced structure FPBFXLMS (RFPBFXLMS) algorithm. Computational complexity analysis for different orders of filter and partition size are presented. Systematic computer simulations are carried out for both the proposed partitioned block ANC algorithms to show its accuracy compared to the time domain FXLMS algorithm.
Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.
Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F
2011-03-01
This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.
A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank
2004-01-01
The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.
Vanishing points detection using combination of fast Hough transform and deep learning
NASA Astrophysics Data System (ADS)
Sheshkus, Alexander; Ingacheva, Anastasia; Nikolaev, Dmitry
2018-04-01
In this paper we propose a novel method for vanishing points detection based on convolutional neural network (CNN) approach and fast Hough transform algorithm. We show how to determine fast Hough transform neural network layer and how to use it in order to increase usability of the neural network approach to the vanishing point detection task. Our algorithm includes CNN with consequence of convolutional and fast Hough transform layers. We are building estimator for distribution of possible vanishing points in the image. This distribution can be used to find candidates of vanishing point. We provide experimental results from tests of suggested method using images collected from videos of road trips. Our approach shows stable result on test images with different projective distortions and noise. Described approach can be effectively implemented for mobile GPU and CPU.
A Fast parallel tridiagonal algorithm for a class of CFD applications
NASA Technical Reports Server (NTRS)
Moitra, Stuti; Sun, Xian-He
1996-01-01
The parallel diagonal dominant (PDD) algorithm is an efficient tridiagonal solver. This paper presents for study a variation of the PDD algorithm, the reduced PDD algorithm. The new algorithm maintains the minimum communication provided by the PDD algorithm, but has a reduced operation count. The PDD algorithm also has a smaller operation count than the conventional sequential algorithm for many applications. Accuracy analysis is provided for the reduced PDD algorithm for symmetric Toeplitz tridiagonal (STT) systems. Implementation results on Langley's Intel Paragon and IBM SP2 show that both the PDD and reduced PDD algorithms are efficient and scalable.
Fast-SG: an alignment-free algorithm for hybrid assembly.
Di Genova, Alex; Ruz, Gonzalo A; Sagot, Marie-France; Maass, Alejandro
2018-05-01
Long-read sequencing technologies are the ultimate solution for genome repeats, allowing near reference-level reconstructions of large genomes. However, long-read de novo assembly pipelines are computationally intense and require a considerable amount of coverage, thereby hindering their broad application to the assembly of large genomes. Alternatively, hybrid assembly methods that combine short- and long-read sequencing technologies can reduce the time and cost required to produce de novo assemblies of large genomes. Here, we propose a new method, called Fast-SG, that uses a new ultrafast alignment-free algorithm specifically designed for constructing a scaffolding graph using light-weight data structures. Fast-SG can construct the graph from either short or long reads. This allows the reuse of efficient algorithms designed for short-read data and permits the definition of novel modular hybrid assembly pipelines. Using comprehensive standard datasets and benchmarks, we show how Fast-SG outperforms the state-of-the-art short-read aligners when building the scaffoldinggraph and can be used to extract linking information from either raw or error-corrected long reads. We also show how a hybrid assembly approach using Fast-SG with shallow long-read coverage (5X) and moderate computational resources can produce long-range and accurate reconstructions of the genomes of Arabidopsis thaliana (Ler-0) and human (NA12878). Fast-SG opens a door to achieve accurate hybrid long-range reconstructions of large genomes with low effort, high portability, and low cost.
A Sampling Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications
NASA Technical Reports Server (NTRS)
Starek, Joseph A.; Barbee, Brent W.; Pavone, Marco
2015-01-01
This paper presents a methods for safe spacecraft autonomous maneuvering that leverages robotic motion-planning techniques to spacecraft control. Specifically the scenario we consider is an in-plan rendezvous of a chaser spacecraft in proximity to a target spacecraft at the origin of the Clohessy Wiltshire Hill frame. The trajectory for the chaser spacecraft is generated in a receding horizon fashion by executing a sampling based robotic motion planning algorithm name Fast Marching Trees (FMT) which efficiently grows a tree of trajectories over a set of probabillistically drawn samples in the state space. To enforce safety the tree is only grown over actively safe samples for which there exists a one-burn collision avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc and that can be executed under potential thrusters failures. The overall approach establishes a provably correct framework for the systematic encoding of safety specifications into the spacecraft trajectory generations process and appears amenable to real time implementation on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous approach to a single client in Low Earth Orbit.
New fast DCT algorithms based on Loeffler's factorization
NASA Astrophysics Data System (ADS)
Hong, Yoon Mi; Kim, Il-Koo; Lee, Tammy; Cheon, Min-Su; Alshina, Elena; Han, Woo-Jin; Park, Jeong-Hoon
2012-10-01
This paper proposes a new 32-point fast discrete cosine transform (DCT) algorithm based on the Loeffler's 16-point transform. Fast integer realizations of 16-point and 32-point transforms are also provided based on the proposed transform. For the recent development of High Efficiency Video Coding (HEVC), simplified quanti-zation and de-quantization process are proposed. Three different forms of implementation with the essentially same performance, namely matrix multiplication, partial butterfly, and full factorization can be chosen accord-ing to the given platform. In terms of the number of multiplications required for the realization, our proposed full-factorization is 3~4 times faster than a partial butterfly, and about 10 times faster than direct matrix multiplication.
NASA Technical Reports Server (NTRS)
Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)
2001-01-01
A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.
Yeo, Lami; Romero, Roberto; Jodicke, Cristiano; Oggè, Giovanna; Lee, Wesley; Kusanovic, Juan Pedro; Vaisbuch, Edi; Hassan, Sonia S.
2010-01-01
Objective To describe a novel and simple algorithm (FAST Echo: Four chamber view And Swing Technique) to visualize standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). Methods We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) “swings” through the ductal arch image (“swing technique”), providing an infinite number of cardiac planes in sequence. Each line generated the following plane(s): 1) Line 1: three-vessels and trachea view; 2) Line 2: five-chamber view and long axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); 3) Line 3: four-chamber view; and 4) “Swing” line: three-vessels and trachea view, five-chamber view and/or long axis view of the aorta, four-chamber view, and stomach. The algorithm was then tested in 50 normal hearts (15.3 – 40 weeks of gestation) and visualization rates for cardiac diagnostic planes were calculated. To determine if the algorithm could identify planes that departed from the normal images, we tested the algorithm in 5 cases with proven congenital heart defects. Results In normal cases, the FAST Echo algorithm (3 locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long axis view of the aorta, four-chamber view): 1) individually in 100% of cases [except for the three-vessel and trachea view, which was seen in 98% (49/50)]; and 2) simultaneously in 98% (49/50). The “swing technique” was able to generate the three-vessels and trachea view, five-chamber view and/or long axis view of the aorta, four-chamber view, and stomach in 100% of normal cases. In the abnormal cases, the FAST Echo algorithm demonstrated the cardiac defects and displayed views that deviated from what was expected from the examination of normal hearts. The “swing technique” was useful in demonstrating the specific diagnosis due to visualization of an infinite number of cardiac planes in sequence. Conclusions This novel and simple algorithm can be used to visualize standard fetal echocardiographic planes in normal fetal hearts. The FAST Echo algorithm may simplify examination of the fetal heart and could reduce operator dependency. Using this algorithm, the inability to obtain expected views or the appearance of abnormal views in the generated planes should raise the index of suspicion for congenital heart disease. PMID:20878671
Yeo, L; Romero, R; Jodicke, C; Oggè, G; Lee, W; Kusanovic, J P; Vaisbuch, E; Hassan, S
2011-04-01
To describe a novel and simple algorithm (four-chamber view and 'swing technique' (FAST) echo) for visualization of standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) 'swings' through the ductal arch image (swing technique), providing an infinite number of cardiac planes in sequence. Each line generates the following plane(s): (a) Line 1: three-vessels and trachea view; (b) Line 2: five-chamber view and long-axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); (c) Line 3: four-chamber view; and (d) 'swing line': three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach. The algorithm was then tested in 50 normal hearts in fetuses at 15.3-40 weeks' gestation and visualization rates for cardiac diagnostic planes were calculated. To determine whether the algorithm could identify planes that departed from the normal images, we tested the algorithm in five cases with proven congenital heart defects. In normal cases, the FAST echo algorithm (three locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long-axis view of the aorta, four-chamber view) individually in 100% of cases (except for the three-vessels and trachea view, which was seen in 98% (49/50)) and simultaneously in 98% (49/50). The swing technique was able to generate the three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach in 100% of normal cases. In the abnormal cases, the FAST echo algorithm demonstrated the cardiac defects and displayed views that deviated from what was expected from the examination of normal hearts. The swing technique was useful for demonstrating the specific diagnosis due to visualization of an infinite number of cardiac planes in sequence. This novel and simple algorithm can be used to visualize standard fetal echocardiographic planes in normal fetal hearts. The FAST echo algorithm may simplify examination of the fetal heart and could reduce operator dependency. Using this algorithm, inability to obtain expected views or the appearance of abnormal views in the generated planes should raise the index of suspicion for congenital heart disease. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.
Xu, Q; Yang, D; Tan, J; Anastasio, M
2012-06-01
To improve image quality and reduce imaging dose in CBCT for radiation therapy applications and to realize near real-time image reconstruction based on use of a fast convergence iterative algorithm and acceleration by multi-GPUs. An iterative image reconstruction that sought to minimize a weighted least squares cost function that employed total variation (TV) regularization was employed to mitigate projection data incompleteness and noise. To achieve rapid 3D image reconstruction (< 1 min), a highly optimized multiple-GPU implementation of the algorithm was developed. The convergence rate and reconstruction accuracy were evaluated using a modified 3D Shepp-Logan digital phantom and a Catphan-600 physical phantom. The reconstructed images were compared with the clinical FDK reconstruction results. Digital phantom studies showed that only 15 iterations and 60 iterations are needed to achieve algorithm convergence for 360-view and 60-view cases, respectively. The RMSE was reduced to 10-4 and 10-2, respectively, by using 15 iterations for each case. Our algorithm required 5.4s to complete one iteration for the 60-view case using one Tesla C2075 GPU. The few-view study indicated that our iterative algorithm has great potential to reduce the imaging dose and preserve good image quality. For the physical Catphan studies, the images obtained from the iterative algorithm possessed better spatial resolution and higher SNRs than those obtained from by use of a clinical FDK reconstruction algorithm. We have developed a fast convergence iterative algorithm for CBCT image reconstruction. The developed algorithm yielded images with better spatial resolution and higher SNR than those produced by a commercial FDK tool. In addition, from the few-view study, the iterative algorithm has shown great potential for significantly reducing imaging dose. We expect that the developed reconstruction approach will facilitate applications including IGART and patient daily CBCT-based treatment localization. © 2012 American Association of Physicists in Medicine.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1991-01-01
Efficient iterative solution methods are being developed for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. Thus, the extra work required by iterative schemes can also be designed to perform efficiently on current and future generation scalable, missively parallel machines. An obvious candidate for iteratively solving the system of coupled nonlinear algebraic equations arising in CFD applications is the Newton method. Newton's method was implemented in existing finite difference and finite volume methods. Depending on the complexity of the problem, the number of Newton iterations needed per step to solve the discretized system of equations can, however, vary dramatically from a few to several hundred. Another popular approach based on the classical conjugate gradient method, known as the GMRES (Generalized Minimum Residual) algorithm is investigated. The GMRES algorithm was used in the past by a number of researchers for solving steady viscous and inviscid flow problems with considerable success. Here, the suitability of this algorithm is investigated for solving the system of nonlinear equations that arise in unsteady Navier-Stokes solvers at each time step. Unlike the Newton method which attempts to drive the error in the solution at each and every node down to zero, the GMRES algorithm only seeks to minimize the L2 norm of the error. In the GMRES algorithm the changes in the flow properties from one time step to the next are assumed to be the sum of a set of orthogonal vectors. By choosing the number of vectors to a reasonably small value N (between 5 and 20) the work required for advancing the solution from one time step to the next may be kept to (N+1) times that of a noniterative scheme. Many of the operations required by the GMRES algorithm such as matrix-vector multiplies, matrix additions and subtractions can all be vectorized and parallelized efficiently.
Fast computation algorithms for speckle pattern simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nascov, Victor; Samoilă, Cornel; Ursuţiu, Doru
2013-11-13
We present our development of a series of efficient computation algorithms, generally usable to calculate light diffraction and particularly for speckle pattern simulation. We use mainly the scalar diffraction theory in the form of Rayleigh-Sommerfeld diffraction formula and its Fresnel approximation. Our algorithms are based on a special form of the convolution theorem and the Fast Fourier Transform. They are able to evaluate the diffraction formula much faster than by direct computation and we have circumvented the restrictions regarding the relative sizes of the input and output domains, met on commonly used procedures. Moreover, the input and output planes canmore » be tilted each to other and the output domain can be off-axis shifted.« less
ANOTHER LOOK AT THE FAST ITERATIVE SHRINKAGE/THRESHOLDING ALGORITHM (FISTA)*
Kim, Donghwan; Fessler, Jeffrey A.
2017-01-01
This paper provides a new way of developing the “Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)” [3] that is widely used for minimizing composite convex functions with a nonsmooth term such as the ℓ1 regularizer. In particular, this paper shows that FISTA corresponds to an optimized approach to accelerating the proximal gradient method with respect to a worst-case bound of the cost function. This paper then proposes a new algorithm that is derived by instead optimizing the step coefficients of the proximal gradient method with respect to a worst-case bound of the composite gradient mapping. The proof is based on the worst-case analysis called Performance Estimation Problem in [11]. PMID:29805242
Digital SAR processing using a fast polynomial transform
NASA Technical Reports Server (NTRS)
Truong, T. K.; Lipes, R. G.; Butman, S. A.; Reed, I. S.; Rubin, A. L.
1984-01-01
A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network. Previously announced in STAR as N82-11295
NASA Astrophysics Data System (ADS)
Jiang, Junfeng; An, Jianchang; Liu, Kun; Ma, Chunyu; Li, Zhichen; Liu, Tiegen
2017-09-01
We propose a fast positioning algorithm for the asymmetric dual Mach-Zehnder interferometric infrared fiber vibration sensor. Using the approximately derivation method and the enveloping detection method, we successfully eliminate the asymmetry of the interference outputs and improve the processing speed. A positioning measurement experiment was carried out to verify the effectiveness of the proposed algorithm. At the sensing length of 85 km, the experimental results show that the mean positioning error is 18.9 m and the mean processing time is 116 ms. The processing speed is improved by 5 times compared to what can be achieved by using the traditional time-frequency analysis-based positioning method.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
NASA Astrophysics Data System (ADS)
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-04-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-01-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686
Efficient convolutional sparse coding
Wohlberg, Brendt
2017-06-20
Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.
Petitjean, Michel
2017-10-01
Some major proteins families, such as carbonic anhydrases (CAs), have a conical cavity at the active site. No algorithm was available to compute conical cavities, so we needed to design one. The fast algorithm we designed let us show on a set of 717 CAs extracted from the PDB database that γ-CAs are characterized by active site cavity cone angles significantly larger than those of α-CAs and β-CAs: the generatrix-axis angles are greater than 60° for the γ-CAs while they are smaller than 50° for the other CAs. Free binaries of the CONICA software implementing the algorithm are available through a software repository at http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A fast and high performance multiple data integration algorithm for identifying human disease genes
2015-01-01
Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620
ERIC Educational Resources Information Center
American School and University, 1981
1981-01-01
Renovation of and addition to a dining hall at the University of Georgia has doubled its size and provided a "garden" room for dining. The new student center scheduled for completion in March will have three fast food restaurants. (Author/MLF)
... they are isolated in a culture . These additional research tests can identify the type and subtype of S. aureus ... 14. Case, M. (2006 March 15). Fast staph test limits spread, at a high price. Post-gazette.com [On-line information]. Available online at ...
INTEGRAL serendipitous upper limits on FRB180301
NASA Astrophysics Data System (ADS)
Savchenko, V.; Panessa, F.; Ferrigno, C.; Keane, E.; Bazzano, A.; Burgay, M.; Kuulkers, E.; Petroff, E.; Ubertini, P.; Diehl, R.
2018-03-01
On March 1 at T0 = 07:34:19.76 (UTC), a Fast Radio Burst (FRB180301) was detected during Breakthrough Listen observations with the 21-cm multibeam receiver of the CSIRO Parkes radio telescope (see ATel #11376).
Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki
2012-01-01
Background For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. Results We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Conclusions Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html. PMID:22679486
Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki
2012-01-01
For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.
Fast clustering using adaptive density peak detection.
Wang, Xiao-Feng; Xu, Yifan
2017-12-01
Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.
Mapping Snow Grain Size over Greenland from MODIS
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Tedesco, Marco; Wang, Yujie; Kokhanovsky, Alexander
2008-01-01
This paper presents a new automatic algorithm to derive optical snow grain size (SGS) at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Differently from previous approaches, snow grains are not assumed to be spherical but a fractal approach is used to account for their irregular shape. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived SGS shows a good sensitivity to snow metamorphism, including melting and snow precipitation events. Preprocessing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask (CM) is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust performance of CM algorithm in discrimination of clouds over bright snow and ice. As part of the validation analysis, SGS derived from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM\\I radiometer, which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS SGS was compared with predictions of the snow model CROCUS driven by measurements of the automatic whether stations of the Greenland Climate Network. We found that CROCUS grain size is on average a factor of two larger than MODIS-derived SGS. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the first melting period in mid-June. Following detailed time series analysis of SGS for four permanent sites, the paper presents SGS maps over the Greenland ice sheet for the March-September period of 2004.
biobambam: tools for read pair collation based algorithms on BAM files
2014-01-01
Background Sequence alignment data is often ordered by coordinate (id of the reference sequence plus position on the sequence where the fragment was mapped) when stored in BAM files, as this simplifies the extraction of variants between the mapped data and the reference or of variants within the mapped data. In this order paired reads are usually separated in the file, which complicates some other applications like duplicate marking or conversion to the FastQ format which require to access the full information of the pairs. Results In this paper we introduce biobambam, a set of tools based on the efficient collation of alignments in BAM files by read name. The employed collation algorithm avoids time and space consuming sorting of alignments by read name where this is possible without using more than a specified amount of main memory. Using this algorithm tasks like duplicate marking in BAM files and conversion of BAM files to the FastQ format can be performed very efficiently with limited resources. We also make the collation algorithm available in the form of an API for other projects. This API is part of the libmaus package. Conclusions In comparison with previous approaches to problems involving the collation of alignments by read name like the BAM to FastQ or duplication marking utilities our approach can often perform an equivalent task more efficiently in terms of the required main memory and run-time. Our BAM to FastQ conversion is faster than all widely known alternatives including Picard and bamUtil. Our duplicate marking is about as fast as the closest competitor bamUtil for small data sets and faster than all known alternatives on large and complex data sets.
Efficient Geometric Sound Propagation Using Visibility Culling
NASA Astrophysics Data System (ADS)
Chandak, Anish
2011-07-01
Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying efficient audio-processing algorithms. We also present the first efficient audio-processing algorithm for scenarios with simultaneously moving source and moving receiver (MS-MR) which incurs less than 25% overhead compared to static source and moving receiver (SS-MR) or moving source and static receiver (MS-SR) scenario.
2009-09-01
and could be used to compensate for high frequency distortions to the LOS caused by platform jitter and the effects of the optical turbulence . In...engineer an unknown detector based on few experimental interactions. For watermarking algorithms in particular, we seek to identify specific distortions ...of a watermarked image that clearly identify or rule out one particular class of embedding. These experimental distortions surgical test for rapid
Fast graph-based relaxed clustering for large data sets using minimal enclosing ball.
Qian, Pengjiang; Chung, Fu-Lai; Wang, Shitong; Deng, Zhaohong
2012-06-01
Although graph-based relaxed clustering (GRC) is one of the spectral clustering algorithms with straightforwardness and self-adaptability, it is sensitive to the parameters of the adopted similarity measure and also has high time complexity O(N(3)) which severely weakens its usefulness for large data sets. In order to overcome these shortcomings, after introducing certain constraints for GRC, an enhanced version of GRC [constrained GRC (CGRC)] is proposed to increase the robustness of GRC to the parameters of the adopted similarity measure, and accordingly, a novel algorithm called fast GRC (FGRC) based on CGRC is developed in this paper by using the core-set-based minimal enclosing ball approximation. A distinctive advantage of FGRC is that its asymptotic time complexity is linear with the data set size N. At the same time, FGRC also inherits the straightforwardness and self-adaptability from GRC, making the proposed FGRC a fast and effective clustering algorithm for large data sets. The advantages of FGRC are validated by various benchmarking and real data sets.
An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes
Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523
Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.
Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kimesh, Matthew A.
2012-01-01
Modern hyperspectral imaging systems are able to acquire far more data than can be downlinked from a spacecraft. Onboard data compression helps to alleviate this problem, but requires a system capable of power efficiency and high throughput. Software solutions have limited throughput performance and are power-hungry. Dedicated hardware solutions can provide both high throughput and power efficiency, while taking the load off of the main processor. Thus a hardware compression system was developed. The implementation uses a field-programmable gate array (FPGA). The implementation is based on the fast lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral-Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which achieves excellent compression performance and has low complexity. This algorithm performs predictive compression using an adaptive filtering method, and uses adaptive Golomb coding. The implementation also packetizes the coded data. The FL algorithm is well suited for implementation in hardware. In the FPGA implementation, one sample is compressed every clock cycle, which makes for a fast and practical realtime solution for space applications. Benefits of this implementation are: 1) The underlying algorithm achieves a combination of low complexity and compression effectiveness that exceeds that of techniques currently in use. 2) The algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. 3) Hardware acceleration provides a throughput improvement of 10 to 100 times vs. the software implementation. A prototype of the compressor is available in software, but it runs at a speed that does not meet spacecraft requirements. The hardware implementation targets the Xilinx Virtex IV FPGAs, and makes the use of this compressor practical for Earth satellites as well as beyond-Earth missions with hyperspectral instruments.
NASA Technical Reports Server (NTRS)
Zhu, Zhifan; Gridnev, Sergei; Windhorst, Robert D.
2015-01-01
This User Guide describes SOSS (Surface Operations Simulator and Scheduler) software build and graphic user interface. SOSS is a desktop application that simulates airport surface operations in fast time using traffic management algorithms. It moves aircraft on the airport surface based on information provided by scheduling algorithm prototypes, monitors separation violation and scheduling conformance, and produces scheduling algorithm performance data.
Liu, Ying; Lita, Lucian Vlad; Niculescu, Radu Stefan; Mitra, Prasenjit; Giles, C Lee
2008-11-06
Owing to new advances in computer hardware, large text databases have become more prevalent than ever.Automatically mining information from these databases proves to be a challenge due to slow pattern/string matching techniques. In this paper we present a new, fast multi-string pattern matching method based on the well known Aho-Chorasick algorithm. Advantages of our algorithm include:the ability to exploit the natural structure of text, the ability to perform significant character shifting, avoiding backtracking jumps that are not useful, efficiency in terms of matching time and avoiding the typical "sub-string" false positive errors.Our algorithm is applicable to many fields with free text, such as the health care domain and the scientific document field. In this paper, we apply the BSS algorithm to health care data and mine hundreds of thousands of medical concepts from a large Electronic Medical Record (EMR) corpora simultaneously and efficiently. Experimental results show the superiority of our algorithm when compared with the top of the line multi-string matching algorithms.
Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift
Ortíz Díaz, Agustín; Ramos-Jiménez, Gonzalo; Frías Blanco, Isvani; Caballero Mota, Yailé; Morales-Bueno, Rafael
2015-01-01
The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts. PMID:25879051
NASA Astrophysics Data System (ADS)
Fischer, Peter; Schuegraf, Philipp; Merkle, Nina; Storch, Tobias
2018-04-01
This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR) optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search) and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.
Fast Demand Forecast of Electric Vehicle Charging Stations for Cell Phone Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majidpour, Mostafa; Qiu, Charlie; Chung, Ching-Yen
This paper describes the core cellphone application algorithm which has been implemented for the prediction of energy consumption at Electric Vehicle (EV) Charging Stations at UCLA. For this interactive user application, the total time of accessing database, processing the data and making the prediction, needs to be within a few seconds. We analyze four relatively fast Machine Learning based time series prediction algorithms for our prediction engine: Historical Average, kNearest Neighbor, Weighted k-Nearest Neighbor, and Lazy Learning. The Nearest Neighbor algorithm (k Nearest Neighbor with k=1) shows better performance and is selected to be the prediction algorithm implemented for themore » cellphone application. Two applications have been designed on top of the prediction algorithm: one predicts the expected available energy at the station and the other one predicts the expected charging finishing time. The total time, including accessing the database, data processing, and prediction is about one second for both applications.« less
Hong, Xia
2006-07-01
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
Fast intersection detection algorithm for PC-based robot off-line programming
NASA Astrophysics Data System (ADS)
Fedrowitz, Christian H.
1994-11-01
This paper presents a method for fast and reliable collision detection in complex production cells. The algorithm is part of the PC-based robot off-line programming system of the University of Siegen (Ropsus). The method is based on a solid model which is managed by a simplified constructive solid geometry model (CSG-model). The collision detection problem is divided in two steps. In the first step the complexity of the problem is reduced in linear time. In the second step the remaining solids are tested for intersection. For this the Simplex algorithm, which is known from linear optimization, is used. It computes a point which is common to two convex polyhedra. The polyhedra intersect, if such a point exists. Regarding the simplified geometrical model of Ropsus the algorithm runs also in linear time. In conjunction with the first step a resultant collision detection algorithm is found which requires linear time in all. Moreover it computes the resultant intersection polyhedron using the dual transformation.
Ming, Xing; Li, Anan; Wu, Jingpeng; Yan, Cheng; Ding, Wenxiang; Gong, Hui; Zeng, Shaoqun; Liu, Qian
2013-01-01
Digital reconstruction of three-dimensional (3D) neuronal morphology from light microscopy images provides a powerful technique for analysis of neural circuits. It is time-consuming to manually perform this process. Thus, efficient computer-assisted approaches are preferable. In this paper, we present an innovative method for the tracing and reconstruction of 3D neuronal morphology from light microscopy images. The method uses a prediction and refinement strategy that is based on exploration of local neuron structural features. We extended the rayburst sampling algorithm to a marching fashion, which starts from a single or a few seed points and marches recursively forward along neurite branches to trace and reconstruct the whole tree-like structure. A local radius-related but size-independent hemispherical sampling was used to predict the neurite centerline and detect branches. Iterative rayburst sampling was performed in the orthogonal plane, to refine the centerline location and to estimate the local radius. We implemented the method in a cooperative 3D interactive visualization-assisted system named flNeuronTool. The source code in C++ and the binaries are freely available at http://sourceforge.net/projects/flneurontool/. We validated and evaluated the proposed method using synthetic data and real datasets from the Digital Reconstruction of Axonal and Dendritic Morphology (DIADEM) challenge. Then, flNeuronTool was applied to mouse brain images acquired with the Micro-Optical Sectioning Tomography (MOST) system, to reconstruct single neurons and local neural circuits. The results showed that the system achieves a reasonable balance between fast speed and acceptable accuracy, which is promising for interactive applications in neuronal image analysis.
Huang, Hsuan-Ming; Hsiao, Ing-Tsung
2017-01-01
Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.
Computation-aware algorithm selection approach for interlaced-to-progressive conversion
NASA Astrophysics Data System (ADS)
Park, Sang-Jun; Jeon, Gwanggil; Jeong, Jechang
2010-05-01
We discuss deinterlacing results in a computationally constrained and varied environment. The proposed computation-aware algorithm selection approach (CASA) for fast interlaced to progressive conversion algorithm consists of three methods: the line-averaging (LA) method for plain regions, the modified edge-based line-averaging (MELA) method for medium regions, and the proposed covariance-based adaptive deinterlacing (CAD) method for complex regions. The proposed CASA uses two criteria, mean-squared error (MSE) and CPU time, for assigning the method. We proposed a CAD method. The principle idea of CAD is based on the correspondence between the high and low-resolution covariances. We estimated the local covariance coefficients from an interlaced image using Wiener filtering theory and then used these optimal minimum MSE interpolation coefficients to obtain a deinterlaced image. The CAD method, though more robust than most known methods, was not found to be very fast compared to the others. To alleviate this issue, we proposed an adaptive selection approach using a fast deinterlacing algorithm rather than using only one CAD algorithm. The proposed hybrid approach of switching between the conventional schemes (LA and MELA) and our CAD was proposed to reduce the overall computational load. A reliable condition to be used for switching the schemes was presented after a wide set of initial training processes. The results of computer simulations showed that the proposed methods outperformed a number of methods presented in the literature.
Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin
2013-11-13
A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.
Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin
2013-01-01
A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results. PMID:24233027
Compressed sensing with gradient total variation for low-dose CBCT reconstruction
NASA Astrophysics Data System (ADS)
Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Seongchae; Huh, Young; Park, Justin C.; Lee, Byeonghun; Baek, Junghee; Kim, Eunyoung
2015-06-01
This paper describes the improvement of convergence speed with gradient total variation (GTV) in compressed sensing (CS) for low-dose cone-beam computed tomography (CBCT) reconstruction. We derive a fast algorithm for the constrained total variation (TV)-based a minimum number of noisy projections. To achieve this task we combine the GTV with a TV-norm regularization term to promote an accelerated sparsity in the X-ray attenuation characteristics of the human body. The GTV is derived from a TV and enforces more efficient computationally and faster in convergence until a desired solution is achieved. The numerical algorithm is simple and derives relatively fast convergence. We apply a gradient projection algorithm that seeks a solution iteratively in the direction of the projected gradient while enforcing a non-negatively of the found solution. In comparison with the Feldkamp, Davis, and Kress (FDK) and conventional TV algorithms, the proposed GTV algorithm showed convergence in ≤18 iterations, whereas the original TV algorithm needs at least 34 iterations in reducing 50% of the projections compared with the FDK algorithm in order to reconstruct the chest phantom images. Future investigation includes improving imaging quality, particularly regarding X-ray cone-beam scatter, and motion artifacts of CBCT reconstruction.
Feng, Yanqiu; Song, Yanli; Wang, Cong; Xin, Xuegang; Feng, Qianjin; Chen, Wufan
2013-10-01
To develop and test a new algorithm for fast direct Fourier transform (DrFT) reconstruction of MR data on non-Cartesian trajectories composed of lines with equally spaced points. The DrFT, which is normally used as a reference in evaluating the accuracy of other reconstruction methods, can reconstruct images directly from non-Cartesian MR data without interpolation. However, DrFT reconstruction involves substantially intensive computation, which makes the DrFT impractical for clinical routine applications. In this article, the Chirp transform algorithm was introduced to accelerate the DrFT reconstruction of radial and Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) MRI data located on the trajectories that are composed of lines with equally spaced points. The performance of the proposed Chirp transform algorithm-DrFT algorithm was evaluated by using simulation and in vivo MRI data. After implementing the algorithm on a graphics processing unit, the proposed Chirp transform algorithm-DrFT algorithm achieved an acceleration of approximately one order of magnitude, and the speed-up factor was further increased to approximately three orders of magnitude compared with the traditional single-thread DrFT reconstruction. Implementation the Chirp transform algorithm-DrFT algorithm on the graphics processing unit can efficiently calculate the DrFT reconstruction of the radial and PROPELLER MRI data. Copyright © 2012 Wiley Periodicals, Inc.
A ’Multiple Pivoting’ Algorithm for Goal-Interval Programming Formulations.
1980-03-01
jotso _P- ,- Research Report CCS 355 A "MULTIPLE PIVOTING" ALGORITHM FOR GOAL-INTERVAL PROGRAMMING FORMULATIONS by R. Armstrong* A. Charnes*W. Cook...J. Godfrey*** March 1980 *The University of Texas at Austin **York University, Downsview, Ontario, Canada ***Washington, DC This research was partly...areas. However, the main direction of goal programing research has been in formulating models instead of seeking procedures that would provide
Algorithms for Data Intensive Applications on Intelligent and Smart Memories
2003-03-01
editors). Parallel Algorithms and Architectures. North Holland, 1986. [8] P. Diniz . USC ISI, Personal Communication, March, 2001. [9] M. Frigo, C. E ...hierarchy as well as the Translation Lookaside Buer TLB aect the e ectiveness of cache friendly optimizations These penalties vary among...processors and cause large variations in the e ectiveness of cache performance optimizations The area of graph problems is fundamental in a wide variety of
Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai
2015-01-01
The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms.
Fast iterative censoring CFAR algorithm for ship detection from SAR images
NASA Astrophysics Data System (ADS)
Gu, Dandan; Yue, Hui; Zhang, Yuan; Gao, Pengcheng
2017-11-01
Ship detection is one of the essential techniques for ship recognition from synthetic aperture radar (SAR) images. This paper presents a fast iterative detection procedure to eliminate the influence of target returns on the estimation of local sea clutter distributions for constant false alarm rate (CFAR) detectors. A fast block detector is first employed to extract potential target sub-images; and then, an iterative censoring CFAR algorithm is used to detect ship candidates from each target blocks adaptively and efficiently, where parallel detection is available, and statistical parameters of G0 distribution fitting local sea clutter well can be quickly estimated based on an integral image operator. Experimental results of TerraSAR-X images demonstrate the effectiveness of the proposed technique.
Fast parallel algorithm for slicing STL based on pipeline
NASA Astrophysics Data System (ADS)
Ma, Xulong; Lin, Feng; Yao, Bo
2016-05-01
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.
A k-Vector Approach to Sampling, Interpolation, and Approximation
NASA Astrophysics Data System (ADS)
Mortari, Daniele; Rogers, Jonathan
2013-12-01
The k-vector search technique is a method designed to perform extremely fast range searching of large databases at computational cost independent of the size of the database. k-vector search algorithms have historically found application in satellite star-tracker navigation systems which index very large star catalogues repeatedly in the process of attitude estimation. Recently, the k-vector search algorithm has been applied to numerous other problem areas including non-uniform random variate sampling, interpolation of 1-D or 2-D tables, nonlinear function inversion, and solution of systems of nonlinear equations. This paper presents algorithms in which the k-vector search technique is used to solve each of these problems in a computationally-efficient manner. In instances where these tasks must be performed repeatedly on a static (or nearly-static) data set, the proposed k-vector-based algorithms offer an extremely fast solution technique that outperforms standard methods.
The fast iris image clarity evaluation based on Tenengrad and ROI selection
NASA Astrophysics Data System (ADS)
Gao, Shuqin; Han, Min; Cheng, Xu
2018-04-01
In iris recognition system, the clarity of iris image is an important factor that influences recognition effect. In the process of recognition, the blurred image may possibly be rejected by the automatic iris recognition system, which will lead to the failure of identification. Therefore it is necessary to evaluate the iris image definition before recognition. Considered the existing evaluation methods on iris image definition, we proposed a fast algorithm to evaluate the definition of iris image in this paper. In our algorithm, firstly ROI (Region of Interest) is extracted based on the reference point which is determined by using the feature of the light spots within the pupil, then Tenengrad operator is used to evaluate the iris image's definition. Experiment results show that, the iris image definition algorithm proposed in this paper could accurately distinguish the iris images of different clarity, and the algorithm has the merit of low computational complexity and more effectiveness.
Yanagisawa, Keisuke; Komine, Shunta; Kubota, Rikuto; Ohue, Masahito; Akiyama, Yutaka
2018-06-01
The need to accelerate large-scale protein-ligand docking in virtual screening against a huge compound database led researchers to propose a strategy that entails memorizing the evaluation result of the partial structure of a compound and reusing it to evaluate other compounds. However, the previous method required frequent disk accesses, resulting in insufficient acceleration. Thus, more efficient memory usage can be expected to lead to further acceleration, and optimal memory usage could be achieved by solving the minimum cost flow problem. In this research, we propose a fast algorithm for the minimum cost flow problem utilizing the characteristics of the graph generated for this problem as constraints. The proposed algorithm, which optimized memory usage, was approximately seven times faster compared to existing minimum cost flow algorithms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
A fast optimization algorithm for multicriteria intensity modulated proton therapy planning.
Chen, Wei; Craft, David; Madden, Thomas M; Zhang, Kewu; Kooy, Hanne M; Herman, Gabor T
2010-09-01
To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK'S interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.
A fast, robust algorithm for power line interference cancellation in neural recording.
Keshtkaran, Mohammad Reza; Yang, Zhi
2014-04-01
Power line interference may severely corrupt neural recordings at 50/60 Hz and harmonic frequencies. The interference is usually non-stationary and can vary in frequency, amplitude and phase. To retrieve the gamma-band oscillations at the contaminated frequencies, it is desired to remove the interference without compromising the actual neural signals at the interference frequency bands. In this paper, we present a robust and computationally efficient algorithm for removing power line interference from neural recordings. The algorithm includes four steps. First, an adaptive notch filter is used to estimate the fundamental frequency of the interference. Subsequently, based on the estimated frequency, harmonics are generated by using discrete-time oscillators, and then the amplitude and phase of each harmonic are estimated by using a modified recursive least squares algorithm. Finally, the estimated interference is subtracted from the recorded data. The algorithm does not require any reference signal, and can track the frequency, phase and amplitude of each harmonic. When benchmarked with other popular approaches, our algorithm performs better in terms of noise immunity, convergence speed and output signal-to-noise ratio (SNR). While minimally affecting the signal bands of interest, the algorithm consistently yields fast convergence (<100 ms) and substantial interference rejection (output SNR >30 dB) in different conditions of interference strengths (input SNR from -30 to 30 dB), power line frequencies (45-65 Hz) and phase and amplitude drifts. In addition, the algorithm features a straightforward parameter adjustment since the parameters are independent of the input SNR, input signal power and the sampling rate. A hardware prototype was fabricated in a 65 nm CMOS process and tested. Software implementation of the algorithm has been made available for open access at https://github.com/mrezak/removePLI. The proposed algorithm features a highly robust operation, fast adaptation to interference variations, significant SNR improvement, low computational complexity and memory requirement and straightforward parameter adjustment. These features render the algorithm suitable for wearable and implantable sensor applications, where reliable and real-time cancellation of the interference is desired.
A fast, robust algorithm for power line interference cancellation in neural recording
NASA Astrophysics Data System (ADS)
Keshtkaran, Mohammad Reza; Yang, Zhi
2014-04-01
Objective. Power line interference may severely corrupt neural recordings at 50/60 Hz and harmonic frequencies. The interference is usually non-stationary and can vary in frequency, amplitude and phase. To retrieve the gamma-band oscillations at the contaminated frequencies, it is desired to remove the interference without compromising the actual neural signals at the interference frequency bands. In this paper, we present a robust and computationally efficient algorithm for removing power line interference from neural recordings. Approach. The algorithm includes four steps. First, an adaptive notch filter is used to estimate the fundamental frequency of the interference. Subsequently, based on the estimated frequency, harmonics are generated by using discrete-time oscillators, and then the amplitude and phase of each harmonic are estimated by using a modified recursive least squares algorithm. Finally, the estimated interference is subtracted from the recorded data. Main results. The algorithm does not require any reference signal, and can track the frequency, phase and amplitude of each harmonic. When benchmarked with other popular approaches, our algorithm performs better in terms of noise immunity, convergence speed and output signal-to-noise ratio (SNR). While minimally affecting the signal bands of interest, the algorithm consistently yields fast convergence (<100 ms) and substantial interference rejection (output SNR >30 dB) in different conditions of interference strengths (input SNR from -30 to 30 dB), power line frequencies (45-65 Hz) and phase and amplitude drifts. In addition, the algorithm features a straightforward parameter adjustment since the parameters are independent of the input SNR, input signal power and the sampling rate. A hardware prototype was fabricated in a 65 nm CMOS process and tested. Software implementation of the algorithm has been made available for open access at https://github.com/mrezak/removePLI. Significance. The proposed algorithm features a highly robust operation, fast adaptation to interference variations, significant SNR improvement, low computational complexity and memory requirement and straightforward parameter adjustment. These features render the algorithm suitable for wearable and implantable sensor applications, where reliable and real-time cancellation of the interference is desired.
Fast decoder for local quantum codes using Groebner basis
NASA Astrophysics Data System (ADS)
Haah, Jeongwan
2013-03-01
Based on arXiv:1204.1063. A local translation-invariant quantum code has a description in terms of Laurent polynomials. As an application of this observation, we present a fast decoding algorithm for translation-invariant local quantum codes in any spatial dimensions using the straightforward division algorithm for multivariate polynomials. The running time is O (n log n) on average, or O (n2 log n) on worst cases, where n is the number of physical qubits. The algorithm improves a subroutine of the renormalization-group decoder by Bravyi and Haah (arXiv:1112.3252) in the translation-invariant case. This work is supported in part by the Insitute for Quantum Information and Matter, an NSF Physics Frontier Center, and the Korea Foundation for Advanced Studies.
NASA Technical Reports Server (NTRS)
Dagum, Leonardo
1989-01-01
The data parallel implementation of a particle simulation for hypersonic rarefied flow described by Dagum associates a single parallel data element with each particle in the simulation. The simulated space is divided into discrete regions called cells containing a variable and constantly changing number of particles. The implementation requires a global sort of the parallel data elements so as to arrange them in an order that allows immediate access to the information associated with cells in the simulation. Described here is a very fast algorithm for performing the necessary ranking of the parallel data elements. The performance of the new algorithm is compared with that of the microcoded instruction for ranking on the Connection Machine.
Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.
Petrotchenko, Evgeniy V; Borchers, Christoph H
2014-09-01
Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A fast bottom-up algorithm for computing the cut sets of noncoherent fault trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corynen, G.C.
1987-11-01
An efficient procedure for finding the cut sets of large fault trees has been developed. Designed to address coherent or noncoherent systems, dependent events, shared or common-cause events, the method - called SHORTCUT - is based on a fast algorithm for transforming a noncoherent tree into a quasi-coherent tree (COHERE), and on a new algorithm for reducing cut sets (SUBSET). To assure sufficient clarity and precision, the procedure is discussed in the language of simple sets, which is also developed in this report. Although the new method has not yet been fully implemented on the computer, we report theoretical worst-casemore » estimates of its computational complexity. 12 refs., 10 figs.« less
3 CFR 8641 - Proclamation 8641 of March 30, 2011. Cesar Chavez Day, 2011
Code of Federal Regulations, 2012 CFR
2012-01-01
... Chavez’s lasting victories for American workers and his noble methods in achieving them. Raised in the... and fasts, he led others on a path of nonviolence conceived in careful study of the teachings of St...
Magnetometer-Only Attitude and Rate Estimates for Spinning Spacecraft
NASA Technical Reports Server (NTRS)
Challa, M.; Natanson, G.; Ottenstein, N.
2000-01-01
A deterministic algorithm and a Kalman filter for gyroless spacecraft are used independently to estimate the three-axis attitude and rates of rapidly spinning spacecraft using only magnetometer data. In-flight data from the Wide-Field Infrared Explorer (WIRE) during its tumble, and the Fast Auroral Snapshot Explorer (FAST) during its nominal mission mode are used to show that the algorithms can successfully estimate the above in spite of the high rates. Results using simulated data are used to illustrate the importance of accurate and frequent data.
Fast mapping algorithm of lighting spectrum and GPS coordinates for a large area
NASA Astrophysics Data System (ADS)
Lin, Chih-Wei; Hsu, Ke-Fang; Hwang, Jung-Min
2016-09-01
In this study, we propose a fast rebuild technology for evaluating light quality in large areas. Outdoor light quality, which is measured by illuminance uniformity and the color rendering index, is difficult to conform after improvement. We develop an algorithm for a lighting quality mapping system and coordinates using a micro spectrometer and GPS tracker integrated with a quadcopter or unmanned aerial vehicle. After cruising at a constant altitude, lighting quality data is transmitted and immediately mapped to evaluate the light quality in a large area.
Multiobjective Optimization Using a Pareto Differential Evolution Approach
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.
Gas leak detection in infrared video with background modeling
NASA Astrophysics Data System (ADS)
Zeng, Xiaoxia; Huang, Likun
2018-03-01
Background modeling plays an important role in the task of gas detection based on infrared video. VIBE algorithm is a widely used background modeling algorithm in recent years. However, the processing speed of the VIBE algorithm sometimes cannot meet the requirements of some real time detection applications. Therefore, based on the traditional VIBE algorithm, we propose a fast prospect model and optimize the results by combining the connected domain algorithm and the nine-spaces algorithm in the following processing steps. Experiments show the effectiveness of the proposed method.
Application of Improved APO Algorithm in Vulnerability Assessment and Reconstruction of Microgrid
NASA Astrophysics Data System (ADS)
Xie, Jili; Ma, Hailing
2018-01-01
Artificial Physics Optimization (APO) has good global search ability and can avoid the premature convergence phenomenon in PSO algorithm, which has good stability of fast convergence and robustness. On the basis of APO of the vector model, a reactive power optimization algorithm based on improved APO algorithm is proposed for the static structure and dynamic operation characteristics of microgrid. The simulation test is carried out through the IEEE 30-bus system and the result shows that the algorithm has better efficiency and accuracy compared with other optimization algorithms.
An Improved Perturb and Observe Algorithm for Photovoltaic Motion Carriers
NASA Astrophysics Data System (ADS)
Peng, Lele; Xu, Wei; Li, Liming; Zheng, Shubin
2018-03-01
An improved perturbation and observation algorithm for photovoltaic motion carriers is proposed in this paper. The model of the proposed algorithm is given by using Lambert W function and tangent error method. Moreover, by using matlab and experiment of photovoltaic system, the tracking performance of the proposed algorithm is tested. And the results demonstrate that the improved algorithm has fast tracking speed and high efficiency. Furthermore, the energy conversion efficiency by the improved method has increased by nearly 8.2%.
A fast, parallel algorithm to solve the basic fluvial erosion/transport equations
NASA Astrophysics Data System (ADS)
Braun, J.
2012-04-01
Quantitative models of landform evolution are commonly based on the solution of a set of equations representing the processes of fluvial erosion, transport and deposition, which leads to predict the geometry of a river channel network and its evolution through time. The river network is often regarded as the backbone of any surface processes model (SPM) that might include other physical processes acting at a range of spatial and temporal scales along hill slopes. The basic laws of fluvial erosion requires the computation of local (slope) and non-local (drainage area) quantities at every point of a given landscape, a computationally expensive operation which limits the resolution of most SPMs. I present here an algorithm to compute the various components required in the parameterization of fluvial erosion (and transport) and thus solve the basic fluvial geomorphic equation, that is very efficient because it is O(n) (the number of required arithmetic operations is linearly proportional to the number of nodes defining the landscape), and is fully parallelizable (the computation cost decreases in a direct inverse proportion to the number of processors used to solve the problem). The algorithm is ideally suited for use on latest multi-core processors. Using this new technique, geomorphic problems can be solved at an unprecedented resolution (typically of the order of 10,000 X 10,000 nodes) while keeping the computational cost reasonable (order 1 sec per time step). Furthermore, I will show that the algorithm is applicable to any regular or irregular representation of the landform, and is such that the temporal evolution of the landform can be discretized by a fully implicit time-marching algorithm, making it unconditionally stable. I will demonstrate that such an efficient algorithm is ideally suited to produce a fully predictive SPM that links observationally based parameterizations of small-scale processes to the evolution of large-scale features of the landscapes on geological time scales. It can also be used to model surface processes at the continental or planetary scale and be linked to lithospheric or mantle flow models to predict the potential interactions between tectonics driving surface uplift in orogenic areas, mantle flow producing dynamic topography on continental scales and surface processes.
Results of thermal test of metallic molybdenum disk target and fast-acting valve testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virgo, M.; Chemerisov, S.; Gromov, R.
2016-12-01
This report describes the irradiation conditions for thermal testing of helium-cooled metallic disk targets that was conducted on March 9, 2016, at the Argonne National Laboratory electron linac. The four disks in this irradiation were pressed and sintered by Oak Ridge National Laboratory from molybdenum metal powder. Two of those disks were instrumented with thermocouples. Also reported are results of testing a fast-acting-valve system, which was designed to protect the accelerator in case of a target-window failure.
ERIC Educational Resources Information Center
Congress of the U. S., Washington, DC. House Committee on Government Operations.
This document reports the oral and written testimony given at a hearing on the exploitation of children and teenagers in the workplace. Witnesses included officials of fast food chains and other businesses, Labor Department officials, employees of fast food chains and their parents, and parents of children who were killed or injured while working.…
Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns
2013-01-01
Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected sublinear running time of the presented index-based algorithms, allows for the first time approximate matching of RNA sequence-structure patterns in large sequence databases. Beyond the algorithmic contributions, we provide with RaligNAtor a robust and well documented open-source software package implementing the algorithms presented in this manuscript. The RaligNAtor software is available at http://www.zbh.uni-hamburg.de/ralignator. PMID:23865810
Parallel and pipeline computation of fast unitary transforms
NASA Technical Reports Server (NTRS)
Fino, B. J.; Algazi, V. R.
1975-01-01
The letter discusses the parallel and pipeline organization of fast-unitary-transform algorithms such as the fast Fourier transform, and points out the efficiency of a combined parallel-pipeline processor of a transform such as the Haar transform, in which (2 to the n-th power) -1 hardware 'butterflies' generate a transform of order 2 to the n-th power every computation cycle.
Fast Fourier Transform Spectral Analysis Program
NASA Technical Reports Server (NTRS)
Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.
1969-01-01
Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.
Models for IP/MPLS routing performance: convergence, fast reroute, and QoS impact
NASA Astrophysics Data System (ADS)
Choudhury, Gagan L.
2004-09-01
We show how to model the black-holing and looping of traffic during an Interior Gateway Protocol (IGP) convergence event at an IP network and how to significantly improve both the convergence time and packet loss duration through IGP parameter tuning and algorithmic improvement. We also explore some congestion avoidance and congestion control algorithms that can significantly improve stability of networks in the face of occasional massive control message storms. Specifically we show the positive impacts of prioritizing Hello and Acknowledgement packets and slowing down LSA generation and retransmission generation on detecting congestion in the network. For some types of video, voice signaling and circuit emulation applications it is necessary to reduce traffic loss durations following a convergence event to below 100 ms and we explore that using Fast Reroute algorithms based on Multiprotocol Label Switching Traffic Engineering (MPLS-TE) that effectively bypasses IGP convergence. We explore the scalability of primary and backup MPLS-TE tunnels where MPLS-TE domain is in the backbone-only or edge-to-edge. We also show how much extra backbone resource is needed to support Fast Reroute and how can that be reduced by taking advantage of Constrained Shortest Path (CSPF) routing of MPLS-TE and by reserving less than 100% of primary tunnel bandwidth during Fast Reroute.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-15
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A. P.; Gupta, Pawan; Bhartia, P. K.; Veefkind, Pepijn; Sneep, Maarten; deHaan, Johan; Polonsky, Igor; Spurr, Robert
2011-01-01
We have developed a relatively simple scheme for simulating retrieved cloud optical centroid pressures (OCP) from satellite solar backscatter observations. We have compared simulator results with those from more detailed retrieval simulators that more fully account for the complex radiative transfer in a cloudy atmosphere. We used this fast simulator to conduct a comprehensive evaluation of cloud OCPs from the two OMI algorithms using collocated data from CloudSat and Aqua MODIS, a unique situation afforded by the A-train formation of satellites. We find that both OMI algorithms perform reasonably well and that the two algorithms agree better with each other than either does with the collocated CloudSat data. This indicates that patchy snow/ice, cloud 3D, and aerosol effects not simulated with the CloudSat data are affecting both algorithms similarly. We note that the collocation with CloudSat occurs mainly on the East side of OMI's swath. Therefore, we are not able to address cross-track biases in OMI cloud OCP retrievals. Our fast simulator may also be used to simulate cloud OCP from output generated by general circulation models (GCM) with appropriate account of cloud overlap. We have implemented such a scheme and plan to compare OMI data with GCM output in the near future.
Alternative techniques for high-resolution spectral estimation of spectrally encoded endoscopy
NASA Astrophysics Data System (ADS)
Mousavi, Mahta; Duan, Lian; Javidi, Tara; Ellerbee, Audrey K.
2015-09-01
Spectrally encoded endoscopy (SEE) is a minimally invasive optical imaging modality capable of fast confocal imaging of internal tissue structures. Modern SEE systems use coherent sources to image deep within the tissue and data are processed similar to optical coherence tomography (OCT); however, standard processing of SEE data via the Fast Fourier Transform (FFT) leads to degradation of the axial resolution as the bandwidth of the source shrinks, resulting in a well-known trade-off between speed and axial resolution. Recognizing the limitation of FFT as a general spectral estimation algorithm to only take into account samples collected by the detector, in this work we investigate alternative high-resolution spectral estimation algorithms that exploit information such as sparsity and the general region position of the bulk sample to improve the axial resolution of processed SEE data. We validate the performance of these algorithms using bothMATLAB simulations and analysis of experimental results generated from a home-built OCT system to simulate an SEE system with variable scan rates. Our results open a new door towards using non-FFT algorithms to generate higher quality (i.e., higher resolution) SEE images at correspondingly fast scan rates, resulting in systems that are more accurate and more comfortable for patients due to the reduced image time.
A Hierarchical Algorithm for Fast Debye Summation with Applications to Small Angle Scattering
Gumerov, Nail A.; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani
2012-01-01
Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error bound derived in this paper is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386
Low-complex energy-aware image communication in visual sensor networks
NASA Astrophysics Data System (ADS)
Phamila, Yesudhas Asnath Victy; Amutha, Ramachandran
2013-10-01
A low-complex, low bit rate, energy-efficient image compression algorithm explicitly designed for resource-constrained visual sensor networks applied for surveillance, battle field, habitat monitoring, etc. is presented, where voluminous amount of image data has to be communicated over a bandwidth-limited wireless medium. The proposed method overcomes the energy limitation of individual nodes and is investigated in terms of image quality, entropy, processing time, overall energy consumption, and system lifetime. This algorithm is highly energy efficient and extremely fast since it applies energy-aware zonal binary discrete cosine transform (DCT) that computes only the few required significant coefficients and codes them using enhanced complementary Golomb Rice code without using any floating point operations. Experiments are performed using the Atmel Atmega128 and MSP430 processors to measure the resultant energy savings. Simulation results show that the proposed energy-aware fast zonal transform consumes only 0.3% of energy needed by conventional DCT. This algorithm consumes only 6% of energy needed by Independent JPEG Group (fast) version, and it suits for embedded systems requiring low power consumption. The proposed scheme is unique since it significantly enhances the lifetime of the camera sensor node and the network without any need for distributed processing as was traditionally required in existing algorithms.
NASA Astrophysics Data System (ADS)
Mantini, D.; Hild, K. E., II; Alleva, G.; Comani, S.
2006-02-01
Independent component analysis (ICA) algorithms have been successfully used for signal extraction tasks in the field of biomedical signal processing. We studied the performances of six algorithms (FastICA, CubICA, JADE, Infomax, TDSEP and MRMI-SIG) for fetal magnetocardiography (fMCG). Synthetic datasets were used to check the quality of the separated components against the original traces. Real fMCG recordings were simulated with linear combinations of typical fMCG source signals: maternal and fetal cardiac activity, ambient noise, maternal respiration, sensor spikes and thermal noise. Clusters of different dimensions (19, 36 and 55 sensors) were prepared to represent different MCG systems. Two types of signal-to-interference ratios (SIR) were measured. The first involves averaging over all estimated components and the second is based solely on the fetal trace. The computation time to reach a minimum of 20 dB SIR was measured for all six algorithms. No significant dependency on gestational age or cluster dimension was observed. Infomax performed poorly when a sub-Gaussian source was included; TDSEP and MRMI-SIG were sensitive to additive noise, whereas FastICA, CubICA and JADE showed the best performances. Of all six methods considered, FastICA had the best overall performance in terms of both separation quality and computation times.
Nguyen, Quynh C; Li, Dapeng; Meng, Hsien-Wen; Kath, Suraj; Nsoesie, Elaine; Li, Feifei; Wen, Ming
2016-10-17
Studies suggest that where people live, play, and work can influence health and well-being. However, the dearth of neighborhood data, especially data that is timely and consistent across geographies, hinders understanding of the effects of neighborhoods on health. Social media data represents a possible new data resource for neighborhood research. The aim of this study was to build, from geotagged Twitter data, a national neighborhood database with area-level indicators of well-being and health behaviors. We utilized Twitter's streaming application programming interface to continuously collect a random 1% subset of publicly available geolocated tweets for 1 year (April 2015 to March 2016). We collected 80 million geotagged tweets from 603,363 unique Twitter users across the contiguous United States. We validated our machine learning algorithms for constructing indicators of happiness, food, and physical activity by comparing predicted values to those generated by human labelers. Geotagged tweets were spatially mapped to the 2010 census tract and zip code areas they fall within, which enabled further assessment of the associations between Twitter-derived neighborhood variables and neighborhood demographic, economic, business, and health characteristics. Machine labeled and manually labeled tweets had a high level of accuracy: 78% for happiness, 83% for food, and 85% for physical activity for dichotomized labels with the F scores 0.54, 0.86, and 0.90, respectively. About 20% of tweets were classified as happy. Relatively few terms (less than 25) were necessary to characterize the majority of tweets on food and physical activity. Data from over 70,000 census tracts from the United States suggest that census tract factors like percentage African American and economic disadvantage were associated with lower census tract happiness. Urbanicity was related to higher frequency of fast food tweets. Greater numbers of fast food restaurants predicted higher frequency of fast food mentions. Surprisingly, fitness centers and nature parks were only modestly associated with higher frequency of physical activity tweets. Greater state-level happiness, positivity toward physical activity, and positivity toward healthy foods, assessed via tweets, were associated with lower all-cause mortality and prevalence of chronic conditions such as obesity and diabetes and lower physical inactivity and smoking, controlling for state median income, median age, and percentage white non-Hispanic. Machine learning algorithms can be built with relatively high accuracy to characterize sentiment, food, and physical activity mentions on social media. Such data can be utilized to construct neighborhood indicators consistently and cost effectively. Access to neighborhood data, in turn, can be leveraged to better understand neighborhood effects and address social determinants of health. We found that neighborhoods with social and economic disadvantage, high urbanicity, and more fast food restaurants may exhibit lower happiness and fewer healthy behaviors.
... PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer file Text file Zip Archive file SAS file ePub file RIS file Page last reviewed: February 18, 2013 Page last updated: March 30, 2017 Content source: ...
NASA Technical Reports Server (NTRS)
Toomarian, N.; Fijany, A.; Barhen, J.
1993-01-01
Evolutionary partial differential equations are usually solved by decretization in time and space, and by applying a marching in time procedure to data and algorithms potentially parallelized in the spatial domain.
A Fast-Time Simulation Environment for Airborne Merging and Spacing Research
NASA Technical Reports Server (NTRS)
Bussink, Frank J. L.; Doble, Nathan A.; Barmore, Bryan E.; Singer, Sharon
2005-01-01
As part of NASA's Distributed Air/Ground Traffic Management (DAG-TM) effort, NASA Langley Research Center is developing concepts and algorithms for merging multiple aircraft arrival streams and precisely spacing aircraft over the runway threshold. An airborne tool has been created for this purpose, called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). To evaluate the performance of AMSTAR and complement human-in-the-loop experiments, a simulation environment has been developed that enables fast-time studies of AMSTAR operations. The environment is based on TMX, a multiple aircraft desktop simulation program created by the Netherlands National Aerospace Laboratory (NLR). This paper reviews the AMSTAR concept, discusses the integration of the AMSTAR algorithm into TMX and the enhancements added to TMX to support fast-time AMSTAR studies, and presents initial simulation results.
Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai
2015-01-01
The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms. PMID:25945120
Fast Back-Propagation Learning Using Steep Activation Functions and Automatic Weight
Tai-Hoon Cho; Richard W. Conners; Philip A. Araman
1992-01-01
In this paper, several back-propagation (BP) learning speed-up algorithms that employ the ãgainä parameter, i.e., steepness of the activation function, are examined. Simulations will show that increasing the gain seemingly increases the speed of convergence and that these algorithms can converge faster than the standard BP learning algorithm on some problems. However,...
Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan
2016-04-22
The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.
A fast non-local means algorithm based on integral image and reconstructed similar kernel
NASA Astrophysics Data System (ADS)
Lin, Zheng; Song, Enmin
2018-03-01
Image denoising is one of the essential methods in digital image processing. The non-local means (NLM) denoising approach is a remarkable denoising technique. However, its time complexity of the computation is high. In this paper, we design a fast NLM algorithm based on integral image and reconstructed similar kernel. First, the integral image is introduced in the traditional NLM algorithm. In doing so, it reduces a great deal of repetitive operations in the parallel processing, which will greatly improves the running speed of the algorithm. Secondly, in order to amend the error of the integral image, we construct a similar window resembling the Gaussian kernel in the pyramidal stacking pattern. Finally, in order to eliminate the influence produced by replacing the Gaussian weighted Euclidean distance with Euclidean distance, we propose a scheme to construct a similar kernel with a size of 3 x 3 in a neighborhood window which will reduce the effect of noise on a single pixel. Experimental results demonstrate that the proposed algorithm is about seventeen times faster than the traditional NLM algorithm, yet produce comparable results in terms of Peak Signal-to- Noise Ratio (the PSNR increased 2.9% in average) and perceptual image quality.
Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.
Liu, Jing; Zhou, Weidong; Juwono, Filbert H
2017-05-08
Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.
Projections for fast protein structure retrieval
Bhattacharya, Sourangshu; Bhattacharyya, Chiranjib; Chandra, Nagasuma R
2006-01-01
Background In recent times, there has been an exponential rise in the number of protein structures in databases e.g. PDB. So, design of fast algorithms capable of querying such databases is becoming an increasingly important research issue. This paper reports an algorithm, motivated from spectral graph matching techniques, for retrieving protein structures similar to a query structure from a large protein structure database. Each protein structure is specified by the 3D coordinates of residues of the protein. The algorithm is based on a novel characterization of the residues, called projections, leading to a similarity measure between the residues of the two proteins. This measure is exploited to efficiently compute the optimal equivalences. Results Experimental results show that, the current algorithm outperforms the state of the art on benchmark datasets in terms of speed without losing accuracy. Search results on SCOP 95% nonredundant database, for fold similarity with 5 proteins from different SCOP classes show that the current method performs competitively with the standard algorithm CE. The algorithm is also capable of detecting non-topological similarities between two proteins which is not possible with most of the state of the art tools like Dali. PMID:17254310
Two fast approximate wavelet algorithms for image processing, classification, and recognition
NASA Astrophysics Data System (ADS)
Wickerhauser, Mladen V.
1994-07-01
We use large libraries of template waveforms with remarkable orthogonality properties to recast the relatively complex principal orthogonal decomposition (POD) into an optimization problem with a fast solution algorithm. Then it becomes practical to use POD to solve two related problems: recognizing or classifying images, and inverting a complicated map from a low-dimensional configuration space to a high-dimensional measurement space. In the case where the number N of pixels or measurements is more than 1000 or so, the classical O(N3) POD algorithms becomes very costly, but it can be replaced with an approximate best-basis method that has complexity O(N2logN). A variation of POD can also be used to compute an approximate Jacobian for the complicated map.
A fast reconstruction algorithm for fluorescence optical diffusion tomography based on preiteration.
Song, Xiaolei; Xiong, Xiaoyun; Bai, Jing
2007-01-01
Fluorescence optical diffusion tomography in the near-infrared (NIR) bandwidth is considered to be one of the most promising ways for noninvasive molecular-based imaging. Many reconstructive approaches to it utilize iterative methods for data inversion. However, they are time-consuming and they are far from meeting the real-time imaging demands. In this work, a fast preiteration algorithm based on the generalized inverse matrix is proposed. This method needs only one step of matrix-vector multiplication online, by pushing the iteration process to be executed offline. In the preiteration process, the second-order iterative format is employed to exponentially accelerate the convergence. Simulations based on an analytical diffusion model show that the distribution of fluorescent yield can be well estimated by this algorithm and the reconstructed speed is remarkably increased.
Coherent field propagation between tilted planes.
Stock, Johannes; Worku, Norman Girma; Gross, Herbert
2017-10-01
Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3 log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.
NASA Astrophysics Data System (ADS)
Wu, Leyuan
2018-01-01
We present a brief review of gravity forward algorithms in Cartesian coordinate system, including both space-domain and Fourier-domain approaches, after which we introduce a truly general and efficient algorithm, namely the convolution-type Gauss fast Fourier transform (Conv-Gauss-FFT) algorithm, for 2D and 3D modeling of gravity potential and its derivatives due to sources with arbitrary geometry and arbitrary density distribution which are defined either by discrete or by continuous functions. The Conv-Gauss-FFT algorithm is based on the combined use of a hybrid rectangle-Gaussian grid and the fast Fourier transform (FFT) algorithm. Since the gravity forward problem in Cartesian coordinate system can be expressed as continuous convolution-type integrals, we first approximate the continuous convolution by a weighted sum of a series of shifted discrete convolutions, and then each shifted discrete convolution, which is essentially a Toeplitz system, is calculated efficiently and accurately by combining circulant embedding with the FFT algorithm. Synthetic and real model tests show that the Conv-Gauss-FFT algorithm can obtain high-precision forward results very efficiently for almost any practical model, and it works especially well for complex 3D models when gravity fields on large 3D regular grids are needed.
Fast and fully automatic phalanx segmentation using a grayscale-histogram morphology algorithm
NASA Astrophysics Data System (ADS)
Hsieh, Chi-Wen; Liu, Tzu-Chiang; Jong, Tai-Lang; Chen, Chih-Yen; Tiu, Chui-Mei; Chan, Din-Yuen
2011-08-01
Bone age assessment is a common radiological examination used in pediatrics to diagnose the discrepancy between the skeletal and chronological age of a child; therefore, it is beneficial to develop a computer-based bone age assessment to help junior pediatricians estimate bone age easily. Unfortunately, the phalanx on radiograms is not easily separated from the background and soft tissue. Therefore, we proposed a new method, called the grayscale-histogram morphology algorithm, to segment the phalanges fast and precisely. The algorithm includes three parts: a tri-stage sieve algorithm used to eliminate the background of hand radiograms, a centroid-edge dual scanning algorithm to frame the phalanx region, and finally a segmentation algorithm based on disk traverse-subtraction filter to segment the phalanx. Moreover, two more segmentation methods: adaptive two-mean and adaptive two-mean clustering were performed, and their results were compared with the segmentation algorithm based on disk traverse-subtraction filter using five indices comprising misclassification error, relative foreground area error, modified Hausdorff distances, edge mismatch, and region nonuniformity. In addition, the CPU time of the three segmentation methods was discussed. The result showed that our method had a better performance than the other two methods. Furthermore, satisfactory segmentation results were obtained with a low standard error.
Lamberti, Alfredo; Vanlanduit, Steve; De Pauw, Ben; Berghmans, Francis
2014-01-01
The working principle of fiber Bragg grating (FBG) sensors is mostly based on the tracking of the Bragg wavelength shift. To accomplish this task, different algorithms have been proposed, from conventional maximum and centroid detection algorithms to more recently-developed correlation-based techniques. Several studies regarding the performance of these algorithms have been conducted, but they did not take into account spectral distortions, which appear in many practical applications. This paper addresses this issue and analyzes the performance of four different wavelength tracking algorithms (maximum detection, centroid detection, cross-correlation and fast phase-correlation) when applied to distorted FBG spectra used for measuring dynamic loads. Both simulations and experiments are used for the analyses. The dynamic behavior of distorted FBG spectra is simulated using the transfer-matrix approach, and the amount of distortion of the spectra is quantified using dedicated distortion indices. The algorithms are compared in terms of achievable precision and accuracy. To corroborate the simulation results, experiments were conducted using three FBG sensors glued on a steel plate and subjected to a combination of transverse force and vibration loads. The analysis of the results showed that the fast phase-correlation algorithm guarantees the best combination of versatility, precision and accuracy. PMID:25521386
Fast Automatic Segmentation of White Matter Streamlines Based on a Multi-Subject Bundle Atlas.
Labra, Nicole; Guevara, Pamela; Duclap, Delphine; Houenou, Josselin; Poupon, Cyril; Mangin, Jean-François; Figueroa, Miguel
2017-01-01
This paper presents an algorithm for fast segmentation of white matter bundles from massive dMRI tractography datasets using a multisubject atlas. We use a distance metric to compare streamlines in a subject dataset to labeled centroids in the atlas, and label them using a per-bundle configurable threshold. In order to reduce segmentation time, the algorithm first preprocesses the data using a simplified distance metric to rapidly discard candidate streamlines in multiple stages, while guaranteeing that no false negatives are produced. The smaller set of remaining streamlines is then segmented using the original metric, thus eliminating any false positives from the preprocessing stage. As a result, a single-thread implementation of the algorithm can segment a dataset of almost 9 million streamlines in less than 6 minutes. Moreover, parallel versions of our algorithm for multicore processors and graphics processing units further reduce the segmentation time to less than 22 seconds and to 5 seconds, respectively. This performance enables the use of the algorithm in truly interactive applications for visualization, analysis, and segmentation of large white matter tractography datasets.
Fast-kick-off monotonically convergent algorithm for searching optimal control fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel
2011-09-15
This Rapid Communication presents a fast-kick-off search algorithm for quickly finding optimal control fields in the state-to-state transition probability control problems, especially those with poorly chosen initial control fields. The algorithm is based on a recently formulated monotonically convergent scheme [T.-S. Ho and H. Rabitz, Phys. Rev. E 82, 026703 (2010)]. Specifically, the local temporal refinement of the control field at each iteration is weighted by a fractional inverse power of the instantaneous overlap of the backward-propagating wave function, associated with the target state and the control field from the previous iteration, and the forward-propagating wave function, associated with themore » initial state and the concurrently refining control field. Extensive numerical simulations for controls of vibrational transitions and ultrafast electron tunneling show that the new algorithm not only greatly improves the search efficiency but also is able to attain good monotonic convergence quality when further frequency constraints are required. The algorithm is particularly effective when the corresponding control dynamics involves a large number of energy levels or ultrashort control pulses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata; Rao, Nageswara S; Wu, Qishi
There have been increasingly large deployments of radiation detection networks that require computationally fast algorithms to produce prompt results over ad-hoc sub-networks of mobile devices, such as smart-phones. These algorithms are in sharp contrast to complex network algorithms that necessitate all measurements to be sent to powerful central servers. In this work, at individual sensors, we employ Wald-statistic based detection algorithms which are computationally very fast, and are implemented as one of three Z-tests and four chi-square tests. At fusion center, we apply the K-out-of-N fusion to combine the sensors hard decisions. We characterize the performance of detection methods bymore » deriving analytical expressions for the distributions of underlying test statistics, and by analyzing the fusion performances in terms of K, N, and the false-alarm rates of individual detectors. We experimentally validate our methods using measurements from indoor and outdoor characterization tests of the Intelligence Radiation Sensors Systems (IRSS) program. In particular, utilizing the outdoor measurements, we construct two important real-life scenarios, boundary surveillance and portal monitoring, and present the results of our algorithms.« less
Fast Implicit Methods For Elliptic Moving Interface Problems
2015-12-11
analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform. Second, bilinear quadratures ---which...a fast algorithm was derived, analyzed, and tested for the Fourier transform of pi ecewise polynomials given on d-dimensional simplices in D
A note on parallel and pipeline computation of fast unitary transforms
NASA Technical Reports Server (NTRS)
Fino, B. J.; Algazi, V. R.
1974-01-01
The parallel and pipeline organization of fast unitary transform algorithms such as the Fast Fourier Transform are discussed. The efficiency is pointed out of a combined parallel-pipeline processor of a transform such as the Haar transform in which 2 to the n minus 1 power hardware butterflies generate a transform of order 2 to the n power every computation cycle.
1986-09-01
GmnofesvoealnsMAzovebr192*5 Cacau 5.. . Iv . s . ** .~~~~~~~~~~~ -? %JP~’ 5. . ’ ~f*. * ............................ t’ *S 5%i Soviet forces in place before Moscow.2
Statistical characteristics of locally generated ESF during equinoctial months over Sanya
NASA Astrophysics Data System (ADS)
Meng, Xing; Fang, Hanxian; Li, Guozhu; Weng, Libin
2018-05-01
Understanding the local generation rate of equatorial spread-F (ESF) is important for forecasting ionospheric scintillation. Using the GPS ionospheric scintillation/TEC and VHF radar data during March-April and September-October from 2010 to 2014, the occurrence of ionospheric scintillation, TEC fast fluctuation, and backscatter plume were studied. Through analyzing the simultaneous occurrence of ionospheric scintillation, TEC fast fluctuation and backscatter plume, the local generation rate of ESF over Sanya was investigated. The results show that the monthly generation rate varies between 0% and 68%. A significant equinoctial asymmetry of local generation rate of ESF can be found in 2010, 2013 and 2014. The local generation rate of ESF increases from 2010 to 2014 during March-April, while it does not have similar trend during September-October. The plasma vertical drift influenced by solar activity has a significant impact on the monthly generation rate. The equinoctial asymmetry of plasma vertical drift may contribute a lot to the equinoctial asymmetry of the generation rate of ESF.
Validation of FAST Model Sleep Estimates with Actigraph Measured Sleep in Locomotive Engineers
DOT National Transportation Integrated Search
2012-04-01
This report presents the results of a study to validate the AutoSleep sleep prediction algorithm, which is a component of the Fatigue Avoidance Scheduling Tool (FAST). Researchers collected work and sleep data from 41 locomotive engineers by using ac...
Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations
NASA Technical Reports Server (NTRS)
Fijany, Amir
1993-01-01
In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.
Efficient implementation of parallel three-dimensional FFT on clusters of PCs
NASA Astrophysics Data System (ADS)
Takahashi, Daisuke
2003-05-01
In this paper, we propose a high-performance parallel three-dimensional fast Fourier transform (FFT) algorithm on clusters of PCs. The three-dimensional FFT algorithm can be altered into a block three-dimensional FFT algorithm to reduce the number of cache misses. We show that the block three-dimensional FFT algorithm improves performance by utilizing the cache memory effectively. We use the block three-dimensional FFT algorithm to implement the parallel three-dimensional FFT algorithm. We succeeded in obtaining performance of over 1.3 GFLOPS on an 8-node dual Pentium III 1 GHz PC SMP cluster.
Yue, Dan; Nie, Haitao; Li, Ye; Ying, Changsheng
2018-03-01
Wavefront sensorless (WFSless) adaptive optics (AO) systems have been widely studied in recent years. To reach optimum results, such systems require an efficient correction method. This paper presents a fast wavefront correction approach for a WFSless AO system mainly based on the linear phase diversity (PD) technique. The fast closed-loop control algorithm is set up based on the linear relationship between the drive voltage of the deformable mirror (DM) and the far-field images of the system, which is obtained through the linear PD algorithm combined with the influence function of the DM. A large number of phase screens under different turbulence strengths are simulated to test the performance of the proposed method. The numerical simulation results show that the method has fast convergence rate and strong correction ability, a few correction times can achieve good correction results, and can effectively improve the imaging quality of the system while needing fewer measurements of CCD data.
Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation
NASA Technical Reports Server (NTRS)
Liandrat, J.; Tchamitchian, PH.
1990-01-01
The Burgers equation with a small viscosity term, initial and periodic boundary conditions is resolved using a spatial approximation constructed from an orthonormal basis of wavelets. The algorithm is directly derived from the notions of multiresolution analysis and tree algorithms. Before the numerical algorithm is described these notions are first recalled. The method uses extensively the localization properties of the wavelets in the physical and Fourier spaces. Moreover, the authors take advantage of the fact that the involved linear operators have constant coefficients. Finally, the algorithm can be considered as a time marching version of the tree algorithm. The most important point is that an adaptive version of the algorithm exists: it allows one to reduce in a significant way the number of degrees of freedom required for a good computation of the solution. Numerical results and description of the different elements of the algorithm are provided in combination with different mathematical comments on the method and some comparison with more classical numerical algorithms.
On Computing Breakpoint Distances for Genomes with Duplicate Genes.
Shao, Mingfu; Moret, Bernard M E
2017-06-01
A fundamental problem in comparative genomics is to compute the distance between two genomes in terms of its higher level organization (given by genes or syntenic blocks). For two genomes without duplicate genes, we can easily define (and almost always efficiently compute) a variety of distance measures, but the problem is NP-hard under most models when genomes contain duplicate genes. To tackle duplicate genes, three formulations (exemplar, maximum matching, and any matching) have been proposed, all of which aim to build a matching between homologous genes so as to minimize some distance measure. Of the many distance measures, the breakpoint distance (the number of nonconserved adjacencies) was the first one to be studied and remains of significant interest because of its simplicity and model-free property. The three breakpoint distance problems corresponding to the three formulations have been widely studied. Although we provided last year a solution for the exemplar problem that runs very fast on full genomes, computing optimal solutions for the other two problems has remained challenging. In this article, we describe very fast, exact algorithms for these two problems. Our algorithms rely on a compact integer-linear program that we further simplify by developing an algorithm to remove variables, based on new results on the structure of adjacencies and matchings. Through extensive experiments using both simulations and biological data sets, we show that our algorithms run very fast (in seconds) on mammalian genomes and scale well beyond. We also apply these algorithms (as well as the classic orthology tool MSOAR) to create orthology assignment, then compare their quality in terms of both accuracy and coverage. We find that our algorithm for the "any matching" formulation significantly outperforms other methods in terms of accuracy while achieving nearly maximum coverage.
Jia, Xun; Lou, Yifei; Li, Ruijiang; Song, William Y; Jiang, Steve B
2010-04-01
Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of approximately 360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.
An improved conscan algorithm based on a Kalman filter
NASA Technical Reports Server (NTRS)
Eldred, D. B.
1994-01-01
Conscan is commonly used by DSN antennas to allow adaptive tracking of a target whose position is not precisely known. This article describes an algorithm that is based on a Kalman filter and is proposed to replace the existing fast Fourier transform based (FFT-based) algorithm for conscan. Advantages of this algorithm include better pointing accuracy, continuous update information, and accommodation of missing data. Additionally, a strategy for adaptive selection of the conscan radius is proposed. The performance of the algorithm is illustrated through computer simulations and compared to the FFT algorithm. The results show that the Kalman filter algorithm is consistently superior.
High-Performance Computing for the Electromagnetic Modeling and Simulation of Interconnects
NASA Technical Reports Server (NTRS)
Schutt-Aine, Jose E.
1996-01-01
The electromagnetic modeling of packages and interconnects plays a very important role in the design of high-speed digital circuits, and is most efficiently performed by using computer-aided design algorithms. In recent years, packaging has become a critical area in the design of high-speed communication systems and fast computers, and the importance of the software support for their development has increased accordingly. Throughout this project, our efforts have focused on the development of modeling and simulation techniques and algorithms that permit the fast computation of the electrical parameters of interconnects and the efficient simulation of their electrical performance.
NASA Technical Reports Server (NTRS)
Aires, F.; Chedin, A.; Scott, N. A.; Rossow, W. B.; Hansen, James E. (Technical Monitor)
2001-01-01
Abstract In this paper, a fast atmospheric and surface temperature retrieval algorithm is developed for the high resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. This algorithm is constructed on the basis of a neural network technique that has been regularized by introduction of a priori information. The performance of the resulting fast and accurate inverse radiative transfer model is presented for a large divE:rsified dataset of radiosonde atmospheres including rare events. Two configurations are considered: a tropical-airmass specialized scheme and an all-air-masses scheme.
Senter, Evan; Sheikh, Saad; Dotu, Ivan; Ponty, Yann; Clote, Peter
2012-01-01
Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time and quadratic space , is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/. PMID:23284639
Variable disparity-motion estimation based fast three-view video coding
NASA Astrophysics Data System (ADS)
Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo
2009-02-01
In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.
Grebenkov, Denis S
2011-02-01
A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sanyal, Soumya; Jain, Amit; Das, Sajal K.; Biswas, Rupak
2003-01-01
In this paper, we propose a distributed approach for mapping a single large application to a heterogeneous grid environment. To minimize the execution time of the parallel application, we distribute the mapping overhead to the available nodes of the grid. This approach not only provides a fast mapping of tasks to resources but is also scalable. We adopt a hierarchical grid model and accomplish the job of mapping tasks to this topology using a scheduler tree. Results show that our three-phase algorithm provides high quality mappings, and is fast and scalable.
A framework for porting the NeuroBayes machine learning algorithm to FPGAs
NASA Astrophysics Data System (ADS)
Baehr, S.; Sander, O.; Heck, M.; Feindt, M.; Becker, J.
2016-01-01
The NeuroBayes machine learning algorithm is deployed for online data reduction at the pixel detector of Belle II. In order to test, characterize and easily adapt its implementation on FPGAs, a framework was developed. Within the framework an HDL model, written in python using MyHDL, is used for fast exploration of possible configurations. Under usage of input data from physics simulations figures of merit like throughput, accuracy and resource demand of the implementation are evaluated in a fast and flexible way. Functional validation is supported by usage of unit tests and HDL simulation for chosen configurations.
Floating shock fitting via Lagrangian adaptive meshes
NASA Technical Reports Server (NTRS)
Vanrosendale, John
1995-01-01
In recent work we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered on Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM), is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence.
1992-08-26
the following three categories, de- pending where the nonlinear transformation is being applied on the data : (i) the Bussgang algorithms, where the...algorithms belong to one of the following three categories, depending where the nonlinear transformation is being applied on the data : "* The Bussgang...communication systems usually require an initial training period, during which a known data sequence (i.e., training sequence) is transmitted [43], [45]. An
Computational Fluid Dynamics. [numerical methods and algorithm development
NASA Technical Reports Server (NTRS)
1992-01-01
This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.
CNN universal machine as classificaton platform: an art-like clustering algorithm.
Bálya, David
2003-12-01
Fast and robust classification of feature vectors is a crucial task in a number of real-time systems. A cellular neural/nonlinear network universal machine (CNN-UM) can be very efficient as a feature detector. The next step is to post-process the results for object recognition. This paper shows how a robust classification scheme based on adaptive resonance theory (ART) can be mapped to the CNN-UM. Moreover, this mapping is general enough to include different types of feed-forward neural networks. The designed analogic CNN algorithm is capable of classifying the extracted feature vectors keeping the advantages of the ART networks, such as robust, plastic and fault-tolerant behaviors. An analogic algorithm is presented for unsupervised classification with tunable sensitivity and automatic new class creation. The algorithm is extended for supervised classification. The presented binary feature vector classification is implemented on the existing standard CNN-UM chips for fast classification. The experimental evaluation shows promising performance after 100% accuracy on the training set.
Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates.
Subotnik, Joseph E; Dutoi, Anthony D; Head-Gordon, Martin
2005-09-15
We present here an algorithm for computing stable, well-defined localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. The algorithm is very fast, limited only by diagonalization of two matrices with dimension the size of the number of virtual orbitals. Furthermore, we require no more than quadratic (in the number of electrons) storage. The basic premise behind our algorithm is that one can decompose any given atomic-orbital (AO) vector space as a minimal basis space (which includes the occupied and valence virtual spaces) and a hard-virtual (HV) space (which includes everything else). The valence virtual space localizes easily with standard methods, while the hard-virtual space is constructed to be atom centered and automatically local. The orbitals presented here may be computed almost as quickly as projecting the AO basis onto the virtual space and are almost as local (according to orbital variance), while our orbitals are orthonormal (rather than redundant and nonorthogonal). We expect this algorithm to find use in local-correlation methods.
Adaptive Wiener filter super-resolution of color filter array images.
Karch, Barry K; Hardie, Russell C
2013-08-12
Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.
A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream
Ying Wah, Teh
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mărăscu, V.; Dinescu, G.; Faculty of Physics, University of Bucharest, 405 Atomistilor Street, Bucharest-Magurele
In this paper we propose a statistical approach for describing the self-assembling of sub-micronic polystyrene beads on silicon surfaces, as well as the evolution of surface topography due to plasma treatments. Algorithms for image recognition are used in conjunction with Scanning Electron Microscopy (SEM) imaging of surfaces. In a first step, greyscale images of the surface covered by the polystyrene beads are obtained. Further, an adaptive thresholding method was applied for obtaining binary images. The next step consisted in automatic identification of polystyrene beads dimensions, by using Hough transform algorithm, according to beads radius. In order to analyze the uniformitymore » of the self–assembled polystyrene beads, the squared modulus of 2-dimensional Fast Fourier Transform (2- D FFT) was applied. By combining these algorithms we obtain a powerful and fast statistical tool for analysis of micro and nanomaterials with aspect features regularly distributed on surface upon SEM examination.« less
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming
1990-01-01
A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.
A fast density-based clustering algorithm for real-time Internet of Things stream.
Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A., E-mail: anastasio@wustl.edu
Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that ismore » solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets.« less
Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A
2016-04-01
The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets.
Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A.
2016-01-01
Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets. PMID:27036582
Towards developing robust algorithms for solving partial differential equations on MIMD machines
NASA Technical Reports Server (NTRS)
Saltz, Joel H.; Naik, Vijay K.
1988-01-01
Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.
Towards developing robust algorithms for solving partial differential equations on MIMD machines
NASA Technical Reports Server (NTRS)
Saltz, J. H.; Naik, V. K.
1985-01-01
Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.
Surgeon Training in Telerobotic Surgery via a Hardware-in-the-Loop Simulator
Alemzadeh, Homa; Chen, Daniel; Kalbarczyk, Zbigniew; Iyer, Ravishankar K.; Kesavadas, Thenkurussi
2017-01-01
This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors in ensuring patient safety and efficiency in operation. In this work, we propose a hardware-in-the-loop simulator directly introducing these two features. The proposed simulator is built upon the Raven-II™ open source surgical robot, integrated with a physics engine and a safety hazard injection engine. Also, a Fast Marching Tree-based motion planning algorithm is used to help trainee learn the optimal instrument motion patterns. The main contributions of this work are (1) reproducing safety hazards events, related to da Vinci™ system, reported to the FDA MAUDE database, with a novel haptic feedback strategy to provide feedback to the operator when the underlying dynamics differ from the real robot's states so that the operator will be aware and can mitigate the negative impact of the safety-critical events, and (2) using motion planner to generate semioptimal path in an interactive robotic surgery training environment. PMID:29065635
2014-02-11
The dark region seen on the face of the sun at the end of March 2013 is a coronal hole just above and to the right of the middle of the picture, which is a source of fast solar wind leaving the sun in this image from NASA Solar Dynamic Observatory.
Peng, Lele; Zheng, Shubin; Xu, Wei; Xin, Li
2018-04-01
This article presents the data on photovoltaic (PV) system used different perturb and observe (P&O) methods under fast multi-changing solar irradiances. The mathematical modeling of the PV system and tangent error P&O method was discussed in our previous study entitled "A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances" by Peng et al. (2018) [1]. The data provided in this paper can be used directly without having to spend weeks to simulate the output performance. In addition, it is easy to apply the results for comparison with other algorithms (Kollimalla et al., 2014; Belkaid et al., 2016; Chenchen et al., 2015; Jubaer and Zainal, 2015) [2,3,4,5], and develop a new method for practical application.
NASA Astrophysics Data System (ADS)
Li, Mian-Shiuan; Chen, Mei-Juan; Tai, Kuang-Han; Sue, Kuen-Liang
2013-12-01
This article proposes a fast mode decision algorithm based on the correlation of the just-noticeable-difference (JND) and the rate distortion cost (RD cost) to reduce the computational complexity of H.264/AVC. First, the relationship between the average RD cost and the number of JND pixels is established by Gaussian distributions. Thus, the RD cost of the Inter 16 × 16 mode is compared with the predicted thresholds from these models for fast mode selection. In addition, we use the image content, the residual data, and JND visual model for horizontal/vertical detection, and then utilize the result to predict the partition in a macroblock. From the experimental results, a greater time saving can be achieved while the proposed algorithm also maintains performance and quality effectively.
The Improved Locating Algorithm of Particle Filter Based on ROS Robot
NASA Astrophysics Data System (ADS)
Fang, Xun; Fu, Xiaoyang; Sun, Ming
2018-03-01
This paperanalyzes basic theory and primary algorithm of the real-time locating system and SLAM technology based on ROS system Robot. It proposes improved locating algorithm of particle filter effectively reduces the matching time of laser radar and map, additional ultra-wideband technology directly accelerates the global efficiency of FastSLAM algorithm, which no longer needs searching on the global map. Meanwhile, the re-sampling has been largely reduced about 5/6 that directly cancels the matching behavior on Roboticsalgorithm.
A Fast and Accurate Algorithm for l1 Minimization Problems in Compressive Sampling (Preprint)
2013-01-22
However, updating uk+1 via the formulation of Step 2 in Algorithm 1 can be implemented through the use of the component-wise Gauss - Seidel iteration which...may accelerate the rate of convergence of the algorithm and therefore reduce the total CPU-time consumed. The efficiency of component-wise Gauss - Seidel ...Micchelli, L. Shen, and Y. Xu, A proximity algorithm accelerated by Gauss - Seidel iterations for L1/TV denoising models, Inverse Problems, 28 (2012), p
Inverse Problems, Control and Modeling in the Presence of Uncertainty
2007-10-30
using a Kelvin model, CRSC- TR07-08, March, 2007; IEEE Transactions on Biomedical Engineering, submitted. [P18] K. Ito, Q. Huynh and J . Toivanen, A fast...Science and Engineering, Springer (2006), 595 602 . [P19] K.Ito and J . Toivanen, A fast iterative solver for scattering by elastic objects in layered...and N.G. Medhin, " A stick-slip/Rouse hybrid model", CRSC-TR05-28, August, 2005. [P23] H.T. Banks, A . F. Karr, H. K. Nguyen, and J . R. Samuels, Jr
Optimizing the learning rate for adaptive estimation of neural encoding models
2018-01-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069
Optimizing the learning rate for adaptive estimation of neural encoding models.
Hsieh, Han-Lin; Shanechi, Maryam M
2018-05-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
Raghuram, Jayaram; Miller, David J; Kesidis, George
2014-07-01
We propose a method for detecting anomalous domain names, with focus on algorithmically generated domain names which are frequently associated with malicious activities such as fast flux service networks, particularly for bot networks (or botnets), malware, and phishing. Our method is based on learning a (null hypothesis) probability model based on a large set of domain names that have been white listed by some reliable authority. Since these names are mostly assigned by humans, they are pronounceable, and tend to have a distribution of characters, words, word lengths, and number of words that are typical of some language (mostly English), and often consist of words drawn from a known lexicon. On the other hand, in the present day scenario, algorithmically generated domain names typically have distributions that are quite different from that of human-created domain names. We propose a fully generative model for the probability distribution of benign (white listed) domain names which can be used in an anomaly detection setting for identifying putative algorithmically generated domain names. Unlike other methods, our approach can make detections without considering any additional (latency producing) information sources, often used to detect fast flux activity. Experiments on a publicly available, large data set of domain names associated with fast flux service networks show encouraging results, relative to several baseline methods, with higher detection rates and low false positive rates.
Raghuram, Jayaram; Miller, David J.; Kesidis, George
2014-01-01
We propose a method for detecting anomalous domain names, with focus on algorithmically generated domain names which are frequently associated with malicious activities such as fast flux service networks, particularly for bot networks (or botnets), malware, and phishing. Our method is based on learning a (null hypothesis) probability model based on a large set of domain names that have been white listed by some reliable authority. Since these names are mostly assigned by humans, they are pronounceable, and tend to have a distribution of characters, words, word lengths, and number of words that are typical of some language (mostly English), and often consist of words drawn from a known lexicon. On the other hand, in the present day scenario, algorithmically generated domain names typically have distributions that are quite different from that of human-created domain names. We propose a fully generative model for the probability distribution of benign (white listed) domain names which can be used in an anomaly detection setting for identifying putative algorithmically generated domain names. Unlike other methods, our approach can make detections without considering any additional (latency producing) information sources, often used to detect fast flux activity. Experiments on a publicly available, large data set of domain names associated with fast flux service networks show encouraging results, relative to several baseline methods, with higher detection rates and low false positive rates. PMID:25685511
NASA Astrophysics Data System (ADS)
Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir
2015-11-01
The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.
Fast matrix multiplication and its algebraic neighbourhood
NASA Astrophysics Data System (ADS)
Pan, V. Ya.
2017-11-01
Matrix multiplication is among the most fundamental operations of modern computations. By 1969 it was still commonly believed that the classical algorithm was optimal, although the experts already knew that this was not so. Worldwide interest in matrix multiplication instantly exploded in 1969, when Strassen decreased the exponent 3 of cubic time to 2.807. Then everyone expected to see matrix multiplication performed in quadratic or nearly quadratic time very soon. Further progress, however, turned out to be capricious. It was at stalemate for almost a decade, then a combination of surprising techniques (completely independent of Strassen's original ones and much more advanced) enabled a new decrease of the exponent in 1978-1981 and then again in 1986, to 2.376. By 2017 the exponent has still not passed through the barrier of 2.373, but most disturbing was the curse of recursion — even the decrease of exponents below 2.7733 required numerous recursive steps, and each of them squared the problem size. As a result, all algorithms supporting such exponents supersede the classical algorithm only for inputs of immense sizes, far beyond any potential interest for the user. We survey the long study of fast matrix multiplication, focusing on neglected algorithms for feasible matrix multiplication. We comment on their design, the techniques involved, implementation issues, the impact of their study on the modern theory and practice of Algebraic Computations, and perspectives for fast matrix multiplication. Bibliography: 163 titles.
A comparison of upwind schemes for computation of three-dimensional hypersonic real-gas flows
NASA Technical Reports Server (NTRS)
Gerbsch, R. A.; Agarwal, R. K.
1992-01-01
The method of Suresh and Liou (1992) is extended, and the resulting explicit noniterative upwind finite-volume algorithm is applied to the integration of 3D parabolized Navier-Stokes equations to model 3D hypersonic real-gas flowfields. The solver is second-order accurate in the marching direction and employs flux-limiters to make the algorithm second-order accurate, with total variation diminishing in the cross-flow direction. The algorithm is used to compute hypersonic flow over a yawed cone and over the Ames All-Body Hypersonic Vehicle. The solutions obtained agree well with other computational results and with experimental data.
RAPID OPTICAL VARIABILITY IN BLAZAR S5 0716+71 DURING 2010 MARCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, S.; Baliyan, K. S.; Ganesh, S.
We report rapid optical variability for the blazar S5 0716+71 during 2010 March 8-10 and 19-20 in the CCD observations made from Mt. Abu Infrared Observatory. The light curves are constructed for a duration longer than 3 hr each night, with very high temporal resolution ({approx}45 s in the R band). During 2010 March 8, the source smoothly decayed by about 0.15 mag in 2.88 hr, apart from a fast flicker lasting about 30 minutes. S5 0716+71 brightened during March 9 and 10, showing high activity, while it was relatively faint (>14 mag in the R band) albeit variable duringmore » March 19-20. During March 9 and 10, rapid flickers in the intensity modulated the long-term intra-night ({approx}3 hr) variations. The present observations suggest that the blazar S5 0716+71 showed night-to-night and intra-night variability at various timescales with a 100% duty cycle for variation along with microvariability at significant levels. On a night-to-night basis, the source exhibits mild bluer-when-brighter nature. The interaction of shocks with local inhomogeneities in the jet appears to cause intra-night variations, while microvariations could be due to small-scale perturbations intrinsic to the jet.« less
The String Stability of a Trajectory-Based Interval Management Algorithm in the Midterm Airspace
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.
2015-01-01
NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides terminal controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain a precise spacing interval behind a target aircraft. As the percentage of IM equipped aircraft increases, controllers may provide IM clearances to sequences, or strings, of IM-equipped aircraft. It is important for these strings to maintain stable performance. This paper describes an analytic analysis of the string stability of the latest version of NASA's IM algorithm and a fast-time simulation designed to characterize the string performance of the IM algorithm. The analytic analysis showed that the spacing algorithm has stable poles, indicating that a spacing error perturbation will be reduced as a function of string position. The fast-time simulation investigated IM operations at two airports using constraints associated with the midterm airspace, including limited information of the target aircraft's intended speed profile and limited information of the wind forecast on the target aircraft's route. The results of the fast-time simulation demonstrated that the performance of the spacing algorithm is acceptable for strings of moderate length; however, there is some degradation in IM performance as a function of string position.
Fast imputation using medium- or low-coverage sequence data
USDA-ARS?s Scientific Manuscript database
Direct imputation from raw sequence reads can be more accurate than calling genotypes first and then imputing, especially if read depth is low or error rates high, but different imputation strategies are required than those used for data from genotyping chips. A fast algorithm to impute from lower t...
Applications and Benefits for Big Data Sets Using Tree Distances and The T-SNE Algorithm
2016-03-01
BENEFITS FOR BIG DATA SETS USING TREE DISTANCES AND THE T-SNE ALGORITHM by Suyoung Lee March 2016 Thesis Advisor: Samuel E. Buttrey...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE APPLICATIONS AND BENEFITS FOR BIG DATA SETS USING TREE DISTANCES AND THE T-SNE...this work we use tree distance computed using Buttrey’s treeClust package in R, as discussed by Buttrey and Whitaker in 2015, to process mixed data
Efficient image compression algorithm for computer-animated images
NASA Astrophysics Data System (ADS)
Yfantis, Evangelos A.; Au, Matthew Y.; Miel, G.
1992-10-01
An image compression algorithm is described. The algorithm is an extension of the run-length image compression algorithm and its implementation is relatively easy. This algorithm was implemented and compared with other existing popular compression algorithms and with the Lempel-Ziv (LZ) coding. The Lempel-Ziv algorithm is available as a utility in the UNIX operating system and is also referred to as the UNIX uncompress. Sometimes our algorithm is best in terms of saving memory space, and sometimes one of the competing algorithms is best. The algorithm is lossless, and the intent is for the algorithm to be used in computer graphics animated images. Comparisons made with the LZ algorithm indicate that the decompression time using our algorithm is faster than that using the LZ algorithm. Once the data are in memory, a relatively simple and fast transformation is applied to uncompress the file.
NASA Astrophysics Data System (ADS)
Hostache, Renaud; Chini, Marco; Matgen, Patrick; Giustarini, Laura
2013-04-01
There is a clear need for developing innovative processing chains based on earth observation (EO) data to generate products supporting emergency response and flood management at a global scale. Here an automatic flood mapping application is introduced. The latter is currently hosted on the Grid Processing on Demand (G-POD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver flooded areas using both recent and historical acquisitions of SAR data in an operational framework. It is worth mentioning that the method can be applied to both medium and high resolution SAR images. The flood mapping application consists of two main blocks: 1) A set of query tools for selecting the "crisis image" and the optimal corresponding pre-flood "reference image" from the G-POD archive. 2) An algorithm for extracting flooded areas using the previously selected "crisis image" and "reference image". The proposed method is a hybrid methodology, which combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. The method is based on the calibration of a statistical distribution of "open water" backscatter values inferred from SAR images of floods. Change detection with respect to a pre-flood reference image helps reducing over-detection of inundated areas. The algorithms are computationally efficient and operate with minimum data requirements, considering as input data a flood image and a reference image. Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate pre-flood reference image. Potential users will also be able to apply the implemented flood delineation algorithm. Case studies of several recent high magnitude flooding events (e.g. July 2007 Severn River flood, UK and March 2010 Red River flood, US) observed by high-resolution SAR sensors as well as airborne photography highlight advantages and limitations of the online application. A mid-term target is the exploitation of ESA SENTINEL 1 SAR data streams. In the long term it is foreseen to develop a potential extension of the application for systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis. On-going research activities investigate the usefulness of the method for mapping flood hazard at global scale using databases of historic SAR remote sensing-derived flood inundation maps.
Astronaut Andrew Allen monitors Columbia's systems from pilots station
1994-03-05
STS062-41-025 (18 March 1994) --- Astronaut Andrew M. Allen monitors Columbia's systems from the pilot's station during the entry phase of the STS-62 mission. The fast-speed 35mm film highlights the many controls and displays and the cathode ray tubes on the forward flight deck.
NASA Astrophysics Data System (ADS)
Ha, Jeongmok; Jeong, Hong
2016-07-01
This study investigates the directed acyclic subgraph (DAS) algorithm, which is used to solve discrete labeling problems much more rapidly than other Markov-random-field-based inference methods but at a competitive accuracy. However, the mechanism by which the DAS algorithm simultaneously achieves competitive accuracy and fast execution speed, has not been elucidated by a theoretical derivation. We analyze the DAS algorithm by comparing it with a message passing algorithm. Graphical models, inference methods, and energy-minimization frameworks are compared between DAS and message passing algorithms. Moreover, the performances of DAS and other message passing methods [sum-product belief propagation (BP), max-product BP, and tree-reweighted message passing] are experimentally compared.
ICPL: Intelligent Cooperative Planning and Learning for Multi-agent Systems
2012-02-29
objective was to develop a new planning approach for teams!of multiple UAVs that tightly integrates learning and cooperative!control algorithms at... algorithms at multiple levels of the planning architecture. The research results enabled a team of mobile agents to learn to adapt and react to uncertainty in...expressive representation that incorporates feature conjunctions. Our algorithm is simple to implement, fast to execute, and can be combined with any
Optimal Alignment of Structures for Finite and Periodic Systems.
Griffiths, Matthew; Niblett, Samuel P; Wales, David J
2017-10-10
Finding the optimal alignment between two structures is important for identifying the minimum root-mean-square distance (RMSD) between them and as a starting point for calculating pathways. Most current algorithms for aligning structures are stochastic, scale exponentially with the size of structure, and the performance can be unreliable. We present two complementary methods for aligning structures corresponding to isolated clusters of atoms and to condensed matter described by a periodic cubic supercell. The first method (Go-PERMDIST), a branch and bound algorithm, locates the global minimum RMSD deterministically in polynomial time. The run time increases for larger RMSDs. The second method (FASTOVERLAP) is a heuristic algorithm that aligns structures by finding the global maximum kernel correlation between them using fast Fourier transforms (FFTs) and fast SO(3) transforms (SOFTs). For periodic systems, FASTOVERLAP scales with the square of the number of identical atoms in the system, reliably finds the best alignment between structures that are not too distant, and shows significantly better performance than existing algorithms. The expected run time for Go-PERMDIST is longer than FASTOVERLAP for periodic systems. For finite clusters, the FASTOVERLAP algorithm is competitive with existing algorithms. The expected run time for Go-PERMDIST to find the global RMSD between two structures deterministically is generally longer than for existing stochastic algorithms. However, with an earlier exit condition, Go-PERMDIST exhibits similar or better performance.
Multiphase complete exchange: A theoretical analysis
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1993-01-01
Complete Exchange requires each of N processors to send a unique message to each of the remaining N-1 processors. For a circuit switched hypercube with N = 2(sub d) processors, the Direct and Standard algorithms for Complete Exchange are optimal for very large and very small message sizes, respectively. For intermediate sizes, a hybrid Multiphase algorithm is better. This carries out Direct exchanges on a set of subcubes whose dimensions are a partition of the integer d. The best such algorithm for a given message size m could hitherto only be found by enumerating all partitions of d. The Multiphase algorithm is analyzed assuming a high performance communication network. It is proved that only algorithms corresponding to equipartitions of d (partitions in which the maximum and minimum elements differ by at most 1) can possibly be optimal. The run times of these algorithms plotted against m form a hull of optimality. It is proved that, although there is an exponential number of partitions, (1) the number of faces on this hull is Theta(square root of d), (2) the hull can be found in theta(square root of d) time, and (3) once it has been found, the optimal algorithm for any given m can be found in Theta(log d) time. These results provide a very fast technique for minimizing communication overhead in many important applications, such as matrix transpose, Fast Fourier transform, and ADI.
Lamberti, A; Vanlanduit, S; De Pauw, B; Berghmans, F
2014-03-24
Fiber Bragg Gratings (FBGs) can be used as sensors for strain, temperature and pressure measurements. For this purpose, the ability to determine the Bragg peak wavelength with adequate wavelength resolution and accuracy is essential. However, conventional peak detection techniques, such as the maximum detection algorithm, can yield inaccurate and imprecise results, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. Other techniques, such as the cross-correlation demodulation algorithm are more precise and accurate but require a considerable higher computational effort. To overcome these problems, we developed a novel fast phase correlation (FPC) peak detection algorithm, which computes the wavelength shift in the reflected spectrum of a FBG sensor. This paper analyzes the performance of the FPC algorithm for different values of the SNR and wavelength resolution. Using simulations and experiments, we compared the FPC with the maximum detection and cross-correlation algorithms. The FPC method demonstrated a detection precision and accuracy comparable with those of cross-correlation demodulation and considerably higher than those obtained with the maximum detection technique. Additionally, FPC showed to be about 50 times faster than the cross-correlation. It is therefore a promising tool for future implementation in real-time systems or in embedded hardware intended for FBG sensor interrogation.
A fast and automatic fusion algorithm for unregistered multi-exposure image sequence
NASA Astrophysics Data System (ADS)
Liu, Yan; Yu, Feihong
2014-09-01
Human visual system (HVS) can visualize all the brightness levels of the scene through visual adaptation. However, the dynamic range of most commercial digital cameras and display devices are smaller than the dynamic range of human eye. This implies low dynamic range (LDR) images captured by normal digital camera may lose image details. We propose an efficient approach to high dynamic (HDR) image fusion that copes with image displacement and image blur degradation in a computationally efficient manner, which is suitable for implementation on mobile devices. The various image registration algorithms proposed in the previous literatures are unable to meet the efficiency and performance requirements in the application of mobile devices. In this paper, we selected Oriented Brief (ORB) detector to extract local image structures. The descriptor selected in multi-exposure image fusion algorithm has to be fast and robust to illumination variations and geometric deformations. ORB descriptor is the best candidate in our algorithm. Further, we perform an improved RANdom Sample Consensus (RANSAC) algorithm to reject incorrect matches. For the fusion of images, a new approach based on Stationary Wavelet Transform (SWT) is used. The experimental results demonstrate that the proposed algorithm generates high quality images at low computational cost. Comparisons with a number of other feature matching methods show that our method gets better performance.
A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.
Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe
2018-01-01
Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.
Adaptive multiple super fast simulated annealing for stochastic microstructure reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Seun; Lin, Guang; Sun, Xin
2013-01-01
Fast image reconstruction from statistical information is critical in image fusion from multimodality chemical imaging instrumentation to create high resolution image with large domain. Stochastic methods have been used widely in image reconstruction from two point correlation function. The main challenge is to increase the efficiency of reconstruction. A novel simulated annealing method is proposed for fast solution of image reconstruction. Combining the advantage of very fast cooling schedules, dynamic adaption and parallelization, the new simulation annealing algorithm increases the efficiencies by several orders of magnitude, making the large domain image fusion feasible.
Performance of Blind Source Separation Algorithms for FMRI Analysis using a Group ICA Method
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D.
2007-01-01
Independent component analysis (ICA) is a popular blind source separation (BSS) technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist, however the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely information maximization, maximization of non-gaussianity, joint diagonalization of cross-cumulant matrices, and second-order correlation based methods when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study the variability among different ICA algorithms and propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA, and JADE all yield reliable results; each having their strengths in specific areas. EVD, an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for the iterative ICA algorithms, it is important to investigate the variability of the estimates from different runs. We test the consistency of the iterative algorithms, Infomax and FastICA, by running the algorithm a number of times with different initializations and note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis. PMID:17540281
Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D
2007-06-01
Independent component analysis (ICA) is a popular blind source separation technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist; however, the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely, information maximization, maximization of non-Gaussianity, joint diagonalization of cross-cumulant matrices and second-order correlation-based methods, when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study variability among different ICA algorithms, and we propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA and joint approximate diagonalization of eigenmatrices (JADE) all yield reliable results, with each having its strengths in specific areas. Eigenvalue decomposition (EVD), an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for iterative ICA algorithms, it is important to investigate the variability of estimates from different runs. We test the consistency of the iterative algorithms Infomax and FastICA by running the algorithm a number of times with different initializations, and we note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis.
A provisional effective evaluation when errors are present in independent variables
NASA Technical Reports Server (NTRS)
Gurin, L. S.
1983-01-01
Algorithms are examined for evaluating the parameters of a regression model when there are errors in the independent variables. The algorithms are fast and the estimates they yield are stable with respect to the correlation of errors and measurements of both the dependent variable and the independent variables.
A scalable and practical one-pass clustering algorithm for recommender system
NASA Astrophysics Data System (ADS)
Khalid, Asra; Ghazanfar, Mustansar Ali; Azam, Awais; Alahmari, Saad Ali
2015-12-01
KMeans clustering-based recommendation algorithms have been proposed claiming to increase the scalability of recommender systems. One potential drawback of these algorithms is that they perform training offline and hence cannot accommodate the incremental updates with the arrival of new data, making them unsuitable for the dynamic environments. From this line of research, a new clustering algorithm called One-Pass is proposed, which is a simple, fast, and accurate. We show empirically that the proposed algorithm outperforms K-Means in terms of recommendation and training time while maintaining a good level of accuracy.
Fast perceptual image hash based on cascade algorithm
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya
2017-09-01
In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.
High performance MPEG-audio decoder IC
NASA Technical Reports Server (NTRS)
Thorn, M.; Benbassat, G.; Cyr, K.; Li, S.; Gill, M.; Kam, D.; Walker, K.; Look, P.; Eldridge, C.; Ng, P.
1993-01-01
The emerging digital audio and video compression technology brings both an opportunity and a new challenge to IC design. The pervasive application of compression technology to consumer electronics will require high volume, low cost IC's and fast time to market of the prototypes and production units. At the same time, the algorithms used in the compression technology result in complex VLSI IC's. The conflicting challenges of algorithm complexity, low cost, and fast time to market have an impact on device architecture and design methodology. The work presented in this paper is about the design of a dedicated, high precision, Motion Picture Expert Group (MPEG) audio decoder.
A fast, parallel algorithm for distant-dependent calculation of crystal properties
NASA Astrophysics Data System (ADS)
Stein, Matthew
2017-12-01
A fast, parallel algorithm for distant-dependent calculation and simulation of crystal properties is presented along with speedup results and methods of application. An illustrative example is used to compute the Lennard-Jones lattice constants up to 32 significant figures for 4 ≤ p ≤ 30 in the simple cubic, face-centered cubic, body-centered cubic, hexagonal-close-pack, and diamond lattices. In most cases, the known precision of these constants is more than doubled, and in some cases, corrected from previously published figures. The tools and strategies to make this computation possible are detailed along with application to other potentials, including those that model defects.
Fast algorithm for the rendering of three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Pritt, Mark D.
1994-02-01
It is often desirable to draw a detailed and realistic representation of surface data on a computer graphics display. One such representation is a 3D shaded surface. Conventional techniques for rendering shaded surfaces are slow, however, and require substantial computational power. Furthermore, many techniques suffer from aliasing effects, which appear as jagged lines and edges. This paper describes an algorithm for the fast rendering of shaded surfaces without aliasing effects. It is much faster than conventional ray tracing and polygon-based rendering techniques and is suitable for interactive use. On an IBM RISC System/6000TM workstation it renders a 1000 X 1000 surface in about 7 seconds.
NASA Astrophysics Data System (ADS)
Skala, Vaclav
2016-06-01
There are many applications in which a bounding sphere containing the given triangle E3 is needed, e.g. fast collision detection, ray-triangle intersecting in raytracing etc. This is a typical geometrical problem in E3 and it has also applications in computational problems in general. In this paper a new fast and robust algorithm of circumscribed sphere computation in the n-dimensional space is presented and specification for the E3 space is given, too. The presented method is convenient for use on GPU or with SSE or Intel's AVX instructions on a standard CPU.
Fast computational scheme of image compression for 32-bit microprocessors
NASA Technical Reports Server (NTRS)
Kasperovich, Leonid
1994-01-01
This paper presents a new computational scheme of image compression based on the discrete cosine transform (DCT), underlying JPEG and MPEG International Standards. The algorithm for the 2-d DCT computation uses integer operations (register shifts and additions / subtractions only); its computational complexity is about 8 additions per image pixel. As a meaningful example of an on-board image compression application we consider the software implementation of the algorithm for the Mars Rover (Marsokhod, in Russian) imaging system being developed as a part of Mars-96 International Space Project. It's shown that fast software solution for 32-bit microprocessors may compete with the DCT-based image compression hardware.
Reneker, Jeff; Shyu, Chi-Ren; Zeng, Peiyu; Polacco, Joseph C.; Gassmann, Walter
2004-01-01
We have developed a web server for the life sciences community to use to search for short repeats of DNA sequence of length between 3 and 10 000 bases within multiple species. This search employs a unique and fast hash function approach. Our system also applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. Furthermore, we have incorporated a part of the Gene Ontology database into our information retrieval algorithms to broaden the coverage of the search. Our web server and tutorial can be found at http://acmes.rnet.missouri.edu. PMID:15215469
Fast sparse recovery and coherence factor weighting in optoacoustic tomography
NASA Astrophysics Data System (ADS)
He, Hailong; Prakash, Jaya; Buehler, Andreas; Ntziachristos, Vasilis
2017-03-01
Sparse recovery algorithms have shown great potential to reconstruct images with limited view datasets in optoacoustic tomography, with a disadvantage of being computational expensive. In this paper, we improve the fast convergent Split Augmented Lagrangian Shrinkage Algorithm (SALSA) method based on least square QR (LSQR) formulation for performing accelerated reconstructions. Further, coherence factor is calculated to weight the final reconstruction result, which can further reduce artifacts arising in limited-view scenarios and acoustically heterogeneous mediums. Several phantom and biological experiments indicate that the accelerated SALSA method with coherence factor (ASALSA-CF) can provide improved reconstructions and much faster convergence compared to existing sparse recovery methods.
Fast linear feature detection using multiple directional non-maximum suppression.
Sun, C; Vallotton, P
2009-05-01
The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.
Fast segmentation of satellite images using SLIC, WebGL and Google Earth Engine
NASA Astrophysics Data System (ADS)
Donchyts, Gennadii; Baart, Fedor; Gorelick, Noel; Eisemann, Elmar; van de Giesen, Nick
2017-04-01
Google Earth Engine (GEE) is a parallel geospatial processing platform, which harmonizes access to petabytes of freely available satellite images. It provides a very rich API, allowing development of dedicated algorithms to extract useful geospatial information from these images. At the same time, modern GPUs provide thousands of computing cores, which are mostly not utilized in this context. In the last years, WebGL became a popular and well-supported API, allowing fast image processing directly in web browsers. In this work, we will evaluate the applicability of WebGL to enable fast segmentation of satellite images. A new implementation of a Simple Linear Iterative Clustering (SLIC) algorithm using GPU shaders will be presented. SLIC is a simple and efficient method to decompose an image in visually homogeneous regions. It adapts a k-means clustering approach to generate superpixels efficiently. While this approach will be hard to scale, due to a significant amount of data to be transferred to the client, it should significantly improve exploratory possibilities and simplify development of dedicated algorithms for geoscience applications. Our prototype implementation will be used to improve surface water detection of the reservoirs using multispectral satellite imagery.
Learning accurate very fast decision trees from uncertain data streams
NASA Astrophysics Data System (ADS)
Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo
2015-12-01
Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.
A Quasiphysics Intelligent Model for a Long Range Fast Tool Servo
Liu, Qiang; Zhou, Xiaoqin; Lin, Jieqiong; Xu, Pengzi; Zhu, Zhiwei
2013-01-01
Accurately modeling the dynamic behaviors of fast tool servo (FTS) is one of the key issues in the ultraprecision positioning of the cutting tool. Herein, a quasiphysics intelligent model (QPIM) integrating a linear physics model (LPM) and a radial basis function (RBF) based neural model (NM) is developed to accurately describe the dynamic behaviors of a voice coil motor (VCM) actuated long range fast tool servo (LFTS). To identify the parameters of the LPM, a novel Opposition-based Self-adaptive Replacement Differential Evolution (OSaRDE) algorithm is proposed which has been proved to have a faster convergence mechanism without compromising with the quality of solution and outperform than similar evolution algorithms taken for consideration. The modeling errors of the LPM and the QPIM are investigated by experiments. The modeling error of the LPM presents an obvious trend component which is about ±1.15% of the full span range verifying the efficiency of the proposed OSaRDE algorithm for system identification. As for the QPIM, the trend component in the residual error of LPM can be well suppressed, and the error of the QPIM maintains noise level. All the results verify the efficiency and superiority of the proposed modeling and identification approaches. PMID:24163627
Operator induced multigrid algorithms using semirefinement
NASA Technical Reports Server (NTRS)
Decker, Naomi; Vanrosendale, John
1989-01-01
A variant of multigrid, based on zebra relaxation, and a new family of restriction/prolongation operators is described. Using zebra relaxation in combination with an operator-induced prolongation leads to fast convergence, since the coarse grid can correct all error components. The resulting algorithms are not only fast, but are also robust, in the sense that the convergence rate is insensitive to the mesh aspect ratio. This is true even though line relaxation is performed in only one direction. Multigrid becomes a direct method if an operator-induced prolongation is used, together with the induced coarse grid operators. Unfortunately, this approach leads to stencils which double in size on each coarser grid. The use of an implicit three point restriction can be used to factor these large stencils, in order to retain the usual five or nine point stencils, while still achieving fast convergence. This algorithm achieves a V-cycle convergence rate of 0.03 on Poisson's equation, using 1.5 zebra sweeps per level, while the convergence rate improves to 0.003 if optimal nine point stencils are used. Numerical results for two and three dimensional model problems are presented, together with a two level analysis explaining these results.
Spherical demons: fast diffeomorphic landmark-free surface registration.
Yeo, B T Thomas; Sabuncu, Mert R; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2010-03-01
We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160 k nodes requires less than 5 min when warping the atlas and less than 3 min when warping the subject on a Xeon 3.2 GHz single processor machine. This is comparable to the fastest nondiffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image 1) parcellation of in vivo cortical surfaces and 2) Brodmann area localization in ex vivo cortical surfaces.
Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration
Yeo, B.T. Thomas; Sabuncu, Mert R.; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2010-01-01
We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160k nodes requires less than 5 minutes when warping the atlas and less than 3 minutes when warping the subject on a Xeon 3.2GHz single processor machine. This is comparable to the fastest non-diffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image: (1) parcellation of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:19709963
Curve Set Feature-Based Robust and Fast Pose Estimation Algorithm
Hashimoto, Koichi
2017-01-01
Bin picking refers to picking the randomly-piled objects from a bin for industrial production purposes, and robotic bin picking is always used in automated assembly lines. In order to achieve a higher productivity, a fast and robust pose estimation algorithm is necessary to recognize and localize the randomly-piled parts. This paper proposes a pose estimation algorithm for bin picking tasks using point cloud data. A novel descriptor Curve Set Feature (CSF) is proposed to describe a point by the surface fluctuation around this point and is also capable of evaluating poses. The Rotation Match Feature (RMF) is proposed to match CSF efficiently. The matching process combines the idea of the matching in 2D space of origin Point Pair Feature (PPF) algorithm with nearest neighbor search. A voxel-based pose verification method is introduced to evaluate the poses and proved to be more than 30-times faster than the kd-tree-based verification method. Our algorithm is evaluated against a large number of synthetic and real scenes and proven to be robust to noise, able to detect metal parts, more accurately and more than 10-times faster than PPF and Oriented, Unique and Repeatable (OUR)-Clustered Viewpoint Feature Histogram (CVFH). PMID:28771216
Combined algorithmic and GPU acceleration for ultra-fast circular conebeam backprojection
NASA Astrophysics Data System (ADS)
Brokish, Jeffrey; Sack, Paul; Bresler, Yoram
2010-04-01
In this paper, we describe the first implementation and performance of a fast O(N3logN) hierarchical backprojection algorithm for cone beam CT with a circular trajectory1,developed on a modern Graphics Processing Unit (GPU). The resulting tomographic backprojection system for 3D cone beam geometry combines speedup through algorithmic improvements provided by the hierarchical backprojection algorithm with speedup from a massively parallel hardware accelerator. For data parameters typical in diagnostic CT and using a mid-range GPU card, we report reconstruction speeds of up to 360 frames per second, and relative speedup of almost 6x compared to conventional backprojection on the same hardware. The significance of these results is twofold. First, they demonstrate that the reduction in operation counts demonstrated previously for the FHBP algorithm can be translated to a comparable run-time improvement in a massively parallel hardware implementation, while preserving stringent diagnostic image quality. Second, the dramatic speedup and throughput numbers achieved indicate the feasibility of systems based on this technology, which achieve real-time 3D reconstruction for state-of-the art diagnostic CT scanners with small footprint, high-reliability, and affordable cost.
Current Status of Japan's Activity for GPM/DPR and Global Rainfall Map algorithm development
NASA Astrophysics Data System (ADS)
Kachi, M.; Kubota, T.; Yoshida, N.; Kida, S.; Oki, R.; Iguchi, T.; Nakamura, K.
2012-04-01
The Global Precipitation Measurement (GPM) mission is composed of two categories of satellites; 1) a Tropical Rainfall Measuring Mission (TRMM)-like non-sun-synchronous orbit satellite (GPM Core Observatory); and 2) constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). GPM Core Observatory will be launched in February 2014, and development of algorithms is underway. DPR Level 1 algorithm, which provides DPR L1B product including received power, will be developed by the JAXA. The first version was submitted in March 2011. Development of the second version of DPR L1B algorithm (Version 2) will complete in March 2012. Version 2 algorithm includes all basic functions, preliminary database, HDF5 I/F, and minimum error handling. Pre-launch code will be developed by the end of October 2012. DPR Level 2 algorithm has been developing by the DPR Algorithm Team led by Japan, which is under the NASA-JAXA Joint Algorithm Team. The first version of GPM/DPR Level-2 Algorithm Theoretical Basis Document was completed on November 2010. The second version, "Baseline code", was completed in January 2012. Baseline code includes main module, and eight basic sub-modules (Preparation module, Vertical Profile module, Classification module, SRT module, DSD module, Solver module, Input module, and Output module.) The Level-2 algorithms will provide KuPR only products, KaPR only products, and Dual-frequency Precipitation products, with estimated precipitation rate, radar reflectivity, and precipitation information such as drop size distribution and bright band height. It is important to develop algorithm applicable to both TRMM/PR and KuPR in order to produce long-term continuous data set. Pre-launch code will be developed by autumn 2012. Global Rainfall Map algorithm has been developed by the Global Rainfall Map Algorithm Development Team in Japan. The algorithm succeeded heritages of the Global Satellite Mapping for Precipitation (GSMaP) project between 2002 and 2007, and near-real-time version operating at JAXA since 2007. "Baseline code" used current operational GSMaP code (V5.222,) and development completed in January 2012. Pre-launch code will be developed by autumn 2012, including update of database for rain type classification and rain/no-rain classification, and introduction of rain-gauge correction.
Fast digital zooming system using directionally adaptive image interpolation and restoration.
Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki
2014-01-01
This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.
A fast, preconditioned conjugate gradient Toeplitz solver
NASA Technical Reports Server (NTRS)
Pan, Victor; Schrieber, Robert
1989-01-01
A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.
Multiscale solvers and systematic upscaling in computational physics
NASA Astrophysics Data System (ADS)
Brandt, A.
2005-07-01
Multiscale algorithms can overcome the scale-born bottlenecks that plague most computations in physics. These algorithms employ separate processing at each scale of the physical space, combined with interscale iterative interactions, in ways which use finer scales very sparingly. Having been developed first and well known as multigrid solvers for partial differential equations, highly efficient multiscale techniques have more recently been developed for many other types of computational tasks, including: inverse PDE problems; highly indefinite (e.g., standing wave) equations; Dirac equations in disordered gauge fields; fast computation and updating of large determinants (as needed in QCD); fast integral transforms; integral equations; astrophysics; molecular dynamics of macromolecules and fluids; many-atom electronic structures; global and discrete-state optimization; practical graph problems; image segmentation and recognition; tomography (medical imaging); fast Monte-Carlo sampling in statistical physics; and general, systematic methods of upscaling (accurate numerical derivation of large-scale equations from microscopic laws).
Fast implementation of length-adaptive privacy amplification in quantum key distribution
NASA Astrophysics Data System (ADS)
Zhang, Chun-Mei; Li, Mo; Huang, Jing-Zheng; Patcharapong, Treeviriyanupab; Li, Hong-Wei; Li, Fang-Yi; Wang, Chuan; Yin, Zhen-Qiang; Chen, Wei; Keattisak, Sripimanwat; Han, Zhen-Fu
2014-09-01
Post-processing is indispensable in quantum key distribution (QKD), which is aimed at sharing secret keys between two distant parties. It mainly consists of key reconciliation and privacy amplification, which is used for sharing the same keys and for distilling unconditional secret keys. In this paper, we focus on speeding up the privacy amplification process by choosing a simple multiplicative universal class of hash functions. By constructing an optimal multiplication algorithm based on four basic multiplication algorithms, we give a fast software implementation of length-adaptive privacy amplification. “Length-adaptive” indicates that the implementation of privacy amplification automatically adapts to different lengths of input blocks. When the lengths of the input blocks are 1 Mbit and 10 Mbit, the speed of privacy amplification can be as fast as 14.86 Mbps and 10.88 Mbps, respectively. Thus, it is practical for GHz or even higher repetition frequency QKD systems.
Fast dictionary generation and searching for magnetic resonance fingerprinting.
Jun Xie; Mengye Lyu; Jian Zhang; Hui, Edward S; Wu, Ed X; Ze Wang
2017-07-01
A super-fast dictionary generation and searching (DGS) algorithm was developed for MR parameter quantification using magnetic resonance fingerprinting (MRF). MRF is a new technique for simultaneously quantifying multiple MR parameters using one temporally resolved MR scan. But it has a multiplicative computation complexity, resulting in a big burden of dictionary generating, saving, and retrieving, which can easily be intractable for any state-of-art computers. Based on retrospective analysis of the dictionary matching object function, a multi-scale ZOOM like DGS algorithm, dubbed as MRF-ZOOM, was proposed. MRF ZOOM is quasi-parameter-separable so the multiplicative computation complexity is broken into additive one. Evaluations showed that MRF ZOOM was hundreds or thousands of times faster than the original MRF parameter quantification method even without counting the dictionary generation time in. Using real data, it yielded nearly the same results as produced by the original method. MRF ZOOM provides a super-fast solution for MR parameter quantification.
Formation Algorithms and Simulation Testbed
NASA Technical Reports Server (NTRS)
Wette, Matthew; Sohl, Garett; Scharf, Daniel; Benowitz, Edward
2004-01-01
Formation flying for spacecraft is a rapidly developing field that will enable a new era of space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has selected a formation flying interferometer design to detect earth-like planets orbiting distant stars. In order to advance technology needed for the TPF formation flying interferometer, the TPF project has been developing a distributed real-time testbed to demonstrate end-to-end operation of formation flying with TPF-like functionality and precision. This is the Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing and system-wide formation robustness. In this paper we describe the FAST and show results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first time that precision end-to-end formation flying operation has been demonstrated in a distributed real-time simulation environment.
Abel inversion using fast Fourier transforms.
Kalal, M; Nugent, K A
1988-05-15
A fast Fourier transform based Abel inversion technique is proposed. The method is faster than previously used techniques, potentially very accurate (even for a relatively small number of points), and capable of handling large data sets. The technique is discussed in the context of its use with 2-D digital interferogram analysis algorithms. Several examples are given.
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei
2013-04-01
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.
Time resolving beam position measurement and analysis of beam unstable movement in PSR
NASA Astrophysics Data System (ADS)
Aleksandrov, A. V.
2000-11-01
Precise measurement of beam centroid movement is very important for understanding the fast transverse instability in the Los Alamos Proton Storage Ring (PSR). Proton bunch in the PSR is long thus different parts of the bunch can have different betatron phase and move differently therefore time resolving position measurement is needed. Wide band strip line BPM can be adequate if proper processing algorithm is used. In this work we present the results of the analysis of unstable transverse beam motion using time resolving processing algorithm. Suggested algorithm allows to calculate transverse position of different parts of the beam on each turn, then beam centroid movement on successive turns can be developed in series of plane travelling waves in the beam frame of reference thus providing important information on instability development. Some general features of fast transverse instability, unknown before, are discovered.
Simulation results for a finite element-based cumulative reconstructor
NASA Astrophysics Data System (ADS)
Wagner, Roland; Neubauer, Andreas; Ramlau, Ronny
2017-10-01
Modern ground-based telescopes rely on adaptive optics (AO) systems for the compensation of image degradation caused by atmospheric turbulences. Within an AO system, measurements of incoming light from guide stars are used to adjust deformable mirror(s) in real time that correct for atmospheric distortions. The incoming wavefront has to be derived from sensor measurements, and this intermediate result is then translated into the shape(s) of the deformable mirror(s). Rapid changes of the atmosphere lead to the need for fast wavefront reconstruction algorithms. We review a fast matrix-free algorithm that was developed by Neubauer to reconstruct the incoming wavefront from Shack-Hartmann measurements based on a finite element discretization of the telescope aperture. The method is enhanced by a domain decomposition ansatz. We show that this algorithm reaches the quality of standard approaches in end-to-end simulation while at the same time maintaining the speed of recently introduced solvers with linear order speed.
Fast half-sibling population reconstruction: theory and algorithms.
Dexter, Daniel; Brown, Daniel G
2013-07-12
Kinship inference is the task of identifying genealogically related individuals. Kinship information is important for determining mating structures, notably in endangered populations. Although many solutions exist for reconstructing full sibling relationships, few exist for half-siblings. We consider the problem of determining whether a proposed half-sibling population reconstruction is valid under Mendelian inheritance assumptions. We show that this problem is NP-complete and provide a 0/1 integer program that identifies the minimum number of individuals that must be removed from a population in order for the reconstruction to become valid. We also present SibJoin, a heuristic-based clustering approach based on Mendelian genetics, which is strikingly fast. The software is available at http://github.com/ddexter/SibJoin.git+. Our SibJoin algorithm is reasonably accurate and thousands of times faster than existing algorithms. The heuristic is used to infer a half-sibling structure for a population which was, until recently, too large to evaluate.
Advanced Fast 3-D Electromagnetic Solver for Microwave Tomography Imaging.
Simonov, Nikolai; Kim, Bo-Ra; Lee, Kwang-Jae; Jeon, Soon-Ik; Son, Seong-Ho
2017-10-01
This paper describes a fast-forward electromagnetic solver (FFS) for the image reconstruction algorithm of our microwave tomography system. Our apparatus is a preclinical prototype of a biomedical imaging system, designed for the purpose of early breast cancer detection. It operates in the 3-6-GHz frequency band using a circular array of probe antennas immersed in a matching liquid; it produces image reconstructions of the permittivity and conductivity profiles of the breast under examination. Our reconstruction algorithm solves the electromagnetic (EM) inverse problem and takes into account the real EM properties of the probe antenna array as well as the influence of the patient's body and that of the upper metal screen sheet. This FFS algorithm is much faster than conventional EM simulation solvers. In comparison, in the same PC, the CST solver takes ~45 min, while the FFS takes ~1 s of effective simulation time for the same EM model of a numerical breast phantom.
Fast beampattern evaluation by polynomial rooting
NASA Astrophysics Data System (ADS)
Häcker, P.; Uhlich, S.; Yang, B.
2011-07-01
Current automotive radar systems measure the distance, the relative velocity and the direction of objects in their environment. This information enables the car to support the driver. The direction estimation capabilities of a sensor array depend on its beampattern. To find the array configuration leading to the best angle estimation by a global optimization algorithm, a huge amount of beampatterns have to be calculated to detect their maxima. In this paper, a novel algorithm is proposed to find all maxima of an array's beampattern fast and reliably, leading to accelerated array optimizations. The algorithm works for arrays having the sensors on a uniformly spaced grid. We use a general version of the gcd (greatest common divisor) function in order to write the problem as a polynomial. We differentiate and root the polynomial to get the extrema of the beampattern. In addition, we show a method to reduce the computational burden even more by decreasing the order of the polynomial.
NASA Astrophysics Data System (ADS)
He, A.; Quan, C.
2018-04-01
The principal component analysis (PCA) and region matching combined method is effective for fringe direction estimation. However, its mask construction algorithm for region matching fails in some circumstances, and the algorithm for conversion of orientation to direction in mask areas is computationally-heavy and non-optimized. We propose an improved PCA based region matching method for the fringe direction estimation, which includes an improved and robust mask construction scheme, and a fast and optimized orientation-direction conversion algorithm for the mask areas. Along with the estimated fringe direction map, filtered fringe pattern by automatic selective reconstruction modification and enhanced fast empirical mode decomposition (ASRm-EFEMD) is used for Hilbert spiral transform (HST) to demodulate the phase. Subsequently, windowed Fourier ridge (WFR) method is used for the refinement of the phase. The robustness and effectiveness of proposed method are demonstrated by both simulated and experimental fringe patterns.
Discriminative region extraction and feature selection based on the combination of SURF and saliency
NASA Astrophysics Data System (ADS)
Deng, Li; Wang, Chunhong; Rao, Changhui
2011-08-01
The objective of this paper is to provide a possible optimization on salient region algorithm, which is extensively used in recognizing and learning object categories. Salient region algorithm owns the superiority of intra-class tolerance, global score of features and automatically prominent scale selection under certain range. However, the major limitation behaves on performance, and that is what we attempt to improve. By reducing the number of pixels involved in saliency calculation, it can be accelerated. We use interest points detected by fast-Hessian, the detector of SURF, as the candidate feature for saliency operation, rather than the whole set in image. This implementation is thereby called Saliency based Optimization over SURF (SOSU for short). Experiment shows that bringing in of such a fast detector significantly speeds up the algorithm. Meanwhile, Robustness of intra-class diversity ensures object recognition accuracy.
Fractal-Based Image Compression
1990-01-01
used Ziv - Lempel - experiments and for software development. Addi- Welch compression algorithm (ZLW) [51 [4] was used tional thanks to Roger Boss, Bill...vol17no. 6 (June 4) and with the minimum number of maps. [5] J. Ziv and A. Lempel , Compression of !ndivid- 5 Summary ual Sequences via Variable-Rate...transient and should be discarded. 2.5 Collage Theorem algorithm2 C3.2 Deterministic Algorithm for IFS Attractor For fast image compression the best
A fast recursive algorithm for molecular dynamics simulation
NASA Technical Reports Server (NTRS)
Jain, A.; Vaidehi, N.; Rodriguez, G.
1993-01-01
The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.
Effects of Computer Architecture on FFT (Fast Fourier Transform) Algorithm Performance.
1983-12-01
Criteria for Efficient Implementation of FFT Algorithms," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-30, pp. 107-109, Feb...1982. Burrus, C. S. and P. W. Eschenbacher. "An In-Place, In-Order Prime Factor FFT Algorithm," IEEE Transactions on Acoustics, Speech, and Signal... Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-30, pp. 217-226, Apr. 1982. Control Data Corporation. CDC Cyber 170 Computer Systems
The effects of Ramadan fasting on the health and function of the eye.
Javadi, Mohammad Ali; Assadi, Mahsan; Einollahi, Bahram; Rabei, Hossein Mohammad; Afarid, Mehrdad; Assadi, Majid
2014-08-01
Ramadan fasting may alter a variety of physiological parameters which by themselves influence ocular system. Here, we review the effects of Ramadan fasting on the health and function of the eye. Literature records in PubMed/MEDLINE, Web of Science, EMBASE, Google Scholar, and Iran Medex databases as well as proceedings of related meetings from January 1986 to March 2014 were systematically reviewed. The search key words was based on the terms "Ramadan Fasting," "Ramadan," "Islamic Fasting," "Fasting in Ramadan" accompanied with one of the eye, tear drop, myopia, intraocular pressure (IOP), tear break up time, basal tear secretion, refractive error, and visual acuity. Predawn water loading and dehydration in the evening are shown to increase and decrease IOP and tear secretion, respectively. Ocular blood flow is changed in Ramadan fasting, and patients with ocular vein occlusion may experience more frequent attacks. There are no or minimal fluctuations in visual acuity and refractive errors, but most of them are decompensated after Ramadan. Although the influence of fasting in different eye parameters is evaluated in several studies, there are no or only limited studies conducted on patients suffering from glaucoma, damage to ophthalmic vasculature, tear dysfunction, and minimal visual acuity. Such studies are required to make a definite decision before fasting is declared harmless to these patients.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu
2013-02-01
A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude.
Automatic target detection using binary template matching
NASA Astrophysics Data System (ADS)
Jun, Dong-San; Sun, Sun-Gu; Park, HyunWook
2005-03-01
This paper presents a new automatic target detection (ATD) algorithm to detect targets such as battle tanks and armored personal carriers in ground-to-ground scenarios. Whereas most ATD algorithms were developed for forward-looking infrared (FLIR) images, we have developed an ATD algorithm for charge-coupled device (CCD) images, which have superior quality to FLIR images in daylight. The proposed algorithm uses fast binary template matching with an adaptive binarization, which is robust to various light conditions in CCD images and saves computation time. Experimental results show that the proposed method has good detection performance.
A maximum power point tracking algorithm for buoy-rope-drum wave energy converters
NASA Astrophysics Data System (ADS)
Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.
2016-08-01
The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.
Earthquake detection through computationally efficient similarity search
Yoon, Clara E.; O’Reilly, Ossian; Bergen, Karianne J.; Beroza, Gregory C.
2015-01-01
Seismology is experiencing rapid growth in the quantity of data, which has outpaced the development of processing algorithms. Earthquake detection—identification of seismic events in continuous data—is a fundamental operation for observational seismology. We developed an efficient method to detect earthquakes using waveform similarity that overcomes the disadvantages of existing detection methods. Our method, called Fingerprint And Similarity Thresholding (FAST), can analyze a week of continuous seismic waveform data in less than 2 hours, or 140 times faster than autocorrelation. FAST adapts a data mining algorithm, originally designed to identify similar audio clips within large databases; it first creates compact “fingerprints” of waveforms by extracting key discriminative features, then groups similar fingerprints together within a database to facilitate fast, scalable search for similar fingerprint pairs, and finally generates a list of earthquake detections. FAST detected most (21 of 24) cataloged earthquakes and 68 uncataloged earthquakes in 1 week of continuous data from a station located near the Calaveras Fault in central California, achieving detection performance comparable to that of autocorrelation, with some additional false detections. FAST is expected to realize its full potential when applied to extremely long duration data sets over a distributed network of seismic stations. The widespread application of FAST has the potential to aid in the discovery of unexpected seismic signals, improve seismic monitoring, and promote a greater understanding of a variety of earthquake processes. PMID:26665176
NASA Technical Reports Server (NTRS)
Lee, Yunha; Adams, P. J.
2012-01-01
This study develops more computationally efficient versions of the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithms, collectively called Fast TOMAS. Several methods for speeding up the algorithm were attempted, but only reducing the number of size sections was adopted. Fast TOMAS models, coupled to the GISS GCM II-prime, require a new coagulation algorithm with less restrictive size resolution assumptions but only minor changes in other processes. Fast TOMAS models have been evaluated in a box model against analytical solutions of coagulation and condensation and in a 3-D model against the original TOMAS (TOMAS-30) model. Condensation and coagulation in the Fast TOMAS models agree well with the analytical solution but show slightly more bias than the TOMAS-30 box model. In the 3-D model, errors resulting from decreased size resolution in each process (i.e., emissions, cloud processing wet deposition, microphysics) are quantified in a series of model sensitivity simulations. Errors resulting from lower size resolution in condensation and coagulation, defined as the microphysics error, affect number and mass concentrations by only a few percent. The microphysics error in CN70CN100 (number concentrations of particles larger than 70100 nm diameter), proxies for cloud condensation nuclei, range from 5 to 5 in most regions. The largest errors are associated with decreasing the size resolution in the cloud processing wet deposition calculations, defined as cloud-processing error, and range from 20 to 15 in most regions for CN70CN100 concentrations. Overall, the Fast TOMAS models increase the computational speed by 2 to 3 times with only small numerical errors stemming from condensation and coagulation calculations when compared to TOMAS-30. The faster versions of the TOMAS model allow for the longer, multi-year simulations required to assess aerosol effects on cloud lifetime and precipitation.
Fast Quantitative Susceptibility Mapping with L1-Regularization and Automatic Parameter Selection
Bilgic, Berkin; Fan, Audrey P.; Polimeni, Jonathan R.; Cauley, Stephen F.; Bianciardi, Marta; Adalsteinsson, Elfar; Wald, Lawrence L.; Setsompop, Kawin
2014-01-01
Purpose To enable fast reconstruction of quantitative susceptibility maps with Total Variation penalty and automatic regularization parameter selection. Methods ℓ1-regularized susceptibility mapping is accelerated by variable-splitting, which allows closed-form evaluation of each iteration of the algorithm by soft thresholding and FFTs. This fast algorithm also renders automatic regularization parameter estimation practical. A weighting mask derived from the magnitude signal can be incorporated to allow edge-aware regularization. Results Compared to the nonlinear Conjugate Gradient (CG) solver, the proposed method offers 20× speed-up in reconstruction time. A complete pipeline including Laplacian phase unwrapping, background phase removal with SHARP filtering and ℓ1-regularized dipole inversion at 0.6 mm isotropic resolution is completed in 1.2 minutes using Matlab on a standard workstation compared to 22 minutes using the Conjugate Gradient solver. This fast reconstruction allows estimation of regularization parameters with the L-curve method in 13 minutes, which would have taken 4 hours with the CG algorithm. Proposed method also permits magnitude-weighted regularization, which prevents smoothing across edges identified on the magnitude signal. This more complicated optimization problem is solved 5× faster than the nonlinear CG approach. Utility of the proposed method is also demonstrated in functional BOLD susceptibility mapping, where processing of the massive time-series dataset would otherwise be prohibitive with the CG solver. Conclusion Online reconstruction of regularized susceptibility maps may become feasible with the proposed dipole inversion. PMID:24259479
Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space Applications
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh; Bakhshi, Alireza; Keymeulen, Didier; Klimesh, Matthew
2009-01-01
Efficient on-board lossless hyperspectral data compression reduces the data volume necessary to meet NASA and DoD limited downlink capabilities. The techniques also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware, which makes it practical for flight implementations of pushbroom instruments. A prototype of the compressor (and decompressor) of the algorithm is available in software, but this implementation may not meet speed and real-time requirements of some space applications. Hardware acceleration provides performance improvements of 10x-100x vs. the software implementation (about 1M samples/sec on a Pentium IV machine). This paper describes a hardware implementation of the JPL-developed 'Fast Lossless' compression algorithm on a Field Programmable Gate Array (FPGA). The FPGA implementation targets the current state of the art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for Space applications.
NASA Astrophysics Data System (ADS)
Wulansari, I. H.; Wibowo, W. E.; Pawiro, S. A.
2017-05-01
In lung cancer cases, there exists a difficulty for the Treatment Planning System (TPS) to predict the dose at or near the mass interface. This error prediction might influence the minimum or maximum dose received by lung cancer. In addition to target motion, the target dose prediction error also contributes in the combined error during the course of treatment. The objective of this work was to verify dose plan calculated by adaptive convolution algorithm in Pinnacle3 at the mass interface against a set of measurement. The measurement was performed using Gafchromic EBT 3 film in static and dynamic CIRS phantom with amplitudes of 5 mm, 10 mm, and 20 mm in superior-inferior motion direction. Static and dynamic phantom were scanned with fast CT and slow CT before planned. The results showed that adaptive convolution algorithm mostly predicted mass interface dose lower than the measured dose in a range of -0,63% to 8,37% for static phantom in fast CT scanning and -0,27% to 15,9% for static phantom in slow CT scanning. In dynamic phantom, this algorithm was predicted mass interface dose higher than measured dose up to -89% for fast CT and varied from -17% until 37% for slow CT. This interface of dose differences caused the dose mass decreased in fast CT, except for 10 mm motion amplitude, and increased in slow CT for the greater amplitude of motion.
Discrete Data Transfer Technique for Fluid-Structure Interaction
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2007-01-01
This paper presents a general three-dimensional algorithm for data transfer between dissimilar meshes. The algorithm is suitable for applications of fluid-structure interaction and other high-fidelity multidisciplinary analysis and optimization. Because the algorithm is independent of the mesh topology, we can treat structured and unstructured meshes in the same manner. The algorithm is fast and accurate for transfer of scalar or vector fields between dissimilar surface meshes. The algorithm is also applicable for the integration of a scalar field (e.g., coefficients of pressure) on one mesh and injection of the resulting vectors (e.g., force vectors) onto another mesh. The author has implemented the algorithm in a C++ computer code. This paper contains a complete formulation of the algorithm with a few selected results.
An Algorithm for the Calculation of Exact Term Discrimination Values.
ERIC Educational Resources Information Center
Willett, Peter
1985-01-01
Reports algorithm for calculation of term discrimination values that is sufficiently fast in operation to permit use of exact values. Evidence is presented to show that relationship between term discrimination and term frequency is crucially dependent upon type of inter-document similarity measure used for calculation of discrimination values. (13…
2012-03-22
with performance profiles, Math. Program., 91 (2002), pp. 201–213. [6] P. DRINEAS, R. KANNAN, AND M. W. MAHONEY , Fast Monte Carlo algorithms for matrices...computing invariant subspaces of non-Hermitian matri- ces, Numer. Math., 25 ( 1975 /76), pp. 123–136. [25] , Matrix algorithms Vol. II: Eigensystems
2007-03-01
32 4.4 Algorithm Pseudo - Code ...................................................................................34 4.5 WIND Interface With a...difference estimates of xc temporal derivatives, or by using a polynomial fit to the previous values of xc. 34 4.4 ALGORITHM PSEUDO - CODE Pseudo ...Phase Shift Keying DQPSK Differential Quadrature Phase Shift Keying EVM Error Vector Magnitude FFT Fast Fourier Transform FPGA Field Programmable
Guindon, Stéphane; Dufayard, Jean-François; Lefort, Vincent; Anisimova, Maria; Hordijk, Wim; Gascuel, Olivier
2010-05-01
PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.
Fast online deconvolution of calcium imaging data
Zhou, Pengcheng; Paninski, Liam
2017-01-01
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series sequentially from beginning to end, thus enabling real-time online estimation of neural activity during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Unlike these approaches, our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. A minor modification can further improve the quality of activity inference by imposing a constraint on the minimum spike size. The algorithm enables real-time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish imaging data on a laptop. PMID:28291787
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.
2015-01-01
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112
Fast Facts: Recent Statistics from the Library Research Service, Nos. 116-122. March-November 1996.
ERIC Educational Resources Information Center
Fast Facts: Recent Statistics from the Library Research Service, 1996
1996-01-01
Seven issues of a newsletter on recent library statistics provide information on Colorado public libraries, librarian and library assistant salaries, materials challenges, school library media centers, and circulation policies. One 1995 library survey compares average public library salaries with and without an American Library Association…
2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach
We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...
75 FR 5285 - Mission Statement; Franchise Trade Mission to Mexico; March 3-5, 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-02
... of the franchise market, followed by the restaurant sector with 23 percent, retail 21 percent... opportunities for U.S. firms, food concepts lead the industry, with fast food restaurants and casual dining the.... content of the combined value of the finished product or service. Selection Criteria for Participation...
Fast localization of optic disc and fovea in retinal images for eye disease screening
NASA Astrophysics Data System (ADS)
Yu, H.; Barriga, S.; Agurto, C.; Echegaray, S.; Pattichis, M.; Zamora, G.; Bauman, W.; Soliz, P.
2011-03-01
Optic disc (OD) and fovea locations are two important anatomical landmarks in automated analysis of retinal disease in color fundus photographs. This paper presents a new, fast, fully automatic optic disc and fovea localization algorithm developed for diabetic retinopathy (DR) screening. The optic disc localization methodology comprises of two steps. First, the OD location is identified using template matching and directional matched filter. To reduce false positives due to bright areas of pathology, we exploit vessel characteristics inside the optic disc. The location of the fovea is estimated as the point of lowest matched filter response within a search area determined by the optic disc location. Second, optic disc segmentation is performed. Based on the detected optic disc location, a fast hybrid level-set algorithm which combines the region information and edge gradient to drive the curve evolution is used to segment the optic disc boundary. Extensive evaluation was performed on 1200 images (Messidor) composed of 540 images of healthy retinas, 431 images with DR but no risk of macular edema (ME), and 229 images with DR and risk of ME. The OD location methodology obtained 98.3% success rate, while fovea location achieved 95% success rate. The average mean absolute distance (MAD) between the OD segmentation algorithm and "gold standard" is 10.5% of estimated OD radius. Qualitatively, 97% of the images achieved Excellent to Fair performance for OD segmentation. The segmentation algorithm performs well even on blurred images.
Emergency ultrasound-based algorithms for diagnosing blunt abdominal trauma.
Stengel, Dirk; Rademacher, Grit; Ekkernkamp, Axel; Güthoff, Claas; Mutze, Sven
2015-09-14
Ultrasonography (performed by means of a four-quadrant, focused assessment of sonography for trauma (FAST)) is regarded as a key instrument for the initial assessment of patients with suspected blunt abdominal and thoraco-abdominal trauma in the emergency department setting. FAST has a high specificity but low sensitivity in detecting and excluding visceral injuries. Proponents of FAST argue that ultrasound-based clinical pathways enhance the speed of primary trauma assessment, reduce the number of unnecessary multi-detector computed tomography (MDCT) scans, and enable quicker triage to surgical and non-surgical care. Given the proven accuracy, increasing availability of, and indication for, MDCT among patients with blunt abdominal and multiple injuries, we aimed to compile the best available evidence of the use of FAST-based assessment compared with other primary trauma assessment protocols. To assess the effects of diagnostic algorithms using ultrasonography including in FAST examinations in the emergency department in relation to the early, late, and overall mortality of patients with suspected blunt abdominal trauma. The most recent search was run on 30th June 2015. We searched the Cochrane Injuries Group Specialised Register, The Cochrane Library, MEDLINE (OvidSP), EMBASE (OvidSP), ISI Web of Science (SCI-EXPANDED, SSCI, CPCI-S, and CPSI-SSH), clinical trials registers, and screened reference lists. Trial authors were contacted for further information and individual patient data. We included randomised controlled trials (RCTs). Participants were patients with blunt torso, abdominal, or multiple trauma undergoing diagnostic investigations for abdominal organ injury. The intervention was diagnostic algorithms comprising emergency ultrasonography (US). The control was diagnostic algorithms without US examinations (for example, primary computed tomography (CT) or diagnostic peritoneal lavage (DPL)). Outcomes were mortality, use of CT or invasive procedures (DPL, laparoscopy, laparotomy), and cost-effectiveness. Two authors (DS and CG) independently selected trials for inclusion, assessed methodological quality, and extracted data. Methodological quality was assessed using the Cochrane Collaboration risk of bias tool. Where possible, data were pooled and relative risks (RRs), risk differences (RDs), and weighted mean differences, each with 95% confidence intervals (CIs), were calculated by fixed-effect or random-effects models as appropriate. We identified four studies meeting our inclusion criteria. Overall, trials were of poor to moderate methodological quality. Few trial authors responded to our written inquiries seeking to resolve controversial issues and to obtain individual patient data. Strong heterogeneity amongst the trials prompted discussion between the review authors as to whether the data should or should not be pooled; we decided in favour of a quantitative synthesis to provide a rough impression about the effect sizes achievable with US-based triage algorithms. We pooled mortality data from three trials involving 1254 patients; the RR in favour of the FAST arm was 1.00 (95% CI 0.50 to 2.00). FAST-based pathways reduced the number of CT scans (random-effects model RD -0.52, 95% CI -0.83 to -0.21), but the meaning of this result was unclear. The experimental evidence justifying FAST-based clinical pathways in diagnosing patients with suspected abdominal or multiple blunt trauma remains poor. Because of strong heterogeneity between the trial results, the quantitative information provided by this review may only be used in an exploratory fashion. It is unlikely that FAST will ever be investigated by means of a confirmatory, large-scale RCT in the future. Thus, this Cochrane Review may be regarded as a review which provides the best available evidence for clinical practice guidelines and management recommendations. It can only be concluded from the few head-to-head studies that negative US scans are likely to reduce the incidence of MDCT scans which, given the low sensitivity of FAST (or reliability of negative results), may adversely affect the diagnostic yield of the trauma survey. At best, US has no negative impact on mortality or morbidity. Assuming that major blunt abdominal or multiple trauma is associated with 15% mortality and a CT-based diagnostic work-up is considered the current standard of care, 874, 3495, or 21,838 patients are needed per intervention group to demonstrate non-inferiority of FAST to CT-based algorithms with non-inferiority margins of 5%, 2.5%, and 1%, power of 90%, and a type-I error alpha of 5%.
NASA Astrophysics Data System (ADS)
Fernandez-Gonzalez, Rodrigo; Deschamps, Thomas; Idica, Adam; Malladi, Ravikanth; Ortiz de Solorzano, Carlos
2003-07-01
In this paper we present a scheme for real time segmentation of histological structures in microscopic images of normal and neoplastic mammary gland sections. Paraffin embedded or frozen tissue blocks are sliced, and sections are stained with hematoxylin and eosin (H&E). The sections are then imaged using conventional bright field microscopy. The background of the images is corrected by arithmetic manipulation using a "phantom." Then we use the fast marching method with a speed function that depends on the brightness gradient of the image to obtain a preliminary approximation to the boundaries of the structures of interest within a region of interest (ROI) of the entire section manually selected by the user. We use the result of the fast marching method as the initial condition for the level set motion equation. We run this last method for a few steps and obtain the final result of the segmentation. These results can be connected from section to section to build a three-dimensional reconstruction of the entire tissue block that we are studying.
Sun, Minglei; Yang, Shaobao; Jiang, Jinling; Wang, Qiwei
2015-01-01
Pelger-Huet anomaly (PHA) and Pseudo Pelger-Huet anomaly (PPHA) are neutrophil with abnormal morphology. They have the bilobed or unilobed nucleus and excessive clumping chromatin. Currently, detection of this kind of cell mainly depends on the manual microscopic examination by a clinician, thus, the quality of detection is limited by the efficiency and a certain subjective consciousness of the clinician. In this paper, a detection method for PHA and PPHA is proposed based on karyomorphism and chromatin distribution features. Firstly, the skeleton of the nucleus is extracted using an augmented Fast Marching Method (AFMM) and width distribution is obtained through distance transform. Then, caryoplastin in the nucleus is extracted based on Speeded Up Robust Features (SURF) and a K-nearest-neighbor (KNN) classifier is constructed to analyze the features. Experiment shows that the sensitivity and specificity of this method achieved 87.5% and 83.33%, which means that the detection accuracy of PHA is acceptable. Meanwhile, the detection method should be helpful to the automatic morphological classification of blood cells.
TES Instrument Decommissioning
Atmospheric Science Data Center
2018-03-20
TES Instrument Decommissioning Tuesday, March 20, 2018 ... PST during a scheduled real time satellite contact the TES IOT along with the Aura FOT commanded the TES instrument to its ... generated from an algorithm update to the base Ground Data System software and will be made available to the scientific community in the ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajaldeen, A; Ramachandran, P; Geso, M
2015-06-15
Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fastmore » superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of algorithms in lung cancer radiotherapy involving small fields. However, further investigation by Monte Carlo simulation is required to confirm our results.« less
Li, Dapeng; Meng, Hsien-Wen; Kath, Suraj; Nsoesie, Elaine; Li, Feifei; Wen, Ming
2016-01-01
Background Studies suggest that where people live, play, and work can influence health and well-being. However, the dearth of neighborhood data, especially data that is timely and consistent across geographies, hinders understanding of the effects of neighborhoods on health. Social media data represents a possible new data resource for neighborhood research. Objective The aim of this study was to build, from geotagged Twitter data, a national neighborhood database with area-level indicators of well-being and health behaviors. Methods We utilized Twitter’s streaming application programming interface to continuously collect a random 1% subset of publicly available geolocated tweets for 1 year (April 2015 to March 2016). We collected 80 million geotagged tweets from 603,363 unique Twitter users across the contiguous United States. We validated our machine learning algorithms for constructing indicators of happiness, food, and physical activity by comparing predicted values to those generated by human labelers. Geotagged tweets were spatially mapped to the 2010 census tract and zip code areas they fall within, which enabled further assessment of the associations between Twitter-derived neighborhood variables and neighborhood demographic, economic, business, and health characteristics. Results Machine labeled and manually labeled tweets had a high level of accuracy: 78% for happiness, 83% for food, and 85% for physical activity for dichotomized labels with the F scores 0.54, 0.86, and 0.90, respectively. About 20% of tweets were classified as happy. Relatively few terms (less than 25) were necessary to characterize the majority of tweets on food and physical activity. Data from over 70,000 census tracts from the United States suggest that census tract factors like percentage African American and economic disadvantage were associated with lower census tract happiness. Urbanicity was related to higher frequency of fast food tweets. Greater numbers of fast food restaurants predicted higher frequency of fast food mentions. Surprisingly, fitness centers and nature parks were only modestly associated with higher frequency of physical activity tweets. Greater state-level happiness, positivity toward physical activity, and positivity toward healthy foods, assessed via tweets, were associated with lower all-cause mortality and prevalence of chronic conditions such as obesity and diabetes and lower physical inactivity and smoking, controlling for state median income, median age, and percentage white non-Hispanic. Conclusions Machine learning algorithms can be built with relatively high accuracy to characterize sentiment, food, and physical activity mentions on social media. Such data can be utilized to construct neighborhood indicators consistently and cost effectively. Access to neighborhood data, in turn, can be leveraged to better understand neighborhood effects and address social determinants of health. We found that neighborhoods with social and economic disadvantage, high urbanicity, and more fast food restaurants may exhibit lower happiness and fewer healthy behaviors. PMID:27751984
A generalized Condat's algorithm of 1D total variation regularization
NASA Astrophysics Data System (ADS)
Makovetskii, Artyom; Voronin, Sergei; Kober, Vitaly
2017-09-01
A common way for solving the denosing problem is to utilize the total variation (TV) regularization. Many efficient numerical algorithms have been developed for solving the TV regularization problem. Condat described a fast direct algorithm to compute the processed 1D signal. Also there exists a direct algorithm with a linear time for 1D TV denoising referred to as the taut string algorithm. The Condat's algorithm is based on a dual problem to the 1D TV regularization. In this paper, we propose a variant of the Condat's algorithm based on the direct 1D TV regularization problem. The usage of the Condat's algorithm with the taut string approach leads to a clear geometric description of the extremal function. Computer simulation results are provided to illustrate the performance of the proposed algorithm for restoration of degraded signals.
A multi-level solution algorithm for steady-state Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham; Leutenegger, Scott T.
1993-01-01
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1993-01-01
Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.
A Gradient Taguchi Method for Engineering Optimization
NASA Astrophysics Data System (ADS)
Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song
2017-10-01
To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.